2021 Semiannual Groundwater Monitoring and Corrective Action Report

PLANT McMANUS Inactive Ash Pond 1 (AP-1)

Prepared for:
GEORGIA POWER COMPANY
Atlanta, Georgia

Prepared by:

Resolute Environmental & Water Resources Consulting, LLC
1003 Weatherstone Parkway, Suite 320
Woodstock, Georgia

February 28, 2022

Georgia Power Company

2021 Semiannual Groundwater

Monitoring and Corrective Action Report

Plant McManus
Inactive Ash Pond 1 (AP-1)

February 28, 2022

Stephen K. Wilson, P.G.

colt 5 Mill

Principal

Robert Mull, G.I.T. Project Geologist

CERTIFICATION STATEMENT

This 2021 Semiannual Groundwater Monitoring and Corrective Action Report, Georgia Power Company - Plant McManus— Inactive Ash Pond 1 (AP-1) has been prepared in compliance with the United States Environmental Protection Agency coal combustion residual rule [40 Code of Federal Regulations (CFR) 257 Subpart D] and the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10 by a qualified groundwater scientist or engineer with Resolute Environmental & Water Resources Consulting, LLC (Resolute).

RESOLUTE ENVIRONMENTAL & WATER RESOURCES CONSULTING, LLC

Signature:

Date:

02-28.2022

SUMMARY

This summary of the 2021 Semiannual Groundwater Monitoring and Corrective Action Report provides the status of groundwater monitoring and corrective action program from July 2021 through December 2021 (the semiannual reporting period) at Georgia Power Company's (Georgia Power's) Former Ash Pond (AP) AP-1 at Plant McManus (the Site). This summary was prepared by Resolute Environmental and Water Resources Consulting, LLC. (Resolute) on behalf of Georgia Power to meet the requirements listed in Part A, Section 6¹ of the U.S. Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D).

Plant McManus is located at 1 Crispen Island Dr. in Glynn County, Georgia, approximately 5.37 miles northwest of the city of Brunswick. The plant property is bordered by the Turtle River to the west and by Burnett Creek to the north. The former AP-1 is located on the northeastern portion of the plant property. The former AP-1 was an approximately 80acre ash pond that was built in the late 1950's. Ash sluicing operations at AP-1 commenced in 1959 and ceased in 1972. Closure of AP-1 commenced in 2016. As part of closure, AP-1 was dewatered sufficiently to remove the free liquids, and ash was removed and disposed of in an offsite, permitted landfill. A certification of removal report demonstrating completion of removal activities was submitted to the Georgia Environmental Protection Division (GA EPD) on November 27, 2019. Based on review of the report and an inspection of AP-1 on December 13, 2019, GA EPD acknowledged the completion of CCR removal on January 10, 2020. The final CCR Permit for the Plant McManus Ash

Former Ash Pond (AP-1) and Site.

Pond was issued by GA EPD Friday June 18th, 2021 (063-030D (CCR)).

Groundwater at the Site is monitored using a comprehensive monitoring network that meets federal and state monitoring requirements. Routine sampling and reporting began after the background groundwater conditions were established between August 2016 and May 2018. Based on groundwater conditions at the Site, an assessment monitoring program and assessment of corrective measures were established in August 2019 and July 2020, respectively. An Assessment of Corrective Measures Report was subsequently prepared for the former AP-1 (Arcadis, 2020b) and submitted to GA EPD in December 2020. During the semiannual reporting period, the Site remained in assessment monitoring as corrective measures were evaluated.

During the semiannual reporting period, Resolute conducted the semiannual groundwater and surface water sampling event in September 2021. A supplementary surface water sampling event

¹ 80 FR 21468, Apr. 17, 2015, as amended at 81 FR 51807, Aug. 5, 2016; 83 FR 36452, July 30, 2018; 85 FR 53561, Aug. 28, 2020

was conducted in December 2021. Samples were submitted to Pace Analytical Services, LLC, for analysis. Per the CCR rule, groundwater results were evaluated in accordance with the certified statistical methods. That evaluation showed statistically significant values of Appendix III² and Appendix IV³ parameters in wells provided in the table below.

Appendix III Parameter	September 2021						
Boron	MCM-07, MCM-12, and MCM-17						
Calcium	MCM-06, MCM-07, and MCM-17						
рН	MCM-05, MCM-06, MCM-07, MCM-12, MCM-14, and						
	MCM-17						
Appendix IV Parameter ⁴	September 2021						
Arsenic	Federal and State:						
	MCM-06						
Lithium	Federal and State:						
	MCM-06, DPZ-02						
	State Only:						
	MCM-14						

Based on review of the Appendix III and Appendix IV statistical results, the Site will continue in assessment monitoring. On November 17, 2020, Georgia Power submitted a lithium alternative source demonstration (ASD) for monitoring well MCM-06 and conditions were deemed a conditional concurrence by GA EPD on April 22, 2021. An ASD was submitted to GA EPD for lithium at monitoring well MCM-14 on October 25, 2021. Georgia Power will continue routine groundwater monitoring, reporting, and groundwater remedy evaluation at the Site. Reports will be posted to the website and provided to GA EPD semiannually.

⁴ A state statistically significant level (SSL)-related constituent is determined by comparing the confidence intervals developed to either the constituent's maximum contaminant level (MCL), if available, or the calculated background interwell tolerance limit. A federal SSL-related constituent is determined by comparing the confidence intervals developed to either the constituent's MCL, if available, the USEPA Regional Screening Level, if no MCL is available, or the calculated background interwell tolerance limit.

² Boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)

³ Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, and radium 226 + 228

TABLE OF CONTENTS

1.0	IN	TRODUCTION	1
1.1		SITE LOCATION AND DESCRIPTION	1
1	.1.1	Regional Geology	2
1	.1.2	Site Geology and Hydrogeology	2
1.2		GROUNDWATER MONITORING SYSTEM	4
2.0	GF	ROUNDWATER AND SURFACE WATER MONITORING ACTIVITIES	4
2.1		MONITORING WELL INSTALLATION, MAINTENANCE, AND ABANDONMENTS	4
2.2		ASSESSMENT MONITORING	4
2.3		ADDITIONAL SAMPLING EVENTS	5
2.3.	1	Surface Water Sampling	5
3.0	SA	MPLE METHODOLOGY & ANALYSES	ε
3.1		GROUNDWATER ELEVATION MEASUREMENT	ε
3.2		GROUNDWATER GRADIENT AND HORIZONTAL FLOW VELOCITY	ε
3.3		GROUNDWATER SAMPLING	7
3.4		LABORATORY ANALYSES	8
3.5		QUALITY ASSURANCE AND QUALITY CONTROL	8
4.0	ST	ATISTICAL ANALYSIS	8
4.1		METHODS	S
4.1.	1	Appendix III Constituents	9
4.1.	2	Appendix IV Constituents	9
4.2		STATISTICAL ANALYSES RESULTS	10
4.2.	1	Delineation Data	11
5.0	AL	TERNATE SOURCE DEMONSTRATION	11
6.0	M	ONITORING PROGRAM STATUS	11
6.1		ASSESSMENT MONITORING STATUS	11
6.2		ASSESSMENT OF CORRECTIVE MEASURES	12
7.0	CC	DNCLUSIONS & FUTURE ACTIONS	12
9 N	DE	EEDENCES	12

TABLES

Table 1	Summary of Groundwater Elevations
Table 2	Monitoring Well Network Summary
Table 3	Piezometer Network Summary
Table 4	Groundwater Sampling Event Summary
Table 5	2021 Horizontal Groundwater Flow Velocity Calculations
Table 6	Groundwater Data Summary
Table 7	Surface Water Analytical Results – September and December 2021
Table 8	Federal Groundwater Protection Standards
Table 9	Georgia State Groundwater Protection Standards

FIGURES

Figure 1	Site Location Map
Figure 2	Potentiometric Surface Map – High Tide September 13, 2021
Figure 3	Potentiometric Surface Map – Low Tide September 13, 2021
Figure 4	Site Plan and Monitoring Wells Location Map
Figure 5	Piezometer Location Map
Figure 6	Surface Water Sample Collection Locations
Figure 7	Surface Water Samples Transects 1-3 September 2021
Figure 8	Surface Water Samples Transect 4 September 2021
Figure 9	Surface Water Samples Transects 1-3 December 2021
Figure 10	Surface Water Samples Transect 4 December 2021

APPENDICES

Appendix A	Monitoring Well Maintenance and Repair Documentation
Appendix B	Laboratory Analytical and Field Sampling Reports for Monitoring Events
Appendix C	Semiannual Remedy Selection & Design Progress Report
Appendix D	Surface Water Laboratory Analytical Results and Field Sampling Forms
Appendix E	Statistical Analyses
Appendix F	Lithium Alternative Source Demonstration Report

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) and the Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4-.10, this 2021 Semiannual Groundwater Monitoring and Corrective Action Report has been prepared to document groundwater monitoring activities conducted at Georgia Power Company's (Georgia Power's) Plant McManus Inactive Ash Pond AP-1 (the Site) and satisfy the requirements of § 257.90(e). To specify groundwater monitoring requirements, Georgia EPD rule 391-3-4-.10(6)(a) incorporates by reference the United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015). For ease of reference, the USEPA CCR rules are cited within this report.

Groundwater monitoring and reporting for the former AP-1 is performed in accordance with the monitoring requirements of 40 CFR 257.90 through 257.95 of the USEPA CCR rule, and Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6).

The former AP-1 ceased receiving waste prior to the effective date of the USEPA CCR rule promulgated in April 2015. A notification of intent to initiate closure of the inactive CCR ash pond was certified on December 7, 2015 and posted to Georgia Power's website. Therefore, groundwater monitoring and reporting for the former AP-1 are being completed in accordance with the alternate schedule in § 257.100(e)(5) of the revised USEPA CCR rule (August 5, 2016).

This report documents semiannual monitoring activities completed August 2021 through January 2022 (the reporting period) and includes the required report components in accordance with 40 CFR 257.90(e).

1.1 SITE LOCATION AND DESCRIPTION

The Site is located at 1 Crispen Island Dr. in Glynn County, Georgia, approximately 5.37 miles northwest of the city of Brunswick. The plant property is bordered by the Turtle River to the west and by Burnett Creek to the north. The former AP-1 is located on the northeastern portion of the plant property (Figure 1).

The former AP-1 was an approximately 80-acre ash pond that was built in the late 1950's. Ash sluicing operations at AP-1 commenced in 1959 and ceased in 1972. Closure of AP-1 commenced in 2016. As part of closure, AP-1 was dewatered sufficiently to remove the free liquids, and ash was removed and disposed of in an offsite, permitted landfill. A certification of removal report demonstrating completion of removal activities was submitted to GA EPD on November 27, 2019. Based on review of the report and an inspection of AP-1 on December 13, 2019, GA EPD acknowledged the completion of CCR removal on January 10, 2020. The final

CCR Permit for the Plant McManus Ash Pond was issued by GA EPD June 18th, 2021 (063-030D (CCR)).

1.1.1 Regional Geology

The aquifer systems in Brunswick, Glynn County, GA are: (1) the surficial aquifer, (2) the Brunswick aquifer (Upper and Lower) and (3) the Floridan aquifer system (Upper and Lower). The Floridian aquifer system can extend to depths beyond 2,000 feet or more (Clark et al. 1990, Maslia and Prowell,1990; Jones et.al 2002). The uppermost regional aquifer is the surficial aquifer. In the Brunswick area, this aquifer extends to a depth of approximately 180 feet. Although the surficial aquifer is defined on a regional scale as extending to approximately 180 feet below ground surface, Clarke et al. (1990) acknowledge that localized lower permeability units can create confined or semi-confined conditions within limited areas of the surficial aquifer (ATC Associates Inc., 1997).

Regionally, the surficial aquifer is composed of geologic formations overlying the Hawthorn Formation. These formations include the Satilla, Charlton, and Raysor Formations, as well as undifferentiated Holocene, Pleistocene, Pliocene and late-Miocene deposits. In the Brunswick area, the Satilla is described as extending to approximately 28 feet below ground surface and the Cypresshead to approximately 50 feet below ground surface. Underlying the Satilla and Cypresshead Formations are sands, gravels, and clays which have been described by Weems and Edwards (2001) as two pairs of alternating confining units and water-bearing zones of the Ebenezer Formation. These alternating units of the Ebenezer Formation are described as an uppermost confining unit extending from approximately 50 to 75 feet below ground surface, followed by a water-bearing zone from approximately 75 to 110 feet below ground surface, another confining unit from approximately 110 to 15 feet below ground surface, and then another water-bearing zone from approximately 150 to 185 feet below ground surface. Depositionally, these sediments represent marginal to shallow marine beds, that are overlain by marine terrace deposits. Fluvial or residual deposits overlay the terrace deposits (Miller, 1986; Clarke et al, 1990).

The regional surficial aquifer is underlain by approximately 90 feet of lower-permeability portions (Miocene Unit A) of the Hawthorn Formation. This stratum forms the upper confining bed for the Brunswick aquifer system. The Brunswick aquifer system is composed of two confined aquifers (the Upper Brunswick aquifer and the Lower Brunswick aquifer) which are separated and confined above and below by less permeable units of the Hawthorn Formation. The Upper Brunswick aquifer extends from approximately 270 feet to 350 feet below ground surface, and the Lower Brunswick aquifer extends from approximately 400 feet to 470 feet below ground surface (Clarke et al, 1990).

1.1.2 Site Geology and Hydrogeology

Based on information collected during subsurface investigations, Plant McManus is underlain by very fine sands and clays from land surface (or beneath a shallow fill layer) to depths ranging from 33 to 43 feet below land surface. Very fine sands are predominant, but discontinuous clay

layers of varying thickness were encountered during drilling activities. The clay layers varied from less than one inch to approximately ten feet in thickness. These very fine sands and discontinuous clay layers are interpreted to be the Upper Satilla Formation (ATC Associates, Inc., 1997).

Underlying the Upper Satilla Formation are fine to medium sands with greater silt content, and apparently lower permeability, than the sands of the Upper Satilla. These siltier sands, which were interpreted to be the Lower Satilla Formation, were encountered at depths greater than 35 feet below ground surface during the Site investigation performed in the 1990s (ATC Associates Inc., 1997). These sands may also correspond to the Cypresshead Formation of Huddleston (1988). Sands and clays below the Cypresshead and above the confining unit of the Brunswick aquifer system have been described by Weems and Edwards (2001) as two pairs of alternating confining units and water-bearing zones of the Ebenezer Formation, extending from approximately 50 to 185 feet below ground surface in the Brunswick area.

The regional surficial aquifer that contains the Upper and Lower Satilla Formations is underlain by approximately 90 feet of lower-permeability portions (Miocene Unit A) of the Hawthorn Formation. This stratum forms the upper confining bed for the Brunswick aquifer system.

The surficial aquifer underlying the mainland, marsh, and island is composed of the very fine to fine grain sand with discontinuous clay layers of the Upper and Lower Satilla Formation. In the marsh, the groundwater elevation at low tide is below the top of the marsh surface. The upper portion of the aquifer in the marsh has been cut by tidal creeks, which meander through the marsh. In addition to current and historically recent (pre-ash pond construction) tidal channels, the marsh is also likely to have paleo (pre-historic) tidal channels present throughout the upper portion of the aquifer in the marsh area, which may provide zones of higher hydraulic conductivity or isolated pockets of groundwater. Vertically, the Satilla formation fines downward to a silty fine sand of the Lower Satilla Formation. The aquifer is generally unconfined, with localized clay layers. Groundwater flowing within the surficial aquifer is separated from deeper aquifers by approximately 90 feet of lower-permeability portions of the Hawthorn Formation (Miocene Unit A) that form the upper confining bed for the Brunswick aquifer system (Clarke et al, 1990).

Groundwater flows from two directions toward the former AP-1. One groundwater flow component originates on the mainland, northeast of the facility, and flows southwest, while the other flow component originates on Crispen Island and flows north and northeast (Figures 2 and 3). Groundwater elevations in the monitoring wells on the mainland (MCM-02, -15, and -16) and on the island (MCM-08, and -11) have consistently exhibited higher groundwater elevations than the monitoring wells and piezometers installed along the dikes (Table 1), with MCM-01 and -04 exhibiting intermediate elevations between the mainland and dike wells. The potentiometric surface of the surficial aquifer and the resultant groundwater flow direction in the vicinity of the former AP-1 is a reflection of the topography of the mainland, Crispen Island, and the tidal marsh surrounding the area.

1.2 GROUNDWATER MONITORING SYSTEM

Pursuant to § 257.91, Georgia Power installed a groundwater monitoring system within the uppermost aquifer around former AP-1. The monitoring system is designed to monitor groundwater passing the waste boundary of the former AP-1 within the uppermost aquifer. Wells were located to serve as piezometers, upgradient monitoring points, sidegradient monitoring points, or downgradient monitoring points based on groundwater flow direction (Tables 2 and 3, Figures 4 and 5). As part of the assessment monitoring program, deep piezometer DPZ-02 was reclassified as a delineation well during the 2020 semiannual monitoring period. Pursuant to § 257.195(g)(1)(iv), the well, classified as "delineation well", is sampled in addition to the compliance monitoring wells as part of the ongoing assessment groundwater monitoring program.

2.0 GROUNDWATER AND SURFACE WATER MONITORING ACTIVITIES

As required by § 257.90(e), the following describes monitoring-related activities performed during the reporting period and discusses any change in status of the monitoring program.

2.1 MONITORING WELL INSTALLATION, MAINTENANCE, AND ABANDONMENTS

Monitoring wells are inspected semiannually to determine if any repairs or corrective actions are necessary to meet the requirements of the Georgia Water Well Standards Act (O.C.G.A. § 12-5-134(5)(d)(vii)). In September 2021, monitoring wells were inspected, necessary corrective actions were identified and subsequently completed, as documented in Appendix A. This documentation will serve as the required five year well inspection and was performed under the direction of a professional geologist or engineer registered in the State of Georgia. In summary, monitoring activities for this reporting period included:

- Visual inspection of well conditions prior to sampling, recording Site conditions, and performing exterior maintenance to perform sampling under safe and clean conditions; and,
- New signs were added to the following groundwater wells and piezometers in September 2021: MCM-18, MCM-19, MCM-20, DPZ-01, DPZ-02, DPZ-03, DPZ-04, DPZ-05, DPZ-06, PZ-9, and PZ-10.

The well maintenance and repair documentation for September 2021 is presented in Appendix A.

2.2 ASSESSMENT MONITORING

Based on results of the August 2019 *Annual Groundwater and Corrective Action Monitoring Report*, assessment monitoring was initiated at the Site. Statistical analyses of the 2019 groundwater data identified SSLs of arsenic and lithium in well MCM-06 in excess of the federal and state groundwater protection standard (GWPS).

Pursuant to § 257.96, an Assessment of Corrective Measures Report (ACM) was initiated for the former AP-1 in July 9, 2020 for isolated arsenic and lithium concentrations observed in groundwater. An Assessment of Corrective Measures Report (ACM Report) was subsequently prepared for the former AP-1 (Arcadis, 2020b) and submitted to GA EPD in December 2020 and posted to the CCR compliance website in January 2021. In accordance with § 257.96(b), groundwater continues to be monitored at the former AP-1 under the assessment monitoring program while the ACM phase is implemented.

Pursuant to § 257.95(b), the monitoring wells of the certified compliance monitoring network (Figure 4) were sampled for the complete list of Appendix III and Appendix IV parameters (Table 4) in the monitoring event conducted in September 2021. Details of these events and analytical results are discussed in Section 3, with the field sampling and calibration reports and laboratory analytical reports presented in Appendix B. The statistical results are discussed in Section 4.

2.3 ADDITIONAL SAMPLING EVENTS

Additional aquifer matrix (solids) and groundwater sampling was conducted along the northern dike to develop additional data in support of remedy evaluation and selection. The scope of this additional effort and associated results are presented in the *Semiannual Remedy Selection and Design Progress Report* provided in Appendix C.

2.3.1 Surface Water Sampling

Due to the presence of surface water adjacent to MCM-06, installation of wells to horizontally characterize this area is infeasible. In September 2021, Georgia Power proactively collected surface water samples along four transects (T1 through T4) in the tidal marsh adjacent to wells MCM-05, MCM-06, MCM-07, and MCM-14, respectively. In September 2021, samples were collected during both high (HT, HTS, HS, HB) and low tides (L, LT) at all transects (T1 through T4). Additional surface water sampling was conducted in December 2021 to supplement existing surface water data collected through previous assessment events. In December 2021, samples were collected at high tide from transect T2 (adjacent to well MCM-06), high tide from transect T4 (adjacent to well MCM-14), and high and low tides from the 4th location in each of the transects (i.e., T1-4, T2-4, T3-4, and T4-4). In both the September and December 2021 events, samples were collected from two background locations. One background surface water location sampled was the low tide background location, BG-1LT, in Cowpen Creek, north of its confluence with Burnett Creek. The other surface water sample was collected at high tide from background location 2, or BG-2HT, located in the Turtle River, north of its confluence with Gibson Creek. Samples were collected from locations shown in Figures 6-10. Surface water samples are collected in accordance with USEPA Region 4 Science and Ecosystem Support Division (SESD). Operating Procedure, Surface Water Sampling SESDPROC-201-R4 (December 16, 2016).

The laboratory reports associated with the surface water sampling events are provided in Appendix D. Georgia Power will continue collecting the surface water samples semiannually to support assessment of corrective measures.

3.0 SAMPLE METHODOLOGY & ANALYSES

The following sections describe the methods used to conduct groundwater and surface water monitoring as well as the sampling results that were obtained from sampling events at the former AP-1 during the reporting period.

3.1 GROUNDWATER ELEVATION MEASUREMENT

Prior to each sampling event, groundwater levels were recorded from piezometers and wells in the network at the former AP-1. Groundwater measurements were taken from transducers installed in 16 wells (MCM-01, -02, -04 through -07, -11, -12, -14 through -20, and DPZ-02) and 8 piezometers (MCM-03, -08, -13, DPZ-01, and DPZ-03 through -06). When other piezometers in the network are utilized for potentiometric surface maps, they are gauged by hand using a Heron water level indicator. Groundwater elevations calculated during the September 2021 monitoring events are summarized in Table 1. Groundwater elevation data were used to develop a high tide and low tide potentiometric surface elevation contour map for each event (Figures 2 and 3). Groundwater flow at the Site is discussed in Section 1.1.

3.2 GROUNDWATER GRADIENT AND HORIZONTAL FLOW VELOCITY

The horizontal groundwater flow velocity at the former AP-1 was calculated using a derivation of Darcy's Law. Specifically,

$$V = \frac{K * i}{\eta_{e}}$$

Where:

 $V = Groundwater flow velocity <math>\left(\frac{feet}{day}\right)$

 $K = \text{Average Hydraulic Conductivity } \left(\frac{feet}{day}\right)$

i = Horizontal hydraulic gradient $\left(\frac{feet}{feet}\right)$

 $\eta_e = ext{ Effective porosity (percent)}$

Horizontal groundwater flow velocities were calculated for two well pairs at high and low tide using groundwater elevations collected from transducers on September 13, 2021. Groundwater flow velocities representing groundwater flowing from the mainland to former AP-1 (between MCM-02)

and MCM-16) and from the island to former AP-1 (between MCM-11 and MCM-12) increased slightly during high tide compared to low tide (Table 5). Groundwater flow between MCM-02 and MCM-16 was 0.0398 ft/ day at low tide and 0.0424 ft/ day at high tide, while groundwater flow for MCM-11 and MCM-12 was 0.0396 ft/ day at low tide and 0.0400 ft/day at high tide. The groundwater direction during high tide was from the marsh to former AP-1 and at low tide from former AP-1 to the marsh. Average groundwater flow velocities were 0.041 ft/day or 15.05 feet per year (ft/year) at high tide and 0.040 ft/day or 14.50 ft/yr at low tide.

3.3 GROUNDWATER SAMPLING

Groundwater samples were collected from the compliance well network and select piezometers using low-flow sampling procedures in accordance with § 257.93(a). Purging and sampling was performed using a peristaltic pump with the intake tubing lowered to the midpoint of the well screen (or as appropriate determined by the water level). QED dedicated pumps are utilized in monitoring wells MCM-01, MCM-05, MCM-06, MCM-07, MCM-12, MCM-14, MCM-15, MCM-16, and MCM-17. Non-disposable equipment was decontaminated before use and between well locations.

An AquaTroll (In-Situ field instrument) was used to monitor and record field water quality parameters (pH, conductivity, dissolved oxygen (DO), temperature, and oxidation reduction potential [ORP]) during well purging to verify stabilization prior to sampling. Turbidity was monitored using a LaMotte 2020we (or similar) 1970-USEPA and ISO Compliant Model turbidity meter.

Groundwater samples were collected when the following stabilization criteria were met:

- ± 0.1 standard units for pH
- ± 5% for specific conductance
- \pm 0.2 milligrams per liter (mg/L) or \pm 10%, whichever is greater for DO > 0.5 mg/L. No criterion applies if DO < 0.5 mg/L, record only
- Turbidity measurements less than or equal to 5 nephelometric turbidity units (NTU)

Once stabilization was achieved, unfiltered samples were collected in appropriately preserved laboratory-supplied containers, placed in ice-packed coolers. No filtered samples were collected during this reporting period.

Upon completion of the sampling events, samples were submitted to Pace Analytical Services, LLC (Pace) following chain-of-custody protocol. The field sampling forms generated during the assessment monitoring events conducted during this reporting period are included in Appendix B.

3.4 LABORATORY ANALYSES

Laboratory analyses were performed by Pace, which is accredited by National Environmental Laboratory Accreditation Program (NELAP) and maintains a NELAP certification for all Appendix III and Appendix IV constituents analyzed for this project.

The groundwater analytical results from the semiannual assessment monitoring event conducted in September 2021 are summarized in Table 6, and the laboratory analytical reports are provided in Appendix B. The surface water results for the September and December 2021 events are summarized in Table 7, and the laboratory analytical reports are provided in Appendix D. The pH field measurements recorded during the sampling events are also provided in Table 6.

3.5 QUALITY ASSURANCE AND QUALITY CONTROL

During each sampling event, quality assurance/quality control samples (QA/QC) were collected at a rate of one sample per every 10 detection samples. QA/QC samples included field equipment rinsate blanks (EQBL), field blanks (FBL), and duplicate (DUP) samples. QA/QC sample data were evaluated during data validation (as described below) and are included in Appendices A and C.

Groundwater quality data for the assessment events were independently validated by Environmental Standards in accordance with USEPA guidance (USEPA, 2011) and the analytical methods. Data validation generally consisted of reviewing sample integrity, holding times, laboratory method blanks, laboratory control samples, matrix spikes/matrix spike duplicate recoveries and relative percent differences (RPDs), post digestion spikes, laboratory and field duplicate RPDs, field and equipment blanks, and reporting limits. Where appropriate, validation qualifiers and flags are applied to the data using USEPA procedures as guidance (USEPA, 2017). Based on the data validation, the data collected during September 2021 are acceptable for use in determining the compliance status of the Site. The associated data validation results are provided in Appendix B with the laboratory reports.

4.0 STATISTICAL ANALYSIS

Statistical analysis of the reporting period groundwater monitoring data was performed by Groundwater Stats Consulting, LLC (GSC), following the appropriate certified statistical methodology for the Site. The report generated from the statistical analysis is provided in Appendix E (GSC, 2022). A summary of methods and results are provided in the following sections.

4.1 METHODS

The statistical method used at the Site was developed by GSC using methodology presented in Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance, March 2009, US EPA 530/ R-09-007 (US EPA, 2009). To develop the statistical methods, analytical data collected during the background period were evaluated and used to develop statistical limits for each Appendix III parameter and metals required by the existing GA EPD permit. Sanitas groundwater statistical software was used to screen the data and perform the statistical analyses. Sanitas is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by US EPA regulations.

Appendix III statistical analysis was performed to determine if Appendix III constituents have returned to background levels. Appendix IV constituents were evaluated to determine if concentrations statistically exceeded the established state and federal GWPS. Detailed statistical methods used for Appendix III and Appendix IV constituents are discussed in statistical analysis package provided in Appendix E and summarized in Sections 4.1.1 and 4.1.2.

4.1.1 Appendix III Constituents

The statistical test used to evaluate the groundwater monitoring data was the interwell prediction limit (PL) method for Appendix III constituents (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids [TDS]) combined with the option of a 1-of-2 verification resampling strategy. Interwell prediction limits, constructed from all available pooled upgradient well data were used to evaluate the most recent compliance sample from each downgradient well reported during the September 2021 sample event.

If data from a sampling event initially exceed the PL, the resampling strategy may be used to verify the result. In 1-of-2 resampling, one independent resample may be collected and evaluated within 90 days to determine whether the initial exceedance is verified. If the resample exceeds the PL, the initial exceedance is verified, and a statistically significant increase (SSI) is determined. When the resample result does not verify the initial result, there is no SSI. If resampling is not performed, the initial exceedance is a confirmed exceedance.

4.1.2 Appendix IV Constituents

Background limits were used when determining the Appendix IV GWPS under USEPA rule 40 CFR § 257.95(h) and GA EPD CCR Rule 391-3-4-.10(6)(a). Parametric tolerance limits were used to calculate background limits from pooled upgradient well data when data followed a normal or transformed-normal distribution for Appendix IV parameters with a target of 95% confidence and 95% coverage. When data contained greater than 50% non-detects or when the data distribution did not follow a normal or transformed-normal distribution, a nonparametric tolerance limit was used. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

USEPA revised the federal CCR Rule on July 30, 2018, updating GWPS for cobalt, lead, lithium, and molybdenum. As described in 40 CFR § 257.95(h)(1-3), the GWPS is:

- (1) The maximum contaminant level (MCL) established under 40 CFR §141.62 and 141.66.
- (2) Where an MCL has not been established:
 - (i) Cobalt 0.006 mg/L;
 - (ii) Lead 0.015 mg/L;
 - (iii) Lithium 0.040 mg/L; and
 - (iv) Molybdenum 0.100 mg/L.
- (3) Background levels for constituents where the background level is higher than the MCL or rule-specified GWPS.

USEPA's updated GWPS have not yet been incorporated under GA EPD's CCR Rule. The GA EPD CCR Rule GWPS is:

- (1) The federally established MCL.
- (2) Where an MCL has not been established, the background concentration.
- (3) Background levels for constituents where the background level is higher than the MCL.

Following the above federal and state rule requirements, GWPS were established for statistical comparison of Appendix IV constituents and are presented in Tables 8 and 9.

4.2 STATISTICAL ANALYSES RESULTS

Based on review of the full Appendix III statistical analysis discussion presented in Appendix E, groundwater conditions have not returned to background and assessment monitoring should continue. Review of the Sanitas results indicates that using the GWPS established according to both 40 CFR §257.95(h) and 391-3-4-.10(6)(a), the following SSLs were identified during the reporting period:

AP-1 (Federal CCR Rule):

• Arsenic: MCM-06

Lithium: MCM-06 and DPZ-02

AP-1 (GA EPD CCR Rule):

Arsenic: MCM-06

Lithium: MCM-06, MCM-14, and DPZ-02

A groundwater exceedance notification has been placed in the operating record pursuant to 40 CFR § 257.95(g). The lithium SSL in MCM-06 in excess of the state and federal GWPS was previously addressed with an ASD which was submitted to GA EPD on November 17, 2020. The lithium SSL in MCM-14 in excess of the state GWPS is addressed in a separate 2021 ASD (Appendix F), submitted to GA EPD on October 25, 2021.

With respect to the SSL of lithium identified at DPZ-02 above the state GWPS, and federal GWPS, GPC will either submit an ASD or initiate an ACM by April 29, 2022, as required by 40 CFR § 257.95(g)(3)(i - ii).

4.2.1 Delineation Data

The SSL identified for arsenic at MCM-06 is vertically delineated to below the state and federal GWPS by delineation well DPZ-02.

As described in Section 2.3.1, due to the presence of a surface water feature in the downgradient direction of MCM-06, installation of wells to horizontally characterize this area is infeasible. Georgia Power collected surface water samples from along four transects in the tidal marsh adjacent to wells MCM-05, MCM-06, MCM-07, and MCM-14 of former AP-1. Arsenic was not detected above the Georgia instream water quality standard for dissolved arsenic for marine estuary environments (0.036 mg/L) and laboratory reporting limits of 0.015 to 0.050 mg/L (depending on sample date and location, with the higher detection limits due to high ionic strength surface water) in surface water samples collected to date (Table 7); therefore, no impacts to surface water have been detected and horizontal delineation is complete.

5.0 ALTERNATE SOURCE DEMONSTRATION

Pursuant to regulations in § 257.95(g)(3)(ii), Arcadis U.S., Inc. (Arcadis) prepared an ASD for the SSLs of lithium reported for well MCM-06 (Arcadis, 2020a) and MCM-14 (Arcadis, 2021). The ASDs present multiple lines of evidence that indicate that the lithium observed at former AP-1 is due to a natural source – i.e., brackish surface water. Lithium is a naturally occurring element in seawater and is present in the brackish water that is a mix of seawater and freshwater surrounding the site. The ASD for MCM-14 is provided in Appendix F of this report for reference. GA EPD approved the ASD for lithium at monitoring well MCM-06 on April 22, 2021. The approval was conditional on the ASD being updated after 2-years with additional monitoring data. An update to the ASD will be submitted in the 2022 Semi-Annual Groundwater Monitoring and Corrective Action Report.

6.0 MONITORING PROGRAM STATUS

6.1 ASSESSMENT MONITORING STATUS

Pursuant to 40 CFR 257.96(b), Georgia Power will continue to monitor the groundwater at the former AP-1 in accordance with the assessment monitoring program regulations of 40 CFR 257.95 as corrective measures to address arsenic in MCM-06 are evaluated. Pursuant to § 257. 95(g)(1)(iv), the delineation wells will continue to be sampled as part of the ongoing semiannual assessment groundwater monitoring program.

6.2 ASSESSMENT OF CORRECTIVE MEASURES

An ACM report was submitted to GA EPD on December 4, 2020. The ACM efforts completed during the reporting period covered by this groundwater monitoring and corrective action report are presented in the *Semiannual Remedy Selection and Design Progress Report* provided in Appendix C. The Semiannual Progress Report summarizes:

- (i) the current conceptual site model applicable to evaluating groundwater corrective measures proposed in the ACM Report (Arcadis, 2020b);
- (ii) the analytical data obtained during supplemental ACM-specific field investigations;
- (iii) the status of evaluating applicable corrective measures; and
- (iv) the planned activities and anticipated schedule for the following semiannual reporting period.

Georgia Power will include future Semiannual Progress Reports with each groundwater monitoring and corrective action report.

7.0 CONCLUSIONS & FUTURE ACTIONS

This 2021 Semiannual Groundwater Monitoring and Corrective Action Report for Georgia Power's Plant McManus Inactive Ash Pond AP-1 was prepared to fulfill the requirements of USEPA's CCR Rule and Georgia EPD rule 391-3-4-.10(6)(c). Statistical evaluations of the groundwater monitoring data from the September 2021 event at the former AP-1 identified the continued presence of an SSLs of arsenic and lithium in monitoring well MCM-06 and lithium in monitoring well MCM-14. The lithium SSLs in MCM-06 and MCM-14 are addressed with separate ASDs. An ASD or ACM addendum for the new SSL of lithium above the state and federal GWPS identified at DPZ-02 will be submitted by April 29, 2022. The arsenic SSL in MCM-06 is vertically delineated below the state and federal GWPS by DPZ-02. Based on the surface water data collected to date, the arsenic SSL in MCM-06 does not appear in adjacent surface water. Surface water data will be collected quarterly and reported in semiannual and annual groundwater monitoring reports.

Georgia Power will continue to monitor groundwater in the vicinity of former AP-1 under the current assessment monitoring program and adaptively manage the Site as new data become available. Georgia Power will continue efforts to assess corrective measures as presented in the Semiannual Remedy Selection and Design Progress Report provided in Appendix C.

The next semiannual assessment sampling event is planned for February 2022. The January 2022 assessment monitoring event will include sampling and analysis of Appendix III and IV constituents.

8.0 REFERENCES

- Arcadis U.S., Inc. 2020a. *Lithium Alternative Source Demonstration*, *Plant McManus Former Ash Pond 1, Brunswick, Georgia*, dated November 17, 2020.
- Arcadis U.S., Inc. 2020b. Assessment of Corrective Measures Report, Plant McManus Former Ash Pond 1, Brunswick, Georgia, dated December 4, 2020.
- Arcadis U.S., Inc. 2021. 2021 Lithium Alternative Source Demonstration, Plant McManus Former Ash Pond 1, Brunswick, Georgia, dated October 25, 2021.
- ATC Associates Inc. 1997. Compliance Status Report, McManus Steam Electric Generating Plant, Brunswick, Georgia, dated March 24, 1997.
- Clarke, J.S., Hacke, C.M., and Peck, M.F., 1990, *Geology and Ground-Water Resources of the Coastal Area of Georgia*, Georgia Geologic Survey Bulletin 113.
- Jones, L.E., Prowell, D.C., and Maslia, M.L., 2002, *Hydrogeology and water quality (1978) of the Floridan aquifer system at U.S. Geological Survey Test Well 26, on Colonels Island, near Brunswick, Georgia*: U.S. Geological Survey Water-Resources Investigations Report 02–4020, 44 p. [Also available at http://pubs.usgs.gov/wri/2002/wri02-4020/.]
- Groundwater Stats Consulting, LLC (GSC). 2022. Plant McManus Ash Pond (AP) Statistical Analysis- September 2021 Sampling Event, Dated February 28, 2022.
- Maslia, M.L., and Prowell, D.C., 1990, Effects of faults on fluid flow and chloride contamination in a carbonate aquifer system: Journal of Hydrology, v. 115, nos. 1–4, p. 1–49. [Also available at http://pubs.er.usgs.gov/publication/70016336.]
- Miller, J.A., 1986, Framework of the Floridan Aquifer System in Florida and in Parts of Georgia, South Carolina, and Alabama, USGS Professional Paper 1403-B.
- Sanitas: Groundwater Statistical Software, version 9.6, Sanitas Technologies[®], Boulder, CO.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March.
- USEPA. 2011. Data Validation Standard Operating Procedures. Science and Ecosystem Support Division (SESD). Region IV. Athens, GA. September.

- USEPA. 2015. Operating Procedure for Field Equipment Cleaning and Decontamination Standard Operating Procedures. Science and Ecosystem Support Division (SESD). Region IV. Athens, GA. December.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPAHQRCRA–2009–0640; FRL–9919–44–OSWER]. RIN–2050–AE81.
- USEPA. 2016. Federal Register. Volume 81. No. 151. Friday, August 5, 2016. Environmental Protection Agency. 40 CFR Part 257. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Extension of Compliance Deadlines for Certain Inactive Surface Impoundments; Response to Partial Vacatur. [EPAHQOLEM–2016–0274; FRL–9949–44–OLEM]. RIN–2050–AE81.
- USEPA. 2017. *National Functional Guidelines for Inorganic Superfund Methods Data Review.*Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January.
- Weems, Robert E., and Edwards, Lucy E., 2001, Geology of Oligocene, *Miocene, and Younger Deposits in the Coastal Area of Georgia*, Georgia Geologic Survey Bulletin 131.

TABLES

				Collection Date	September 13, 2021	September 13, 2021
		High				15:13
		Low	Tide		8:34	45.00
				Start Collection	10:00	15:00
		- /- :	E:#	Stop Collection	N/A	N/A
Well ID	Top of Casing Elevation (ft NAVD 88)	Top of Casing Elevation (April 16, 2020) [ft NAVD 88]	Difference Between Elevations (ft NAVD 88)	Well Bottom Elevation (ft NAVD 88)	Low Tide GW Elevation (ft NAVD 88) ¹	High Tide GW Elevation (ft NAVD 88) ¹
MCM-01	8.76	8.63	-0.13	-18.56	4.33	4.52
MCM-02	10.58	11.25	0.67	-16.77	6.85	6.77
MCM-03	10.00	9.97	-0.03	-17.70	3.29	3.31
MCM-04	12.47	12.39	-0.08	-16.10	2.89	3.51
MCM-05	10.09	10.04	-0.05	-17.96	1.72	3.12
MCM-06	10.17	10.15	-0.02	-17.03	1.06	2.96
MCM-07	10.22	10.20	-0.02	-13.53	2.24	2.91
MCM-08	9.41	9.42	0.01	-18.88	2.95	2.97
MCM-10	11.77	11.75	-0.02	-12.19	NM 4.06	NM
MCM-11	10.37 12.03	10.23	-0.14	-13.63	4.86 2.99	4.82 2.93
MCM-12		11.87	-0.16	-16.97		
MCM-13	12.67	12.56	-0.11	-14.79	2.33	2.52
MCM-14 MCM-15	11.66 12.87	11.50 12.84	-0.16 -0.03	-16.45 -13.73	1.11 3.77	3.19 4.02
MCM-16	15.81	16.02	0.21	-13.73	7.16	7.10
MCM-17	11.67	11.49	-0.18	-15.77	2.09	2.75
MCM-18	9.00	9.00	0.00	-18.86	2.84	2.75
MCM-19	8.71	8.71	0.00	-19.61	1.50	3.08
MCM-20	10.07	10.07	0.00	-12.98	1.32	3.02
MW-01R	12.61	NS	NS	-14.83	NM	NM
MW-02	11.10	NS NS	NS NS	-15.28	NM	NM
MW-03	11.26	NS NS	NS NS	-15.34	NM	NM
MW-04	9.20	NS	NS	-17.85	NM	NM
MW-05	13.24	NS	NS	-14.21	NM	NM
MW-06R	13.31	NS	NS	-10.29	NM	NM
MW-07	9,94	NS	NS	-11.62	NM	NM
MW-09	10.10	NS	NS	-14.05	NM	NM
MW-10	10.24	NS	NS	-17.06	NM	NM
MW-11	10.35	NS	NS	-23.05	NM	NM
MW-12	10.08	NS	NS	-23.47	NM	NM
PZ-9	9.41	9.41	0.00	-14.64	2.82	2.77
PZ-10	12.17	12.17	0.00	-10.74	2.92	2.92
PZ-11	9.37	9.37	0.00	-9.71	3.41	3.34
PZ-12	7.90	7.90	0.00	-10.80	2.86	3.22
DPZ-01	9.71	9.71	0.00	-8.99	1.45	3.20
DPZ-02	9.54	9.54	0.00	-9.16	1.12	3.08
DPZ-03	9.46	9.46	0.00	-9.24	1.63	3.06
DPZ-04	11.45	11.45	0.00	-7.25	1.92	3.05
DPZ-05	11.00	11.00	0.00	-7.70	2.19	3.71
DPZ-06	12.04	12.04	0.00	-6.66	3.40	3.56
RW-1	9.39	NS	NS	-17.03	NM	NM
RW-2	9.96	NS	NS	-17.31	NM	NM
RW-3	9.89	NS	NS	-22.40	NM	NM
RW-4	9.49	NS	NS	-17.39	NM	NM
RW-5	10.11	NS	NS	-27.11	NM	NM
RW-6	10.25	NS	NS	-26.34	NM	NM
RW-7	10.19	NS	NS	-27.99	NM	NM
RW-8	10.22	NS	NS	-21.40	NM	NM
RW-9	10.26	NS	NS	-27.45	NM	NM
RW-10	10.56	NS	NS	-27.24	NM	NM
AP Monitor	Transducer	NM	NM	NM	3.00	3.01
Oil Dock Monitor	Transducer	NM	NM	NM	-2.67	3.87

Oil Dock Monitor Transducer NM

Notes:

"Values calculated using April 16, 2020 survey data;

NS = Not Surveyed

NM = Not Measured

MW-06 was abandoned in 2017

MW-08 was abandoned in 2019

PZ-1 through PZ-8 were abandoned in 2019

MCM-09 was abandoned in 2020

Updated by KS 2/15/22; Checked by SKW 2/15/22

Table 2 Monitoring Well Network Summary Plant McManus Inactive Ash Pond 1 (AP-1) Brunswick, GA

Well ID	Well Function	Northing ¹ (ft)	Easting ¹ (ft)	Top of Casing Elevation ² (ft NAVD 88)	Ground Surface Elevation ^{2,3} (ft NAVD 88)	Total Depth ⁴ (ft BTOC)	Top of Screen Elevation ² (ft NAVD 88)	Bottom of Screen Elevation ² (ft NAVD 88)	
MCM-01	Upgradient Monitoring	443727.31	852732.08	8.63	5.70	27.32	-7.93	-17.93	
MCM-02	Upgradient Monitoring	444496.53	852663.64	11.25	8.25	27.35	-5.22	-15.22	
MCM-04	Downgradient Monitoring	444804.73	851695.27	12.39	9.50	28.57	-5.18	-15.18	
MCM-05	Downgradient Monitoring	444716.63	851309.91	10.04	7.80	28.05	-7.25	-17.25	
MCM-06	Downgradient Monitoring	444407.22	850782.11	10.15	7.87	27.20	-6.27	-16.27	
MCM-07	Downgradient Monitoring	444059.38	850195.96	10.20	7.52	23.75	-2.76	-12.76	
MCM-11	Upgradient Monitoring	442429.80	851072.91	10.23	7.52	24.00	-3.34	-13.34	
MCM-12	Sidegradient Monitoring	442821.17	851312.45	11.87	8.99	29.00	-6.12	-16.12	
MCM-14	Sidegradient Monitoring	443358.82	852317.59	11.50	8.66	28.11	-6.23	-16.23	
MCM-15	Upgradient Monitoring	444825.53	851949.02	12.84	10.18	26.60	-4.53	-14.53	
MCM-16	Upgradient Monitoring	444551.32	852716.60	16.02	13.04	28.39	-1.72	-11.72	
MCM-17	Sidegradient Monitoring	443074.41	851899.68	11.49	9.09	27.44	-4.81	-14.81	
MCM-18	Upgradient Monitoring	442067.07	851698.41	9.00	6.01	27.86	-8.76	-18.76	
MCM-19	Upgradient Monitoring	441157.82	852338.86	8.71	5.77	28.32	-9.53	-19.53	
MCM-20	Upgradient Monitoring	440944.40	852185.15	10.07	7.07	23.05	-2.98	-12.98	
DPZ-02	Vertical Delineation Well	444391.02	850757.94	9.54	7.34	43.46	-28.84	-33.84	

- 1. Georiga State Plane NAD 83 East Zone.
- 2. NAVD 88 North American Vertical Datum of 1988
 3. Ground Surface measured at the mag nail in the concrete pad

4. ft BTOC - feet below top of casing Updated by: WL 10/6/21 Checked by: CL 10/12/21

Table 3 Piezometer Network Summary Plant McManus Inactive Ash Pond 1 (AP-1) Brunswick, GA

1 Top of Casing Ground Surface Top of Screen Botto													
Well ID	Well Function	Northing ¹ (ft)	Easting ¹ (ft)	Elevation ² (ft NAVD 88)	Elevation ^{2,3} (ft NAVD 88)	Total Depth⁴ (ft BTOC)	Elevation ² (ft NAVD 88)	Bottom of Screen Elevation ² (ft NAVD 88)					
MW-01R	Piezometer	443632.5586	852715.1308	12.61	NA	27.44	0.17	-14.83					
MW-02	Piezometer	443354.3859	852304.1959	11.10	NA	26.80	-0.70	-15.70					
MW-03	Piezometer	443081.3356	851904.8549	11.26	NA	27.00	-0.60	-15.60					
MW-04	Piezometer	442854.6307	851408.1446	9.20	NA	27.40	-3.00	-18.00					
MW-05	Piezometer	442578.1982	850752.3477	13.24	NA	27.60	0.90	-14.10					
MW-06R	Piezometer	442378.5335	850499.0375	13.25	NA	20.00	3.25	-6.75					
MW-07	Piezometer	442792.9894	850224.3520	9.94	NA	21.50	3.40	-11.60					
MW-09	Piezometer	443736.7716	849920.8976	10.10	NA	24.20	0.80	-14.20					
MW-10	Piezometer	444045.1224	850181.4059	10.24	NA	27.10	-2.80	-17.80					
MW-11	Piezometer	444359.5263	850709.3205	10.42	NA	32.20	-8.20	-23.20					
MW-12	Piezometer	444667.3620	851186.9003	10.08	NA	32.30	-8.60	-23.60					
MCM-03	Piezometer	444414.8800	851984.6700	9.97	7.10	27.70	-7.73	-17.73					
MCM-08	Piezometer	443758.8000	849716.9600	9.42	6.55	28.29	-8.39	-18.39					
MCM-10	Piezometer 442791.8800		850453.0500	11.75	8.61	23.96	-1.25	-11.25					
MCM-13	Piezometer 443030.2300		851826.1900	12.56	9.79	9.79 27.46		-14.90					
PZ-09	Piezometer	444082.13	849471.64	9.41	6.57	6.57 24.05		-14.56					
PZ-10	Piezometer	444949.09	851673.98	12.17	9.74	22.91	-0.66	-10.66					
PZ-11	Piezometer	443222.86	849280.51	9.37	6.57	19.08	-4.63	-9.63					
PZ-12	Piezometer	443593.34	849396.87	7.90	5.02	18.70	-5.72	-10.72					
DPZ-01	Piezometer	444695.71	851277.40	9.71	7.36	40.78	-25.99	-30.99					
DPZ-03	Piezometer	444073.16	850218.83	9.46	7.04	47.57	-33.03	-38.03					
DPZ-04	Piezometer	443062.60	851881.94	11.45	8.96	51.23	-34.70	-39.70					
DPZ-05	Piezometer	443376.32	852342.11	11.00	8.60	51.20	-35.12	-40.12					
DPZ-06	Piezometer	444614.79	851846.27	12.04	9.59	40.50	-23.38	-28.38					
RW-1	Dewatering for Construction	444094.0012	850251.1636	9.39	NA	26.42	-2.61	-12.61					
RW-2	Dewatering for Construction	444161.8377	850367.2034	9.96	NA	27.27	-2.83	-12.83					
RW-3	Dewatering for Construction	444228.4307	850479.7659	9.89	NA	32.29	-3.07	-13.07					
RW-4	Dewatering for Construction	444299.3305	850599.2604	9.49	NA	26.88	-2.97	-12.97					
RW-5	Dewatering for Construction	444369.6765	850714.2378	10.11	NA	37.22	-2.92	-22.92					
RW-6	Dewatering for Construction	444436.3732	850831.7225	10.25	NA	36.58	-2.67	-22.67					
RW-7	Dewatering for Construction	444504.5857	850949.3512	10.19	NA	38.17	-7.69	-22.69					
RW-8	Dewatering for Construction	444572.9068	851064.4671	10.22	NA	31.62	-2.80	-17.80					
RW-9	Dewatering for Construction	444641.6045	851181.2956	10.26	NA	37.71	-7.66	-22.66					
RW-10	Dewatering for Construction	444706.8701	851295.5011	10.56	NA	37.80	-7.54	-22.54					

- Notes:

 1. Georiga State Plane NAD 83 East Zone.

 2. NAVD 88 North American Vertical Datum of 1988

 3. Ground Surface measured at the mag nail in the concrete pad

 4. ft BTOC feet below top of casing

 5. PZ- 1 through PZ-8 were abandoned in 2019

 6. MW-08 was abandoned in 2019

 7. MCM-09 was abandoned in 2020

 NA Not Available

 Updated by: VF 2/1/22

 Checked by: KMS 2/3/22

Table 4 Groundwater Sampling Event Summary Plant McManus Inactive Ash Pond 1 (AP-1) Brunswick, GA

Well ID	Hydraulic Location	September 2021	Status of				
Purpo	ose of Sampling Event	Appendix IV Semi- Annual	Monitoring Well				
MCM-01	Upgradient	X	Assessment				
MCM-02	Upgradient	X	Assessment				
MCM-04	Downgradient	X	Assessment				
MCM-05	Downgradient	X	Assessment				
MCM-06	Downgradient	X	Assessment				
MCM-07	Downgradient	X	Assessment				
MCM-11	Upgradient	X	Assessment				
MCM-12	Sidegradient	X	Assessment				
MCM-14	Sidegradient	X	Assessment				
MCM-15	Upgradient	X	Assessment				
MCM-16	Upgradient	X	Assessment				
MCM-17	Sidegradient	X	Assessment				
MCM-18	Upgradient	X	Assessment				
MCM-19	Upgradient	X	Assessment				
MCM-20	Upgradient	Х	Assessment				
DPZ-02	Vertical Delineation Well	Χ	Assessment				

Notes:

X - Sampled

Updated By: KMS 2/15/22 Checked By: SKW 2/15/22

Table 5 2021 Horizontal Groundwater Flow Velocity Calculations Plant McManus Inactive Ash Pond 1 (AP-1)

Brunswick, GA

	9/13/	/2021	9/13,	/2021		
Tide Level	Low	Low	High	High		
Well 1	MCM-16	MCM-11	MCM-16	MCM-11		
Well 2	MCM-02	MCM-12	MCM-02	MCM-12		
Distance between	75.63	458.82	75.63	458.82		
Head Well 1	7.16	4.86	7.10	4.82		
Head Well 2	6.85	2.99	6.77	2.93		
Hydraulic gradient i	0.00410	0.00408	0.00436	0.00412		
K (cm/s site avg. from slug tests)	0.0012	0.0012	0.0012	0.0012		
Effectivey Porosity Ne (0.35 from HAR)	0.35	0.35	0.35	0.35		
Velocity in cm/s	1.41E-05	1.40E-05	1.50E-05	1.41E-05		
Velocity in ft/day	0.0398	0.0396	0.0424	0.0400		
Velocity in ft/year	14.54	14.46	15.48	14.61		
Average Velocity ft/day	0.0)40	0.041			
Average Velocity ft/year	14	.50	15.05			

K - Hydraulic Conductivity

HAR - Hydraulic Assessment Report

cm/s - Centimeters per second

ft/ day - feet per day ft/year - feet per year

Updated By: WL 10/12/21 Checked By: CL 10/13/21

February 2022

Table 6
Groundwater Data Summary
Plant McManus
Inactive Ash Pond (AP-1)
Brunswick, GA

WELL ID				pendix III										Appendix IV							
Sample Date	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Radium	Selenium	Thallium
DPZ-02																					
9/14/2021	2.0	273	7610	<0.050	971	16400	7.11	<0.0040	0.022	0.082	<0.0010	<0.0012	<0.0099	<0.0010	<0.0015	0.092	<0.12	<0.0025	6.97	<0.0014	<0.0010
MCM-01	0.070.1	0.6	16.7	40.050	242		F 12	10.0010	0.0055	0.005	40.00025	40.00020	40.002F	40.00035	40.00020	40 002F	40.12	40 000C2	1.00.11	40.0003C	40 0003E
9/14/2021	0.079 J	9.6	16.7	<0.050	34.2	66.0	5.13	<0.0010	0.0055	0.065	<0.00025	<0.00030	<0.0025	<0.00025	<0.00038	<0.0025	<0.12	<0.00063	1.06 U	<0.00036	<0.00025
MCM-02																					
9/14/2021	0.093 J	4.2	21.8	<0.050	30.4	76.0	5.04	<0.0010	0.00067 J	0.082	<0.00025	<0.00030	0.0056	<0.00025	<0.00038	<0.0025	<0.12	0.00080 J	0.878 U	<0.00036	<0.00025
MCM-04																					
9/14/2021	0.070 J	12.5	28.5	<0.050	96.2	193	5.09	<0.0010	0.0047 J	0.043	<0.00025	<0.00030	<0.0025	0.0054	<0.00038	<0.0025	<0.12	<0.00063	2.69 U	<0.00036	<0.00025
MCM-05		42.0	2040	0.050	450	0000	6.67														
9/14/2021	0.95 J	13.9	3940	<0.050	459	8020	6.67	<0.0040	0.020 J	0.080	<0.0010	<0.0012	<0.0099	<0.0010	<0.0015	0.042 J	<0.12	0.0099 J	7.15	<0.0014	<0.0010
MCM-06																					
9/14/2021	1.1	299	5360	<0.050	490	11800	6.94	<0.0040	0.51	0.22	<0.0010	<0.0012	<0.0099	<0.0010	<0.0015	0.084	0.16 J	<0.0025	8.11	<0.0014	<0.0010
MCM-07																					
9/14/2021	1.5	225	6300	<0.050	819	13400	6.28	<0.0040	0.013 J	0.20	<0.0010	<0.0012	<0.0099	<0.0010	<0.0015	0.035 J	<0.12	<0.0025	10.3	<0.0014	<0.0010
MCM-11																					
9/14/2021	0.060 J	14.0	62.8	0.18	33.1	191	5.50	<0.0010	0.011	0.070	<0.00025	<0.00030	<0.0025	<0.00025	<0.00038	0.0033 J	<0.12	<0.00063	1.37 U	<0.00036	<0.00025
MCM-12																					
9/13/2021	1.4	6.0	433	1.4	<0.50	1450	6.24	<0.0020	<0.00087	0.086	0.0011	<0.00060	<0.0050	<0.00050	<0.00077	0.010 J	<0.12	<0.0013	2.54	<0.00072	<0.00050
NACNA 14																					
MCM-14 9/13/2021	1.2	165	5010	<0.050	680	11400	6.30	<0.0020	<0.00087	0.16	<0.00050	<0.00060	<0.0050	<0.00050	<0.00077	0.047	<0.12	<0.0013	8.38	<0.00072	<0.00050
3, 13, 1311		200	3020	.0.000		22.00	0.00	10.0020	10100007	0.20	1010000	10.0000	10.0000	1010000	10.0007.	0.0 .7	-0.22	1010020	0.00	10100072	1010000
MCM-15																					
9/14/2021	0.068 J	6.7	13.6	<0.050	16.7	96.0	5.39	<0.0010	0.0035 J	0.050	0.00034 J	<0.00030	0.0027 J	<0.00025	<0.00038	<0.0025	<0.12	0.00090 J	1.15 U	<0.00036	<0.00025
MCM-16																					
9/14/2021	0.071 J	6.5	30	<0.050	24.4	<25.0	4.69	<0.0010	<0.00043	0.16	0.00062	<0.00030	<0.0025	<0.00025	<0.00038	<0.0025	<0.12	<0.00063	2.02	<0.00036	<0.00025
DACDA 17																					
MCM-17 9/14/2021	2.1	190	4090	<0.050	460	8820	6.77	<0.0060	<0.0026	0.20	<0.0015	<0.0018	<0.015	<0.0015	<0.0023	0.035 J	<0.12	<0.0038	8.82	<0.0021	<0.0015
3/ 17/ 2021	۷. ۲	190	4030	10.000	700	3020	0.77	30.0000	10.0020	0.20	·0.0013	NO.0010	-0.013	.0.0013	10.0023	0.0333	·U.12	NO.0030	0.02	\J.UUZI	30.0013
MCM-18																					
9/14/2021	0.20 J	18.8	1020	<0.050	134	2190	4.28	<0.0020	0.0029 J	0.098	0.0031	<0.00060	<0.0050	<0.00050	<0.00077	<0.0050	<0.12	<0.0013	8.31	<0.00072	<0.00050
MCM-19																					
9/14/2021	1.2	93.6	7250	<0.050	995	14600	5.31	<0.0040	0.018 J	0.13	0.0062	<0.0012	<0.0099	<0.0010	<0.0015	0.011 J	<0.12	<0.0025	26.2	0.0022 J	<0.0010

Table 6 Groundwater Data Summary Plant McManus Inactive Ash Pond (AP-1) Brunswick, GA

WELL ID	Appendix III							Appendix IV													
Sample Date	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Radium	Selenium	Thallium
MCM-20																					
9/14/2021	0.91 J	61.1	5100	<0.050	659	10300	3.72	<0.0040	0.028	0.11	0.016	<0.0012	<0.0099	0.03	<0.0015	0.020 J	<0.12	<0.0025	34.9	0.0018 J	<0.0010

Notes:

- 1. Results for substances (except radium and pH) are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L) and pH is reported in standard units (SU).
- 2. Radium reported in Combined Radium 226 + 228
- 3. < indicates the substance was not detected above the analytical Method Detection Limit (MDL)
- 4. J Estimated value. Substance was detected above the MDL and below the laboratory's Reporting Limit (RL)
- 5. U Estimated value for radium. Substance was detected below the Minimum Detection Concentration (MDC).
- 6. TDS Total Dissolved Solids
- 7. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring
- 8. Blank values indicate the parameter was not analyzed
- 9. pH Parameter measured in the field

Updated by: KMS 2/15/22 Checked by: SKW 2/15/22

Table 7 Surface Water Analytical Results -September and December 2021 Plant McManus Inactive Ash Pond 1 (AP-1) Brunswick, Ga

Date	рН	Calcium	Magnesium	Potassium	Sodium	Arsenic	Boron	Lithium	Bicarbonate	Carbonate	Total Alk	TDS	Chloride	Fluoride	Sulfate
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
9/30/2021	6.90	147	434	138	3720	0.0027 J	1.3	0.060	78.2	<5.0	78.2	13400	5520	<5.0	725
12/15/2021	7.50	235	706	238	5730	<0.0017	0.25 J	0.010 J	103	<5.0	103	19800	9830	<5.0	1330
9/22/2021	7.13	178	524	171	6380	0.0040 J	2.8	0.14	108	<5.0	108	21100	9780	<4.5	1710
12/15/2021	7.62	259	796	268	7240	<0.0017	0.28 J	0.011 J	109	<5.0	109	22600	10600	<5.0	1540
9/23/2021	7.05	126	366	122	3230	0.0027 J	1.7 J	0.060	66.7	<5.0	66.7	11800	4790	<1.0	668
9/30/2021	6.99	141	411	130	3530	0.0014 J	1.1	0.042	76.2	<5.0	76.2	11600	5160	<5.0	689
9/23/2021	6.97	185	538	177	4650	0.0025 J	2.1 J	0.076	87.9	<5.0	87.9	18300	7100	<1.0	982
9/23/2021	7.15	124	351	118	3060	0.0025 J	1.5 J	0.057	64.6	<5.0	64.6	12000	4750	<2.5	1670
9/30/2021	7.00	132	388	124	3320	0.0014 J	1.1	0.041	67.5	<5.0	67.5	11200	5110	<5.0	679
9/23/2021	6.99	173	499	166	4400	0.0021 J	2.0 J	0.073	90.2	<5.0	90.2	15700	6880	<2.5	953
9/23/2021	7.08	131	375	124	3300	0.0023 J	1.7 J	0.060	73.0	<5.0	73.0	12900	5000	<2.5	698
9/30/2021	7.14	125	360	116	3110	0.0016 J	1.0	0.038	66.6	<5.0	66.6	11900	4680	<5.0	614
9/23/2021	6.98	152	439	144	3900	0.0022 J	1.9 J	0.069	81.1	<5.0	81.1	15400	7960	<4.5	1110
12/15/2021	7.47	254	748	245	6160	<0.0043	2.2 J	0.091 J	103	<5.0	103	21000	9760	<5.0	1350
9/23/2021	7.14	136	402	130	3450	0.0021 J	1.7 J	0.066	74.9	<5.0	74.9	13000	5270	<4.5	717
12/15/2021	7.44	241	712	234	5800	<0.0043	2.2 J	0.091 J	99.3	<5.0	99.3	21300	9680	<5.0	1340
9/30/2021	7.09	101	288	90.7 J	2410	0.0019 J	1.2	0.046	60.8	<5.0	60.8	8100	3850	<5.0	496
12/15/2021	7.67	245	725	240	6000	<0.0043	2.6	0.099 J	99.0	<5.0	99.0	20400	9790	<5.0	1330
9/23/2021	6.89	124	363	118	3100	0.0020 J	1.4 J	0.054	68.7	<5.0	68.7	11700	4750	<4.5	638
12/15/2021	7.58	252	739	242	5900	<0.0043	2.2 J	0.092 J	97.7	<5.0	97.7	18800	9670	<5.0	1340
9/23/2021	6.87	165	496	160	4250	0.0032 J	1.9 J	0.071	83.1	<5.0	83.1	16400	6450	<4.5	884
12/15/2021	7.48	258	755	248	6050	<0.0043	2.4 J	0.094 J	101	<5.0	101	17200	9630	<5.0	1330
9/23/2021	7.05	113	330	106	2810	0.0024 J	1.5 J	0.048 J	65.2	<5.0	65.2	10400	4400	<4.5	585
	9/30/2021 12/15/2021 9/22/2021 12/15/2021 9/23/2021 9/30/2021 9/23/2021 9/30/2021 9/23/2021 9/23/2021 9/23/2021 9/23/2021 12/15/2021 9/30/2021 12/15/2021 9/23/2021 12/15/2021 9/23/2021 12/15/2021 9/23/2021 12/15/2021 9/23/2021 12/15/2021	9/30/2021 6.90 12/15/2021 7.50 9/22/2021 7.13 12/15/2021 7.62 9/23/2021 7.05 9/30/2021 6.99 9/23/2021 7.15 9/30/2021 7.00 9/23/2021 7.00 9/23/2021 7.08 9/30/2021 7.08 9/30/2021 7.14 9/23/2021 7.47 9/23/2021 7.47 9/23/2021 7.47 9/23/2021 7.44 9/30/2021 7.44 9/30/2021 7.67 9/23/2021 7.67 9/23/2021 7.67 9/23/2021 7.67 9/23/2021 7.58 9/23/2021 7.58 9/23/2021 7.58	9/30/2021 6.90 147 12/15/2021 7.50 235 9/22/2021 7.13 178 12/15/2021 7.62 259 9/23/2021 7.05 126 9/30/2021 6.99 141 9/23/2021 7.15 124 9/30/2021 7.00 132 9/23/2021 7.00 132 9/23/2021 7.00 132 9/23/2021 7.00 132 9/23/2021 7.00 132 9/23/2021 7.08 131 9/30/2021 7.08 131 9/30/2021 7.14 125 9/23/2021 7.47 254 9/23/2021 7.47 254 9/23/2021 7.47 254 9/23/2021 7.47 254 9/23/2021 7.47 254 9/23/2021 7.49 101 12/15/2021 7.67 245 9/23/2021 7.58 252 9/23/2021 6.87 165 12/15/2021 7.58 252	9/30/2021 6.90 147 434 12/15/2021 7.50 235 706 9/22/2021 7.13 178 524 12/15/2021 7.62 259 796 9/23/2021 7.05 126 366 9/30/2021 6.99 141 411 9/23/2021 6.97 185 538 9/23/2021 7.15 124 351 9/30/2021 7.00 132 388 9/23/2021 6.99 173 499 9/23/2021 7.08 131 375 9/30/2021 7.14 125 360 9/23/2021 6.98 152 439 12/15/2021 7.47 254 748 9/23/2021 7.14 136 402 12/15/2021 7.44 241 712 9/30/2021 7.09 101 288 12/15/2021 7.67 245 725 9/23/2021 6.89	9/30/2021 6.90 147 434 138 12/15/2021 7.50 235 706 238 9/22/2021 7.13 178 524 171 12/15/2021 7.62 259 796 268 9/23/2021 7.05 126 366 122 9/30/2021 6.99 141 411 130 9/23/2021 6.97 185 538 177 9/23/2021 7.15 124 351 118 9/30/2021 7.00 132 388 124 9/23/2021 6.99 173 499 166 9/23/2021 7.08 131 375 124 9/30/2021 7.14 125 360 116 9/23/2021 6.98 152 439 144 12/15/2021 7.47 254 748 245 9/23/2021 7.14 136 402 130 12/15/2021 7.67 245 </td <td>(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 9/30/2021 6.90 147 434 138 3720 12/15/2021 7.50 235 706 238 5730 9/22/2021 7.13 178 524 171 6380 12/15/2021 7.62 259 796 268 7240 9/23/2021 7.05 126 366 122 3230 9/30/2021 6.99 141 411 130 3530 9/23/2021 6.97 185 538 177 4650 9/23/2021 7.15 124 351 118 3060 9/23/2021 7.00 132 388 124 3320 9/23/2021 6.99 173 499 166 4400 9/23/2021 7.08 131 375 124 3300 9/30/2021 7.14 125 360 116 3110 9/23/2021 7.47 <</td> <td>(mg/L) (mg/L) (mg/L)<</td> <td>(mg/L) (mg/L) (mg/L)<</td> <td>(mg/L) (mg/L) (mg/L)<</td> <td>(mg/L) (mg/L) (mg/L)<</td> <td> </td> <td>9/30/2021 6.90 147 434 138 3720 0.0027 J 1.3 0.060 78.2 <5.0 78.2 12/15/2021 7.50 235 706 238 5730 <0.0017</td> 0.25J 0.010J 103 <5.0	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 9/30/2021 6.90 147 434 138 3720 12/15/2021 7.50 235 706 238 5730 9/22/2021 7.13 178 524 171 6380 12/15/2021 7.62 259 796 268 7240 9/23/2021 7.05 126 366 122 3230 9/30/2021 6.99 141 411 130 3530 9/23/2021 6.97 185 538 177 4650 9/23/2021 7.15 124 351 118 3060 9/23/2021 7.00 132 388 124 3320 9/23/2021 6.99 173 499 166 4400 9/23/2021 7.08 131 375 124 3300 9/30/2021 7.14 125 360 116 3110 9/23/2021 7.47 <	(mg/L) (mg/L)<	(mg/L) (mg/L)<	(mg/L) (mg/L)<	(mg/L) (mg/L)<		9/30/2021 6.90 147 434 138 3720 0.0027 J 1.3 0.060 78.2 <5.0 78.2 12/15/2021 7.50 235 706 238 5730 <0.0017			

Sample ID	Date	рН	Calcium	Magnesium	Potassium	Sodium	Arsenic	Boron	Lithium	Bicarbonate	Carbonate	Total Alk	TDS	Chloride	Fluoride	Sulfate
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
T2-2HTS	12/15/2021	7.46	260	760	248	5840	<0.0043	2.4 J	0.096 J	99.4	<5.0	99.4	18600	9700	<5.0	1340
T2-2LT	9/30/2021	7.16	124	358	115	3080	0.0016 J	0.91	0.036 J	69.9	<5.0	69.9	10000	4530	<5.0	586
T2-3HT	9/23/2021	6.96	172	516	166	4370	0.0026 J	2.2 J	0.078	84.0	<5.0	84.0	16200	6700	<4.5	918
T2-3HT	12/15/2021	7.45	239	699	231	5920	<0.0043	2.4 J	0.095 J	96.6	<5.0	96.6	19400	9700	<5.0	1330
T2-3HTS	9/23/2021	7.18	104	303	97.6 J	2570	0.0023 J	1.4	0.048 J	61.5	<5.0	61.5	10000	4090	<4.5	540
T2-3HTS	12/15/2021	7.45	248	733	242	6260	<0.0043	2.4 J	0.093 J	102	<5.0	102	19200	9750	<5.0	1330
T2-3LT	9/30/2021	7.15	129	372	119	3200	0.0016 J	1.1	0.041	69.0	<5.0	69.0	11400	5020	<5.0	664
T2-4HT	9/23/2021	6.96	154	460	148	3930	0.0019 J	1.9 J	0.064	77.1	<5.0	77.1	13600	5670	<4.5	768
T2-4HT	12/15/2021	7.49	251	734	240	5840	<0.0043	2.4 J	0.092 J	100	<5.0	100	19100	9480	<5.0	1290
T2-4HTS	9/23/2021	7.09	130	381	123	3230	0.0019 J	1.4 J	0.053	54.5	<5.0	54.5	12000	5130	<4.5	694
T2-4HTS	12/15/2021	7.50	243	711	235	6000	<0.0043	2.3 J	0.089 J	101	<5.0	101	20000	9540	<5.0	1300
T2-4LT	9/30/2021	6.97	80.1	222	70.6 J	1880	<0.0013	0.58 J	0.022 J	54.1	<5.0	54.1	6770	2870	<5.0	361
T2-4LT	12/15/2021	7.68	224	675	221	5760	<0.0043	2.4 J	0.085 J	102	<5.0	102	19200	9780	<5.0	1330
T3-1HT	9/23/2021	7.12	88.6	252	81.1 J	2150	0.0022 J	1.2	0.040 J	71.2	<5.0	71.2	8300	3230	<4.5	419
T3-2HT	9/23/2021	6.79	138	402	130	3430	0.0034 J	1.8 J	0.071	75.0	<5.0	75.0	13400	5520	<4.5	744
T3-2HTS	9/23/2021	7.04	83.7	234	77.2 J	2050	0.0021 J	1.1	0.034 J	55.6	<5.0	55.6	7450	3180	<4.5	410
T3-2LT	9/30/2021	7.13	107	301	96.8 J	2600	0.0015 J	0.75 J	0.029 J	64.1	<5.0	64.1	9170	3960	<5.0	503
T3-3HT	9/23/2021	6.92	156	467	152	4160	0.0024 J	1.8 J	0.071	82.7	<5.0	82.7	14100	6340	<4.5	862
T3-3HTS	9/23/2021	7.24	70.4	193	64.3 J	1690	0.0020 J	0.83 J	0.027 J	45.4	<5.0	45.4	6600	2500	<4.5	315
T3-3LT	9/30/2021	6.89	101	289	90.0 J	2460	0.0015 J	0.75	0.028 J	62.5	<5.0	62.5	8670	3740	<5.0	475
T3-4HT	9/23/2021	6.94	122	374	121	3860	0.0022 J	1.8 J	0.069	80.0	<5.0	80.0	14200	6020	<4.5	815
T3-4HT	12/15/2021	7.45	248	732	241	6200	<0.0043	2.4 J	0.091 J	101	<5.0	101	19800	9440	<5.0	1290
T3-4HTS	9/23/2021	7.09	107	312	103	2640	0.0023 J	1.0 J	0.041 J	61.5	<5.0	61.5	9850	4080	<4.5	538
T3-4HTS	12/15/2021	7.46	246	730	243	6180	<0.0043	2.4 J	0.089 J	99.0	<5.0	99.0	19000	9740	<5.0	1330
T3-4LT	9/30/2021	6.90	84.1	232	73.1 J	1990	<0.0013	0.65 J	0.025 J	56.2	<5.0	56.2	8070	3110	<5.0	396
T3-4LT	12/15/2021	7.62	247	744	251	6390	<0.0017	0.24 J	<0.010	102	<5.0	102	20800	9790	<5.0	1330
T4-1HB	9/22/2021	7.06	174	530	170	4540	0.0031 J	1.8 J	0.077	90.4	<5.0	90.4	15500	7160	<4.5	983

Sample ID	Date	рН	Calcium	Magnesium	Potassium	Sodium	Arsenic	Boron	Lithium	Bicarbonate	Carbonate	Total Alk	TDS	Chloride	Fluoride	Sulfate
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
T4-1HB	12/15/2021	7.35	263	774	257	6190	<0.0043	2.5	0.094 J	106	<5.0	106	20800	11300	<5.0	1410
T4-1HS	9/22/2021	7.22	172	513	169	4400	0.0028 J	1.8 J	0.067	88.5	<5.0	88.5	12900	6540	<4.5	891
T4-1HS	12/15/2021	7.40	276	814	268	6430	<0.0043	2.5 J	0.095 J	105	<5.0	105	21200	10400	<5.0	1430
T4-1L	9/22/2021	7.35	165	495	165	4650	0.0042 J	1.7 J	0.088	90.3	<5.0	90.3	15600	6920	<4.5	944
T4-2HB	9/22/2021	7.04	180	541	179	4870	0.0025 J	2.0 J	0.076	97.3	<5.0	97.3	15800	7420	<4.5	1020
T4-2HB	12/15/2021	7.44	273	808	269	6730	<0.0043	2.4 J	0.096 J	105	<5.0	105	21100	10100	<5.0	1440
T4-2HS	9/22/2021	7.13	170	504	166	4440	0.0028 J	1.8 J	0.069	90.5	<5.0	90.5	14800	6730	<4.5	918
T4-2HS	12/15/2021	7.45	294	868	284	6710	<0.0043	2.6	0.10 J	108	<5.0	108	21100	11300	<5.0	1410
T4-2L	9/22/2021	7.31	174	512	170	4520	0.0040 J	2.0 J	0.090	94.8	<5.0	94.8	14800	6820	<4.5	933
T4-3HB	9/22/2021	7.04	168	506	168	4800	0.0025 J	2.1 J	0.076	92.0	<5.0	92.0	16000	7410	<4.5	1020
T4-3HB	12/15/2021	7.49	284	838	278	6790	<0.0043	2.6	0.098 J	105	<5.0	105	21800	9880	<5.0	1420
T4-3HS	9/22/2021	7.16	168	502	165	4600	0.0027 J	1.9 J	0.072	92.4	<5.0	92.4	15400	6790	<4.5	928
T4-3HS	12/15/2021	7.55	281	832	274	6570	<0.0043	2.6	0.10 J	107	<5.0	107	22200	11800	<5.0	1410
T4-3L	9/22/2021	7.38	182	542	178	<12.2	0.0037 J	1.7 J	0.086	95.8	<5.0	95.8	15200	7160	<4.5	966
T4-4HB	9/22/2021	7.08	167	499	165	4620	0.0027 J	2.0 J	0.081	92.5	<5.0	92.5	16400	7310	<4.5	1090
T4-4HB	12/15/2021	7.52	281	830	275	6300	<0.0043	2.8	0.10 J	105	<5.0	105	21400	10800	<5.0	1420
T4-4HS	9/22/2021	7.17	186	547	180	4810	0.0028 J	2.1 J	0.087	88.9	<5.0	88.9	16200	7220	<4.5	994
T4-4HS	12/15/2021	7.50	252	752	251	6180	<0.0043	2.8	0.10 J	104	<5.0	104	21500	11300	<5.0	1430
T4-4L	9/22/2021	7.32	313	953	307	4500	0.0035 J	1.9 J	0.086	95.1	<5.0	95.1	15200	6830	<4.5	1250
T4-4L	12/15/2021	7.60	249	751	251	6270	<0.0017	0.26 J	0.010 J	109	<5.0	109	20700	10600	<5.0	1410

^{1.} Resuts shown in milligrams per liter (mg/L).

Updated by KMS 2/3/22

Checked by VF 2/3/22

^{2. &}quot;<" - not detected at the laboratory's Method Detection Limit (MDL) shown

^{3. &}quot;J" - Estimated comcentration greater than the laboratiry's MDL, but less than the laboratory's reporting limit.

Table 8 Federal Groundwater Protection Standards Plant McManus Inactive Ash Pond 1 (AP-1) Brunswick, Ga

Bruitswick, Ga										
MCMANUS ASH POND GWPS - FEDERAL										
			Background							
Constituent Name	MCL	RSL	Limit	GWPS						
Antimony, Total (mg/L)	0.006		0.003	0.006						
Arsenic, Total (mg/L)	0.01		0.031	0.031						
Barium, Total (mg/L)	2		0.22	2						
Beryllium, Total (mg/L)	0.004		0.021	0.021						
Cadmium, Total (mg/L)	0.005		0.0025	0.005						
Chromium, Total (mg/L)	0.1		0.011	0.1						
Cobalt, Total (mg/L)	n/a	0.006	0.036	0.036						
Combined Radium, Total (pCi/L)	5		55.8	55.8						
Fluoride, Total (mg/L)	4		1.5	4						
Lead, Total (mg/L)	n/a	0.015	0.005	0.015						
Lithium, Total (mg/L)	n/a	0.04	0.026	0.04						
Mercury, Total (mg/L)	0.002		0.0007	0.002						
Molybdenum, Total (mg/L)	n/a	0.1	0.01	0.1						
Selenium, Total (mg/L)	0.05		0.15	0.15						
Thallium, Total (mg/L)	0.002		0.001	0.002						

Groundwater Protection Standards from Appendix E - Groundwater Stats Consulting, February 2022

Notes:

mg/L = milligram per liter;

pCi/L = picocuries per liter; n/a = Not Available;

MCL = Maximum Contaminant Level;

RSL = Rule Specified Limit (Not yet adopted by EPD)

[1] The background limits are used when determining the groundwater protection standard (GWPS) under 40 CFR § 257.95 (h) and Georgia Environmental Protection Division (EPD) Rule 391-3-4-.10(6)(a).

[2] Under 40 CFR § 257(h)(1-3) the GWPS is: (i) the MCL, (ii) where the MCL is not established, the background concentration, or (iii) background levels for constituents where the background level is higher than the MCL or rule specified GWPS.

Table 9 Georgia State Groundwater Protection Standards Plant McManus Inactive Ash Pond 1 (AP-1) Brunswick, Ga

MCMANUS ASH POND GWPS - STATE										
			Background							
Constituent Name	MCL	RSL	Limit	GWPS						
Antimony, Total (mg/L)	0.006		0.003	0.006						
Arsenic, Total (mg/L)	0.01		0.031	0.031						
Barium, Total (mg/L)	2		0.22	2						
Beryllium, Total (mg/L)	0.004		0.021	0.021						
Cadmium, Total (mg/L)	0.005		0.0025	0.005						
Chromium, Total (mg/L)	0.1		0.011	0.1						
Cobalt, Total (mg/L)	n/a	0.006	0.036	0.036						
Combined Radium, Total (pCi/L)	5		55.8	55.8						
Fluoride, Total (mg/L)	4		1.5	4						
Lead, Total (mg/L)	n/a	0.015	0.005	0.005						
Lithium, Total (mg/L)	n/a	0.04	0.026	0.026						
Mercury, Total (mg/L)	0.002		0.0007	0.002						
Molybdenum, Total (mg/L)	n/a	0.1	0.01	0.01						
Selenium, Total (mg/L)	0.05		0.15	0.15						
Thallium, Total (mg/L)	0.002		0.001	0.002						

Groundwater Protection Standards from Appendix E - Groundwater Stats Consulting, February 2022

Notes:

mg/L = milligram per liter;

pCi/L = picocuries per liter;

n/a = Not Available;

MCL = Maximum Contaminant Level;

RSL = Rule Specified Limit (Not yet adopted by EPD)

- [1] The background limits are used when determining the groundwater protection standard (GWPS) under 40 CFR § 257.95 (h) and Georgia Environmental Protection Division (EPD) Rule 391-3-4-.10(6)(a).
- [2] Under existing EPD rules, the GWPS is (i) the MCL, (ii) where the MCL is not established, the background concentration, or (iii) background levels for constituents where the background level is higher than the MCL.

FIGURES

2021 Semiannual Groundwater Monitoring and Corrective Action Report

APPENDIX A

Monitoring Well Maintenance and Repair Documentation

MEMORANDUM

Date: October 15, 2021

To: Kristen Jurinko – Georgia Power

CC: Ben Hodges

From: Resolute Environmental

Subject: Plant McManus Ash Pond - Well Maintenance and Repair Documentation

Georgia Power Company

Resolute Environmental has prepared this memorandum to provide documentation of groundwater monitoring well maintenance and/or repair performed at PLANT MCMANUS during the semiannual reporting period. All repairs and maintenance were completed in accordance with the Georgia Environmental Protection Division (GAEPD) guidance on routine visual inspections of groundwater monitoring wells.

Georgia Power Site/Unit	Date Performed	Well ID	Maintenance/ Repair Performed
Plant McManus Ash Pond	9/13/21	MCM-18	Signage added
Plant McManus Ash Pond	9/13/21	MCM-19	Signage added
Plant McManus Ash Pond	9/13/21	MCM-20	Signage added
Plant McManus Ash Pond	9/13/21	DPZ-1	Signage added
Plant McManus Ash Pond	9/13/21	DPZ-2	Signage added
Plant McManus Ash Pond	9/13/21	DPZ-3	Signage added
Plant McManus Ash Pond	9/13/21	DPZ-4	Signage added
Plant McManus Ash Pond	9/13/21	DPZ-5	Signage added
Plant McManus Ash Pond	9/13/21	DPZ-6	Signage added
Plant McManus Ash Pond	9/13/21	PZ-9	Signage added
Plant McManus Ash Pond	9/13/21	PZ-10	Signage added

Plant McManus Ash Pond	9/13/21	PZ-11	Signage added
Plant McManus Ash Pond	9/13/21	PZ-12	Signage added

All maintenance and repairs are also documented in the September 2021 semiannual groundwater monitoring report.

APPENDIX B

Laboratory Analytical and Field Sampling Reports For Monitoring Events

Appendix B1: Laboratory Analytical Data Packages and Data Validation Reports

Appendix B2: Field Sampling Forms and Calibration Reports

APPENDIX B1

Laboratory Analytical and Data Validation Reports

September 30, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: MCMANUS CCR

Pace Project No.: 92561848

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 16, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole D'Oleo

Misole D'oler

nicole.d'oleo@pacelabs.com

(704)875-9092

Project Manager

Enclosures

cc: Joe Booth, Resolute Environmental & Water Resources

Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko

Ms. Lauren Petty, Southern Company

Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC

CERTIFICATIONS

Project: MCMANUS CCR

Pace Project No.: 92561848

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: MCMANUS CCR

Pace Project No.: 92561848

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92561848001	MCM-12	Water	09/13/21 17:53	09/16/21 11:30
92561848002	FB-1	Water	09/13/21 17:00	09/16/21 11:30
92561848003	MCM-14	Water	09/13/21 17:32	09/16/21 11:30
92561848004	MCM-01	Water	09/14/21 09:59	09/16/21 11:30
92561848005	MCM-02	Water	09/14/21 11:26	09/16/21 11:30
92561848006	MCM-04	Water	09/14/21 09:52	09/16/21 11:30
92561848007	MCM-11	Water	09/14/21 13:08	09/16/21 11:30
92561848008	MCM-15	Water	09/14/21 16:48	09/16/21 11:30
92561848009	MCM-16	Water	09/14/21 11:10	09/16/21 11:30
92561848010	MCM-18	Water	09/14/21 13:28	09/16/21 11:30
92561848011	MCM-19	Water	09/14/21 15:01	09/16/21 11:30
92561848012	MCM-20	Water	09/14/21 16:27	09/16/21 11:30
92561848013	DPZ-2	Water	09/14/21 14:52	09/16/21 11:30
92561848014	DUP-1	Water	09/14/21 00:00	09/16/21 11:30
92561848015	DUP-2	Water	09/14/21 00:00	09/16/21 11:30
92561848016	FB-2	Water	09/14/21 17:05	09/16/21 11:30
92561848017	EB-1	Water	09/14/21 17:10	09/16/21 11:30
92561848018	MCM-05	Water	09/14/21 13:35	09/16/21 11:30
92561848019	MCM-06	Water	09/14/21 11:43	09/16/21 11:30
92561848020	MCM-07	Water	09/14/21 09:23	09/16/21 11:30
92561848021	MCM-17	Water	09/14/21 17:28	09/16/21 11:30

Project: MCMANUS CCR

Pace Project No.: 92561848

_ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92561848001	MCM-12	EPA 6010D	RDT	1	PASI-A
		EPA 6020B	CRW	13	PASI-A
		EPA 7470A	DBB1	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848002	FB-1	EPA 6010D	RDT	4	PASI-A
		EPA 6020B	CRW	13	PASI-A
		EPA 7470A	DBB1	1	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848003	MCM-14	EPA 6010D	RDT	4	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	DBB1	1	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848004	MCM-01	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	DBB1	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848005	MCM-02	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	DBB1	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848006	MCM-04	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	DBB1	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848007	MCM-11	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	DBB1	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS CCR

Pace Project No.: 92561848

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92561848008	MCM-15	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	DBB1	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848009	MCM-16	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	DBB1	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848010	MCM-18	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	DBB1	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848011	MCM-19	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	NMP	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848012	MCM-20	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	NMP	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848013	DPZ-2	EPA 6010D	RDT	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	NMP	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848014	DUP-1	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	NMP	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92561848015	DUP-2	EPA 6010D	CBV	1	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS CCR

Pace Project No.: 92561848

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7470A	MMP	1	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848016	FB-2	EPA 6010D	RDT	4	PASI-A
		EPA 6020B	CRW	13	PASI-A
		EPA 7470A	NMP	1	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848017	EB-1	EPA 6010D	RDT	4	PASI-A
		EPA 6020B	CRW	13	PASI-A
		EPA 7470A	NMP	1	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848018	MCM-05	EPA 6010D	RDT	4	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	NMP	1	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848019	MCM-06	EPA 6010D	RDT	4	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	NMP	1	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848020	MCM-07	EPA 6010D	RDT	4	PASI-A
		EPA 6020B	CRW, JOR	13	PASI-A
		EPA 7470A	NMP	1	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2561848021	MCM-17	EPA 6010D	CBV, RDT	4	PASI-A
		EPA 6020B	JOR	13	PASI-A
		EPA 7470A	NMP	1	PASI-A
		SM 2320B-2011	ECH	3	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS CCR

Pace Project No.: 92561848

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
	-	SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

Project: MCMANUS CCR

Pace Project No.: 92561848

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2561848001	MCM-12					
	Performed by	CUSTOME R			09/16/21 17:32	
	рН	6.24	Std. Units		09/16/21 17:32	
EPA 6010D	Calcium	6.0	mg/L	0.10	09/23/21 23:26	
EPA 6020B	Barium	0.086	mg/L	0.010	09/20/21 10:21	
EPA 6020B	Beryllium	0.0011	mg/L	0.0010	09/20/21 10:21	
EPA 6020B	Boron	1.4	mg/L	0.50	09/20/21 10:21	M1
EPA 6020B	Lithium	0.010J	mg/L	0.025	09/20/21 10:21	
SM 2540C-2011	Total Dissolved Solids	1450	mg/L	50.0	09/21/21 12:40	1g,H1
PA 300.0 Rev 2.1 1993	Chloride	433	mg/L	10.0	09/19/21 19:26	
EPA 300.0 Rev 2.1 1993	Fluoride	1.4	mg/L	0.10	09/18/21 21:34	
2561848002	FB-1					
EPA 6020B	Molybdenum	0.00028J	mg/L	0.0010	09/20/21 10:38	
2561848003	MCM-14					
	Performed by	CUSTOME R			09/16/21 17:33	
	рН	6.30	Std. Units		09/16/21 17:33	
EPA 6010D	Calcium	165	mg/L	1.0	09/23/21 23:23	
EPA 6010D	Magnesium	393	mg/L	1.0	09/23/21 23:23	
EPA 6010D	Potassium	123	mg/L	50.0	09/23/21 23:23	
EPA 6010D	Sodium	2910	mg/L	250	09/24/21 13:46	
EPA 6020B	Barium	0.16	mg/L	0.010	09/21/21 15:42	
EPA 6020B	Boron	1.2	mg/L	0.50	09/21/21 15:42	
EPA 6020B	Lithium	0.047	mg/L	0.025	09/20/21 11:05	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	139	mg/L	5.0	09/24/21 16:05	
SM 2320B-2011	Alkalinity, Total as CaCO3	139	mg/L	5.0	09/24/21 16:05	
SM 2540C-2011	Total Dissolved Solids	11400	mg/L	833	09/21/21 12:40	1g,H1
EPA 300.0 Rev 2.1 1993	Chloride	5010	mg/L	100	09/19/21 19:41	19,111
EPA 300.0 Rev 2.1 1993	Sulfate	680	mg/L	100	09/19/21 19:41	
2561848004	MCM-01		-			
	Performed by	CUSTOME			09/16/21 18:08	
	рН	R 5.13	Std. Units		09/16/21 18:08	
EPA 6010D	Calcium	9.6	mg/L	0.10	09/23/21 01:04	
EPA 6020B	Arsenic	0.0055	mg/L		09/21/21 15:45	
EPA 6020B	Barium	0.065	mg/L	0.0050	09/21/21 15:45	
EPA 6020B	Boron	0.079J	mg/L		09/21/21 15:45	
SM 2540C-2011	Total Dissolved Solids	66.0	mg/L		09/21/21 12:47	
EPA 300.0 Rev 2.1 1993	Chloride	16.7	mg/L	1.0		
EPA 300.0 Rev 2.1 1993	Sulfate	34.2	mg/L	1.0		
2561848005	MCM-02					
	Performed by	CUSTOME R			09/16/21 18:08	
	рН	5.04	Std. Units		09/16/21 18:08	
EPA 6010D	Calcium	4.2	mg/L	0.10	09/23/21 01:07	
EPA 6020B	Arsenic	0.00067J	mg/L	0.0050	09/21/21 15:53	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS CCR

Pace Project No.: 92561848

₋ab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2561848005	MCM-02					
EPA 6020B	Barium	0.082	mg/L	0.0050	09/21/21 15:53	
EPA 6020B	Boron	0.093J	mg/L	0.25	09/21/21 15:53	
PA 6020B	Chromium	0.0056	mg/L	0.0050	09/21/21 15:53	
PA 6020B	Molybdenum	0.00080J	mg/L	0.0050	09/21/21 15:53	
SM 2540C-2011	Total Dissolved Solids	76.0	mg/L	25.0	09/21/21 12:47	
EPA 300.0 Rev 2.1 1993	Chloride	21.8	mg/L	1.0	09/18/21 22:36	
PA 300.0 Rev 2.1 1993	Sulfate	30.4	mg/L	1.0	09/18/21 22:36	
2561848006	MCM-04					
	Performed by	CUSTOME R			09/16/21 18:09	
	рН	5.09	Std. Units		09/16/21 18:09	
PA 6010D	Calcium	12.5	mg/L	0.10	09/23/21 01:10	
PA 6020B	Arsenic	0.0047J	mg/L	0.0050	09/21/21 15:56	
PA 6020B	Barium	0.043	mg/L	0.0050	09/21/21 15:56	
PA 6020B	Boron	0.070J	mg/L	0.25	09/21/21 15:56	
PA 6020B	Cobalt	0.0054	mg/L	0.0050	09/21/21 15:56	
SM 2540C-2011	Total Dissolved Solids	193	mg/L	25.0	09/21/21 12:47	
PA 300.0 Rev 2.1 1993	Chloride	28.5	mg/L	1.0	09/21/21 11:05	
PA 300.0 Rev 2.1 1993	Sulfate	96.2	mg/L	1.0	09/21/21 11:05	M1
2561848007	MCM-11		Ü			
	Performed by	CUSTOME			09/16/21 18:09	
	рН	R 5.50	Std. Units		09/16/21 18:09	
PA 6010D	Calcium	14.0	mg/L	0.10	09/23/21 01:14	
PA 6020B	Arsenic	0.011	mg/L	0.0050	09/21/21 16:04	
PA 6020B	Barium	0.070	mg/L	0.0050	09/21/21 16:04	
PA 6020B	Boron	0.060J	mg/L	0.25	09/21/21 16:04	
PA 6020B	Lithium	0.0033J	mg/L	0.012		
M 2540C-2011	Total Dissolved Solids	191	mg/L	25.0	09/21/21 12:47	
PA 300.0 Rev 2.1 1993	Chloride	62.8	mg/L	1.0	09/19/21 20:27	
PA 300.0 Rev 2.1 1993	Fluoride	0.18	mg/L	0.10	09/19/21 20:27	
PA 300.0 Rev 2.1 1993	Sulfate	33.1	mg/L	1.0	09/19/21 20:27	
561848008	MCM-15					
	Performed by	CUSTOME			09/16/21 18:09	
	рН	R 5.39	Std. Units		09/16/21 18:09	
PA 6010D	Calcium	6.7	mg/L	0.10	09/23/21 01:17	
PA 6020B	Arsenic	0.0035J	mg/L	0.0050	09/21/21 16:11	
PA 6020B	Barium	0.050	mg/L	0.0050	09/21/21 16:11	
PA 6020B	Beryllium	0.00034J	mg/L	0.00050	09/20/21 11:30	
PA 6020B	Boron	0.068J	mg/L	0.25	09/21/21 16:11	
PA 6020B	Chromium	0.0027J	mg/L	0.0050	09/21/21 16:11	
PA 6020B	Molybdenum	0.00090J	mg/L	0.0050	09/21/21 16:11	
M 2540C-2011	Total Dissolved Solids	96.0	mg/L	25.0	09/21/21 12:47	
PA 300.0 Rev 2.1 1993	Chloride	13.6	mg/L	1.0	09/19/21 20:43	
500.0 1.07 2.1 1000	Sulfate	16.7	mg/L	1.0	09/19/21 20:43	

Project: MCMANUS CCR

Pace Project No.: 92561848

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
			Office	- Troport Emili		Qualiford
2561848009	MCM-16					
	Performed by	CUSTOME R			09/16/21 18:09	
	рН	4.69	Std. Units		09/16/21 18:09	
EPA 6010D	Calcium	6.5	mg/L	0.10	09/23/21 01:20	
PA 6020B	Barium	0.16	mg/L	0.0050	09/21/21 16:30	
PA 6020B	Beryllium	0.00062	mg/L	0.00050	09/20/21 12:27	
PA 6020B	Boron	0.071J	mg/L	0.25	09/21/21 16:30	
PA 300.0 Rev 2.1 1993	Chloride	30.0	mg/L	1.0	09/19/21 20:58	
PA 300.0 Rev 2.1 1993	Sulfate	24.4	mg/L	1.0	09/19/21 20:58	
2561848010	MCM-18					
	Performed by	CUSTOME			09/16/21 18:09	
	рН	R 4.28	Std. Units		09/16/21 18:09	
PA 6010D	Calcium	18.8	mg/L	0.10		
PA 6020B	Arsenic	0.0029J	mg/L		09/21/21 15:49	
PA 6020B	Barium	0.098	mg/L	0.010		
PA 6020B	Beryllium	0.0031	mg/L	0.0010		
PA 6020B	Boron	0.20J	mg/L		09/21/21 15:49	
M 2540C-2011	Total Dissolved Solids	2190	mg/L	278	09/21/21 12:48	
PA 300.0 Rev 2.1 1993	Chloride	1020	mg/L	100	09/19/21 21:14	
PA 300.0 Rev 2.1 1993	Sulfate	134	mg/L	100	09/19/21 21:14	
2561848011	MCM-19					
	Performed by	CUSTOME			09/16/21 18:09	
	рН	R 5.31	Std. Units		09/16/21 18:09	
EPA 6010D	Calcium	93.6	mg/L	0.10	09/10/21 18:09	
PA 6020B	Arsenic	0.018J	mg/L	0.020	09/21/21 16:00	
PA 6020B	Barium	0.13	mg/L	0.020	09/21/21 16:00	
PA 6020B	Beryllium	0.0062	mg/L	0.0020		
PA 6020B	Boron	1.2	mg/L	1.0	09/21/21 16:00	
PA 6020B	Lithium	0.011J	mg/L	0.050	09/20/21 12:41	
PA 6020B	Selenium	0.0022J	mg/L	0.040	09/21/21 16:00	
M 2540C-2011	Total Dissolved Solids	14600	mg/L	1250	09/21/21 12:53	
PA 300.0 Rev 2.1 1993	Chloride	7250	mg/L	100		
PA 300.0 Rev 2.1 1993	Sulfate	995	mg/L	100	09/19/21 21:29	
2561848012	MCM-20		•			
	Performed by	CUSTOME			09/16/21 18:10	
	рН	R 3.72	Std. Units		09/16/21 18:10	
PA 6010D	Calcium	61.1	mg/L	0.10		
PA 6020B	Arsenic	0.028	mg/L	0.020	09/21/21 16:08	
PA 6020B	Barium	0.11	mg/L	0.020	09/21/21 16:08	
PA 6020B	Beryllium	0.016	mg/L	0.0020	09/20/21 12:45	
PA 6020B	Boron	0.91J	mg/L	1.0	09/21/21 16:08	
PA 6020B	Cobalt	0.030	mg/L	0.020	09/21/21 16:08	
PA 6020B	Lithium	0.020J	mg/L	0.050	09/20/21 12:45	
PA 6020B	Selenium	0.0018J	mg/L	0.040		

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS CCR

Pace Project No.: 92561848

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2561848012	MCM-20					
SM 2540C-2011	Total Dissolved Solids	10300	mg/L	833	09/21/21 12:53	
EPA 300.0 Rev 2.1 1993	Chloride	5100	mg/L	100	09/19/21 21:44	
EPA 300.0 Rev 2.1 1993	Sulfate	659	mg/L	100	09/19/21 21:44	
2561848013	DPZ-2					
	Performed by	CUSTOME R			09/16/21 18:10	
	рН	7.11	Std. Units		09/16/21 18:10	
PA 6010D	Calcium	273	mg/L	1.0	09/23/21 23:49	
EPA 6020B	Arsenic	0.022	mg/L	0.020	09/21/21 16:26	
PA 6020B	Barium	0.082	mg/L	0.020	09/21/21 16:26	
EPA 6020B	Boron	2.0	mg/L	1.0	09/21/21 16:26	
EPA 6020B	Lithium	0.092	mg/L	0.050	09/20/21 12:48	
SM 2540C-2011	Total Dissolved Solids	16400	mg/L	1250	09/21/21 12:53	
PA 300.0 Rev 2.1 1993	Chloride	7610	mg/L	100	09/19/21 22:30	
EPA 300.0 Rev 2.1 1993	Sulfate	971	mg/L	100	09/19/21 22:30	
2561848014	DUP-1					
PA 6010D	Calcium	6.7	mg/L	0.10	09/23/21 01:50	
PA 6020B	Barium	0.15	mg/L	0.0050	09/21/21 16:34	
PA 6020B	Beryllium	0.00032J	mg/L	0.00050	09/20/21 12:52	
PA 6020B	Boron	0.062J	mg/L	0.25	09/21/21 16:34	
M 2540C-2011	Total Dissolved Solids	79.0	mg/L	25.0	09/21/21 12:53	
PA 300.0 Rev 2.1 1993	Chloride	30.2	mg/L	1.0	09/21/21 11:21	
PA 300.0 Rev 2.1 1993	Sulfate	29.1	mg/L	1.0	09/21/21 11:21	
2561848015	DUP-2					
PA 6010D	Calcium	95.6	mg/L	0.10	09/23/21 01:53	
PA 6020B	Arsenic	0.020J	mg/L	0.020	09/21/21 16:37	
PA 6020B	Barium	0.13	mg/L	0.020	09/21/21 16:37	
PA 6020B	Beryllium	0.0062	mg/L	0.0020	09/20/21 12:55	
PA 6020B	Boron	1.4	mg/L	1.0	09/21/21 16:37	
PA 6020B	Lithium	0.012J	mg/L	0.050	09/20/21 12:55	
PA 6020B	Selenium	0.0019J	mg/L	0.040	09/21/21 16:37	
M 2540C-2011	Total Dissolved Solids	15100	mg/L	1250		
PA 300.0 Rev 2.1 1993	Chloride	7230	mg/L	100	09/19/21 23:01	
PA 300.0 Rev 2.1 1993	Sulfate	978	mg/L	100	09/19/21 23:01	
2561848017	EB-1					
PA 6020B	Barium	0.00024J	mg/L	0.0010	09/21/21 14:37	
2561848018	MCM-05					
	Performed by	CUSTOME R			09/16/21 18:10	
	рН	6.67	Std. Units		09/16/21 18:10	
PA 6010D	Calcium	13.9	mg/L	0.10	09/24/21 00:19	
PA 6010D	Magnesium	32.4	mg/L	0.10	09/24/21 00:19	
PA 6010D	Potassium	10.7	mg/L	5.0	09/24/21 00:19	
PA 6010D	Sodium	2410	mg/L	250	09/24/21 00:09	
PA 6020B	Arsenic	0.020J	mg/L	0.020	09/21/21 14:59	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS CCR
Pace Project No.: 92561848

Lab Sample ID Method	Client Sample ID Parameters	Result	Lloito	Panart Limit	Apolyzod	Qualifiers
	- Farameters	— Result	Units	Report Limit	Analyzed	Quaillers
92561848018	MCM-05					
EPA 6020B	Barium	0.080	mg/L	0.020	09/21/21 22:10	
EPA 6020B	Boron	0.95J	mg/L	1.0	09/21/21 14:59	
EPA 6020B	Lithium	0.042J	mg/L	0.050	09/21/21 22:10	
EPA 6020B	Molybdenum	0.0099J	mg/L	0.020	09/21/21 14:59	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	233	mg/L	5.0	09/27/21 13:49	
SM 2320B-2011	Alkalinity, Total as CaCO3	233	mg/L	5.0	09/27/21 13:49	
SM 2540C-2011	Total Dissolved Solids	8020	mg/L	625	09/21/21 12:53	
EPA 300.0 Rev 2.1 1993	Chloride	3940	mg/L	100	09/20/21 00:18	
EPA 300.0 Rev 2.1 1993	Sulfate	459	mg/L	100	09/20/21 00:18	
2561848019	MCM-06					
	Performed by	CUSTOME R			09/16/21 18:10	
	рН	6.94	Std. Units		09/16/21 18:10	
EPA 6010D	Calcium	299	mg/L	1.0	09/24/21 00:22	
EPA 6010D	Magnesium	515	mg/L	1.0	09/24/21 00:22	
EPA 6010D	Potassium	117	mg/L	50.0	09/24/21 00:22	
EPA 6010D	Sodium	3270	mg/L	250	09/24/21 00:12	
EPA 6020B	Arsenic	0.51	mg/L	0.020	09/21/21 15:06	
EPA 6020B	Barium	0.22	mg/L	0.020	09/21/21 22:14	
EPA 6020B	Boron	1.1	mg/L	1.0	09/21/21 15:06	
EPA 6020B	Lithium	0.084	mg/L	0.050	09/21/21 22:14	
EPA 7470A	Mercury	0.16J	ug/L	0.20	09/29/21 12:15	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	507	mg/L	5.0	09/24/21 20:16	
SM 2320B-2011	Alkalinity, Total as CaCO3	507	mg/L	5.0	09/24/21 20:16	
SM 2540C-2011	Total Dissolved Solids	11800	mg/L	833	09/21/21 12:53	
EPA 300.0 Rev 2.1 1993	Chloride	5360	mg/L	100	09/20/21 16:06	
EPA 300.0 Rev 2.1 1993	Sulfate	490	mg/L	10.0	09/20/21 00:33	
2561848020	MCM-07					
	Performed by	CUSTOME R			09/16/21 18:10	
	рН	6.28	Std. Units		09/16/21 18:10	
EPA 6010D	Calcium	225	mg/L	1.0	09/24/21 00:26	
EPA 6010D	Magnesium	496	mg/L	1.0	09/24/21 00:26	
EPA 6010D	Potassium	154	mg/L	50.0	09/24/21 00:26	
EPA 6010D	Sodium	3860	mg/L	250	09/24/21 00:16	
EPA 6020B	Arsenic	0.013J	mg/L	0.020	09/21/21 15:13	
EPA 6020B	Barium	0.20	mg/L	0.020	09/21/21 22:17	
EPA 6020B	Boron	1.5	mg/L	1.0	09/21/21 15:13	
EPA 6020B	Lithium	0.035J	mg/L	0.050	09/21/21 22:17	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	246	mg/L	5.0	09/24/21 20:45	
SM 2320B-2011	Alkalinity, Total as CaCO3	246	mg/L	5.0	09/24/21 20:45	
SM 2540C-2011	Total Dissolved Solids	13400	mg/L	1250	09/21/21 12:56	
EPA 300.0 Rev 2.1 1993	Chloride	6300	mg/L	100	09/20/21 00:48	
EPA 300.0 Rev 2.1 1993	Sulfate	819	mg/L	100	09/20/21 00:48	

Project: MCMANUS CCR

Pace Project No.: 92561848

Lab Sample ID	Client Sample ID						
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers	
92561848021	MCM-17						
	Performed by	CUSTOME R			09/16/21 18:11		
	pН	6.77	Std. Units		09/16/21 18:11		
EPA 6010D	Calcium	190	mg/L	1.0	09/28/21 13:06	M1,P8	
EPA 6010D	Magnesium	277	mg/L	1.0	09/28/21 13:06	M1	
EPA 6010D	Potassium	143	mg/L	50.0	09/28/21 13:06	M1	
EPA 6010D	Sodium	2600	mg/L	250	09/29/21 11:58	M1	
EPA 6020B	Barium	0.20	mg/L	0.030	09/21/21 18:14	M1	
EPA 6020B	Boron	2.1	mg/L	1.5	09/21/21 18:14	M1	
EPA 6020B	Lithium	0.035J	mg/L	0.075	09/21/21 18:14		
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	535	mg/L	5.0	09/24/21 20:54		
SM 2320B-2011	Alkalinity, Total as CaCO3	535	mg/L	5.0	09/24/21 20:54		
SM 2540C-2011	Total Dissolved Solids	8820	mg/L	625	09/21/21 12:56		
EPA 300.0 Rev 2.1 1993	Chloride	4090	mg/L	100	09/20/21 16:27		
EPA 300.0 Rev 2.1 1993	Sulfate	460	mg/L	10.0	09/20/21 01:34		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: MCM-12	Lab ID:	92561848001	Collected	: 09/13/21	17:53	Received: 09/	/16/21 11:30 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/16/21 17:32		
рН	6.24	Std. Units			1		09/16/21 17:32		
6010 MET ICP	•	Method: EPA (ration Met	nod: EF	PA 3010A			
Calcium	6.0	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 23:26	7440-70-2	
6020 MET ICPMS	•	Method: EPA (•	ration Meth	nod: EF	² A 3010A			
Antimony	ND	mg/L	0.010	0.0020	10	09/17/21 11:44	09/20/21 10:21	7440-36-0	
Arsenic	ND	mg/L	0.010	0.00087	10	09/17/21 11:44	09/20/21 10:21	7440-38-2	
Barium	0.086	mg/L	0.010	0.0021	10	09/17/21 11:44	09/20/21 10:21	7440-39-3	
Beryllium	0.0011	mg/L	0.0010	0.00050	10	09/17/21 11:44	09/20/21 10:21	7440-41-7	
Boron	1.4	mg/L	0.50	0.085	10	09/17/21 11:44	09/20/21 10:21	7440-42-8	M1
Cadmium	ND	mg/L	0.0020	0.00060	10	09/17/21 11:44	09/20/21 10:21	7440-43-9	
Chromium	ND	mg/L	0.010	0.0050	10	09/17/21 11:44	09/20/21 10:21	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00050	10	09/17/21 11:44	09/20/21 10:21	7440-48-4	
Lead	ND	mg/L	0.010	0.00077	10	09/17/21 11:44	09/20/21 10:21	7439-92-1	
Lithium	0.010J	mg/L	0.025	0.0050	10	09/17/21 11:44	09/20/21 10:21	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0013	10	09/17/21 11:44	09/20/21 10:21	7439-98-7	
Selenium	ND	mg/L	0.020	0.00072	10	09/17/21 11:44	09/20/21 10:21	7782-49-2	
Thallium	ND	mg/L	0.0047	0.00050	10	09/17/21 11:44	09/20/21 10:21	7440-28-0	
7470 Mercury	•	Method: EPA	•	ration Meth	nod: EF	A 7470A			
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 15:33	7439-97-6	
2540C Total Dissolved Solids	•	Method: SM 2 lytical Services							
Total Dissolved Solids	1450	mg/L	50.0	50.0	1		09/21/21 12:40		1g,H1
300.0 IC Anions 28 Days	•	Method: EPA 3		1993					
Chloride	433	mg/L	10.0	6.0	10		09/19/21 19:26	16887-00-6	
Fluoride	1.4	mg/L	0.10	0.050	1		09/18/21 21:34		
Sulfate	ND	mg/L	1.0	0.50	1		09/18/21 21:34		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: FB-1	Lab ID:	92561848002	Collecte	ed: 09/13/21	17:00	Received: 09/	/16/21 11:30 M	latrix: Water	
Danamatana	Daguita	Lleite	Report	MDI	DF	Duamanad	A a b a d	CACNI	0
Parameters	Results	Units	Limit		DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Pre	paration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	ND	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 23:39	7440-70-2	
Magnesium	ND	mg/L	0.10	0.068	1	09/17/21 11:44	09/23/21 23:39	7439-95-4	
Potassium	ND	mg/L	5.0	3.0	1	09/17/21 11:44	09/23/21 23:39	7440-09-7	
Sodium	ND	mg/L	5.0	0.61	1	09/17/21 11:44	09/23/21 23:39	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	mg/L	0.0010	0.00020	1	09/17/21 11:44	09/20/21 10:38	7440-36-0	
Arsenic	ND	mg/L	0.0010	0.000087	1	09/17/21 11:44	09/20/21 10:38	3 7440-38-2	
Barium	ND	mg/L	0.0010	0.00021	1	09/17/21 11:44	09/20/21 10:38	7440-39-3	
Beryllium	ND	mg/L	0.00010	0.000050	1	09/17/21 11:44	09/20/21 10:38	3 7440-41-7	
Boron	ND	mg/L	0.050	0.0085	1	09/17/21 11:44	09/20/21 10:38	3 7440-42-8	
Cadmium	ND	mg/L	0.00020	0.000060	1	09/17/21 11:44	09/20/21 10:38	7440-43-9	
Chromium	ND	mg/L	0.0010	0.00050	1	09/17/21 11:44	09/20/21 10:38	3 7440-47-3	
Cobalt	ND	mg/L	0.0010	0.000050	1	09/17/21 11:44	09/20/21 10:38	7440-48-4	
.ead	ND	mg/L	0.0010	0.000077	1	09/17/21 11:44	09/20/21 10:38	7439-92-1	
ithium	ND	mg/L	0.0025	0.00050	1	09/17/21 11:44	09/20/21 10:38	7439-93-2	
Molybdenum	0.00028J	mg/L	0.0010	0.00013	1	09/17/21 11:44	09/20/21 10:38	7439-98-7	
Selenium	ND	mg/L	0.0020	0.000072	1	09/17/21 11:44	09/20/21 10:38	7782-49-2	
⁻ hallium	ND	mg/L	0.00047	0.000050	1	09/17/21 11:44	09/20/21 10:38	3 7440-28-0	
470 Mercury	Analytical	Method: EPA 7	470A Pre	paration Meth	od: EF	PA 7470A			
-	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 15:36	7439-97-6	
320B Alkalinity	Analytical	Method: SM 23	320B-2011						
-	Pace Ana	lytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/24/21 15:48	3	
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/24/21 15:48	3	
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		09/24/21 15:48	3	
540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		09/21/21 12:40)	1g,H1
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		09/18/21 21:50	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/18/21 21:50	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		09/18/21 21:50		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Page Project No : 92561848

Performed by CUSTOME 1	Sample: MCM-14	Lab ID:	92561848003	Collected	l: 09/13/21	17:32	Received: 09/	/16/21 11:30 Ma	atrix: Water	
Part				Report						
Performed by CUSTOME Reformed by CUSTOME Reformed by	Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
Custome Cust	Field Data	Analytica	Method:							
No.		Pace Ana	lytical Services	- Charlotte						
Solition Study Continue Study Continue Study Continue Study Continue Study Study Continue Study St	Performed by	CUSTOME				1		09/16/21 17:33		
Pace Analytical Services - Asheville 165 mg/L 1.0 0.94 10 0.994/17/21 11:44 09/23/21 23:23 7440-70-2 048agnesium 393 mg/L 1.0 0.68 10 0.994/77/21 11:44 09/23/21 23:23 7439-95-4 Potassium 123 mg/L 2910 mg/L 2910 mg/L 2910 mg/L 2910 mg/L 2910 mg/L 2910 0.00020 10 2910 0.00021 11:44 09/23/21 23:23 7440-09-7 2910 mg/L 2910 0.00020 10 2917/21 11:44 09/23/21 23:23 7440-09-7 2910 mg/L 2910 mg/L 2910 0.00020 10 2917/21 11:44 09/23/21 13:45 7440-33-5 8020 MET I CPMS Analytical Method: EPA 6020B Preparation Method: EPA 3010A Prace Analytical Services - Asheville Antimony Antimon	ρΗ		Std. Units			1		09/16/21 17:33		
Calcium 165 mg/L 1.0 0.94 10 09/17/21 11:44 09/23/21 23:23 7440-70-2 Magnesium 123 mg/L 5.0 3.0 4 10 09/17/21 11:44 09/23/21 23:23 7430-95-4 Poltassium 123 mg/L 5.0 3.0 5 50 09/17/21 11:44 09/23/21 23:23 7430-95-4 Poltassium 2910 mg/L 250 30.5 50 09/17/21 11:44 09/23/21 23:23 7430-95-4 Poltassium 2910 mg/L 250 30.5 50 09/17/21 11:44 09/23/21 33:23 7440-93-5 6620 MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Asheville Antimony ND Mg/L 0.010 0.00027 0.0007/17/21 11:44 09/21/21 15:42 7440-36-0 0.16 mg/L 0.010 0.00087 10 09/17/21 11:44 09/21/21 15:42 7440-38-2 Berlillim ND mg/L 0.010 0.00087 10 09/17/21 11:44 09/21/21 15:42 7440-38-2 Berlillim ND mg/L 0.010 0.00087 10 09/17/21 11:44 09/21/21 15:42 7440-38-3 Berlillim ND mg/L 0.0000 0.00087 10 09/17/21 11:44 09/21/21 15:42 7440-38-3 Berlillim ND mg/L 0.0000 0.00087 10 09/17/21 11:44 09/21/21 15:42 7440-38-3 Berlillim ND mg/L 0.0000 0.00085 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 Cadmium ND mg/L 0.0000 0.00050 0.00050 0.0007/17/21 11:44 09/21/21 15:42 7440-42-8 Cobalt ND mg/L 0.010 0.00050 0.00050 0.0007/17/21 11:44 09/21/21 15:42 7440-48-9 Lead ND mg/L 0.010 0.00050 0.00050 0.0007/17/21 11:44 09/21/21 15:42 7430-99-2-1 Lithium 0.047 mg/L 0.0026 0.00050 0.00070 0.0	6010 MET ICP	Analytica	Method: EPA 6	010D Prepa	aration Met	hod: Ef	PA 3010A			
Magnesium 1393 mg/L 1.0 0.68 10 09/17/21 11:44 09/23/21 23:23 7439-95-4 Potassium 2910 mg/L 250 30.5 50 09/17/21 11:44 09/23/21 23:23 7439-95-4 Potassium 2910 mg/L 250 0.00 09/17/21 11:44 09/23/21 13:46 7440-09-7 Potassium 2910 mg/L 250 0.00 0.00 0.00 00 09/17/21 11:44 09/23/21 13:46 7440-23-5 Potassium 2910 mg/L 2910 mg/L 2910 mg/L 2910 mg/L 2010 0.000 0.000 0.000 10 09/17/21 11:44 09/21/21 15:42 7440-36-0 No mg/L 2010 0.000 0.000 0.000 10 09/17/21 11:44 09/21/21 15:42 7440-38-2 0.000 0		Pace Ana	llytical Services	- Asheville						
Magnesium 133 mg/L 1.0 0.68 10 09/17/21 11:44 09/23/21 23:23 7439-95-4 Protassium 123 mg/L 50.0 30.4 10 09/17/21 11:44 09/23/21 23:23 7439-95-4 Protassium 2910 mg/L 2910 mg/L 2910 mg/L 2910 mg/L Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Asheville Anatimony Anati	Calcium	165	mg/L	1.0	0.94	10	09/17/21 11:44	09/23/21 23:23	7440-70-2	
Sedium 2910 mg/L 250 30.5 50 09/17/21 11:44 09/24/21 31.46 7440-23-5	Magnesium	393		1.0	0.68	10	09/17/21 11:44	09/23/21 23:23	7439-95-4	
Sodium 2910 mg/L 250 30.5 50 09/17/21 11:44 09/24/21 13:46 7440-23-5	Potassium	123	mg/L	50.0	30.4	10	09/17/21 11:44	09/23/21 23:23	7440-09-7	
Antimony Arithmony Antimony Arithmony Arithmony Antimony MD mg/L 0.0010 0.00087 10 0.9017/21 11:44 09/21/21 15:42 7440-38-2 888ryllium ND mg/L 0.0010 0.00050 10 0.9017/21 11:44 09/21/21 11:542 7440-41-7 880ron 1.2 mg/L 0.0020 0.00060 10 0.9017/21 11:44 09/21/21 15:42 7440-42-8 0.0020 0.0017/11	Sodium	2910	-	250	30.5	50	09/17/21 11:44	09/24/21 13:46	7440-23-5	
Antimony Arithmony Antimony Arithmony Arithmony Antimony MD mg/L 0.0010 0.00087 10 0.9017/21 11:44 09/21/21 15:42 7440-38-2 888ryllium ND mg/L 0.0010 0.00050 10 0.9017/21 11:44 09/21/21 11:542 7440-41-7 880ron 1.2 mg/L 0.0020 0.00060 10 0.9017/21 11:44 09/21/21 15:42 7440-42-8 0.0020 0.0017/11	6020 MET ICPMS	Analytica	Method: EPA 6	020B Prepa	aration Met	nod: EF	PA 3010A			
Arsenic ND mg/L 0.010 0.00087 10 09/17/21 11:44 09/21/21 15:42 7440-38-2 Beryllium 0.16 mg/L 0.010 0.0001 10 09/17/21 11:44 09/21/21 15:42 7440-38-3 Beryllium ND mg/L 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-39-3 Beryllium ND mg/L 0.0020 0.00060 10 09/17/21 11:44 09/21/21 15:42 7440-42-8 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-42-8 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-48-4 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-48-4 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-48-4 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7439-92-1 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7439-92-1 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-93-2 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/2										
Arsenic ND mg/L 0.010 0.00087 10 09/17/21 11:44 09/21/21 15:42 7440-38-2 Beryllium 0.16 mg/L 0.010 0.0001 10 09/17/21 11:44 09/21/21 15:42 7440-38-3 Beryllium ND mg/L 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-39-3 Beryllium ND mg/L 0.0020 0.00060 10 09/17/21 11:44 09/21/21 15:42 7440-42-8 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-42-8 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-43-9 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-48-4 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-48-4 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-48-4 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7439-92-1 0.0010 0.00050 10 09/17/21 11:44 09/21/21 15:42 7439-92-1 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-93-2 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 0.0010 0.0013 10 09/17/2	Antimony	ND	mg/L	0.010	0.0020	10	09/17/21 11:44	09/21/21 15:42	7440-36-0	
Barium	•		-							
Seryllium			-							
1.2 mg/L			-							
Cadmium	•		-						-	
ND mg/L 0.010 0.0050 10 0.9/17/21 11:44 0.9/21/21 15:42 7440-47-3 7440-48-4 74			-							
ND mg/L 0.010 0.00050 10 0.09/17/21 11:44 0.09/21/21 15:42 7440-48-4 1.00 0.00077 10 0.00077 11 0.09/17/21 11:44 0.09/21/21 15:42 7439-92-1 1.11 1.11 0.0047 0.00077 0.00050 0.00077 0.00077 0.00077/21 0.09/17/21 11:44 0.09/21/21 15:42 7439-92-1 0.010 0.00078 0.00078 0.00077/21 0.0017/21 0.0			-							
ND mg/L			-							
Description			-							
Molybdenum ND mg/L 0.010 0.0013 10 09/17/21 11:44 09/21/21 15:42 7439-98-7 Selenium ND mg/L 0.020 0.00072 10 09/17/21 11:44 09/21/21 15:42 7782-49-2 Thallium ND mg/L 0.0047 0.00050 10 09/17/21 11:44 09/21/21 15:42 7782-49-2 Thallium ND mg/L 0.0047 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-28-0 7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Asheville Mercury ND ug/L 0.20 0.12 1 09/23/21 11:30 09/29/21 15:38 7439-97-6 2320B Alkalinity Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 139 mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 139 mg/L ND mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 139 mg/L ND mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 139 mg/L Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville			-							
ND mg/L 0.020 0.00072 10 0.09/17/21 11:44 0.09/21/21 15:42 7782-49-2 7470			-							
ND mg/L 0.0047 0.00050 10 09/17/21 11:44 09/21/21 15:42 7440-28-0	-		-							
Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Asheville Mercury ND ug/L 0.20 0.12 1 09/23/21 11:30 09/29/21 15:38 7439-97-6 2320B Alkalinity Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 139 mg/L 5.0 5.0 1 09/24/21 16:05 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11400 mg/L 833 833 1 09/21/21 12:40 1g,H1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville			-							
Pace Analytical Services - Asheville Mercury ND ug/L 0.20 0.12 1 09/23/21 11:30 09/29/21 15:38 7439-97-6 2320B Alkalinity Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) 139 mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 139 mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 139 mg/L 5.0 5.0 1 09/24/21 16:05 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11400 mg/L 833 833 1 09/21/21 12:40 1g,H1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	7470 Moroury	Analytica	•	7470A Propo	aration Mot	od: EE	ολ 7470Λ			
Mercury ND ug/L 0.20 0.12 1 09/23/21 11:30 09/29/21 15:38 7439-97-6 2320B Alkalinity Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 139 mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11400 mg/L 833 833 1 09/21/21 12:40 1g,H1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	7470 Mercury				aration ivieti	IOU. LI	A 1410A			
Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 139 mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 139 mg/L 5.0 5.0 1 09/24/21 16:05 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11400 mg/L 833 833 1 09/21/21 12:40 1g,H1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Moroury				0.12	1	00/22/21 11:20	00/20/21 15:39	7420 07 6	
Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	•		•		0.12	'	09/23/21 11.30	09/29/21 13:30	1439-91-0	
Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) Alkalinity, Carbonate (CaCO3) Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	2320B Alkalinity	•								
Alkalinity, Carbonate (CaCO3) Alkalinity, Total as CaCO3 ND mg/L 5.0 5.0 1 09/24/21 16:05 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	All I' ' B' (0.000)		•		5 0			00/04/04 40 05		
Alkalinity, Total as CaCO3 139 mg/L 5.0 5.0 1 09/24/21 16:05 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11400 mg/L 833 833 1 09/21/21 12:40 1g,H1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville			-							
Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11400 mg/L 833 833 1 09/21/21 12:40 1g,H1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	,		-							
Pace Analytical Services - Asheville Total Dissolved Solids 11400 mg/L 833 833 1 09/21/21 12:40 1g,H1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Alkalinity, Total as CaCO3	139	mg/L	5.0	5.0	1		09/24/21 16:05		
Total Dissolved Solids 11400 mg/L 833 833 1 09/21/21 12:40 1g,H1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	2540C Total Dissolved Solids	Analytica	Method: SM 25	540C-2011						
300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville		Pace Ana	llytical Services	- Asheville						
Pace Analytical Services - Asheville	Total Dissolved Solids	11400	mg/L	833	833	1		09/21/21 12:40		1g,H1
Pace Analytical Services - Asheville	300.0 IC Anions 28 Davs	Analytica	Method: EPA 3	300.0 Rev 2.	1 1993					
		•								
	Chloride	5010	mg/L	100	60.0	100		09/19/21 19:41	16887-00-6	

ANALYTICAL RESULTS

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

Sample: MCM-14	Lab ID:	92561848003	Collected	d: 09/13/2 ²	17:32	Received: 09)/16/21 11:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		1 1993					
Fluoride Sulfate	ND 680	mg/L mg/L	0.10 100	0.050 50.0	1 100		09/18/21 22:05 09/19/21 19:41	16984-48-8 14808-79-8	

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: MCM-01	Lab ID:	92561848004	Collecte	d: 09/14/2	1 09:59	Received: 09/	/16/21 11:30 Ma	atrix: Water	
			Report						
Parameters	Results -	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/16/21 18:08		
рН	5.13	Std. Units			1		09/16/21 18:08		
6010 MET ICP	Analytical	Method: EPA 6	6010D Prep	aration Met	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	9.6	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 01:04	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	mg/L	0.0050	0.0010	5	09/17/21 11:44	09/21/21 15:45	7440-36-0	
Arsenic	0.0055	mg/L	0.0050	0.00043	5	09/17/21 11:44	09/21/21 15:45	7440-38-2	
Barium	0.065	mg/L	0.0050	0.0011	5	09/17/21 11:44	09/21/21 15:45	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.00025	5	09/17/21 11:44			
Boron	0.079J	mg/L	0.25	0.042	5	09/17/21 11:44	09/21/21 15:45	-	
Cadmium	ND	mg/L	0.0010	0.00030	5	09/17/21 11:44			
Chromium	ND	mg/L	0.0050	0.0025	5	09/17/21 11:44			
Cobalt	ND	mg/L	0.0050	0.00025	5	09/17/21 11:44			
Lead	ND	mg/L	0.0050	0.00038	5	09/17/21 11:44	09/21/21 15:45		
Lithium	ND	mg/L	0.0030	0.00036	5	09/17/21 11:44			
Molybdenum	ND ND	mg/L	0.0050	0.0023	5	09/17/21 11:44			
Selenium	ND ND	J			5	09/17/21 11:44			
Thallium		mg/L	0.010	0.00036	5 5				
Thailium	ND	mg/L	0.0024	0.00025			09/21/21 15:45	7440-26-0	
7470 Mercury	-	Method: EPA 7	-	aration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 15:41	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	66.0	mg/L	25.0	25.0	1		09/21/21 12:47		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	16.7	mg/L	1.0	0.60	1		09/18/21 22:21	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/18/21 22:21	16984-48-8	
Sulfate	34.2	mg/L	1.0	0.50	1		09/18/21 22:21	14808-79-8	

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: MCM-02	Lab ID:	92561848005	Collected	: 09/14/21	11:26	Received: 09/	/16/21 11:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME				1		09/16/21 18:08		
рН	R 5.04	Std. Units			1		09/16/21 18:08		
6010 MET ICP	-	Method: EPA 6	•	aration Met	hod: EF	PA 3010A			
Calcium	4.2	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 01:07	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6	•	ration Metl	nod: EF	PA 3010A			
Antimony	ND	mg/L	0.0050	0.0010	5	09/17/21 11:44	09/21/21 15:53	7440-36-0	
Arsenic	0.00067J	mg/L	0.0050	0.00043	5	09/17/21 11:44	09/21/21 15:53		
Barium	0.082	mg/L	0.0050	0.0011	5	09/17/21 11:44	09/21/21 15:53	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.00025	5	09/17/21 11:44	09/20/21 11:16		
Boron	0.093J	mg/L	0.25	0.042	5	09/17/21 11:44	09/21/21 15:53	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00030	5	09/17/21 11:44	09/21/21 15:53		
Chromium	0.0056	mg/L	0.0050	0.0025	5	09/17/21 11:44	09/21/21 15:53		
Cobalt	ND	mg/L	0.0050	0.00025	5	09/17/21 11:44	09/21/21 15:53		
Lead	ND	mg/L	0.0050	0.00038	5	09/17/21 11:44	09/21/21 15:53		
Lithium	ND	mg/L	0.012	0.0025	5	09/17/21 11:44	09/20/21 11:16		
Molybdenum	0.00080J	mg/L	0.0050	0.00063	5	09/17/21 11:44	09/21/21 15:53		
Selenium	ND	mg/L	0.010	0.00036	5	09/17/21 11:44	09/21/21 15:53		
Thallium	ND	mg/L	0.0024	0.00025	5	09/17/21 11:44	09/21/21 15:53		
7470 Mercury	•	Method: EPA 7	•	ration Meth	nod: EF	PA 7470A			
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 15:43	7439-97-6	
2540C Total Dissolved Solids	•	Method: SM 29							
Total Dissolved Solids	76.0	mg/L	25.0	25.0	1		09/21/21 12:47		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		I 1993					
Chloride	21.8	mg/L	1.0	0.60	1		09/18/21 22:36	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/18/21 22:36		
Sulfate	30.4	mg/L	1.0	0.50	1		09/18/21 22:36		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Parameters Field Data Performed by pH 6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron Cadmium	Results Analytical Pace Ana	Units	Report Limit	MDL					
Field Data Performed by pH 6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron	Analytical		Limit	MDI				040 N-	
Performed by pH 6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron	•	Method:			DF	Prepared	Analyzed	CAS No.	Qua
pH 6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron	Pace Ana	mounou.							
pH 6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron		lytical Services	- Charlotte						
Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron	CUSTOME R				1		09/16/21 18:09		
Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron	5.09	Std. Units			1		09/16/21 18:09		
Antimony Arsenic Barium Beryllium Boron	•	Method: EPA 6 lytical Services	•	aration Met	hod: EF	PA 3010A			
Antimony Arsenic Barium Beryllium Boron	12.5	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 01:10	7440-70-2	
Arsenic Barium Beryllium Boron	•	Method: EPA 6 lytical Services		aration Met	hod: EF	A 3010A			
Barium Beryllium Boron	ND	mg/L	0.0050	0.0010	5	09/17/21 11:44	09/21/21 15:56	7440-36-0	
Beryllium Boron	0.0047J	mg/L	0.0050	0.00043	5	09/17/21 11:44	09/21/21 15:56	7440-38-2	
Boron	0.043	mg/L	0.0050	0.0011	5	09/17/21 11:44	09/21/21 15:56	7440-39-3	
	ND	mg/L	0.00050	0.00025	5	09/17/21 11:44	09/20/21 11:19	7440-41-7	
Cadmium	0.070J	mg/L	0.25	0.042	5	09/17/21 11:44	09/21/21 15:56	7440-42-8	
	ND	mg/L	0.0010	0.00030	5	09/17/21 11:44	09/21/21 15:56	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0025	5	09/17/21 11:44	09/21/21 15:56	7440-47-3	
Cobalt	0.0054	mg/L	0.0050	0.00025	5	09/17/21 11:44	09/21/21 15:56	7440-48-4	
Lead	ND	mg/L	0.0050	0.00038	5	09/17/21 11:44	09/21/21 15:56	7439-92-1	
Lithium	ND	mg/L	0.012	0.0025	5	09/17/21 11:44	09/20/21 11:19	7439-93-2	
Molybdenum	ND	mg/L	0.0050	0.00063	5	09/17/21 11:44	09/21/21 15:56	7439-98-7	
Selenium	ND	mg/L	0.010	0.00036	5	09/17/21 11:44	09/21/21 15:56	7782-49-2	
Thallium	ND	mg/L	0.0024	0.00025	5	09/17/21 11:44	09/21/21 15:56	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	aration Met	nod: EF	A 7470A			
	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 15:46	7439-97-6	
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services							
Total Dissolved Solids	193	mg/L	25.0	25.0	1		09/21/21 12:47		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		1 1993					
Chloride	28.5	mg/L	1.0	0.60	1		09/21/21 11:05	16887-00-6	
Fluoride	20.3 ND	mg/L	0.10	0.050	1		09/21/21 11:05	16984-48-8	M1
Sulfate	96.2	mg/L	1.0	0.50	1		09/21/21 11:05		M1

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: MCM-11	Lab ID:	92561848007	Collected	: 09/14/21	13:08	Received: 09/	/16/21 11:30 M	atrix: Water	
			Report						
Parameters	Results _	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME				1		09/16/21 18:09		
рН	R 5.50	Std. Units			1		09/16/21 18:09		
6010 MET ICP	•	Method: EPA 6	•	ration Met	nod: EF	PA 3010A			
Calcium	14.0	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 01:14	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Prepa	ration Metl	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	mg/L	0.0050	0.0010	5	09/17/21 11:44	09/21/21 16:04	7440-36-0	
Arsenic	0.011	mg/L	0.0050	0.00043	5	09/17/21 11:44	09/21/21 16:04	7440-38-2	
Barium	0.070	mg/L	0.0050	0.0011	5	09/17/21 11:44	09/21/21 16:04	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.00025	5	09/17/21 11:44	09/20/21 11:26		
Boron	0.060J	mg/L	0.25	0.042	5	09/17/21 11:44	09/21/21 16:04		
Cadmium	ND	mg/L	0.0010	0.00030	5	09/17/21 11:44	09/21/21 16:04		
Chromium	ND	mg/L	0.0050	0.0025	5	09/17/21 11:44	09/21/21 16:04		
Cobalt	ND	mg/L	0.0050	0.00025	5	09/17/21 11:44	09/21/21 16:04		
Lead	ND	mg/L	0.0050	0.00038	5	09/17/21 11:44	09/21/21 16:04		
Lithium	0.0033J	mg/L	0.0030	0.0005	5	09/17/21 11:44	09/20/21 11:26		
Molybdenum	0.00333 ND	mg/L	0.0050	0.0023	5	09/17/21 11:44	09/20/21 11:20		
Selenium	ND	mg/L	0.000	0.00036	5	09/17/21 11:44	09/21/21 16:04		
Thallium	ND ND	mg/L	0.010	0.00036	5	09/17/21 11:44			
		Ü					00/21/21 10:04	1440 20 0	
7470 Mercury	•	Method: EPA 7 lytical Services	•	ration Meth	nod: EP	A 7470A			
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 15:48	7439-97-6	
•		· ·		****					
2540C Total Dissolved Solids	•	Method: SM 29 lytical Services							
Total Dissolved Solids	191	mg/L	25.0	25.0	1		09/21/21 12:47		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		1993					
Chloride	62.8	mg/L	1.0	0.60	1		09/19/21 20:27	16887-00-6	
Fluoride	0.18	mg/L	0.10	0.050	1		09/19/21 20:27		
Sulfate	33.1	mg/L	1.0	0.50	1		09/19/21 20:27		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Field Data Performed by C pH 6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium	Analytical Pace Ana ND 0.0035J 0.050	Std. Units Method: EPA 6 lytical Services mg/L Method: EPA 6 lytical Services mg/L mg/L mg/L	010D Prep - Asheville 0.10 020B Prep - Asheville 0.0050	0.094 paration Met 0.0010	1	09/17/21 11:44 PA 3010A		CAS No. 7440-70-2	Qual
Field Data Performed by C pH 6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum	Analytical Pace Ana SUSTOME R 5.39 Analytical Pace Ana 6.7 Analytical Pace Ana ND 0.0035J 0.050	Method: lytical Services Std. Units Method: EPA 6 lytical Services mg/L Method: EPA 6 lytical Services mg/L mg/L mg/L	- Charlotte 010D Prep - Asheville 0.10 020B Prep - Asheville 0.0050	oaration Met 0.094 earation Met 0.0010	1 1 hod: EF 1 hod: EF	PA 3010A 09/17/21 11:44 PA 3010A	09/16/21 18:09 09/16/21 18:09 09/23/21 01:17		Qual
Performed by C pH 6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum	Pace Ana EUSTOME R 5.39 Analytical Pace Ana 6.7 Analytical Pace Ana ND 0.0035J 0.050	Std. Units Method: EPA 6 lytical Services mg/L Method: EPA 6 lytical Services mg/L mg/L mg/L	010D Prep - Asheville 0.10 020B Prep - Asheville 0.0050	0.094 paration Met 0.0010	1 hod: EF 1 hod: EF	09/17/21 11:44 PA 3010A	09/16/21 18:09 09/23/21 01:17	7440-70-2	
pH 6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum	Analytical Pace Ana ND 0.0035J 0.050	Std. Units Method: EPA 6 lytical Services mg/L Method: EPA 6 lytical Services mg/L mg/L	010D Prep - Asheville 0.10 020B Prep - Asheville 0.0050	0.094 paration Met 0.0010	1 hod: EF 1 hod: EF	09/17/21 11:44 PA 3010A	09/16/21 18:09 09/23/21 01:17	7440-70-2	
pH 6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Chromium Cobalt Lead Lithium Molybdenum	R 5.39 Analytical Pace Ana 6.7 Analytical Pace Ana ND 0.0035J 0.050	Method: EPA 6 lytical Services mg/L Method: EPA 6 lytical Services mg/L mg/L	- Asheville 0.10 020B Prep - Asheville 0.0050	0.094 paration Met 0.0010	1 hod: EF 1 hod: EF	09/17/21 11:44 PA 3010A	09/16/21 18:09 09/23/21 01:17	7440-70-2	
6010 MET ICP Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum	5.39 Analytical Pace Ana 6.7 Analytical Pace Ana ND 0.0035J 0.050	Method: EPA 6 lytical Services mg/L Method: EPA 6 lytical Services mg/L mg/L	- Asheville 0.10 020B Prep - Asheville 0.0050	0.094 paration Met 0.0010	hod: EF 1 hod: EF	09/17/21 11:44 PA 3010A	09/23/21 01:17	7440-70-2	
Calcium 6020 MET ICPMS Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum	Pace Ana 6.7 Analytical Pace Ana ND 0.0035J 0.050	lytical Services mg/L Method: EPA 6 lytical Services mg/L mg/L	- Asheville 0.10 020B Prep - Asheville 0.0050	0.094 paration Met 0.0010	1 hod: EF	09/17/21 11:44 PA 3010A		7440-70-2	
Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum	Analytical Pace Ana ND 0.0035J 0.050	Method: EPA 6 lytical Services mg/L mg/L	020B Prep - Asheville 0.0050	earation Met	hod: EF	PA 3010A		7440-70-2	
Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum	Pace Ana ND 0.0035J 0.050	lytical Services mg/L mg/L	- Asheville 0.0050	0.0010					
Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum	0.0035J 0.050	mg/L			5				
Barium Beryllium Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum	0.050	J	0.0050		0	09/17/21 11:44	09/21/21 16:11	7440-36-0	
Beryllium Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum		•	0.0050	0.00043	5	09/17/21 11:44	09/21/21 16:11	7440-38-2	
Boron Cadmium Chromium Cobalt Lead Lithium Molybdenum		mg/L	0.0050	0.0011	5	09/17/21 11:44	09/21/21 16:11	7440-39-3	
Cadmium Chromium Cobalt Lead Lithium Molybdenum	0.00034J	mg/L	0.00050	0.00025	5	09/17/21 11:44	09/20/21 11:30	7440-41-7	
Chromium Cobalt Lead Lithium Molybdenum	0.068J	mg/L	0.25	0.042	5	09/17/21 11:44	09/21/21 16:11	7440-42-8	
Cobalt Lead Lithium Molybdenum	ND	mg/L	0.0010	0.00030	5	09/17/21 11:44	09/21/21 16:11	7440-43-9	
Lead Lithium Molybdenum	0.0027J	mg/L	0.0050	0.0025	5	09/17/21 11:44	09/21/21 16:11	7440-47-3	
Lithium Molybdenum	ND	mg/L	0.0050	0.00025	5	09/17/21 11:44	09/21/21 16:11	7440-48-4	
Molybdenum	ND	mg/L	0.0050	0.00038	5	09/17/21 11:44	09/21/21 16:11	7439-92-1	
. ,	ND	mg/L	0.012	0.0025	5	09/17/21 11:44	09/20/21 11:30	7439-93-2	
Selenium	0.00090J	mg/L	0.0050	0.00063	5	09/17/21 11:44	09/21/21 16:11	7439-98-7	
	ND	mg/L	0.010	0.00036	5	09/17/21 11:44	09/21/21 16:11	7782-49-2	
Thallium	ND	mg/L	0.0024	0.00025	5	09/17/21 11:44	09/21/21 16:11	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 15:51	7439-97-6	
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services							
Total Dissolved Solids	96.0	mg/L	25.0	25.0	1		09/21/21 12:47		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		.1 1993					
Chloride	13.6	mg/L	1.0	0.60	1		09/19/21 20:43	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/21 20:43		
Sulfate	16.7	mg/L	1.0	0.050	1		09/19/21 20:43		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: MCM-16	Lab ID:	92561848009	Collected	d: 09/14/21	11:10	Received: 09/	/16/21 11:30 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/16/21 18:09)	
рН	4.69	Std. Units			1		09/16/21 18:09)	
6010 MET ICP	•	Method: EPA 6 lytical Services		aration Meth	nod: EF	PA 3010A			
Calcium	6.5	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 01:20	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services		aration Meth	nod: EF	PA 3010A			
Antimony	ND	mg/L	0.0050	0.0010	5	09/17/21 11:44	09/21/21 16:30	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00043	5	09/17/21 11:44	09/21/21 16:30	7440-38-2	
Barium	0.16	mg/L	0.0050	0.0011	5	09/17/21 11:44	09/21/21 16:30	7440-39-3	
Beryllium	0.00062	mg/L	0.00050	0.00025	5	09/17/21 11:44	09/20/21 12:27	7440-41-7	
Boron	0.071J	mg/L	0.25	0.042	5	09/17/21 11:44	09/21/21 16:30	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00030	5	09/17/21 11:44	09/21/21 16:30	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0025	5	09/17/21 11:44	09/21/21 16:30	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00025	5	09/17/21 11:44	09/21/21 16:30	7440-48-4	
Lead	ND	mg/L	0.0050	0.00038	5	09/17/21 11:44	09/21/21 16:30	7439-92-1	
Lithium	ND	mg/L	0.012	0.0025	5	09/17/21 11:44	09/20/21 12:27	7439-93-2	
Molybdenum	ND	mg/L	0.0050	0.00063	5	09/17/21 11:44	09/21/21 16:30	7439-98-7	
Selenium	ND	mg/L	0.010	0.00036	5	09/17/21 11:44	09/21/21 16:30	7782-49-2	
Thallium	ND	mg/L	0.0024	0.00025	5	09/17/21 11:44	09/21/21 16:30	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	aration Meth	od: EF	A 7470A			
	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 15:53	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	•	lytical Services							
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		09/21/21 12:48	3	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	•	lytical Services							
Chloride	30.0	mg/L	1.0	0.60	1		09/19/21 20:58	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/21 20:58		
Sulfate	24.4	mg/L	1.0	0.50	1		09/19/21 20:58		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: MCM-18	Lab ID:	92561848010	Collecte	d: 09/14/21	13:28	Received: 09/	/16/21 11:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/16/21 18:09		
рН	4.28	Std. Units			1		09/16/21 18:09		
6010 MET ICP	•	Method: EPA 6 lytical Services		aration Met	hod: El	PA 3010A			
Calcium	18.8	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 01:23	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	nod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	mg/L	0.010	0.0020	10	09/17/21 11:44	09/21/21 15:49	7440-36-0	
Arsenic	0.0029J	mg/L	0.010	0.00087	10	09/17/21 11:44	09/21/21 15:49	7440-38-2	
Barium	0.098	mg/L	0.010	0.0021	10	09/17/21 11:44	09/21/21 15:49	7440-39-3	
Beryllium	0.0031	mg/L	0.0010	0.00050	10	09/17/21 11:44	09/20/21 12:38	7440-41-7	
Boron	0.20J	mg/L	0.50	0.085	10	09/17/21 11:44	09/21/21 15:49		
Cadmium	ND	mg/L	0.0020	0.00060	10	09/17/21 11:44	09/21/21 15:49		
Chromium	ND	mg/L	0.010	0.0050	10	09/17/21 11:44	09/21/21 15:49		
Cobalt	ND	mg/L	0.010	0.00050	10	09/17/21 11:44	09/21/21 15:49		
Lead	ND ND	mg/L	0.010	0.00030	10	09/17/21 11:44	09/21/21 15:49		
Lithium	ND ND	mg/L	0.010	0.00077	10	09/17/21 11:44	09/20/21 12:38		
Molybdenum	ND ND	mg/L	0.023	0.0030	10	09/17/21 11:44			
Selenium	ND ND	Ū			10	09/17/21 11:44			
		mg/L	0.020	0.00072	-		09/21/21 15:49		
Thallium	ND	mg/L	0.0047	0.00050	10	09/17/21 11:44	09/21/21 15:49	7440-28-0	
7470 Mercury	-	Method: EPA 7 lytical Services	-	aration Metl	nod: EF	PA 7470A			
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 15:56	7439-97-6	
2540C Total Dissolved Solids		Method: SM 25 lytical Services							
Total Dissolved Solids	2190	mg/L	278	278	1		09/21/21 12:48		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1020	mg/L	100	60.0	100		09/19/21 21:14	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/21 01:27		
Sulfate	134	mg/L	100	50.0	100		09/19/21 21:14		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: MCM-19	Lab ID:	92561848011	Collected	l: 09/14/2 ⁻	1 15:01	Received: 09/	/16/21 11:30 Ma	atrix: Water	
_			Report						_
Parameters	Results	Units	Limit	MDL	DF	Prepared	_ Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME				1		09/16/21 18:09		
На	R 5.31	Std. Units			1		09/16/21 18:09		
•									
6010 MET ICP	•	Method: EPA 6 ytical Services		aration Me	thod: E	PA 3010A			
Calcium	93.6	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 01:27	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	thod: El	PA 3010A			
	-	ytical Services							
Antimony	ND	mg/L	0.020	0.0040	20	09/17/21 11:44	09/21/21 16:00	7440-36-0	
Arsenic	0.018J	mg/L	0.020	0.0017	20	09/17/21 11:44	09/21/21 16:00		
Barium	0.13	mg/L	0.020	0.0043	20	09/17/21 11:44	09/21/21 16:00		
Beryllium	0.0062	mg/L	0.0020	0.0010	20	09/17/21 11:44			
Boron	1.2	mg/L	1.0	0.17	20	09/17/21 11:44			
Cadmium	ND	mg/L	0.0040	0.0012	20	09/17/21 11:44			
Chromium	ND	mg/L	0.020	0.0012	20	09/17/21 11:44			
Cobalt	ND	mg/L	0.020	0.0033	20	09/17/21 11:44			
Lead	ND ND	mg/L	0.020	0.0010	20	09/17/21 11:44			
		Ū							
Lithium	0.011J	mg/L	0.050	0.010	20	09/17/21 11:44			
Molybdenum	ND	mg/L	0.020	0.0025	20	09/17/21 11:44			
Selenium	0.0022J	mg/L	0.040	0.0014	20	09/17/21 11:44	09/21/21 16:00		
Thallium	ND	mg/L	0.0094	0.0010	20	09/17/21 11:44	09/21/21 16:00	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	aration Met	hod: El	PA 7470A			
	Pace Anal	ytical Services	- Asheville						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 11:43	7439-97-6	
2540C Total Dissolved Solids	•	Method: SM 2							
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	14600	mg/L	1250	1250	1		09/21/21 12:53		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
-	Pace Anal	ytical Services	- Asheville						
Chloride	7250	mg/L	100	60.0	100		09/19/21 21:29	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/21 01:42	16984-48-8	
Sulfate	995	mg/L	100	50.0	100		09/19/21 21:29	14808-79-8	

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: MCM-20	Lab ID.	92561848012	Collected.	09/14/21	16:27	Received: 09/	16/21 11:30 IVI	atrix: Water	
	.		Report					0.10.11	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME				1		09/16/21 18:10		
рН	R 3.72	Std. Units			1		09/16/21 18:10		
6010 MET ICP	•	Method: EPA 6	•	ration Met	hod: EF	PA 3010A			
Calcium	61.1	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 01:30	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6	•	ration Met	nod: EF	PA 3010A			
A office and		ytical Services		0.0046	00	00/47/04 44 44	00/04/04 46 55	7440.00.0	
Antimony	ND	mg/L	0.020	0.0040	20	09/17/21 11:44	09/21/21 16:08		
Arsenic	0.028	mg/L	0.020	0.0017	20	09/17/21 11:44	09/21/21 16:08		
Barium	0.11	mg/L	0.020	0.0043	20	09/17/21 11:44	09/21/21 16:08		
Beryllium	0.016	mg/L	0.0020	0.0010	20	09/17/21 11:44	09/20/21 12:45		
Boron	0.91J	mg/L	1.0	0.17	20	09/17/21 11:44	09/21/21 16:08		
Cadmium	ND	mg/L	0.0040	0.0012	20	09/17/21 11:44	09/21/21 16:08		
Chromium	ND	mg/L	0.020	0.0099	20	09/17/21 11:44	09/21/21 16:08		
Cobalt	0.030	mg/L	0.020	0.0010	20	09/17/21 11:44	09/21/21 16:08	7440-48-4	
Lead	ND	mg/L	0.020	0.0015	20	09/17/21 11:44	09/21/21 16:08	7439-92-1	
Lithium	0.020J	mg/L	0.050	0.010	20	09/17/21 11:44	09/20/21 12:45	7439-93-2	
Molybdenum	ND	mg/L	0.020	0.0025	20	09/17/21 11:44	09/21/21 16:08	7439-98-7	
Selenium	0.0018J	mg/L	0.040	0.0014	20	09/17/21 11:44	09/21/21 16:08	7782-49-2	
Thallium	ND	mg/L	0.0094	0.0010	20	09/17/21 11:44	09/21/21 16:08	7440-28-0	
7470 Mercury	•	Method: EPA 7	•	ration Metl	nod: EF	PA 7470A			
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 11:51	7439-97-6	
2540C Total Dissolved Solids	•	Method: SM 29							
Total Dissolved Solids	10300	mg/L	833	833	1		09/21/21 12:53		
300.0 IC Anions 28 Days	•	Method: EPA 3		1993					
Chloride	5100	mg/L	100	60.0	100		09/19/21 21:44	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/21 01:57		
Sulfate	659	mg/L	100	50.0	100		09/19/21 21:44		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Parameters Field Data	Results	Units	Report						
		Units							
Field Data			Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
rielu Dala	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/16/21 18:10		
рН	7.11	Std. Units			1		09/16/21 18:10		
6010 MET ICP	•	Method: EPA	•	aration Met	hod: El	PA 3010A			
Calcium	273	mg/L	1.0	0.94	10	09/17/21 11:44	09/23/21 23:49	7440-70-2	
6020 MET ICPMS	•	Method: EPA	•	aration Met	nod: Ef	PA 3010A			
Antimony	ND	mg/L	0.020	0.0040	20	09/17/21 11:44	09/21/21 16:26	7440-36-0	
Arsenic	0.022	mg/L	0.020	0.0017	20	09/17/21 11:44	09/21/21 16:26	7440-38-2	
Barium	0.082	mg/L	0.020	0.0043	20	09/17/21 11:44	09/21/21 16:26	7440-39-3	
Beryllium	ND	mg/L	0.0020	0.0010	20	09/17/21 11:44	09/20/21 12:48	7440-41-7	
Boron	2.0	mg/L	1.0	0.17	20	09/17/21 11:44	09/21/21 16:26	7440-42-8	
Cadmium	ND	mg/L	0.0040	0.0012	20	09/17/21 11:44	09/21/21 16:26	7440-43-9	
Chromium	ND	mg/L	0.020	0.0099	20	09/17/21 11:44	09/21/21 16:26	7440-47-3	
Cobalt	ND	mg/L	0.020	0.0010	20	09/17/21 11:44	09/21/21 16:26	7440-48-4	
Lead	ND	mg/L	0.020	0.0015	20	09/17/21 11:44	09/21/21 16:26	7439-92-1	
Lithium	0.092	mg/L	0.050	0.010	20	09/17/21 11:44	09/20/21 12:48	7439-93-2	
Molybdenum	ND	mg/L	0.020	0.0025	20	09/17/21 11:44			
Selenium	ND	mg/L	0.040	0.0014	20	09/17/21 11:44			
Thallium	ND	mg/L	0.0094	0.0010	20	09/17/21 11:44			
7470 Mercury	Analytical	Method: EPA	7470A Prepa	aration Metl	nod: EF	PA 7470A			
	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 11:53	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	•	lytical Services							
Total Dissolved Solids	16400	mg/L	1250	1250	1		09/21/21 12:53		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2.	1 1993					
	Pace Ana	lytical Services	s - Asheville						
Chloride	7610	mg/L	100	60.0	100		09/19/21 22:30	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/21 02:13		
Sulfate	971	mg/L	100	50.0	100		09/19/21 22:30		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: DUP-1	Lab ID:	92561848014	Collected	l: 09/14/2	1 00:00	Received: 09/	16/21 11:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA	6010D Prepa	aration Met	thod: El	PA 3010A			
	Pace Anal	ytical Services	s - Asheville						
Calcium	6.7	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 01:50	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Prepa	aration Met	thod: El	PA 3010A			
	Pace Anal	ytical Services	s - Asheville						
Antimony	ND	mg/L	0.0050	0.0010	5	09/17/21 11:44	09/21/21 16:34	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00043	5	09/17/21 11:44	09/21/21 16:34	7440-38-2	
Barium	0.15	mg/L	0.0050	0.0011	5	09/17/21 11:44	09/21/21 16:34	7440-39-3	
Beryllium	0.00032J	mg/L	0.00050	0.00025	5	09/17/21 11:44	09/20/21 12:52	7440-41-7	
Boron	0.062J	mg/L	0.25	0.042	5	09/17/21 11:44	09/21/21 16:34	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00030	5	09/17/21 11:44	09/21/21 16:34	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0025	5	09/17/21 11:44	09/21/21 16:34	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00025	5	09/17/21 11:44	09/21/21 16:34	7440-48-4	
_ead	ND	mg/L	0.0050	0.00038	5	09/17/21 11:44	09/21/21 16:34	7439-92-1	
_ithium	ND	mg/L	0.012	0.0025	5	09/17/21 11:44	09/20/21 12:52	7439-93-2	
Molybdenum	ND	mg/L	0.0050	0.00063	5	09/17/21 11:44	09/21/21 16:34	7439-98-7	
Selenium	ND	mg/L	0.010	0.00036	5	09/17/21 11:44	09/21/21 16:34	7782-49-2	
Thallium	ND	mg/L	0.0024	0.00025	5	09/17/21 11:44	09/21/21 16:34	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Prepa	aration Met	thod: EF	PA 7470A			
•	Pace Anal	ytical Services	s - Asheville						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 11:56	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C-2011						
	•	ytical Services							
Total Dissolved Solids	79.0	mg/L	25.0	25.0	1		09/21/21 12:53		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2.	1 1993					
	Pace Anal	ytical Services	s - Asheville						
Chloride	30.2	mg/L	1.0	0.60	1		09/21/21 11:21	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/21/21 11:21	16984-48-8	
Sulfate	29.1	mg/L	1.0	0.50	1		09/21/21 11:21	14808-79-8	

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: DUP-2	Lab ID:	92561848015	Collected	d: 09/14/2	1 00:00	Received: 09/	16/21 11:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
						·	·	_	
6010 MET ICP	-	Method: EPA		aration Me	thod: El	PA 3010A			
	Pace Analy	tical Services	s - Asheville						
Calcium	95.6	mg/L	0.10	0.094	1	09/17/21 11:44	09/23/21 01:53	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Prepa	aration Met	thod: Ef	PA 3010A			
	Pace Analy	tical Services	- Asheville						
Antimony	ND	mg/L	0.020	0.0040	20	09/17/21 11:44	09/21/21 16:37	7440-36-0	
Arsenic	0.020J	mg/L	0.020	0.0017	20	09/17/21 11:44	09/21/21 16:37	7440-38-2	
Barium	0.13	mg/L	0.020	0.0043	20	09/17/21 11:44	09/21/21 16:37	7440-39-3	
Beryllium	0.0062	mg/L	0.0020	0.0010	20	09/17/21 11:44	09/20/21 12:55	7440-41-7	
Boron	1.4	mg/L	1.0	0.17	20	09/17/21 11:44	09/21/21 16:37	7440-42-8	
Cadmium	ND	mg/L	0.0040	0.0012	20	09/17/21 11:44	09/21/21 16:37	7440-43-9	
Chromium	ND	mg/L	0.020	0.0099	20	09/17/21 11:44	09/21/21 16:37	7440-47-3	
Cobalt	ND	mg/L	0.020	0.0010	20	09/17/21 11:44	09/21/21 16:37	7440-48-4	
Lead	ND	mg/L	0.020	0.0015	20	09/17/21 11:44	09/21/21 16:37	7439-92-1	
Lithium	0.012J	mg/L	0.050	0.010	20	09/17/21 11:44	09/20/21 12:55	7439-93-2	
Molybdenum	ND	mg/L	0.020	0.0025	20	09/17/21 11:44	09/21/21 16:37	7439-98-7	
Selenium	0.0019J	mg/L	0.040	0.0014	20	09/17/21 11:44	09/21/21 16:37	7782-49-2	
Thallium	ND	mg/L	0.0094	0.0010	20	09/17/21 11:44	09/21/21 16:37	7440-28-0	
7470 Mercury	Analytical I	Method: EPA	7470A Prepa	aration Met	thod: EF	PA 7470A			
•	Pace Analy	tical Services	- Asheville						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 11:59	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	•	tical Services							
Total Dissolved Solids	15100	mg/L	1250	1250	1		09/21/21 12:53		
300.0 IC Anions 28 Days	Analytical I	Method: EPA	300.0 Rev 2.	1 1993					
	Pace Analy	tical Services	- Asheville						
Chloride	7230	mg/L	100	60.0	100		09/19/21 23:01	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/21 03:15	16984-48-8	
Sulfate	978	mg/L	100	50.0	100		09/19/21 23:01	14808-79-8	

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: FB-2	Lab ID:	92561848016	Collected	d: 09/14/21	17:05	Received: 09/	16/21 11:30 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	ND	mg/L	0.10	0.094	1	09/17/21 11:44	09/24/21 00:03	7440-70-2	
Magnesium	ND	mg/L	0.10	0.068	1	09/17/21 11:44	09/24/21 00:03	7439-95-4	
Potassium	ND	mg/L	5.0	3.0	1	09/17/21 11:44	09/24/21 00:03	7440-09-7	
Sodium	ND	mg/L	5.0	0.61	1	09/17/21 11:44	09/24/21 00:03	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Metl	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Antimony	ND	mg/L	0.0010	0.00020	1	09/17/21 11:44	09/20/21 10:45	7440-36-0	
Arsenic	ND	mg/L	0.0010	0.000087	1	09/17/21 11:44	09/20/21 10:45	7440-38-2	
Barium	ND	mg/L	0.0010	0.00021	1	09/17/21 11:44	09/20/21 10:45	7440-39-3	
Beryllium	ND	mg/L	0.00010	0.000050	1	09/17/21 11:44	09/20/21 10:45	7440-41-7	
Boron	ND	mg/L	0.050	0.0085	1	09/17/21 11:44	09/20/21 10:45	7440-42-8	
Cadmium	ND	mg/L	0.00020	0.000060	1	09/17/21 11:44	09/20/21 10:45	7440-43-9	
Chromium	ND	mg/L	0.0010	0.00050	1	09/17/21 11:44	09/20/21 10:45	7440-47-3	
Cobalt	ND	mg/L	0.0010	0.000050	1	09/17/21 11:44	09/20/21 10:45	7440-48-4	
_ead	ND	mg/L	0.0010	0.000077	1	09/17/21 11:44	09/20/21 10:45	7439-92-1	
_ithium	ND	mg/L	0.0025	0.00050	1	09/17/21 11:44	09/20/21 10:45	7439-93-2	
Molybdenum	ND	mg/L	0.0010	0.00013	1	09/17/21 11:44	09/20/21 10:45		
Selenium	ND	mg/L		0.000072	1	09/17/21 11:44	09/20/21 10:45		
Γhallium	ND	mg/L		0.000050	1	09/17/21 11:44	09/20/21 10:45		
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	aration Meth	nod: EF	PA 7470A			
•	•	ytical Services	•						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 12:01	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
·	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/24/21 18:48		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/24/21 18:48		
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		09/24/21 18:48		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		09/21/21 12:53		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
-		ytical Services							
Chloride	ND	mg/L	1.0	0.60	1		09/19/21 23:16	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/21 23:16	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		09/19/21 23:16	14808-79-8	

ANALYTICAL RESULTS

Project: MCMANUS CCR
Pace Project No.: 92561848

Sample: EB-1	Lab ID:	92561848017	Collected	d: 09/14/21	17:10	Received: 09/	16/21 11:30 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Metl	nod: EF	'A 3010A			
	-	lytical Services							
Calcium	ND	mg/L	0.10	0.094	1	09/17/21 11:44	09/24/21 00:06	7440-70-2	
Magnesium	ND	mg/L	0.10	0.068	1	09/17/21 11:44	09/24/21 00:06	7439-95-4	
Potassium	ND	mg/L	5.0	3.0	1	09/17/21 11:44	09/24/21 00:06	7440-09-7	
Sodium	ND	mg/L	5.0	0.61	1	09/17/21 11:44	09/24/21 00:06	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Meth	nod: EF	A 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	mg/L	0.0010	0.00020	1	09/17/21 11:44	09/21/21 14:37	7440-36-0	
Arsenic	ND	mg/L		0.000087	1	09/17/21 11:44	09/21/21 14:37		
Barium	0.00024J	mg/L	0.0010	0.00021	1	09/17/21 11:44	09/21/21 14:37	7440-39-3	
Beryllium	ND	mg/L	0.00010	0.000050	1	09/17/21 11:44	09/21/21 14:37	7440-41-7	
Boron	ND	mg/L	0.050	0.0085	1	09/17/21 11:44	09/21/21 14:37	7440-42-8	
Cadmium	ND	mg/L	0.00020	0.000060	1	09/17/21 11:44	09/21/21 14:37	7440-43-9	
Chromium	ND	mg/L	0.0010	0.00050	1	09/17/21 11:44	09/21/21 14:37	7440-47-3	
Cobalt	ND	mg/L	0.0010	0.000050	1	09/17/21 11:44	09/21/21 14:37	7440-48-4	
₋ead	ND	mg/L	0.0010	0.000077	1	09/17/21 11:44	09/21/21 14:37	7439-92-1	
_ithium	ND	mg/L	0.0025	0.00050	1	09/17/21 11:44	09/21/21 14:37	7439-93-2	
Molybdenum	ND	mg/L	0.0010	0.00013	1	09/17/21 11:44	09/21/21 14:37	7439-98-7	
Selenium	ND	mg/L	0.0020	0.000072	1	09/17/21 11:44	09/21/21 14:37	7782-49-2	
Γhallium	ND	mg/L	0.00047	0.000050	1	09/17/21 11:44	09/21/21 14:37	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	aration Meth	nod: EP	A 7470A			
	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 12:10	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/24/21 20:02	!	
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/24/21 20:02	!	
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		09/24/21 20:02	!	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		09/21/21 12:53	1	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		09/20/21 00:02	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/20/21 00:02	16984-48-8	
	ND	mg/L							

ANALYTICAL RESULTS

Project: MCMANUS CCR

Pare	Sample: MCM-05	Lab ID:	92561848018	Collected:	09/14/21	13:35	Received: 09/	/16/21 11:30 M	latrix: Water	
Pare				Report						
Performed by CUSTOME R Hold 6.67 Std. Units 1 09/16/21 18:10 99/17/21 11:44 99/24/21 00:19 7440-09-7 7440-09-7 7440-09-7 7440-09-7 7440-09-7 7440-09-7 7440-09-7 99/17/21 11:44 99/21/21 14:59 7440-39-3 99/16/21 18:10 99/16/21 18:10 99/17/21 11:40 99/17/21 11:40 99/17/21 11:40 99/21/21 14:59 7440-39-3 99/17/21 11:40 99/17/21	Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
CUSTOME R CUSTOME	Field Data	Analytica	l Method:							
R		Pace Ana	alytical Services	- Charlotte						
Set Met	Performed by					1		09/16/21 18:10)	
Pace Analytical Services - Asheville	рН		Std. Units			1		09/16/21 18:10)	
Pace Analytical Services - Asheville	CO40 MET ICD	Analytica	I Mathad: EDA 6	:010D Brono	ration Mat	aad: El	DA 2010A			
Magnesium	BUTU METICP	•			ration Met	100. E	A 3010A			
10.7 mg/L 5.0 mg/L 2410 mg/L 250 mg/L 250 mg/L 250 mg/T/21 11:44 29/24/21 00:09 mg/L 2410 mg/L 250 mg/T/21 11:44 29/24/21 00:09 mg/L 2410 mg/L 250 mg/T/21 11:44 29/24/21 00:09 mg/L 20/24/21 00:09 mg/L 20/24/21 00:09 mg/L 20/24/21 00:09 mg/L 20/24/21 11:44 29/24/21 11:45 mg/Z1 21/24 240-38-2 240-38-	Calcium	13.9	mg/L	0.10	0.094	1	09/17/21 11:44	09/24/21 00:19	7440-70-2	
Sodium 2410 mg/L 250 30.5 50 09/17/21 11:44 09/24/21 00:09 7440-23-5	√lagnesium	32.4	mg/L	0.10	0.068	1	09/17/21 11:44	09/24/21 00:19	7439-95-4	
Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Asheville Antimony ND mg/L 0.020 0.0040 20 09/17/21 11:44 09/21/21 14:59 7440-36-0 Arsenic 0.020 mg/L 0.020 0.0017 20 09/17/21 11:44 09/21/21 14:59 7440-38-2 Barrium 0.080 mg/L 0.020 0.0013 20 09/17/21 11:44 09/21/21 14:59 7440-38-3 Beryllium ND mg/L 0.0020 0.0010 20 09/17/21 11:44 09/21/21 14:59 7440-38-3 Beryllium ND mg/L 0.0020 0.0010 20 09/17/21 11:44 09/21/21 14:59 7440-48-3 Beryllium ND mg/L 0.0020 0.0010 20 09/17/21 11:44 09/21/21 14:59 7440-42-8 Cadmium ND mg/L 0.0040 0.0012 20 09/17/21 11:44 09/21/21 14:59 7440-43-9 Chromium ND mg/L 0.020 0.0099 20 09/17/21 11:44 09/21/21 14:59 7440-43-9 Chromium ND mg/L 0.020 0.0099 20 09/17/21 11:44 09/21/21 14:59 7440-43-9 Chromium ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 14:59 7440-48-8 Lead ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 14:59 7439-92-1 Lithium 0.042J mg/L 0.050 0.010 20 09/17/21 11:44 09/21/21 14:59 7439-92-1 Lithium 0.042J mg/L 0.050 0.010 20 09/17/21 11:44 09/21/21 14:59 7439-92-1 Belenium ND mg/L 0.000 0.0015 20 09/17/21 11:44 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0015 20 09/17/21 11:44 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0015 20 09/17/21 11:44 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/21 11:44 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/21 11:44 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/21 11:40 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/21 11:40 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/21 11:40 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/21 11:40 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/21 11:40 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/21 11:40 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/21 11:40 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/21 11:40 09/21/21 14:59 7439-98-7 Belenium ND mg/L 0.000 0.0016 20 09/17/	Potassium	10.7	mg/L	5.0	3.0	1	09/17/21 11:44	09/24/21 00:19	7440-09-7	
Antimony Antimony Antimony Antimony Antimony ND mg/L 0.020 0.0040 20 09/17/21 11:44 09/21/21 14:59 7440-36-0 Arsenic 0.020 mg/L 0.020 0.0043 20 09/17/21 11:44 09/21/21 14:59 7440-38-2 Barium 0.080 mg/L 0.020 0.0043 20 09/17/21 11:44 09/21/21 14:59 7440-38-2 Barium ND mg/L 0.0020 0.0010 20 09/17/21 11:44 09/21/21 14:59 7440-43-3 Beryllium ND mg/L 0.0020 0.0010 20 09/17/21 11:44 09/21/21 14:59 7440-41-7 Boron 0.95J mg/L 1.0 0.17 20 09/17/21 11:44 09/21/21 14:59 7440-41-7 Boron ND mg/L 0.0040 0.0012 20 09/17/21 11:44 09/21/21 14:59 7440-43-9 Chromium ND mg/L 0.020 0.0099 20 09/17/21 11:44 09/21/21 14:59 7440-43-9 Chromium ND mg/L 0.020 0.0099 20 09/17/21 11:44 09/21/21 14:59 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 14:59 7440-48-4 Lead ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 14:59 7439-92-1 Lithium 0.042J mg/L 0.050 0.010 20 09/17/21 11:44 09/21/21 14:59 7439-92-1 Lithium 0.042J mg/L 0.050 0.010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0040 0.0014 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0040 0.0014 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0040 0.0014 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 Chromium ND mg/L 0.0094 0.00	Sodium	2410	mg/L	250	30.5	50	09/17/21 11:44	09/24/21 00:09	7440-23-5	
Antimony ND mg/L 0.020 0.0040 20 09/17/21 11:44 09/21/21 14:59 7440-36-0 Arsenic 0.020 mg/L 0.020 0.0017 20 09/17/21 11:44 09/21/21 14:59 7440-38-2 38-17 0.000 mg/L 0.020 0.0043 20 09/17/21 11:44 09/21/21 14:59 7440-38-3 0.000 mg/L 0.000 0.0010 20 09/17/21 11:44 09/21/21 14:59 7440-39-3 0.000 0.0010 0.	6020 MET ICPMS	Analytica	l Method: EPA 6	020B Prepa	ration Meth	nod: EF	PA 3010A			
Arsenic		Pace Ana	alytical Services	- Asheville						
Barium	Antimony	ND	mg/L	0.020	0.0040	20	09/17/21 11:44	09/21/21 14:59	7440-36-0	
ND mg/L 0.0020 0.0010 20 0.917/21 11:44 0.921/21 14:59 7440-41-7 1.0017 20 0.917/21 11:44 0.921/21 14:59 7440-42-8 0.0010 0.0012 20 0.917/21 11:44 0.921/21 14:59 7440-42-8 0.0010 0.0012 20 0.917/21 11:44 0.921/21 14:59 7440-43-9 0.0010 0.0012 0.0014 0.0012 0.0015 0.0017/21 11:44 0.921/21 14:59 7440-47-3 0.0014 0.0014 0.0015 0.0015 0.0017/21 0.0017/21 11:44 0.0921/21 14:59 7440-48-4 0.0014 0.0015 0.0015 0.0016 0.0017/21 0.0017/	Arsenic	0.020J	mg/L	0.020	0.0017	20	09/17/21 11:44	09/21/21 14:59	7440-38-2	
Soron Soro	Barium	0.080	mg/L	0.020	0.0043	20	09/17/21 11:44	09/21/21 22:10	7440-39-3	
Second Company Compa	Beryllium	ND	mg/L	0.0020	0.0010	20	09/17/21 11:44	09/21/21 14:59	7440-41-7	
Cadmium	Boron	0.95J	•	1.0	0.17	20	09/17/21 11:44	09/21/21 14:59	7440-42-8	
ND mg/L 0.020 0.0099 20 09/17/21 11:44 09/21/21 14:59 7440-47-3 7440-48-4 0.020 0.0010 20 09/17/21 11:44 09/21/21 14:59 7440-48-4 0.020 0.0010 20 09/17/21 11:44 09/21/21 14:59 7440-48-4 0.020 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-92-1 0.020 0.0010 20 09/17/21 11:44 09/21/21 14:59 7439-93-2 0.0100 0.0010 0.0017 0.0017/21 11:44 09/21/21 14:59 7439-93-2 0.0100 0.0010 0.0010 0.0017/21 11:44 09/21/21 14:59 7439-93-2 0.0100 0.0010 0.0010 0.0017/21 11:44 09/21/21 14:59 7439-93-2 0.0100 0.0010 0.0010 0.0011 0.0017/21 11:44 09/21/21 14:59 7439-93-7 0.0100 0.0010 0.0010 0.0011 0.0017/21 11:44 09/21/21 14:59 7440-28-0 0.0100 0.0010 0.0010 0.0017/21 11:44 09/21/21 14:59 7440-28-0 0.0100 0.0010 0.0010 0.0017/21 11:44 0.0017/21 11:45 0.0017/21 11:44 0.0017/21 11:45 0.0017/21	Cadmium	ND	-	0.0040	0.0012		09/17/21 11:44	09/21/21 14:59	7440-43-9	
ND mg/L 0.020 0.0010 20 0.9/17/21 11:44 0.9/21/21 14:59 7440-48-4 0.644 0.020 0.0015 20 0.9/17/21 11:44 0.9/21/21 14:59 7439-92-1 0.11 0.020 0.0015 0.010 0.0017/21 11:44 0.9/21/21 14:59 7439-92-1 0.11 0.020 0.0025 0.0010 0.0017/21 11:44 0.9/21/21 14:59 7439-93-2 0.0010 0.0025 0.0010 0.0017/21 11:44 0.09/21/21 14:59 7439-93-2 0.0010 0.0010 0.0014 0.0017/21 11:44 0.09/21/21 14:59 7439-98-7 0.0010 0.0010 0.0014 0.0017/21 11:44 0.09/21/21 14:59 7439-98-7 0.0010 0.0014 0.0010 0.0017/21 11:44 0.09/21/21 14:59 7439-98-7 0.0010 0.0010 0.0017/21 0.0			-							
ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 14:59 7439-92-1 1:11111 1:11111 1:11111 1:1111 1:1111 1:1111 1:1111 1:1111 1:1111 1:11111 1:111			ū							
Description			•							
Molybdenum			-							
ND mg/L			-							
ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 14:59 7440-28-0	•		-							
Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Asheville Mercury ND ug/L 0.20 0.12 1 09/23/21 11:30 09/29/21 12:12 7439-97-6 2320B Alkalinity Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/27/21 13:49 Alkalinity, Total as CaCO3 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 8020 mg/L 625 625 1 09/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville			ū							
Pace Analytical Services - Asheville Mercury ND ug/L 0.20 0.12 1 09/23/21 11:30 09/29/21 12:12 7439-97-6 2320B Alkalinity Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/27/21 13:49 Alkalinity, Total as CaCO3 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 8020 mg/L 625 625 1 09/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	7470 Mercury	Analytica	· ·	′470∆ Prena		nod: FF				
Mercury ND ug/L 0.20 0.12 1 09/23/21 11:30 09/29/21 12:12 7439-97-6 2320B Alkalinity Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/27/21 13:49 Alkalinity, Total as CaCO3 233 mg/L 5.0 5.0 1 09/27/21 13:49 Alkalinity, Total as CaCO3 233 mg/L 5.0 5.0 1 09/27/21 13:49 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Fotal Dissolved Solids 8020 mg/L 625 625 1 09/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	470 Mercury				ration with	iou. Li	774707			
Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/27/21 13:49 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 12:12	7439-97-6	
Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/27/21 13:49 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	2320B Alkalinity	Analytica	I Method: SM 23	320B-2011						
Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/27/21 13:49 Alkalinity, Total as CaCO3 23 mg/L 5.0 5.0 1 09/27/21 13:49 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 8020 mg/L 625 625 1 09/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	·	Pace Ana	alytical Services	- Asheville						
Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/27/21 13:49 Alkalinity, Total as CaCO3 23 mg/L 5.0 5.0 1 09/27/21 13:49 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 8020 mg/L 625 625 1 09/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Alkalinity,Bicarbonate (CaCO3)	233	mg/L	5.0	5.0	1		09/27/21 13:49)	
Alkalinity, Total as CaCO3 233 mg/L 5.0 5.0 1 09/27/21 13:49 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 8020 mg/L 625 625 1 09/27/21 13:49 09/27/21 13:49 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Alkalinity,Carbonate (CaCO3)	ND	•	5.0	5.0	1		09/27/21 13:49)	
Pace Analytical Services - Asheville Total Dissolved Solids 8020 mg/L 625 625 1 09/21/21 12:53 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	, ,	233	-	5.0	5.0	1		09/27/21 13:49)	
Pace Analytical Services - Asheville Fotal Dissolved Solids 8020 mg/L 625 625 1 09/21/21 12:53 800.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	2540C Total Dissolved Solids	Analytica	l Method: SM 2!	540C-2011						
Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville		•								
Pace Analytical Services - Asheville	Total Dissolved Solids	8020	mg/L	625	625	1		09/21/21 12:53	3	
Pace Analytical Services - Asheville	300.0 IC Anions 28 Davs	Analytica	I Method: EPA 3	300.0 Rev 2.1	1993					
Chloride 3940 ma/L 100 60.0 100 09/20/21 00:18 16887-00-6		•								
	Chloride	3940	mg/L	100	60.0	100		09/20/21 00:18	16887-00-6	

ANALYTICAL RESULTS

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

Sample: MCM-05	Lab ID:	92561848018	Collected	d: 09/14/2	13:35	Received: 09	/16/21 11:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		1 1993					
Fluoride Sulfate	ND 459	mg/L mg/L	0.10 100	0.050 50.0	1 100		09/19/21 04:32 09/20/21 00:18		

ANALYTICAL RESULTS

Project: MCMANUS CCR

Pare	Sample: MCM-06	Lab ID:	92561848019	Collected:	09/14/21	11:43	Received: 09/	/16/21 11:30 M	latrix: Water	
Pare				Report						
Performed by CUSTOME R H H H H H H H H H H H H H H H H H H	Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
CUSTOME R Std. Units 1 09/16/21 18:10	Field Data	Analytica	l Method:							
R		Pace Ana	alytical Services	- Charlotte						
September Sep	Performed by	CUSTOME				1		09/16/21 18:10)	
Analytical Method: EPA 6010D Preparation Method: EPA 3010A Pace Analytical Services - Asheville	nH		Std Units			1		09/16/21 18:10)	
Pace Analytical Services - Asheville 299 mg/L 1.0 0.94 10 09/17/21 11:44 09/24/21 00:22 7440-70-2 Magnesium 515 mg/L 1.0 0.68 10 09/17/21 11:44 09/24/21 00:22 7439-95-4 Potassium 117 mg/L 50.0 30.4 10 09/17/21 11:44 09/24/21 00:22 7440-70-7 Sodium 3270 mg/L 50.0 30.5 50 09/17/21 11:44 09/24/21 00:22 7440-09-7 Sodium 170 mg/L 50.0 30.5 50 09/17/21 11:44 09/24/21 00:22 7440-09-7 Sodium 170 mg/L 50.0 30.5 50 09/17/21 11:44 09/24/21 00:22 7440-09-7 Sodium 170 mg/L 50.0 50.5 50 09/17/21 11:44 09/24/21 00:22 7440-09-7 Sodium 170 mg/L 0.020 0.0017 20 09/17/21 11:44 09/24/21 00:12 7440-36-0 Ansimony ND mg/L 0.020 0.0017 20 09/17/21 11:44 09/21/21 15:06 7440-36-0 Arisenic 0.51 mg/L 0.020 0.0017 20 09/17/21 11:44 09/21/21 15:06 7440-38-2 Barrium 0.22 mg/L 0.020 0.0010 20 09/17/21 11:44 09/21/21 15:06 7440-38-2 Barrium ND mg/L 0.0020 0.0010 20 09/17/21 11:44 09/21/21 15:06 7440-41-7 Barrium ND mg/L 0.0040 0.0012 20 09/17/21 11:44 09/21/21 15:06 7440-42-8 Cadmium ND mg/L 0.0040 0.0012 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.0020 0.0091 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0092 0 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0091 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0091 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0010 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/								00, 10, 2 1 10110		
Magnesium	6010 MET ICP	-			ration Meth	nod: El	PA 3010A			
117 mg/L 50.0 30.4 10 09/17/21 11:44 09/24/21 00:12 7440-09-7	Calcium	299	mg/L	1.0	0.94	10	09/17/21 11:44	09/24/21 00:22	7440-70-2	
Sodium 3270 mg/L 250 30.5 50 09/17/21 11:44 09/24/21 00:12 7440-23-5	Vlagnesium Vlagnesium	515	mg/L	1.0	0.68	10	09/17/21 11:44	09/24/21 00:22	7439-95-4	
Sodium 3270 mg/L 250 30.5 50 09/17/21 11:44 09/24/21 00:12 7440-23-5	Potassium	117	mg/L	50.0	30.4	10	09/17/21 11:44	09/24/21 00:22	7440-09-7	
Antimony Antimony Antimony Antimony Antimony ND mg/L 0.020 0.0040 20 09/17/21 11:44 09/21/21 15:06 7440-36-0 Arsenic 0.51 mg/L 0.020 0.0043 20 09/17/21 11:44 09/21/21 15:06 7440-38-2 Barium 0.22 mg/L 0.020 0.0043 20 09/17/21 11:44 09/21/21 15:06 7440-38-2 Barium ND mg/L 0.0020 0.0010 20 09/17/21 11:44 09/21/21 15:06 7440-41-7 Boron 1.1 mg/L 1.0 0.17 20 09/17/21 11:44 09/21/21 15:06 7440-41-7 Boron ND mg/L 0.0040 0.0012 20 09/17/21 11:44 09/21/21 15:06 7440-41-7 Boron ND mg/L 0.0040 0.0012 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chromium ND mg/L 0.020 0.0099 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chromium ND mg/L 0.020 0.0099 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7440-43-9 Chobalt ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7440-48-4 Chead ND mg/L 0.020 0.0015 20 09/17/21 11:44 09/21/21 15:06 7439-92-1 Chithium 0.084 mg/L 0.050 0.010 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.000 0.0015 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.000 0.0015 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.000 0.0015 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.000 0.0015 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 Chromium ND mg/L 0.0004 0.0016 20 09/17/21	Sodium	3270	mg/L	250	30.5	50	09/17/21 11:44	09/24/21 00:12	7440-23-5	
Antimony ND mg/L 0.020 0.0040 20 09/17/21 11:44 09/21/21 15:06 7440-36-0 Arsenic 0.51 mg/L 0.020 0.0017 20 09/17/21 11:44 09/21/21 15:06 7440-38-2 0.0017 0.0017 0.0017/21 11:44 09/21/21 15:06 7440-38-2 0.0017 0.0017/21 11:44 09/21/21 15:06 7440-39-3 0.0017/21 11:44 09/21/21 15:06 7440-39-3 0.0017/21 11:44 0.0017/21 1	6020 MET ICPMS	Analytica	l Method: EPA 6	6020B Prepa	ration Meth	nod: EF	PA 3010A			
Arsenic		Pace Ana	alytical Services	- Asheville						
Barium	Antimony	ND	mg/L	0.020	0.0040	20	09/17/21 11:44	09/21/21 15:06	7440-36-0	
ND mg/L 0.0020 0.0010 20 0.917/21 11:44 0.921/21 15:06 7440-41-7 7400 7	Arsenic	0.51	mg/L	0.020	0.0017	20	09/17/21 11:44	09/21/21 15:06	7440-38-2	
1.1 mg/L 1.0 0.17 20 09/17/21 11:44 09/21/21 15:06 7440-42-8 7	Barium	0.22	mg/L	0.020	0.0043	20	09/17/21 11:44	09/21/21 22:14	7440-39-3	
1.1 mg/L 1.0 0.17 20 09/17/21 11:44 09/21/21 15:06 7440-42-8	Beryllium	ND	mg/L	0.0020	0.0010	20	09/17/21 11:44	09/21/21 15:06	7440-41-7	
ND mg/L 0.0040 0.0012 20 0.9/17/21 11:44 0.9/21/21 15:06 7440-43-9 0.0041 0.005 0.0099 20 0.9/17/21 11:44 0.9/21/21 15:06 7440-47-3 0.0041 0.0041 0.005 0.0010 0.0011 0.007/17/21 11:44 0.007/17/21 15:06 7440-48-4 0.0041 0.0041 0.005 0.0010 0.0015 0.0017/21 11:44 0.0/21/21 15:06 7439-92-1 0.0040 0.0014 0.0040 0.0014 0.007/17/21 11:44 0.0/21/21 15:06 7439-92-1 0.0040 0.0014 0.0040 0.0014 0.007/17/21 11:44 0.0/21/21 15:06 7439-93-2 0.0040 0.0014 0.0040 0.0014 0.007/17/21 11:44 0.0/21/21 15:06 7439-93-2 0.0040 0.0014 0.0040 0.0014 0.007/17/21 11:44 0.007/17/21 15:06 7439-93-7 0.0040 0.0014 0.0040 0.0014 0.007/17/21 11:44 0.007/17/21 15:06 7439-93-7 0.0040 0.0014 0.0040 0.0014 0.007/17/21 11:44 0.007/17/21 15:06 7439-93-7 0.0040 0.0014 0.0040 0.0014 0.007/17/21 0.007/17/21 11:44 0.007/17/21 0.0040 0.0014 0.0014 0.007/17/21	Boron	1.1	•	1.0	0.17	20	09/17/21 11:44	09/21/21 15:06	7440-42-8	
ND mg/L 0.020 0.0099 20 09/17/21 11:44 09/21/21 15:06 7440-47-3 7440-48-4 0.020 0.0010 20 09/17/21 11:44 09/21/21 15:06 7440-48-4 0.020 0.0010 20 09/17/21 11:44 09/21/21 15:06 7440-48-4 0.020 0.0010 20 09/17/21 11:44 09/21/21 15:06 7439-92-1 0.020 0.0010 20 09/17/21 11:44 09/21/21 15:06 7439-92-1 0.020 0.0010 20 09/17/21 11:44 09/21/21 15:06 7439-93-2 0.020 0.0025 20 09/17/21 11:44 09/21/21 15:06 7439-93-7 0.020 0.0025 20 09/17/21 11:44 09/21/21 15:06 7439-93-7 0.020 0.0010 20 09/17/21 11:44 09/21/21 15:06 7439-93-7 0.020 0.0010 0.0010 0.0010 0.0011 0.0017/21 11:44 09/21/21 15:06 7440-28-0 0.020 0.020 0.020 0.020 0.020 0.021/21 11:44 09/21/21 15:06 7440-28-0 0.020 0.020 0.020 0.020 0.020 0.021/21 11:44 09/21/21 15:06 7440-28-0 0.020 0.020 0.020 0.020 0.021/21 11:44 09/21/21 15:06 7440-28-0 0.020 0.020 0.020 0.020 0.021/21 11:44 0.021/21 15:06 7440-28-0 0.020 0.021/21 0.020 0.021/21 11:44 0.021/21 15:06 7440-28-0 0.020 0.021/21 0.021/21 11:44 0.021/21 15:06 7440-28-0 0.021/21 0.021/	Cadmium	ND	-	0.0040	0.0012		09/17/21 11:44	09/21/21 15:06	7440-43-9	
ND mg/L 0.020 0.0010 20 0.9/17/21 11:44 0.9/21/21 15:06 7440-48-4 0.640 0.040 0.0015 0.0016 0.0017/21 11:44 0.9/21/21 15:06 7439-92-1 0.1111 0.084 mg/L 0.020 0.0015 0.0017/21 11:44 0.9/21/21 15:06 7439-92-1 0.1111 0.084 mg/L 0.020 0.0015 0.0017/21 11:44 0.9/21/21 15:06 7439-93-2 0.010 0.0025 0.0017/21 11:44 0.09/21/21 0.0027 0.0025 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0017/21 0.0027 0.0			-							
ND mg/L 0.020 0.0015 20 0.9/17/21 11:44 0.9/21/21 15:06 7439-92-1 1.11			ū							
Description			•							
ND mg/L 0.020 0.0025 20 0.9/17/21 11:44 0.9/21/21 15:06 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7439-98-7 1.556 7440-28-0 1.556 7440-28-0 1.556 7440-28-0 1.556 7440-28-0 1.556 7440-28-0 1.556 7440-28-0 1.556 7440-28-0 1.556 7440-28-0 1.556 1.			-							
ND mg/L			-							
ND mg/L 0.0094 0.0010 20 09/17/21 11:44 09/21/21 15:06 7440-28-0	•		-							
Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Asheville Mercury 0.16J ug/L 0.20 0.12 1 09/23/21 11:30 09/29/21 12:15 7439-97-6 2320B Alkalinity Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 20:16 Alkalinity, Total as CaCO3 507 mg/L 5.0 5.0 1 09/24/21 20:16 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11800 mg/L 833 833 1 09/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville			Ū							
Pace Analytical Services - Asheville Mercury 0.16J ug/L 0.20 0.12 1 09/23/21 11:30 09/29/21 12:15 7439-97-6 2320B Alkalinity Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 20:16 Alkalinity, Total as CaCO3 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11800 mg/L 833 833 1 09/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	7470 Mercury	Analytica	I Method: EPA 7	7470∆ Prena		nod: FF	ΡΑ 7470Α			
Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 20:16 Alkalinity, Total as CaCO3 ND mg/L 5.0 5.0 1 09/24/21 20:16 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids Analytical Services - Asheville Total Dissolved Solids Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	470 Mercury	-			ration wict	iou. Li	A I TION			
Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) 507 mg/L 5.0 5.0 1 09/24/21 20:16 Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 20:16 Alkalinity, Total as CaCO3 507 mg/L 5.0 5.0 1 09/24/21 20:16 09/24/21 20:16 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11800 mg/L 833 833 1 09/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Mercury	0.16J	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 12:15	7439-97-6	
Pace Analytical Services - Asheville Alkalinity, Bicarbonate (CaCO3) 507 mg/L 5.0 5.0 1 09/24/21 20:16 Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 20:16 Alkalinity, Total as CaCO3 507 mg/L 5.0 5.0 1 09/24/21 20:16 09/24/21 20:16 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11800 mg/L 833 833 1 09/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	2320B Alkalinity	Analytica	I Method: SM 2	320B-2011						
Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 O9/24/21 20:16 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11800 mg/L 833 833 1 O9/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	•	-								
Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 O9/24/21 20:16 Alkalinity, Total as CaCO3 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11800 mg/L 833 833 1 O9/21/21 12:53 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Alkalinity,Bicarbonate (CaCO3)	507	mg/L	5.0	5.0	1		09/24/21 20:16	;	
Alkalinity, Total as CaCO3 507 mg/L 5.0 5.0 1 09/24/21 20:16 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville Total Dissolved Solids 11800 mg/L 833 833 1 09/21/21 12:53 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	, ,		•			1				
Pace Analytical Services - Asheville Total Dissolved Solids 11800 mg/L 833 833 1 09/21/21 12:53 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Alkalinity, Total as CaCO3		-							
Pace Analytical Services - Asheville Total Dissolved Solids 11800 mg/L 833 833 1 09/21/21 12:53 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	2540C Total Dissolved Solids	Analytica	l Method: SM 2	540C-2011						
300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville		•								
Pace Analytical Services - Asheville	Total Dissolved Solids	11800	mg/L	833	833	1		09/21/21 12:53	3	
Pace Analytical Services - Asheville	300.0 IC Anions 28 Davs	Analytica	I Method: EPA 3	300.0 Rev 2.1	1993					
		-								
	Chloride	5360	mg/L	100	60.0	100		09/20/21 16:06	16887-00-6	

ANALYTICAL RESULTS

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

Sample: MCM-06	Lab ID:	92561848019	Collected	d: 09/14/21	11:43	Received: 09	0/16/21 11:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		1 1993					
Fluoride Sulfate	ND 490	mg/L mg/L	0.10 10.0	0.050 5.0	1 10		09/19/21 04:48 09/20/21 00:33		

ANALYTICAL RESULTS

Project: MCMANUS CCR
Page Project No : 92561848

Sample: MCM-07	Lab ID:	92561848020	Collected	: 09/14/2	1 09:23	Received: 09/	/16/21 11:30 M	atrix: Water	
·			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	l Method:							
	Pace Ana	alytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/16/21 18:10		
pΗ	6.28	Std. Units			1		09/16/21 18:10		
6010 MET ICP	Analytica	Method: EPA 6	010D Prepa	aration Me	thod: El	PA 3010A			
	Pace Ana	alytical Services	- Asheville						
Calcium	225	mg/L	1.0	0.94	10	09/17/21 11:44	09/24/21 00:26	7440-70-2	
Magnesium	496	mg/L	1.0	0.68	10	09/17/21 11:44	09/24/21 00:26	7439-95-4	
Potassium	154	mg/L	50.0	30.4	10	09/17/21 11:44			
Sodium	3860	mg/L	250	30.5	50	09/17/21 11:44	09/24/21 00:16	7440-23-5	
6020 MET ICPMS	Analytica	I Method: EPA 6	020B Prepa	aration Me	thod: Ef	PA 3010A			
	-	alytical Services							
Antimony	ND	mg/L	0.020	0.0040	20	09/17/21 11:44	09/21/21 15:13	7440-36-0	
Arsenic	0.013J	mg/L	0.020	0.0017	20	09/17/21 11:44	09/21/21 15:13	7440-38-2	
Barium	0.20	mg/L	0.020	0.0043	20	09/17/21 11:44	09/21/21 22:17		
Beryllium	ND	mg/L	0.0020	0.0010	20	09/17/21 11:44	09/21/21 15:13		
Boron	1.5	mg/L	1.0	0.17	20	09/17/21 11:44			
Cadmium	ND	mg/L	0.0040	0.0012	20	09/17/21 11:44			
Chromium	ND	mg/L	0.020	0.0099	20	09/17/21 11:44	09/21/21 15:13		
Cobalt	ND	mg/L	0.020	0.0033	20	09/17/21 11:44			
Lead	ND	mg/L	0.020	0.0015	20	09/17/21 11:44	09/21/21 15:13		
_ithium	0.035J	mg/L	0.050	0.010	20	09/17/21 11:44	09/21/21 22:17		
Molybdenum	ND	mg/L	0.020	0.0025	20	09/17/21 11:44			
Selenium	ND	mg/L	0.040	0.0023	20	09/17/21 11:44	09/21/21 15:13		
Thallium	ND	mg/L	0.0094	0.0014	20		09/21/21 15:13		
7470 Mercury	Analytica	I Method: EPA 7	/470∆ Prena	ration Met	hod: E	ρ <u>Α 7470</u> Δ			
7470 Mercury		alytical Services		iration ivie	illou. Li	714707			
Mercury	ND	ug/L	0.20	0.12	1	09/23/21 11:30	09/29/21 12:17	7439-97-6	
2320B Alkalinity		l Method: SM 23							
23206 Alkallility	•	alytical Services							
Alkalinity, Bicarbonate (CaCO3)	246	mg/L	5.0	5.0	1		09/24/21 20:45		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/24/21 20:45		
Alkalinity, Total as CaCO3	246	mg/L	5.0	5.0	1		09/24/21 20:45		
		· ·							
2540C Total Dissolved Solids	-	l Method: SM 25 alytical Services							
Total Dissolved Solids		•		1250	4		00/21/21 12:56		
Total Dissolved Solids	13400	mg/L	1250	1250	1		09/21/21 12:56		
300.0 IC Anions 28 Days	•	I Method: EPA 3		1 1993					
	Pace Ana	alytical Services	- Asheville						
Chloride	6300	mg/L	100	60.0	100		09/20/21 00:48	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

Sample: MCM-07	Lab ID:	92561848020	Collected	d: 09/14/2	1 09:23	Received: 09/	/16/21 11:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	.1 1993					
	Pace Ana	lytical Services	- Asheville						
Fluoride	ND	mg/L	0.10	0.050	1		09/19/21 05:03	16984-48-8	
Sulfate	819	mg/L	100	50.0	100		09/20/21 00:48	14808-79-8	

ANALYTICAL RESULTS

Project: MCMANUS CCR
Page Project No : 92561848

Sample: MCM-17 Lab ID: 92561848021 Collected: 09/14/21 17:28 Received: 09/16/21 11:30 Matrix: Water Field Data Results Units Limit MDL DF Prepared Analyzed CAS No.	1848
Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Compared Analyzed Analyz	La
Performed by CUSTOME R PH 6.77 Std. Units 1 09/16/21 18:11 Analytical Method: EPA 6010D Preparation Method: EPA 3010A Pace Analytical Services - Asheville	Result
Performed by CUSTOME 1 09/16/21 18:11 pH 6.77 Std. Units 1 09/16/21 18:11 6010 MET ICP Analytical Method: EPA 6010D Preparation Method: EPA 3010A Pace Analytical Services - Asheville	Ana
PH 6.77 Std. Units 1 09/16/21 18:11 6010 MET ICP Analytical Method: EPA 6010D Preparation Method: EPA 3010A Pace Analytical Services - Asheville	Pac
pH 6.77 Std. Units 1 09/16/21 18:11 6010 MET ICP Analytical Method: EPA 6010D Preparation Method: EPA 3010A Pace Analytical Services - Asheville	CUSTO
Pace Analytical Services - Asheville	€
Calcium 100 mg/l 1.0 0.94 10 09/24/21.10:21 09/28/21.13:06.7440-70-2 M1	
Calcium 190 mg/L 1.0 0.34 to 03/24/21 10.21 03/20/21 13.00 /440-70-2 lwif,	
Magnesium 277 mg/L 1.0 0.68 10 09/24/21 10:21 09/28/21 13:06 7439-95-4 M1	
Potassium 143 mg/L 50.0 30.4 10 09/24/21 10:21 09/28/21 13:06 7440-09-7 M1	
Sodium 2600 mg/L 250 30.5 50 09/24/21 10:21 09/29/21 11:58 7440-23-5 M1	2
6020 MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3010A	Ana
Pace Analytical Services - Asheville	Pac
Antimony ND mg/L 0.030 0.0060 30 09/17/21 11:44 09/21/21 18:14 7440-36-0	
Arsenic ND mg/L 0.030 0.0026 30 09/17/21 11:44 09/21/21 18:14 7440-38-2	
Barium 0.20 mg/L 0.030 0.0064 30 09/17/21 11:44 09/21/21 18:14 7440-39-3 M1	C
Beryllium ND mg/L 0.0030 0.0015 30 09/17/21 11:44 09/21/21 18:14 7440-41-7	
Boron 2.1 mg/L 1.5 0.26 30 09/17/21 11:44 09/21/21 18:14 7440-42-8 M1	
Cadmium ND mg/L 0.0060 0.0018 30 09/17/21 11:44 09/21/21 18:14 7440-43-9	
Chromium ND mg/L 0.030 0.015 30 09/17/21 11:44 09/21/21 18:14 7440-47-3	
Cobalt ND mg/L 0.030 0.0015 30 09/17/21 11:44 09/21/21 18:14 7440-48-4	
Lead ND mg/L 0.030 0.0023 30 09/17/21 11:44 09/21/21 18:14 7439-92-1	
Lithium 0.035J mg/L 0.075 0.015 30 09/17/21 11:44 09/21/21 18:14 7439-93-2	0.0
Molybdenum ND mg/L 0.030 0.0038 30 09/17/21 11:44 09/21/21 18:14 7439-98-7	
Selenium ND mg/L 0.060 0.0021 30 09/17/21 11:44 09/21/21 18:14 7782-49-2 M1	
Thallium ND mg/L 0.014 0.0015 30 09/17/21 11:44 09/21/21 18:14 7440-28-0	
7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A	Ana
Pace Analytical Services - Asheville	Pac
Mercury ND ug/L 0.20 0.12 1 09/23/21 11:30 09/29/21 12:20 7439-97-6	
2320B Alkalinity Analytical Method: SM 2320B-2011	Ana
Pace Analytical Services - Asheville	Pac
Alkalinity,Bicarbonate (CaCO3) 535 mg/L 5.0 5.0 1 09/24/21 20:54	CO3)
Alkalinity, Carbonate (CaCO3) ND mg/L 5.0 5.0 1 09/24/21 20:54	J 3)
Alkalinity, Total as CaCO3 535 mg/L 5.0 5.0 1 09/24/21 20:54	
2540C Total Dissolved Solids Analytical Method: SM 2540C-2011	olids Ana
Pace Analytical Services - Asheville	
Total Dissolved Solids 8820 mg/L 625 625 1 09/21/21 12:56	8
300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993	Ana
Pace Analytical Services - Asheville	Pac
Chloride 4090 mg/L 100 60.0 100 09/20/21 16:27 16887-00-6	4

ANALYTICAL RESULTS

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

Sample: MCM-17	Lab ID:	92561848021	Collected	d: 09/14/2	17:28	Received: 09	/16/21 11:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		.1 1993					
Fluoride Sulfate	ND 460	mg/L mg/L	0.10 10.0	0.050 5.0	1 10		09/19/21 05:19 09/20/21 01:34		

Project:

MCMANUS CCR

Pace Project No.:

92561848

QC Batch: QC Batch Method: 648837

EPA 7470A

Analysis Method:

EPA 7470A

Analysis Description:

7470 Mercury

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

92561848001, 92561848002, 92561848003, 92561848004, 92561848005, 92561848006, 92561848007,

92561848008, 92561848009, 92561848010

METHOD BLANK: 3403261

Matrix: Water

Associated Lab Samples:

92561848001, 92561848002, 92561848003, 92561848004, 92561848005, 92561848006, 92561848007,

92561848008, 92561848009, 92561848010

Blank

Reporting

Units

Result

Limit

MDL

Analyzed

Qualifiers

Mercury

ug/L

ND

0.20

0.12 09/29/21 14:46

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Date: 09/30/2021 08:17 PM

Parameter

3403262

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Mercury

ug/L

Units

2.4

3403264

MS

98

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3403263

2.5

MS Spike

MSD Spike

MSD Result

MS % Rec

88

MSD

80-120

% Rec Limits

Max RPD RPD

Mercury

Units Result ug/L

92560393009

ND

Conc.

Conc. 2.5

Result 2.3

2.2

% Rec 86 75-125

Qual 25 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

MCMANUS CCR

Pace Project No.:

92561848

QC Batch: QC Batch Method: 648839

EPA 7470A

Analysis Method:

EPA 7470A

Analysis Description:

7470 Mercury

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

92561848011, 92561848012, 92561848013, 92561848014, 92561848015, 92561848016, 92561848017,

92561848018, 92561848019, 92561848020, 92561848021

METHOD BLANK: 3403272

Matrix: Water

Associated Lab Samples:

92561848011, 92561848012, 92561848013, 92561848014, 92561848015, 92561848016, 92561848017,

92561848018, 92561848019, 92561848020, 92561848021

Blank

Reporting

Limit

MDL

Analyzed

Qualifiers

Mercury

Units ug/L

Result

ND

0.20

0.12 09/29/21 11:39

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

3403273

Spike

LCS Result

LCS % Rec

% Rec Limits

Qualifiers

Mercury

Units ug/L

Conc.

2.4

97

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3403274

ND

MSD

MS

Spike Conc.

MSD Result

2.4

3403275

MS

MS % Rec

MSD % Rec % Rec Limits

Max RPD RPD

Parameter Mercury

Date: 09/30/2021 08:17 PM

92561848011 Units Result

ug/L

Spike Conc.

2.5

2.5

Result 2.0

90

77

75-125

25 15

Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR

LABORATORY CONTROL SAMPLE:

Sodium

Date: 09/30/2021 08:17 PM

Pace Project No.: 92561848

QC Batch: 648049 Analysis Method: EPA 6010D QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92561848001, 92561848002, 92561848003, 92561848004, 92561848005, 92561848006, 92561848007,

92561848008, 92561848009, 92561848010, 92561848011, 92561848012, 92561848013, 92561848014,

92561848015, 92561848016, 92561848017, 92561848018, 92561848019, 92561848020

METHOD BLANK: 3398866 Matrix: Water

3398867

mg/L

Associated Lab Samples: 92561848001, 92561848002, 92561848003, 92561848004, 92561848005, 92561848006, 92561848007,

92561848008, 92561848009, 92561848010, 92561848011, 92561848012, 92561848013, 92561848014,

92561848015, 92561848016, 92561848017, 92561848018, 92561848019, 92561848020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND ND	0.10	0.094	09/23/21 22:50	
Magnesium	mg/L	ND	0.10	0.068	09/23/21 22:50	
Potassium	mg/L	ND	5.0	3.0	09/23/21 22:50	
Sodium	ma/L	ND	5.0	0.61	09/23/21 22:50	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Calcium	mg/L		5.0	101	80-120	
Magnesium	mg/L	5	4.9	99	80-120	
Potassium	mg/L	5	5.1	102	80-120	

5

MATRIX SPIKE & MATRIX S	868	MCD	3398869									
Parameter	9 Units	2561848001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Calcium	mg/L	6.0	5	5	11.1	11.4	103	108	75-125	3	20	
Magnesium	mg/L	11.0	5	5	16.4	16.6	106	110	75-125	1	20	
Potassium	mg/L	24.8	5	5	31.3	32.1	130	146	75-125	2	20	
Sodium	mg/L	954	5	5	506	13.3J	-8960	-18800	75-125		20	

5.3

106

80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

MCMANUS CCR

Pace Project No.:

92561848

QC Batch:

649213

QC Batch Method:

EPA 3010A

Analysis Method:

EPA 6010D

Analysis Description:

6010 MET

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

METHOD BLANK: 3405140

Associated Lab Samples:

Date: 09/30/2021 08:17 PM

92561848021

92561848021

Matrix: Water

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	0.11	0.10	0.094	09/28/21 13:03	
Magnesium	mg/L	ND	0.10	0.068	09/28/21 13:03	
Potassium	mg/L	ND	5.0	3.0	09/28/21 13:03	
Sodium	mg/L	ND	5.0	0.61	09/26/21 21:57	

LABORATORY CONTROL SAMPLE:	3405141					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Calcium	mg/L		5.1	102	80-120	
Magnesium	mg/L	5	4.9	98	80-120	
Potassium	mg/L	5	4.9J	99	80-120	
Sodium	mg/L	5	5.0	100	80-120	

MATRIX SPIKE & MATRIX SF	ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3405142											
			MS	MSD								
	9	2561848021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	190	5	5	196	185	124	-95	75-125	6	20	M1
Magnesium	mg/L	277	5	5	285	268	151	-181	75-125	6	20	M1
Potassium	mg/L	143	5	5	150	141	135	-35	75-125	6	20	M1
Sodium	mg/L	2600	5	5	2620	2500	336	-1910	75-125	4	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

QC Batch: 648052 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92561848001, 92561848002, 92561848003, 92561848004, 92561848005, 92561848006, 92561848007,

92561848015, 92561848016, 92561848017, 92561848018, 92561848019, 92561848020

METHOD BLANK: 3398884 Matrix: Water

Associated Lab Samples: 92561848001, 92561848002, 92561848003, 92561848004, 92561848005, 92561848006, 92561848007,

92561848008, 92561848009, 92561848010, 92561848011, 92561848012, 92561848013, 92561848014,

92561848015, 92561848016, 92561848017, 92561848018, 92561848019, 92561848020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0010	0.00020	09/20/21 10:42	
Arsenic	mg/L	ND	0.0010	0.000087	09/20/21 10:42	
Barium	mg/L	ND	0.0010	0.00021	09/20/21 10:42	
Beryllium	mg/L	ND	0.00010	0.000050	09/20/21 10:42	
Boron	mg/L	ND	0.050	0.0085	09/20/21 10:42	
Cadmium	mg/L	ND	0.00020	0.000060	09/20/21 10:42	
Chromium	mg/L	ND	0.0010	0.00050	09/20/21 10:42	
Cobalt	mg/L	ND	0.0010	0.000050	09/20/21 10:42	
Lead	mg/L	ND	0.0010	0.000077	09/20/21 10:42	
Lithium	mg/L	ND	0.0025	0.00050	09/20/21 10:42	
Molybdenum	mg/L	ND	0.0010	0.00013	09/20/21 10:42	
Selenium	mg/L	ND	0.0020	0.000072	09/20/21 10:42	
Thallium	mg/L	ND	0.00047	0.000050	09/20/21 10:42	

LABORATORY CONTROL SAMPLE:	3398885					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.05	0.047	95	80-120	
Arsenic	mg/L	0.05	0.045	90	80-120	
Barium	mg/L	0.05	0.045	89	80-120	
Beryllium	mg/L	0.05	0.047	93	80-120	
Boron	mg/L	0.05	0.054	107	80-120	
Cadmium	mg/L	0.05	0.048	96	80-120	
Chromium	mg/L	0.05	0.047	93	80-120	
Cobalt	mg/L	0.05	0.047	95	80-120	
Lead	mg/L	0.05	0.047	95	80-120	
Lithium	mg/L	0.05	0.046	92	80-120	
Molybdenum	mg/L	0.05	0.048	97	80-120	
Selenium	mg/L	0.05	0.047	94	80-120	
Thallium	mg/L	0.025	0.024	95	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3398	886		3398887							
			MS	MSD								
		92561848001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Antimony	mg/L	ND	0.05	0.05	0.052	0.052	103	104	75-125	1	20	
Arsenic	mg/L	ND	0.05	0.05	0.049	0.050	96	99	75-125	3	20	
Barium	mg/L	0.086	0.05	0.05	0.14	0.14	98	104	75-125	2	20	
Beryllium	mg/L	0.0011	0.05	0.05	0.048	0.048	95	95	75-125	0	20	
Boron	mg/L	1.4	0.05	0.05	1.5	1.6	234	273	75-125	1	20	M1
Cadmium	mg/L	ND	0.05	0.05	0.052	0.051	104	102	75-125	1	20	
Chromium	mg/L	ND	0.05	0.05	0.055	0.055	101	100	75-125	1	20	
Cobalt	mg/L	ND	0.05	0.05	0.052	0.053	103	104	75-125	1	20	
Lead	mg/L	ND	0.05	0.05	0.050	0.052	101	103	75-125	3	20	
Lithium	mg/L	0.010J	0.05	0.05	0.057	0.058	94	95	75-125	1	20	
Molybdenum	mg/L	ND	0.05	0.05	0.055	0.052	109	104	75-125	4	20	
Selenium	mg/L	ND	0.05	0.05	0.046	0.046	93	92	75-125	0	20	
Thallium	mg/L	ND	0.025	0.025	0.025	0.026	100	103	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR

Pace Project No.: 92561848

QC Batch: 648054 QC Batch Method:

EPA 3010A

Analysis Method:

EPA 6020B

Analysis Description:

6020 MET

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples: 92561848021

METHOD BLANK: 3398888

Date: 09/30/2021 08:17 PM

Matrix: Water

Associated Lab Samples: 92561848021

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
					Analyzed	Qualificis
Antimony	mg/L	ND	0.0010	0.00020	09/21/21 18:32	
Arsenic	mg/L	ND	0.0010	0.000087	09/21/21 18:32	
Barium	mg/L	ND	0.0010	0.00021	09/21/21 18:32	
Beryllium	mg/L	ND	0.00010	0.000050	09/21/21 18:32	
Boron	mg/L	ND	0.050	0.0085	09/21/21 18:32	
Cadmium	mg/L	ND	0.00020	0.000060	09/21/21 18:32	
Chromium	mg/L	ND	0.0010	0.00050	09/21/21 18:32	
Cobalt	mg/L	ND	0.0010	0.000050	09/21/21 18:32	
Lead	mg/L	ND	0.0010	0.000077	09/21/21 18:32	
Lithium	mg/L	ND	0.0025	0.00050	09/21/21 18:32	
Molybdenum	mg/L	ND	0.0010	0.00013	09/21/21 18:32	
Selenium	mg/L	ND	0.0020	0.000072	09/21/21 18:32	
Thallium	mg/L	ND	0.00047	0.000050	09/21/21 18:32	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.05	0.049	98	80-120	
Arsenic	mg/L	0.05	0.049	99	80-120	
Barium	mg/L	0.05	0.048	97	80-120	
Beryllium	mg/L	0.05	0.052	103	80-120	
Boron	mg/L	0.05	0.050	100	80-120	
Cadmium	mg/L	0.05	0.050	100	80-120	
Chromium	mg/L	0.05	0.050	100	80-120	
Cobalt	mg/L	0.05	0.051	101	80-120	
ead	mg/L	0.05	0.049	99	80-120	
ithium	mg/L	0.05	0.051	102	80-120	
Nolybdenum	mg/L	0.05	0.049	99	80-120	
Selenium	mg/L	0.05	0.051	101	80-120	
-hallium	mg/L	0.025	0.024	98	80-120	

MATRIX SPIKE & MATRIX SP		3398891										
			MS	MSD								
		92561848021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.05	0.05	0.054	0.057	106	111	75-125	5	20	
Arsenic	mg/L	ND	0.05	0.05	0.053	0.058	105	114	75-125	8	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 3398			3398891							
Parameter	g Units	2561848021 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.20	0.05	0.05	0.23	0.25	58	107	75-125	10	20	M1
Beryllium	mg/L	ND	0.05	0.05	0.049	0.052	98	104	75-125	6	20	
Boron	mg/L	2.1	0.05	0.05	2.0	2.1	-135	105	75-125	6	20	M1
Cadmium	mg/L	ND	0.05	0.05	0.052	0.056	103	111	75-125	7	20	
Chromium	mg/L	ND	0.05	0.05	0.060	0.065	108	118	75-125	8	20	
Cobalt	mg/L	ND	0.05	0.05	0.053	0.056	105	112	75-125	7	20	
Lead	mg/L	ND	0.05	0.05	0.053	0.056	104	111	75-125	6	20	
Lithium	mg/L	0.035J	0.05	0.05	0.081	0.083	91	95	75-125	2	20	
Molybdenum	mg/L	ND	0.05	0.05	0.054	0.058	107	116	75-125	8	20	
Selenium	mg/L	ND	0.05	0.05	0.028J	0.034J	56	67	75-125		20	M1
Thallium	mg/L	ND	0.025	0.025	0.025	0.028	101	112	75-125	10	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR

Pace Project No.: 92561848

QC Batch: 649005

QC Batch Method: SM 2320B-2011

Analysis Method:

SM 2320B-2011

Analysis Description:

2320B Alkalinity

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples: 92561848002, 92561848003

METHOD BLANK: 3403997

Date: 09/30/2021 08:17 PM

Matrix: Water

Associated Lab Samples: 92561848002, 92561848003

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Alkalinity, Total as CaCO3 mg/L ND 5.0 5.0 09/24/21 13:29 Alkalinity, Bicarbonate (CaCO3) ND 5.0 5.0 09/24/21 13:29 mg/L Alkalinity, Carbonate (CaCO3) ND 5.0 09/24/21 13:29 mg/L 5.0

LABORATORY CONTROL SAMPLE: 3403998

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 50 51.4 103 80-120 mg/L

LABORATORY CONTROL SAMPLE: 3403999

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 50 52.1 104 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3404000 3404001

MS MSD 92561815001 MS MSD MS MSD Spike Spike % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 35.7 50 50 85.4 85.3 99 80-120 25 mg/L 99 0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3404002 3404003

MS MSD 92561848002 Spike Spike MS MSD MS MSD % Rec Max Units Result Conc. Result Result % Rec % Rec **RPD** RPD Parameter Conc. Limits Qual mg/L ND 51.7 51.7 Alkalinity, Total as CaCO3 50 50 103 103 80-120 0 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

QC Batch: 649222 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92561848016, 92561848017, 92561848018, 92561848019, 92561848020, 92561848021

METHOD BLANK: 3405201 Matrix: Water

Associated Lab Samples: 92561848016, 92561848017, 92561848018, 92561848019, 92561848020, 92561848021

			Blar	nk	Reporting							
Parameter		Units	Resi	ult	Limit	MD	L	Analyze	d Qı	ualifiers		
Alkalinity, Total as CaCO3		mg/L		ND	5	.0	5.0	09/24/21 18	3:32			
Alkalinity, Bicarbonate (CaCO:	,	mg/L		ND	5	.0	5.0	09/24/21 18				
Alkalinity, Carbonate (CaCO3)	1	mg/L		ND	5	.0	5.0	09/24/21 18	3:32			
LABORATORY CONTROL SA	AMPLE:	3405202										
			Spike	LC	S	LCS	%	Rec				
Parameter		Units	Conc.	Res	sult	% Rec	Li	mits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L	5	0	51.6	10	3	80-120		_		
LABORATORY CONTROL SA	AMPLE:	3405203										
			Spike	LC	cs	LCS	%	Rec				
Parameter		Units	Conc.	Res	sult	% Rec	_ Li	mits	Qualifiers	_		
Alkalinity, Total as CaCO3		mg/L	5	0	52.1	10-	4	80-120				
MATRIX SPIKE & MATRIX SI	PIKE DUP	LICATE: 3405	204		340520	5						
			MS	MSD								
		92561848016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	ND	50	50	51.2	51.6	10)2 10	3 80-120	1	25	
MATRIX SPIKE & MATRIX SI	PIKE DUP	LICATE: 3405	206		3405207	7						
			MS	MSD								
		92561848019	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	507	50	50	551	565			5 80-120	3	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

MCMANUS CCR

Pace Project No.:

92561848

QC Batch: QC Batch Method:

648163

SM 2540C-2011

Analysis Method:

SM 2540C-2011

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Asheville

92561848001, 92561848002, 92561848003, 92561848004, 92561848005, 92561848006, 92561848007,

92561848008, 92561848009, 92561848010

METHOD BLANK: 3399353

Matrix: Water

Associated Lab Samples:

Associated Lab Samples:

92561848001, 92561848002, 92561848003, 92561848004, 92561848005, 92561848006, 92561848007,

92561848008, 92561848009, 92561848010

Blank

Reporting

Parameter

Units

Result

Limit

MDL

Analyzed

Qualifiers

Total Dissolved Solids

mg/L

Units

mg/L

Units

mg/L

mg/L

ND

25.0

25.0 09/21/21 12:40

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

3399354

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Total Dissolved Solids

SAMPLE DUPLICATE: 3399355

92561848001 Result

1450

ND

250

Dup Result

256

RPD

1

102

Max **RPD**

90-110

Qualifiers

25 1g,H1

25

SAMPLE DUPLICATE:

Total Dissolved Solids

Date: 09/30/2021 08:17 PM

Total Dissolved Solids

3399356

Units

92561829005 Result

Dup Result ND

1430

RPD

Max RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

MCMANUS CCR

Pace Project No.:

92561848

QC Batch:

648165

Analysis Method:

SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

92561848011, 92561848012, 92561848013, 92561848014, 92561848015, 92561848016, 92561848017,

92561848018, 92561848019, 92561848020, 92561848021

METHOD BLANK: 3399359

Matrix: Water

Associated Lab Samples:

92561848011, 92561848012, 92561848013, 92561848014, 92561848015, 92561848016, 92561848017,

92561848018, 92561848019, 92561848020, 92561848021

Blank Result

Reporting Limit

MDL

Analyzed

Qualifiers

Total Dissolved Solids

Units mg/L

ND

25.0

25.0 09/21/21 12:52

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

3399360

Units

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Total Dissolved Solids

mg/L

250

256

102

90-110

SAMPLE DUPLICATE: 3399361

Total Dissolved Solids

Parameter

92561848011 Result

14600

8820

Dup Result

14200

RPD

Max **RPD**

25

25

2

0

Qualifiers

SAMPLE DUPLICATE:

Total Dissolved Solids

Date: 09/30/2021 08:17 PM

3399362

Units

mg/L

Units

mg/L

92561848021 Result

Dup Result 8850

RPD

Max **RPD**

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR

LABORATORY CONTROL CAMPLE: 2200545

Date: 09/30/2021 08:17 PM

Pace Project No.: 92561848

QC Batch: 648189 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92561848001, 92561848002, 92561848003, 92561848004, 92561848005

METHOD BLANK: 3399514 Matrix: Water

Associated Lab Samples: 92561848001, 92561848002, 92561848003, 92561848004, 92561848005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/18/21 14:35	
Fluoride	mg/L	ND	0.10	0.050	09/18/21 14:35	
Sulfate	mg/L	ND	1.0	0.50	09/18/21 14:35	

LABORATORT CONTROL SAMPLE.	3399313					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	52.9	106	90-110	
Fluoride	mg/L	2.5	2.4	97	90-110	
Sulfate	mg/L	50	51.2	102	90-110	

MATRIX SPIKE & MATRIX SP		3399517										
			MS	MSD								
		92561571002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	23.0	50	50	80.2	82.8	115	120	90-110	3	10	M1
Fluoride	mg/L	0.38	2.5	2.5	4.4	4.4	161	161	90-110	0	10	M1
Sulfate	mg/L	ND	50	50	55.7	56.4	111	113	90-110	1	10	M1

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3399		3399519								
			MS	MSD								
		92562010002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	12.7	50	50	63.3	63.8	101	102	90-110	1	10	
Fluoride	mg/L	0.10	2.5	2.5	2.6	2.6	98	98	90-110	0	10	
Sulfate	mg/L	8.6	50	50	58.8	59.3	100	101	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

QC Batch: 648191 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92561848006, 92561848007, 92561848008, 92561848009, 92561848010, 92561848011, 92561848012,

92561848013, 92561848014, 92561848015, 92561848016, 92561848017, 92561848018, 92561848019,

92561848020, 92561848021

METHOD BLANK: 3399543 Matrix: Water

Associated Lab Samples: 92561848006, 92561848007, 92561848008, 92561848009, 92561848010, 92561848011, 92561848012,

92561848013, 92561848014, 92561848015, 92561848016, 92561848017, 92561848018, 92561848019,

92561848020, 92561848021

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/18/21 22:52	
Fluoride	mg/L	ND	0.10	0.050	09/18/21 22:52	
Sulfate	ma/L	ND	1.0	0.50	09/18/21 22:52	

LABORATORY CONTROL SAMPLE:	3399544					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	52.1	104	90-110	
Fluoride	mg/L	2.5	2.5	101	90-110	
Sulfate	mg/L	50	52.5	105	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3399	545		3399546							
			MS	MSD								
		92561848006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	28.5	50	50	79.4	80.0	102	103	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	3.7	3.6	147	144	90-110	2	10	M1
Sulfate	mg/L	96.2	50	50	123	124	54	55	90-110	0	10	M1

MATRIX SPIKE & MATRIX SI	PIKE DUPLI	CATE: 3399	547		3399548							
Parameter	g Units	92561848016 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	ND	50	50	50.5	50.3	101	100	90-110	0	10	
Fluoride	mg/L	ND	2.5	2.5	2.5	2.5	101	98	90-110	3	10	
Sulfate	mg/L	ND	50	50	51.6	51.6	103	103	90-110	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: MCMANUS CCR
Pace Project No.: 92561848

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/30/2021 08:17 PM

- 1g In-hold results could not be obtained due to suspected inaccurate tare weights on the stable-weigh bags initially used for analysis.
- H1 Analysis conducted outside the EPA method holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- P8 Analyte was detected in the method blank. All associated samples had concentrations of at least ten times greater than the blank or were below the reporting limit.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2561848001	MCM-12		·	_	
2561848003	MCM-14				
2561848004	MCM-01				
2561848005	MCM-02				
2561848006	MCM-04				
2561848007	MCM-11				
2561848008	MCM-15				
2561848009	MCM-16				
2561848010	MCM-18				
2561848011	MCM-19				
561848012	MCM-20				
561848013	DPZ-2				
561848018	MCM-05				
561848019	MCM-06				
561848020	MCM-07				
2561848021	MCM-17				
2561848001	MCM-12	EPA 3010A	648049	EPA 6010D	648097
561848002	FB-1	EPA 3010A	648049	EPA 6010D	648097
561848003	MCM-14	EPA 3010A	648049	EPA 6010D	648097
561848004	MCM-01	EPA 3010A	648049	EPA 6010D	648097
561848005	MCM-02	EPA 3010A	648049	EPA 6010D	648097
561848006	MCM-04	EPA 3010A	648049	EPA 6010D	648097
561848007	MCM-11	EPA 3010A	648049	EPA 6010D	648097
561848008	MCM-15	EPA 3010A	648049	EPA 6010D	648097
561848009	MCM-16	EPA 3010A	648049	EPA 6010D	648097
561848010	MCM-18	EPA 3010A	648049	EPA 6010D	648097
561848011	MCM-19	EPA 3010A	648049	EPA 6010D	648097
561848012	MCM-20	EPA 3010A	648049	EPA 6010D	648097
561848013	DPZ-2	EPA 3010A	648049	EPA 6010D	648097
561848014	DUP-1	EPA 3010A	648049	EPA 6010D	648097
561848015	DUP-2	EPA 3010A	648049	EPA 6010D	648097
561848016	FB-2	EPA 3010A EPA 3010A	648049	EPA 6010D	648097
561848017	EB-1	EPA 3010A EPA 3010A	648049	EPA 6010D	648097
561848018	MCM-05	EPA 3010A EPA 3010A	648049	EPA 6010D	648097
561848019	MCM-06	EPA 3010A EPA 3010A	648049	EPA 6010D	648097
561848020	MCM-07	EPA 3010A EPA 3010A	648049	EPA 6010D	648097
2561848021	MCM-17	EPA 3010A	649213	EPA 6010D	649297
561848001	MCM-12	EPA 3010A	648052	EPA 6020B	648088
561848002	FB-1	EPA 3010A	648052	EPA 6020B	648088
561848003	MCM-14	EPA 3010A	648052	EPA 6020B	648088
561848004	MCM-01	EPA 3010A	648052	EPA 6020B	648088
561848005	MCM-02	EPA 3010A	648052	EPA 6020B	648088
561848006	MCM-04	EPA 3010A	648052	EPA 6020B	648088
561848007	MCM-11	EPA 3010A	648052	EPA 6020B	648088
561848008	MCM-15	EPA 3010A	648052	EPA 6020B	648088
561848009	MCM-16	EPA 3010A	648052	EPA 6020B	648088
561848010	MCM-18	EPA 3010A	648052	EPA 6020B	648088

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92561848011	MCM-19	EPA 3010A	648052	EPA 6020B	648088
2561848012	MCM-20	EPA 3010A	648052	EPA 6020B	648088
2561848013	DPZ-2	EPA 3010A	648052	EPA 6020B	648088
2561848014	DUP-1	EPA 3010A	648052	EPA 6020B	648088
2561848015	DUP-2	EPA 3010A	648052	EPA 6020B	648088
2561848016	FB-2	EPA 3010A	648052	EPA 6020B	648088
2561848017	EB-1	EPA 3010A	648052	EPA 6020B	648088
2561848018	MCM-05	EPA 3010A	648052	EPA 6020B	648088
2561848019	MCM-06	EPA 3010A	648052	EPA 6020B	648088
2561848020	MCM-07	EPA 3010A	648052	EPA 6020B	648088
2561848021	MCM-17	EPA 3010A	648054	EPA 6020B	648093
2561848001	MCM-12	EPA 7470A	648837	EPA 7470A	649070
2561848002	FB-1	EPA 7470A	648837	EPA 7470A	649070
2561848003	MCM-14	EPA 7470A	648837	EPA 7470A	649070
2561848004	MCM-01	EPA 7470A	648837	EPA 7470A	649070
2561848005	MCM-02	EPA 7470A	648837	EPA 7470A	649070
2561848006	MCM-04	EPA 7470A	648837	EPA 7470A	649070
2561848007	MCM-11	EPA 7470A	648837	EPA 7470A	649070
2561848008	MCM-15	EPA 7470A	648837	EPA 7470A	649070
2561848009	MCM-16	EPA 7470A	648837	EPA 7470A	649070
2561848010	MCM-18	EPA 7470A	648837	EPA 7470A	649070
2561848011	MCM-19	EPA 7470A	648839	EPA 7470A	649077
2561848012	MCM-20	EPA 7470A	648839	EPA 7470A	649077
2561848013	DPZ-2	EPA 7470A	648839	EPA 7470A	649077
2561848014	DUP-1	EPA 7470A	648839	EPA 7470A	649077
2561848015	DUP-2	EPA 7470A	648839	EPA 7470A	649077
2561848016	FB-2	EPA 7470A	648839	EPA 7470A	649077
2561848017	EB-1	EPA 7470A	648839	EPA 7470A	649077
2561848018	MCM-05	EPA 7470A	648839	EPA 7470A	649077
2561848019	MCM-06	EPA 7470A	648839	EPA 7470A	649077
2561848020	MCM-07	EPA 7470A	648839	EPA 7470A	649077
2561848021	MCM-17	EPA 7470A	648839	EPA 7470A	649077
2561848002	FB-1	SM 2320B-2011	649005		
2561848003	MCM-14	SM 2320B-2011	649005		
2561848016	FB-2	SM 2320B-2011	649222		
2561848017	EB-1	SM 2320B-2011	649222		
2561848018	MCM-05	SM 2320B-2011	649222		
2561848019	MCM-06	SM 2320B-2011	649222		
2561848020	MCM-07	SM 2320B-2011	649222		
2561848021	MCM-17	SM 2320B-2011	649222		
2561848001	MCM-12	SM 2540C-2011	648163		
2561848002	FB-1	SM 2540C-2011	648163		
2561848003	MCM-14	SM 2540C-2011	648163		
2561848004	MCM-01	SM 2540C-2011	648163		
2561848005	MCM-02	SM 2540C-2011	648163		
2561848006	MCM-04	SM 2540C-2011	648163		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS CCR

Pace Project No.: 92561848

Date: 09/30/2021 08:17 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92561848007	MCM-11	SM 2540C-2011	648163		
92561848008	MCM-15	SM 2540C-2011	648163		
92561848009	MCM-16	SM 2540C-2011	648163		
92561848010	MCM-18	SM 2540C-2011	648163		
92561848011	MCM-19	SM 2540C-2011	648165		
92561848012	MCM-20	SM 2540C-2011	648165		
92561848013	DPZ-2	SM 2540C-2011	648165		
92561848014	DUP-1	SM 2540C-2011	648165		
92561848015	DUP-2	SM 2540C-2011	648165		
92561848016	FB-2	SM 2540C-2011	648165		
92561848017	EB-1	SM 2540C-2011	648165		
92561848018	MCM-05	SM 2540C-2011	648165		
92561848019	MCM-06	SM 2540C-2011	648165		
92561848020	MCM-07	SM 2540C-2011	648165		
2561848021	MCM-17	SM 2540C-2011	648165		
2561848001	MCM-12	EPA 300.0 Rev 2.1 1993	648189		
2561848002	FB-1	EPA 300.0 Rev 2.1 1993	648189		
2561848003	MCM-14	EPA 300.0 Rev 2.1 1993	648189		
2561848004	MCM-01	EPA 300.0 Rev 2.1 1993	648189		
2561848005	MCM-02	EPA 300.0 Rev 2.1 1993	648189		
2561848006	MCM-04	EPA 300.0 Rev 2.1 1993	648191		
2561848007	MCM-11	EPA 300.0 Rev 2.1 1993	648191		
2561848008	MCM-15	EPA 300.0 Rev 2.1 1993	648191		
2561848009	MCM-16	EPA 300.0 Rev 2.1 1993	648191		
92561848010	MCM-18	EPA 300.0 Rev 2.1 1993	648191		
2561848011	MCM-19	EPA 300.0 Rev 2.1 1993	648191		
92561848012	MCM-20	EPA 300.0 Rev 2.1 1993	648191		
92561848013	DPZ-2	EPA 300.0 Rev 2.1 1993	648191		
92561848014	DUP-1	EPA 300.0 Rev 2.1 1993	648191		
2561848015	DUP-2	EPA 300.0 Rev 2.1 1993	648191		
2561848016	FB-2	EPA 300.0 Rev 2.1 1993	648191		
2561848017	EB-1	EPA 300.0 Rev 2.1 1993	648191		
2561848018	MCM-05	EPA 300.0 Rev 2.1 1993	648191		
2561848019	MCM-06	EPA 300.0 Rev 2.1 1993	648191		
2561848020	MCM-07	EPA 300.0 Rev 2.1 1993	648191		
92561848021	MCM-17	EPA 300.0 Rev 2.1 1993	648191		

Pace Analytical*		Docume			Issuing Authority: Pace Carolines Quality Office
or atory receiving samples:			7		achanicsvilla Atlanta Kernersville
sheville 🔀 Eden 🗌 Greenwood	Hunters	ville [_ Kale	lgh□ M	
rier: Fed Ex Deace	n-g a / O ips ☐usps ☐oshe			Project #:	WO#:92561848
dy Seal Present? Wes ONo	Seals Intact7	Lives		1	1.0/
					Date/Initials Person Examining Contents: 4
ng Material: Doubble Wrap [normeter: 43707]	Bubble Bags Type of lo	∐Non	7_	Other Blue N	Biological Tissue Frozenti □Yes □No ☑N/A
r Temp: 29/1.4/2.5 Add/Subtrar Temp Corrected (*C): 29 Regulated Soll (TAVA, water sample) mples originate in aquarantine zone within the	1-4/208	, NY, ar S	SC (check m	ù hi ans}≥ bid €(ans	o should be above freezing to 6°C Samples out of temp enteris. Samples on ice, cooling process Society Market Samples of temp a foreign source (internationally, Market Sawaii and Guerto Rice)? Yes No
Yes [No		-		United to	Comments/Discrepancy:
Y A A SA BANKET	Dies	CNo	E10/A	1.	
hain of Custody Present?	//				
amples Arrived within Hold Time?	- Dives	□N0	□N/A	3.	
hort Rold Time Analysis (2 hr.)?</td <td>□Ycs_</td> <td>ZNo</td> <td>□N/A</td> <td>4.</td> <td></td>	□Ycs_	ZNo	□N/A	4.	
us h Turn Around Time Requested?	Yes	No	7-7		
officient Volume?	Elves	□No	□N/A	5.	
The state of the s	Zyes Zyes	□No □Nd	□N/A □N/A	6.	
orrect Containers Used? Pane Containers Used?	2019				
-Pace Contalivers Used?		CINO	□N/A	7.	
-Pace Containers Used? Containers Intact?	Ves	□No □No	IN/A	7.	
-Pace Containers Used? Containers lutact? Dissolved analysis: Samples Field Filteret;?					
-Pace Containers Used? Containers Intact?	□Yes □Yes	No.	NIA	8,	
-Pace Containers Used? Containers lutact? Dissolved analysis: Samples Field Filteret;?	Ves []Yes	No.	NIA	8,	
-Pace Containers Used? containers intact? Disselved analysis: Samples Field Filtered? annule Labels Match COC? -Includes Dato/Time/ID/Analysis Matrix:	Ves Ves	No.	ZNA ONA	9.	
-Pace Containers Used? containers intact? Disselved analysis: Samples Field Filtered? antiple Labels Match COC? -Includes Dato/Time/(D/Analysis Matrix:	□Yes □Yes	□No □Na	ZNIA I DNA	9.	
-Pace Containers Used? Containers Intact? Dissolved analysis: Samples Field Filtered? annile Labels Match COC? -Includes Dato/Time/(D/Analysis Matrix: tendspace in VOA Vials (>5-Sinm)? Tip Blank Present?	Ves Ves Ves Ves		ZNA ONA	9.	
-Pace Containers Used? containers intact? Disselved analysis: Samples Field Filtered? antiple Labels Match COC? -Includes Dato/Time/(D/Analysis Matrix:	□ Yes □ Yes □ Yes □ Yes		NIA ONIA ONIA	9.	Fleid Data Requirad i □Yes □No
-Pace Containers Used? Containers Inlact? Dissolved analysis: Samples Field Filtered? antiple Labels Match COC? -Includes Dato/Time/(D/Analysis Matrix: teadspace in VOA Vials (>5-Sinm)? Tip Blank Present?	Ves Ves Ves Ves		NIA ONIA ONIA	8, 9, 10, 11,	
-Pace Containers Used? Containers Inlact? Dissolved analysis: Samples Field Filtered? antiple Labels Match COC? -Includes Dato/Time/(D/Analysis Matrix: teadspace in VOA Vials (>5-Sinm)? Tip Blank Present?	Ves Ves Ves Ves		NIA ONIA ONIA	8, 9, 10, 11,	Field Data Required ? [] Yes [] No.

Date/Ilme:

Dates

Person contacted:

Project Manager 5 CURF Review:

Project Manager SRF Review:

Pace Analytical"

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Project #

Document Revised: October 28, 1020 Page 2 of 2 Issuing Authority:

WO#:92561848

Due Date: 09/30/21

CLIENT: GA-GA Power

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation sarviples.

Exceptions: VOA, Colliform, TOC, Oil and Grease, ORO/8015 (water) DOC, LLHg

**Bettom half of box is to list number of bottles

(tem)	BP4U-125 mL Plastic Unpreserved (N/A) (CL-)	BP3U-250 mL Plastic Unpreserved (M/A)	BP2U-500 mt. Flastig Unpersented (N/A)	APAULA Jiter Plessic Unpresented (N/A)	BP45:425 mLPlasticH2504 (pH < 2) (CI-)	BP3N-250 mL plastic HND3 (pH < 2)	8P42-125 mL Plastic EN Acetate & NoOH (>9)	BP4C-125 mt Plastic NaOH (pH > 12) (CL)	WGFU-Wide-mouthed Glass Jan Unpreserved	AG1U-1 liter Amber Unpresenced (N/A) (CI-)	ASIN-1 (ISTAMBER HO (pH < 2)	AGBU-250 ml. Amber Unpreserved (N/A) (CI-)	AGIS-1 liter Amber H2504 (pH < 2)	AG35-250 mt. Amber H3504 [pH < 2]	AG3A(DG3A)-250 mt. Ambes MH4CI (N/A)(CI-)	DESH-40 mt VOA HCI (N/A)	VGOT-40 mi, VOA NĄZSZDĘ (N/A)	VG9U-#0 mt VOA:Unp [N/A]	DG9P-40 mL VOA H3PO4 tN/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 viats per kit)-VPH/Gas kir (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mt Sterle Blastic (WA-lab)	BPIN	8824-250 ml. Plastic (NH3)2504 (5:3-9.7)	AGOU-100 mL Amber Ungreserved vials (N/A)	VSGU-20 mL Scintillation vigis (N/A)	DG9U-40 mt. Anter Unperserved vials (M/A)
1	1	t	1	170	1	X	1	/			1	Ţ	1	1	1									15	1			
2	1	2	1		1	Y	X	1			1		/	1	1	10.	Ċ							8	1			
	1	2		1	1	10	V	/					1	1	1									A	1			
Ĩ	1				1		1	/			1		1	/	1	1								\angle	7			_
	1				1		1	1			/		1	1	1										7			
	1				V	1	1	1			1		/	7	1									7	Y			
	1				/	1	1	V			1		1	1	1				1						V			
	1				/	1	1	V			1		/	1	1									1	1			
5	1				1	1	V	1			1		1	1	1	E								7	7			
0	1				1	V	/	1			1		/	1	1		7							1	1			
1					V	V	1	V			1		1	1	1									7	7			
2	1				V	/	V	1			1		/	1	V									1	1			,
Sa	mple	0	Туре	of Pre	serva	tive	ptí	upon	рН гесена	Adju	Oate (ent	Log	for nadjo	Prested		me pi		ettori	ľ	Amo		f Pres dded	ervativ	re		Lat #	

Note: Whenever there Is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DeHNR Certification Office (i.e. Dut of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

issuing Authority: baca Carolinas Disality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, O/IO/2015 (water) DCC, LLHg

**Bottom half of box is to list number of bottles

Project WO#: 92561848

PM: NMG

Due Date: 09/30/21

CLIENT: GA-GA Power

Item#	SP4U-225 mL Plastic Unpreserved (N/A) (CL.)	BP3U-250 ml. Plastic Unpreserved (N/A)	BP2U-500 mt Playte Unpreserved (N/A)	detulation Plants Unprocessed (W/A)	8P4S+125 mL Plastic H2SO4 (pH < 2) (CH)	BP3N-250 mL plastic HNO3 (pH < 2)	8P42-125 mL Plante ZN Acetata & Nach (59)	8P46-125 muRlastioNath (2H > 12) (CI.)	WGF8-Wide-mouthed Gless Jar Ungreserved	AG1U-3. Iter Amber-Unpresenved (N/a) (O-)	AGIN:1 liter Amber HCl (pH < 2)	AGSU-250 mL Amber Unpreserved (N/A) (CF)	AG15:1 liter Amber H2504 (pH < 2)	AGBS-250 mL Amber M2504 (pH < 2)	AGBA(DGBA)-250 mt. Amber NHACI (N/A)(Cl-)	PESH-40 MJ, VOA HCI INVAI	VGST-10 mL VDA Ng2S2Q3-{N/A}	VGSU-40 mt VOA,Unp (N/A)	DG9P-40 mL VDA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (2 vials per kit) VPH/Gas kit [N/A]	SPST-325 ml. Sterlie Plastic (N/A - lab)	SPZT-250 mLSterile Plastic (N/A-lab)	BPIN	BP3A-250 mL Plastic (NH2)2504 (3.3-9.5)	4 9600-100 int. Amber Unpreserved vials (N/A)	VSGU-20 mt Schelllation vitis (N/A)	DG9U-40 mL Amber Unpreserved viats (N/A)
r	1	1	1		1	N	1	1			1	r	1	1	1								i,	2	7		_	
1	1	'n	1		1	X	1	1			1	ij,	1	1	1									\propto	1			
1	1	1	1		1	V	1	1			/		1	1	1									X	1			T
	7				1	13	1	1			1		7	1	1						Ŧ		1	X	1			1
-	/	1_	1		1	(()	1			1		1	1	1									1	V		21	I
-	7	-			1	7	X	7			7		/	1	7				Ü				Ш	2	1			1
	7	1			1		7	7			1		7	1	1								11	1	1		-	Ī
	7	-	`		7	\	1	7			/		7	1	1									Y	1	Ľ		
	1	110	1		1	14	1	7			1		1		1			1					Ш	1	1	Ī		
0	7	1	1	-	7	3	1	7	-		7	-	7	1	1								TI,	Y	7		7	
1	1	1	1	-	1	1	1	1	+	-	1	-	1	1	7									7	1		27	
2	1	Ţ	1	\dashv	1	S	1	1	-	-	1	-	1	1	1									₹	1			
Ý,	7	1			V	N	V	7	_		7		V	_ \	\overline{A}				-			-()		47	- 1			_
Sa	mple ti	0	Турс	of Pre	eserva	tive	рн	upen	pH	_				n adju	Pre	5erv	ime p	Sam reserv ljustec	ation		Amo		i Pres dded	ervati	ve		Lot #	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical"

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-C3-033-Rev.07 Document Revised r October 28, 2020
Page 2 of 2
Issuing Authority:

Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease; DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project # WO#: 925618

PM: NMG

Due Date: 09/30/21

CLIENT: GR-GA Power

Uem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI.)	BP3U-250 mt Plastic Unpreserved (W/A)	8P2U-500 mL Plastig Unpreserved (N/A)	שוביניים וונקר אוקנדום Unpreserved (N/A)	BP45-125 ML Plastic M25G4 (pH < 2) (CI-)	BERN-250 mL plastic HNO3 (pH < 2)	BPGZ-125 ml Plaste ZN Agetate & NaOH (>9)	BP4C-125 mLPlastic NaOH (pH > 12) (CL)	WGRU-Wide-mouthed Glass Jar Unpreserved	AG10-2 liter Amben-Unpressingd (N/A) (CD-)	AGNES (ter Amber HCl IpH < 2)	AGSU-250 mL Amber Unpreserved (N/A) (5-)	4615rf liter Aciber H2504 (pH < 2)	A635-250 mL Amber H2504 (pH < 2)	AG3A(DG3A)-250 ml. Ambg: NH4Cl (N/A)(Ci-)	הפפור-קט מוד עסא אכן זע/אז	VGST-40 mL VOA NĄZSZGS-(N/A)	VG9U-40 mLVOR.Unp (M/A)	DEBRIAD INL YOA HISPO4 IN/A)	VDAK (6 vials per kith-SDBS kit (N/A)	V/Gtt (3 vlats per titt)-VR4/Gqs (dt.(N/A)	SPST-125 mL Startle Plastic (N/A ~ 15t)	SP27250 mLSteinle Riseric (N/A-lab)	6P.W	BP2A-250 ML Plastic (NH2)2504 (93-9.9)	AGOU-100 mt Amber Unjateserved vials (N/A)	VSGU-20 mt Scintiliation viels (N/A)	DG9U-40 mt Amber Unpreserved vials (N/A)
ī	1	1	1		1	X	1	1			1		1	1	1				14					X	7			
2	1	2	-1		/	X	1	/		1	1		1	1	1									X	7			
3	1	2	(/	X	/	1		F	1		1	1		71								X	7			
4	1	2	1		V	V	1	1		-	1		1	V	1									2	1			
5	1				V	/	1	1			/		V	/	1							ļģ.		1	7			
6	1				1	1	1	1			1		1	V	/									1	1			
1	1				1	1	1	V			1		1	V	1									1	1			
8	1				1	1	1	1			/		V	V	1										7			
7	1			1	1	1	1	1			1			1	/									/	1			
0	7			1	1	1	1	1			1		1	1	1									1	1			
11	1		T		1	1	1	1	3				1	1	1									/	V			
12	1			-	1	1	1	1			1		V	1	1				Ť					1	1			

		Pil O	fjustment Log for Pres	diech campion		
Sample 10	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation	Amount of Preservative added	Lot #
	7					

Nate: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina OEHNR Carolina Compliance (i.e., Out of hold, incorrect preservative, out of temp, incorrect containers.

Document Name: Sample Condition Upon Receipt(SCUR) Document No.:

F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020 Page 2 of 2 Issuing Authority: Pace Carolinas Quality Office

Project "

Due Date: 09/30/21

CLIENT: GA-GA Power

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Collorm, TOC, Oil and Grease; ORO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

thems	894U-125 mL Plastic Unpreserved (N/A) (CL)	BR34-253 ML Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP10-1, III-F Plante Unpreserved (W/A)	BP45-125 mL Plaçuc H2SG4 (pH < 2) (G-)	BOSN-250 on L plastic mode (pH 5.2)	3P92-125 m. Plastic 2N Acetate & NagH (59)	BPGC-125.mLPlesticNaOH (pH 12) (CL)	WGFU-Wide-moidthed Glass Jar Unpreserved	AG10-1 lite; Amber Unpreserved (N/A) (G-)	AGMEST Mast Amber HCI (pH < 2)	AG3U-250 m. Amber Unpreserved IN/A) (Cl-)	AG15-3 liter Amber H2504 (pH < 2)	AG35/250 mL Amber H2504 (pH < 2)	AGSALDGSAN-250 MLAMBER NH4CL (N/A)[Cl-]	DG9H-40 mt, VQA HC (N/A)	VG9T-40 mt VDA NR2S2UB-(N/A)	VG9U-40 mc VO&Unp (N/A)	DG9R-40 mL VOA H3PD4 [N/A]	VOAK (6 vials per kit)-5035 ktt (M/A)	V/GK (3 value per hit)-VHV/Gas kit (N/A)	SP5T-325 mL Sterile Plastic (N/A - lab)	SPXT5250 ml Sierile flestic (N/A-lab)	DPW	8P3A-250 mL Plastic (NH2)2504 (9.3-9.9)	AGOU-100 mt. Amber Unpreserved viab (N/A)	VSGU-20 ML Schallation vinis (N/A)	DG90 40 mt Amber Unpreserved vials (N/A)
1	1	2	r		1	X	1	1			1		1	1	1				14.7					3	X			
2	1	2			1	X	1	V			1		/	1	1		đ							2	1			
7	1	2			V	X	1	V			1		1	V	1							Д		×	1			
4	1		È		1	1	1	1			1		V	V	V		Ш					b			1			
5	1				1	1	7	1			/		V	V										1	1		7	
5	1				1	V	1	1			1		V	V	1									1	1	_		
7	1				1	1	1	1			1		V	1	1		Εij								1	4		
8	1				1	1	1	1			1		1	/	1					4				/	1			
9	1		Ü		1	1	1	1			1		1	1	V				4					1	1			
10	7				1	1	1	1			1		1	1	1									1	1			
13	1		7	1	1	1	1				1		1	1	1									1	1			
12	1		1		7	1	1	1			1		1	1	1		-							1	1			

		pH Ac	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
	-	-				

Note: Whenevor there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (Le. Dur of hold, incorrect preservative, out of temp, incorrect containers.

Face Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://inin.pacelabs.com/hub/s/pac-stundard-terms.pdf The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately

Required Effect Information: Company. Georgia Power Address: 1003 Weatherstone Parkway ITEM # ed Due Date: sevin.stephenson@resoluteenv.com (678)548-9415 Sample ids must be unique One Character per box. SAMPLE ID (AZ, 0.8/.-) ď Drinding Water
Whate Water
Wrode Water
Product
Solffold
Dil
Wipe
Au
Other Report To: Purchase Order # Required Project Information Project Mame: 8858 43886F William Lacker Kevin Stephenson ş 4 ş ş 1 × ş 3 S MATRIX CODE (see yald codes to loft) SAMPLE TYPE (G+GRAS C=COMP) McManus CCR 2/13/4 START 133 CAMPLER YOME AND SIGNATURES. COLLECTED SIGNATURE of SAMPLER! PRINT Name of SAMPLER; 8 \$ 15/21 1100 William SAMPLE TEMP AT COLLECTION Company Name: Address: U. # OF CONTAINERS Attuntian: Paos Frofile #: Pace Quote: Section C Pace Project Manager. Lacker, Robert Meil, Celvin Laymen, Kevin Stephensen N Unpreserved H2SD4 4 EONH HO 10768-17,18 NaOH MANAGEN COMPANY nicole.c'oleo@papsiabs.com Na29203 Malhenal Other Analyapatrosia × III/IV Metals IIIIV + MQ K, Na CL F. 504 alk TOS × 9/13/21 5/15/ RAD 9315/9320 5 Ñ 11:30 1100 Page : 25 TEMP in O Residual Chlorine (Y/N) OH G Received on (Y/N) Custody Sealed 7 무 Cooler (Y/N) Samples 2 (Y/M)

BON PACHAGE COM

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Required Client Information: loodstack, GA 30188 ITEM# kavin.stepherson@resoluteenv.com One Character per box.
(A-Z 0-9/, -)
Sample lids must be unique Georgia Power 1003 Weatherstone Parkway SAMPLE ID Submitting a sample via this chain of custody constitutes admonifedgment and acceptance of the Page Terms and Conditions found at https://info.page.labs.com/hubis/page-standard-terms.pdf AMPASS S MATRIX
Drawing Water
Whyse
Whose
Procee
Sourced
Di
Why
Air
Othe
Throon Purchase Order #: Project Name: Required Project Information: Report To: Kavin Stephenson Copy To: Section B TOOLS. William Liaker Š MATRIX GODE (see valid codes to left) S 5 X ş ž ž × 3 ş ş BAMPLE TYPE (G-GRAN C-COMP) MidMaraus CCR 4113/4 START SAMPLER WANT AND SIGNATURE 1700 COLLECTED PRINT Name of SAMPLER: 8 8/15/21 SAMPLE TEMP AT COLLECTION Company Name: Address: 38 9 # OF CONTAINERS Attention: lavoice Information: Section C Page Project Menager. Page Crade: (U) Unproserved 10 71 DATE Signed: a in int H2504 HNO3 Preservatives S HCI 10768-17,18 NaOH Na25203 nicole.d'oleo@pacelebs.com Methanol Other Anelyses Test (17/N III/IV Metala × IIVIV + Mg, K, Na CL F, 504 × × alk × × TOS 9/5/21 × RAD 9316/9320 Contain Association Association 11.30 1100 Page : Ship at Comment of the Party of TEMP IN C Residual Chicrine (Y/N) Received on N Custody Q Samples

SIGNATURE of SAMPLER!

9/15/21

(YIN)

Sunted

Cooler (Y/N)

Intact (YW)

Submitting a sample via this chain of custody constitutes acknow CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

				57 3	2	a ii k			2		3	125	ITEM #				Phone	Email:	Address:	Company:
			The state of the state						William.	MCM-14	MOM-OT-		Sample lds must be unique	SAMPLE ID		solution bits hate:	(678)548-9415 Fax	mali: kavin stepherison@resoluteeav.com	1003 Weatherstone Parkway	
		E									100			And	7	Project #	Project Name:	Purchasa Order #	Сору Та	Report To: Kovin Stephenson
		William	SE INDENDE GODING				H		-5	¥	\$	TW		DE (600 VAIId CO		11	l I	4 100		
-		1.74	S(03H)	7	Ħ		#		1	R/13/21		t	DATE	1		11	McManus CCH	I		Kevin Stephenson
1080		Laaker		-	H	+		-	-		+	+	-	START			CCH	1	11	SCO.
PRINT Name of SAMPLER: PRINT Name of SAMPLER: William Lacker Signature of Sampler: 7.	144	*	Name.		\sqcup	4	Ψ,		4	755			TWA		COLLECTED	П	П	1	П	I
PRINT Name of SAMPLER: William SIGNATURE of SAMPLER:						Ш	WIII						DATE		100		I	1	П	l
DIBONOME HED SENDING PRINT NAME OF SAMPLER:		9/15/21		H.	W	1/7							TIME	8		Н		П	П	Ĭ
PLER:		121				-			+			-		SF AT GOLLECTI	DN	Ш				
YE M		=	- Carrier Sales							0		Έ	# OF CONTA			Page	Page	Address:	Com	involce in
Lacker Ripert Mu		1100		-		1			-	W			Unpreserve H2SO4	1		Pace Profile #:	Pace Project Manager.	Diete.	Company Name:	Ancetion
23 (88)		70								(U)			ниоз		3	34	NEW P	1	ane:	Settler
Libert Mul		Fedex								H			HCI		Preservative	1076	agen			5
34.	1 17	1º	孋.								H		NaOH		rativ	10768-17,18	,	1	Ш	Т
	N	9			-	_				-		-	Na28203 Malhanol		8		리양			Ł
Calv	1 4	П				-	-	-	+				Other			Ш	dole	П	1	1
Calvin	2		Seatura educacione				1	_						errest;	YIII		ole d'oleo@pacelabs.com	П	A	
100000	1 1		100					=				Ш	III/IV Matals				siels	П		1
1 日本			B)_						×	×	×	×	III/IV + Mg, H	Ne				П	1	l
ymen K	1.1			-		-	-	+	×	×	×	×	GI, F, 804			HI SOL				0.
Leyman Kerin					100				×	×	×	×	TDS				Н	П	И	
5	10	9/15		-1	Tij z		17.		×	×	×	×	RAD 9315/93	20			ŀ	П	1	L
n Stephensen	1	15/2										_				No. de Talement Public	20	13,05	1	1
Per Mari			068		=			-	+		-		k	-						
2	11:30	1100	Table 1						Ħ											
5	0	0			111															-
MP in C	2.8						Ú						() 	V. America	meracillos	GA GARAGE STATE OF THE BOTTON		The state of the s		Page :
4\id=88	de E	\vdash		1	-			-	Ē	70	. 22	-	Residual Chie	rine (Y/N)		GA .		Latio		
onived on N)	K		8							9:HG					20.01				9	u
alody	X		Newtonoxapator							6								V		
oler	1		8	11						3C					r c					9
N) mples										4				1				1		
nct (N)	1	1				1				1.1								100		w

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

oived on ody od or) plas	IP in C	ININ Legaler	5	Calvin Leyman	vin .	0 0	Muil	107331	React	tker	5	William	E S	PRINT Name of SAMPLER:	N IND	100					
	28				١,									+					A		
4 X X	11:30 274	1	5/1/2		-	13	4	1	2	d								1			
	000		4/15/21			4		1	Fedex	3	δ	1100	12/51 15	1.6		Lagary	Hile	William	2		
SAMPLE CONDITIONS	July 1	STATE OF THE PERSON.	TOME !		NOUNTER AS CELL	M	208	5				高	1		200	STATE OF THE STATE			新 · · · · · · · · · · · · · · · · · · ·		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
						×		15.44		3	-	5 2		O. STARRES	8	E	5/14/21	W		A COMMENTS OF THE PARTY OF THE	121 DUP-1
эн: 711					ж	×				(7)		5 2			12	शास्त्रया भर्ड	9/4)	TW			0PZ-2
эн: 3.72			×		×	×			-	Ü	15	5 2			17	4/H/21 1627	HIP.	F		1	III MCM-20
PH: 5.31			×		×	×		1.1		(M	,~	5 2		-	=	71 1501	BINITE	M			SIS NCM 19
PH: 4 28			*		×	×				w		51 2			00	21 1328	Hilling	\$			
I.			×		я	×				w		17		-	-	DILL ITTHIC	IN/LE	14			MCM-18
pH: 5,39			×		×	×				w		5 2			64	9/H/21 1648	1H/B	W			MCM-15
			×		*	×		4		=								W.	Į.		WEN-IS-
PH: 5.50			×		×	×		-		L		5 2	-		00	JH121 1308	STEEL STEEL	WT			MON-11
PH: 5.09		_	×		×	×	1			W	1	-		+	2	5/14/21 0952	11/18	T.W.			Microscol
PH: 5.04			×		×	×	1		1	U	1	7	1	+	6	VHZ 1126	E E	TW			MCN744
Pri 5.13		E	×		×	×		1		U	1	-	1		7	TCHO LT	TILIT	N.			
	R	1	-	6	1	-		-	-	-	_	_		7	-	-	2				MON-OI
	oskdraj Chlorine (YM)		TDS NAD 9315/9320	Cl, F, 804	M/V + Mg, K, Na	Anslyses Test	Other	Na2S2O3 Methanol	НОВИ	HOI	H2304	OF CONTAINERS	BAMPLE TEMP AT COLLECT	E	DATE E	START	8	MATRIX CODE (see valid on SAMPLE TYPE (G=GRAB D	Window WWW Product St. 19. Oct. 19. Oct		SAMPLE ID One Circulate per hor. (AZ D-31.) Sample kis ment be unique
						YIN (S	Preservatives	Prese			ON	,	COLLECTED	8				g.e	
(A)	A CANADAN PARA PARA PARA PARA PARA PARA PARA PA	The same		wasted Ana				1 12	2	5	Pace Profile 8:	Page	i Ll			П	11	11	Project #		The state of the s
		The state of the s		1		1	Talana O	ncole	1	Pace Project Monager.	dien.	Pace				CCR	McManus OCR	M. N	Project Nam	TAX	Carected Disc Date:
Street Control of Regulatory Agency (1985)	Regula	医糖素			l						ciole	Page Out						der #:	Purchase Order #	iutaenv com	keyin.
						П		$\ \ $		E.	Company Name:	Compa						7.	or Mor	To Tanana	× 6
1 Of 1	Page :	4		1		۱					ă	Attention				9	RESTRICTED TAYERS	Kayin 6	Report To:	D Daylounu	Ideas 1019 Weathwater Deden
	0								ľ	invoke information	thin,	invole.				Ħ	amatio	Olexani	required Project Information:		1

eguiréd Cilent Information; ombany: Georgia Power forest: 1003 Weatherstone Partway ITEM# oodstock, GA 30188 kevin stephenson@recolumenv.com FB-2 DUP-2 The Chain-of-Custody is a LEGAL DOCUMENT. An energy and increase standard-terms pdf. Submitting a sample via this chain of custody constitutes acknowledgment and soceptance of the Page Terms and Conditions found at https://info.pagesiabs.com/hub/s/pas-standard-terms.pdf. Section C Sample ide must be unique One Character per bux SAMPLE ID WATEK Omning Wate Wate Wate Freits Salisate O. Who Au Ohe These Purchase Order & Capy To: E 23 \$ 6 4 - \$ 5 2 8 William Lanker SALINGUISHED BLEASTINGWISH Kevin Stepharson S ž S ₹ S Š ş S 15 3 MATRIX CODE (see valid codes to laft) BAMPLETYPE (G=GRAD C=COMP) McMarus CCR SIMA 1335 1/11/21 H/H/21 1710 1/3/21 START 1705 CANTEEN NAME AND SIGNATURE COLLECTED PRINT Name of SAMPLER: William Log Rot. CHAIN-OF-CUSTODY / Analytical Request Document 署 9/15/21 BAMPLE TEMP AT COLLECTION Invoice information: Attention: Company Maner 9 0 S 1100 が行品を UT # OF CONTAINERS Pace Profile #: Palca Quote: Pace Project Manager. Ç S Ü N Unpreserved H2804 m س TRACILITIES OF THE COLUMN W S HNOS Preservatives Report Muli, Calvin Leymon HCI 10789-17.18 NaDH Ne25203 ricole dolso@paceists.com Methanal Othar Analyses Test Y/N IIIVIV Metals DATE Signed: 9 | 14 | 2] III/IV - Mg, K, Na be × CI. F. 604 × nfk; × × × × × × TOS × × RAD 0315/9320 15 1 BON WINE Time 11.30 100 Page : TEMP in C Residual Chlorina (Y/N) SWITE CONDITIONS Received on PH: 6.67 (YIN) Custody Sealed 2 Cooler (Y/N) Samples 3 Intact (Y/N)

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be comment.

	GA
Preservatives	
a 203 anol Alyees Test (A) Aetale Mg, K. Ne	a) Chtorine (Y/N)
HCC New Medical Management of the Management of	Rest
X X X	DH: 6 44
××××	pH: 6.28
× × × × × × × × × × × × × × × × × × ×	DH: 6.77
Fedex	Z) IIOO (Z)
A Ri	N
(基) H2804	C

November 02, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 16, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole D'Oleo

nicole.d'oleo@pacelabs.com

Mirole D'oler

(704)875-9092 Project Manager

Enclosures

cc: Joe Booth, Resolute Environmental & Water Resources

Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko

Ms. Lauren Petty, Southern Company

Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC

CERTIFICATIONS

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Maxico Certification #: PA01457

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

92561843002 FB-1 Water 09/13/21 17:00 09/16/21 11:30 92561843003 MCM-14 Water 09/13/21 17:32 09/16/21 11:30 92561843004 MCM-01 Water 09/14/21 09:59 09/16/21 11:30 92561843005 MCM-02 Water 09/14/21 11:26 09/16/21 11:30 92561843006 MCM-04 Water 09/14/21 09:52 09/16/21 11:30 92561843007 MCM-11 Water 09/14/21 13:08 09/16/21 11:30 92561843008 MCM-15 Water 09/14/21 16:48 09/16/21 11:30 92561843010 MCM-16 Water 09/14/21 11:10 09/16/21 11:30 92561843011 MCM-19 Water 09/14/21 15:01 09/16/21 11:30 92561843012 MCM-20 Water 09/14/21 16:27 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:05 09/16/21 11:3	Lab ID	Sample ID	Matrix	Date Collected	Date Received
92561843003 MCM-14 Water 09/13/21 17:32 09/16/21 11:30 92561843004 MCM-01 Water 09/14/21 09:59 09/16/21 11:30 92561843005 MCM-02 Water 09/14/21 11:26 09/16/21 11:30 92561843006 MCM-04 Water 09/14/21 09:52 09/16/21 11:30 92561843007 MCM-11 Water 09/14/21 13:08 09/16/21 11:30 92561843008 MCM-15 Water 09/14/21 16:48 09/16/21 11:30 92561843009 MCM-16 Water 09/14/21 11:10 09/16/21 11:30 92561843010 MCM-18 Water 09/14/21 13:28 09/16/21 11:30 92561843011 MCM-19 Water 09/14/21 15:01 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 14:52 09/16/21 11:30 92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:10 09/16/21 11:	92561843001	MCM-12	Water	09/13/21 17:53	09/16/21 11:30
92561843004 MCM-01 Water 09/14/21 09:59 09/16/21 11:30 92561843005 MCM-02 Water 09/14/21 11:26 09/16/21 11:30 92561843006 MCM-04 Water 09/14/21 09:52 09/16/21 11:30 92561843007 MCM-11 Water 09/14/21 13:08 09/16/21 11:30 92561843008 MCM-15 Water 09/14/21 16:48 09/16/21 11:30 92561843010 MCM-16 Water 09/14/21 13:28 09/16/21 11:30 92561843011 MCM-19 Water 09/14/21 15:01 09/16/21 11:30 92561843012 MCM-20 Water 09/14/21 16:27 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 14:52 09/16/21 11:30 92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:10 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 13:35 09/16/21 11:30	92561843002	FB-1	Water	09/13/21 17:00	09/16/21 11:30
92561843005 MCM-02 Water 09/14/21 11:26 09/16/21 11:30 92561843006 MCM-04 Water 09/14/21 09:52 09/16/21 11:30 92561843007 MCM-11 Water 09/14/21 13:08 09/16/21 11:30 92561843008 MCM-15 Water 09/14/21 16:48 09/16/21 11:30 92561843009 MCM-16 Water 09/14/21 13:28 09/16/21 11:30 92561843010 MCM-18 Water 09/14/21 13:28 09/16/21 11:30 92561843011 MCM-19 Water 09/14/21 15:01 09/16/21 11:30 92561843012 MCM-20 Water 09/14/21 16:27 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:10 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-05 Water 09/14/21 13:35 09/16/21 11:3	92561843003	MCM-14	Water	09/13/21 17:32	09/16/21 11:30
92561843006 MCM-04 Water 09/14/21 09:52 09/16/21 11:30 92561843007 MCM-11 Water 09/14/21 13:08 09/16/21 11:30 92561843008 MCM-15 Water 09/14/21 16:48 09/16/21 11:30 92561843009 MCM-16 Water 09/14/21 11:10 09/16/21 11:30 92561843010 MCM-18 Water 09/14/21 13:28 09/16/21 11:30 92561843011 MCM-19 Water 09/14/21 15:01 09/16/21 11:30 92561843012 MCM-20 Water 09/14/21 16:27 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 00:00 09/16/21 11:30 92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:10 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-05 Water 09/14/21 13:35 09/16/21 11:30	92561843004	MCM-01	Water	09/14/21 09:59	09/16/21 11:30
92561843007 MCM-11 Water 09/14/21 13:08 09/16/21 11:30 92561843008 MCM-15 Water 09/14/21 16:48 09/16/21 11:30 92561843009 MCM-16 Water 09/14/21 11:10 09/16/21 11:30 92561843010 MCM-18 Water 09/14/21 13:28 09/16/21 11:30 92561843011 MCM-19 Water 09/14/21 15:01 09/16/21 11:30 92561843012 MCM-20 Water 09/14/21 16:27 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 14:52 09/16/21 11:30 92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:10 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-05 Water 09/14/21 11:43 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 00:23 09/16/21 11:30	92561843005	MCM-02	Water	09/14/21 11:26	09/16/21 11:30
92561843008 MCM-15 Water 09/14/21 16:48 09/16/21 11:30 92561843009 MCM-16 Water 09/14/21 11:10 09/16/21 11:30 92561843010 MCM-18 Water 09/14/21 13:28 09/16/21 11:30 92561843011 MCM-19 Water 09/14/21 15:01 09/16/21 11:30 92561843012 MCM-20 Water 09/14/21 16:27 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 14:52 09/16/21 11:30 92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:05 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 13:35 09/16/21 11:30 92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843020 MCM-06 Water 09/14/21 09:23 09/16/21 11:30	92561843006	MCM-04	Water	09/14/21 09:52	09/16/21 11:30
92561843009 MCM-16 Water 09/14/21 11:10 09/16/21 11:30 92561843010 MCM-18 Water 09/14/21 13:28 09/16/21 11:30 92561843011 MCM-19 Water 09/14/21 15:01 09/16/21 11:30 92561843012 MCM-20 Water 09/14/21 16:27 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 14:52 09/16/21 11:30 92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:05 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 13:35 09/16/21 11:30 92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-06 Water 09/14/21 09:23 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843007	MCM-11	Water	09/14/21 13:08	09/16/21 11:30
92561843010 MCM-18 Water 09/14/21 13:28 09/16/21 11:30 92561843011 MCM-19 Water 09/14/21 15:01 09/16/21 11:30 92561843012 MCM-20 Water 09/14/21 16:27 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 00:00 09/16/21 11:30 92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:05 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 17:10 09/16/21 11:30 92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-06 Water 09/14/21 11:43 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843008	MCM-15	Water	09/14/21 16:48	09/16/21 11:30
92561843011 MCM-19 Water 09/14/21 15:01 09/16/21 11:30 92561843012 MCM-20 Water 09/14/21 16:27 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 14:52 09/16/21 11:30 92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:05 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 17:10 09/16/21 11:30 92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-06 Water 09/14/21 09:23 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843009	MCM-16	Water	09/14/21 11:10	09/16/21 11:30
92561843012 MCM-20 Water 09/14/21 16:27 09/16/21 11:30 92561843013 DPZ-2 Water 09/14/21 14:52 09/16/21 11:30 92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:05 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 17:10 09/16/21 11:30 92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-06 Water 09/14/21 11:43 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843010	MCM-18	Water	09/14/21 13:28	09/16/21 11:30
92561843013 DPZ-2 Water 09/14/21 14:52 09/16/21 11:30 92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:05 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 17:10 09/16/21 11:30 92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-06 Water 09/14/21 11:43 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843011	MCM-19	Water	09/14/21 15:01	09/16/21 11:30
92561843014 DUP-1 Water 09/14/21 00:00 09/16/21 11:30 92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:05 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 17:10 09/16/21 11:30 92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-06 Water 09/14/21 11:43 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843012	MCM-20	Water	09/14/21 16:27	09/16/21 11:30
92561843015 DUP-2 Water 09/14/21 00:00 09/16/21 11:30 92561843016 FB-2 Water 09/14/21 17:05 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 17:10 09/16/21 11:30 92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-06 Water 09/14/21 11:43 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843013	DPZ-2	Water	09/14/21 14:52	09/16/21 11:30
92561843016 FB-2 Water 09/14/21 17:05 09/16/21 11:30 92561843017 EB-1 Water 09/14/21 17:10 09/16/21 11:30 92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-06 Water 09/14/21 11:43 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843014	DUP-1	Water	09/14/21 00:00	09/16/21 11:30
92561843017 EB-1 Water 09/14/21 17:10 09/16/21 11:30 92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-06 Water 09/14/21 11:43 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843015	DUP-2	Water	09/14/21 00:00	09/16/21 11:30
92561843018 MCM-05 Water 09/14/21 13:35 09/16/21 11:30 92561843019 MCM-06 Water 09/14/21 11:43 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843016	FB-2	Water	09/14/21 17:05	09/16/21 11:30
92561843019 MCM-06 Water 09/14/21 11:43 09/16/21 11:30 92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843017	EB-1	Water	09/14/21 17:10	09/16/21 11:30
92561843020 MCM-07 Water 09/14/21 09:23 09/16/21 11:30	92561843018	MCM-05	Water	09/14/21 13:35	09/16/21 11:30
	92561843019	MCM-06	Water	09/14/21 11:43	09/16/21 11:30
92561843021 MCM-17 Water 09/14/21 17:28 09/16/21 11:30	92561843020	MCM-07	Water	09/14/21 09:23	09/16/21 11:30
	92561843021	MCM-17	Water	09/14/21 17:28	09/16/21 11:30

SAMPLE ANALYTE COUNT

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92561843001	MCM-12	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843002	FB-1	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843003	MCM-14	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843004	MCM-01	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843005	MCM-02	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2561843006	MCM-04	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843007	MCM-11	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843008	MCM-15	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843009	MCM-16	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843010	MCM-18	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843011	MCM-19	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843012	MCM-20	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

SAMPLE ANALYTE COUNT

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9320		1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843014	DUP-1	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843015	DUP-2	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843016	FB-2	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843017	EB-1	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843018	MCM-05	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843019	MCM-06	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843020	MCM-07	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92561843021	MCM-17	EPA 9315	JJY	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Lab Sample ID	Client Sample ID	D H	11.2	Demonstrate	Anak — - J	O. v. 5 177
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
92561843001	MCM-12					
EPA 9315	Radium-226	1.59 ± 0.669 (0.713) C:100% T:NA	pCi/L		10/29/21 06:51	
EPA 9320	Radium-228	0.950 ± 0.476 (0.831) C:62% T:89%	pCi/L		10/07/21 11:27	
Total Radium Calculation	Total Radium	2.54 ± 1.15 (1.54)	pCi/L		10/29/21 15:07	
92561843002	FB-1					
EPA 9315	Radium-226	0.0835 ± 0.171 (0.399) C:94% T:NA	pCi/L		10/07/21 09:13	
EPA 9320	Radium-228	0.204 ± 0.376 (0.825) C:55% T:93%	pCi/L		10/07/21 11:28	
Total Radium Calculation	Total Radium	0.288 ± 0.547 (1.22)	pCi/L		10/29/21 15:07	
92561843003	MCM-14					
EPA 9315	Radium-226	3.37 ± 0.808 (0.625) C:98% T:NA	pCi/L		10/29/21 06:51	
EPA 9320	Radium-228	5.01 ± 1.16 (0.814) C:59% T:89%	pCi/L		10/07/21 11:28	
Total Radium Calculation	Total Radium	8.38 ± 1.97 (1.44)	pCi/L		10/29/21 15:07	
92561843004	MCM-01					
EPA 9315	Radium-226	0.180 ± 0.244 (0.525) C:95% T:NA	pCi/L		10/07/21 09:13	
EPA 9320	Radium-228	0.879 ± 0.502 (0.928) C:62% T:86%	pCi/L		10/07/21 11:29	
Total Radium Calculation	Total Radium	1.06 ± 0.746 (1.45)	pCi/L		10/29/21 15:07	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92561843005	MCM-02					
EPA 9315	Radium-226	0.204 ± 0.245 (0.510)	pCi/L		10/07/21 09:13	
EPA 9320	Radium-228	C:94% T:NA 0.674 ± 0.493 (0.961) C:58%	pCi/L		10/07/21 11:29	
Total Radium Calculation	Total Radium	T:86% 0.878 ± 0.738 (1.47)	pCi/L		10/29/21 15:07	
2561843006	MCM-04					
EPA 9315	Radium-226	1.84 ± 0.400 (0.188) C:93% T:NA	pCi/L		10/29/21 06:51	
EPA 9320	Radium-228	0.854 ± 0.489 (0.891) C:56% T:88%	pCi/L		10/07/21 11:29	
Total Radium Calculation	Total Radium	2.69 ± 0.889 (1.08)	pCi/L		10/29/21 15:07	
2561843007	MCM-11					
EPA 9315	Radium-226	0.542 ± 0.315 (0.484) C:97% T:NA	pCi/L		10/07/21 09:13	
EPA 9320	Radium-228	0.824 ± 0.520 (0.983) C:57% T:85%	pCi/L		10/07/21 11:29	
Total Radium Calculation	Total Radium	1.37 ± 0.835 (1.47)	pCi/L		10/29/21 15:07	
2561843008	MCM-15					
EPA 9315	Radium-226	0.861 ± 0.330 (0.501) C:95% T:NA	pCi/L		10/07/21 09:11	
EPA 9320	Radium-228	0.290 ± 0.400 (0.856) C:57% T:87%	pCi/L		10/07/21 11:29	
Total Radium Calculation	Total Radium	1.15 ± 0.730 (1.36)	pCi/L		10/29/21 15:07	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2561843009	MCM-16					
EPA 9315	Radium-226	0.614 ± 0.301	pCi/L	1	10/08/21 08:00	
		(0.429) C:95% T:NA				
EPA 9320	Radium-228	1.41 ± 0.539 (0.799) C:59%	pCi/L	1	10/07/21 11:29	
Total Radium Calculation	Total Radium	T:88% 2.02 ± 0.840 (1.23)	pCi/L	1	10/29/21 15:07	
2561843010	MCM-18					
EPA 9315	Radium-226	3.83 ± 0.705 (0.224) C:87% T:NA	pCi/L	1	10/29/21 06:52	
EPA 9320	Radium-228	4.48 ± 1.06 (0.942) C:65%	pCi/L	1	10/07/21 11:30	
Total Radium Calculation	Total Radium	T:89% 8.31 ± 1.77 (1.17)	pCi/L	1	10/29/21 15:07	
2561843011	MCM-19					
EPA 9315	Radium-226	6.64 ± 1.28 (0.437) C:97% T:NA	pCi/L	1	10/29/21 06:52	
EPA 9320	Radium-228	19.6 ± 3.72 (0.826) C:62% T:87%	pCi/L	1	10/07/21 11:30	
Total Radium Calculation	Total Radium	26.2 ± 5.00 (1.26)	pCi/L	1	10/29/21 15:07	
2561843012	MCM-20					
EPA 9315	Radium-226	6.34 ± 1.27 (0.614) C:94% T:NA	pCi/L	1	10/29/21 06:52	
EPA 9320	Radium-228	28.6 ± 5.32 (0.881) C:63% T:90%	pCi/L	1	10/07/21 11:30	
Total Radium Calculation	Total Radium	34.9 ± 6.59 (1.50)	pCi/L	1	10/29/21 15:07	
2561843013	DPZ-2					
EPA 9315	Radium-226	4.86 ± 1.03 (0.476) C:95% T:NA	pCi/L	1	10/29/21 06:52	
EPA 9320	Radium-228	2.11 ± 0.627 (0.745) C:66% T:86%	pCi/L	1	10/07/21 11:30	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92561843013	DPZ-2					
Total Radium Calculation	Total Radium	6.97 ± 1.66 (1.22)	pCi/L		10/29/21 15:07	
92561843014	DUP-1					
EPA 9315	Radium-226	0.771 ± 0.357 (0.543) C:97% T:NA	pCi/L		10/08/21 08:00	
EPA 9320	Radium-228	0.643 ± 0.416 (0.783) C:60% T:87%	pCi/L		10/07/21 11:30	
Total Radium Calculation	Total Radium	1.41 ± 0.773 (1.33)	pCi/L		10/29/21 15:07	
92561843015	DUP-2					
EPA 9315	Radium-226	6.79 ± 1.32 (0.495) C:98% T:NA	pCi/L		10/29/21 06:53	
EPA 9320	Radium-228	22.7 ± 4.30 (1.20) C:60% T:85%	pCi/L		10/07/21 11:20	
Total Radium Calculation	Total Radium	29.5 ± 5.62 (1.70)	pCi/L		10/29/21 15:07	
92561843016	FB-2					
EPA 9315	Radium-226	0.137 ± 0.182 (0.386) C:94% T:NA	pCi/L		10/08/21 08:00	
EPA 9320	Radium-228	-0.0494 ± 0.544 (1.25) C:61% T:81%	pCi/L		10/07/21 11:20	
Total Radium Calculation	Total Radium	0.137 ± 0.726 (1.64)	pCi/L		10/29/21 15:07	
92561843017	EB-1					
EPA 9315	Radium-226	-0.0271 ± 0.246 (0.636) C:94% T:NA	pCi/L		10/08/21 08:00	
EPA 9320	Radium-228	0.687 ± 0.600 (1.21) C:60% T:91%	pCi/L		10/07/21 15:13	
Total Radium Calculation	Total Radium	0.687 ± 0.846 (1.85)	pCi/L		10/29/21 15:07	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Lab Sample ID	Client Sample ID			
Method	Parameters	Result	Units	Report Limit Analyzed Qualifiers
92561843018	MCM-05			
EPA 9315	Radium-226	2.98 ± 0.957 (0.957) C:97% T:NA	pCi/L	10/29/21 06:53
EPA 9320	Radium-228	4.17 ± 1.04 (1.06) C:62% T:92%	pCi/L	10/07/21 11:20
Total Radium Calculation	Total Radium	7.15 ± 2.00 (2.02)	pCi/L	10/29/21 15:16
92561843019	MCM-06			
EPA 9315	Radium-226	5.05 ± 1.33 (1.10) C:94% T:NA	pCi/L	10/29/21 06:53
EPA 9320	Radium-228	3.06 ± 1.06 (1.64) C:64% T:87%	pCi/L	10/07/21 14:30
Total Radium Calculation	Total Radium	8.11 ± 2.39 (2.74)	pCi/L	10/29/21 15:16
92561843020	MCM-07			
EPA 9315	Radium-226	5.22 ± 1.32 (0.991) C:92% T:NA	pCi/L	10/29/21 06:53
EPA 9320	Radium-228	5.11 ± 1.37 (1.62) C:60% T:88%	pCi/L	10/07/21 14:30
Total Radium Calculation	Total Radium	10.3 ± 2.69 (2.61)	pCi/L	10/29/21 15:16
92561843021	MCM-17			
EPA 9315	Radium-226	4.96 ± 1.30 (0.904) C:96% T:NA	pCi/L	10/29/21 06:53
EPA 9320	Radium-228	3.86 ± 0.975 (0.918) C:63% T:86%	pCi/L	10/07/21 14:37
Total Radium Calculation	Total Radium	8.82 ± 2.28 (1.82)	pCi/L	10/29/21 15:16

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-12 PWS:	Lab ID: 9256184 Site ID:	3001 Collected: 09/13/21 17:53 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	1.59 ± 0.669 (0.713) C:100% T:NA	pCi/L	10/29/21 06:5	1 13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.950 ± 0.476 (0.831) C:62% T:89%	pCi/L	10/07/21 11:27	7 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	2.54 ± 1.15 (1.54)	pCi/L	10/29/21 15:07	7 7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: FB-1 PWS:	Lab ID: 9256 Site ID:	Collected: 09/13/21 17:00 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0835 ± 0.171 (0.399) C:94% T:NA	pCi/L	10/07/21 09:13	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.204 ± 0.376 (0.825) C:55% T:93%	pCi/L	10/07/21 11:28	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.288 ± 0.547 (1.22)	pCi/L	10/29/21 15:07	7 7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-14 PWS:	Lab ID: 9256 Site ID:	1843003 Collected: 09/13/21 17:32 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	3.37 ± 0.808 (0.625) C:98% T:NA	pCi/L	10/29/21 06:5	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	5.01 ± 1.16 (0.814) C:59% T:89%	pCi/L	10/07/21 11:28	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	8.38 ± 1.97 (1.44)	pCi/L	10/29/21 15:07	7 7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-01 PWS:	Lab ID: 925618- Site ID:	43004 Collected: 09/14/21 09:59 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.180 ± 0.244 (0.525) C:95% T:NA	pCi/L	10/07/21 09:13	3 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	0.879 ± 0.502 (0.928) C:62% T:86%	pCi/L	10/07/21 11:29	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.06 ± 0.746 (1.45)	pCi/L	10/29/21 15:07	7 7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-02 PWS:	Lab ID: 925618 Site ID:	343005 Collected: 09/14/21 11:26 Sample Type:	Received:	09/16/21 11:30 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	0.204 ± 0.245 (0.510) C:94% T:NA	pCi/L	10/07/21 09:13	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	0.674 ± 0.493 (0.961) C:58% T:86%	pCi/L	10/07/21 11:29	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.878 ± 0.738 (1.47)	pCi/L	10/29/21 15:07	7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-04 PWS:	Lab ID: 9256 1 Site ID:	1843006 Collected: 09/14/21 09:52 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	1.84 ± 0.400 (0.188) C:93% T:NA	pCi/L	10/29/21 06:5	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.854 ± 0.489 (0.891) C:56% T:88%	pCi/L	10/07/21 11:29	9 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.69 ± 0.889 (1.08)	pCi/L	10/29/21 15:0	7 7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-11 PWS:	Lab ID: 9256 Site ID:	1843007 Collected: 09/14/21 13:08 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.542 ± 0.315 (0.484) C:97% T:NA	pCi/L	10/07/21 09:13	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.824 ± 0.520 (0.983) C:57% T:85%	pCi/L	10/07/21 11:29	9 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.37 ± 0.835 (1.47)	pCi/L	10/29/21 15:07	7 7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-15 Lab ID: 92561843008 Collected: 09/14/21 16:48 Received: 09/16/21 11:30 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg 0.861 ± 0.330 (0.501) EPA 9315 Radium-226 pCi/L 10/07/21 09:11 13982-63-3 C:95% T:NA Pace Analytical Services - Greensburg EPA 9320 $0.290 \pm 0.400 \quad (0.856)$ Radium-228 pCi/L 10/07/21 11:29 15262-20-1 C:57% T:87% Pace Analytical Services - Greensburg Total Radium Total Radium 1.15 ± 0.730 (1.36) pCi/L 10/29/21 15:07 7440-14-4 Calculation

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-16 PWS:	Lab ID: 9256 Site ID:	1843009 Collected: 09/14/21 11:10 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.614 ± 0.301 (0.429) C:95% T:NA	pCi/L	10/08/21 08:00	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.41 ± 0.539 (0.799) C:59% T:88%	pCi/L	10/07/21 11:29	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.02 ± 0.840 (1.23)	pCi/L	10/29/21 15:07	7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-18 PWS:	Lab ID: 9256 Site ID:	1843010 Collected: 09/14/21 13:28 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	3.83 ± 0.705 (0.224) C:87% T:NA	pCi/L	10/29/21 06:52	2 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	4.48 ± 1.06 (0.942) C:65% T:89%	pCi/L	10/07/21 11:30	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	8.31 ± 1.77 (1.17)	pCi/L	10/29/21 15:07	7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-19 PWS:	Lab ID: 9256 Site ID:	1843011 Collected: 09/14/21 15:01 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	6.64 ± 1.28 (0.437) C:97% T:NA	pCi/L	10/29/21 06:52	2 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	19.6 ± 3.72 (0.826) C:62% T:87%	pCi/L	10/07/21 11:30	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	26.2 ± 5.00 (1.26)	pCi/L	10/29/21 15:07	7 7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-20 PWS:	Lab ID: 9256' Site ID:	1843012 Collected: 09/14/21 16:27 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	6.34 ± 1.27 (0.614) C:94% T:NA	pCi/L	10/29/21 06:52	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	28.6 ± 5.32 (0.881) C:63% T:90%	pCi/L	10/07/21 11:30	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	34.9 ± 6.59 (1.50)	pCi/L	10/29/21 15:07	7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: DPZ-2 PWS:	Lab ID: 92561 Site ID:	1843013 Collected: 09/14/21 14:52 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 9315	4.86 ± 1.03 (0.476) C:95% T:NA	pCi/L	10/29/21 06:52	2 13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	2.11 ± 0.627 (0.745) C:66% T:86%	pCi/L	10/07/21 11:30	15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	6.97 ± 1.66 (1.22)	pCi/L	10/29/21 15:07	7 7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: DUP-1 PWS:	Lab ID: 9256 ² Site ID:	1843014 Collected: 09/14/21 00:00 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.771 ± 0.357 (0.543) C:97% T:NA	pCi/L	10/08/21 08:00	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.643 ± 0.416 (0.783) C:60% T:87%	pCi/L	10/07/21 11:30	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.41 ± 0.773 (1.33)	pCi/L	10/29/21 15:07	7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: DUP-2 PWS:	Lab ID: 9256 Site ID:	1843015 Collected: 09/14/21 00:00 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	6.79 ± 1.32 (0.495) C:98% T:NA	pCi/L	10/29/21 06:53	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	22.7 ± 4.30 (1.20) C:60% T:85%	pCi/L	10/07/21 11:20	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	29.5 ± 5.62 (1.70)	pCi/L	10/29/21 15:07	7 7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: FB-2 PWS:	Lab ID: 92561 8 Site ID:	843016 Collected: 09/14/21 17:05 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	0.137 ± 0.182 (0.386) C:94% T:NA	pCi/L	10/08/21 08:00	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	-0.0494 ± 0.544 (1.25) C:61% T:81%	pCi/L	10/07/21 11:20	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.137 ± 0.726 (1.64)	pCi/L	10/29/21 15:07	7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: EB-1 Lab ID: 92561843017 Collected: 09/14/21 17:10 Received: 09/16/21 11:30 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg -0.0271 ± 0.246 (0.636) EPA 9315 Radium-226 pCi/L 10/08/21 08:00 13982-63-3 C:94% T:NA Pace Analytical Services - Greensburg EPA 9320 0.687 ± 0.600 (1.21) Radium-228 pCi/L 10/07/21 15:13 15262-20-1 C:60% T:91% Pace Analytical Services - Greensburg Total Radium Total Radium 0.687 ± 0.846 (1.85) pCi/L 10/29/21 15:07 7440-14-4 Calculation

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-05 PWS:	Lab ID: 9256 Site ID:	1843018 Collected: 09/14/21 13:35 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	2.98 ± 0.957 (0.957) C:97% T:NA	pCi/L	10/29/21 06:53	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	4.17 ± 1.04 (1.06) C:62% T:92%	pCi/L	10/07/21 11:20	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	7.15 ± 2.00 (2.02)	pCi/L	10/29/21 15:16	7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-06 PWS:	Lab ID: 925618 Site ID:	343019 Collected: 09/14/21 11:43 Sample Type:	Received:	09/16/21 11:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	5.05 ± 1.33 (1.10) C:94% T:NA	pCi/L	10/29/21 06:53	3 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	3.06 ± 1.06 (1.64) C:64% T:87%	pCi/L	10/07/21 14:30	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	8.11 ± 2.39 (2.74)	pCi/L	10/29/21 15:16	7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-07 PWS:	Lab ID: 9256184 Site ID:	3020 Collected: 09/14/21 09:23 Sample Type:	Received:	09/16/21 11:30 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg		•		
Radium-226	EPA 9315	5.22 ± 1.32 (0.991) C:92% T:NA	pCi/L	10/29/21 06:53	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	5.11 ± 1.37 (1.62) C:60% T:88%	pCi/L	10/07/21 14:30	15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	10.3 ± 2.69 (2.61)	pCi/L	10/29/21 15:16	7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Sample: MCM-17 PWS:	Lab ID: 9256 Site ID:	1843021 Collected: 09/14/21 17:28 Sample Type:	Received:	09/16/21 11:30 M	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	4.96 ± 1.30 (0.904) C:96% T:NA	pCi/L	10/29/21 06:53	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	3.86 ± 0.975 (0.918) C:63% T:86%	pCi/L	10/07/21 14:37	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	8.82 ± 2.28 (1.82)	pCi/L	10/29/21 15:16	7440-14-4	

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

QC Batch: 466263 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92561843001, 92561843002, 92561843003, 92561843004, 92561843005, 92561843006, 92561843007,

92561843008, 92561843009, 92561843010, 92561843011, 92561843012, 92561843013, 92561843014,

92561843015, 92561843016, 92561843017

METHOD BLANK: 2251636 Matrix: Water

Associated Lab Samples: 92561843001, 92561843002, 92561843003, 92561843004, 92561843005, 92561843006, 92561843007,

92561843008, 92561843009, 92561843010, 92561843011, 92561843012, 92561843013, 92561843014,

92561843015, 92561843016, 92561843017

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.112 ± 0.184 (0.410) C:98% T:NA
 pCi/L
 10/07/21 09:13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

QC Batch: 466410 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92561843021

METHOD BLANK: 2252279 Matrix: Water

Associated Lab Samples: 92561843021

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.420 ± 0.367 (0.738) C:65% T:90%
 pCi/L
 10/07/21 11:22

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

QC Batch: 466264 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92561843018, 92561843019, 92561843020, 92561843021

METHOD BLANK: 2251638 Matrix: Water

Associated Lab Samples: 92561843018, 92561843019, 92561843020, 92561843021

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.284 ± 0.229 (0.421) C:95% T:NA
 pCi/L
 10/08/21 08:00

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

QC Batch: 466409 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92561843001, 92561843002, 92561843003, 92561843004, 92561843005, 92561843006, 92561843007,

92561843008, 92561843009, 92561843010, 92561843011, 92561843012, 92561843013, 92561843014,

92561843015, 92561843016, 92561843017, 92561843018, 92561843019, 92561843020

METHOD BLANK: 2252274 Matrix: Water

Associated Lab Samples: 92561843001, 92561843002, 92561843003, 92561843004, 92561843005, 92561843006, 92561843007,

92561843008, 92561843009, 92561843010, 92561843011, 92561843012, 92561843013, 92561843014,

92561843015, 92561843016, 92561843017, 92561843018, 92561843019, 92561843020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.304 ± 0.374 (0.792) C:64% T:89%
 pCi/L
 10/07/21 11:22

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 11/02/2021 09:32 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Date: 11/02/2021 09:32 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92561843001	MCM-12	EPA 9315	466263	_	
92561843002	FB-1	EPA 9315	466263		
2561843003	MCM-14	EPA 9315	466263		
2561843004	MCM-01	EPA 9315	466263		
2561843005	MCM-02	EPA 9315	466263		
2561843006	MCM-04	EPA 9315	466263		
2561843007	MCM-11	EPA 9315	466263		
2561843008	MCM-15	EPA 9315	466263		
2561843009	MCM-16	EPA 9315	466263		
2561843010	MCM-18	EPA 9315	466263		
2561843011	MCM-19	EPA 9315	466263		
2561843012	MCM-20	EPA 9315	466263		
2561843013	DPZ-2	EPA 9315	466263		
2561843014	DUP-1	EPA 9315	466263		
2561843015	DUP-2	EPA 9315	466263		
2561843016	FB-2	EPA 9315	466263		
2561843017	EB-1	EPA 9315	466263		
2561843018	MCM-05	EPA 9315	466264		
2561843019	MCM-06	EPA 9315	466264		
2561843020	MCM-07	EPA 9315	466264		
2561843021	MCM-17	EPA 9315	466264		
2561843001	MCM-12	EPA 9320	466409		
2561843002	FB-1	EPA 9320	466409		
2561843003	MCM-14	EPA 9320	466409		
2561843004	MCM-01	EPA 9320	466409		
2561843005	MCM-02	EPA 9320	466409		
2561843006	MCM-04	EPA 9320	466409		
2561843007	MCM-11	EPA 9320	466409		
2561843008	MCM-15	EPA 9320	466409		
2561843009	MCM-16	EPA 9320	466409		
2561843010	MCM-18	EPA 9320	466409		
2561843011	MCM-19	EPA 9320	466409		
2561843012	MCM-20	EPA 9320	466409		
2561843013	DPZ-2	EPA 9320	466409		
2561843014	DUP-1	EPA 9320	466409		
2561843015	DUP-2	EPA 9320	466409		
2561843016	FB-2	EPA 9320	466409		
2561843017	EB-1	EPA 9320	466409		
2561843018	MCM-05	EPA 9320	466409		
2561843019	MCM-06	EPA 9320	466409		
2561843020	MCM-07	EPA 9320	466409		
2561843021	MCM-17	EPA 9320	466410		
2561843001	MCM-12	Total Radium Calculation	470455		
2561843002	FB-1	Total Radium Calculation	470455		
2561843003	MCM-14	Total Radium Calculation	470455		
2561843004	MCM-01	Total Radium Calculation	470455		
2561843005	MCM-02	Total Radium Calculation	470455		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS CCR RADS

Pace Project No.: 92561843

Date: 11/02/2021 09:32 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92561843006	MCM-04	Total Radium Calculation	470455		
92561843007	MCM-11	Total Radium Calculation	470455		
92561843008	MCM-15	Total Radium Calculation	470455		
92561843009	MCM-16	Total Radium Calculation	470455		
92561843010	MCM-18	Total Radium Calculation	470455		
92561843011	MCM-19	Total Radium Calculation	470455		
92561843012	MCM-20	Total Radium Calculation	470455		
92561843013	DPZ-2	Total Radium Calculation	470455		
92561843014	DUP-1	Total Radium Calculation	470455		
92561843015	DUP-2	Total Radium Calculation	470455		
92561843016	FB-2	Total Radium Calculation	470455		
92561843017	EB-1	Total Radium Calculation	470455		
92561843018	MCM-05	Total Radium Calculation	470459		
92561843019	MCM-06	Total Radium Calculation	470459		
92561843020	MCM-07	Total Radium Calculation	470459		
92561843021	MCM-17	Total Radium Calculation	470459		

~	Document Nama:	(CEC) DA	Document Revised: October 28; 2020 Page 1 of 2
Pace Analytical*	Sample Condition Upon Receipt Occument No.: F-CAR-CS-033-Rev.07	(JCWN)	Issuing Authority: Pace Carolinas Quality Office
aboratory receiving samples: Asheville	Huntersville Ralel	gh Meg	hanicsville Atlanta Kernersville
Sample Condition Client Name: Up on Receipt God	rgia Pour	Project #:	WO#: 92561843
ourles: Fediex De Coromercial Pace	IPS DISPS DCII	lent	92561843
stody Seal Present? Wes No	Seala Intacc? Pres No		nate/Initials Person Évamining Contents: 6 9/66
ermorneter; Jim Gun ID: 93 To 7 I oler Temp: 29/L4/2.5 Add/Subtra oler Temp Corrected (*C): 2.9	Type of Ico: Wet DB Factor: oct (*C)	Temps	Biological Tissue Frozen? Nes No N/A hould be above freezing to 6°C amples out of temp criteria. Samples on ice, cooling process begun ples originate from a foreign source (internationally;
samples originate in a quarantine zone within the Ver [No	: United States: CA, NY, or 3G [check ma	pa)s Massin	#Hawaii and Puerto Ricoj? [] Yes
Chain of Custody Present?	DIVES CING CINA	L	
		2.	
Samples Arrived within Hold Time?	DYES DING DINA	3.	
Short Hold Time Analysis (<72 hr.)?	OYES OND ONA	4.	
Rus fi Turn Around Time Requested?	7		
Sufficient Volume?	Pres No DNA	6.	
Correct Containers Used? -Page Containers Used?	Dros DNO DNA	ALD.	
	DIVES DNO DNA	7.	
Containers lutact? Dissolved analysis: Samples Field Filtered?	Tives DNo ZINA	8.	6.7
Sample Labels March COC7	Ves No ONA	9.	
-Includes Date/Time/ID/Arralysis Matrix:	et		
Headspace in VOA Vials (>5-5mm)?	Tes OND ONA	10.	
Tilp Blank Present?	TYES MO ZNIA	ш.	
Trip Blank Custody Seals Present?	Tyes The Thia	1	
OMMENTS/SAMPLE DISCREPANCY			ifleld Data Required7 ☐Y≃s ☐No
		Int ID of s	plit containe/s;
IENT NOTIFICATION/RESOLUTION			
Person contacted;	Date/TI	me:	
Project Manager SCURF Review:			Date:
Holest manager a cont nemer.			Date
Project Manager SRF Review:		-	Date(

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR) Document No.:

F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020 Page 1 of 1

Issuing Authority:

WO#: 92561843

PM: NMG

Due Date: 10/07/21

CLIENT: GA-GA Power

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Colliform, TOC, Oll and Grease, ORO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

(tem#	BP4U-125 mL Plastic Unpreserved (N/A) (Cl.)	6P3U-250 mL Plastic Linpreserved (N/A)	BP2U-500 mt. Plastic Unpresenyed (N/A)	Brilling litter Plastic Unpreserved (N/A)	BP455.25 mLPUstic H2504 (pH < 2) (GI-)	BR3N-250 mL plastic MNO3 [pH < 2]	8P42-425 mL Plastic ZN Acetate & NaQH (>9)	BP4C-125 mLPlasticNaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass Jan Unpreserved	AG2U-1 liter Amber-Ungreseaved (N/A) (CI-)	AGIN-1 liter Amber HCI (pH < 2)	AGBU-250 mL Amber Unpreserved (N/A) (CI-)	AG15:1 liter Amber H2404 (pH < 2)	AGES 250 in Lember H2504 (pH < 2)	AG3A[BG3A]-250 mt. Amber NH4Cf (N/A)(Ci-)	DESH-YOUR VOA HE! (W/A)	VEST-40 mt VDA NA2SZQZ-(N/A)	VG9U-10 mc VOA Unp [N/A]	DG9P-40 mt. VOA H3PD4 (N/A)	VOAK (6 vials per kity-5035 kit (N/A)	V/GR (3 Vials per ldt)-VPH/Gas kit (N/A)	SP5T-125 mL Sterlie Plastic (N/A - lab)	SPZTEZSO m.L Sterile Plastic (N/A - lab)	BPIN	BP24-250 mL Plastic (N+2)2504 (5.3-9.7)	AGOU-100 ml. Amber Unaveserved vials (N/A)	VSGU-20 mt Schrelladon viels (N/A)	DGSU-40 mt Aniber Unpreserved vials (N/A)
1	1	I	1		1	X	X	1			1		1	/	/									X	X	1		
2	1	2			1	Y	X	V			1		/	1	1									又	X			
3	1	2	1		1	19	1	V					1	/	1			1						\sum_{i}	/			
	1				V	1	1	1			1				1			7							1		10	
	1				1	1	1	1			/		1	V	7									4				-
	1				1	1	7	7			1		4	1				_						7	1	=	-	-
	1				V	Y	7	Y			X	_			1	-		-						1	1			-
-	1	1			1	1	X	1	-		1	-		4	7	-								/	7			
0	1		-		1	X	X	1		-	7		1		1	4	-							/	7			-
1	1	4	+	-	1	7	1	1		\dashv	7		1	1	1				-			-		/	1			
2 1	1	-	-	-	1	1	1	1	+	-	1	-	1	1	7									/	1			Ì
	7	1			1	7	1	1	- L	Adi	ıstn	ient	Loc	for	Pre	serv	ed	Sam	ples		-		_	لاب	_	- 0		-
San	nplo ti	2	Туре	of Pre	serva	tíve	pH	Hpan	receip		Date	presen	vatio	n adju	sted	T	lme p	reserv	atlon		Anto		f Pres dded	ervati	ve		LOT #	
										1		_					_			-								

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

	10	Sample Condition Upon Receipt(SCL	
	Pace Analytical*	Document No.: F-CAR-CS-033-Rev.07	Issuing Authority: Pace Carolinas Quality Office
verified samples Exceptions	mark top half of box if pH ar and within the acceptance i . VOA, Colligum, TOC, Oil and Greeze m half of box is to list numb	ange for preservation ono/2015 (water) DOC, LLHg	ect#

(tems	8P4U-225 mL Plastic Unpreserved (N/A) (CL.)	BR3U-350 mL Plastic Unoveserved (N/A)	BP2LH-500 ml Playtic Unprescryed (N/A)	Pru-s mar Pisson unpreserved (M/A)	8P45-125 mLPlastic H2504 (pH < 2) (CI-)	BRSN-250 mil plastic HNO3 (pH < 2)	RP42-125 ml Plastic ZN Accrate & NaOil (59)	BP4C-125 mL Plestic NaOH (gH > 12) (CI-)	WGFB-Wide-mouthed Glass Jar Unpreserved	AG1U-1 ther Amber Unpreserved (N/A) (CI-)	AG1H-1 liter.Amber HCl (p→ < 2)	AGBU-250 mL Amber Unpreserved (N/A) (CF)	A615-1 liter Amber H2504 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	AG3A(DG3A)-250 on, Amber NHWG (N/A)(CI)	PGSH4G FILVQA HCI (N/A)	V691-10 mL VDA N225203-(N/A)	VG9U-40 mt VDA,Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 Viels per kit)-5035 kit (N/A)	V/GR (3 visits per kit)-VPH/Gas kit (N/A)	SPST-125 ml Sterile Plastic (N/A - lab)	(der -v/N) puseue Bisets to 05241285	BPIN	BP36-250 mL Plastic (NH2)2504 (5.3-9.7)	AGDU-100 nL Amber Unpreseived vials (N/A)	VSG15-20 mt Scintillusion visis (N/A)	DGSUI-40 mt Amber Unpreserved vials (N/A)
1	1	1	1		1	1	1	1				P	1	1	1						μġ			3	7		-	
2	1	1	ţ		1	X	1	1			1		1	1	1			H						3	1	Щ		
3	1	1	1		1	X	1	1			1		1	1	1				II.					2				
4	1	I	1		1	X	/	1			1		1	1	/		1		D					X	Y			
5	1				1	1	1	/			V		1	1	1									7	4			_
5	1	1	į,		1	V	X	/			1		/	1	1				U		(1)			3	1			
7	V	1	1		1	X	1				1	Ε,	1	1	/									2	7		1	Ц
8	1	1	1		1	X	/				1	E	1	1	1			Ш						2	7			
	1	1	1		/	K	/	1			1		1	1	1							-		2	4			100
io	1	1	1		1	X	/				/		1	1	1									2	Y			
I	1	1	1		/	X		1			1		1	1	1							1 1		3	1	-		
12	1	1	(/	X	/	/			V		/	/	1		1							X	1			

		- 1000	ljustment Log for Pres		Amount of Preservative	Lati
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	added	2017

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Official (i.e., Out of field, incorrect preservative, out of temp, incorrect containers.

10	Oncument Name: Sample Condition Upon Receipt(SCUR)	Page 2 of 2	
Pace Analytical*	Document No.: F-CAR-CS-033-Ray.07	Issuing Authority: Pace Carolinas Quality Office	
*Check mark top half of box if pH an verified and within the acceptance resamples. Exceptions: VOA, Collins, TOC, OH and Grease, **Bottom half of box is to list number	onge for preservation ong/8015 (water) DOC, LLHg		

Items	BP4U-125 ml. Plastic Unpreserved [N/A] [Cl.]	BRSU-250 m.t Plastic Universerved (N/A)	SP2U-500 mt Pastig Unpreserved (N/A)	BPLU-1, frac Plantic Unaverse road (Ave.	No feel processing and the second	8P45-125 mL PlateCH2504 (pH < 2) (G+)	BP3N-250 mL plastic MNO3 (pH < 2)	BPSZ-125 mL Plantic ZN Acetate & NSQH (>9)	BPUC-125 mL Plastic NaOH (gH > 12) (CL-)	WGFU-Wide-mouthed Glass Jar Unpraserved	AG1U-1 ller Amberiungreserved (N/A) (C-)	AGUSA liter.Amber HCI [pH < 2]	AGBU-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Ambar H2504 (pH < 2)	AG35-250 mt. Amber: M250+ (pH < 2)	AGSĄ(DGSA)-ŻŚD m. Amber NHACI (N/AJICH)	DG9H40 mt VQA HCI (N/A)	V69T-40 mt VOA N825203-(N/A)	VG9U-40 mt VOA.Unp (N/A)	DG9F-40 rsl VOA H3PD4 LN/A)	VDAK (G VIBIS per kit) SUES kit (N/A)	V/G# (3 vinis per Kich-VPH/Gas kit (N/A)	SPST-125 mL Startle Plastic (N/A - Iab)	SP2T=250 mt Steelle Hastic (N/A-lab)	BRIN	BP3A-250 mL Plastic (NH2)2504 (9.8-9.7)	AGOU-200 mt Amber Unpreserved vink (N/K)	VSGU-20 Int. Schröflation vials (N/A)	DGSU-40 mt. Amber Unpreserved viels (N/A)
1	1	1	1		1	V	X	1	1			1		/	/	1									N	1			
2	1	2	1		1	V	X	1				1		1	1	1				П	4	7 1			3	7			
3	1	2	1		1	V	X	1	1		7	1		1	V	/									2	7	-		
1	1	2	i		1	1	V	1	1		-	V			1										2	1			
5	1		F		1	1	1	1				/		1	1	1	1								1	7			
6	1		0		1	1	1	1	1	I		1		1	1	1									7	7			
T	1				1	1	V	1	1			1		1	1	1						Į.			1	1			
8	1				1	1	V	1	1		Ī	/		/	1	/				H					1	7			
7	1				1	1	V	V	V			1	ĺ	1	1	/									1	1			_
20	1				1	1	V	V	V			V		1	1	1									1	1			
ii	1				1	1	1	V	V			1		1	1	1	7								1	1			
2	1				1	1	V	V				1		1	1	1				1.1	=				1	1			

		pH Ac	justment Log for Pres	erved samples		
Sample 10	Type of Preservative	pH upon receipt	Date preservation adjusted	Time proseryation adjusted	Aniount of Preservative added	Lot

Nate: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina Office (i.e. Out of hold, interrect preservative, out of temp, incorrect containers.

10		Sample Condition Upon R	The second second	Page 2 of 2	
Pacer	inalytical"	Document No. F-CAR-CS-033-Re		Issuing Authority: Pace Carolinas Quality Office	
*Check mark top half verified and within the samples. Exceptions: VOA, Collions, 1	e acceptance ran OC, OII and Grease, OF	ge for preservation	Project #		

Items	BPUU-125 mL Plastie Unpreserved (N/A) (CL.)	BP3U-250 mL Plastie Unpreserved [M/A]	RP2U-500 mL Playtic Unpresenved (N/A)	6FAU-2 (Ner-Plante Unpreserved (N/A)	BP45-125 mL Plactic H2504 (pH < a) retu	BP3N-750-TI plantic HNOs in A 250	BP47-ADC mt Marriago Activity	8P4C-12S : mLPlastic NaOH (gH > 12) [CI-)	WGFU-Wide-mouthed Glass Jar Unpreserved	AG1U-1 liter Amber-Unpreserved (N/A) (CI-)	AGIN-1 Mar ambow HCI (pH < 2)	AGBU-250 mL Amber Unpreserved (N/A) (CI-)	AG15-3 liter Amber H2304 (pH < 2)	4535-259 mL Amber H2504 (pH < 2)	AGSALDGSA)-250 mL.Ambernhaci (N/A)(CI-)	מאון האי אטא אם שי אפשם	VG9T-40 mt voa nazszes-(N/A)	VGSU-10 mt VOA Unp (N/A)	DG9P-40 mL VOA H3P04 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per Nit)-VPH/Gas kit (M/A)	SPST-125 mL Sterile Plantic (N/A - fab)	SP2T,250 ml. Sterile Plastic (N/A - lab)	DPIN	8P5A-250 ML Plast/c (WHZ)2504 (5.5-9.7)	AGOU-102mLAmber Unpreserved visib (N/R)	vsGU-20 mt.Scintillation visits (N/A)	DGSIJ-40 mt Amber Unpreserved viais (N/A)
ī	1	2	1		1	1	1	1			1	p	1	1	1				90					3	Z			
2	1	2	1		1	1		1			1	1	1											2	7			
3	1	2	(1	X	1	1			1		1		1									χ	1			
	1	A			1	1	1	1			1		1	/	1				7					1	1			
5	V			Į,	1	1	1	1			1		1	1	1									1				
6	1				1	1	1	1			1		1	7	1									7	Y			
7	1				1	1	1	1			1		/	1	1									1	1			
8.	1				1	1	1	1			1		1	1	1										7			
3	V				1	1	1	1		ijij	1		1	V	1									1	4			-
10	/				1	1	1	1			1		1	1	1									7	1			
EA	1				1	1	1	1			1		1	1	1									1	1			
12	1			E	1	1	1	1			/		1	1	1	1	1							1	1			

and the second	The second secon		justment Log for Pres		Amount of Preservative	Lat W
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	added	
-	-	-				
				110		

Note: Whenever there is a discrupancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Carolina Compliance samples, a copy of this form will be sent to the North Carolina DEHNR Carolina Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

lequired Client Information: ITEM # loodstock, GA 30188 kevin stapherecon@resoluteerv.com (678)548-9415 Fax 1003 Weatherstone Pankway (AZ 0-9/.-)
Sample lds must be unique One Character per box SAMPLE ID Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubts/pas-standard-terms.pdf Required Project Information: Report To: Kevin Stephenson Copy To: Purchase Order # Project Name: 3985P#755EB William Lacker Kevin Stephenson MATRIX CODE (see valid codes (o left) ş ž × × S Š S 3 3 ž 3 SAMPLE TYPE (G#GRAB G#COMP) MoManus CCR 1/13/2 START 1753 MPCER NAME AND SIGNATURE COLLECTED SIGNATURE OF SAMPLER PRINT Name of SAMPLER: DATE 8 5/15/21 SAMPLE TEMP AT COLLECTION Address: U invoice information: Attention: # OF CONTAINERS Page Profile #; Section C Para Project Morager Pace Quote: 1100 7 Unpreserved Adject Robert Meil, Courin Leymon, Keela Stephensen H2804 W HNOS redex 10768-17.18 HO NaOH MOLESTER STREET nicole.d'oleo@pacelabs.com Na2S2O3 Methanol Marilo Afficily sostife it. III/IV Metals IIVIV + Mg, K. Na CL F. 504 alk × TOS 9/13/21 Mry 1 9/15/21 RAD 9316/9320 1130 1100 Page: 72.4 TEMP In C Residual Chlorine (Y/N) Received on DH 62-(Y/N) Custod Sealed 오 Coulsy (Y/N) Samples Z intest (Y/N)

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Voodstock, GA 30188 lequired Client Information: ITEM# equested Due Date kevin, stephenson@resolu Georgia Power 1003 Weatherstone Parkway (678)548-9415 Sample lids must be unique (A.Z. 0-3/, -) SAMPLEID Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Torms and Conditions found at https://info.pacetabs.com/hubis/pac-chandard-terms.pdf N. MATRO: Drobling Water Water Water Water Product Product Sul/Said Oil Wign Air Required Project Information: Report To: Kevin Stechenson Copy To: Purchase Order # Section B 日本をおけってまる日 William Lapper S S × ş M Š 3 8 3 MATRIX GODE (see valid codes to len) SAMPLE TYPE (G-GRAB C-COMP) McManus CCR SEII ST START 100 COLLECTED 留 4/15/ZI 1100 ONGE THE SAMPLE TEMP AT GOLLECTION Company Name: 9 # OF CONTAINERS invoice information: Section C Page Project Menager. Pace Queter Ü Unpreserved H2S04 W HNO3 HCI NeOH nicole,d'cleo@papelabs.com Na25203 Methanol Other Analyses Test III/V Metals × III/V + Mg, K, Na × CL F. 804 × × × alk × × TD8 9/15/2 × × RAD 9315/9320 16.50 1100 Page: State Microston Land in 1919 17.4 Residual Chlorina (Y/N) 2 오

THE PARTY OF SOME PARTY BY

SIGNATURE OF SAMPLER. PRINT Name of SAMPLER:

William Locker Report Mult Celvin Layonan Kevin Stephenson
PLER 1, 10 01

9/13/21

TEMP IN C

Recoived on (Y/N)

Custody Soelad

Cooler (Y/N) Samples ntact (Y/N)

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

							Ĉ.	ls.	2			27.	2	ls of	ITEM#		reques	Phone	Email:	Addivess	Company:	Resquire
				ADDITIONAL COMMENT							1884-17	MCM-14		-scuse-	SAMPLE ID One Character per box. (A-Z, 0-8 /) Sample Ms must be unique		equested Due Date:	(678)548-9415 Enx	Small: kayin: dephenson@resoluteenv.com	1003 Weatherstone Pulkway	Company, Georgia Power	d Client information:
			wi												Water Water Will Will Will Will Will Will Will Wil		Project #	Project Name:	Purchase Order 4:	Copy To:	Report To:	Required Project Information:
1		1	William Laaker								TW.	4	TW	W	MATRIX CODE (see valid con SAMPLE TYPE (G-GRAB C				9		Kovin	ojest inf
			7							+	Ė	9/13/21			DATE ST	1	11	McManus CCR		Ü	Kovin Slezhenson	omati
TEST			Sak				H				+	12	F		15			CCA	1	Н	Sign Sign	On:
AND BENEAU OF SAMPLER:		М	3	Accountable Consideration							+	1732			Ä	соцество	П				١	
PRINT Name															DATE END	ře	Ш			11		
MID TO MAKE			9/15/21	100											TIME		Ш				1	
AMPLER:	1		121											-	SAMPLE TEMP AT COLLECTI	W					_	L
			11/				ĬŢ.				1	6			# OF CONTAINERS		Pace Profile #: 1076	Page	Address:	Company Name:	Attention:	involce information:
		XIII	1100							-	1	W	-		Unpreserved H2SD4		Profile	Projec	Duote Duote	N Aug	OT THE	in link
	+	1			H	+					+	(J)			HNO3	2	34	Mar	1	ame:	NT N	Territ
		A	Fedex												HCI	Preservative	107	8	J.	П	250	2
	П	100	Š							J.		12			NaOH	vativ	18		13	П	П	
200	Ш	14	11.5			1,5		100						100	Na25203	R	100	niggle	П		1	
		4		膧		+	-	-	-	4	-	\vdash		-	Mothanol Other			000	П	П	1	
	1	1			_	1			-1-	_	4				11.17	MINE	W	ole d'oleofàracetaba com	П	И	П	
		1			100			91							III/IV Metels	14	W		П	П	ı	
		1~		3		J. E.	5	ΞŪ	Y		×	×		×	III/IV + Mg, K, Na	1 41		8	11	ſ	1	
		1		鰮		+		_	-	+	×	×	×	×	CI, F, 804 alk		201		Н	1	ß.	
		JI U				+			-	+	×	×		×	TDS				Н	И	II.	
		11	9/			435			1		×	×	×	×	RAD 9315/9320	1 = 7				1	1	
		12	15/2	Super-) H				T) i					1				1	100		1	
			121			-				4-	-			_				8				
		11:30	1100	T TOWN	-	+	-	-		+	-								機器			
	Ų.	Q	0	劉										794					餕		-	
7.7	12	132							Ĭ												Page :	
in C	2.8	1								-					Residual Chlorine (Y/N)						ľ	
od on		X		Š	V.							H					£	Ī	ar.		ca	
dy				ilounics = salke or r	XII							6					AĐ		Programme Public Section 1			
		X			δM.	1 1						30				# A.					0	
			_	8		8						e) II						9				
bs	101	4							1	110	1	141				唐殿		2			či.	8

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

oodstock, (\$A 30199
Tall: kovin.stephensov@neso/Javenn
tane: (\$78)\$49.\$415 squired Client Information: uested Due Dale: MCM-OT Augmont Connents MCM-11 MCM-04 MCM-19 MCM-16 MCM-15 MCM-02 MCM-18 Georgia Power 1003 Weatherstone Perkway Sample (ds must be unique One Character per box (A-Z, 0-91, -) SAMPLEID Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacetabs.com/hut/subas-standard-terms.pdf MATRIX Dividig vider Water Water Water Water Water Main Solitatid Oli Wipe Al-Required Project Information: Report To: Kinyin Stephenson Copy To: Project * Purchase Order #: Project Name: William Lagher MATRIX CODE (sea valid codes to left) ş ٤ S \$ 3 BANFLE TYPE (G=GRAE C=COMP) Modernus CCR SHED OF CHET LIAMON 9/14/2 8/H/21 H52 शुभाया हिम्ह 5/H/21 095Z SH2 C489 17.91 WHITE 914121 1528 शामध्य गाउ 1HI21 1368 9H/21 1126 DATE START 1501 SAMPLER NAME AND SIGNATURE COLLECTED PRINT Name of SAMPLER: SIGNATURE OF SAMPLER: DATE ENO 9/15/21 SAMPLE TEMP AT COLLECTION Address: J 5 S ū S 5 5 U J. Ü U FOF CONTAINERS Page Profile #: 1076 Appropriate ... invoice information: BOE QUOLET 100 2 2 2 N 2 1 2 N N Unproserved Leeber H2804 Preservatives (J) S S U U w w w W HNO3 u U fedex 10768-17.15 HO Rebot Muil Calvin Layman ACCEPTED BETWEEN TON HOGH Ne2S203 receie d'aire Meihenol Other Aholysee Test YIN Wood specific BUTV Metals DATE Signed: 9 |14 |2| MAV + Mg. K, Na × × CI, F, 804 alk TDS × × × 9/15/21 × × RAD 9315/9320 State Location 11:30 ã - Agentator National Page: SAMPOT COMMITTIONS TEMP in C Residual Chlorine (Y/N) 20 PH: 5 PH 5 Received on PH: 7.11 PH: 3.72 pH 4 23 PH 4 69 PH: 5.50 PH: 5.09 PH: 5.04 pri: 5,13 (YIN) Custody in P ون Sasjed 잋 Caclor (Y7N) Samples Intect (Y/N) f

ITEM#

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed

() lody ed lar () plas	IP in C	\$ 5000 A (2)	STREET, STREET	duii, Calvin Leyman	a Les	Calv.	-	Repert	70	n Less	WALES	PRINT Name of SAMPLER.	TARRA	,				
							10/00/0			F.	SON	BNV 1100	833,4111	Toma (
	2.4						1					+	1	ľ		-		П
X	160	11:30	Shel.			F	H	D	1			╁	1		1			
12	_		1/1/21		Ì	1		2	Fedex	1100	15/21	20	12	lagerr	Will lain.	100		
SAMPLE CONDITIONS		に	N. P.		ATION.	MOLENTA PARTIEN		1,000				の名がの	17.00	Contraction of the last	3			
PH: 6.67	pl.		*	×	×	F		L	4	10	_		PER DIGUISHED BY AREILANDON	W.VB CO.	a mouse		- ADDITIONAL COMMONIS	
	L		×	×	. *	×			ú	N L			33.5	9/14/21 1335			i.o.	MCM-05
1	I		*	-		1 15								I	TW			
1				_		•	15								4			
	I		*	×	×	×						-			TW.			
			×	×	36	×	AT.				L	-			TWI	1		
			×	×	×	×			t		-				18			
			×	×	×	×		1	ŀ		1	1			2			
			×	×	×	×	1	ľ	1	-								#
	I		×	_	4	5	1		גע	n L		4	OIL	4/4/21	TW			9
				_		< 1				3			4	10	5			1
	T T	1	0 3	ζ,	×	×			Úλ	6 3			1705	17/17/21	TW			FB-2
		11		¢	,	×	-					_			TW			3
			×	×	×	×		-	υ	101	£	1		1	TW			
	Ro		R	nž	10	S	1	1	1	3	-+	-	-	in the second				DUP-2
	aldual Chlorine	***	AD 9315/9320		/IV + Mg, K, N	Analyses NV Metalo	lethanol Ther	lu28203	12804 1NO3	OF CONTAINE Unpreserved	ii Bample t <i>e</i> mp	TIME		DATE	MATRIX COCE	THE OF THE TE	(A-Z, 0-97,-) Sample ide must be unique	
	(Y/N)				Ti-	Teet				RB	T COLLEGE	8	4	START		Product Produc	SAMPLE ID	
						YINE	1	Preservatives	Pres	1	rton	B	сошество			MATRIX CODE		
GA CONTRACTOR OF THE PARTY OF T	GA GA	Poguetra Andreas Estate Conscious Co			Ron	80. 80.		3	10年 11	BOS Prof	IL	H	И	11	11			1
	4	A STATE OF THE PARTY OF THE PAR	100		abs com	e.d'o'eo@pecelatrs.com		ac nico	Pace Project Manager	Page Proj			1	NOW BENEFITS	SAN .	Project	Date:	equested Due Date:
Roquistory Agency - Site Co.	Requisitors	S. Carrier	Si	l				1	8	Peop Ouote:					日本	Purchase Order #	(S78)548-0415 Fax:	THE SAME
					П				Serios	Coraçany Name				1	1		opdstock, GA 30/68	B
2 Of 2	Page:	0		1	1	1				Attention				Kevin Stephenson		Copy To	10x1 Weatherstone Parkway	П
									Invoice Information:	Invoice to				The Spill of		Transce and a region and other transcent.	impany: Sepreta Power	- Muscum

ITEM# iquired Client Information: datoca, GA 30188 WCM-06 MCM-07 1003 Weatherstann Parkway Georgia Power Samply ids mest be unique One Character per box. SAMPLEID [AZ, 0-9/,-Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hub/s/pas-standard-terms.cdf Required Project Information: Report To: Kovin Staphenson Copy To: Project Name Purchase Order # 司马克曼PF *養美里良 NOCKET POST ENGINEERS William Laker Kavin Stephenson ş 1 ST 3 MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) McMenus CCR 9/H/12/0923 शिषाय । । भउ 9/H/I START SAMPLEY NAME AND SIGNATURE 7728 COLLECTED SIGNATURE of SAMPLER: PRINT Name of SAMPLER: The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. CHAIN-OF-CUSTODY / Analytical Request Document S Park. 9/15/21 TIME BAMPLE TEMP AT COLLECTION COTT Attention: Name: Address: Page Quote: 5 3 0 HOG # OF CONTAINERS Pace Project Manager. Leaker Ribert Muil S K S Deyraeonaul H2504 U Ü Ü HNG3 Preservatives Fede HCI 10768-17,18 NaOH ACCEPTED BY JAFFELLADON: Na252U3 nicole d'oleo@pacelabs.com Melhanoi Other Analyses Test Yillia Colvin Leyman IIIIV Matala DATE Signed: 9/14/2; × DVIV + Mg K, No × QI, F, 804 × × × a/k × × × TD8 Arranysis alband Trupers F1 15/21 × × RAD 9316/9320 Sulph And Sulph Andrews Regulatory Agency 71.30 noc Page : TEMP In C Residual Chlorine (Y/N) 3. Fd PH: 6 Received on PH: 6.28 (Y/N) Commons Custody Sealed 5 q Coola (V/N) Sumples Mact

(Y/N)

Pace Analytical

Quality Control Sample Performance Assessment

Ra-226 Test:

MS/MSD 2

MS/MSD 1

Sample I.D. Sample MS I.D. Sample MSD I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike I.D.:

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Target Conc. (pCi/L, g, F): Sample Result:

MS Spike Uncertainty (calculated)

MSD Spike Uncertainty (calculated)

Sample Matrix Spike Result:

Sample Result Counting Uncertainty (pCi/L, g, F) Matrix Spike Result Counting Uncertainty (pCi/L, g, F)

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F)

MS Numerical Performance Indicator MSD Numerical Performance Indicator MS Status vs Numerical Indicator. MSD Status vs Numerical Indicator.

MS Status vs Recovery

MSD Status vs Recovery

MSD Percent Recovery

MS Percent Recovery

MS/MSD Upper % Recovery Limits:

MS/MSD Lower % Recovery Limits

Matrix Spike/Matrix Spike Duplicate Sample Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

JJY 10/5/2021 62912 DW Analyst: Date: Worklist: Matrix:

Method Blank Assessment	
MB Sample ID	2251638
MB concentration:	0.284
M/B Counting Uncertainty:	0.225
MB MDC:	0.421
MB Numerical Performance Indicator:	2.47
MB Status vs Numerical Indicator:	N/A
MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	<u>.</u>
	LCS62912	LCSD62912
Count Date:	10/8/2021	10/8/2021
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.033	24.033
Volume Used (mL):	0.10	0,10
Aliquot Volume (L, g, F):	0.505	0.513
Target Conc. (pCi/L, g, F):	4.762	4.681
Uncertainty (Calculated):	0.057	0.056
Result (pCi/L, g, F):	3.783	4.467
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.618	0.667
Numerical Performance Indicator:	-3.09	-0.63
Percent Recovery:	79.43%	95.43%
Status vs Numerical Indicator:	ΑN	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	125%	125%
Lower % Recovery Limits:	75%	75%

						_						Н
	92561675014	92561675014DUP	0.346	0.147	0.199	0.131	See Below ##	1.469	24.06%	N/A	Fail***	25%
	LCS62912	LCSD62912	3.783	0.618	4.467	0.667	<u>Q</u>	-1.476	18.29%	N/A	Pass	25%
Iplicate Sample Assessment	Sample I.D.:	Duplicate Sample I.D.	Sample Result (pCi/L, g, F):	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	Are sample and/or duplicate results below RL?	Duplicate Numerical Performance Indicator:	(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	Duplicate Status vs Numerical Indicator:	Duplicate Status vs RPD:	% RPD Limit

Sample I.D. Sample MS I.D. Sample MSD I.D.

Sample Matrix Spike Result:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator:

MS/ MSD Duplicate Status vs RPD: % RPD Limit:

ow the MDC ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results a

Comments:

UAM 10/20/21

4m 10/20/2,

1 of 1

Quality Control Sample Performance Assessment

Face Analytical"

MS/MSD 2

MS/MSD 1

Analyst Must Manually Enter All Fields Highlighted in Yellow.

ı		1.7	4	-																									
Sample Matrix Spike Control Assessment	Sample Collection Date:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike Uncertainty (calculated):	MSD Spike Uncertainty (calculated):	Sample Result:	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Linger % Document Limited
													•	X	LCSD62921	10/7/2021	21-029	37.936	0.10	0.822	4.614	0.226	4.372	1.022	-0.45	94.75%	ΑΝ	Pass	135%
JC2	10/5/2021	62921	A			2252274	0.304	0.374	0.792	1.59	Pass	Pass		LCSD (Y or N)?	LCS62921	10/7/2021	21-029	37.936	0.10	0.831	4.566	0.224	4.643	1.088	0.14	101.69%	N/A	Pass	135%
Analyst:	Date:	Worklist:	Matrix:			MB Sample ID	MB concentration:	M/B 2 Sigma CSU:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs. MDC:	THE HOUSE AND ADDRESS OF THE STATE ADDRESS OF THE STATE AND ADDRESS OF THE STATE AND ADDRESS OF	Laboratory Control Sample Assessment		Count Date:	Spike I.D.:	Decay Corrected Spike Concentration (pCi/mL):	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCi/L, g, F):	LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:	Honer % Recovery Limits:
	JC2	JC2 Sample Matrix Spike Control Assessmer 10/5/2021	JC2 Sample Matrix Spike Control Assessmer 10/5/2021 62921	JC2 Sample Matrix Spike Control Assessmen 10/5/2021 62921 W.T.	Analyst: JC2 Sample Matrix Spike Control Assessmen Date: 10/5/2021 Worklist: 62921 Matrix: W/T	JC2 Sample Matrix Spike Control Assessmer 10/5/2021 62921 W.T.	Analyst: JC2	Analyst: JC2	Analyst: JC2 Sample Matrix Spike Control Assessment	Analyst: JC2 Sample Matrix Spike Control Assessment	Analyst: JC2 Sample Matrix Spike Control Assessment	Analyst: JC2 Sample Matrix Spike Control Ass Date: 10/5/2021 Worklist: 6/3921 Worklist: 6/3921 Matrix: WT Worklist: 6/3921 Worklist: 6/3921 Worklist: 6/3921 Was Concentration: 0/304 Will Sample ID 2252274 Will Signa CSU: 0/374 Will Mumerical Performance Indicator: 1/59 Will Status vs Numerical Indicator: 1/50 Will Status vs Numerical Indic	Analyst: JC2 Sample Matrix Spike Control Ass	Analyst: JC2 Sample Matrix Spike Control Assessment	Analyst: JC2 Sample Matrix Spike Control Ass Date: 10/5/2021 Worklist: 6/2921 Matrix: WT WT MB Sample ID 2252274 MB concentration: 0.304 MB Numerical Performance Indicator: 1.59 MB Status vs Numerical Indicator: Pass MB Status vs. MDC: Pass M	Analyst: JC2 Sample Matrix Spike Control Ass Date: 10/5/2021 Worklist: 62921 Matrix: WT MB Sample ID 2252274 MB concentration: 0.304 MB Numerical Performance Indicator: 1.59 MB Status vs Numerical Indicator: Pass MB Status vs. MDC: Pass MB Stat	Marix Spike Control Ass Date: 10/5/2021	Marix Spike Control Ass Date: 10/5/2021	Marrix Spike Control Ass Date: 10/5/2021	Marrix Spike Control Ass Date: 10/5/2021	Matrix Spike Control Ass Date: 10/5/2021	Matrix Spike Control Ass Date: 10/5/2021	Matrix Spike Control Ass Date: 10/5/2021	Marrix Spike Control Ass Date: 10/5/2021	Matrix Spike Control Ass Date: 10/5/2021				

Sample Result:	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:	Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% KPD LIMIT.
LCSD62921	10/7/2021	21-029	37.936	0.10	0.822	4.614	0.226	4.372	1.022	-0.45	94.75%	N/A	Pass	135%	%09		Enter Duplicate	sample IDs if	other than	LCS/LCSD in	the space below.							
LCS62921	10/7/2021	21-029	37.936	0.10	0.831	4.566	0.224	4.643	1.088	0.14	101.69%	N/A	Pass	135%	%09		LCS62921	LCSD62921	4.643	1.088	4.372	1.022	<u>Q</u>	0.356	7.06%	Pass	Pass	0/00
	Count Date:	Spike I.D.:	Decay Corrected Spike Concentration (pCi/mL):	Volume Used (mL.):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCi/L, g, F):	LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:	Upper % Recovery Limits:	Lower % Recovery Limits:	Duplicate Sample Assessment	Sample I.D.:	Duplicate Sample I.D.	Sample Result (pCi/L, g, F):	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	Are sample and/or duplicate results below RL?	Duplicate Numerical Performance Indicator:	(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	Duplicate Status vs Numerical Indicator:	Duplicate Status vs RPD:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

16/86/01MD

1 of 1

Ra-228_62921_W Ra-228_62921_DW_W.xls

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-228 VAL 10/5/2021

Face Analytical"

Test: Analyst: Date:

2 80. 8	Pass
225279 225279 0.420 0.367 0.738 2.25	Δ.
Worklist: Method Blank Assessment Method Blank Assessment MB Sample ID MB concentration: MMB 2 Sigma CSU: MB MDC: MB MDC: MB Numerical Performance Indicator: MB Status as Numerical Legislator: MB Catalogue	MB Status vs. MDC:

	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
	Sample Collection Date:		
	Sample I.D.		
	Sample MS I.D.		
	Sample MSD I.D.		
	Spike I.D.:		
	MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
	Spike Volume Used in MS (mL):		
	Spike Volume Used in MSD (mL):		
	MS Aliquot (L, g, F):		
	MS Target Conc.(pCi/L, g, F):		
	MSD Aliquot (L, g, F):		
	MSD Target Conc. (pCi/L, g, F):		
	MS Spike Uncertainty (calculated):		
_	MSD Spike Uncertainty (calculated):		
$\overline{}$	Sample Result:		inaa-
	Sample Result 2 Sigma CSU (pCi/L, g, F):		
	Sample Matrix Spike Result:		
	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
-	Sample Matrix Spike Duplicate Result:		
	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
	MS Numerical Performance Indicator:		
	MSD Numerical Performance Indicator:		******
	MS Percent Recovery:		
_	MSD Percent Recovery:		
	MS Status vs Numerical Indicator:		
	MSD Status vs Numerical Indicator:		
	MS Status vs Recovery:		
_	MSD Status vs Recovery:		
	MS/MSD Upper % Recovery Limits:		
_	MS/MSD Lower % Recovery Limits:		

Laboratory Control Sample Assessment	LCSD (Y or N)?	λ
	LCS62922	LCSD62922
Count Date:	10/7/2021	10/7/2021
Spike I.D.:	21-029	21-029
Decay Corrected Spike Concentration (pCi/mL):	37.936	37.936
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.810	0.810
Target Conc. (pCl/L, g, F):	4.684	4.683
Uncertainty (Calculated):	0.229	0.229
Result (pCi/L, g, F):	4.993	5.479
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.158	1.201
Numerical Performance Indicator:	0.51	1.27
Percent Recovery:	106.61%	116.98%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	135%	135%
Lower % Recovery Limits:	%09	%09

Duplicate Sample Assessment			Matrix Spike/
Sample I.D.:	LCS62922	Enter Duplicate	
Duplicate Sample I.D.	LCSD62922	sample IDs if	
Sample Result (pCi/L, g, F):	4.993	other than	
Sample Result 2 Sigma CSU (pCi/L, g, F):	1.158	LCS/LCSD in	
Sample Duplicate Result (pCi/L, g, F):	5.479	the space below.	
Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	1.201		
Are sample and/or duplicate results below RL?	Q N		Mar
Duplicate Numerical Performance Indicator:	-0.571	March 1991	
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	9.28%		(Based)
Duplicate Status vs Numerical Indicator:	Pass		
Duplicate Status vs RPD:	Pass		
יייייייייייייייייייייייייייייייייייייי	200		

		******						-				
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Ra-228_62922_DW_W.xls Ra-228 (R086-8 04Sep2019).xls

Face Analytical"

Quality Control Sample Performance Assessment

10/5/2021 Ra-226 JJY 62911 DW Test: Analyst: Date: Worklist: Matrix:

2251636 0.112 0.184 0.410 1.20 N/A Pass

M/B Counting Uncertainty: MB MDC: MB Numerical Performance Indicator:

MB Status vs Numerical Indicator: MB Status vs. MDC:

MB Sample ID MB concentration:

Method Blank Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD															-															
MS/MSD 1						57.7																								
Sample Matrix Spike Control Assessment	Sample Collection Date:	Sample I.D.	Sample MS 1.0.	ימין ביוויים	Spike I.D.:	MS/MSD Decay Corrected Spike Concentration (pCl/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike Uncertainty (calculated):	MSD Spike Uncertainty (calculated):	Sample Result:	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Becovery Limits:
														,	SD62911	17/2021	19-033	24.033	0.10	0.512	4.692	0.056	4.040	0.692	-1.84	16.11%	A/A	Pass	125%	75%

-aboratory Control Sample Assessment	LCSD (Y or N)?	λ
	LCS62911	LCSD62911
Count Date:	10/7/2021	10/7/2021
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.033	24.033
Volume Used (mL):	0.10	0,10
Aliquot Volume (L, g, F):	0.504	0.512
Target Conc. (pCi/L, g, F):	4.771	4.692
Uncertainty (Calculated):	0.057	0.056
Result (pCi/L, g, F):	5.159	4.040
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.791	0.692
Numerical Performance Indicator:	96.0	 26.
Percent Recovery:	108.12%	86.11%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	125%	125%
Lower % Recovery Limits:	75%	75%

I		_		_									
	Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:
		200	4DOP					#		,,		0	1
		92561843004	92561843004DUP	0.180	0.243	0.795	0.304	See Below ##	-3.097	126.04%	N/A	Lair O	25%
		Sample I.D.: LCS62911	LCSD62911	5.159	0.791	4.040	0.692	2	2.087	22.67%	N/A	Pass	72%
	Duplicate Sample Assessment	Sample I.D.:	Duplicate Sample I.D.	Sample Result (pCi/L, g, F):	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	Are sample and/or duplicate results below RL?	Duplicate Numerical Performance Indicator:	(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	Duplicate Status vs Numerical Indicator;	Duplicate Status vs RPD:	% RPD Limit:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

un 1929/21 ***Batch must be re-prepped the to unacceptable precision.** NIA

12/52/01 mm

TAR_62911_W.xls Total Alpha Radium (ENV-FRM-GBUR-0142 R0).xls

Stage 2A Data Verification Report Georgia Power McManus Fossil Plant Coal Combustion Residuals Project Groundwater Samples

This quality assurance (QA) review is based upon an examination of the data generated from the analyses of the 16 groundwater samples collected as part of the September 2021 semi-annual monitoring at the Georgia Power McManus Fossil Plant facility. These samples were collectively analyzed by Pace Analytical Services, LLC (Pace) in Asheville, North Carolina (Pace Asheville) for total metals by SW-846 Method 6010D and 6020B; for mercury by SW-846 Method 7470A; for total dissolved solids (TDS) by Standard Method (SM) 2540C; for anions (specifically, chloride, fluoride, and sulfate) by US EPA Method 300.0; and for alkalinity by SM 2320B. In addition, these samples were collectively analyzed by Pace of Greensburg, Pennsylvania (Pace Pittsburgh), for total radium-226 by SW-846 Method 9315, for total radium-228 by SW-846 Method 9320, and for combined radium-226+228 by calculation.

This review was performed with guidance from the US EPA Region IV Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (November 2001); the US EPA Region IV Data Validation Standard Operating Procedures (SOPs; US EPA Region IV, September 2011); and the applied analytical methods. These validation guidance documents, with the exception of the analytical methods, specifically address analyses performed in accordance with the Contract Laboratory Program (CLP) analytical methods and are not completely applicable to the type of analyses and analytical protocols performed for the SM, SW-846, and US EPA methods utilized by the laboratory for these samples. Environmental Standards, Inc. (Environmental Standards) used professional judgment to determine the usability of the analytical results and compliance relative to the SM, SW-846, and US EPA methods utilized by the laboratory.

Summary

The analytical results and associated laboratory quality control (QC) samples were reviewed to determine the integrity of the reported analytical results and to verify that the data met the established data quality objectives.

The samples collected 9/13/2021 through 9/14/2021 were evaluated as part of this QA review.

The following samples were evaluated as part of this QA review: MCM-01, MCM-02, MCM-04, MCM-05, MCM-06, MCM-07, MCM-11, MCM-12, MCM-14, MCM-15, MCM-16, MCM-17, MCM-18, MCM-19, MCM-20, and DPZ-2.

The following Pace inorganic SDG were evaluated as part of this QA review: 92561848.

The following Pace radiological SDG was evaluated as part of this QA review: 92561843.

All data are considered usable as reported, or usable after integration of data validation qualifications.

Inorganic and Radiological Data Review

Data validation was performed for these samples based on the sample results, summary QC data, and raw data provided by the laboratory. The findings offered in this report for the inorganic and radiological analyses are based upon a review of the following QC measures:

- Sample condition upon laboratory receipt
- Chain-of-Custody (COC) Records
- Blank analysis results
- Laboratory control sample (LCS) recoveries
- Laboratory duplicate precision

- Sample holding times
- Case Narratives
- Chemical yield
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries and precision
- Field duplicate precision

The above QC measures were evaluated against the analytical method requirements and QC acceptance criteria. The data were validated based on guidance from the US EPA Region IV Data Validation SOPs, the referenced procedures, and were qualified as appropriate as described in the sections below.

Comments and Exceptions

- 1. In all SDGs, the laboratory did not provide a Case Narrative associated with the inorganic and radiological analyses. As this item was not needed to complete the data validation, the laboratory had not been requested to provide this information. Qualification of data due to this issue was not warranted.
- 2. In SDG 92561843, the laboratory did not provide the subcontract COC Record or the Sample Login Receipt Checklist for Pace Pittsburgh. As these items were not needed to complete the data validation, the laboratory had not been requested to provide this information. Qualification of data due to this issue was not warranted.
- 3. In the anion fraction of SDG 92561848, the laboratory performed matrix QC (MS/MSD) analyses on an associated field blank. Matrix QC analyses are performed to evaluate the impact of matrix interferences on target analyte results in investigative samples, which would not be present in a field blank sample.
- 4. The data validator applied qualification to combined radium-226+228 based upon the QC samples associated with the analyses of the individual isotopes, radium-226 and radium-228. The database only includes the laboratory results for the combined radium-226+228; therefore, qualification of the individual isotopes is not addressed in this QA review.
- 5. SW-846 Method 9315 includes all alpha-emitting isotopes of radium. In order to analyze for only radium-226, a 21-day ingrowth period must be used. The radium-226 reported by the laboratory did not undergo a 21-day ingrowth; therefore, the results reported as radium-226 potentially contain additional alpha-emitting radium isotopes and could be high biased.

- 6. Combined radium-226+228 was reported as the summation of the calculated activities for radium-226 and radium-228. As consistent with routine radiological reporting conventions, negative activities were reported for the radium-226 and radium-228 analyses; however, all negative activities were entered as zero in the calculation of combined radium-226+228 activity.
- 7. The combined radium-226+228 sample-specific minimum detectable concentration (MDC) was reported as the summation of the MDCs for radium-226 and radium-228. Consequently, there may be instances where a detection was observed in one of the individual isotopes but the combined radium-226+228 result was reported as "not-detected" due to the laboratory's reporting convention for combined radium-226+228.
- 8. The combined radium-226+228 result uncertainty was reported as the summation of the calculated uncertainties for radium-226 and radium-228. If routine statistical uncertainty reporting conventions were followed, the result uncertainty would have been reported as the root sum square (RSS; the square root of the sum of the squared individual uncertainties).
- 9. The laboratory did not flag results < the MDC as "not-detected" in the data package provided. The data validator qualified these samples as "U" on the data tables.
- 10. The following field duplicate pairs (see table) were submitted and analyzed for inorganic and radiological parameters with this data set. Acceptable precision and sample representativeness were demonstrated by the reported results in the field duplicate pair evaluation (the relative percent difference [RPD] between results was ≤ 20% when both results were ≥ 5× the reporting limit [RL], the difference between results was ≤ the RL when at least one result was < 5× the RL, or replicate error ratio [RER] < 3).

<u>Laboratory SDG(s)</u>	<u>Sample</u>	Field Duplicate
92561848 92561843	MCM-16	DUP-1
92561848 92561843	MCM-19	DUP-2

Overall Assessment of Data

Based on a review of the data, qualification of data was warranted as noted below.

<u>Laboratory SDG(s)</u>	Sample(s)	<u>Analyte(s)</u>	<u>Qualifier</u>	Reason(s) for Qualification
92561848	MCM-12 and MCM-14	TDS	J	H – Hold time exceeded
92561848	MCM-17	Selenium	UJ	M- – Low MS/MSD recoveries

Laboratory SDG(s)	Sample(s)	Analyte(s)	Qualifier	Reason(s) for Qualification
92561848	MCM-04, MCM-11, MCM-15, MCM-16, MCM-18, MCM-19, MCM-20, DPZ-2, MCM-05, MCM-06, MCM-07, and MCM-17	Sulfate	J	M- – Low MS/MSD recoveries
92561848	MCM-11 and MCM-16	Fluoride	J	M+ – High MS/MSD recoveries
92561848	MCM-16	TDS	J	FD – Field duplicate imprecision
92561843	MCM-05, MCM-06, MCM-07, and MCM-17	combined radium- 226+228	J	L- – Low LCS recovery

- All inorganic positive results reported between the method detection limit (MDL) and RL have been flagged "J"
- All radiological results reported below the MDC have been flagged "U."

Report prepared by: Abigail P. Bossbaly, Quality Assurance Chemist

Report reviewed by: Alyssa M. Reed, Senior Quality Assurance Chemist/Project Manager

Report approved by: David I. Thal, CEAC, CQA, Principal Chemist

Date: 12/10/2021

INORGANIC DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the level of the reported sample reporting/method detection limit.
- U* This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.
- UJ The analyte was analyzed for, but was not detected above the level of the reported sample reporting/method detection limit. The reported method detection limit is approximate and may be inaccurate or imprecise.
- The analyte was positively identified but the result is an estimated quantity. The
 associated numerical value is the approximate concentration of the analyte in the
 sample.
- R The data are unusable. The sample results are rejected due to serious analytical deficiencies in the ability to analyze the sample and meet quality control criteria. The analyte may or may not be present in the sample.
- UR The analyte was analyzed for, but was not detected above the level of the reported sample reporting or method detection; however, the data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The analyte may or may not be present in the sample.

Reason Codes and Explanations

Reason Code	Explanation
BE	Equipment blank contamination.
BF	Field blank contamination.
BL	Laboratory blank contamination.
BN	Negative laboratory blank contamination.
С	Initial and/or continuing calibration issue, indeterminate bias.
C+	Initial and/or continuing calibration issue. The result may be biased high.
C-	Initial and/or continuing calibration issue. The result may be biased low.
FD	Field duplicate imprecision.
FG	Total versus dissolved imprecision.
Н	Holding time exceeded.
I	Internal standard recovery outside of acceptance limits.
L	LCS and LCSD recoveries outside of acceptance limits, indeterminate bias.
L+	LCS and/or LCSD recoveries outside of acceptance limits. The result may be biased high.
L-	LCS and/or LCSD recoveries outside of acceptance limits. The result may be biased low.
LD	Laboratory duplicate imprecision.
LP	LCS/LCSD imprecision.
М	MS and MSD recoveries outside of acceptance limits, indeterminate bias.
M+	MS and/or MSD recoveries outside of acceptance limits. The result may be biased high.
M-	MS and/or MSD recoveries outside of acceptance limits. The result may be biased low.
MP	MS/MSD imprecision.
Р	Post-digestion spike recoveries outside of acceptance limits, indeterminate bias.
P+	Post-digestion spike recovery outside of acceptance limits. The result may be biased high.
P-	Post-digestion spike recovery outside of acceptance limits. The result may be biased low.
Q	Chemical preservation issue.
R	RL standards outside of acceptance limits, indeterminate bias.
R+	RL standard(s) outside of acceptance limits. The result may be biased high.
R-	RL standard(s) outside of acceptance limits. The result may be biased low.
Т	Temperature preservation issue.
SD	Serial dilution imprecision.
Υ	Chemical yields outside of acceptance limits, indeterminate bias.
Y+	Chemical yield(s) outside of acceptance limits. The result may be biased high.
Y-	Chemical yield(s) outside of acceptance limits. The result may be biased low.
ZZ	Other

APPENDIX B2

Field Sampling Forms and Calibration Reports

Low-Flow Test Report:

Test Date / Time: 9/14/2021 9:36:11 AM **Project:** September 2021 McManus CCR Event

Operator Name: William Laaker

Location Name: MCM-01
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 17.32 ft
Total Depth: 27.32 ft

Initial Depth to Water: 4.34 ft

Pump Type: QED Dedicated

Tubing Type: LDPE

Pump Intake From TOC: 22.32 ft Estimated Total Volume Pumped:

2600 ml

Flow Cell Volume: 90 ml Final Flow Rate: 130 ml/min Final Draw Down: 0.03 ft Instrument Used: Aqua TROLL 400

Serial Number: 789301

Test Notes: Prepurged 1 L

Low-Flow Readings:

Date Time	Elapsed	рН	Temperatur	Specific	RDO	Turbidity	ORP	Depth To	Salinity	Flow
	Time		е	Conductivity	Concentration	raibiaity		Water		1 1000
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021	00:00	5.11 pH	25.42 °C	152.20	0.79 mg/L	1.44 NTU	102.3 mV	4.37 ft	0.07 PSU	130.00
9:36 AM				μS/cm						ml/min
9/14/2021	04:00	5.11 pH	25.23 °C	154.47	0.75 mg/L	0.99 NTU	96.6 mV	4.37 ft	0.07 PSU	130.00
9:40 AM				μS/cm						ml/min
9/14/2021	08:00	5.11 pH	25.19 °C	154.71	0.65 mg/L	1.18 NTU	94.4 mV	4.37 ft	0.07 PSU	130.00
9:44 AM				μS/cm						ml/min
9/14/2021	12:00	5.10 pH	25.42 °C	154.10	0.49 mg/L	0.66 NTU	93.4 mV	4.37 ft	0.07 PSU	130.00
9:48 AM				μS/cm						ml/min
9/14/2021	16:00	5.13 pH	25.64 °C	155.45	0.38 mg/L	0.46 NTU	90.9 mV	4.37 ft	0.07 PSU	130.00
9:52 AM				μS/cm						ml/min
9/14/2021	20:00	5.13 pH	25.71 °C	155.44	0.33 mg/L	0.43 NTU	89.6 mV	4.37 ft	0.07 PSU	130.00
9:56 AM				μS/cm						ml/min

Samples

Sample ID:	Description:		
MCM-01	Metals, Inorganics, TDS, Radium		

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 9/14/2021 10:49:00 AM Project: September 2021 McManus CCR Event

Operator Name: Robert Mull

Location Name: MCM-02
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 17.35 ft
Total Depth: 27.35 ft

Initial Depth to Water: 4.46 ft

Pump Type: Peristaltic Tubing Type: LDPE

Pump Intake From TOC: 22.5 m Estimated Total Volume Pumped:

6720 ml

Flow Cell Volume: 90 ml Final Flow Rate: 210 ml/min Final Draw Down: 0.13 ft Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes:

Prepurged 750mL

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperatur e	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Salinity	Flow
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021	00:00	5.08 pH	22.89 °C	163.41	0.30 mg/L	0.05 NTU	60.2 mV	4.58 ft	0.08 PSU	210.00
10:49 AM	00.00	3.06 pm	22.89 C	μS/cm	0.30 Hig/L	0.05 NTO	60.2 1117	4.56 11	0.08 F30	ml/min
9/14/2021	04:00	5.11 pH	22.52 °C	174.00	0.22 mg/L	0.02 NTU	54.4 mV	4.59 ft	0.08 PSU	210.00
10:53 AM	04.00	3.11 pm	22.32 0	μS/cm	0.22 Hig/L		34.41117	4.59 10	0.00130	ml/min
9/14/2021	08:00	5.11 pH	22.50 °C	168.19	0.18 mg/L	0.09 NTU	49.1 mV	4.59 ft	0.08 PSU	210.00
10:57 AM		3.11 pm	22.00 0	μS/cm	0.10 mg/L	0.001410	40.1 1114	4.00 10	0.001 00	ml/min
9/14/2021	12:00	5.10 pH	22.45 °C	165.77	0.16 mg/L	0.06 NTU	45.5 mV	4.59 ft	0.08 PSU	210.00
11:01 AM	12.00	0.10 p.1		μS/cm						ml/min
9/14/2021	16:00	5.08 pH	22.44 °C	162.01	0.14 mg/L	0.17 NTU	43.4 mV	4.59 ft	0.08 PSU	210.00
11:05 AM		σ.σσ ρι ι	22.44 C	μS/cm	0.14 mg/L	0.17 1010	43.4 111 V	4.55 11	0.08 PSU	ml/min
9/14/2021	20:00	5.07 pH	22.40 °C	157.15	0.13 mg/L	0.10 NTU	41.5 mV	4.59 ft	0.07 PSU	210.00
11:09 AM	20.00	0.07 pri	22.10	μS/cm	0.10 mg/L		11.0 1111		0.07 1 00	ml/min
9/14/2021	24:00	5.05 pH	22.49 °C	155.54	0.12 mg/L	0.16 NTU	40.5 mV	4.59 ft	0.07 PSU	210.00
11:13 AM		σ.σσ ρι ι	22.10	μS/cm	0.12 mg/L		10.0 1111		0.07 1 00	ml/min
9/14/2021	28:00	5.04 pH	22.44 °C	153.48	0.11 mg/L	0.03 NTU	39.9 mV	4.59 ft	0.07 PSU	210.00
11:17 AM	20.00	0.0- 1 pi i	22.74 0	μS/cm	0.11 Hig/L	0.001410	55.5 IIIV	4.00 It	0.07 1 00	ml/min
9/14/2021	32:00	5.04 pH	5.04 pH 22.49 °C	155.74	0.10 mg/L	0.06 NTU	39.0 mV	4.59 ft	0.07 PSU	210.00
11:21 AM	02.00	0.07 pi i	22.40	μS/cm	J. TO TIIg/L	0.001110	30.0 111 V	7.00 10	0.07 1 00	ml/min

Samples

Sample ID:	Description:
MCM-02	Metals, Inorganics, TDS, Radium

Test Date / Time: 9/14/2021 9:31:59 AM

Project: September 2021 McManus CCR EVENT

Operator Name: Robert Mull

Location Name: MCM-04
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 m
Top of Screen: 18.57 m
Total Depth: 28.57 m

Initial Depth to Water: 9.49 ft

Pump Type: Peristaltic Tubing Type: LDPE

Pump Intake From TOC: 23.5 m Estimated Total Volume Pumped:

2560 ml

Flow Cell Volume: 90 ml Final Flow Rate: 160 ml/min Final Draw Down: 0.23 ft Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes:

Prepurged 1L

Low-Flow Readings:

Date Time	Elapsed	рH	Temperatur	Specific	RDO	Turbidity	ORP	Depth To	Salinity	Flow
Date Time	Time PH	рп	е	Conductivity	Concentration	Turblaity		Water	Samily	FIOW
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021	00:00	5.08 pH	22.54 °C	340.61	0.26 mg/L	0.10 NTU	85.1 mV	9.69 ft	0.16 PSU	160.00
9:31 AM	00.00 5.06 pn	3.00 pm	22.54 C	μS/cm	0.26 Hig/L				0.101.00	ml/min
9/14/2021	04:00	0 5.09 pH	22.36 °C	341.85	0.20 mg/L	0.22 NTU	79.9 mV	9.70 ft	0.16 PSU	160.00
9:35 AM	04.00			μS/cm						ml/min
9/14/2021	08:00	8:00 5.09 pH	22.26 °C	342.65	0.17 mg/L	0.02 NTU	75.5 mV	9.70 ft	0.17 PSU	160.00
9:39 AM	08.00	3.09 pm		μS/cm		0.02 1110	73.3111	9.70 II	0.17 F30	ml/min
9/14/2021	12:00	5.08 pH	22.19 °C	341.62	0.15 mg/L	0.05 NTU	71.5 mV	9.71 ft	0.16 PSU	160.00
9:43 AM	12:00	3.00 pm	22.19 0	μS/cm	0.13 mg/L	0.03 1410	71.5111	9.7110	0.10130	ml/min
9/14/2021	16:00	5.09 pH	22.17 °C	340.75	0.40//	0.13 NTU	CO O\/	9.72 ft	0.16 PSU	160.00
9:47 AM	10.00	3.09 pn	22.17 C	μS/cm	0.13 mg/L	0.13 1010	68.2 mV	9.72 II	0.10 P30	ml/min

Samples

Sample ID:	Description:
MCM-04	Metals, Inorganics, TDS, Radium

Test Date / Time: 9/14/2021 1:10:42 PM **Project:** September 2021 McManus CCR Event

Operator Name: Calvin Layman

Location Name: MCM-05
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 18.05 ft
Total Depth: 28.05 ft

Initial Depth to Water: 7.98 ft

Pump Type: QED Bladder Tubing Type: LDPE

Pump Intake From TOC: 23.05 ft Estimated Total Volume Pumped:

2800 ml

Flow Cell Volume: 90 ml Final Flow Rate: 140 ml/min Final Draw Down: -0.13 ft Instrument Used: Aqua TROLL 400

Serial Number: 789310

Test Notes:

Prepurge 1L

Low-Flow Readings:

Date Time	Elapsed	На	Temperatur	Specific	RDO	Turbidity	ORP	Depth To	Salinity	Flow
Date Time	Time	рп	е	Conductivity	Concentration	- Turblany	OIKI	Water	Camility	1 1000
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021	00:00	6.68 pH	35.67 °C	11,015	1.31 mg/L	1.96 NTU	-122.1 mV	7.98 ft	6.34 PSU	140.00
1:10 PM	00.00	0.00 pm	33.07	μS/cm	1.51 Hig/L			7.90 10	0.541 50	ml/min
9/14/2021	04:00	6.66 pH	28.20 °C	14,002	0.33 mg/L	1.11 NTU	-127.4 mV	7.98 ft	8.22 PSU	140.00
1:14 PM		6.66 pn	20.20 C	μS/cm				7.90 11	0.221 00	ml/min
9/14/2021	08:00	08:00 6.67 pH	27.37 °C	14,436	0.21 mg/L	0.56 NTU	-127.5 mV	7.94 ft	8.50 PSU	140.00
1:18 PM	06.00			μS/cm						ml/min
9/14/2021	12:00	6.67 pH	27.12 °C	14,608	0.47//	0.28 NTU	-128.1 mV	7.86 ft	8.61 PSU	140.00
1:22 PM	12.00	ο.67 μπ	27.12 C	μS/cm	0.17 mg/L	0.26 NTO	-120.11110	7.00 11	0.01 F30	ml/min
9/14/2021	16:00	6.67 511	27.40.00	14,676	0.45 mg/l	0.07 NTU	100.2 m\/	7.00.4	0 CE DOLL	140.00
1:26 PM	16:00	6.67 pH	27.18 °C	μS/cm	0.15 mg/L	0.07 NTU	-128.3 mV	7.88 ft	8.65 PSU	ml/min
9/14/2021	20.00	6.67 pH	0.07 -11 07.05 00	14,659	0.44/1	0.44 NTU	407.7\/	7.05.4	0.04.0011	140.00
1:30 PM	20:00	ο.ο <i>τ</i> ρπ	27.05 °C	μS/cm	0.14 mg/L	0.14 NTU	-127.7 mV	7.85 ft	8.64 PSU	ml/min

Samples

Sample ID:	Description:
MCM-5	Metals, Inorganics, Alkalinity, TDS, Radium

Test Date / Time: 9/14/2021 11:14:38 AM **Project:** September 2021 McManus CCR Event

Operator Name: Calvin Layman

Location Name: MCM-06
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 17.2 ft

Total Depth: 27.2 ft

Initial Depth to Water: 9.09 ft

Pump Type: QED Bladder Tubing Type: LDPE

Pump Intake From TOC: 22.2 ft Estimated Total Volume Pumped:

2880 ml

Flow Cell Volume: 90 ml Final Flow Rate: 120 ml/min Final Draw Down: 0.05 ft Instrument Used: Aqua TROLL 400

Serial Number: 789310

Test Notes: Prepurge 1L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperatur e	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Salinity	Flow
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021	00:00	6.85 pH	35.52 °C	17,732	1.98 mg/L	4.71 NTU	-173.2 mV	9.14 ft	10.62 PSU	120.00
11:14 AM	00.00	0.65 pri	33.32 C	μS/cm	1.96 Hig/L				10.02 1 00	ml/min
9/14/2021	04:00	6.89 pH	28.61 °C	19,426	0.08 mg/L	5.30 NTU	-188.5 mV	9.14 ft	11.74 PSU	120.00
11:18 AM	04.00 6.69 pr	0.69 pm	20.01 C	μS/cm	0.06 mg/L				11.741 30	ml/min
9/14/2021	08:00	0 6.91 pH	28.06 °C	19,597	0.06 mg/L	6.07 NTU	-200.1 mV	9.14 ft	11.85 PSU	120.00
11:22 AM	00.00			μS/cm						ml/min
9/14/2021	12:00	12:00 6.94 pH	28.03 °C	19,552	0.06 mg/L	5.49 NTU	-211.1 mV	9.14 ft	11.82 PSU	120.00
11:26 AM	12.00	0.54 pm	20.00 0	μS/cm			-211.11111	J. 14 It		ml/min
9/14/2021	16:00	6.94 pH	28.06 °C	19,435	0.06 mg/L	3.90 NTU	-219.7 mV	9.14 ft	11.74 PSU	120.00
11:30 AM	10.00	0.54 pm	20.00 0	μS/cm	0.00 Hig/L	0.00 1410	-213.7 IIIV	J. 14 It	11.741 00	ml/min
9/14/2021	20:00	6.94 pH	28.09 °C	19,489	0.05 mg/L	3.41 NTU	-227.5 mV	9.14 ft	11.78 PSU	120.00
11:34 AM	20.00	0.04 pm	20.09 0	μS/cm	0.00 Hig/L	5.41 NTO	-227.31110	J. 14 It	11.701 30	ml/min
9/14/2021	24:00	6.94 pH	pH 28.07 °C	19,452	0.05 mg/L	2.62 NTU	-232.8 mV	9.14 ft	11.75 PSU	120.00
11:38 AM	24.00	0.04 pm	20.01	μS/cm	0.00 Hig/L	2.02 1110	-202.0 IIIV	J. 14 It	11.751 50	ml/min

Samples

Sample ID:	Description:
MCM-6	Metals, Inorganics, Alkalinity, TDS, Radium

Test Date / Time: 9/14/2021 9:20:39 AM **Project:** September 2021 McManus CCR Event

Operator Name: Calvin Layman

Location Name: MCM-07
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 13.75 ft
Total Depth: 23.75 ft

Initial Depth to Water: 7.97 ft

Pump Type: QED Bladder Tubing Type: LDPE

Pump Intake From TOC: 18.75 ft Estimated Total Volume Pumped:

2600 ml

Flow Cell Volume: 90 ml Final Flow Rate: 130 ml/min Final Draw Down: 0.18 ft Instrument Used: Aqua TROLL 400

Serial Number: 789310

Test Notes:

Prepurge 1L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperatur e	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Salinity	Flow
	Time	+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
		+ /- 0.1	+/- 1000 %	T/- 3 70	T/- 10 70	+ /- 5	+/- 1000 %	+/- 0.3	T/- 1000 %	
9/14/2021	00:00	6.15 pH	28.81 °C	20,719	2.95 mg/L	2.31 NTU	-74.4 mV	8.21 ft	12.59 PSU	130.00
9:20 AM	00.00	0.10 pm	20.01 0	μS/cm	2.95 Hig/L				12.001.00	ml/min
9/14/2021	04:00	6.22 pH	26.82 °C	20,875	1.16 mg/L	1.78 NTU	-84.0 mV	8.21 ft	12.69 PSU	130.00
9:24 AM	04.00 0.22	0.22 pm		μS/cm					12.001 00	ml/min
9/14/2021	08:00	08:00 6.26 pH	26.70 °C	21,045	0.72 mg/L	1.66 NTU	-90.5 mV	8.21 ft	12.80 PSU	130.00
9:28 AM	00.00			μS/cm						ml/min
9/14/2021	12:00	6.27 pH	26.78 °C	21,195	0.38 mg/L	1.75 NTU	-95.2 mV	8.15 ft	12.90 PSU	130.00
9:32 AM	12.00	0.27 pm	20.70	μS/cm	0.50 Hig/L	1.731110	-93.2 1110	0.1310	12.901 30	ml/min
9/14/2021	16:00	6.28 pH	26.95 °C	21,317	0.22 mg/L	1.63 NTU	-97.1 mV	8.15 ft	12.00 DOLL	130.00
9:36 AM	10.00	0.20 μπ	20.95 °C	μS/cm	0.22 HIg/L	1.03 NTO	-97.11111	0. 13 IL	12.98 PSU	ml/min
9/14/2021	20.00	6 20 nU	26.93 °C	21,587	0.16 mg/l	1.84 NTU	-100.0 mV	8.15 ft	13.16 PSU	130.00
9:40 AM	20:00 6.2	6.28 pH	20.93 C	μS/cm	0.16 mg/L	1.04 NTU -100.01	-100.01110	0.10 IL	13.10 F30	ml/min

Samples

Sample ID:	Description:
MCM-7	Metals, Inorganics, Alkalinity, TDS, Radium

Test Date / Time: 9/14/2021 12:42:10 PM Project: September 2021 McManus CCR Event

Operator Name: Robert Mull

Location Name: MCM-11
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 14 ft
Total Depth: 24 ft

Initial Depth to Water: 5.43 ft

Pump Type: Peristaltic Tubing Type: LDPE

Pump Intake From TOC: 19 ft Estimated Total Volume Pumped:

3720 ml

Flow Cell Volume: 90 ml Final Flow Rate: 170 ml/min Final Draw Down: 1.16 ft Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes: Prepurged 1L

Low-Flow Readings:

Date Time	Elapsed	рН	Temperatur	Specific	RDO	Turbidity	ORP	Depth To	Salinity	Flow
Date Time	Time	рп	е	Conductivity	Concentration	raibiaity	Orti	Water	Gainity	1 1000
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021	00:00	5.53 pH	27.70 °C	355.13	0.31 mg/L	0.56 NTU	97.1 mV	6.43 ft	0.17 PSU	210.00
12:42 PM	00.00	3.33 pm	27.70 0	μS/cm	0.51 mg/L			0.43 10	0.17 1 30	ml/min
9/14/2021	04:00	5.52 pH	27.46 °C	333.15	0.21 mg/L	0.25 NTU	96.4 mV	6.58 ft	0.16 PSU	210.00
12:46 PM		5.52 pm	27.46 C	μS/cm			96.4 1117	0.36 II		ml/min
9/14/2021	08:00	08:00 5.52 pH	27.46 °C	323.45	0.21 mg/L	0.02 NTU	97.5 mV	6.60 ft	0.16 PSU	170.00
12:50 PM	06.00			μS/cm						ml/min
9/14/2021	12:00	5.51 pH	27.15 °C	326.65	0.19 mg/L	0.08 NTU	98.8 mV	6.59 ft	0.16 PSU	170.00
12:54 PM	12.00	3.51 pm	27.13 C	μS/cm	0.19 Hig/L	0.00 1410	90.01110	0.59 it	0.10 F30	ml/min
9/14/2021	16:00	5 40 pH	27.45 °C	328.94	0.10 mg/l	0.01 NTU	101 6 m\/	6.59 ft	0.16 DCLI	170.00
12:58 PM	16:00	5.49 pH	27.45 °C	μS/cm	0.19 mg/L	0.01 N10	101.6 mV	ช.59 แ	0.16 PSU	ml/min
9/14/2021	20-00	5.50 pH	5 50 all 27 50 °C	333.23	0.47/1	0.00 NTU	400.0>/	0.50.4	0.16 PSU	170.00
1:02 PM	20:00	5.50 pm	27.50 °C	μS/cm	0.17 mg/L	0.03 NTU	103.6 mV	6.59 ft	0.16 PS0	ml/min

Samples

Sample ID:	Description:
MCM-11	Metals, Inorganics, TDS, Radium

Test Date / Time: 9/13/2021 5:09:33 PM **Project:** September 2021 McManus CCR Event

Operator Name: Calvin Layman

Location Name: MCM-12
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 19 ft
Total Depth: 29 ft

Initial Depth to Water: 8.84 ft

Pump Type: QED Bladder Tubing Type: LDPE

5040 ml

Pump Intake From TOC: 24 ft Estimated Total Volume Pumped:

Flow Cell Volume: 90 ml Final Flow Rate: 140 ml/min Final Draw Down: 1.26 ft Instrument Used: Aqua TROLL 400

Serial Number: 789310

Test Notes:

Prepurge 2L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperatur e	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Salinity	Flow
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/13/2021 5:09 PM	00:00	6.22 pH	30.84 °C	2,247.3 μS/cm	0.54 mg/L	1.15 NTU	55.1 mV	9.80 ft	1.16 PSU	140.00 ml/min
9/13/2021 5:13 PM	04:00	6.25 pH	26.95 °C	2,360.9 μS/cm	0.12 mg/L	1.08 NTU	40.8 mV	9.85 ft	1.23 PSU	140.00 ml/min
9/13/2021 5:17 PM	08:00	6.24 pH	26.53 °C	2,370.0 μS/cm	0.09 mg/L	1.50 NTU	39.7 mV	9.87 ft	1.23 PSU	140.00 ml/min
9/13/2021 5:21 PM	12:00	6.24 pH	26.49 °C	2,361.3 μS/cm	0.06 mg/L	2.41 NTU	39.1 mV	9.89 ft	1.23 PSU	140.00 ml/min
9/13/2021 5:25 PM	16:00	6.24 pH	26.25 °C	2,357.2 μS/cm	0.05 mg/L	3.46 NTU	40.9 mV	9.94 ft	1.23 PSU	140.00 ml/min
9/13/2021 5:29 PM	20:00	6.24 pH	26.00 °C	2,363.4 μS/cm	0.04 mg/L	4.29 NTU	40.5 mV	9.97 ft	1.23 PSU	140.00 ml/min
9/13/2021 5:33 PM	24:00	6.24 pH	25.72 °C	2,362.0 μS/cm	0.04 mg/L	4.89 NTU	40.4 mV	10.02 ft	1.23 PSU	140.00 ml/min
9/13/2021 5:37 PM	28:00	6.24 pH	25.57 °C	2,368.1 μS/cm	0.03 mg/L	4.95 NTU	41.2 mV	10.06 ft	1.23 PSU	140.00 ml/min
9/13/2021 5:41 PM	32:00	6.24 pH	25.43 °C	2,371.0 μS/cm	0.02 mg/L	4.98 NTU	40.6 mV	10.07 ft	1.23 PSU	140.00 ml/min
9/13/2021 5:45 PM	36:00	6.24 pH	25.40 °C	2,373.6 μS/cm	0.02 mg/L	4.69 NTU	40.4 mV	10.10 ft	1.24 PSU	140.00 ml/min

Samples

Sample ID:	Description:
MCM-12	Metals, Inorganics, Alkalinity, TDS, Radium

Test Date / Time: 9/13/2021 5:08:14 PM Project: September 2021 McManus CCR Event

Operator Name: Robert Mull

Location Name: MCM-14 Well Diameter: 2 in **Casing Type: PVC** Screen Length: 10 ft Top of Screen: 18.11 ft Total Depth: 28.11 ft

Initial Depth to Water: 8.55 ft

Pump Type: QED Dedicated Bladder Tubing Type: LDPE

Pump Intake From TOC: 23 ft **Estimated Total Volume Pumped:**

4000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.38 ft

Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes:

Prepurged 1L

Low-Flow Readings:

Date Time	Elapsed	рH	Temperatur	Specific	RDO	Turbidity	ORP	Depth To	Salinity	Flow
Date Time	Time	рп	е	Conductivity	Concentration	ruiblaity	OKF	Water	Samily	Flow
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 10	
9/13/2021	00:00	6.48 pH	26.79 °C	14,542	2.05 mg/L	0.70 NTU	-212.0 mV	8.74 ft	8.56 PSU	200.00
5:08 PM	00.00		20.79	μS/cm	2.03 Hig/L		-212.01110	0.7410	0.501 50	ml/min
9/13/2021	04:00	6.41 pH	25.50 °C	14,808	0.70//	0.39 NTU	-240.9 mV	8.75 ft	8.73 PSU	200.00
5:12 PM				μS/cm	0.73 mg/L	0.39 1410	-240.9 1110	0.75 it	6.73 F30	ml/min
9/13/2021	08:00	6.36 pH	25.24 °C	14,868	0.46 mg/L	0.23 NTU	-247.8 mV	8.79 ft	8.77 PSU	200.00
5:16 PM	06.00	6.30 pm	25.24 0	μS/cm	0.40 mg/L	0.23 1410	247.01117	0.791	6.77 F3U	ml/min
9/13/2021	12:00	6.32 pH	25.12 °C	14,819	0.31 mg/L	0.26 NTU	-249.5 mV	8.86 ft	8.74 PSU	200.00
5:20 PM	12.00	0.32 pm	25.12 0	μS/cm	0.31 Hig/L	0.20 1410	-249.3 1110	0.00 It	8.74 F30	ml/min
9/13/2021	16:00	6 20 54	24.99 °C	14,718	0.24 mg/L	0.24 NTU	249.6 m\/	9 00 ft	0 67 DCLI	200.00
5:24 PM	16:00	6.30 pH	24.99 °C	μS/cm	0.24 Mg/L	0.24 NTU	-240.0 IIIV	248.6 mV 8.90 ft	8.67 PSU	ml/min
9/13/2021	20.00	20:00 6.30 pH	24.90 °C	14,731	0.40/1	0.22 NTU	-250.6 mV	8.93 ft	8.68 PSU	200.00
5:28 PM	20.00			μS/cm	0.19 mg/L	0.22 NTU				ml/min

Samples

Sample ID:	Description:
MCM-14	Metals, Inorganics, Alkalinity, TDS, Radium

Test Date / Time: 9/14/2021 4:04:00 PM **Project:** September 2021 McManus CCR Event

Operator Name: Robert Mull

Location Name: MCM-15
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 16.6 ft

Total Depth: 26.6 ft Initial Depth to Water: 8.86 ft **Pump Type: Dedicated Bladder**

Tubing Type: LDPE

Pump Intake From TOC: 21.6 ft Estimated Total Volume Pumped:

8000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 160 ml/min Final Draw Down: 0.02 ft Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes: Prepurged 1L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperatur e	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Salinity	Flow
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021 4:04 PM	00:00	5.49 pH	27.60 °C	58.68 μS/cm	0.85 mg/L	2.82 NTU	80.1 mV	8.92 ft	0.03 PSU	240.00 ml/min
9/14/2021 4:08 PM	04:00	5.33 pH	26.14 °C	61.57 μS/cm	0.85 mg/L	1.17 NTU	66.9 mV	8.95 ft	0.03 PSU	240.00 ml/min
9/14/2021 4:12 PM	08:00	5.25 pH	25.58 °C	55.36 μS/cm	0.48 mg/L	1.09 NTU	60.9 mV	8.95 ft	0.03 PSU	240.00 ml/min
9/14/2021 4:16 PM	12:00	5.23 pH	25.24 °C	59.74 μS/cm	0.26 mg/L	1.52 NTU	55.0 mV	8.94 ft	0.03 PSU	240.00 ml/min
9/14/2021 4:20 PM	16:00	5.42 pH	24.96 °C	110.33 μS/cm	0.19 mg/L	2.70 NTU	29.6 mV	8.94 ft	0.05 PSU	240.00 ml/min
9/14/2021 4:24 PM	20:00	5.40 pH	25.10 °C	112.54 μS/cm	0.19 mg/L	3.01 NTU	27.7 mV	8.91 ft	0.05 PSU	160.00 ml/min
9/14/2021 4:28 PM	24:00	5.41 pH	25.49 °C	118.73 μS/cm	0.15 mg/L	3.65 NTU	26.5 mV	8.90 ft	0.06 PSU	160.00 ml/min
9/14/2021 4:32 PM	28:00	5.39 pH	25.77 °C	116.80 μS/cm	0.13 mg/L	4.07 NTU	28.0 mV	8.88 ft	0.05 PSU	160.00 ml/min
9/14/2021 4:36 PM	32:00	5.39 pH	25.86 °C	117.80 μS/cm	0.14 mg/L	3.90 NTU	28.0 mV	8.89 ft	0.06 PSU	160.00 ml/min
9/14/2021 4:40 PM	36:00	5.39 pH	25.92 °C	121.56 μS/cm	0.13 mg/L	4.05 NTU	26.2 mV	8.88 ft	0.06 PSU	160.00 ml/min
9/14/2021 4:44 PM	40:00	5.39 pH	25.83 °C	121.74 μS/cm	0.14 mg/L	4.03 NTU	25.5 mV	8.88 ft	0.06 PSU	160.00 ml/min

Samples

Sample ID:	Description:
MCM-15	Metals, Inorganics, TDS, Radium

Test Date / Time: 9/14/2021 10:50:10 AM Project: September 2021 McManus CCR Event

Operator Name: William Laaker

Location Name: MCM-16 Well Diameter: 2 in **Casing Type: PVC** Screen Length: 10 ft Top of Screen: 18.39 ft Total Depth: 28.39 ft

Initial Depth to Water: 9.05 ft

Pump Type: QED Dedicated

Tubing Type: LDPE

Pump Intake From TOC: 23.39 ft **Estimated Total Volume Pumped:**

2240 ml

Flow Cell Volume: 90 ml Final Flow Rate: 140 ml/min Final Draw Down: 0.08 ft

Instrument Used: Aqua TROLL 400

Serial Number: 789301

Test Notes:

Prepurged 1 L

Low-Flow Readings:

Date Time	Elapsed	рH	Temperatur	Specific	RDO	Turbidity	ORP	Depth To	Salinity	Flow
Date Time	Time	рп	е	Conductivity	Concentration	Turbluity	OKP	Water	Samily	FIOW
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021	00:00	4.67 pH	23.42 °C	174.67	0.52 mg/L	0.24 NTU	109.2 mV	9.13 ft	0.08 PSU	140.00
10:50 AM	00.00	4.07 pm	23.42 °C	μS/cm	0.52 mg/L		100.2 1114	9.13 11	0.00 F 30	ml/min
9/14/2021	04:00	4.66 pH	22.93 °C	177.65	0.35 mg/L	0.60 NTU	100.9 mV	9.13 ft	0.08 PSU	140.00
10:54 AM	04:00	4.00 pm	22.93 C	μS/cm	0.35 Hig/L	0.60 N10	100.9 1110	5.15 it	0.001 30	ml/min
9/14/2021	08:00	4.67 pH	22.76 °C	177.77	0.33 mg/L	0.12 NTU	98.5 mV	9.13 ft	0.08 PSU	140.00
10:58 AM	08.00	4.07 pm		μS/cm	0.33 mg/L	0.12 1110	90.5 111	9.13 11		ml/min
9/14/2021	12:00	4.70 pH	22.70 °C	174.21	0.28 mg/L	0.06 NTU	96.4 mV	9.13 ft	0.08 PSU	140.00
11:02 AM	12:00	4.70 pm	22.70 C	μS/cm	0.20 Hig/L	0.00 N10	90.4 1110	9.13 11	0.00 F30	ml/min
9/14/2021	40.00	1 00 -11	22.64 °C	175.65	0.31 mg/L	0.01 NTU	05.2 \	0.40.#	0.08 PSU	140.00
11:06 AM	16:00	4.69 pH		μS/cm		0.01 N10	95.3 mV	9.13 ft		ml/min

Samples

Sample ID:	Description:
MCM-16	Metals, Inorganics, TDS, Radium
DUP-1	Metals, Inorganics, TDS, Radium

Test Date / Time: 9/14/2021 2:58:52 PM **Project:** September 2021 McManus CCR Event

Operator Name: Calvin Layman

Location Name: MCM-17
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 17.44 ft
Total Depth: 27.44 ft

Initial Depth to Water: 9.12 ft

Pump Type: QED Bladder Tubing Type: LDPE

Pump Intake From TOC: 22.44 ft Estimated Total Volume Pumped:

26240 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: -0.51 ft Instrument Used: Aqua TROLL 400

Serial Number: 789310

Test Notes: Prepurge 1L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperatur e	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Salinity	Flow
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021 2:58 PM	00:00	6.28 pH	30.91 °C	13,304 μS/cm	1.01 mg/L	0.90 NTU	-59.5 mV	9.12 ft	7.78 PSU	120.00 ml/min
9/14/2021 3:02 PM	04:00	6.26 pH	28.17 °C	14,041 μS/cm	0.26 mg/L	0.53 NTU	-56.6 mV	9.12 ft	8.25 PSU	120.00 ml/min
9/14/2021 3:06 PM	08:00	6.26 pH	28.40 °C	14,107 μS/cm	0.27 mg/L	0.40 NTU	-57.2 mV	9.06 ft	8.29 PSU	120.00 ml/min
9/14/2021 3:10 PM	12:00	6.25 pH	28.10 °C	14,111 μS/cm	0.27 mg/L	0.79 NTU	-55.1 mV	9.06 ft	8.29 PSU	120.00 ml/min
9/14/2021 3:14 PM	16:00	6.24 pH	27.72 °C	14,233 μS/cm	0.16 mg/L	3.34 NTU	-56.1 mV	9.04 ft	8.37 PSU	120.00 ml/min
9/14/2021 3:18 PM	20:00	6.24 pH	27.24 °C	14,250 μS/cm	0.13 mg/L	6.75 NTU	-55.6 mV	9.04 ft	8.38 PSU	120.00 ml/min
9/14/2021 3:22 PM	24:00	6.23 pH	27.16 °C	14,274 μS/cm	0.10 mg/L	11.68 NTU	-55.0 mV	9.00 ft	8.39 PSU	120.00 ml/min
9/14/2021 3:26 PM	28:00	6.22 pH	27.83 °C	14,262 μS/cm	0.08 mg/L	14.61 NTU	-57.6 mV	8.96 ft	8.39 PSU	120.00 ml/min
9/14/2021 3:30 PM	32:00	6.24 pH	26.85 °C	13,991 μS/cm	0.08 mg/L	11.40 NTU	-51.5 mV	8.98 ft	8.21 PSU	200.00 ml/min
9/14/2021 3:34 PM	36:00	6.24 pH	25.58 °C	14,177 μS/cm	0.09 mg/L	12.00 NTU	-50.9 mV	8.92 ft	8.33 PSU	200.00 ml/min
9/14/2021 3:38 PM	40:00	6.25 pH	25.50 °C	14,181 μS/cm	0.08 mg/L	12.20 NTU	-57.9 mV	8.92 ft	8.33 PSU	200.00 ml/min
9/14/2021 3:42 PM	44:00	6.28 pH	25.53 °C	14,234 μS/cm	0.08 mg/L	11.90 NTU	-68.1 mV	8.92 ft	8.37 PSU	200.00 ml/min
9/14/2021 3:46 PM	48:00	6.32 pH	25.43 °C	14,205 μS/cm	0.08 mg/L	11.20 NTU	-58.2 mV	8.92 ft	8.35 PSU	200.00 ml/min
9/14/2021 3:50 PM	52:00	6.39 pH	25.43 °C	14,301 μS/cm	0.08 mg/L	14.53 NTU	-61.1 mV	8.84 ft	8.41 PSU	200.00 ml/min
9/14/2021 3:54 PM	56:00	6.45 pH	25.40 °C	14,351 μS/cm	0.08 mg/L	13.52 NTU	-64.3 mV	8.86 ft	8.44 PSU	200.00 ml/min

9/14/2021				14,392						200.00
3:58 PM	01:00:00	6.50 pH	25.50 °C	µS/cm	0.07 mg/L	12.39 NTU	-66.4 mV	8.86 ft	8.47 PSU	ml/min
9/14/2021 4:02 PM	01:04:00	6.54 pH	25.52 °C	14,354 μS/cm	0.09 mg/L	12.45 NTU	-66.4 mV	8.78 ft	8.44 PSU	200.00 ml/min
9/14/2021 4:06 PM	01:08:00	6.56 pH	24.82 °C	14,443 μS/cm	0.09 mg/L	11.72 NTU	-65.0 mV	8.81 ft	8.50 PSU	200.00 ml/min
9/14/2021	01:12:00	6.60 pH	24.54 °C	14,512	0.08 mg/L	10.69 NTU	-66.8 mV	8.81 ft	8.54 PSU	200.00
4:10 PM 9/14/2021		·		μS/cm 14,568						ml/min 200.00
4:14 PM 9/14/2021	01:16:00	6.63 pH	24.41 °C	μS/cm 14,630	0.08 mg/L	9.25 NTU	-66.7 mV	8.81 ft	8.58 PSU	ml/min 200.00
4:18 PM	01:20:00	6.65 pH	24.27 °C	μS/cm	0.08 mg/L	8.68 NTU	-66.4 mV	8.74 ft	8.61 PSU	ml/min
9/14/2021 4:22 PM	01:24:00	6.67 pH	24.59 °C	14,694 μS/cm	0.07 mg/L	8.64 NTU	-65.8 mV	8.69 ft	8.66 PSU	200.00 ml/min
9/14/2021 4:26 PM	01:28:00	6.68 pH	24.86 °C	14,779 μS/cm	0.07 mg/L	7.76 NTU	-67.9 mV	8.68 ft	8.71 PSU	200.00 ml/min
9/14/2021	01:32:00	6.70 pH	24.81 °C	14,755	0.07 mg/L	7.58 NTU	-66.7 mV	8.68 ft	8.70 PSU	200.00
4:30 PM 9/14/2021	01:36:00	6.71 pH	24.97 °C	μS/cm 14,802	0.07 mg/L	7.53 NTU	-66.8 mV	8.68 ft	8.73 PSU	ml/min 200.00
4:34 PM 9/14/2021		·		μS/cm 14,825						ml/min 200.00
4:38 PM	01:40:00	6.72 pH	24.90 °C	μS/cm	0.07 mg/L	7.11 NTU	-65.7 mV	8.68 ft	8.74 PSU	ml/min
9/14/2021 4:42 PM	01:44:00	6.73 pH	24.86 °C	14,838 μS/cm	0.06 mg/L	6.24 NTU	-65.0 mV	8.68 ft	8.75 PSU	200.00 ml/min
9/14/2021 4:46 PM	01:48:00	6.73 pH	24.81 °C	14,930 μS/cm	0.07 mg/L	5.98 NTU	-66.3 mV	8.68 ft	8.81 PSU	200.00 ml/min
9/14/2021 4:50 PM	01:52:00	6.74 pH	24.74 °C	14,970 μS/cm	0.07 mg/L	5.96 NTU	-65.2 mV	8.68 ft	8.83 PSU	200.00 ml/min
9/14/2021	01:56:00	6.74 pH	24.59 °C	15,015	0.07 mg/L	5.60 NTU	-65.7 mV	8.68 ft	8.86 PSU	200.00
4:54 PM 9/14/2021	02:00:00	6.75 pH	24.41 °C	μS/cm 15,056	0.07 mg/L	5.65 NTU	-64.5 mV	8.65 ft	8.89 PSU	ml/min 200.00
4:58 PM 9/14/2021		-		μS/cm 15,062						ml/min 200.00
5:02 PM	02:04:00	6.75 pH	24.32 °C	μS/cm	0.07 mg/L	5.63 NTU	-65.8 mV	8.61 ft	8.89 PSU	ml/min
9/14/2021 5:06 PM	02:08:00	6.76 pH	24.23 °C	15,094 μS/cm	0.08 mg/L	5.01 NTU	-64.5 mV	8.61 ft	8.91 PSU	200.00 ml/min
9/14/2021 5:10 PM	02:12:00	6.76 pH	24.23 °C	15,083 μS/cm	0.07 mg/L	5.16 NTU	-63.1 mV	8.61 ft	8.90 PSU	200.00 ml/min
9/14/2021 5:14 PM	02:16:00	6.77 pH	24.18 °C	15,104 μS/cm	0.07 mg/L	4.92 NTU	-64.5 mV	8.61 ft	8.92 PSU	200.00 ml/min
9/14/2021	02:20:00	6.77 pH	24.27 °C	15,186	0.07 mg/L	4.82 NTU	-64.7 mV	8.61 ft	8.97 PSU	200.00
5:18 PM 9/14/2021	02:24:00	6.77 pH	24.36 °C	μS/cm 15,155	0.07 mg/L	4.54 NTU	-64.4 mV	8.61 ft	8.95 PSU	ml/min 200.00
5:22 PM	02.24.00	0.77 pm	24.30 0	μS/cm	0.07 Hig/L	4.54 1110	-04.4 1110	0.0111	0.33 F30	ml/min

Samples

Sample ID:	Description:
MCM-17	Metals, Inorganics, Alkalinity, TDS, Radium

Test Date / Time: 9/14/2021 1:09:37 PM
Project: September 2021 McManus CCR Event

Operator Name: William Laaker

Location Name: MCM-18
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 17.86 ft
Total Depth: 27.86 ft

Initial Depth to Water: 6.34 ft

Pump Type: GeoTech Peristaltic

Tubing Type: LDPE

Pump Intake From TOC: 22.86 ft Estimated Total Volume Pumped:

2400 ml

Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min Final Draw Down: 0.16 ft Instrument Used: Aqua TROLL 400

Serial Number: 789301

Test Notes: Prepurged 1 L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperatur e	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Salinity	Flow
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021	00:00	4.25 pH	25.70 °C	4,174.9	0.32 mg/L	0.64 NTU	116.0 mV	6.49 ft	2.25 PSU	150.00
1:09 PM	00.00	4.23 pm	25.70 C	μS/cm	0.52 mg/L		110.0111	0.43 11	2.231 30	ml/min
9/14/2021	04:00	4.27 pH	24.78 °C	4,175.2	0.24 mg/L	0.12 NTU	110.4 mV	6.49 ft	2.25 PSU	150.00
1:13 PM	04:00	4.27 pn	24.76 C	μS/cm	0.24 Hig/L	0.12 N10	110.4111	0.49 11	2.231 30	ml/min
9/14/2021	08:00	00 4.28 pH	24.45 °C	4,150.8	0.19 mg/L	0.04 NTU	108.1 mV	6.49 ft	2.23 PSU	150.00
1:17 PM	06.00	4.26 μπ		μS/cm		0.04 NTO		6.49 11		ml/min
9/14/2021	12:00	4.28 pH	24.93 °C	4,141.7	0.16 mg/L	0.34 NTU	111.8 mV	6.50 ft	2.23 PSU	150.00
1:21 PM	12:00	4.26 pm	24.93 °C	μS/cm	0.10 mg/L	0.34 1110	111.0111	0.50 it	2.23 PSU	ml/min
9/14/2021	40.00	0.00 4.00 -11	H 25.23 °C	4,094.3	0.15 mg/L	0.12 NTU	114.1 m\/	6 FO #	2.20 PSU	150.00
1:25 PM	16:00	4.28 pH		μS/cm	0.15 mg/L	0.13 NTU	114.1 mV	6.50 ft		ml/min

Samples

Sample ID:	Description:
MCM-18	Metals, Inorganics, TDS, Radium

Test Date / Time: 9/14/2021 2:38:20 PM **Project:** September 2021 McManus CCR Event

Operator Name: William Laaker

Location Name: MCM-19
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 18.32 ft

Total Depth: 28.32 ft

Initial Depth to Water: 6.39 ft

Pump Type: GeoTech Peristaltic

Tubing Type: LDPE

Pump Intake From TOC: 23.32 ft Estimated Total Volume Pumped:

3400 ml

Flow Cell Volume: 90 ml Final Flow Rate: 170 ml/min Final Draw Down: -0.1 ft Instrument Used: Aqua TROLL 400

Serial Number: 789301

Test Notes: Prepurged 1 L

Low-Flow Readings:

Date Time	Elapsed pH		Temperatur e	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Salinity	Flow
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021 2:38 PM	00:00	5.29 pH	24.60 °C	24,939 μS/cm	0.29 mg/L	0.08 NTU	104.2 mV	6.48 ft	15.40 PSU	170.00 ml/min
9/14/2021 2:42 PM	04:00	5.31 pH	24.24 °C	25,038 μS/cm	0.22 mg/L	0.46 NTU	100.1 mV	6.46 ft	15.46 PSU	170.00 ml/min
9/14/2021 2:46 PM	08:00	5.31 pH	24.19 °C	24,967 μS/cm	0.17 mg/L	0.15 NTU	98.2 mV	6.42 ft	15.41 PSU	170.00 ml/min
9/14/2021 2:50 PM	12:00	5.31 pH	24.24 °C	24,818 μS/cm	0.16 mg/L	0.13 NTU	97.2 mV	6.38 ft	15.31 PSU	170.00 ml/min
9/14/2021 2:54 PM	16:00	5.31 pH	24.06 °C	24,829 μS/cm	0.15 mg/L	0.59 NTU	95.4 mV	6.34 ft	15.32 PSU	170.00 ml/min
9/14/2021 2:58 PM	20:00	5.31 pH	24.08 °C	24,714 μS/cm	0.14 mg/L	0.11 NTU	94.4 mV	6.29 ft	15.24 PSU	170.00 ml/min

Samples

Sample ID:	Description:
MCM-19	Metals, Inorganics, TDS, Radium
DUP-2	Metals, Inorganics, TDS, Radium

Test Date / Time: 9/14/2021 4:08:52 PM **Project:** September 2021 McManus CCR Event

Operator Name: William Laaker

Location Name: MCM-20 Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 13.05 ft

Total Depth: 23.05 ft

Initial Depth to Water: 6.99 ft

Pump Type: GeoTech Peristaltic

Tubing Type: LDPE

Pump Intake From TOC: 18.05 ft Estimated Total Volume Pumped:

2880 ml

Flow Cell Volume: 90 ml Final Flow Rate: 180 ml/min Final Draw Down: 0.44 ft Instrument Used: Aqua TROLL 400

Serial Number: 789301

Test Notes: Prepurged 1 L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperatur e	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Salinity	Flow
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021	00:00	3.73 pH	25.30 °C	17,732	0.23 mg/L 0.3	0.37 NTU	147.6 mV	7.42 ft	10.62 PSU	180.00
4:08 PM	PM 00.00	3.73 pm	25.50 C	μS/cm	0.23 mg/L	0.57 1110	147.0111	7.42 10	10.02 1 00	ml/min
9/14/2021	04:00	3.73 pH	25.01 °C	17,843	0.19 mg/L	0.66 NTU	142.9 mV	7.43 ft	10.69 PSU	180.00
4:12 PM	04.00	3.73 PH	25.01 C	μS/cm	0.19 mg/L	0.00 1410	142.9 1110	7.43 II	10.09 F30	ml/min
9/14/2021	08:00	3.73 pH	24.74 °C	17,802	0.17 mg/L	0.34 NTU	138.5 mV	7.44 ft	10.66 PSU	180.00
4:16 PM	06.00	3.73 PH		μS/cm	0.17 Hig/L	0.34 NTO	136.5 111	7.44 11	10.66 PSU	ml/min
9/14/2021	12:00	3.72 pH	24.64 °C	17,856	0.16 mg/L	0.21 NTU	134.4 mV	7.43 ft	10.70 PSU	180.00
4:20 PM	12.00	3.72 pm	24.04 C	μS/cm	0.10 mg/L	0.211110	134.4 1110	7.43 It		ml/min
9/14/2021	16:00	3.72 pH	24.69 °C	17,838	0.14 mg/L	0.09 NTU	130.6 mV	7.43 ft	10.68 PSU	180.00
4:24 PM	16.00	3.72 p⊓		μS/cm	0.14 Mg/L	0.09 NTO	130.0 1110	7.43 II	10.00 PSU	ml/min

Samples

Sample ID:	Description:
MCM-20	Metals, Inorganics, TDS, Radium

Test Date / Time: 9/14/2021 2:30:03 PM **Project:** September 2021 McManus CCR Event

Operator Name: Robert Mull

Location Name: DPZ-02
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 33.46 ft
Total Depth: 43.46 ft

Initial Depth to Water: 7.23 ft

Pump Type: Peristaltic Tubing Type: LDPE

Pump Intake From TOC: 38.5 ft Estimated Total Volume Pumped:

3360 ml

Flow Cell Volume: 90 ml Final Flow Rate: 210 ml/min Final Draw Down: 0.02 ft Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperatur e	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Salinity	Flow
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
9/14/2021	00:00	7.15 pH	27.21 °C	25,374	0.41 mg/L	2.72 NTU	-237.9 mV	7.36 ft	15.71 PSU	210.00
2:30 PM		7.15 pm	27.21 0	μS/cm	0.41 mg/L					ml/min
9/14/2021	04:00	7.11 pH	26.17 °C	24,859	0.20 mg/L	0.49 NTU	-247.1 mV	7.33 ft	15.36 PSU	210.00
2:34 PM	04.00	7.11 pm	20.17	μS/cm	0.20 Hig/L	0.49 N10	-247.11111	7.33 II	15.36 F30	ml/min
9/14/2021	08:00	7.10 pH	25.96 °C	25,312	0.14 mg/L	0.09 NTU	-254.9 mV	7.31 ft	15.66 PSU	210.00
2:38 PM	08.00	7.10 pm	25.90 C	μS/cm	0.14 mg/L	0.09 1110	-254.9 1110	7.3111	15.66 PSU	ml/min
9/14/2021	12:00	7.11 pH	25.71 °C	25,908	0.11 mg/L	0.05 NTU	-259.0 mV	7.28 ft	16.06 PSU	210.00
2:42 PM	12.00	7.11 pm	25.71 °C	μS/cm	0.11 mg/L	0.03 1410	-239.0 1110	7.20 II	10.00 F30	ml/min
9/14/2021	16:00	7.11 pH	25.63 °C	26,002	0.10 mg/L	0.03 NTU	-260.2 mV	7.25 ft	16.13 PSU	210.00
2:46 PM	16.00	7.11 pm	25.63 C	μS/cm	0.10 Hig/L	0.03 NTO	-200.2 1110	7.25 II	10.13 PSU	ml/min

Samples

Sample ID:	Description:
DPZ-02	Metals, Inorganics, TDS, Radium

Resolut	te		EQUIPM	IENT CALIBRA	TION LOG						
Facial Technician Zo	bet n	1-11		Date 9/13/	Date 9/13/21 1/600 moi birday (heck)						
Aquatrous 728	566			Turbular Vietre Type 2020 WC SN 1729-5011							
Project Sept. 70	Z) Melhan	us CE	R	Weather Conditions	Turbular Victor Type 2020 WC SN 1729-5011 Weather Conditions Pally Clary, 85° =						
	_			Calibration Log							
	Standard Let #/ Date of Expiration	Temp of Standard (*C)	Value of Standard	Instrument Reading at Calibration				Composits			
DO (%) (lpt, 188% water saturated air cat)				85.65%							
Specific Conductones (µS/em)	21070193 8/22	31-89	4490	5,4384							
p#1 (4)	21070193 8/22	31.82	4	4-44							
p# (Y)	21010066 8/22	31.29	7	7-12							
pH (18)	21080189 6/22	30-48	10	9.68			-				
ORP (mV)	21140141 8/22	30-10	228	211.8							
		-		<u></u>							
			Value of Standard	Instrument Reading	Acceptable Range	Pac	s†	Comments			
Surbidity O NTU		H	0	0.01	-/4 S NTU	6	No				
Turbidny 1 MTV			1	1.00	0 \$ NTU	B	No				
Tachidhy IS NTU			10	9.80	US NTU	D	No				
		Temp of Standard (*C)	Value of Standard	Fest Calibration Rending	Acceptable Sange	Par	14?	Comments			
hild-Duy pil (4) check		30.76	4	3.90	0180	0	No				
hlid-Day pll (7) cheek		29.38	7	7.09	-/- 0 I SU	6	N				
Mid-Day pH (14) check		29.88	10	10.10	-/- U I SU	0	No	5.5.20			

Resolut	<u>E</u>		EQUIPM	ENT CALIBRAT	TION LOG					
Field Techniquan CALUDN	LAYMEN			Date 9/13/2	21	Time (Cal	labraction)	16:15	1 8: 30 Time (Mid-day Check)	
AquaTroll SN 789 310				77				SN. 5896	-3715	
Project MCMANUS		_		Turbidity Meter Type: Weather Conditions.	650/940					
				Calibration Log						
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Instrument Reading at Calibration				Commedi		
DO (%) (1pt, 100% water saturated air cal)		TON	No.	98.31						
Specific Conductance (µS/cm)	21070193 8/22	28.96	4490	4514,4						
p1L (4)	21070193 8/22	29,17	4	3,81						
pH (7)	21010066 8/22	28,66	7	6.71						
p11 (10)	21080189 6/22	28.49	10	9-48						
ORP (mV)	21140141 8/22	28.44	228	215,3						
				-						
			Value of Standard	Instrument Reading	Acceptable Range	Pai	19?		Соттень	
Turbidity 6 NTU			0	,01	~0.5 NTU	Yes	No			
Turbidity 1 NTU			t	.96	-/- 0.5 NTU	Yes	аК			
Turbidity 16 NT V			10	11.17	-7-05 NTU	Yes	No			
		8=2								
		Temp of Standard (°C)	Value of Standard	Post Calibration Reading	Acceptable Range	P.	155?		Comments	
Mid-Day pH (4) check	1477.4	29.73	4	4.14	+₁ 0.1 SU	Yes	Nο			
Mid-Day pH (7) check		29.59	7	7.22	÷/∘ 0 1 SU	Yes	No			
Mid-Day pH (10) check	EQUAL	30.54	10	10.12	-/- 0 I SU	Yes	Νo			

Resolut	TE THE THE TENE		EQUIPM	ENT CALIBRAT	ION LOG					
•	LAYMAN			Duc 9/14/2	1	Tune (Cal	8:0	5	18:01 Time (Mid-day Check)	
AGUATIONISM 789310)			Turbidity Merer Type LAMO ITTS N 5896 - 3715						
Project SEPTEMBER	2 2021 MU	CUMAN	CCR	Weather Conditions:	10°/87°					_
				Calibration Log						
	Standard Lot # / Duty of Expiration	Temp of Standard (°C)	Value of Standard	Instrument Reading at Calibration				Comments		_
DO (%) (1pt, 100% water saturated air cal)				100,57						
Specific Conductance (µS/em)	21070193 8/22	25.86	4490	4384.1						
pH (4)	21070193 8/22	25 79	4	4.00						
pht (7)	21010066 8/22	25 49	7	6.47						
pH (10)	21080189 6/22	2536	10	9,47				-		
ORP (mY)	21140141 8/22	25.26	228	232.0						
			Value of Standard	Instrument Reading	Acceptable Range	Pat	ış2 °		Comments	
Turbidity 0 NTU		100	0	. 02	≁/-0.5 NTU	Yes	No	-		
Turbidley 1 NTU	ALC: NO		1	. 66	-/- 0 5 NTU	Yes	No			
Turbidity 10 NTU			10	9.64	-/- 0.5 NTU	Yas	No			
				<u> </u>						
		Temp of Standard (*C)	Volue of Standard	Post Calibration Reading	Acceptable Range	Pa	155?		Comments	
Mid-Day pH (4) check	71 71	31.02	4	4.21	-/- 0.1 SU	Yes	No			
Mid-Day pH (7) check		30.79	7	7.35	-/- 0 I SU	Yes	No			
Mid-Day off (10) check		30.46	10	10.32	+/- 0.1 SU	Yes	No			

Resolut	e		EQUIPM	ENT CALIBRAT	ΠON LOG		
ENT RUM Robe	of Mull			Date 9/1	4/21	OSO.	1727) nte (Mol-day Check)
				La MHz Justislay Mesor Type	7070 4	re	sv 1729-5011
Sept.	8566 M.man.	~ >	Ccir	La Mutha Luthday Moser Egge Scharg Wrather Continuous	, 83°	F	
				Calibration Log			
	Standard Let #1 Date of Expiration	l'erap at Standard (°C	Value of Standard	Instrument Rending 4s Calibration			Comments
DO (%) (Ipt. 190% water saturated air cal)				107-847.			
Specific Conductance (µS/cm)	21070193 8/22	22.58	4490	3717.1			
p.51 (4)	21070193 8/22	22.63	4	3.75			
#H (7)	21010066 8/22	23.16	7	6.94			
(V) H4	21080189 6 /22	23-48	10	10-21			
ORP(mY)	21140141 8/22	23.59	228	238.2			
			Value of Standard	Instrument Residing	Acceptable Range	Puss?	Cammeats
Turbidity 9 NTU			0	0.01	-AQ S NTU	E XU	
Turbidity 1 KTV			1	1.11	-7- 0 5 NT U	10 N	
Turbidity 10 KTU			10	10.05	~- 05 STU	(a) No	
		Temp of Standard (*C)	Value of Stundard	Pest Calibration Reading	Acceptable Range	Paut	Сописыя
Mid-Day pf5 (4) check		32.16	4	4.08	5-01SU	€ Ne	
hild Juny plf (7) check		33.03	7	7.09	-'-018∪	May No	
Atld-Day pH (III) check		32.6A	10	9.98	-/-U \$U	€ No	

le

Resolut	e		EQUIPME	ENT CALIBRAT	ION ŁOG						
hidd Tedman William	Laaker			Date 9/14/21	Time (Calibration) 8:07 Time (Mid-day Check) 17 25						
Note: 189301				Turbiday Meter Type LaMette 2020 NATE SN 7042-3018							
Provect Sept 2021 /	McManus (CR_		Weather Conditions 87° / GG° SUNNIA							
				Calibration Log							
1 -	Standard Lat # / Date of Expiration	Temp of Standard (*C)	Value of Standard	Instrument Reading 61 Calibration	_			Comments	₩V)	i i	
DO (%) (ipt, 100% water saturated nir cal)	Sept of	HE		101 42							
Specific Conductance (µS/em)	21070193 8/22	23.30	4490	4501,9							
p38 (4)	21070193 8/22	23.52	4	C0.14		_				- 1	
pH (Ŧ)	21010066 8/22	24.07	7	7.01					·····		
pH (10)	21080189 6/22	24.48	10	16 01							
ORP (mV)	21140141 8/22	24 39	228	223.7					c=		
					The last	_					
			Nalue of Standard	Instrument Reading	Acceptable Range	Par	47		Comments		
Turbidity 0 NT()	THE REAL PROPERTY.	3-11	0	2.02	*/-D \$ NTU	Ves	No				
Turbidity I NTU			1	1.07	+/- 0.5 NTU	Yes	No			1	
Turbiday 10 NTU			10	9 95	+/- 05 NTU	Yes	No				
										- 1	
1-1		Temp of Standard (°C)	Value of Standard	Part Calibration Reading	Acceptable Range	Га	15.		Советскіх		
Mid-Day pH (4) ebeck	FIRST	36 20	4	415	+/- 0 1 SU	Yes	No				
Mid-Day plf (7) check		35 4 5	7	7.15	÷/-0 \$U	Ϋ́⇔	No				
Mid-Day pH (10) check		34.68	10	10 26	+/- 81 SU	Yes	No				

iit Number	Plant McManus	_		
		_		
ID	MCM-01	<u>-</u> -		
	9113/21	_		
		yes	no	n/a
1 Location/	<u>dentification</u>	,		
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	is the drainage around the well acceptable? (no standing water,			_
	nor is well located in obvious drainage flow path)			
2 Dentural	Design			_
2 Protective				
ā	Is the protective casing free from apparent damage and able to be	٠ ,		
	secured?			
b	Is the casing free of degradation or deterioration?			
Ċ	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,	_		
_	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 <u>Surface</u> p	ad			
a	Is the well pad in good condition (not cracked or broken)?	. /		
b	Is the well pad sloped away from the protective casing?	\rightarrow		
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)	_		
e	Is the pad surface clean (not covered with sediment or debris)?			
d lateral a	:_			
4 <u>Internal c</u>	Does the cap prevent entry of foreign material into the well?	_		
a	Is the casing free of kinks or bends, or any obstructions from			
ь	foreign objects (such as bailers)?	_		
	Is the well properly vented for equilibration of air pressure?	<u> </u>		
C	Is the survey point clearly marked on the inner casing?	-		
d	Is the depth of the well consistent with the original well log?			
e f	Is the casing stable? (or does the pvc move easily when touched			
1	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_		
	2			
5 Sampling	: Groundwater Wells Only:			
а	Does well recharge adequately when purged?	_		
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
¢	Does the well require redevelopment (low flow, turbid)?			
fi Rosed or	your professional judgement, is the well construction / location			
a pased on	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	1		
	redui emente (_		
7 Corrective	e actions as needed, by date:			

Name nit Number	Plant McManus	-35		
ID	7.4011.00	=		
	MCM - 02	-		
	9/13/21	- γes	no	n/a
1 Location	n/Identification	,	110	
а	is the well visible and accessible?	/		
b	Is the well properly identified with the correct well tD?	~		
¢	Is the well in a high traffic area and does the well require			-
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protecti	ve Casing			
а	Is the protective casing free from apparent damage and able to be	1		
-,	secured?	/		
ь	Is the casing free of degradation or deterioration?	-		
c	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			9
	or filled with pea gravel/sand?	~		
e	Is the well locked and is the lock in good condition?	1		
3 Surface	a mad			
a <u>ouriace</u>	ls the well pad in good condition (not cracked or broken)?	-		
b	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
q	Is the well pad in complete contact with the ground surface and			
~	stable? (not undermined by erosion, animal burrows, and does not	t		
	move when stepped on)			
e	Is the pad surface clean (not covered with sediment or debris)?	~		
4 Internal	Logaina			57
a interna	Does the cap prevent entry of foreign material into the well?	•		
b	ts the casing free of kinks or bends, or any obstructions from	<u> </u>		
U	foreign objects (such as ballers)?			
С	Is the well properly vented for equilibration of air pressure?			
ď	Is the survey point clearly marked on the inner casing?	J	_	
ē	Is the depth of the well consistent with the original well log?		A. 50.	
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	~		
5 Samplin	ng: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
c	Does the well require redevelopment (low flow, turbid)?	=	$\overline{\mathbf{Z}}$	
6 Reced	on your professional judgement, is the well construction / location			
- 54950	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	/		
	•			
7 Correct	ive actions as needed, by date:			

lumber	MCM-03	_		
	9 (13/2)	_		
	- 1 / K M	yes	no	n/a
1 Location	1/Identification			
а	Is the well visible and accessible?	1		
b	Is the well properly identified with the correct well ID?	_		
C	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	_		
2 <u>Protecti</u>	ve Casing			
а	Is the protective casing free from apparent damage and able to be			
_	secured?			
ь	Is the casing free of degradation or deterioration?			7
C	Does the casing have a functioning weep hole?			
ď	is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	~		
е	Is the well locked and is the lock in good condition?			
3 611-4				
3 Surface	<u>pag</u> Is the well pad in good condition (not cracked or broken)?	_		
a b	Is the well pad sloped away from the protective casing?			_
C	Is the well pad in complete contact with the protective casing?	-		_
d	Is the well pad in complete contact with the ground surface and			
_	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	$\overline{}$	₹ 	
4 Internal	ecrips			
a internal	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from	_	_	_
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	-		_
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			_
5 Samplir	ng: Groundwater Wells Onty:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
C	Does the well require redevelopment (low flow, turbid)?			مر ا
6 Based 4	on your professional judgement, is the well construction / location			
- Daseu (appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	/		
	•	_	_	

ame t Number	Plant McManus	-		
D	MCM-04	-		
	9/13/21	-		
	715/2	yes	_no	n/a
1 Location/	Identification	10.00		
а	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?			-
C	Is the well in a high traffic area and does the well require			
	protection from traffic?		1	
d	Is the drainage around the well acceptable? (no standing water,	_	6	
	nor is well located in obvious drainage flow path)	~		
2 Protective	e Casina			
a <u>* 15.000,111.</u>	Is the protective casing free from apparent damage and able to be			
_	secured?	_		
ь	Is the casing free of degradation or deterioration?	<u> </u>		
C	Does the casing have a functioning weep hole?			$\overline{}$
q	Is the annular space between casings clear of debris and water,			
, <u>a</u>	or filled with pea grave/sand?			
е	Is the well locked and is the lock in good condition?			
	-			
3 <u>Surface r</u>				
а	Is the well pad in good condition (not cracked or broken)?			
ь	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
đ	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	~		
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal o	casing			
а	Does the cap prevent entry of foreign material into the well?	~		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	~		
ď	Is the survey point clearly marked on the inner casing?	~		
е	Is the depth of the well consistent with the original well log?	~		
f	is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	_		
	couplings in construction)		—	
5 Sampling	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged?	1		
b	If dedicated sampling equipment installed, is it in good condition			
-	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			-
& Description	your profossional judgement is the well assets attend to the			
o pased of	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	,		
	iodanements :			$\overline{}$
7 Correctiv	e actions as needed, by date:			
	·			

Name	Plant McManus	_		
nit Number	388334	_		
ID	MCM-05	_		
1	9/13/21	– yes	no	n/a
1 Location/	dentification	yes	110	1112
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	e Casing			
a	Is the protective casing free from apparent damage and able to be	<u>,</u>		
	secured?	/		
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?	1		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	~		
е	Is the well locked and is the lock in good condition?	~		
3 <u>Surface p</u>	ad			
а	Is the well pad in good condition (not cracked or broken)?	/		
ь	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?	~	Vii	
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not	t		
	move when stepped on)			
e	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal c	asina			
a	Does the cap prevent entry of foreign material into the well?	_		
ь	Is the casing free of kinks or bends, or any obstructions from		-	
	foreign objects (such as bailers)?	_		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?	$\overline{}$		
f	Is the casing stable? (or does the pvc move easily when touched			/1
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	~	-	
5 <u>Sampling</u>	: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
ь	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	e actions as needed, by date:			

Name sit Number	Plant McManus	_		
ID	11014	_		
10	MCM-06	_		
	9 13 2			0/2
1 Leoctionii	dom 640 41	yes	по	n/a
1 Location/L				
a	Is the well visible and accessible?			
ь	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
ď	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be	<u> </u>		
•	secured?	•		
ь	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			
ď	Is the annular space between casings clear of debris and water,			
u	or filled with pea gravel/sand?			
	Is the well locked and is the lock in good condition?			
e	is the well locked and is the lock in good condition?			
3 <u>Surface pa</u>	ad			
a	Is the well pad in good condition (not cracked or broken)?	/		
b	Is the well pad sloped away from the protective casing?		-	
С	is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?		_	_
4 Internal ca	esina			
a	Does the cap prevent entry of foreign material into the well?	,		
b	Is the casing free of kinks or bends, or any obstructions from			
Ū	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
ď	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
į.	Is the casing stable? (or does the pvc move easily when touched			
T	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	1		
	* **			
5 <u>Sampling:</u>	Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition	_		
	and specified in the approved groundwater plan for the facility?			
¢	Does the well require redevelopment (low flow, turbid)?			
6 Based an	your professional judgement, is the well construction / location			
A D9860 (II)	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	,		
	reduiteura :	<u>~</u>		_
7 Corrective	actions as needed, by date:			

Plant McManus	_		
	-		
9/13/21	- 1100	50	n/a
dentification	yes	no	IIIa
	1		
			-
		-	
		,	
•			
	_		
	<u> </u>		
The state of the s		—	
	_		
•	<u> </u>		
is the well locked and is the lock in good containon:	 -		
a <u>d</u>			
Is the well pad in good condition (not cracked or broken)?	/		
Is the well pad sloped away from the protective casing?			
Is the well pad in complete contact with the protective casing?			
Is the well pad in complete contact with the ground surface and			
stable? (not undermined by erosion, animal burrows, and does not			
move when stepped on)	~		
Is the pad surface clean (not covered with sediment or debris)?			
asing			
	~		
	_		
	100		
Is the casing stable? (or does the pvc move easily when touched			_
· -			
couplings in construction)			
Groundwater Wells Only:			
			
If dedicated sampling equipment installed, is it in good condition	-		
and specified in the approved groundwater plan for the facility?	1		
Does the well require redevelopment (low flow, turbid)?			
your professional judgement, is the well construction / location		_	
	/		
actions as needed, by date:			
	dentification Is the well visible and accessible? Is the well properly identified with the correct well ID? Is the well in a high traffic area and does the well require protection from traffic? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) Casing Is the protective casing free from apparent damage and able to be secured? Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole? Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? Is the well locked and is the lock in good condition? ad Is the well pad in good condition (not cracked or broken)? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) Is the pad surface clean (not covered with sediment or debris)? asing Does the cap prevent entry of foreign material into the well? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? Is the well property vented for equilibration of air pressure? Is the well property vented for equilibration of air pressure? Is the easing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)? your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	## MCM - OT 9 13 21 21 21 21 3 21 3 21 3 21 3 21 3 21 3 21 3 21 3 21 3 3 3 3 3 3 3 3 3	MCM-0T 9/13/21 dentification Is the well visible and accessible? Is the well properly identified with the correct well ID? Is the well properly identified with the correct well iD? Is the well in a high traffic area and does the well require protection from traffic? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) Casing Is the protective casing free from apparent damage and able to be secured? Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole? Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? Is the well pad in good condition (not cracked or broken)? Is the well pad in good condition (not cracked or broken)? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) Is the pad surface clean (not covered with sediment or debris)? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) Is the pad surface clean (not covered with sediment or debris)? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? Is the well property vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the depth of the well consistent with the original well log? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pve move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction? Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does well recharge adequatel

ame t Number	Plant McManus	_		
D	MCM - 08	_		
	9/13/21	yes		n/a
1 Locatio	n/Identification	yes	ло	IUZ
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			-
C	Is the well in a high traffic area and does the well require			-
_	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,	_		
-	nor is well located in obvious drainage flow path)			
7 D	<u>-</u>			
	ive Casing			
a	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
_	or filled with pea gravel/sand?		_	
e	Is the well locked and is the lock in good condition?			
3 <u>Surface</u>	e pad			
а	Is the well pad in good condition (not cracked or broken)?	/		
b	Is the well pad sloped away from the protective casing?	$\overline{}$		
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	مر		
е	Is the pad surface clean (not covered with sediment or debris)?		_	
4 Interna	l casino			
а	Does the cap prevent entry of foreign material into the well?	100		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	ノ		
C	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	~		_
е	Is the depth of the well consistent with the original well log?			
f	is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	_		
	couplings in construction)		_	
5 Sampli	ng: Groundwater Wells O <u>nly:</u>			
a <u>sampa</u>	Does well recharge adequately when purged?	AN		
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		~	===
6 Daned	on your professional judgement, is the well construction / location			
Dased	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	requirements:		_	
7.0	live actions as needed, by date:			

Name iit Number	Plant McManus	-		
ID	- A D A A A A	_		
	MCM-10 =	-		
	9/19/21	yes	по	n/a
1 Location/I	dentification	, 00	110	, ,,,
a	Is the well visible and accessible?	~		
<u>-</u>	Is the well properly identified with the correct well ID?		-	
C	Is the well in a high traffic area and does the well require			
_	protection from traffic?		مر	
d	Is the drainage around the well acceptable? (no standing water,	_	_	
	nor is well tocated in obvious drainage flow path)			
2 Protective	• Casino			
a a	Is the protective casing free from apparent damage and able to be			
•	secured?			
b	Is the casing free of degradation or deterioration?			
č	Does the casing have a functioning weep hole?			_
d	Is the annular space between casings clear of debris and water,	_		
_	or filled with pea gravel/sand?	/		
e	Is the well locked and is the lock in good condition?			
• • •	74			
3 Surface p				
a	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
c d	Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and	_		
a	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	<u> </u>		
		 -,		
4 <u>Internal c</u>				
а	Does the cap prevent entry of foreign material into the well?			
Ь	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	<u>~~</u> _		
c	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	<u>~</u>		
6	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	<u>~</u>		
f	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Samulino	: Groundwater Wells Only:			
a <u>Sampling</u>	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
ū	and specified in the approved groundwater plan for the facility?			
C	Does the well require redevelopment (low flow, turbid)?			
fi Rased on	your professional judgement, is the well construction / location			.v
S pased off	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	/		
	·	_		
	e actions as needed, by date:			

il Number	Plant McManus			
D	MCM-1)	_		
	9 13 21	-		
1 Locatio	n/Identification	yes	no	n/a
a	Is the well visible and accessible?	./.		
b	Is the well properly identified with the correct well ID?	~	_	_
c	Is the well in a high traffic area and does the well require	_		
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)		_	
2 Protect	tive Casing			
a	Is the protective casing free from apparent damage and able to be			
_	secured?			
ь	Is the casing free of degradation or deterioration?			
c	Does the casing have a functioning weep hole?			_
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	✓		
е	Is the well locked and is the lock in good condition?			
3 Surfac	e pad			
9	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	<u></u>		U-
C	Is the well pad in complete contact with the protective casing?			-
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	_	-	
е	Is the pad surface clean (not covered with sediment or debris)?			-
4 <u>Interna</u>	al casing			
a	Does the cap prevent entry of foreign material into the well?		G	
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
c	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			-
1	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
		_		
5 Sampli	ing: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			
_	Does the well require redevelopment (low flow, turbid)?			_
С	Does the well reduite redevelopment flow flow, turble);		Ť	_
6 Based	on your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	,		
	requirements?			
	tive actions as needed, by date:			

ame	e mber	Plant McManus	-		
r Mini D	mnet		-		
		MCM - 12	-		
		9/13/2/	- 1605	no	n/a
1	Location/b	dentification	yes	110	170
	а	Is the well visible and accessible?			
	b	Is the well properly identified with the correct well ID?	<u> </u>		
	c	Is the well in a high traffic area and does the well require			
	_	protection from traffic?		_	
	d	is the drainage around the well acceptable? (no standing water,			
	_	nor is well located in obvious drainage flow path)	/		
					_
2	<u>Protective</u>				
	а	Is the protective casing free from apparent damage and able to be			
	_	secured?			
	Þ	Is the casing free of degradation or deterioration?			
	C	Does the casing have a functioning weep hole?	1/		
	d	Is the annular space between casings clear of debris and water,			
		or filled with pea gravel/sand?			
	е	Is the well locked and is the lock in good condition?			
3	Surface pa	ad			
	a	Is the well pad in good condition (not cracked or broken)?	/		
	b	Is the well pad sloped away from the protective casing?			
	С	Is the well pad in complete contact with the protective casing?			
	d	Is the well pad in complete contact with the ground surface and			
		stable? (not undermined by erosion, animal burrows, and does not			
		move when stepped on)	~		
	е	Is the pad surface clean (not covered with sediment or debris)?	_/_		
4	Internal ca	asina			
	а	Does the cap prevent entry of foreign material into the well?	~		
	Ь	Is the casing free of kinks or bends, or any obstructions from	-		
		foreign objects (such as bailers)?	~		
	C	Is the well properly vented for equilibration of air pressure?	1		
	d	Is the survey point clearly marked on the inner casing?	/		
	e	Is the depth of the well consistent with the original well log?	/		
	f	Is the casing stable? (or does the pvc move easily when touched			
		or can it be taken apart by hand due to lack of grout or use of slip	_		
		couplings in construction)			
5	Sampling:	Groundwater Wells Only:			
	8	Does well recharge adequately when purged?	_		
	b	If dedicated sampling equipment installed, is it in good condition			
		and specified in the approved groundwater plan for the facility?		6	
	C	Does the well require redevelopment (low flow, turbid)?			
A	Bosed on	your professional judgement, is the well construction / location			
O	Dased On	appropriate to 1) achieve the objectives of the Groundwater			
		Monitoring Program and 2) comply with the applicable regulatory			
		requirements?	1		
		roquioriorio:		—	
-	Coemotivo	actions as needed, by date:			

Name nit Number	Plant McManus	_		
ID	MCM-13	-		
1		-		
	_9/13/2\	- yes	no	n/a
1 Location/L	dentification	763	110	(UB
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
c	Is the well in a high traffic area and does the well require			
•				
d	protection from traffic?			-
ū	Is the drainage around the well acceptable? (no standing water,	_		
	nor is well located in obvious drainage flow path)			
2 Protective	Casino			
a	Is the protective casing free from apparent damage and able to be	ı		
4	secured?	· ·		
ъ	Is the casing free of degradation or deterioration?		-	
C	Does the casing have a functioning weep hole?		7	
d	is the annular space between casings clear of debris and water,			
u	or filled with pea gravel/sand?			
	· ·			
е	Is the well locked and is the lock in good condition?			
3 Surface p	ad			
а	Is the well pad in good condition (not cracked or broken)?	1		
b	Is the well pad sloped away from the protective casing?			
c c	Is the well pad in complete contact with the protective casing?		_	
ď	Is the well pad in complete contact with the ground surface and			
_	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
· ·	· · · · · · · · · · · · · · · · · · ·			
4 <u>Internal ca</u>				
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
C	Is the well properly vented for equilibration of air pressure?	~		
ď	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	~		
E Complian	Convenientes Miello Ophy			
	Groundwater Wells Only: Does well recharge adequately when purged?			_
a	If dedicated sampling equipment installed, is it in good condition		_	
ъ	and specified in the approved groundwater plan for the facility?			
_	Does the well require redevelopment (low flow, turbid)?			
С	Does the well reduite redevelopment (low llow, turbid)?	-		
6 Rased on	your professional judgement, is the well construction / location			
- Dades on	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	(edutementa)		-	
7 Corrective	actions as needed, by date:			
	* *			

Name nit Number	Plant McManus	_		
ID	MCM-14	_		
	9/13/21	-		
•		– yes	no	n/a
1 Location/Id	dentification	,		
а	Is the well visible and accessible?	./		
b	Is the well properly identified with the correct well ID?			
c	Is the well in a high traffic area and does the well require			(i
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	/		
7 Dankardina				
2 <u>Protective</u>				
	Is the protective casing free from apparent damage and able to be secured?			
L				
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			
	Is the annular space between casings clear of debris and water,			
_	or filled with pea gravel/sand?			
е	is the well locked and is the lock in good condition?	_		
3 Surface pa	<u>ad</u>			
а	Is the well pad in good condition (not cracked or broken)?	~		
b	is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not	į		
	move when stepped on)	_/		
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	asina			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	~		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?	~		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Samoling	Groundwater Wells Only			
a <u>garripinia.</u>	Does well recharge adequately when purged?	مس		
b	If dedicated sampling equipment installed, is it in good condition			8
_	and specified in the approved groundwater plan for the facility?	· •		
C	Does the well require redevelopment (low flow, turbid)?			
6 Deced e-	vous profospional is planning to the well assets which I beti			
o pased on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
		,		
	requirements?			-
7 Corrective	actions as needed, by date:			

lame it Number	Plant McManus			
D	MCM-15	_		
	9/13/21			
	1/13/41	- yes	no	n/a
1 Location/	<u>Ide</u> ntification	,00	,,,	
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require			
J	protection from traffic?			
d				
u	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	_		
	nor is well located in abvious drainage flow path)			
2 Protective	e Casing			
а	Is the protective casing free from apparent damage and able to b	e.		
_	secured?			
Ъ	Is the casing free of degradation or deterioration?	—		_
ç	Does the casing have a functioning weep hole?			
ď	Is the annular space between casings clear of debris and water,			
J	or filled with pea gravel/sand?			
_	Is the well locked and is the lock in good condition?			
E	is the well locked and is the lock in good condition?	_		
3 Surface p	pad			
a	Is the well pad in good condition (not cracked or broken)?	/		
b	Is the well pad sloped away from the protective casing?			
G	Is the well pad in complete contact with the protective casing?			
d:	Is the well pad in complete contact with the ground surface and			
_	stable? (not undermined by erosion, animal burrows, and does no	it		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	~~		
·	the part of the pa	_		
4 Internal o	asing asing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	/		
C	Is the well properly vented for equilibration of air pressure?	~		
ď	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?	~		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
E Casanilas	or Convention to 1Malla Calin			
	<u>r: Groundwater Wells Only:</u> Does well recharge adequately when purged?	_		
8	If dedicated sampling equipment installed, is it in good condition	<u>~</u>		_
Ь	and specified in the approved groundwater plan for the facility?			
_	Does the well require redevelopment (low flow, turbid)?			
С	Does the well require redevelopment flow now, turbidy?			
6 Based or	your professional judgement, is the well construction / location			
- 22026 DI	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	requielleme :		—	
7 Corrective	e actions as needed, by date:			

Name nit Number	Plant McManus	_		
ID	MCM - IG	+		
2	9/13/21	_		
		yes	no	n/a
1 Location	/Identification			
а	Is the well visible and accessible?			
þ	Is the well properly identified with the correct well ID?	V	-	
С	Is the well in a high traffic area and does the well require			
	protection from traffic?		-	
d	is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protectiv	ve Carina	=====		
8	Is the protective casing free from apparent damage and able to be			
a	secured?			
ь				
	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,	_		
_	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface	pad			
a	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	~		
c	Is the well pad in complete contact with the protective casing?			
ď	Is the well pad in complete contact with the ground surface and	<u> </u>		
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)	~		
ę	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal	casing			
a	Does the cap prevent entry of foreign material into the well?	~		
b	Is the casing free of kinks or bends, or any obstructions from			
_	foreign objects (such as bailers)?	~		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?	$\overline{\mathcal{J}}$		
f	is the casing stable? (or does the pvc move easily when touched			
,	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
F.O!!	Construction Malla Cales		S	
	g: Groundwater Wells Only: Does well recharge adequately when purged?	_		
a	If dedicated sampling equipment installed, is it in good condition			
b	and specified in the approved groundwater plan for the facility?	_		
_	Does the well require redevelopment (low flow, turbid)?			
С	Does the well require receverable and flow flow, faithful?			
6 Based or	n your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
		-		
7 Correctiv	e actions as needed, by date:			
· <u>····</u> ·				

Site Name Permit Number	Plant McManus	_		
Vell ID	NACM 17	_		
Date	MCM - 17	_		
	9 13 21	- γes	по	n/a
1 Location/Id	lentification	yes.	110	11.0
	Is the well visible and accessible?			
	Is the well properly identified with the correct well ID?	<u> </u>		
	Is the well in a high traffic area and does the well require			
	protection from traffic?			
	Is the drainage around the well acceptable? (no standing water,	_		
	nor is well located in obvious drainage flow path)			
	- , ,			
2 Protective	Casing			
a	is the protective casing free from apparent damage and able to be	:		
	secured?	/		
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	/		
е	Is the well locked and is the lock in good condition?	~		
3 Curiona na				
3 <u>Surface pa</u>				
a b	Is the well pad in good condition (not cracked or broken)? Is the well pad sloped away from the protective casing?			
	Is the well pad in complete contact with the protective casing?			
¢ d	Is the well pad in complete contact with the ground surface and			
u	stable? (not undermined by erosion, animal burrows, and does no	,		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
6	to the pad aditable bleat (not covered with acumiton of debiley)			 :
4 Internal ca	<u>ising</u>			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	_/		
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well-log?			
f	is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling	Groundwater Wells Only.			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
_	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
				
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	_		
	requirements?			
7 Corrective	actions as needed, by date:			
1 ODJI GOLIYC	animin me ileaned of apply			
				

Name iit Number	Plant McManus	_		
iit Number ID	14011 10	_		
10	WCW-18	_		
	9/13/21	- yes	по	n/a
1 Location/	dentification	703	110	.,,,
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			200
C	Is the well in a high traffic area and does the well require			
	protection from traffic?		/	
ď	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Casing			
3	Is the protective casing free from apparent damage and able to be	,		
	secured?			
b	Is the casing free of degradation or deterioration?			
c	Does the casing have a functioning weep hole?			
ď	Is the annular space between casings clear of debris and water,			
_	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	<u> </u>		
	• • • • • • • • • • • • • • • • • • •			
3 Surface p		_		
9	Is the well pad in good condition (not cracked or broken)?	_		-
Ь	Is the well pad sloped away from the protective casing?		-	
c d	Is the well pad in complete contact with the protective casing?	~		
U	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no move when stepped on)	۰		
	Is the pad surface clean (not covered with sediment or debris)?	_		
е				
4 Internal ca				
а	Does the cap prevent entry of foreign material into the well?			
Ь	Is the casing free of kinks or bends, or any obstructions from	_		
	foreign objects (such as bailers)?			
C	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?	~		
Ť	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	1		
	Couplings in Construction)			$\overline{}$
5 <u>Sampling</u> :	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			_
C	Does the well require redevelopment (low flow, turbid)?	_	~	$\overline{}$
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	_		
7.5	actions as needed, by date:			

Name mit Number	Plant McManus	<u>-</u>		
II ID	MCM-19	_		
e	9113/21	-		
		yes -	no	n/a
1 Location/I	dentification	7	1.0	
a	Is the well visible and accessible?			
ь	Is the well properly identified with the correct well ID?		_	
C	Is the well in a high traffic area and does the well require	<u> </u>		
J	protection from traffic?		مر	
d	Is the drainage around the well acceptable? (no standing water,			
-	nor is well located in obvious drainage flow path)			
	The state of the s			
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be	,		
	secured?			
ь	Is the casing free of degradation or deterioration?			·
¢	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			3.
	or filled with pea gravel/sand?	~		
e	Is the well locked and is the lock in good condition?	J		-
_	·		-	-
3 <u>Surface p</u>		170		
а	Is the well pad in good condition (not cracked or broken)?			
ь	Is the well pad sloped away from the protective casing?	/		
C	Is the well pad in complete contact with the protective casing?	_/		
d	is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not	t		
	move when stepped on)			
ē	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	neina			
' <u>'</u>	Does the cap prevent entry of foreign material into the well?			
a	Is the casing free of kinks or bends, or any obstructions from	_	_	
ь	foreign objects (such as bailers)?			
_	Is the well properly vented for equilibration of air pressure?	<u>~</u>		
C	Is the survey point clearly marked on the inner casing?	<u>~</u>	$\overline{}$	
d	Is the depth of the well consistent with the original well log?	<u>~</u>		
e	Is the casing stable? (or does the pvc move easily when touched			
f	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
	oodpin go iii oo iii ii oo ii oo ii oo ii oo ii oo oo			
5 <u>Sampling</u> :	Groundwater Wells Only:			
a	Does well recharge adequately when purged?	_		
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
C	Does the well require redevelopment (low flow, turbid)?			
			-	A)
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	U ded by defer			-
7 Corrective	actions as needed, by date:			

Plant McManus	_		
	-		
MCM-20	_		
9/13/20	-		
dentification	yes	по	n/a
	_		
protection from traffic?		~	
Is the drainage around the well acceptable? (no standing water,			
nor is well located in obvious drainage flow path)		va ——	
Casing			
	<u> </u>		
		_	
	_		
		_	
is the well locked and is the lock in good condition?		_	
Is the well pad in good condition (not cracked or broken)?			
	~	-	
Is the well pad in complete contact with the protective casing?		-	
Is the well pad in complete contact with the ground surface and			•
stable? (not undermined by erosion, animal burrows, and does not			
move when stepped on)			
Is the pad surface clean (not covered with sediment or debris)?	$\overline{}$		
asina			
	_		
	_	_	
couplings in construction)	~		
Circum denotes Mallo Only			
	_		
	_	_	_
Does the weit require receive opinion (low now, tarbia):			
appropriate to 1) achieve the objectives of the Groundwater			
Monitoring Program and 2) comply with the applicable regulatory			
requirements?			
		75-1-5	
actions as needed, by date:			
	dentification Is the well visible and accessible? Is the well visible and accessible? Is the well properly identified with the correct well ID? Is the well in a high traffic area and does the well require protection from traffic? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) Casing Is the protective casing free from apparent damage and able to be secured? Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole? Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? Is the well locked and is the lock in good condition? ad Is the well pad in good condition (not cracked or broken)? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) Is the pad surface clean (not covered with sediment or debris)? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as beliers)? Is the well properly vented for equilibration of air pressure? Is the begin of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)? your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory	dentification Is the well visible and accessible? Is the well properly identified with the correct well ID? Is the well in a high traffic area and does the well require protection from traffic? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) Casing Is the protective casing free from apparent damage and able to be secured? Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole? Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? Is the well pad in good condition (not cracked or broken)? Is the well pad in good away from the protective casing? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) Is the pad surface clean (not covered with sediment or debris)? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the approperly vented for equilibration of air pressure? Is the applicate of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does well recharge adequately when flow flow, turbid)? Does the well require redevelopment (flow flow, turbid)? Pooes the well require redevelopment for the Groundwater Monitoring Program and 2) comply with the applicable regulatory	dentification Is the well visible and accessible? Is the well properly identified with the correct well ID? Is the well in a high traffic area and does the well require protection from traffic? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) Casing Is the protective casing free from apparent damage and able to be secured? Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole? Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? Is the well pad in good condition (not cracked or broken)? Is the well pad in good away from the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) Is the pad surface clean (not covered with sediment or debris)? Is the easing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? Is the eurl properly vented for equilibration of air pressure? Is the eurly point clearly marked on the inner casing? Is the eurly point clearly marked on the inner casing? Is the eurly point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)? your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory

)	DPZ-I	_		
	9/13/21	_		
		yes	no	n/a
1 Location	on/Identification			
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	~		98
С	Is the well in a high traffic area and does the well require protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,		-	_
_	nor is well located in obvious drainage flow path)	/		
2 Protect	live Casing		**	
a	Is the protective casing free from apparent damage and able to be	<u>.</u>		
-	secured?			
b	Is the casing free of degradation or deterioration?	_		-
C	Does the casing have a functioning weep hole?	1	-	
d	Is the annular space between casings clear of debris and water,			-
	or filled with pea gravel/sand?	~		
е	Is the well locked and is the lock in good condition?		-	
3 Surface	e pad			
a	Is the well pad in good condition (not cracked or broken)?	~		
b	Is the well pad sloped away from the protective casing?		-	
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 <u>interna</u>	ıl casing			
а	Does the cap prevent entry of foreign material into the well?			
ь	Is the casing free of kinks or bends, or any obstructions from	-		
	foreign objects (such as bailers)?		D	
C	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched			
f	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 <u>Sampli</u>	ing: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
ь	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
C	Does the well require redevelopment (low flow, turbid)?			
6 Based	on your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory requirements?	_		
	tive actions as needed, by date:			

lame it Number	Plant McManus	_		
ID	OD# 2	_		
טו	OPZ-2	-		
	9 13 2 \	- yes	nο	n/a
1 Location/I	dentification	yes	110	1112
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require			
C	protection from traffic?		_	
d	Is the drainage around the well acceptable? (no standing water,		_	
u	nor is well located in obvious drainage flow path)	_		
	The 13 Well located in obvious drainings how pathy			
2 Protective				
а	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?	_/		212-22
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	_		
3 Surface p	ad.			
a <u>Surrace p</u>	ls the well pad in good condition (not cracked or broken)?	× /		
b	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?		7	*
ď	Is the well pad in complete contact with the ground surface and			
ū	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	· •		
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal c	acina			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
b	foreign objects (such as bailers)?			
c	Is the well properly vented for equilibration of air pressure?			
q	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
•	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			-
5 Sampling	: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
J	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6.5	and the second includes the second se			72
□ Based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	1		
	requirements:			
7 Corrective	e actions as needed, by date:			

Name	Plant McManus	_		
nit Number		_		
D		_		
	9[13]21	_		- 1-
1 Lagatian#	d4242	yes	nô	n/a
	dentification			
a	Is the well visible and accessible?			
þ	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require			
	protection from traffic?			
ď	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Casino			
a	Is the protective casing free from apparent damage and able to be	!		
_	secured?			
b	Is the casing free of degradation or deterioration?			-
C	Does the casing have a functioning weep hole?			
ď	Is the annular space between casings clear of debris and water,			
-	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?		_	
	-		_	
3 <u>Surface p</u>				
a	Is the well pad in good condition (not cracked or broken)?	1		
ь	Is the well pad sloped away from the protective casing?			82 82
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
e	Is the pad surface clean (not covered with sediment or debris)?	_		
4 Internal ca	asino			
a	Does the cap prevent entry of foreign material into the well?	~		
b	is the casing free of kinks or bends, or any obstructions from			
_	foreign objects (such as bailers)?			
c	Is the well properly vented for equilibration of air pressure?			
d	is the survey point clearly marked on the inner casing?		_	
ē	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched	_		
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_		
5 Can-1t	Groundwater Wells Only			1
	: Groundwater Wells Only: Does well recharge adequately when purged?			
a b	If dedicated sampling equipment installed, is it in good condition		-	
U	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?	-		
C	man time and tradella takes minks time from their second.			
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			-
			5	
- ·	e actions as needed, by date:			

Name iit Number	Plant McManus			
ID III womber	007 1	-		
10	DPZ - 4	-		
	9 /13 / 21	Voc	no	n/a
1 Location	Identification	yes	110	184
a	Is the well visible and accessible?	_		
ь	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require			
_	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
_	nor is well located in obvious drainage flow path)			
	- · · · · · · · · · · · · · · · · · · ·			
2 Protectiv				
а	Is the protective casing free from apparent damage and able to be			
•	secured?			
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?	~		
d	Is the annular space between casings clear of debris and water,			
_	or filled with pea gravel/sand?			
e	Is the well locked and is the lock in good condition?	_<		
3 Surface	pad			
a	Is the well pad in good condition (not cracked or broken)?	·~		
ь	is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 <u>Internal</u> d	racina			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from		-	-
-	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	_		
ď	Is the survey point clearly marked on the inner casing?	~		
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	~		
5 Sampline	g: Groundwater Wells Only:			
a <u>sampiinis</u>	Does well recharge adequately when purged?			,
b	If dedicated sampling equipment installed, is it in good condition		_	
5	and specified in the approved groundwater plan for the facility?			/
С	Does the well require redevelopment (low flow, turbid)?			
6 Based or	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	,		
	requirements?			

Name iit Number	Plant McManus	_		
ID	_OPZ-5			
	9/13/21	_ 		
		yes	по	n/a
1 Location	/Identification			
2	s the well visible and accessible?			
b	is the well properly identified with the correct well ID?			
c	Is the well in a high traffic area and does the well require			
	protection from traffic?		-	
ď	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protectiv	ve Casino			
8	is the protective casing free from apparent damage and able to be	e		
	secured?	_		
b	Is the casing free of degradation or deterioration?	_ 		$\overline{}$
c	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
_	or filled with pea gravel/sand?			
e	Is the well locked and is the lock in good condition?	-		
3 Surface				
a	Is the well pad in good condition (not cracked or broken)?	~		
b	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no)[
_	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal	casing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
C	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	-		
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 <u>Sampl</u> in	g: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
ь	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			_
C	Does the well require redevelopment (low flow, turbid)?			
6 Passed =	n your professional judgement, is the well construction / location			
o based 0	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	, , , , , , , , , , , , , , , , , , , ,			
	requirements?			
7 Correctiv	ve actions as needed, by date:			
		91		
		VI.		

Name	Plant McManus	_		
nit Number		_		
ID	_DPZ-6	_		
;	<u>9/15/21</u>			-10
1 Locatio	on/Identification	yes	no	n/a
a	Is the well visible and accessible?	,		
b	Is the well properly identified with the correct well ID?			
c	Is the well in a high traffic area and does the well require			
· ·	protection from traffic?			
ď	-			
u	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	_		
			-	_
2 Protec	ctive Casing			
а	Is the protective casing free from apparent damage and able to be	е		
	secured?			
ь	Is the casing free of degradation or deterioration?	~		
c	Does the casing have a functioning weep hole?	~		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	~		
е	Is the well locked and is the lock in good condition?			
3 Surfac	hen ar			-
a <u>canac</u>	Is the well pad in good condition (not cracked or broken)?	_		
b	Is the well pad sloped away from the protective casing?	<u>~</u>		
c	Is the well pad in complete contact with the protective casing?			
ď	Is the well pad in complete contact with the ground surface and			_
_	stable? (not undermined by erosion, animal burrows, and does no	ıt		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	\rightarrow		
	·			
4 Intern	al casing			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
C	Is the well properly vented for equilibration of air pressure?			
ď	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_		
	Couplings in Collection)	_	_	
5 <u>Samp</u>	ling: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition		/	
	and specified in the approved groundwater plan for the facility?			
C	Does the well require redevelopment (low flow, turbid)?			
6 Pages	on your professional judgement, is the well construction / location			
U Dasett	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	_		
	requirements:		-	-
7 Correc	ctive actions as needed, by date:			
7 Correct	ctive actions as needed, by date:			

nit Number	Plant McManus			
ID	PZ-9	_		
	9/13/21	- 1/05	50	n/a
1 Locati	on/Identification	yes	υo	IIIa
а	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?	~		
С	is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protec	etive Casing			
a	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?	- <u>- </u>		
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
e	Is the well locked and is the lock in good condition?	~		
3 Surfac	ce pad			
а	Is the well pad in good condition (not cracked or broken)?	/		
b	Is the well pad sloped away from the protective casing?	~		
C	Is the well pad in complete contact with the protective casing?			
đ	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	_		
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Intern	al casing			
a	Does the cap prevent entry of foreign material into the well?			
ь	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
C	Is the well properly vented for equilibration of air pressure?			
ď	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched			
ī	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	/		
5 Samo	ling: Groundwater Wells Only:			
3 <u>3amp</u> 8	Does well recharge adequately when purged?			_
b	If dedicated sampling equipment installed, is it in good condition	_		
-	and specified in the approved groundwater plan for the facility?			/
С	Does the well require redevelopment (low flow, turbid)?			
6 Based	on your professional judgement, is the well construction / location			
- 55566	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
7.0	tion estimate an anadad by dates			
/ Correc	ctive actions as needed, by date.			

it Number		_		
ID	PZ-10			
	9/13/21	- yes	no	n/a
1 Location	on/Identification	yes	110	IVa
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
C	is the well in a high traffic area and does the well require			
	protection from traffic?			
d	is the drainage around the well acceptable? (no standing water,		====	
	nor is well located in obvious drainage flow path)			
2 Protec	tive Casing			
а	Is the protective casing free from apparent damage and able to be	;		
	secured?			
þ	Is the casing free of degradation or deterioration?	~		
C	Does the casing have a functioning weep hote?	ー		
d	Is the annular space between casings clear of debris and water,	2		
	or filled with pea gravel/sand?			
e	Is the well locked and is the lock in good condition?			
3 Surfac	e pad			
а	Is the well pad in good condition (not cracked or broken)?	_		
ь	is the well pad sloped away from the protective casing?		-	-
c	is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no	t.		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	$\overline{\mathbf{Z}}$		
4 Interna	al casing			
a	Does the cap prevent entry of foreign material into the well?	_		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	~		
C	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	1		
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	_		
	and hinds in consideration		-	
5 <u>Samp</u>	ing: Groundwater Wells Only:			
a	Does well recharge adequately when purged?		9 11 8	
Ь	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
C	Does the well require redevelopment (low flow, turbid)?	-		
6 Based	on your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
7.00	tive estima on proded by detail			
/ Correc	tive actions as needed, by date:			

ame Number	Plant McManus	-		
)	PZ-11	-		
-		_		
	9/13/21	- yes	no	n/a
1 Location/Id	dentification	,	110	1170
а	Is the well visible and accessible?	~		
ь	Is the well properly identified with the correct well ID?	1		
c	is the well in a high traffic area and does the well require			
	protection from traffic?		·	
ď	Is the drainage around the well acceptable? (no standing water,	15=3	_	8.5
	nor is well located in obvious drainage flow path)			
2 Protective	Cooling			
3	Is the protective casing free from apparent damage and able to be secured?	مر		
b	Is the casing free of degradation or deterioration?	<u> </u>	_	
	Does the casing have a functioning weep hole?	-	_	
d d	Is the annular space between casings clear of debris and water,			_
J	or filled with pea gravel/sand?	1		
е	Is the well locked and is the lock in good condition?			
C	19 the Well focked and 13 the lock in good condition:			_
3 <u>Surface pa</u>				
а	Is the well pad in good condition (not cracked or broken)?			
ь	Is the well pad sloped away from the protective casing?	V		
C	Is the well pad in complete contact with the protective casing?			_
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			_
4 Internal ca	asing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	_/		
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	_		
	couplings in construction)		_	-
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		~	
6 Dd	was professional judgement, in the well construction / legation			
o based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	1		
	requiements:		_	
7 Corrective	actions as needed, by date:			
	-			

Name	Plant McManus	_		
nit Number		_		
ID	PZ-12	_		
:	9/13/21			
1 Location/f	dentification	yes	no	n/a
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
ć	Is the well in a high traffic area and does the well require	_		_
Ť	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			_
	nor is well located in obvious drainage flow path)		_	
2 Protective	: Casing			
a	Is the protective casing free from apparent damage and able to be secured?			
ь	Is the casing free of degradation or deterioration?	-		
Č	Does the casing have a functioning weep hole?			
q	Is the annular space between casings clear of debris and water,			
_	or filled with pea gravel/sand?	مر		
е	Is the well locked and is the lock in good condition?	<u> </u>	_	
		-		
3 <u>Surface p</u>				
8	Is the well pad in good condition (not cracked or broken)?			
Ь	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no			
e	move when stepped on) Is the pad surface clean (not covered with sediment or debris)?	-		
4 <u>Internal c</u>				
a	Does the cap prevent entry of foreign material into the well?	~		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
C	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			_
e	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	_		
f	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 <u>Sampling</u>	: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			

APPENDIX C

Semiannual Remedy Selection & Design Progress Report

SEMIANNUAL REMEDY SELECTION AND DESIGN PROGRESS REPORT

Plant McManus – Former Ash Pond 1 Brunswick, Georgia

February 2021

SEMIANNUAL REMEDY SELECTION AND DESIGN PROGRESS REPORT

Plant McManus – Former Ash Pond 1 Brunswick, Georgia

Prepared for:

Georgia Power Company

Prepared by:

Arcadis U.S., Inc.

2389 Paces Ferry Road

Suite 900

Atlanta

Georgia 30339

Tel 770 431 8666

Fax 770 435 2666

Our Ref.:

30052922

Date:

February 26, 2021

Kathryn Farris, M. Sc. Environmental Engineer

Margaret Gentile, Ph.D. Technical Expert

Maryenot Gentles

Geoffrey Gay, P.E

Georgia Registration No. 27801

Technical Expert (Eng) Project Manager

CONTENTS

Pro	ofessi	ional Certification	ii
Ac	ronyn	ns and Abbreviations	iii
		oduction	
	1.1	Purpose	1
		Site Location and Description	
		Closure Activities	
	1.4	Nature and Extent of Appendix IV Constituents	3
2		nmary of Work Completed	
		Supplemental Groundwater Data Collection	
		Bench Testing for In Situ Injections	
3		nned Activities and Schedule	
		erences	

TABLES

- Table 1. Remedy Evaluation Summary
- Table 2. October 2020 Analytical Summary
- Table 3. Supplementary Data Collection

FIGURES

- Figure 1. Site Map and Compliance Monitoring Well Network
- Figure 2. Supplemental Investigation and Dewatering Wells
- Figure 3. Isoconcentration Map Arsenic October 2020

ATTACHMENTS

- Attachment 1 Laboratory Analytical Reports
- Attachment 2 Bench-scale Treatability Testing for Soluble Arsenic and Lithium in Groundwater (Phase I and Phase II Summary Report) (PeroxyChem 2020).

PROFESSIONAL CERTIFICATION

This Semiannual Remedy Selection and Design Progress Report, Georgia Power Company - Plant McManus - Former Ash Pond 1 Brunswick, Georgia, has been prepared in accordance with the United States Environmental Protection Agency coal combustion residual rule, specifically 40 Code of Federal (CFR) 257.97(a) and the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10(6)(a). This report describes the progress made during the second semiannual period of 2020 in selecting and designing a remedy previously documented in the Assessment of Corrective Measures Report - Former Ash Pond 1 Brunswick, Georgia, (Arcadis 2020a).

J. Geoffrey Gay, P.E. Technical Expert (Eng)

No. PE027801 PROFESSIONAL

Georgia Registration No. PE 27801

Date

2.26.21

ACRONYMS AND ABBREVIATIONS

Arcadis U.S., Inc.

ACM Assessment of Corrective Measures

AP-1 Ash Pond 1

As(III) Trivalent arsenic

As(V) Pentavalent arsenic

CCR Coal Combustion Residuals

CFR Code of Federal Regulations

Georgia Power Company

GWPS Groundwater Protection Standard

ISS In Situ Stabilization/Solidification

mg/L milligram per liter

MNA Monitored Natural Attenuation

PRB Permeable Reactive Barrier

P&T Pump and Treat

Semiannual Progress Report Semiannual Remedy Selection and Design Progress Report

SSL statistically significant level

USEPA United States Environmental Protection Agency

arcadis.com iii

1 INTRODUCTION

1.1 Purpose

This Semiannual Remedy Selection and Design Progress Report (Semiannual Progress Report) has been prepared for the Georgia Power Company (Georgia Power) Plant McManus former Ash Pond (AP)-1 (the site; Figure 1) in accordance with the United States Environmental Protection Agency (USEPA) coal combustion residuals (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 Fed. Reg. 21302-21501, April 17, 2015), and pursuant to 40 CFR § 257.97(a) and the Georgia Environmental Protection Division Rule 391-3-4.10(6)(a). The Semiannual Progress Report was prepared to document activities conducted in support of the previously submitted Assessment of Corrective Measures (ACM) Report (Arcadis U.S., Inc. [Arcadis] 2020a). As required by the rules, this Semiannual Progress Report describes the progress made in selecting and designing a remedy for the site. This Semiannual Progress Report has been included as an appendix to the 2020 Semiannual Groundwater Monitoring and Corrective Action Report (Resolute 2020). GPC will include future semiannual remedy selection progress reports as an appendix to the routine semiannual groundwater monitoring and corrective action reports.

Georgia Power completed the ACM Report on December 4, 2020 to address the occurrence of arsenic in groundwater at statistically significant levels (SSLs). The ACM Report was placed in the site's operating record and posted to the site's CCR Rule Compliance website. Lithium was also identified as an SSL at former AP-1, and an alternate source demonstration (ASD) was completed for lithium and submitted under a separate cover (Arcadis 2020b). The ASD is provided in the 2020 Semiannual Groundwater Monitoring and Corrective Action Report (Semiannual Report; Resolute 2020) for reference. The ASD results indicated that concentrations of lithium in groundwater are naturally occurring.

Georgia Power conducted a human health and ecological risk evaluation to evaluate constituents that exhibit SSLs in groundwater including arsenic and lithium at former AP-1. To be conservative, lithium was carried forward into the refined risk evaluation that included multiple conservative assumptions protective of human health and the environment. The results indicated concentrations of arsenic and lithium detected in groundwater at former AP-1 do not pose a risk to human health or the environment. The *Risk Evaluation Report* (Wood Environment & Infrastructure Solutions, Inc. 2020) was provided in the ACM Report.

Pursuant to 40 CFR § 257.97, Georgia Power is evaluating the potential corrective measures presented in the ACM Report to identify an appropriate remedy or combination of remedies as soon as feasible.

The ACM Report presented the following corrective measures as potentially feasible for use at the site:

- 1. Geochemical Manipulation (In-Situ Injection)
- 2. Hydraulic Containment (Pump and Treat [P&T])
- 3. In Situ Stabilization/Solidification (ISS)
- 4. Monitored Natural Attenuation (MNA)
- 5. Permeable Reactive Barrier (PRB)

6. Phytoremediation

7. Subsurface Vertical Barrier Walls.

This evaluation was first completed in the ACM Report, as summarized in Table 1. Data obtained during site investigations and evaluations of corrective action alternatives in 2020 are included in this remedy selection update report.

Georgia Power will proactively initiate adaptive site management as outlined in the ACM Report (Arcadis 2020) to support the groundwater remedy selection process and address potential changes in site conditions as appropriate. The adaptive site management approach will take existing site conditions, including natural attenuation mechanisms, into account. Characterization activities to evaluate attenuation mechanisms at the site include collection of data necessary to evaluate the existing and long-term effectiveness of these processes in the aquifer and reduce uncertainty for decision making at each screening step as listed in the EPA guidelines for MNA (USEPA 2007, 2015) summarized below.

- Tier I: Constituent concentrations & plume stability
- Tier II: Constituent attenuation mechanisms
- Tier III: Aquifer capacity and stability
- Tier IV: Performance monitoring

1.2 Site Location and Description

Plant McManus is an electrical power generation plant located on Crispen Island in Glynn County, near Brunswick, Georgia (**Figure 1**). The physical address of the plant is 1 Crispen Island Drive, Brunswick, GA 31523. Crispen Island originally consisted of several smaller islands that were joined to construct Plant McManus. It was separated from the mainland to the northeast by tidal marsh and bound to the west and southwest by the Turtle River.

The plant was originally constructed in 1952 and consisted of two boilers and nine diesel-fired combustion turbines. Use of coal for production ceased in 1972, and Georgia Power retired all coal power generating assets at Plant McManus prior to April 16, 2015. During operation of the coal-fired units from 1959 until 1972, CCR was disposed in an approximately 80-acre surface impoundment (AP-1) on the Plant McManus Site northeast of the plant.

AP-1 was formed by the construction of a dike from the northeast corner of Crispen Island to the mainland. This dike formed the northwest side of AP-1, while Crispen Island, the mainland, and a southern roadway and dike (Crispen Boulevard) formed the other sides of AP-1.

1.3 Closure Activities

Source control has been implemented at the site as part of the closure process and was not specifically intended as a corrective measure. However, there is a strong potential for source control to limit future impact and improve groundwater quality.

Georgia Power completed closure of AP-1 between 2016 and October 2019 by dewatering and removing the CCR material. A notification of intent to close the former CCR Unit was placed in the operating record on December 7, 2015 and posted to the Plant McManus CCR Rule Compliance website within 30 days.

The initial Closure Plan was submitted to GAEPD on April 17, 2018 as part of the permit application package describing the closure activities and requirements in accordance with § 257.102. The Closure Plan and notification of closure completion are posted on the Plant McManus CCR Rule Compliance website, available to the public. The final CCR removal certification report was submitted in November 2019 (Arcadis 2019). The Georgia Environmental Protection Division (GAEPD) acknowledged the report and that the removal activities within the identified boundaries of AP-1 had occurred in a letter in January 2020 (GAEPD 2020).

1.4 Nature and Extent of Appendix IV Constituents

Groundwater monitoring of the surficial aquifer has been performed for former AP-1 since 2016. Groundwater results through January 2021 have shown an SSL of arsenic at MCM-06. The recent groundwater assessment data are provided in the 2020 Semiannual Groundwater Monitoring and Corrective Action Report (Resolute 2020). Investigations to characterize the nature and extent of Appendix IV constituents exceeding GWPS in 2020 included: installation of deep piezometers, collection and analysis of surface water samples, and collection and arsenic analysis of additional samples from existing wells (Arcadis 2020). Sampling locations are shown on Figure 2.

Vertical delineation at MCM-06 was evaluated with installation of deep piezometer DPZ-02 in March 2020 (Figure 3), which has since been incorporated into the monitoring well network as a delineation well. DPZ-02 was sampled in March and October 2020. October 2020 results are presented Table 7 of the Semiannual Report. Arsenic concentrations from DPZ-02 ranged from non-detect at less than the method detection limit of 0.0012 mg/L in March 2020 to 0.021 mg/L in October 2020. This indicates that arsenic concentrations above the GWPS present in groundwater at MCM-06 do not extend to the deeper portion of the aquifer, and that DPZ-02 provides vertical delineation of arsenic at MCM-06.

Due to space limitations on the dikes, additional monitoring wells could not be installed between the existing detection monitoring network wells in the vicinity of MCM-06 (MCM-04, MCM-05, MCM-07, MCM-08, and MCM-14) and the tidal marsh to evaluate the nature and extent of arsenic. Georgia Power proactively completed additional sampling to assess concentrations of arsenic in surface water in the tidal salt marsh in February, March, October, and November 2020. The October and November 2020 results are presented in Table 5 of the Semiannual Report. Arsenic concentrations in surface water samples ranged from not detected at <0.0012 mg/L to 0.0037 mg/L (estimated). These results are below the Georgia instream water quality chronic standard for dissolved arsenic (0.036 mg/L) for marine estuary environments. Arsenic concentrations in background surface water sample locations ranged from 0.0014 mg/L (estimated) to 0.0033 mg/L (estimated). Based on the data collected, no impacts to surface water have been detected and horizontal delineation is complete.

In addition to samples collected from the assessment monitoring well network, samples were collected in October 2020 from the wells used for dewatering during ash removal (RW-1 through RW-10, with RW well screen depths of 10 to 20 feet) to evaluate the extent of arsenic concentrations in groundwater along the dike between MCM-05, MCM-06, and MCM-07. The results of the sampling event are presented in Table 2, and laboratory analytical reports are included in Attachment 1. The results show that arsenic above the GWPS was limited to MCM-06 (0.45 mg/L) and RW-9 (0.038 mg/L). The updated isoconcentration contours on Figure 4 reflect these results.

2 SUMMARY OF WORK COMPLETED

2.1 Supplemental Groundwater Data Collection

Groundwater samples collected from the October 2020 semiannual assessment monitoring event were also analyzed for additional geochemical parameters to evaluate treatment technologies under consideration that are sensitive to geochemical conditions (i.e., in situ injections, P&T, ISS, MNA, PRB). Groundwater collected at former dewatering wells, MCM-05, MCM-06, MCM-07, and DPZ-02 was analyzed for major cations and anions, select total and dissolved metals, sulfide, total organic carbon, and biological oxygen demand. Field parameters (pH, dissolved oxygen, oxidation reduction potential [ORP], temperature, specific conductance, and depth to water) were also recorded. In addition, arsenic speciation analysis was conducted. Geochemical parameters, including alkalinity, biological oxygen demand, nitrate/nitrite, several forms of iron, manganese, orthophosphate, total organic carbon, and sulfide were analyzed at Pace Analytical. Samples for arsenic speciation were analyzed by Brooks Applied Laboratories. The results are presented in Table 2. Laboratory analytical reports are provided in Attachment 1.

Reducing conditions were observed in groundwater collected from wells along the northern dike (MCM-06, MCM-07, RW-7, RW-9, DPZ-02). Based on iron, manganese, sulfate and sulfide data, redox conditions varied from metal reducing to strongly sulfate reducing (Table 2). Elevated arsenic concentrations (>0.01 mg/L) coincided with elevated sulfide (>20 mg/L) and alkalinity (>200 mg/L) at wells located across the northern dike. Speciation analysis found that the arsenic consisted of reduced trivalent arsenic, As(III), and an unknown species, with a low concentration of oxidized pentavalent arsenic, As(V), also observed at MCM-06. These results highlight that the treatment technologies under consideration that are sensitive to geochemical conditions must be capable of treating arsenic species present in the reduced groundwater with elevated sulfide. The elevated total dissolved solids and alkalinity concentrations can also influence the effectiveness of several remedial options through altering reaction chemistry or through formation of fouling precipitates, such as carbonates.

2.2 Bench Testing for In Situ Injections

To evaluate the effectiveness of potential reagents for treatment of arsenic in groundwater by in situ injections, bench tests were conducted in 2020. The reagents tested were various formulations of the MetaFix® reagents from PeroxyChem that seek to immobilize arsenic in groundwater. Groundwater from MCM-06 and soil from DPZ-02 from 7-10 feet below ground surface were sent to the Resolution Partners LLC laboratory in Madison, Wisconsin for testing. The memorandum by PeroxyChem, provided in Attachment 2, details the bench testing experimental procedures and results. The results show several of the MetaFix® formulations were capable of substantial reductions in arsenic concentrations at the bench scale and are potential candidates for in situ injections. Additional field pilot testing would be needed to further evaluate the feasibility of injection and effectiveness of these reagents in situ. Feasibility will depend upon the ability to distribute the reagent in the subsurface. Effectiveness may differ in situ compared to the bench conditions. As discussed within Attachment 2, the removal of arsenic from solution in the bench scale was attributed to oxic conditions at the bench, which would not be present in situ.

3 PLANNED ACTIVITIES AND SCHEDULE

The former AP-1 closure was completed in late 2019 (Arcadis 2019, GAEPD 2020). The closure by removal approach provides a source control measure that reduces the potential for migration of CCR constituents to groundwater. Current conditions include management of the water levels in the former AP-1. As the aquifer adjusts to the closed conditions, concentrations of arsenic may improve. Georgia Power will implement an adaptive site management approach to support the remedial strategy and address potential changes in site conditions as appropriate. The adaptive site management approach may be adjusted over the site's life cycle as new site information and technologies become available. To this end, Georgia Power will continue its data collection efforts as necessary to support refinement of the conceptual site model and to further evaluate the feasibility of the retained list of potential corrective measures proposed in the ACM Report. At this time, all corrective measures outlined in Table 1 are being retained. Once sufficient data are available to make technically-sound decisions regarding the ability to implement one or more specific corrective measures, necessary steps will be taken to design and implement a remedy for the former AP-1 in accordance with 40 CFR § 257.98.

To achieve this goal and further the understanding of site conditions in support of remedy selection, the following activities are recommended for 2021 (summarized in Table 3):

- Continue routine groundwater sampling at Appendix III and Appendix IV constituent delineation locations to analyze and evaluate trends for effectiveness of source control and plume stability.
 Multiple datasets will be needed to assess temporal variations in conditions. An additional set of samples for arsenic speciation will be collected from MCM-05, MCM-06, MCM-07, and RW-9.
- Conduct a high-resolution investigation of arsenic mass flux, using a Hydraulic Profiling Tool to map
 aquifer permeability and Direct Push Technology to collect samples of soil and groundwater for
 arsenic analysis. The understanding of mass flux derived in this analysis will inform the comparative
 evaluation of technologies for remedy selection. Soil samples collected during the investigation will be
 analyzed for mineralogical analysis and physical parameters listed in Table 3.
- Conduct an evaluation of MNA as a potential remedy using the USEPA tiered analysis framework (USEPA 2007, 2015).

Georgia Power will include future semiannual remedy selection progress reports in routine groundwater monitoring reports to document groundwater conditions, results associated with additional data gathering, and the progress in selecting and designing the remedy in accordance with 40 CFR § 257.97(a). Record keeping, notifications, and publicly accessible internet site requirements for the semiannual remedy selection progress reports will be provided in accordance with 40 CFR §§ 257.105(h)(12), 257.106(h)(9), and 257.107(h)(9), respectively.

4 REFERENCES

- Arcadis. 2019. Final CCR Removal Certification Report. Plant McManus Inactive Ash Pond AP-1. November 20.
- Arcadis. 2020a. Assessment of Corrective Measures Report. Plant McManus Former Ash Pond 1, Brunswick, Georgia. December 4.
- Arcadis. 2020b. Lithium Alternative Source Demonstration. Plant McManus Former Ash Pond 1. Prepared for Georgia Power Company. October.
- Georgia Environmental Protection Division. 2020. Final Closure through Removal Certification. Glynn-County Plant McManus Ash Pond AP-1 APL 0631. January 10.
- PeroxyChem. 2020. Bench-scale Treatability Testing for Soluble Arsenic and Lithium in Groundwater (Phase I and Phase II Summary Report). September 9.
- Resolute. 2020. 2020 Semiannual Groundwater Monitoring and Corrective Action Report Plant McManus Inactive Ash Pond AP-1. February.
- USEPA. 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. Volume 1 Technical Basis for Assessment. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-07/139. October.
- USEPA. 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. Office of Solid Waste and Emergency Response Directive 9283.1-36. August.
- Wood Environment & Infrastructure Solutions, Inc. 2020. Risk Evaluation Report. Plant McManus Inactive Ash Pond AP-1, Glynn County, Georgia. December.

TABLES

Table 1
Remedy Evaluation Summary
Semi-Annual Remedy Selection and Design Progress Report
Georgia Power Company
Plant McManus Former Ash Pond 1, Brunswick, Georgia

		Evaluation Criteria						
Technology	Description	Performance 40 CFR 257.96(c)(1)	Reliability 40 CFR 257.96(c)(1)	Ease of Implementation 40 CFR 257.96(c)(1)				
Geochemical Manipulation (In Situ Injection)	Injection of a chemical or organic substrate to alter geochemical conditions to those more favorable for immobilization of arsenic.	Moderate: Effective immobilization of arsenic has been demonstrated at the bench scale; however, the effectiveness is uncertain under site-specific conditions and would require additional data and field testing. Remedial approaches to reducing constituents are typically more compatible with groundwater geochemistry and, therefore, are more viable than oxic remedial approaches.	Moderate: Reliability depends on: (i) the amendment distribution as a function of properties (reactivity, particle size, etc.) of the selected reagents and the permeability and heterogeneity of the subsurface; and (ii) the effectiveness of reagent chemistries for arsenic immobilization, which vary according to site-specific conditions. The approach has not been extensively used in field applications, and the most applicable methodology would require bench- and/or pilot-scale treatability testing. Stability of the precipitated phase may vary based on conditions of precipitation versus ambient conditions. Immobilization under similar conditions to ambient, reducing in this case, would promote long-term stability of the immobilized arsenic.	Moderate: The installation of an injection well network or placement of reagents via other injection methods would be required. Injection of reagents along the existing northern dike is likely feasible, although the workspace is narrow. The ability and scale over which reagents can be distributed depends on reagent properties, such as reactivity and, in the case of solid reagents, particle size. The feasibility of implementation will vary with scale. There is potential for clogging. An evaluation of the amendment distribution during injections (i.e., radius of influence) is needed to support full-scale design.				
In Situ Stabilization/ Solidification (ISS)	Use of amendments such as cement to reduce the bioavailability and mobility of contaminants through either physical encapsulation (solidification) or a reduction in solubility/mobility (stabilization).	Moderate: ISS is a proven technology for reducing the leachability and mobility of inorganic constituents above and below the water table but may be limited due to the potential size of the treatment area. Treatability depth limitations vary with application method. Within the context of former AP-1, ISS may be used either as a spot-treatment or as an impermeable barrier along the boundary of the former impoundment. Due to the size of the potential treatment area, and anticipated diffuse nature of residual arsenic, the performance of ISS is expected to be moderate. It may be used in conjunction with other treatment methods to achieve standards	Moderate to High: Monitoring is typically needed to confirm ISS effectiveness. Reagents such as Portland cement can cause pH changes, which may cause a release of secondary contaminants, which should also be monitored during implementation.	Difficult: The difficulty of ISS implementation increases with scale. If ISS is applied over a small area in the vicinity of MCM-06, the technology could be viable, whereas application over a greater scale would become difficult and impractical. ISS implementation along the narrow dike would be difficult and likely require widening.				
Hydraulic Containment	Use of a groundwater extraction system with a surface treatment system to remove target analytes from the subsurface and/or to control/prevent constituent migration.	High: Pump and treat (P&T) is an effective, demonstrated technology for hydraulic control. The design of the P&T system requires groundwater modeling for the well network and, potentially, design of an above-ground treatment system. However, this remedy typically is not immediately effective for the treatment of trace level metals. There is also a possibility of rebounding when operations cease.	Moderate to High: Reliability may also depend on the operation and performance of an ex-situ treatment system, if needed. System downtime for maintenance may impact reliability.	Difficult: P&T is a longstanding, proven approach that requires installation of extraction wells/trenches. A variety of treatment technologies exist for ex-situ treatment of arsenic. The level of effort for construction and operations and maintenance (O&M) is relatively high compared to other options and requires onsite staff.				
Monitored Natural Attenuation (MNA)	A remedial solution that takes advantage of natural attenuation processes to reduce constituents in soil and groundwater.	Moderate: Under the conditions of site groundwater, potential arsenic attenuation mechanisms include sorption, precipitation, oxidation-reduction reactions, dilution, and dispersion. Under the reducing conditions present at MCM-06, sorption of arsenic species, including arsenite, are likely occurring, as well as potential precipitation in reduced iron and sulfide minerals. Downgradient of MCM-06, there are likely redox gradients where aerobic conditions promote oxidation of arsenic, enhanced sorption, and potential for co-precipitation with iron oxides. The slow groundwater velocity and tidal gradient fluctuations further promote attenuation of arsenic concentrations with distance from MCM-06. Additional characterization would be needed to fully understand the attenuation processes and performance.	Moderate to High: The reliability of MNA is moderate to high as long as aquifer attenuation capacity is present and aquifer conditions that result in attenuation remain favorable and/or are being enhanced. Long-term monitoring well rehabilitation, replacement, or repair may be needed. Due to its location along the coast, large weather events such as hurricanes may cause fluctuations in groundwater conditions that affect attenuation processes (Northrup et al. 2017).1	Easy: A well network for MNA is already in place. Additional wells may be needed to monitor progress in select areas. Additional data would be needed to show that the existing aquifer attenuation capacity is sufficient to achieve the Groundwater Protection Standard (GWPS) within a reasonable timeframe.				

¹ Northrup, K., M. Capooci, and A. Seyfferth. 2017. Effects of Extreme Events on Arsenic Cycling in Salt Marshes. *Journal of Geophysical Research: Biogeosciences*. 123, 1086-1100. https://doi.org/10.1002/2017JG004259.

Table 1
Remedy Evaluation Summary
Semi-Annual Remedy Selection and Design Progress Report
Georgia Power Company
Plant McManus Former Ash Pond 1, Brunswick, Georgia

		Evaluation Criteria						
Technology	Description	Performance 40 CFR 257.96(c)(1)	Reliability 40 CFR 257.96(c)(1)	Ease of Implementation 40 CFR 257.96(c)(1)				
Permeable Reactive Barrier (PRB)	Use of reactive material that extends below the water table to intercept and treat groundwater.	Moderate to High: PRBs have been shown to effectively address arsenic in groundwater. Performance may be affected by tidal cycles. Due to the elevated salts and alkalinity in groundwater at MCM-06, there is a risk for scaling and fouling of the reactive media, which will need to be considered during design. Delineation data will need to be collected to design an effective placement of a PRB.	Moderate to High: A PRB has been demonstrated effective for arsenic. Loss of reactivity over time, potentially exacerbated by brackish groundwater at the site, may require media replacement depending on the duration of the remedy. Additional data collection, including conducting a laboratory treatability test and/or field pilot study, would be needed to select the appropriate reactive media for a PRB.	Moderate to difficult: The practical location for the PRB is along the northern dike. Construction using trenching methods would be difficult on the narrow dike and would potentially require widening the dike. The PRB can be keyed into a relatively low permeability unit at 37 to 45 feet below ground surface (bgs) in the vicinity of MCM-06 (refer to Appendix B), but continuity must be confirmed. The presence of flowing sands may complicate the trenching process. Injection-style emplacements would likely be more feasible along the dike. Once installed, treatment would be passive and O&M requirements would be minimal, with the exception of media replacement.				
Phytoremediation	Use of plants to remove, transfer, or stabilize constituents in soil or groundwater.	Low: While phytoremediation has been shown to have a degree of success treating deep contamination, site features may prove challenging for implementation of these deeper phytoremediation technologies. Brackish groundwater quality may limit the types of hyper-accumulative plants that are able to grow. A phytoremediation system may also be susceptible to damage and disruption by high winds associated with hurricanes.	Low to Moderate: The depth of the contamination and challenges for implementation at depth at the site make this option low to moderate in reliability. The well where Statistically Significant Levels for arsenic were identified (MCM-06) is screened at approximately 25 feet bgs, which is outside the typical rooting depth for common arsenic hyperaccumulators.	Difficult: The practical location for use of phytoremediation to capture arsenic and reduce concentrations at the compliance boundary is along the northern dike. Given the depths of the impacts, a TreeWell® system would be required. TreeWells® are installed in 3- to 5-foot-diameter boreholes extending to the target depth. Drilling borings within the narrow width of the dike may be challenging and require widening the dike. Depending on the number of TreeWells® and borings required, the construction could impact the stability of the dike. The presence of flowing sands and brackish water chemistry may complicate the installation process and viability of plants.				
Subsurface Barrier Walls	Use of barriers to physically control the migration of impacted groundwater either directly or through manipulation of groundwater flow.	Moderate: Barrier walls are a proven technology for seepage control and/or groundwater cutoff at impoundments. Sheet pile walls are limited by the depth of installation, which is typically approximately 60 to 65 feet bgs with a single sheet. Within the context of former AP-1, a barrier wall as the sole remedial measure would likely be moderately effective. An alternative use of this strategy is in a "funnel and gate" system with a PRB. As such, groundwater with arsenic above the GWPS could be directed to "treatment gates" for passive treatment (in a PRB). Additional subsurface investigations and compatibility testing with groundwater from former AP-1 would be needed prior to selection and implementation. Performance may be affected by the fluctuating groundwater flow directions during tidal cycles.	High – With proper installation: O&M requirements can range significantly, depending on whether groundwater extraction and subsequent treatment from inside the wall is required.	Moderate to difficult: Limited space for construction activities along the dike makes implementation moderate to difficult. Widening the dike would likely be necessary prior to implementation. A relatively low permeability unit at 37 to 45 feet bgs in the vicinity of MCM-06 is present to key the barrier into (refer to Appendix B), but continuity needs to be confirmed. The presence of flowing sands may complicate the trenching process. Jet-grouting is another alternative but is typically more difficult compared to other barrier wall installation methods. Depending on design, groundwater extraction may be needed because of the inflow of water from the mainland and island.				

Table 1
Remedy Evaluation Summary
Semi-Annual Remedy Selection and Design Progress Report
Georgia Power Company
Plant McManus Former Ash Pond 1, Brunswick, Georgia

	Evaluation Criteria									
Technology	Potential Impact 40 CFR 257.96(c)(1)	Estimated Time to Begin/Complete Remedy 40 CFR 257.96(c)(2)	Institutional Requirements and Other Env or Public Health Requirements 40 CFR 257.96(c)(3)	Relative Costs						
Geochemical Manipulation (In Situ Injection)	Low: Low impacts are expected if the remedy works as designed, based on a thorough pre-design investigation, geochemical modeling, and bench/pilot study results. Consideration of groundwater flow to nearby sensitive environments may be needed. This remedial alternative may unintentionally alter the geochemistry within the aquifer, which may result in the mobilization of other constituents that require treatment. Short-term risks during remedial activities such as drilling and operating pressurized injection equipment can be mitigated through appropriate planning and health and safety (H&S) measures.	A thorough pre-design investigation, geochemical modeling, and/or bench scale treatability study and/or field-scale pilot testing may take up to 24 months to obtain the design parameters needed for design and construction of the corrective measure. Well construction is relatively quick (i.e., 1 to 2 months; potentially longer depending on the scale of the remedy) and time for an injection event is variable. Time to achieve the GWPS for arsenic is dependent on the attenuation process kinetics of the constituent as well as amendment longevity, injection layout, and arsenic transport properties. Additional injection events may be needed to maintain redox conditions and/or address additional flux of impacted groundwater into the treatment area.	Deed restrictions may be necessary until in situ treatment has achieved the GWPS. An Underground Injection Control Permit would be required to implement this corrective measure. No other institutional expected. Based on the Risk Evaluation Report (Wood 2020), the arsenic SSL is not expected to pose a risk to human health or the environment. Potential mobilization of redox constituents may occur with in situ injections.	Medium						
In Situ Stabilization/ Solidification (ISS)	Low: Short-term impacts during remedy construction can be mitigated through appropriate planning and H&S measures. Changes to groundwater flow patterns due to stabilized media can occur, which can affect other aspects of the groundwater corrective action. Application of ISS mixture can also alter the geochemistry and may result in the mobilization of other constituents that require treatment. In addition, bulk mixing with reagents can occur.	Design phase and additional compatibility testing may be required, which may take up to 18 months. Completion of ISS may take an additional 12 to 18 months, depending on the final design, mixing method, and scale. Since this approach would likely not be applied to all of the impacted groundwater but rather applied to a specific source area to prevent migration, it may take an extended period of time to complete the remedy.	Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements expected. Based on the Risk Evaluation Report (Wood 2020), the arsenic SSL is not expected to pose a risk to human health or the environment.	Medium to high (depending on area stabilized)						
Hydraulic Containment	Low: Potential impacts are anticipated to be low. Short-term impacts during the construction of the remedy and long-term impacts during O&M can be mitigated through appropriate planning and H&S measures. Groundwater extraction may unintentionally alter the geochemistry within the hydraulic capture zone.	A thorough pre-design investigation, flow modeling, bench-scale treatability studies, and/or field-scale pilot testing may be needed. These activities may take 12 to 24 months prior to design, permitting, and construction of the corrective measure. Installation of extraction wells and/or trenches can be accomplished relatively quickly, while the time until startup is contingent on ex-situ treatment infrastructure. Hydraulic containment can be achieved relatively quickly after startup of the extraction system. However, uncertainty exists with respect to the time to achieve and maintain the GWPS and complete operations; additional data collection may be needed to better understand site mobility and attenuation mechanisms for arsenic.	A revision to the current permit may be required to withdraw water (e.g., water or consumptive use permit). Depending on the effluent management strategy, modifications to the existing National Pollutant Discharge Elimination System permit may be required for surface water discharge. In addition, deed restrictions may be necessary until groundwater concentrations are below the GWPS. Based on the Risk Evaluation Report (Wood 2020), the arsenic SSL is not expected to pose a risk to human health or the environment. Potential mobilization of redox constituents may occur with in situ injections. Treatment system residuals require proper disposal.	Medium to high (depending on remedy duration and complexity of above- ground treatment system)						
Monitored Natural Attenuation (MNA)	Negligible: Potential impacts of the remedy will be negligible because MNA relies on natural processes active in the aquifer matrix without significant disturbance to the surface or subsurface.	Implementation of the MNA remedy would require time for additional data collection and documentation, even though an existing monitoring network is already in place. Additional data collection activities may take up to 24 months to complete. The additional data would be needed for statistical analysis and to evaluate whether additional monitoring wells need to be installed to supplement the existing monitoring network. MNA timeframes range from a few years to a few decades.	Deed restrictions may be necessary until natural attenuation processes have achieved the GWPS. No other institutional requirements expected. Based on the Risk Evaluation Report (Wood 2020), the arsenic SSL is not expected to pose a risk to human health or the environment. Minimally disruptive technology.	Low						

Table 1
Remedy Evaluation Summary
Semi-Annual Remedy Selection and Design Progress Report
Georgia Power Company
Plant McManus Former Ash Pond 1, Brunswick, Georgia

	Evaluation Criteria									
Technology	Potential Impact 40 CFR 257.96(c)(1)	Estimated Time to Begin/Complete Remedy 40 CFR 257.96(c)(2)	Institutional Requirements and Other Env or Public Health Requirements 40 CFR 257.96(c)(3)	Relative Costs						
Permeable Reactive Barrier (PRB)	Low: Impacts are expected to be low if the remedy works as designed, based on a thorough pre-design investigation, geochemical modeling, and geophysical testing. Short-term impacts during construction of the remedy can be mitigated through appropriate planning and H&S measures. Consideration of groundwater flow to nearby sensitive environments may be needed. This remedial alternative may unintentionally alter the geochemistry within the wall, which may result in the mobilization of other constituents that require treatment.	Installation of a PRB can be accomplished relatively quickly (6 to 12 months), depending on the final location and configuration. However, bench-scale treatability studies and/or compatibility testing would be required to obtain design parameters prior to design and construction of the remedy. These processes may take up to 24 months. Media may need to be replaced periodically to maintain reactive conditions and/or address additional flux of impacted groundwater into the PRB.	Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements expected. Based on the Risk Evaluation Report (Wood 2020), the arsenic SSL is not expected to pose a risk to human health or the environment. Passive remedy with minimal disruption after installation.	Medium (for installation) with minimal O&M requirements						
Phytoremediation	Low: Phytoremediation typically has low expected impacts. Depending on the phytoremediation strategy, disposal methods for vegetation with bioaccumulated arsenic may need to be considered. Short-term impacts during the construction of the remedy can be mitigated through appropriate planning and H&S measures.	Installation of a phytoremediation system can be accomplished relatively quickly (within 6 to 12 months), depending on the final location and configuration. However, treatability studies and pilot testing would be required to ensure effective treatment. These studies may take up to 24 months. Once installed, the time to achieve the GWPS downgradient of the phytoremediation system is anticipated to be long and can take multiple years before system is treating at design capacity	Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements expected. Based on the Risk Evaluation Report (Wood 2020), the arsenic SSL is not expected to pose a risk to human health or the environment. Passive remedy with minimal disruption after installation.	Medium (for installation) with minimal O&M requirements						
Subsurface Barrier Walls	Low: Impacts are expected to be low following construction of the remedy. Short-term impacts during remedy construction can be mitigated through appropriate planning and H&S measures. Changes to groundwater flow patterns due to installation of the barrier wall are expected and may require dewatering.	Design phase and additional compatibility testing may be required, which may take up to 24 months. Installation of a barrier wall can be accomplished relatively quickly (i.e., 6 to 12 months), depending on the final location and configuration. Once installed, preventing migration of constituents in groundwater is anticipated to be similar to a companion technology (e.g., PRBs or P&T). Since this approach does not treat the downgradient area of impacted groundwater but rather prevents migration from a source area, it will likely have to be maintained long-term and coupled with other approaches.	Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements expected. Based on the Risk Evaluation Report (Wood 2020), the arsenic SSL is not expected to pose a risk to human health or the environment. Passive remedy with minimal disruption after installation. If implemented in conjunction with P&T, treatment system residuals require proper disposal	Medium (for installation) with minimal O&M requirements						

Acronyms and Abbreviations:

CFR = Code of Federal Regulations

bgs = below ground surface

GWPS = Groundwater Protection Standard

H&S = health and safety

ISS = in situ stabilization/solidification

MNA = monitored natural attenuation

O&M = operation and maintenance

P&T = pump and treat

PRB = permeable reactive barrier

SSL = statistically significant level

Monitoring Well Locations		DPZ-02	MCM-05	MCM-06	MCM-07	MCM-14	RW-01	RW-02	RW-03	RW-04	RW-05	RW-06	RW-07	RW-08	RW-09	RW-10
Sample Date	Units	10/15/2020	10/15/2020	10/14/2020	10/14/2020	10/13/2020	10/14/2020	10/14/2020	10/14/2020	10/15/2020	10/15/2020	10/15/2020	10/14/2020	10/14/2020	10/14/2020	10/14/2020
Arsenic	mg/L	0.021	<0.0017 (0.024)	0.45 (0.43)	0.015 (0.013)	<0.0017 (<0.0017)	0.0018 J	<0.0017	<0.0017	0.0028 J	0.0026 J	0.0029 J	0.013	0.0024 J	0.038	0.0058
Boron	mg/L	2.1	0.67 (0.61)	1.5 (1.5)	1.7 (1.8)	1.2 (1.1)	2.3	3.1	2.5	2.1	2.7	2.5	1.0	2.5	1.6	1.8
Calcium	mg/L	225 (194)	60.7 (69.1)	193 (245)	216 (207)	177 (40.9)	151	132	118	128	152	153	160	131	256	138
Chloride	mg/L	8000	1660 (1660)	6930 (6630)	8170 (7910)	6230 (6230)	7340	7870	7370	5600	6190	7030	3980	6810	7160	5880
Iron	mg/L	<0.83	<0.83	<0.21	<0.21	<0.21	1.0	<0.21	1.5	2.6	1.3	<0.83	<0.21	1.4	<0.83	<0.83
Iron, Ferric ¹	mg/L	0.35 J	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	0.79	1.6	0.94	<0.25	<0.25	0.65	<0.25	<0.25
Iron, Ferrous ^{1,2}	mg/L	<0.084	<0.084	0.099 J	< 0.084	<0.084	1.1	<0.084	0.71	1.1	0.32 J	0.41 J	<0.084	0.75	<0.084	<0.084
Magnesium	mg/L	485	138	445	614	379	418	436	380	373	397	447	309	422	567	378
Manganese	mg/L	0.26	<0.069	0.24	0.13	0.29	0.18	0.12	0.14	0.23	0.14	<0.069	0.13	0.11	0.28	0.16
Potassium	mg/L	151	<60.8	121	148	107	158	171	156	145	159	164	94.1 J	151	151	136
Sodium	mg/L	4720	996	<30.5	4310	3420	4280	4540	4220	3370	3770	4050	2150	3790	3820	3200
Nitrate as N	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Nitrite as N	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Sulfate	mg/L	989 (1060)	148 (147)	552 (510)	938 (904)	682 (695)	836	984	930	732	806	839	310	829	731	701
Sulfide	mg/L	41.6	21	50.8	25.7	15.7	<0.050	0.19	2.1	0.44	0.95	8.3	52.5	0.054 J	50.8	1.6
Orthophosphate		0.13 J	0.37	0.81	0.59	0.58	0.65	0.66	0.47	0.21	1.0	0.23	0.68	0.27	0.6	0.51
Alkalinity,Bicarbonate (CaCO3)	mg/L	349	174	532	253	164	234	151	147	131	197	108	301	127	307	192
Alkalinity,Carbonate (CaCO3)	mg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Total Dissolved Solids	mg/L	(19300)	(5100)	(15200)	(18400)	(15600)	17800	20600	19100	13100	15500	16400	9700	17200	17500	11800
Total Organic Carbon	mg/L	7.0	6.6	9.3	15.9	5.0	15.1	7.9	10.2	11.0	11.9	7.6	8.7	8.0	9.5	9.4
Biochemical Oxygen Demand	mg/L	<2.0	4.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Arsenic Speciation - Brooks Appli	ied Laborato	ories ²														
Trivalent arsenic (As[III])	μg/L	0.461 J	1.13 J	53.6	<0.400	<0.400	0.687 J	<0.400	<0.400	1.27 J	0.401 J	0.714 J	<0.400	0.541 J	0.46 J	<0.400
Pentavalent arsenic (As[V])	μg/L	<0.400	<0.400	1.69 J	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400
Dimethylarsinic acid (DMA)	μg/L	<0.500	<0.500	<0.5	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Monomethylarsonic acid (MMA)	μg/L	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400
Unknown arsenic species	μg/L	17.3	<0.500	291	8.98	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	0.946 J	10.3	<0.500	32.5	3.92
Field Parameters																
pH (field)	SU	7.08	6.52	6.93	6.32	6.50	6.45	6.53	6.26	6.24	6.62	6.15	6.74	6.25	6.55	6.63
Temperature	°C	25.74	25.55	25.32	27.3	25.5	26.46	27.71	26.62	27.74	26.69	27.99	26.33	26.78	25.3	26.41
Specific Conductivity	μS/cm	26033	6398.1	21942	25574	20468	23526	24632	23260	18606	21578	23045	13350	21848	22441	19245
Dissolved Oxygen	mg/L	0.11	0.10	0.04	0.05	0.02	0.16	0.15	0.33	0.10	0.11	0.09	0.12	0.05	0.15	0.04
Turbidity	NTU	0.35	0.60	2.85	4.87	0.31	0.26	0.26	0.34	4.79	2.99	0.38	0.14	0.67	0.23	0.53
Oxidation Reduction Potential	mV	-178.1	-135.2	-279.5	-158.6	-179	-40.2	-156.5	-116	-47.2	-61.7	-76.1	-217.3	-70.2	-155.9	-173

Notes:

Data collected as part of semi-annual monitoring (laboratory report #92500314) indicated in parentheses. All other data presented was collected as part of supplemental groundwater data collection (laboratory report #92500569)

- 1. Laboratory not certified for analyte.
- 2. Ferrous iron samples were analyzed outside of the holding time. Results are still useful for interpretation of variation in geochemical conditions, given that sum of ferric and ferrous iron is consistent with total iron.
- 3. Arsenic speciation samples from MCM-06, MCM-07, MCM-14, RW-01, RW-02, MW-03, RW-07, RW-08, RW-09, and RW-10 arrived at the lab at 7.1°C, above the lab recommended temperature of 6°C. The results do not appear to have been affected, i.e. oxic species were not dominant and results were comparable to DPZ-02 that was maintained below 6°C. Arsenic speciation will be resampled at MCM-05, MCM-06 and MCM-07 to verify.
- J Estimated concentation greater than the laboratory's method detection limit, but less than the laboratory's reporting limit.
- < not detect above method detection limited listed

Acronyms and Abbreviations:

°C - degrees Centigrade mg/L - milligram per liter

μg/L - micrograms per liter mV - millivolts

 $\mu \text{S/cm - microsiemens per centimeter} \qquad \qquad \text{NTU - Nepholometric Turbidity Units}$

CaCO3 - calcium carbonate SU - standard units

Table 3 Supplementary Data Collection

Semi-Annual Remedy Selection and Design Progress Report

Georgia Power Company

Plant McManus Former Ash Pond 1, Brunswick, Georgia

Data Collection Event	Applicable Technology	Applicability/Rationale	Field/Office Component	Parameters of Interest	Analytical Lab Performing Analysis
Groundwater sampling from MCM-06	MNA	Characterize concentration trends overtime for plume stability analysis (MNA evaluation Tier I)	Ongoing collection of groundwater samples	Arsenic	Pace
Groundwater sampling from existing wells along dike (completed)	MNA, PRB, P&T, In Situ, ISS, Phyto	 Evaluate lateral extent of arsenic with dewatering wells Characterize variability in geochemical conditions to evaluate effectiveness and likely treatment chemistries for several technologies (PRB, In Situ, P&T, MNA) Characterize geochemical conditions in groundwater to evaluate attenuation mechanism and capacity (MNA evaluation Tier II and III) 	Collect groundwater from existing wells along northern dike	Standard Analytes: total and dissolved As, Fe, Mn, Mg, Ca, Na, K, B; Alkalinity, TDS, Sulfate/Sulfide, Phosphate, Nitrate/Nitrite, DOC/TOC/BOD Arsenic speciation	Standard analytes – Pace Arsenic speciation – Brooks Applied Laboratory
High Resolution Investigation	MNA, PRB, In Situ, P&T, ISS, Phyto	Characterize arsenic mass flux to inform comparative analysis of technologies Characterize geochemical conditions in groundwater to evaluate attenuation mechanism and capacity (MNA evaluation Tier II and III)	HPT/DPT investigation DPT: Soil sampling (dual-tube coring) and groundwater sampling (vertical aquifer profiling tool) and laboratory analysis	 Small scale permeability Lithology Groundwater: total and dissolved As, Fe, Mn, Mg, Ca, Na, K, B; Alkalinity, Sulfate/Sulfide, Phosphate, Nitrate/Nitrite, DOC/TOC/BOD Soil: As, Fe, Al, Mn, Ca, AVS, TOC, XRD, SSE, Grain Size, Atterberg Limits 	HPT/DPT – Cascade Groundwater analytical – Pace Total Metals, AVS, TOC, Grain Size, Atterberg Limits, SSE – Eurofins Test America XRD – SGS

Technologies:

In Situ In Situ Geochemical Manipulation (In Situ Injections)

ISS In Situ Stabilization

MNA Monitored Natural Attenuation

P&T Pump and Treat

PRB Permeable Reactive Barrier

Phyto Phytoremediation

Abbrevi	ations:	K	potassium
As	arsenic	Mg	magnesium
AVS	acid volatile sulfide	Mn	manganese
В	boron	Na	sodium
BOD	biological oxygen demand	ORP	Oxidation-Reduction Potential
Ca	calcium	SSE	Sequential Selective Extraction
DPT	Direct Push Technology	TDS	Total Dissolved Solids
DOC	dissolved organic carbon	TOC	Total Organic Carbon
Fe	iron	XRD	X-ray diffraction
HPT	Hydraulic Profiling Tool		

FIGURES

User: KGPeters Location: On-Site Citrix

ATTACHMENT 1

Laboratory Analytical Reports

November 02, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: MCMANUS APP III

Pace Project No.: 92500569

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory between October 15, 2020 and October 16, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ken Slavy

Kevin Herring

kevin.herring@pacelabs.com

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Veronica Fay

Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko

Ms. Lauren Petty, Southern Co. Services

Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC

CERTIFICATIONS

Project: MCMANUS APP III

Pace Project No.: 92500569

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: MCMANUS APP III

Pace Project No.: 92500569

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92500569001	MCM-06	Water	10/14/20 16:52	10/15/20 10:49
92500569002	MCM-07	Water	10/14/20 14:42	10/15/20 10:49
92500569003	MCM-14	Water	10/14/20 13:00	10/15/20 10:49
92500569004	RW-1	Water	10/14/20 12:19	10/15/20 10:49
92500569005	RW-2	Water	10/14/20 15:04	10/15/20 10:49
92500569006	RW-3	Water	10/14/20 17:17	10/15/20 10:49
92500569007	RW-7	Water	10/14/20 15:43	10/15/20 10:49
92500569008	RW-8	Water	10/14/20 16:30	10/15/20 10:49
92500569009	RW-9	Water	10/14/20 13:04	10/15/20 10:49
92500569010	RW-10	Water	10/14/20 15:00	10/15/20 10:49
92500569011	DUP-1	Water	10/14/20 15:00	10/15/20 10:49
92500569012	FBL101420	Water	10/14/20 16:47	10/15/20 10:49
92500569013	MCM-05	Water	10/15/20 13:48	10/16/20 10:30
92500569014	DPZ-2	Water	10/15/20 16:00	10/16/20 10:30
92500569015	RW-4	Water	10/15/20 14:46	10/16/20 10:30
92500569016	RW-5	Water	10/15/20 15:55	10/16/20 10:30
92500569017	RW-6	Water	10/15/20 14:03	10/16/20 10:30
92500569018	DUP-2	Water	10/15/20 00:00	10/16/20 10:30
92500569019	FBL101520	Water	10/15/20 17:36	10/16/20 10:30

Project: MCMANUS APP III

Pace Project No.: 92500569

ab ID Sample ID		Method	Analysts	Analytes Reported	Laboratory
92500569001	MCM-06	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A
		SM 4500-P E-2011	DMN	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
2500569002	MCM-07	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A
		SM 4500-P E-2011	DMN	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
2500569003	MCM-14	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A
		SM 4500-P E-2011	DMN	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
2500569004	RW-1	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	RED	1	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS APP III

Pace Project No.: 92500569

Lab ID Sample ID		Method	Analysts	Analytes Reported	Laboratory
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A
		SM 4500-P E-2011	DMN	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
2500569005	RW-2	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A
		SM 4500-P E-2011	DMN	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
2500569006	RW-3	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A
		SM 4500-P E-2011	DMN	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
2500569007	RW-7	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS APP III

Pace Project No.: 92500569

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laborato	
		SM 3500-Fe B-2011	MAL	1	PASI-A	
		SM 4500-S2D-2011	NAL	1	PASI-A	
		SM 5210B-2011	JP1	1	PASI-A	
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A	
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A	
		SM 4500-P E-2011	DMN	1	PASI-A	
		SM 5310B-2011	ECH	1	PASI-A	
92500569008	RW-8	EPA 6010D	SH1	6	PASI-A	
		EPA 6020B	JOR	2	PASI-A	
		SM 2320B-2011	ECH	2	PASI-A	
		SM 2540C-2011	RED	1	PASI-A	
		SM 3500-Fe D#4	EWS	1	PASI-A	
		SM 3500-Fe B-2011	NAL	1	PASI-A	
		SM 4500-S2D-2011	NAL	1	PASI-A	
		SM 5210B-2011	JP1	1	PASI-A	
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A	
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A	
		SM 4500-P E-2011	DMN	1	PASI-A	
		SM 5310B-2011	ECH	1	PASI-A	
2500569009	RW-9	EPA 6010D	SH1	6	PASI-A	
		EPA 6020B	JOR	2	PASI-A	
		SM 2320B-2011	ECH	2	PASI-A	
		SM 2540C-2011	RED	1	PASI-A	
		SM 3500-Fe D#4	EWS	1	PASI-A	
		SM 3500-Fe B-2011	NAL	1	PASI-A	
		SM 4500-S2D-2011	NAL	1	PASI-A	
		SM 5210B-2011	JP1	1	PASI-A	
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A	
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A	
		SM 4500-P E-2011	DMN	1	PASI-A	
		SM 5310B-2011	ECH	1	PASI-A	
2500569010	RW-10	EPA 6010D	SH1	6	PASI-A	
		EPA 6020B	JOR	2	PASI-A	
		SM 2320B-2011	ECH	2	PASI-A	
		SM 2540C-2011	ALP	1	PASI-A	
		SM 3500-Fe D#4	EWS	1	PASI-A	
		SM 3500-Fe B-2011	NAL	1	PASI-A	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS APP III

Pace Project No.: 92500569

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 4500-S2D-2011	MAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A
		SM 4500-P E-2011	DMN	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
92500569011	DUP-1	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	CJL	2	PASI-A
		SM 4500-P E-2011	DMN	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
92500569012	FBL101420	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
92500569013	MCM-05	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	MFO	2	PASI-A
		SM 4500-P E-2011	JP1	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
92500569014	DPZ-2	EPA 6010D	SH1	6	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS APP III

Pace Project No.: 92500569

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
	_	EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	MFO	2	PASI-A
		SM 4500-P E-2011	JP1	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
92500569015	RW-4	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	MFO	2	PASI-A
		SM 4500-P E-2011	JP1	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
92500569016	RW-5	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	MFO	2	PASI-A
		SM 4500-P E-2011	JP1	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
92500569017	RW-6	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS APP III

Pace Project No.: 92500569

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 2540C-2011	ALP	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	MFO	2	PASI-A
		SM 4500-P E-2011	JP1	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
92500569018	DUP-2	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	MFO	2	PASI-A
		SM 4500-P E-2011	JP1	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
92500569019	FBL101520	EPA 6010D	SH1	6	PASI-A
		EPA 6020B	JOR	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	NAL	1	PASI-A
		SM 5210B-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	2	PASI-A
		EPA 353.2 Rev 2.0 1993	MFO	2	PASI-A
		SM 4500-P E-2011	JP1	1	PASI-A
		SM 5310B-2011	ECH	1	PASI-A

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

Project: MCMANUS APP III

Pace Project No.: 92500569

Lab Sample ID	Client Sample ID	Decel	11.76	Demand Line's	A b d	0
Method	Parameters —	Result _	Units	Report Limit	Analyzed	Qualifier
2500569001	MCM-06					
	Performed by	CUSTOME R			10/27/20 13:57	
	рН	6.93	Std. Units		10/27/20 13:57	
EPA 6010D	Calcium	193	mg/L	0.50	10/29/20 01:26	
PA 6010D	Magnesium	445	mg/L	0.50	10/29/20 01:26	
PA 6010D	Manganese	0.24	mg/L	0.025	10/29/20 01:26	
PA 6010D	Potassium	121	mg/L	100	10/28/20 09:36	
PA 6020B	Arsenic	0.45	mg/L	0.0050	10/20/20 13:34	
PA 6020B	Boron	1.5	mg/L	0.75	10/20/20 13:34	
M 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	532	mg/L	5.0	10/27/20 16:07	
M 3500-Fe B-2011	Iron, Ferrous	0.099J	mg/L	0.50	10/22/20 12:36	H3,N2
M 4500-S2D-2011	Sulfide	50.8	mg/L	10.0	10/19/20 20:08	
PA 300.0 Rev 2.1 1993	Chloride	6930	mg/L	100	10/17/20 17:31	
PA 300.0 Rev 2.1 1993	Sulfate	552	mg/L	100	10/17/20 17:31	
M 4500-P E-2011	Orthophosphate as P	0.81	mg/L	0.25	10/15/20 20:59	
M 5310B-2011	Total Organic Carbon	9.3	mg/L	1.0	10/28/20 03:18	
500569002	MCM-07					
	Performed by	CUSTOME R			10/27/20 13:57	
	рН	6.32	Std. Units		10/27/20 13:57	
PA 6010D	Calcium	216	mg/L	0.50	10/29/20 01:29	
PA 6010D	Magnesium	614	mg/L	2.0	10/28/20 09:39	
PA 6010D	Manganese	0.13	mg/L	0.025	10/29/20 01:29	
PA 6010D	Potassium	148	mg/L	100	10/28/20 09:39	
PA 6010D	Sodium	4310	mg/L	250	10/30/20 14:14	
PA 6020B	Arsenic	0.015	mg/L	0.0050	10/19/20 19:03	
PA 6020B	Boron	1.7	mg/L	1.2	10/20/20 13:38	
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	253	mg/L	5.0	10/27/20 16:18	
M 4500-S2D-2011	Sulfide	25.7	mg/L	10.0	10/19/20 20:08	
PA 300.0 Rev 2.1 1993	Chloride	8170	mg/L	100	10/17/20 18:13	
PA 300.0 Rev 2.1 1993	Sulfate	938	mg/L	100	10/17/20 18:13	
M 4500-P E-2011	Orthophosphate as P	0.59	mg/L	0.25	10/15/20 20:51	
M 5310B-2011	Total Organic Carbon	15.9	mg/L	1.0	10/28/20 03:34	
500569003	MCM-14					
	Performed by	CUSTOME R			10/27/20 13:57	
	рН	6.50	Std. Units		10/27/20 13:57	
PA 6010D	Calcium	177	mg/L	0.50	10/29/20 01:33	
PA 6010D	Magnesium	379	mg/L	0.50	10/29/20 01:33	
PA 6010D	Manganese	0.29	mg/L	0.025	10/29/20 01:33	
PA 6010D	Potassium	107	mg/L	100	10/28/20 09:43	
PA 6010D	Sodium	3420	mg/L	250	10/30/20 14:17	
PA 6020B	Boron	1.2	mg/L	0.75	10/20/20 13:42	
M 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	164	mg/L	5.0	10/27/20 16:41	
M 4500-S2D-2011	Sulfide	15.7	mg/L	10.0	10/19/20 20:09	
PA 300.0 Rev 2.1 1993	Chloride	6230	mg/L	100	10/17/20 18:26	
PA 300.0 Rev 2.1 1993	Sulfate	682	mg/L	100	10/17/20 18:26	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS APP III

Pace Project No.: 92500569

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
2500569003	MCM-14					
SM 4500-P E-2011	Orthophosphate as P	0.58	mg/L	0.25	10/15/20 20:41	M1
SM 5310B-2011	Total Organic Carbon	5.0	mg/L	1.0	10/28/20 04:27	
2500569004	RW-1					
	Performed by	CUSTOME R			10/27/20 13:57	
	рН	6.45	Std. Units		10/27/20 13:57	
EPA 6010D	Calcium	151	mg/L	0.50	10/29/20 01:36	
EPA 6010D	Iron	1.0	mg/L	0.25	10/29/20 01:36	
EPA 6010D	Magnesium	418	mg/L	0.50	10/29/20 01:36	
EPA 6010D	Manganese	0.18	mg/L	0.025	10/29/20 01:36	
EPA 6010D	Potassium	158	mg/L	100	10/28/20 09:46	
EPA 6010D	Sodium	4280	-	250	10/30/20 14:21	
			mg/L			
EPA 6020B	Arsenic	0.0018J	mg/L	0.0050	10/19/20 19:11	
EPA 6020B	Boron	2.3	mg/L	1.2		
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	234	mg/L	5.0	10/27/20 16:52	
SM 2540C-2011	Total Dissolved Solids	17800	mg/L	2500	10/19/20 18:33	
SM 3500-Fe B-2011	Iron, Ferrous	1.1	mg/L	0.50	10/22/20 12:16	H3,N2
PA 300.0 Rev 2.1 1993	Chloride	7340	mg/L	100	10/17/20 18:40	
PA 300.0 Rev 2.1 1993	Sulfate	836	mg/L	100	10/17/20 18:40	
SM 4500-P E-2011	Orthophosphate as P	0.65	mg/L	0.25	10/15/20 20:40	M1
SM 5310B-2011	Total Organic Carbon	15.1	mg/L	1.0	10/28/20 04:43	
2500569005	RW-2					
	Performed by	CUSTOME R			10/27/20 13:57	
	pH	6.53	Std. Units		10/27/20 13:57	
EPA 6010D	Calcium	132	mg/L	0.50	10/29/20 01:40	
EPA 6010D	Magnesium	436	mg/L	0.50	10/29/20 01:40	
EPA 6010D	Manganese	0.12	mg/L	0.025	10/29/20 01:40	
EPA 6010D	Potassium	171	mg/L	100	10/28/20 09:49	
EPA 6010D	Sodium	4540	mg/L	250	10/30/20 14:24	
EPA 6020B	Boron	3.1		1.2	10/20/20 13:49	
			mg/L			
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	151	mg/L	5.0	10/27/20 17:02	
SM 2540C-2011	Total Dissolved Solids	20600	mg/L	2500	10/19/20 18:33	
SM 4500-S2D-2011	Sulfide	0.19	mg/L	0.10	10/19/20 18:12	
EPA 300.0 Rev 2.1 1993	Chloride	7870	mg/L	100	10/17/20 18:54	
EPA 300.0 Rev 2.1 1993	Sulfate	984	mg/L	100	10/17/20 18:54	
SM 4500-P E-2011	Orthophosphate as P	0.66	mg/L	0.25	10/15/20 20:54	
SM 5310B-2011	Total Organic Carbon	7.9	mg/L	1.0	10/28/20 19:55	
2500569006	RW-3					
	Performed by	CUSTOME R			10/27/20 13:57	
		6.26	Std. Units		10/27/20 13:57	
	Hq	0.20				
EPA 6010D	pH Calcium			0.50	10/29/20 01:43	
	Calcium	118	mg/L		10/29/20 01:43 10/29/20 01:43	
EPA 6010D EPA 6010D EPA 6010D				0.25	10/29/20 01:43	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS APP III

Pace Project No.: 92500569

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2500569006	RW-3					
EPA 6010D	Potassium	156	mg/L	100	10/28/20 09:53	
EPA 6010D	Sodium	4220	mg/L	250	10/30/20 14:27	
EPA 6020B	Boron	2.5	mg/L	1.2	10/21/20 12:35	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	147	mg/L	5.0	10/27/20 17:13	
SM 2540C-2011	Total Dissolved Solids	19100	mg/L	2500	10/19/20 18:33	
SM 3500-Fe D#4	Iron, Ferric	0.79	mg/L	0.50	11/02/20 17:20	N2
SM 3500-Fe B-2011	Iron, Ferrous	0.71	mg/L	0.50	10/22/20 12:38	H3,N2
SM 4500-S2D-2011	Sulfide	2.1	mg/L	0.50	10/19/20 20:09	
EPA 300.0 Rev 2.1 1993	Chloride	7370	mg/L	100	10/17/20 19:07	
PA 300.0 Rev 2.1 1993	Sulfate	930	mg/L	100	10/17/20 19:07	
SM 4500-P E-2011	Orthophosphate as P	0.47	mg/L	0.25	10/15/20 21:00	
SM 5310B-2011	Total Organic Carbon	10.2	mg/L	1.0	10/28/20 20:11	
2500569007	RW-7					
	Performed by	CUSTOME R			10/27/20 13:57	
	рН	6.74	Std. Units		10/27/20 13:57	
EPA 6010D	Calcium	160	mg/L	0.50	10/29/20 01:46	
EPA 6010D	Magnesium	309	mg/L	0.50	10/29/20 01:46	
PA 6010D	Manganese	0.13	mg/L	0.025	10/29/20 01:46	
EPA 6010D	Potassium	94.1J	mg/L	100	10/28/20 09:56	
PA 6010D	Sodium	2150	mg/L	250	10/30/20 14:37	
PA 6020B	Arsenic	0.013	mg/L	0.0050	10/20/20 13:57	
PA 6020B	Boron	1.0	mg/L	0.50	10/20/20 13:57	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	301	mg/L	5.0	10/27/20 17:22	
SM 2540C-2011	Total Dissolved Solids	9700	mg/L	1250	10/19/20 18:33	
SM 4500-S2D-2011	Sulfide	52.5	mg/L	10.0	10/19/20 20:09	
EPA 300.0 Rev 2.1 1993	Chloride	3980	mg/L	55.0	10/17/20 19:21	
EPA 300.0 Rev 2.1 1993	Sulfate	310	mg/L	55.0	10/17/20 19:21	
PA 353.2 Rev 2.0 1993	Nitrogen, Nitrite	0.062	mg/L	0.040	10/16/20 00:23	
SM 4500-P E-2011	Orthophosphate as P	0.68	mg/L	0.25	10/15/20 20:55	
SM 5310B-2011	Total Organic Carbon	8.7	mg/L	1.0	10/28/20 20:28	
2500569008	RW-8					
	Performed by	CUSTOME R			10/27/20 13:57	
	рН	6.25	Std. Units		10/27/20 13:57	
EPA 6010D	Calcium	131	mg/L	2.0	10/28/20 09:59	
EPA 6010D	Iron	1.4	mg/L	1.0	10/28/20 09:59	
EPA 6010D	Magnesium	422	mg/L	2.0	10/28/20 09:59	
PA 6010D	Manganese	0.11	mg/L	0.10	10/28/20 09:59	
PA 6010D	Potassium	151	mg/L	100	10/28/20 09:59	
EPA 6010D	Sodium	3790	mg/L	250	10/30/20 14:40	
PA 6020B	Arsenic	0.0024J	mg/L	0.0050	10/20/20 14:01	
PA 6020B	Boron	2.5	mg/L		10/21/20 12:39	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	127	mg/L	5.0	10/27/20 17:53	
	Total Dissolved Solids	17200	mg/L	2500	10/19/20 18:33	
11VI 2340G-2011						
SM 2540C-2011 SM 3500-Fe D#4	Iron, Ferric	0.65	mg/L	0.50	11/02/20 17:20	N2

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS APP III

Pace Project No.: 92500569

RW-8 Sulfide	Result	Units	Report Limit	Analyzed	Qualifiers
					_
Sulfide					
	0.054J	mg/L	0.10	10/19/20 18:14	
Chloride	6810	mg/L	100	10/17/20 19:35	
Sulfate	829	mg/L	100	10/17/20 19:35	
Orthophosphate as P	0.27	mg/L	0.050	10/15/20 21:21	
Total Organic Carbon	8.0	mg/L	1.0	10/28/20 21:20	
RW-9					
Performed by	CUSTOME			10/27/20 13:57	
рН	6.55	Std. Units		10/27/20 13:57	
Calcium	256	mg/L	2.0	10/20/20 06:56	M6
Magnesium	567	mg/L	2.0	10/20/20 06:56	M6
Manganese	0.28	mg/L	0.10	10/20/20 06:56	
Potassium	151	mg/L	100	10/20/20 06:56	M6
Sodium	3820	mg/L	500	10/21/20 19:19	M6, R1
Arsenic	0.038	mg/L	0.0050	10/19/20 19:45	
Boron	1.6	mg/L	0.75	10/20/20 11:39	
Alkalinity, Bicarbonate (CaCO3)	307	mg/L	5.0	10/27/20 18:02	
Total Dissolved Solids	17500	mg/L	2500	10/19/20 18:33	
Sulfide	50.8	mg/L	10.0	10/19/20 20:10	
Chloride	7160	-	100	10/17/20 19:48	
Sulfate	731	-	100	10/17/20 19:48	
Orthophosphate as P	0.60	•	0.25		
Total Organic Carbon	9.5	mg/L	1.0	10/28/20 21:36	
RW-10					
Performed by	CUSTOME			10/27/20 13:57	
~U		Ctd Unito		10/27/20 12:57	
			2.0		
		-			
_					
•		•			
		•			
		-			
					Me
					M6
		•			DC
		•			D6
		•			
		-			
		•			
	9.4	IIIg/L	1.0	10/20/20 21.32	
	4.4.4	m c //	0.0	10/00/00 07:40	
		-			
		-			
Magnesium Manganese	431 0.16	mg/L mg/L	2.0 0.10	10/20/20 07:19 10/20/20 07:19	
	Performed by pH Calcium Magnesium Manganese Potassium Sodium Arsenic Boron Alkalinity,Bicarbonate (CaCO3) Total Dissolved Solids Sulfide Chloride Sulfate Orthophosphate as P Total Organic Carbon RW-10 Performed by pH Calcium Magnesium Manganese Potassium Sodium Arsenic Boron Alkalinity,Bicarbonate (CaCO3) Total Dissolved Solids Sulfide Chloride Sulfate Orthophosphate as P Total Organic Carbon Alkalinity,Bicarbonate (CaCO3) Total Dissolved Solids Sulfide Chloride Sulfate Orthophosphate as P Total Organic Carbon DUP-1 Calcium Iron	Performed by CUSTOME R R P H pH 6.55 Calcium 256 Magnesium 567 Manganese 0.28 Potassium 151 Sodium 3820 Arsenic 0.038 Boron 1.6 Alkalinity,Bicarbonate (CaCO3) 307 Total Dissolved Solids 17500 Sulfide 50.8 Chloride 7160 Sulfate 731 Orthophosphate as P 0.60 Total Organic Carbon 9.5 RW-10 CUSTOME Performed by CUSTOME R PH Calcium 138 Magnesium 378 Manganese 0.16 Potassium 378 Manganese 0.16 Potassium 3200 Arsenic 0.0058 Boron 1.8 Alkalinity,Bicarbonate (CaCO3) 192 Total Dissolved Solids 11800	Performed by CUSTOME R R PH R 6.55 Std. Units Calcium 256 mg/L Magnesium 567 mg/L Manganese 0.28 mg/L Manganese 0.28 mg/L Manganese 0.28 mg/L Manganese 0.28 mg/L Manganes/L mg/L Mangal mg/L	Performed by CUSTOME R R R R R R R R R	Performed by CUSTOME R 10/27/20 13:57

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS APP III

Pace Project No.: 92500569

₋ab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2500569011	DUP-1					
EPA 6010D	Potassium	171	mg/L	100	10/20/20 07:19	
EPA 6010D	Sodium	4290	mg/L	500	10/21/20 19:48	
EPA 6020B	Boron	2.8	mg/L	1.2	10/20/20 11:46	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	141	mg/L	5.0	10/28/20 13:07	
SM 2540C-2011	Total Dissolved Solids	17700	mg/L	2500	10/20/20 12:08	
SM 3500-Fe D#4	Iron, Ferric	0.64	mg/L	0.50	10/23/20 16:20	N2
SM 3500-Fe B-2011	Iron, Ferrous	1.2	mg/L	0.50	10/22/20 12:26	H3,N2
SM 4500-S2D-2011	Sulfide	2.3	mg/L	0.50	10/19/20 20:14	
PA 300.0 Rev 2.1 1993	Chloride	7960	mg/L	100	10/19/20 22:54	
PA 300.0 Rev 2.1 1993	Sulfate	1050	mg/L	100	10/19/20 22:54	
SM 4500-P E-2011	Orthophosphate as P	0.54	mg/L	0.25	10/15/20 20:53	
SM 5310B-2011	Total Organic Carbon	10.2	mg/L	1.0	10/28/20 22:09	
	FBL101420	10.2	mg/L		10/20/20 22:00	
2500569012 M 2540C 2011		26.0	mc/l	25.0	10/20/20 12:00	
SM 2540C-2011	Total Dissolved Solids	26.0	mg/L	25.0	10/20/20 12:08	
EPA 300.0 Rev 2.1 1993	Chloride	1.3	mg/L	1.0	10/18/20 00:03	
2500569013	MCM-05					
	Performed by	CUSTOME R			10/27/20 13:57	
	рН	6.53	Std. Units		10/27/20 13:57	
PA 6010D	Calcium	60.7	mg/L	2.0	10/20/20 07:25	
PA 6010D	Magnesium	138	mg/L	2.0	10/20/20 07:25	
PA 6010D	Sodium	996	mg/L	100	10/20/20 07:25	
PA 6020B	Boron	0.67	mg/L	0.50	10/20/20 11:50	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	174	mg/L	5.0	10/28/20 18:29	
SM 4500-S2D-2011	Sulfide	21.0	mg/L	5.0	10/19/20 20:15	
SM 5210B-2011	BOD, 5 day	4.2	mg/L	2.0	10/22/20 00:49	B2
PA 300.0 Rev 2.1 1993	Chloride	1660	mg/L	100	10/21/20 09:59	
PA 300.0 Rev 2.1 1993	Sulfate	148	mg/L	100	10/21/20 09:59	
M 4500-P E-2011	Orthophosphate as P	0.37	mg/L	0.050	10/17/20 05:11	
M 5310B-2011	Total Organic Carbon	6.6	mg/L	1.0	10/29/20 01:07	
2500569014	DPZ-2					
	Performed by	CUSTOME R			10/27/20 13:57	
	pН	7.08	Std. Units		10/27/20 13:57	
PA 6010D	Calcium	225	mg/L	2.0	10/20/20 07:29	
PA 6010D	Magnesium	485	mg/L	2.0	10/20/20 07:29	
PA 6010D	Manganese	0.26	mg/L	0.10	10/20/20 07:29	
PA 6010D	Potassium	151	mg/L	100	10/20/20 07:29	
PA 6010D	Sodium	4720	mg/L	500	10/21/20 19:51	
PA 6020B	Arsenic	0.021	mg/L	0.0050	10/19/20 20:28	
PA 6020B	Boron	2.1	mg/L	1.2	10/20/20 11:54	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	349	mg/L	5.0	10/28/20 18:42	
SM 3500-Fe D#4	Iron, Ferric	0.35J	mg/L	0.50	10/23/20 16:19	N2
NN 3300-1 6 D#4	•	41.6	mg/L	10.0	10/23/20 16.19	1 N.C.
M 4500-S2D-2011			11111/1	10.0	10/15/70 70 10	
SM 4500-S2D-2011 EPA 300.0 Rev 2.1 1993	Sulfide Chloride	8000	mg/L	100	10/21/20 20:13	

Project: MCMANUS APP III

Pace Project No.: 92500569

ab Sample ID	Client Sample ID	.		D		0 ""
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2500569014	DPZ-2					
SM 4500-P E-2011	Orthophosphate as P	0.13J	mg/L	0.25	10/17/20 05:17	
SM 5310B-2011	Total Organic Carbon	7.0	mg/L	1.0	10/29/20 01:23	
2500569015	RW-4					
	Performed by	CUSTOME R			10/27/20 13:57	
	рН	6.24	Std. Units		10/27/20 13:57	
PA 6010D	Calcium	128	mg/L	2.0	10/20/20 07:32	
EPA 6010D	Iron	2.6	mg/L	1.0	10/20/20 07:32	
PA 6010D	Magnesium	373	mg/L	2.0	10/20/20 07:32	
PA 6010D	Manganese	0.23	mg/L	0.10	10/20/20 07:32	
PA 6010D	Potassium	145	mg/L	100	10/20/20 07:32	
EPA 6010D	Sodium	3370	mg/L	500	10/21/20 19:54	
PA 6020B	Arsenic	0.0028J	mg/L	0.0050	10/19/20 20:31	
PA 6020B	Boron	2.1	mg/L	1.2	10/20/20 12:06	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	131	mg/L	5.0	10/28/20 18:52	
SM 2540C-2011	Total Dissolved Solids	13100	mg/L	2500	10/20/20 12:08	
SM 3500-Fe D#4	Iron, Ferric	1.6	mg/L	0.50	10/23/20 16:19	N2
SM 3500-Fe B-2011	Iron, Ferrous	1.1	mg/L	0.50	10/22/20 12:45	H3,N2
SM 4500-S2D-2011	Sulfide	0.44	mg/L	0.10	10/19/20 18:33	0,=
EPA 300.0 Rev 2.1 1993	Chloride	5600	mg/L	100	10/21/20 10:27	
EPA 300.0 Rev 2.1 1993	Sulfate	732	mg/L	100	10/21/20 10:27	
SM 4500-P E-2011	Orthophosphate as P	0.21	mg/L	0.050	10/17/20 05:14	
SM 5310B-2011	Total Organic Carbon	11.0	mg/L		10/29/20 01:40	
	•	11.0	mg/L	1.0	10/29/20 01.40	
2500569016	RW-5	CLICTOME			10/07/00 10 57	
	Performed by	CUSTOME R			10/27/20 13:57	
	рН	6.62	Std. Units		10/27/20 13:57	
PA 6010D	Calcium	152	mg/L	2.0	10/20/20 07:35	
EPA 6010D	Iron	1.3	mg/L	1.0	10/20/20 07:35	
PA 6010D	Magnesium	397	mg/L	2.0	10/20/20 07:35	
	Manganese			0.10	10/20/20 07:35	
PA 6010D	Manuanese	0.14	IIIU/∟	0.10		
	_	0.14 159	mg/L ma/L		10/20/20 07:35	
PA 6010D	Potassium	159	mg/L	100	10/20/20 07:35 10/21/20 19:57	
PA 6010D PA 6010D	Potassium Sodium	159 3770	mg/L mg/L	100 500	10/21/20 19:57	
PA 6010D PA 6010D PA 6020B	Potassium Sodium Arsenic	159 3770 0.0026J	mg/L mg/L mg/L	100 500 0.0050	10/21/20 19:57 10/19/20 20:35	
PA 6010D PA 6010D PA 6020B PA 6020B	Potassium Sodium Arsenic Boron	159 3770 0.0026J 2.7	mg/L mg/L mg/L mg/L	100 500 0.0050 1.2	10/21/20 19:57 10/19/20 20:35 10/20/20 12:09	
EPA 6010D EPA 6010D EPA 6020B EPA 6020B EM 2320B-2011	Potassium Sodium Arsenic Boron Alkalinity,Bicarbonate (CaCO3)	159 3770 0.0026J 2.7 197	mg/L mg/L mg/L mg/L mg/L	100 500 0.0050 1.2 5.0	10/21/20 19:57 10/19/20 20:35 10/20/20 12:09 10/28/20 19:02	
EPA 6010D EPA 6010D EPA 6020B EPA 6020B EM 2320B-2011 EM 2540C-2011	Potassium Sodium Arsenic Boron Alkalinity,Bicarbonate (CaCO3) Total Dissolved Solids	159 3770 0.0026J 2.7 197 15500	mg/L mg/L mg/L mg/L mg/L mg/L	100 500 0.0050 1.2 5.0 2500	10/21/20 19:57 10/19/20 20:35 10/20/20 12:09 10/28/20 19:02 10/20/20 12:08	N2
EPA 6010D EPA 6010D EPA 6020B EPA 6020B SM 2320B-2011 SM 2540C-2011 SM 3500-Fe D#4	Potassium Sodium Arsenic Boron Alkalinity,Bicarbonate (CaCO3) Total Dissolved Solids Iron, Ferric	159 3770 0.0026J 2.7 197 15500 0.94	mg/L mg/L mg/L mg/L mg/L mg/L	100 500 0.0050 1.2 5.0 2500 0.50	10/21/20 19:57 10/19/20 20:35 10/20/20 12:09 10/28/20 19:02 10/20/20 12:08 10/23/20 16:19	N2 H3 N2
EPA 6010D EPA 6010D EPA 6020B EPA 6020B SM 2320B-2011 SM 2540C-2011 SM 3500-Fe D#4 SM 3500-Fe B-2011	Potassium Sodium Arsenic Boron Alkalinity,Bicarbonate (CaCO3) Total Dissolved Solids Iron, Ferric Iron, Ferrous	159 3770 0.0026J 2.7 197 15500 0.94 0.32J	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	100 500 0.0050 1.2 5.0 2500 0.50	10/21/20 19:57 10/19/20 20:35 10/20/20 12:09 10/28/20 19:02 10/20/20 12:08 10/23/20 16:19 10/22/20 12:45	N2 H3,N2
EPA 6010D EPA 6010D EPA 6020B EPA 6020B SM 2320B-2011 SM 2540C-2011 SM 3500-Fe D#4 SM 3500-Fe B-2011 SM 4500-S2D-2011	Potassium Sodium Arsenic Boron Alkalinity,Bicarbonate (CaCO3) Total Dissolved Solids Iron, Ferric Iron, Ferrous Sulfide	159 3770 0.0026J 2.7 197 15500 0.94 0.32J 0.95	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	100 500 0.0050 1.2 5.0 2500 0.50 0.50	10/21/20 19:57 10/19/20 20:35 10/20/20 12:09 10/28/20 19:02 10/20/20 12:08 10/23/20 16:19 10/22/20 12:45 10/19/20 18:34	
EPA 6010D EPA 6010D EPA 6020B EPA 6020B SM 2320B-2011 SM 2540C-2011 SM 3500-Fe D#4 SM 3500-Fe B-2011 SM 4500-S2D-2011 EPA 300.0 Rev 2.1 1993	Potassium Sodium Arsenic Boron Alkalinity,Bicarbonate (CaCO3) Total Dissolved Solids Iron, Ferric Iron, Ferrous Sulfide Chloride	159 3770 0.0026J 2.7 197 15500 0.94 0.32J 0.95 6190	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	100 500 0.0050 1.2 5.0 2500 0.50 0.50 0.10	10/21/20 19:57 10/19/20 20:35 10/20/20 12:09 10/28/20 19:02 10/20/20 12:08 10/23/20 16:19 10/22/20 12:45 10/19/20 18:34 10/21/20 10:41	
EPA 6010D EPA 6010D EPA 6010D EPA 6020B EPA 6020B EPA 6020B EM 2320B-2011 EM 2540C-2011 EM 3500-Fe D#4 EM 3500-Fe B-2011 EM 4500-S2D-2011 EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993	Potassium Sodium Arsenic Boron Alkalinity,Bicarbonate (CaCO3) Total Dissolved Solids Iron, Ferric Iron, Ferrous Sulfide	159 3770 0.0026J 2.7 197 15500 0.94 0.32J 0.95	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	100 500 0.0050 1.2 5.0 2500 0.50 0.50 0.10	10/21/20 19:57 10/19/20 20:35 10/20/20 12:09 10/28/20 19:02 10/20/20 12:08 10/23/20 16:19 10/22/20 12:45 10/19/20 18:34	

Project: MCMANUS APP III

Pace Project No.: 92500569

	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92500569017	RW-6					
	Performed by	CUSTOME R			10/27/20 13:57	
	рН	6.15	Std. Units		10/27/20 13:57	
EPA 6010D	Calcium	153	mg/L	2.0	10/20/20 07:39	
EPA 6010D	Magnesium	447	mg/L	2.0	10/20/20 07:39	
EPA 6010D	Potassium	164	mg/L	100	10/20/20 07:39	
EPA 6010D	Sodium	4050	mg/L	500	10/21/20 20:01	
EPA 6020B	Arsenic	0.0029J	mg/L	0.0050	10/19/20 20:39	
EPA 6020B	Boron	2.5	mg/L	1.2	10/20/20 12:13	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	108	mg/L	5.0	10/28/20 19:21	
SM 2540C-2011	Total Dissolved Solids	16400	mg/L	2500	10/20/20 12:09	
SM 3500-Fe B-2011	Iron, Ferrous	0.41J	mg/L	0.50	10/22/20 12:43	H3,N2
SM 4500-S2D-2011	Sulfide	8.3	mg/L	2.5	10/19/20 20:17	
EPA 300.0 Rev 2.1 1993	Chloride	7030	mg/L	100	10/21/20 10:54	
EPA 300.0 Rev 2.1 1993	Sulfate	839	mg/L	100	10/21/20 10:54	
SM 4500-P E-2011	Orthophosphate as P	0.23	mg/L	0.050	10/17/20 05:11	
SM 5310B-2011	Total Organic Carbon	7.6	mg/L	1.0	10/29/20 02:15	
92500569018	DUP-2					
EPA 6010D	Calcium	148	mg/L	2.0	10/20/20 07:55	
EPA 6010D	Iron	1.2	mg/L	1.0	10/20/20 07:55	
EPA 6010D	Magnesium	389	mg/L	2.0	10/20/20 07:55	
EPA 6010D	Manganese	0.14	mg/L	0.10	10/20/20 07:55	
EPA 6010D	Potassium	156	mg/L	100	10/20/20 07:55	
EPA 6010D	Sodium	3850	mg/L	500	10/21/20 20:04	
EPA 6020B	Arsenic	0.0027J	mg/L	0.0050	10/19/20 20:43	
EPA 6020B	Boron	2.5	mg/L	1.2	10/20/20 12:17	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	190	mg/L	5.0	10/28/20 19:47	
SM 2540C-2011	Total Dissolved Solids	14800	mg/L	2500	10/20/20 12:09	
SM 3500-Fe D#4	Iron, Ferric	0.80	mg/L	0.50	10/23/20 16:19	N2
SM 3500-Fe B-2011	Iron, Ferrous	0.39J	mg/L	0.50	10/22/20 12:40	H3,N2
EPA 300.0 Rev 2.1 1993	Chloride	6200	mg/L	100	10/21/20 11:08	•
EPA 300.0 Rev 2.1 1993	Sulfate	805	mg/L	100	10/21/20 11:08	
SM 4500-P E-2011	Orthophosphate as P	0.64	mg/L	0.50	10/17/20 05:06	H1
SM 5310B-2011	Total Organic Carbon	11.9	mg/L	1.0	10/29/20 05:28	
2500560040	FBL101520		-			
7 2 300309019						
9 2500569019 EPA 300.0 Rev 2.1 1993	Chloride	6.0	mg/L	1.0	10/21/20 02:15	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: MCM-06	Lab ID:	92500569001	Collected:	10/14/20	16:52	Received: 10/	15/20 10:49 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57		
ρΗ	6.93	Std. Units			1		10/27/20 13:57		
6010 MET ICP	•	Method: EPA 6 lytical Services	•	ration Met	hod: EF	PA 3010A			
					_				
Calcium	193	mg/L	0.50	0.47	5	10/28/20 00:59	10/29/20 01:26		
ron	ND 445	mg/L	0.25	0.21	5 5	10/28/20 00:59	10/29/20 01:26		
Magnesium	0.24	mg/L mg/L	0.50 0.025	0.34 0.017	5 5		10/29/20 01:26 10/29/20 01:26		
Manganese Potassium	0.24 121	mg/L	100	60.8	20	10/28/20 00:59	10/29/20 01:26		
Sodium	ND	mg/L	250	30.5	50		10/30/20 14:11		
Ocalam		•					10/00/20 14:11	7440 20 0	
6020 MET ICPMS	-	Method: EPA 6 lytical Services		ration Met	hod: EF	A 3010A			
Arsenic	0.45	mg/L	0.0050	0.0026	30	10/16/20 01:08	10/20/20 13:34	7440-38-2	
Boron	1.5	mg/L	0.75	0.19	30	10/16/20 01:08	10/20/20 13:34	7440-42-8	
2320B Alkalinity	•	Method: SM 23							
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	532	mg/L	5.0	5.0	1		10/27/20 16:07		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/27/20 16:07		
ron, Ferric (Calculation)	-	Method: SM 35 lytical Services							
ron, Ferric	ND	mg/L	0.50	0.25	1		11/02/20 17:20	7439-89-6	N2
lron, Ferrous	•	Method: SM 35 lytical Services		1					
ron, Ferrous	0.099J	mg/L	0.50	0.084	1		10/22/20 12:36		H3,N2
4500S2D Sulfide Water	-	Method: SM 45 lytical Services		1					
Sulfide	50.8	mg/L	10.0	5.0	100		10/19/20 20:08	18496-25-8	
5210B BOD, 5 day	-	Method: SM 52 lytical Services							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/16/20 06:40	10/21/20 02:29		B2
300.0 IC Anions 28 Days	-	Method: EPA 3 lytical Services		1993					
Chloride	6930	mg/L	100	60.0	100		10/17/20 17:31	16887-00-6	
Sulfate	552	mg/L	100	50.0	100		10/17/20 17:31		

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: MCM-06	Lab ID:	92500569001	Collecte	d: 10/14/20	16:52	Received: 10	/15/20 10:49 Ma	atrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville									
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/16/20 01:02	14797-55-8		
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/16/20 01:02	14797-65-0		
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-20	11						
	Pace Anal	lytical Services	- Asheville							
Orthophosphate as P	0.81	mg/L	0.25	0.059	5		10/15/20 20:59			
5310B TOC	Analytical	Method: SM 53	310B-2011							
	Pace Anal	lytical Services	- Asheville							
Total Organic Carbon	9.3	mg/L	1.0	0.50	1		10/28/20 03:18	7440-44-0		

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: MCM-07	Lab ID:	92500569002	Collected	d: 10/14/2	0 14:42	Received: 10/	/15/20 10:49 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	CUSTOME R	•			1		10/27/20 13:57		
pH	6.32	Std. Units			1		10/27/20 13:57		
6010 MET ICP	•	Method: EPA 6 lytical Services	•	aration Me	thod: EF	PA 3010A			
Calcium	216	mg/L	0.50	0.47	5	10/28/20 00:59	10/29/20 01:29	7440-70-2	
Iron	ND	mg/L	0.25	0.21	5	10/28/20 00:59	10/29/20 01:29	7439-89-6	
Magnesium	614	mg/L	2.0	1.4	20	10/28/20 00:59	10/28/20 09:39	7439-95-4	
Manganese	0.13	mg/L	0.025	0.017	5	10/28/20 00:59	10/29/20 01:29	7439-96-5	
Potassium	148	mg/L	100	60.8	20	10/28/20 00:59	10/28/20 09:39	7440-09-7	
Sodium	4310	mg/L	250	30.5	50	10/28/20 00:59	10/30/20 14:14	7440-23-5	
6020 MET ICPMS	-	Method: EPA 6 lytical Services		aration Me	thod: EF	PA 3010A			
Arsenic	0.015	mg/L	0.0050	0.0017	20	10/16/20 01:08	10/19/20 19:03	7440-38-2	
Boron	1.7	mg/L	1.2	0.31	50	10/16/20 01:08	10/20/20 13:38	7440-42-8	
2320B Alkalinity	•	Method: SM 23 lytical Services							
Alkalinity, Bicarbonate (CaCO3)	253	mg/L	5.0	5.0	1		10/27/20 16:18		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/27/20 16:18		
Iron, Ferric (Calculation)	-	Method: SM 35 lytical Services							
Iron, Ferric	ND	mg/L	0.50	0.25	1		11/02/20 17:20	7439-89-6	N2
Iron, Ferrous	-	Method: SM 35 lytical Services)11					
Iron, Ferrous	ND	mg/L	0.50	0.084	1		10/22/20 12:21		H3,N2
4500S2D Sulfide Water	•	Method: SM 45 lytical Services		11					
Sulfide	25.7	mg/L	10.0	5.0	100		10/19/20 20:08	18496-25-8	
5210B BOD, 5 day	-	Method: SM 52 lytical Services							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/16/20 04:44	10/21/20 01:38		B2
300.0 IC Anions 28 Days		Method: EPA 3 lytical Services		1 1993					
Chloride	8170	mg/L	100	60.0	100		10/17/20 18:13	16887-00-6	
Sulfate	938	mg/L	100	50.0	100		10/17/20 18:13		

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: MCM-07	Lab ID:	92500569002	Collecte	d: 10/14/20	14:42	Received: 10	/15/20 10:49 Ma	atrix: Water				
			Report									
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual			
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.2 Rev 2.0 1993											
	Pace Ana	lytical Services	- Asheville									
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/16/20 01:04	14797-55-8				
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/16/20 01:04	14797-65-0				
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-20 ²	1								
	Pace Ana	lytical Services	- Asheville									
Orthophosphate as P	0.59	mg/L	0.25	0.059	5		10/15/20 20:51					
5310B TOC	Analytical	Method: SM 53	310B-2011									
	Pace Ana	lytical Services	- Asheville									
Total Organic Carbon	15.9	mg/L	1.0	0.50	1		10/28/20 03:34	7440-44-0				

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: MCM-14	Lab ID:	92500569003	Collected	d: 10/14/2	0 13:00	Received: 10/	15/20 10:49 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57		
рН	6.50	Std. Units			1		10/27/20 13:57		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	•	lytical Services							
Calcium	177	mg/L	0.50	0.47	5	10/28/20 00:59	10/29/20 01:33	7440-70-2	
Iron	ND	mg/L	0.25	0.21	5	10/28/20 00:59	10/29/20 01:33	7439-89-6	
Magnesium	379	mg/L	0.50	0.34	5	10/28/20 00:59	10/29/20 01:33	7439-95-4	
Manganese	0.29	mg/L	0.025	0.017	5	10/28/20 00:59	10/29/20 01:33	7439-96-5	
Potassium	107	mg/L	100	60.8	20	10/28/20 00:59	10/28/20 09:43	7440-09-7	
Sodium	3420	mg/L	250	30.5	50	10/28/20 00:59	10/30/20 14:17	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
		lytical Services							
Arsenic	ND	mg/L	0.0050	0.0017	20	10/16/20 01:08	10/19/20 19:07	7440-38-2	
Boron	1.2	mg/L	0.75	0.19	30	10/16/20 01:08	10/20/20 13:42	7440-42-8	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
20202 /a		llytical Services							
Alkalinity, Bicarbonate (CaCO3)	164	mg/L	5.0	5.0	1		10/27/20 16:41		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/27/20 16:41		
,		ū			•		10/21/20 10.11		
Iron, Ferric (Calculation)		Method: SM 35							
		llytical Services							
Iron, Ferric	ND	mg/L	0.50	0.25	1		11/02/20 17:20	7439-89-6	N2
Iron, Ferrous	Analytical	Method: SM 35	500-Fe B-20)11					
	Pace Ana	lytical Services	- Asheville						
Iron, Ferrous	ND	mg/L	0.50	0.084	1		10/22/20 12:19		H3,N2
4500S2D Sulfide Water	Analytical	Method: SM 45	500-S2D-20	11					
	Pace Ana	lytical Services	- Asheville						
Sulfide	15.7	mg/L	10.0	5.0	100		10/19/20 20:09	18496-25-8	
5210B BOD, 5 day		Method: SM 52 llytical Services							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/16/20 04:44	10/21/20 01:17		B2
300.0 IC Anions 28 Days		Method: EPA 3		.1 1993					
Chloride	6230	mg/L	100	60.0	100		10/17/20 18:26	16887-00-6	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: MCM-14	Lab ID:	92500569003	Collecte	d: 10/14/20	13:00	Received: 10	/15/20 10:49 Ma	atrix: Water			
			Report								
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual		
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.2 Rev 2.0 1993										
	Pace Anal	lytical Services	- Asheville								
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/16/20 01:05	14797-55-8			
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/16/20 01:05	14797-65-0			
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-201	11							
	Pace Anal	lytical Services	- Asheville								
Orthophosphate as P	0.58	mg/L	0.25	0.059	5		10/15/20 20:41		M1		
5310B TOC	Analytical	Method: SM 53	310B-2011								
	Pace Anal	lytical Services	- Asheville								
Total Organic Carbon	5.0	mg/L	1.0	0.50	1		10/28/20 04:27	7440-44-0			

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-1	Lab ID:	92500569004	Collected:	10/14/20	12:19	Received: 10/	15/20 10:49 N	fatrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica		6 1						
		llytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57	7	
pН	6.45	Std. Units			1		10/27/20 13:57	7	
6010 MET ICP	•	l Method: EPA 6 llytical Services	•	ration Met	hod: EF	PA 3010A			
Calcium	151	mg/L	0.50	0.47	5	10/28/20 00:59	10/29/20 01:36	6 7440-70-2	
Iron	1.0	mg/L	0.25	0.21	5	10/28/20 00:59	10/29/20 01:36	7439-89-6	
Magnesium	418	mg/L	0.50	0.34	5	10/28/20 00:59	10/29/20 01:36	7439-95-4	
Manganese	0.18	mg/L	0.025	0.017	5	10/28/20 00:59			
Potassium	158	mg/L	100	60.8	20	10/28/20 00:59	10/28/20 09:46		
Sodium	4280	mg/L	250	30.5	50	10/28/20 00:59	10/30/20 14:2	1 7440-23-5	
6020 MET ICPMS	•	l Method: EPA 6 llytical Services	•	ration Met	hod: EF	PA 3010A			
Arsenic	0.0018J	mg/L	0.0050	0.0017	20	10/16/20 01:08	10/19/20 19:11	7440-38-2	
Boron	2.3	mg/L	1.2	0.31	50	10/16/20 01:08	10/20/20 13:46	5 7440-42-8	
2320B Alkalinity	-	l Method: SM 23 llytical Services							
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	234 ND	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		10/27/20 16:52 10/27/20 16:52		
2540C Total Dissolved Solids	-	l Method: SM 25 llytical Services							
Total Dissolved Solids	17800	mg/L	2500	2500	1		10/19/20 18:33	3	
Iron, Ferric (Calculation)	•	l Method: SM 35 llytical Services							
Iron, Ferric	ND	mg/L	0.50	0.25	1		11/02/20 17:20	7439-89-6	N2
Iron, Ferrous	-	l Method: SM 35 llytical Services		1					
Iron, Ferrous	1.1	mg/L	0.50	0.084	1		10/22/20 12:16	6	H3,N2
4500S2D Sulfide Water	•	l Method: SM 45 llytical Services		1					
Sulfide	ND	mg/L	0.10	0.050	1		10/19/20 18:11	18496-25-8	
5210B BOD, 5 day	-	l Method: SM 52 llytical Services							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/16/20 04:44	10/21/20 01:13	3	B2
•		9		-					

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-1	Lab ID:	92500569004	Collecte	d: 10/14/20	12:19	Received: 10	/15/20 10:49 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	7340	mg/L	100	60.0	100		10/17/20 18:40	16887-00-6	
Sulfate	836	mg/L	100	50.0	100		10/17/20 18:40	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2 Rev 2	.0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/16/20 01:06	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/16/20 01:06	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-20 ²	11					
	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	0.65	mg/L	0.25	0.059	5		10/15/20 20:40		M1
5310B TOC	Analytical	Method: SM 53	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	15.1	mg/L	1.0	0.50	1		10/28/20 04:43	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-2	Lab ID.	92500569005	Collected	: 10/14/2	J 15.04	Received: 10/	13/20 10.49 10	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57	•	
рН	6.53	Std. Units			1		10/27/20 13:57	•	
6010 MET ICP	-	Method: EPA 6 lytical Services		aration Me	thod: EF	PA 3010A			
Calcium	132	mg/L	0.50	0.47	5	10/28/20 00:59	10/29/20 01:40	7440-70-2	
Iron	ND	mg/L	0.25	0.21	5	10/28/20 00:59	10/29/20 01:40	7439-89-6	
Magnesium	436	mg/L	0.50	0.34	5	10/28/20 00:59	10/29/20 01:40	7439-95-4	
Manganese	0.12	mg/L	0.025	0.017	5	10/28/20 00:59	10/29/20 01:40	7439-96-5	
Potassium	171	mg/L	100	60.8	20	10/28/20 00:59	10/28/20 09:49		
Sodium	4540	mg/L	250	30.5	50	10/28/20 00:59	10/30/20 14:24	7440-23-5	
6020 MET ICPMS	•	Method: EPA 6 lytical Services	•	aration Me	hod: EF	A 3010A			
Arsenic	ND	mg/L	0.0050	0.0017	20	10/16/20 01:08	10/19/20 19:14	7440-38-2	
Boron	3.1	mg/L	1.2	0.31	50	10/16/20 01:08			
2320B Alkalinity	-	Method: SM 23 lytical Services							
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	151 ND	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		10/27/20 17:02 10/27/20 17:02		
2540C Total Dissolved Solids	-	Method: SM 25 lytical Services							
Total Dissolved Solids	20600	mg/L	2500	2500	1		10/19/20 18:33	1	
Iron, Ferric (Calculation)	-	Method: SM 35 lytical Services							
Iron, Ferric	ND	mg/L	0.50	0.25	1		11/02/20 17:20	7439-89-6	N2
Iron, Ferrous	-	Method: SM 35 lytical Services		11					
Iron, Ferrous	ND	mg/L	0.50	0.084	1		10/22/20 12:28	1	H3,N2
4500S2D Sulfide Water	•	Method: SM 45 lytical Services		11					
Sulfide	0.19	mg/L	0.10	0.050	1		10/19/20 18:12	18496-25-8	
5210B BOD, 5 day	-	Method: SM 52 lytical Services							
		-							

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-2	Lab ID:	92500569005	Collecte	d: 10/14/20	15:04	Received: 10)/15/20 10:49 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	7870	mg/L	100	60.0	100		10/17/20 18:54	16887-00-6	
Sulfate	984	mg/L	100	50.0	100		10/17/20 18:54	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2 Rev 2	.0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/16/20 00:21	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/16/20 00:21	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-20	11					
	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	0.66	mg/L	0.25	0.059	5		10/15/20 20:54		
5310B TOC	Analytical	Method: SM 53	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	7.9	mg/L	1.0	0.50	1		10/28/20 19:55	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-3	Lab ID:	92500569006	Collected	d: 10/14/2	0 17:17	Received: 10/	/15/20 10:49 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data			Object to						
		alytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57		
pH	6.26	Std. Units			1		10/27/20 13:57		
6010 MET ICP	Analytica	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	alytical Services	- Asheville						
Calcium	118	mg/L	0.50	0.47	5	10/28/20 00:59	10/29/20 01:43	7440-70-2	
Iron	1.5	mg/L	0.25	0.21	5	10/28/20 00:59	10/29/20 01:43	7439-89-6	
Magnesium	380	mg/L	0.50	0.34	5	10/28/20 00:59	10/29/20 01:43	7439-95-4	
Manganese	0.14	mg/L	0.025	0.017	5	10/28/20 00:59	10/29/20 01:43	7439-96-5	
Potassium	156	mg/L	100	60.8	20	10/28/20 00:59	10/28/20 09:53	7440-09-7	
Sodium	4220	mg/L	250	30.5	50	10/28/20 00:59	10/30/20 14:27	7440-23-5	
6020 MET ICPMS	Analytica	l Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	alytical Services	- Asheville						
Arsenic	ND	mg/L	0.0050	0.0017	20	10/20/20 01:40	10/20/20 13:53	7440-38-2	
Boron	2.5	mg/L	1.2	0.31	50	10/20/20 01:40	10/21/20 12:35	7440-42-8	
2320B Alkalinity									
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	147 ND	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		10/27/20 17:13 10/27/20 17:13		
2540C Total Dissolved Solids									
Total Dissolved Solids	19100	mg/L	2500	2500	1		10/19/20 18:33		
Iron, Ferric (Calculation)									
Iron, Ferric	0.79	mg/L	0.50	0.25	1		11/02/20 17:20	7439-89-6	N2
Iron, Ferrous	-)11					
Iron, Ferrous	0.71	mg/L	0.50	0.084	1		10/22/20 12:38		H3,N2
4500S2D Sulfide Water	•			11					
Sulfide	2.1	mg/L	0.50	0.25	5		10/19/20 20:09	18496-25-8	
5210B BOD, 5 day		Sults Units Limit MDL DF Prepared Analyzed CAS No. Analytical Method: Pace Analytical Services - Charlotte STOME							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/16/20 06:40	10/21/20 02:30		B2
÷		-							

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-3	Lab ID:	92500569006	Collecte	d: 10/14/20	17:17	Received: 10	/15/20 10:49 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993								
	Pace Anal	ytical Services	- Asheville						
Chloride	7370	mg/L	100	60.0	100		10/17/20 19:07	16887-00-6	
Sulfate	930	mg/L	100	50.0	100		10/17/20 19:07	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2 Rev 2	.0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/16/20 00:22	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/16/20 00:22	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-20	11					
•	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	0.47	mg/L	0.25	0.059	5		10/15/20 21:00		
5310B TOC	Analytical	Method: SM 53	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	10.2	mg/L	1.0	0.50	1		10/28/20 20:11	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-7	Lab ID:	92500569007	Collected	d: 10/14/2	0 15:43	Received: 10/	/15/20 10:49 Ma	atrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
Field Data										
	Pace Ana	alytical Services	- Charlotte							
Performed by	CUSTOME R				1		10/27/20 13:57			
рН	6.74	Std. Units			1		10/27/20 13:57			
6010 MET ICP	-		•	aration Me	thod: EF	PA 3010A				
	Pace Ana	alytical Services	- Asheville							
Calcium	160	mg/L	0.50	0.47	5	10/28/20 00:59	10/29/20 01:46	7440-70-2		
Iron	ND	mg/L	0.25	0.21	5	10/28/20 00:59	10/29/20 01:46	7439-89-6		
Magnesium	309	mg/L	0.50	0.34	5					
Manganese		-			5					
Potassium		-								
Sodium	2150	mg/L	250	30.5	50	10/28/20 00:59	10/30/20 14:37	7440-23-5		
6020 MET ICPMS	-			aration Me	thod: EF	PA 3010A				
	Pace Ana	alytical Services	- Asheville							
Arsenic	0.013	mg/L	0.0050	0.0017	20	10/20/20 01:40	10/20/20 13:57	7440-38-2		
Boron	1.0	mg/L	0.50	0.12	20	10/20/20 01:40	10/20/20 13:57	7440-42-8		
2320B Alkalinity										
Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3)	301 ND	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		10/27/20 17:22 10/27/20 17:22			
2540C Total Dissolved Solids	-									
Total Dissolved Solids	9700	mg/L	1250	1250	1		10/19/20 18:33			
Iron, Ferric (Calculation)	-									
Iron, Ferric	ND	mg/L	0.50	0.25	1		11/02/20 17:20	7439-89-6	N2	
Iron, Ferrous	-			11						
Iron, Ferrous	ND	mg/L	0.50	0.084	1		10/22/20 12:28		H3,N2	
4500S2D Sulfide Water	•			11						
Sulfide	52.5	mg/L	10.0	5.0	100		10/19/20 20:09	18496-25-8		
5210B BOD, 5 day		TOME R 1 10/27/20 13:57 6.74 Std. Units 1 10/27/20 13:57 nalytical Method: EPA 6010D Preparation Method: EPA 3010A tace Analytical Services - Asheville 160 mg/L 0.50 0.47 5 10/28/20 00:59 10/29/20 01:46 7440-70-2 ND mg/L 0.25 0.21 5 10/28/20 00:59 10/29/20 01:46 7439-89-6 309 mg/L 0.50 0.34 5 10/28/20 00:59 10/29/20 01:46 7439-95-4 0.13 mg/L 0.025 0.017 5 10/28/20 00:59 10/29/20 01:46 7439-95-4 0.13 mg/L 100 60.8 20 10/28/20 00:59 10/29/20 01:46 7439-95-4 10/28/20 00:59 10/29/20 01:46 7439-95-4 10/28/20 00:59 10/28/20 00:5								
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/16/20 04:44	10/21/20 02:00		B2	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Lab ID:	92500569007	Collecte	d: 10/14/20	15:43	Received: 10	/15/20 10:49 Ma	atrix: Water	
Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
Pace Anal	ytical Services	- Asheville						
3980	mg/L	55.0	33.0	55		10/17/20 19:21	16887-00-6	
310	mg/L	55.0	27.5	55		10/17/20 19:21	14808-79-8	
Analytical	Method: EPA 3	53.2 Rev 2	.0 1993					
Pace Anal	ytical Services	- Asheville						
ND	mg/L	0.040	0.010	1		10/16/20 00:23	14797-55-8	
0.062	mg/L	0.040	0.010	1		10/16/20 00:23	14797-65-0	
Analytical	Method: SM 45	500-P E-20 ⁻	11					
Pace Anal	ytical Services	- Asheville						
0.68	mg/L	0.25	0.059	5		10/15/20 20:55		
Analytical	Method: SM 53	310B-2011						
Pace Anal	ytical Services	- Asheville						
8.7	mg/L	1.0	0.50	1		10/28/20 20:28	7440-44-0	
	Analytical Pace Analytical	Analytical Method: EPA 3 Pace Analytical Services 3980 mg/L 310 mg/L Analytical Method: EPA 3 Pace Analytical Services ND mg/L 0.062 mg/L Analytical Method: SM 45 Pace Analytical Services 0.68 mg/L Analytical Method: SM 53 Pace Analytical Services	Results Units Report Limit Analytical Method: EPA 300.0 Rev 2 Pace Analytical Services - Asheville 3980 mg/L 55.0 310 mg/L 55.0 Analytical Method: EPA 353.2 Rev 2 Pace Analytical Services - Asheville ND mg/L 0.040 0.062 mg/L 0.040 Analytical Method: SM 4500-P E-200 Pace Analytical Services - Asheville 0.68 mg/L 0.25 Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville	Results Units Report Limit MDL Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville 3980 mg/L 55.0 33.0 310 mg/L 55.0 27.5 Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville ND mg/L 0.040 0.010 0.062 mg/L 0.040 0.010 Analytical Method: SM 4500-P E-2011 Pace Analytical Services - Asheville Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville	Results Units Report Limit MDL DF Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville 3980 mg/L 55.0 33.0 55 310 mg/L 55.0 27.5 55 Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville ND mg/L 0.040 0.010 1 1 0.062 mg/L 0.040 0.010 1 1 Analytical Method: SM 4500-P E-2011 Pace Analytical Services - Asheville O.68 mg/L 0.25 0.059 5 Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville	Results Units Report Limit MDL DF Prepared Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville 3980 mg/L 55.0 33.0 55 310 mg/L 55.0 27.5 55 Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville ND mg/L 0.040 0.010 1 0.062 mg/L 0.040 0.010 1 Analytical Method: SM 4500-P E-2011 Pace Analytical Services - Asheville 0.059 5 Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville	Results Units Report Limit MDL DF Prepared Analyzed Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville 3980 mg/L 55.0 33.0 55 10/17/20 19:21 310 mg/L 55.0 27.5 55 10/17/20 19:21 Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville ND mg/L 0.040 0.010 1 10/16/20 00:23 ND mg/L 0.040 0.010 1 10/16/20 mg/L 0.040 0.010 1 10/16/20 00:23 10/16/20 00:23 Analytical Method: SM 4500-P E-2011 Pace Analytical Services - Asheville 0.68 mg/L 0.25 0.059 5 10/15/20 20:55 Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville	Results Units Report Limit MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville 3980 mg/L 55.0 33.0 55 10/17/20 19:21 16887-00-6 310 mg/L 55.0 27.5 55 10/17/20 19:21 14808-79-8 Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville ND mg/L 0.040 0.010 1 10/16/20 00:23 14797-55-8 0.062 mg/L 0.040 0.010 1 10/16/20 00:23 14797-65-0 Analytical Method: SM 4500-P E-2011 Pace Analytical Services - Asheville O.68 mg/L 0.25 0.059 5 10/15/20 20:55 Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-8	Lab ID:	92500569008	Collected: 10/14/20 16:30			Received: 10/	/15/20 10:49 Ma	10:49 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
Field Data	Analytica	Method:									
	Pace Ana	llytical Services	- Charlotte								
Performed by	CUSTOME R				1		10/27/20 13:57				
рН	6.25	Std. Units			1		10/27/20 13:57				
6010 MET ICP	Analytica	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A					
	Pace Ana	lytical Services	- Asheville								
Calcium	131	mg/L	2.0	1.9	20	10/28/20 00:59	10/28/20 09:59	7440-70-2			
Iron	1.4	mg/L	1.0	0.83	20	10/28/20 00:59	10/28/20 09:59	7439-89-6			
Magnesium	422	mg/L	2.0	1.4	20	10/28/20 00:59	10/28/20 09:59	7439-95-4			
Manganese	0.11	mg/L	0.10	0.069	20	10/28/20 00:59	10/28/20 09:59	7439-96-5			
Potassium	151	mg/L	100	60.8	20	10/28/20 00:59	10/28/20 09:59	7440-09-7			
Sodium	3790	mg/L	250	30.5	50	10/28/20 00:59	10/30/20 14:40	7440-23-5			
6020 MET ICPMS	Analytica	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A					
	Pace Ana	lytical Services	- Asheville								
Arsenic	0.0024J	mg/L	0.0050	0.0017	20	10/20/20 01:40	10/20/20 14:01	7440-38-2			
Boron	2.5	mg/L	1.2	0.31	50	10/20/20 01:40	10/21/20 12:39	7440-42-8			
2320B Alkalinity											
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	127 ND	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		10/27/20 17:53 10/27/20 17:53				
2540C Total Dissolved Solids											
Total Dissolved Solids	17200	mg/L	2500	2500	1		10/19/20 18:33				
Iron, Ferric (Calculation)											
Iron, Ferric	0.65	mg/L	0.50	0.25	1		11/02/20 17:20	7439-89-6	N2		
Iron, Ferrous)11							
Iron, Ferrous	0.75	mg/L	0.50	0.084	1		10/22/20 12:31		H3,N2		
4500S2D Sulfide Water	•			111							
Sulfide	0.054J	mg/L	0.10	0.050	1		10/19/20 18:14	18496-25-8			
5210B BOD, 5 day	-	R 6.25 Std. Units 1 10/27/20 13:57 Analytical Method: EPA 6010D Preparation Method: EPA 3010A Pace Analytical Services - Asheville 131 mg/L 2.0 1.9 20 10/28/20 00:59 10/28/20 09:59 7440-70-2 1.4 mg/L 1.0 0.83 20 10/28/20 00:59 10/28/20 09:59 7439-89-6 422 mg/L 2.0 1.4 20 10/28/20 00:59 10/28/20 09:59 7439-89-6 422 mg/L 0.10 0.669 20 10/28/20 00:59 10/28/20 09:59 7439-95-4 0.11 mg/L 100 60.8 20 10/28/20 00:59 10/28/20 09:59 7440-09-7 3790 mg/L 250 30.5 50 10/28/20 00:59 10/30/20 14:40 7440-23-5 Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Asheville .0024J mg/L 0.0050 0.0017 20 10/20/20 01:40 10/20/20 14:01 7440-38-2 2.5 mg/L 1.2 0.31 50 10/20/20 01:40 10/21/20 12:39 7440-42-8 Analytical Method: SM 2320B-2011 Pace Analytical Services - Asheville 127 mg/L 5.0 5.0 1 10/20/20 01:40 10/27/20 17:53 Analytical Method: SM 2540C-2011 Pace Analytical Services - Asheville 1720 mg/L 5.0 5.0 1 10/27/20 17:53 Analytical Method: SM 3500-Fe D#4 Pace Analytical Services - Asheville 0.65 mg/L 0.50 0.25 1 11/02/20 17:20 7439-89-6 N Analytical Method: SM 3500-Fe B-2011 Pace Analytical Services - Asheville 0.75 mg/L 0.50 0.084 1 10/22/20 12:31 Face Analytical Services - Asheville 0.75 mg/L 0.50 0.084 1 10/22/20 12:31 Face Analytical Services - Asheville 0.75 mg/L 0.50 0.084 1 10/22/20 12:31 Face Analytical Services - Asheville 0.75 mg/L 0.50 0.084 1 10/22/20 12:31 Face Analytical Services - Asheville 0.76 mg/L 0.50 0.084 1 10/22/20 12:31 Face Analytical Services - Asheville									
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/16/20 06:40	10/21/20 02:27		B2		
·		-									

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-8	Lab ID:	92500569008	Collected	: 10/14/20	16:30	Received: 10	/15/20 10:49 Ma	atrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993									
	Pace Anal	ytical Services	- Asheville							
Chloride	6810	mg/L	100	60.0	100		10/17/20 19:35	16887-00-6		
Sulfate	829	mg/L	100	50.0	100		10/17/20 19:35	14808-79-8		
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2 Rev 2.0	1993						
	Pace Anal	ytical Services	- Asheville							
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/16/20 00:24	14797-55-8		
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/16/20 00:24	14797-65-0		
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-201 ²	1						
	Pace Anal	ytical Services	- Asheville							
Orthophosphate as P	0.27	mg/L	0.050	0.012	1		10/15/20 21:21			
5310B TOC	Analytical	Method: SM 53	310B-2011							
	Pace Anal	ytical Services	- Asheville							
Total Organic Carbon	8.0	mg/L	1.0	0.50	1		10/28/20 21:20	7440-44-0		

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-9	Lab ID:	92500569009	Collected	d: 10/14/2	0 13:04	Received: 10/	/15/20 10:49 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	Method:							
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57		
рН	6.55	Std. Units			1		10/27/20 13:57		
6010 MET ICP	Analytica	Method: EPA 6	010D Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	llytical Services	- Asheville						
Calcium	256	mg/L	2.0	1.9	20	10/17/20 00:45	10/20/20 06:56	7440-70-2	M6
Iron	ND	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 06:56	7439-89-6	
Magnesium	567	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 06:56	7439-95-4	M6
Manganese	0.28	mg/L	0.10	0.069	20	10/17/20 00:45	10/20/20 06:56	7439-96-5	
Potassium	151	mg/L	100	60.8	20	10/17/20 00:45	10/20/20 06:56	7440-09-7	M6
Sodium	3820	mg/L	500	61.1	100	10/17/20 00:45	10/21/20 19:19	7440-23-5	M6,R1
6020 MET ICPMS	Analytica	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	-	lytical Services							
Arsenic	0.038	mg/L	0.0050	0.0017	20	10/17/20 00:41	10/19/20 19:45	7440-38-2	
Boron	1.6	mg/L	0.75	0.19	30	10/17/20 00:41	10/20/20 11:39	7440-42-8	
2320B Alkalinity		l Method: SM 23 llytical Services							
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	307 ND	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		10/27/20 18:02 10/27/20 18:02		
2540C Total Dissolved Solids		l Method: SM 25 llytical Services							
Total Dissolved Solids	17500	mg/L	2500	2500	1		10/19/20 18:33		
Iron, Ferric (Calculation)		l Method: SM 35 llytical Services							
Iron, Ferric	ND	mg/L	0.50	0.25	1		10/23/20 16:20	7439-89-6	N2
Iron, Ferrous	-	l Method: SM 35		11					
Iron, Ferrous	ND	mg/L	0.50	0.084	1		10/22/20 12:21		H3,N2
4500S2D Sulfide Water	•	l Method: SM 45		11					
Sulfide	50.8	mg/L	10.0	5.0	100		10/19/20 20:10	18496-25-8	
5210B BOD, 5 day		Method: SM 52							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/16/20 04:44	10/21/20 01:26		B2

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-9	Lab ID:	92500569009	Collecte	d: 10/14/20	13:04	Received: 10)/15/20 10:49 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	7160	mg/L	100	60.0	100		10/17/20 19:48	16887-00-6	
Sulfate	731	mg/L	100	50.0	100		10/17/20 19:48	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2 Rev 2	.0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/16/20 00:26	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/16/20 00:26	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-20	11					
	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	0.60	mg/L	0.25	0.059	5		10/15/20 20:45		
5310B TOC	Analytical	Method: SM 53	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	9.5	mg/L	1.0	0.50	1		10/28/20 21:36	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-10	Lab ID:	92500569010	Collected	d: 10/14/2	0 15:00	Received: 10/	/15/20 10:49 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica								
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57		
рН	6.63	Std. Units			1		10/27/20 13:57		
6010 MET ICP	Analytica	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	138	mg/L	2.0	1.9	20	10/17/20 00:45	10/20/20 07:15	7440-70-2	
Iron	ND	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 07:15	7439-89-6	
Magnesium	378	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 07:15	7439-95-4	
Manganese	0.16	mg/L	0.10	0.069	20	10/17/20 00:45	10/20/20 07:15	7439-96-5	
Potassium	136	mg/L	100	60.8	20	10/17/20 00:45	10/20/20 07:15	7440-09-7	
Sodium	3200	mg/L	500	61.1	100	10/17/20 00:45	10/21/20 19:44	7440-23-5	
6020 MET ICPMS	Analytica	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
		lytical Services							
Arsenic	0.0058	mg/L	0.0050	0.0017	20	10/17/20 00:41	10/19/20 19:49	7440-38-2	
Boron	1.8	mg/L	0.75	0.19	30	10/17/20 00:41	10/20/20 11:42	7440-42-8	M6
2320B Alkalinity		l Method: SM 23 llytical Services							
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	192 ND	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		10/27/20 18:13 10/27/20 18:13		
2540C Total Dissolved Solids		l Method: SM 25 llytical Services							
Total Dissolved Solids	11800	mg/L	2500	2500	1		10/20/20 12:07		D6
Iron, Ferric (Calculation)		l Method: SM 35							
Iron, Ferric	ND	mg/L	0.50	0.25	1		10/23/20 16:20	7439-89-6	N2
Iron, Ferrous	-	l Method: SM 35		011					
Iron, Ferrous	ND	mg/L	0.50	0.084	1		10/22/20 12:23		H3,N2
4500S2D Sulfide Water	,	l Method: SM 45 llytical Services		11					
Sulfide	1.6	mg/L	0.50	0.25	5		10/19/20 20:13	18496-25-8	
5210B BOD, 5 day	-	Method: SM 52							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/16/20 04:44	10/21/20 01:43		
÷		-							

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-10	Lab ID:	92500569010	Collecte	d: 10/14/20	15:00	Received: 10)/15/20 10:49 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	5880	mg/L	100	60.0	100		10/18/20 14:44	16887-00-6	
Sulfate	701	mg/L	100	50.0	100		10/18/20 14:44	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2 Rev 2	.0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/16/20 00:27	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/16/20 00:27	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-20	11					
	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	0.51	mg/L	0.25	0.059	5		10/15/20 20:52		
5310B TOC	Analytical	Method: SM 53	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	9.4	mg/L	1.0	0.50	1		10/28/20 21:52	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: DUP-1	Lab ID: 92	2500569011	Collected:	10/14/20	15:00	Received: 10/	15/20 10:49 ľ	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Me	ethod: EPA 6	010D Prepa	ration Meth	nod: EP	A 3010A			
	Pace Analytic	cal Services	- Asheville						
Calcium	144	mg/L	2.0	1.9	20	10/17/20 00:45	10/20/20 07:1	9 7440-70-2	
ron	1.9	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 07:1	9 7439-89-6	
Magnesium	431	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 07:1		
Manganese	0.16	mg/L	0.10	0.069	20	10/17/20 00:45	10/20/20 07:1		
Potassium	171	mg/L	100	60.8	20	10/17/20 00:45	10/20/20 07:1		
Sodium	4290	mg/L	500	61.1	100	10/17/20 00:45	10/21/20 19:4	8 7440-23-5	
6020 MET ICPMS	Analytical Me Pace Analytic			ation Meth	nod: EP	A 3010A			
Arsenic	ND	mg/L	0.0050	0.0017	20	10/17/20 00:41	10/19/20 20:1	6 7440-38-2	
Boron	2.8	mg/L	1.2	0.31	50	10/17/20 00:41	10/20/20 11:4	6 7440-42-8	
2320B Alkalinity	Analytical Me Pace Analytic								
Alkalinity,Bicarbonate (CaCO3)	141	mg/L	5.0	5.0	1		10/28/20 13:0	7	
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/28/20 13:0	7	
2540C Total Dissolved Solids	Analytical Me Pace Analytic								
Total Dissolved Solids	17700	mg/L	2500	2500	1		10/20/20 12:0	8	
ron, Ferric (Calculation)	Analytical Me Pace Analytic								
Iron, Ferric	0.64	mg/L	0.50	0.25	1		10/23/20 16:2	0 7439-89-6	N2
lron, Ferrous	Analytical Me Pace Analytic			1					
ron, Ferrous	1.2	mg/L	0.50	0.084	1		10/22/20 12:2	6	H3,N2
4500S2D Sulfide Water	Analytical Me Pace Analytic			1					
Sulfide	2.3	mg/L	0.50	0.25	5		10/19/20 20:1	4 18496-25-8	
5210B BOD, 5 day	Analytical Me Pace Analytic								
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/16/20 04:44	10/21/20 01:4	4	B2
300.0 IC Anions 28 Days	Analytical Me Pace Analytic			1993					
Chloride	7960	mg/L	100	60.0	100		10/19/20 22:5	4 16887-00-6	
Sulfate	1050	mg/L	100	50.0	100		10/19/20 22:5	4 14808-79-8	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: DUP-1	Lab ID:	92500569011	Collecte	d: 10/14/20	15:00	Received: 10	/15/20 10:49 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	353.2 Rev 2.	0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/16/20 00:30	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/16/20 00:30	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 4	500-P E-201	1					
	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	0.54	mg/L	0.25	0.059	5		10/15/20 20:53		
5310B TOC	Analytical	Method: SM 53	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	10.2	mg/L	1.0	0.50	1		10/28/20 22:09	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: FBL101420	Lab ID: 92	2500569012	Collected	: 10/14/20	16:47	Received: 10/	15/20 10:49 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	- Analytical M	ethod: EPA 6	010D Prepa	aration Met	hod: EF	PA 3010A		•	
0010 III_1 101	•	ical Services	•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Calcium	ND	mg/L	2.0	1.9	20	10/17/20 00:45	10/20/20 07:22	7440-70-2	
Iron	ND	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 07:22	7439-89-6	
Magnesium	ND	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 07:22	7439-95-4	
Manganese	ND	mg/L	0.10	0.069	20	10/17/20 00:45	10/20/20 07:22	7439-96-5	
Potassium	ND	mg/L	100	60.8	20	10/17/20 00:45	10/20/20 07:22	7440-09-7	
Sodium	ND	mg/L	100	12.2	20	10/17/20 00:45	10/20/20 07:22	7440-23-5	
6020 MET ICPMS	-	ethod: EPA 6		aration Met	hod: EP	A 3010A			
	Pace Analyti	ical Services	- Asneville						
Arsenic	ND	mg/L	0.0050	0.000087	1	10/17/20 00:41	10/19/20 20:20	7440-38-2	
Boron	ND	mg/L	0.025	0.0062	1	10/17/20 00:41	10/20/20 10:38	7440-42-8	
2320B Alkalinity	Analytical M	ethod: SM 23	20B-2011						
	Pace Analyti	ical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/28/20 12:50		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/28/20 12:50		
2540C Total Dissolved Solids	Analytical M	ethod: SM 25	40C-2011						
	Pace Analyti	ical Services	- Asheville						
Total Dissolved Solids	26.0	mg/L	25.0	25.0	1		10/20/20 12:08		
Iron, Ferric (Calculation)	Analytical M	ethod: SM 35	00-Fe D#4						
	Pace Analyti	ical Services	- Asheville						
Iron, Ferric	ND	mg/L	0.50	0.25	1		10/23/20 16:19	7439-89-6	N2
Iron, Ferrous	Analytical M	ethod: SM 35	00-Fe B-20	11					
	Pace Analyti	ical Services	- Asheville						
Iron, Ferrous	ND	mg/L	0.50	0.084	1		10/22/20 12:33		H3,N2
300.0 IC Anions 28 Days	Analytical M	ethod: EPA 3	00.0 Rev 2.1	1 1993					
· · ·	•	ical Services							
Chloride	1.3	mg/L	1.0	0.60	1		10/18/20 00:03	16887-00-6	
Sulfate	ND	mg/L	1.0	0.50	1		10/18/20 00:03	4 4000 70 0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: MCM-05	Lab ID:	92500569013	Collected	d: 10/15/2	0 13:48	Received: 10/	16/20 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:					-		
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57		
рН	6.53	Std. Units			1		10/27/20 13:57		
6010 MET ICP	•	Method: EPA 6		aration Me	thod: EF	PA 3010A			
		llytical Services	- Asneville						
Calcium	60.7	mg/L	2.0	1.9	20		10/20/20 07:25		
Iron	ND	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 07:25		
Magnesium	138	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 07:25		
Manganese	ND	mg/L	0.10	0.069	20	10/17/20 00:45	10/20/20 07:25		
Potassium	ND	mg/L	100	60.8	20		10/20/20 07:25		
Sodium	996	mg/L	100	12.2	20	10/17/20 00:45	10/20/20 07:25	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.0050	0.0017	20	10/17/20 00:41	10/19/20 20:24	7440-38-2	
Boron	0.67	mg/L	0.50	0.12	20		10/20/20 11:50		
		-		****					
2320B Alkalinity		Method: SM 23							
	Pace Ana	llytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	174	mg/L	5.0	5.0	1		10/28/20 18:29		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/28/20 18:29		
Iran Farria (Calaulatian)	Analytical	Mothod: CM 26	00 Eo D#4						
Iron, Ferric (Calculation)		Method: SM 35							
		llytical Services							
Iron, Ferric	ND	mg/L	0.50	0.25	1		10/23/20 16:19	7439-89-6	N2
Iron, Ferrous		l Method: SM 35 llytical Services)11					
Iron, Ferrous	ND	mg/L	0.50	0.084	1		10/22/20 12:43		H3,N2
4500S2D Sulfide Water		l Method: SM 45		11					
Sulfide	21.0	mg/L	5.0	2.5	50		10/19/20 20:15	18496-25-8	
5210B BOD, 5 day	-	l Method: SM 52 llytical Services							
BOD, 5 day	4.2	mg/L	2.0	2.0	1	10/17/20 04:03	10/22/20 00:49		B2
300.0 IC Anions 28 Days		l Method: EPA 3 llytical Services		.1 1993					
Chloride	1660	mg/L	100	60.0	100		10/21/20 09:59	16887-00-6	
Sulfate	148	mg/L	100	50.0	100		10/21/20 09:59		
Canalo	170	111g/ L	100	50.0	100		10/21/20 00:00	1-000-70-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: MCM-05	Lab ID:	92500569013	Collecte	d: 10/15/20	13:48	Received: 10	/16/20 10:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	353.2 Rev 2	.0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/17/20 00:27	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/17/20 00:27	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 4	500-P E-20 ²	11					
	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	0.37	mg/L	0.050	0.012	1		10/17/20 05:11		
5310B TOC	Analytical	Method: SM 5	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	6.6	mg/L	1.0	0.50	1		10/29/20 01:07	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: DPZ-2	Lab ID:	92500569014	Collected	d: 10/15/2	0 16:00	Received: 10/	16/20 10:30 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57		
рН	7.08	Std. Units			1		10/27/20 13:57		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	225	mg/L	2.0	1.9	20	10/17/20 00:45	10/20/20 07:29	7440-70-2	
Iron	ND	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 07:29	7439-89-6	
Magnesium	485	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 07:29	7439-95-4	
Manganese	0.26	mg/L	0.10	0.069	20	10/17/20 00:45	10/20/20 07:29	7439-96-5	
Potassium	151	mg/L	100	60.8	20	10/17/20 00:45	10/20/20 07:29	7440-09-7	
Sodium	4720	mg/L	500	61.1	100	10/17/20 00:45	10/21/20 19:51	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.021	mg/L	0.0050	0.0017	20	10/17/20 00:41	10/19/20 20:28	7440-38-2	
Boron	2.1	mg/L	1.2	0.31	50	10/17/20 00:41	10/20/20 11:54	7440-42-8	
2320B Alkalinity	Analytical	Method: SM 23	20B-2011						
•	-	lytical Services							
Alkalinity, Bicarbonate (CaCO3)	349	mg/L	5.0	5.0	1		10/28/20 18:42		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/28/20 18:42		
Iron, Ferric (Calculation)	Analytical	Method: SM 35	∩0-Fe D#4						
iron, reme (oalculation)	-	lytical Services							
Iron, Ferric	0.35J	mg/L	0.50	0.25	1		10/23/20 16:19	7439-89-6	N2
Iron, Ferrous	Analytical	Method: SM 35	00-Fe B-20)11					
	Pace Ana	lytical Services	- Asheville						
Iron, Ferrous	ND	mg/L	0.50	0.084	1		10/22/20 12:47		H3,N2
4500S2D Sulfide Water	Analytical	Method: SM 45	00-S2D-20	11					
	•	lytical Services							
Sulfide	41.6	mg/L	10.0	5.0	100		10/19/20 20:15	18496-25-8	
5210B BOD, 5 day	Analytical	Method: SM 52	10B-2011						
52105 505, 5 day	-	lytical Services							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/17/20 04:03	10/22/20 01:05		B2
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	00.0 Rev 2.	1 1993					
	•	lytical Services							
								10007.00.0	
Chloride	8000	mg/L	100	60.0	100		10/21/20 20:13	16887-00-6	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: DPZ-2	Lab ID:	92500569014	Collecte	d: 10/15/20	16:00	Received: 10	/16/20 10:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	353.2 Rev 2.	0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/17/20 00:33	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/17/20 00:33	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 4	500-P E-201	1					
	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	0.13J	mg/L	0.25	0.059	5		10/17/20 05:17		
5310B TOC	Analytical	Method: SM 5	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	7.0	mg/L	1.0	0.50	1		10/29/20 01:23	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-4	Lab ID:	92500569015	Collecte	d: 10/15/2	0 14:46	Received: 10/	/16/20 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	l Method:							
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57		
рН	6.24	Std. Units			1		10/27/20 13:57		
6010 MET ICP	Analytica	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	128	mg/L	2.0	1.9	20	10/17/20 00:45	10/20/20 07:32	7440-70-2	
Iron	2.6	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 07:32	7439-89-6	
Magnesium	373	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 07:32	7439-95-4	
Manganese	0.23	mg/L	0.10	0.069	20	10/17/20 00:45	10/20/20 07:32	7439-96-5	
Potassium	145	mg/L	100	60.8	20	10/17/20 00:45	10/20/20 07:32	7440-09-7	
Sodium	3370	mg/L	500	61.1	100	10/17/20 00:45	10/21/20 19:54	7440-23-5	
6020 MET ICPMS	Analytica	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0028J	mg/L	0.0050	0.0017	20	10/17/20 00:41	10/19/20 20:31	7440-38-2	
Boron	2.1	mg/L	1.2	0.31	50	10/17/20 00:41	10/20/20 12:06	7440-42-8	
2320B Alkalinity		l Method: SM 23 llytical Services							
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	131 ND	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		10/28/20 18:52 10/28/20 18:52		
2540C Total Dissolved Solids		l Method: SM 25 llytical Services							
Total Dissolved Solids	13100	mg/L	2500	2500	1		10/20/20 12:08		
Iron, Ferric (Calculation)		l Method: SM 35 llytical Services							
Iron, Ferric	1.6	mg/L	0.50	0.25	1		10/23/20 16:19	7439-89-6	N2
Iron, Ferrous	-	l Method: SM 35)11					
Iron, Ferrous	1.1	mg/L	0.50	0.084	1		10/22/20 12:45		H3,N2
4500S2D Sulfide Water	,	l Method: SM 45		11					
Sulfide	0.44	mg/L	0.10	0.050	1		10/19/20 18:33	18496-25-8	
5210B BOD, 5 day		l Method: SM 52							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/17/20 04:03	10/22/20 00:56		B2
•		-							

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-4	Lab ID:	92500569015	Collecte	d: 10/15/20	14:46	Received: 10)/16/20 10:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	5600	mg/L	100	60.0	100		10/21/20 10:27	16887-00-6	
Sulfate	732	mg/L	100	50.0	100		10/21/20 10:27	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2 Rev 2	.0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/17/20 00:29	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/17/20 00:29	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-20	11					
	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	0.21	mg/L	0.050	0.012	1		10/17/20 05:14		
5310B TOC	Analytical	Method: SM 53	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	11.0	mg/L	1.0	0.50	1		10/29/20 01:40	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-5	Lab ID:	92500569016	Collected	d: 10/15/2	0 15:55	Received: 10/	/16/20 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	Method:							
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/27/20 13:57		
рН	6.62	Std. Units			1		10/27/20 13:57		
6010 MET ICP	Analytica	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	152	mg/L	2.0	1.9	20	10/17/20 00:45	10/20/20 07:35	7440-70-2	
Iron	1.3	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 07:35	7439-89-6	
Magnesium	397	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 07:35	7439-95-4	
Manganese	0.14	mg/L	0.10	0.069	20	10/17/20 00:45	10/20/20 07:35	7439-96-5	
Potassium	159	mg/L	100	60.8	20	10/17/20 00:45	10/20/20 07:35	7440-09-7	
Sodium	3770	mg/L	500	61.1	100	10/17/20 00:45	10/21/20 19:57	7440-23-5	
6020 MET ICPMS	Analytica	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	-	lytical Services							
Arsenic	0.0026J	mg/L	0.0050	0.0017	20	10/17/20 00:41	10/19/20 20:35	7440-38-2	
Boron	2.7	mg/L	1.2	0.31	50	10/17/20 00:41	10/20/20 12:09	7440-42-8	
2320B Alkalinity		l Method: SM 23 llytical Services							
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	197 ND	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		10/28/20 19:02 10/28/20 19:02		
2540C Total Dissolved Solids		l Method: SM 25 llytical Services							
Total Dissolved Solids	15500	mg/L	2500	2500	1		10/20/20 12:08		
Iron, Ferric (Calculation)		l Method: SM 35 llytical Services							
Iron, Ferric	0.94	mg/L	0.50	0.25	1		10/23/20 16:19	7439-89-6	N2
Iron, Ferrous	-	l Method: SM 35)11					
Iron, Ferrous	0.32J	mg/L	0.50	0.084	1		10/22/20 12:45		H3,N2
4500S2D Sulfide Water	•	l Method: SM 45 llytical Services		11					
Sulfide	0.95	mg/L	0.10	0.050	1		10/19/20 18:34	18496-25-8	
5210B BOD, 5 day		l Method: SM 52							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/17/20 04:03	10/22/20 01:04		B2
÷		-							

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Lab ID:	92500569016	Collecte	d: 10/15/20	15:55	Received: 10	/16/20 10:30 Ma	atrix: Water		
Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
Analytical	Method: EPA 3	00.0 Rev 2	.1 1993						
Pace Anal	ytical Services	- Asheville							
6190	mg/L	100	60.0	100		10/21/20 10:41	16887-00-6		
806	mg/L	100	50.0	100		10/21/20 10:41	14808-79-8		
Analytical	Method: EPA 3	53.2 Rev 2	.0 1993						
Pace Analytical Services - Asheville									
ND	mg/L	0.040	0.010	1		10/17/20 00:32	14797-55-8		
ND	mg/L	0.040	0.010	1		10/17/20 00:32	14797-65-0		
Analytical	Method: SM 45	500-P E-20 ²	11						
Pace Anal	ytical Services	- Asheville							
1.0	mg/L	0.50	0.12	10		10/17/20 05:15			
Analytical	Method: SM 53	310B-2011							
Pace Anal	ytical Services	- Asheville							
11.9	mg/L	1.0	0.50	1		10/29/20 01:56	7440-44-0		
	Analytical Pace Analytical	Analytical Method: EPA 3 Pace Analytical Services 6190 mg/L 806 mg/L Analytical Method: EPA 3 Pace Analytical Services ND mg/L ND mg/L Analytical Method: SM 48 Pace Analytical Services 1.0 mg/L Analytical Method: SM 53 Pace Analytical Services	Results Units Report Limit Analytical Method: EPA 300.0 Rev 2 Pace Analytical Services - Asheville 6190 mg/L 100 806 mg/L 100 Analytical Method: EPA 353.2 Rev 2 Pace Analytical Services - Asheville ND mg/L 0.040 ND mg/L 0.040 Analytical Method: SM 4500-P E-200 Pace Analytical Services - Asheville 1.0 mg/L 0.50 Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville	Results Units Report Limit MDL Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville 6190 mg/L 100 60.0 806 mg/L 100 50.0 Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville ND mg/L 0.040 0.010 ND mg/L 0.040 0.010 Analytical Method: SM 4500-P E-2011 Pace Analytical Services - Asheville Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville	Results Units Report Limit MDL DF Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville 6190 mg/L 100 60.0 100 806 mg/L 100 50.0 100 Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville ND mg/L 0.040 0.010 1 ND mg/L 0.040 0.010 1 Analytical Method: SM 4500-P E-2011 Pace Analytical Services - Asheville 1.0 mg/L 0.50 0.12 10 Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville	Results Units Report Limit MDL DF Prepared Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville 6190 mg/L 100 60.0 100 806 mg/L 100 50.0 100 Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville ND mg/L 0.040 0.010 1 ND mg/L 0.040 0.010 1 Analytical Method: SM 4500-P E-2011 Pace Analytical Services - Asheville 1.0 mg/L 0.50 0.12 10 Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville	Results Units Report Limit MDL DF Prepared Analyzed Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville 6190 mg/L 100 60.0 100 10/21/20 10:41 806 mg/L 100 50.0 100 10/21/20 10:41 Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville 10/17/20 00:32 ND mg/L 0.040 0.010 1 10/17/20 00:32 ND mg/L 0.040 0.010 1 10/17/20 00:32 Analytical Method: SM 4500-P E-2011 Pace Analytical Services - Asheville 10 10/17/20 05:15 Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville 10/17/20 05:15	Results Units Report Limit MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville 6190 mg/L 100 60.0 100 10/21/20 10:41 16887-00-6 6806 mg/L 100 50.0 100 10/21/20 10:41 14808-79-8 Analytical Method: EPA 353.2 Rev 2.0 1993 Pace Analytical Services - Asheville ND mg/L 0.040 0.010 1 10/17/20 00:32 14797-55-8 ND ND mg/L 0.040 0.010 1 10/17/20 00:32 14797-65-0 Analytical Method: SM 4500-P E-2011 Pace Analytical Services - Asheville 1.0 mg/L 0.50 0.12 10 10/17/20 05:15 Analytical Method: SM 5310B-2011 Pace Analytical Services - Asheville	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-6	Lab ID:	92500569017	Collected	d: 10/15/2	0 14:03	Received: 10/	16/20 10:30 Ma	30 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
Field Data	Analytica	Method:								
	Pace Ana	llytical Services	- Charlotte							
Performed by	CUSTOME R				1		10/27/20 13:57			
рН	6.15	Std. Units			1		10/27/20 13:57			
6010 MET ICP	Analytica	Method: EPA 6	010D Prepa	aration Me	thod: EF	PA 3010A				
	Pace Ana	llytical Services	- Asheville							
Calcium	153	mg/L	2.0	1.9	20	10/17/20 00:45	10/20/20 07:39	7440-70-2		
Iron	ND	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 07:39	7439-89-6		
Magnesium	447	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 07:39	7439-95-4		
Manganese	ND	mg/L	0.10	0.069	20	10/17/20 00:45	10/20/20 07:39	7439-96-5		
Potassium	164	mg/L	100	60.8	20	10/17/20 00:45	10/20/20 07:39	7440-09-7		
Sodium	4050	mg/L	500	61.1	100	10/17/20 00:45	10/21/20 20:01	7440-23-5		
6020 MET ICPMS	Analytica	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A				
	-	lytical Services								
Arsenic	0.0029J	mg/L	0.0050	0.0017	20	10/17/20 00:41	10/19/20 20:39	7440-38-2		
Boron	2.5	mg/L	1.2	0.31	50	10/17/20 00:41	10/20/20 12:13	7440-42-8		
2320B Alkalinity		l Method: SM 23 llytical Services								
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	108 ND	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		10/28/20 19:21 10/28/20 19:21			
2540C Total Dissolved Solids		l Method: SM 25 llytical Services								
Total Dissolved Solids	16400	mg/L	2500	2500	1		10/20/20 12:09			
Iron, Ferric (Calculation)	-	l Method: SM 35								
Iron, Ferric	ND	mg/L	0.50	0.25	1		10/23/20 16:19	7439-89-6	N2	
Iron, Ferrous	-	l Method: SM 35		11						
Iron, Ferrous	0.41J	mg/L	0.50	0.084	1		10/22/20 12:43		H3,N2	
4500S2D Sulfide Water	•	l Method: SM 45		11						
Sulfide	8.3	mg/L	2.5	1.2	25		10/19/20 20:17	18496-25-8		
5210B BOD, 5 day		Method: SM 52								
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/17/20 04:03	10/22/20 00:50		B2	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: RW-6	Lab ID:	92500569017	Collecte	d: 10/15/20	14:03	Received: 10)/16/20 10:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	7030	mg/L	100	60.0	100		10/21/20 10:54	16887-00-6	
Sulfate	839	mg/L	100	50.0	100		10/21/20 10:54	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2 Rev 2	.0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/17/20 00:28	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/17/20 00:28	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 45	500-P E-20	11					
	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	0.23	mg/L	0.050	0.012	1		10/17/20 05:11		
5310B TOC	Analytical	Method: SM 53	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	7.6	mg/L	1.0	0.50	1		10/29/20 02:15	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: DUP-2	Lab ID:	92500569018	Collected	: 10/15/20	00:00	Received: 10/	16/20 10:30 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical I	Method: EPA 60	010D Prepa	ration Met	hod: EF	A 3010A			
	Pace Analy	tical Services -	Asheville						
Calcium	148	mg/L	2.0	1.9	20	10/17/20 00:45	10/20/20 07:55	7440-70-2	
Iron	1.2	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 07:55	7439-89-6	
Magnesium	389	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 07:55	7439-95-4	
Manganese	0.14	mg/L	0.10	0.069	20		10/20/20 07:55		
Potassium	156	mg/L	100	60.8	20		10/20/20 07:55		
Sodium	3850	mg/L	500	61.1	100	10/17/20 00:45	10/21/20 20:04	7440-23-5	
6020 MET ICPMS	-	Method: EPA 60 ytical Services -		ration Met	hod: EF	A 3010A			
Arsenic	0.0027J	mg/L	0.0050	0.0017	20	10/17/20 00:41	10/19/20 20:43	7440-38-2	
Boron	2.5	mg/L	1.2	0.31	50	10/17/20 00:41	10/20/20 12:17	7440-42-8	
2320B Alkalinity	Analytical I	Method: SM 23	20B-2011						
,	-	tical Services -							
Alkalinity,Bicarbonate (CaCO3)	190	mg/L	5.0	5.0	1		10/28/20 19:47		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/28/20 19:47		
2540C Total Dissolved Solids	-	Method: SM 25 ytical Services -							
Total Dissolved Solids	14800	mg/L	2500	2500	1		10/20/20 12:09		
Iron, Ferric (Calculation)		Method: SM 35 ytical Services -							
Iron, Ferric	0.80	mg/L	0.50	0.25	1		10/23/20 16:19	7439-89-6	N2
Iron, Ferrous	-	Method: SM 35 ytical Services -		11					
Iron, Ferrous	0.39J	mg/L	0.50	0.084	1		10/22/20 12:40		H3,N2
4500S2D Sulfide Water		Method: SM 45 ytical Services -		1					
Sulfide	ND	mg/L	0.10	0.050	1		10/19/20 18:35	18496-25-8	
5210B BOD, 5 day	Analytical I	Method: SM 52	10B-2011						
- , . ,	-	tical Services -							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/17/20 04:03	10/22/20 00:24		H2
300.0 IC Anions 28 Days	-	Method: EPA 30 ytical Services -		1993					
Chloride	6200	mg/L	100	60.0	100		10/21/20 11:08	16887-00-6	
Sulfate	805	mg/L	100	50.0	100		10/21/20 11:08		

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: DUP-2	Lab ID:	92500569018	Collecte	d: 10/15/20	00:00	Received: 10	/16/20 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	•	Method: EPA 3		.0 1993					
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/17/20 00:21	14797-55-8	H1
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/17/20 00:21	14797-65-0	H1
SM4500P-E, Phosphate, Ortho	,	Method: SM 45 lytical Services		11					
Orthophosphate as P	0.64	mg/L	0.50	0.12	10		10/17/20 05:06		H1
5310B TOC	•	Method: SM 53 lytical Services							
Total Organic Carbon	11.9	mg/L	1.0	0.50	1		10/29/20 05:28	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: FBL101520	Lab ID:	92500569019	Collected	l: 10/15/20	17:36	Received: 10/	16/20 10:30	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical I	Method: EPA 6	010D Prepa	aration Met	hod: EF	PA 3010A			
	Pace Analy	ytical Services	- Asheville						
Calcium	ND	mg/L	2.0	1.9	20	10/17/20 00:45	10/20/20 07:5	8 7440-70-2	
ron	ND	mg/L	1.0	0.83	20	10/17/20 00:45	10/20/20 07:5	8 7439-89-6	
Magnesium	ND	mg/L	2.0	1.4	20	10/17/20 00:45	10/20/20 07:5	8 7439-95-4	
Manganese	ND	mg/L	0.10	0.069	20	10/17/20 00:45	10/20/20 07:5		
Potassium	ND	mg/L	100	60.8	20	10/17/20 00:45	10/20/20 07:5		
Sodium	ND	mg/L	100	12.2	20	10/17/20 00:45	10/20/20 07:5	8 7440-23-5	
6020 MET ICPMS	-	Method: EPA 60 ytical Services		aration Met	hod: EP	PA 3010A			
Arsenic	ND	mg/L	0.0050	0.000087	1	10/17/20 00:41	10/19/20 20:4	7440-38-2	
Boron	ND	mg/L	0.025	0.0062	1	10/17/20 00:41	10/20/20 10:3	35 7440-42-8	
2320B Alkalinity	•	Method: SM 23 ytical Services							
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/28/20 19:5	56	
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/28/20 19:5		
2540C Total Dissolved Solids	-	Method: SM 25 ytical Services							
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		10/20/20 12:0	9	
ron, Ferric (Calculation)		Method: SM 35 ytical Services							
ron, Ferric	ND	mg/L	0.50	0.25	1		10/23/20 16:1	9 7439-89-6	N2
ron, Ferrous	•	Method: SM 35 ytical Services		11					
ron, Ferrous	ND	mg/L	0.50	0.084	1		10/22/20 12:4	18	H3,N2
4500S2D Sulfide Water		Method: SM 45 ytical Services		11					
Sulfide	ND	mg/L	0.10	0.050	1		10/19/20 18:3	86 18496-25-8	
5210B BOD, 5 day	-	Method: SM 52 ytical Services							
BOD, 5 day	ND	mg/L	2.0	2.0	1	10/17/20 04:03	10/22/20 01:0)7	
300.0 IC Anions 28 Days	-	Method: EPA 30 ytical Services		1 1993					
Chloride	6.0	mg/L	1.0	0.60	1		10/21/20 02:1	5 16887-00-6	
Sulfate	0.66J	mg/L	1.0	0.50	1		10/21/20 02:1	5 14808-79-8	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Sample: FBL101520	Lab ID:	92500569019	Collecte	d: 10/15/20	17:36	Received: 10	/16/20 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	•	Method: EPA 3		.0 1993					
	Pace Anal	ytical Services	- Asheville						
Nitrogen, Nitrate	ND	mg/L	0.040	0.010	1		10/17/20 00:34	14797-55-8	
Nitrogen, Nitrite	ND	mg/L	0.040	0.010	1		10/17/20 00:34	14797-65-0	
SM4500P-E, Phosphate, Ortho	Analytical	Method: SM 4	500-P E-20	11					
	Pace Anal	ytical Services	- Asheville						
Orthophosphate as P	ND	mg/L	0.050	0.012	1		10/17/20 05:18		
5310B TOC	Analytical	Method: SM 5	310B-2011						
	Pace Anal	ytical Services	- Asheville						
Total Organic Carbon	ND	mg/L	1.0	0.50	1		10/29/20 05:46	7440-44-0	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 573915 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569009, 92500569010, 92500569011, 92500569012, 92500569013, 92500569014, 92500569015,

92500569016, 92500569017, 92500569018, 92500569019

METHOD BLANK: 3038654 Matrix: Water

Associated Lab Samples: 92500569009, 92500569010, 92500569011, 92500569012, 92500569013, 92500569014, 92500569015,

92500569016, 92500569017, 92500569018, 92500569019

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND .	0.10	0.094	10/20/20 06:49	
Iron	mg/L	ND	0.050	0.042	10/20/20 06:49	
Magnesium	mg/L	ND	0.10	0.068	10/20/20 06:49	
Manganese	mg/L	ND	0.0050	0.0034	10/20/20 06:49	
Potassium	mg/L	ND	5.0	3.0	10/20/20 06:49	
Sodium	mg/L	ND	5.0	0.61	10/20/20 06:49	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Calcium	mg/L		4.7	95	80-120	
Iron	mg/L	5	4.6	91	80-120	
Magnesium	mg/L	5	4.8	96	80-120	
Manganese	mg/L	0.5	0.47	95	80-120	
Potassium	mg/L	5	4.9J	98	80-120	
Sodium	mg/L	5	4.7J	94	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	ICATE: 3038	656		3038657							
		92500569009	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	256	5	5	255	243	-16	-248	75-125	5	20	M6
Iron	mg/L	ND	5	5	5.0	4.9	100	97	75-125	2	20	
Magnesium	mg/L	567	5	5	561	535	-120	-644	75-125	5	20	M6
Manganese	mg/L	0.28	0.5	0.5	0.78	0.75	100	94	75-125	4	20	
Potassium	mg/L	151	5	5	153	146	50	-94	75-125	5	20	M6
Sodium	mg/L	3820	5	5	7840	3770	80400	-980	75-125	70	20	M6,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 576182 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007,

92500569008

METHOD BLANK: 3049575 Matrix: Water

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007,

92500569008

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND	0.10	0.094	10/28/20 09:30	
Iron	mg/L	ND	0.050	0.042	10/28/20 09:30	
Magnesium	mg/L	ND	0.10	0.068	10/28/20 09:30	
Manganese	mg/L	ND	0.0050	0.0034	10/28/20 09:30	
Potassium	mg/L	ND	5.0	3.0	10/28/20 09:30	
Sodium	mg/L	ND	5.0	0.61	10/28/20 09:30	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Calcium	mg/L		4.5	91	80-120	
Iron	mg/L	5	4.6	92	80-120	
Magnesium	mg/L	5	4.8	96	80-120	
Manganese	mg/L	0.5	0.47	95	80-120	
Potassium	mg/L	5	4.8J	96	80-120	
Sodium	mg/L	5	4.9J	97	80-120	

MATRIX SPIKE & MATRIX S		3049578										
			MS	MSD								
	9	2501793016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	125000 ug/L	5	5	137	137	240	246	75-125	0	20	M1
Iron	mg/L	5540 ug/L	5	5	10.5	10.4	99	98	75-125	1	20	
Magnesium	mg/L	5110 ug/L	5	5	10	9.9	97	96	75-125	1	20	
Manganese	mg/L	1450 ug/L	0.5	0.5	2.0	2.0	109	104	75-125	1	20	
Potassium	mg/L	122000 ug/L	5	5	131	132	189	210	75-125	1	20	M1
Sodium	mg/L	1280000 ug/L	5	5	1270	1280	-241	-160	75-125	0	20	E

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

Arsenic

Boron

Date: 11/02/2020 08:36 PM

QC Batch: 573667 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004, 92500569005

METHOD BLANK: 3037373 Matrix: Water

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004, 92500569005

Blank Reporting Qualifiers Parameter Units Result Limit MDL Analyzed ND 0.0050 0.000087 10/19/20 15:31 mg/L ND 0.025 0.0062 10/20/20 12:40 mg/L

LABORATORY CONTROL SAMPLE: 3037374

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic 0.01 0.011 107 80-120 mg/L Boron 0.05 0.051 102 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3037375 3037376 MS MSD 92500314013 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Arsenic mg/L ND 0.01 0.01 0.012 0.011 115 108 75-125 6 20 Boron 0.05 0.05 -51 75-125 20 M6 mg/L 1.8 1.8 1.8 -9

Project: MCMANUS APP III

LABORATORY CONTROL SAMPLE:

Date: 11/02/2020 08:36 PM

Pace Project No.: 92500569

QC Batch: 573916 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569009, 92500569010, 92500569011, 92500569012, 92500569013, 92500569014, 92500569015,

92500569016, 92500569017, 92500569018, 92500569019

METHOD BLANK: 3038658 Matrix: Water

Associated Lab Samples: 92500569009, 92500569010, 92500569011, 92500569012, 92500569013, 92500569014, 92500569015,

92500569016, 92500569017, 92500569018, 92500569019

Blank Reporting Parameter Units Limit MDL Qualifiers Result Analyzed Arsenic mg/L ND 0.0050 0.000087 10/19/20 19:37 ND 0.025 0.0062 10/20/20 10:27 Boron mg/L

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic 0.01 0.010 101 80-120 mq/L 0.05 0.050 101 80-120 Boron mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3038660 3038661

3038659

MS MSD 92500569010 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Arsenic mg/L 0.0058 0.01 0.01 0.016 0.016 106 103 75-125 20 Boron mg/L 1.8 0.05 0.05 1.7 1.7 -72 -198 75-125 4 20 M6

Project: MCMANUS APP III

Pace Project No.: 92500569

Arsenic

Boron

Date: 11/02/2020 08:36 PM

QC Batch: 574264 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569006, 92500569007, 92500569008

METHOD BLANK: 3040362 Matrix: Water

Associated Lab Samples: 92500569006, 92500569007, 92500569008

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed ND 0.0050 0.000087 10/21/20 12:20 mg/L ND 0.025 0.0062 10/21/20 12:20 mg/L

LABORATORY CONTROL SAMPLE: 3040363

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic 0.01 0.011 108 80-120 mg/L Boron mg/L 0.05 0.051 101 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3040364 3040365 MS MSD 92501011001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Arsenic mg/L ND 0.01 0.01 0.011 0.011 107 105 75-125 2 20 Boron ND 0.05 0.05 0.056 0.056 75-125 20 mg/L 97 98 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 575956 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007,

92500569008, 92500569009, 92500569010

METHOD BLANK: 3048287 Matrix: Water

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007,

92500569008, 92500569009, 92500569010

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	mg/L mg/L	ND ND	5.0 5.0	5.0 5.0	10/27/20 14:59 10/27/20 14:59	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 575959 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

METHOD BLANK: 3048303 Matrix: Water

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Alkalinity,Bicarbonate (CaCO3)	mg/L	ND	5.0	5.0	10/28/20 17:06	
Alkalinity, Carbonate (CaCO3)	mg/L	ND	5.0	5.0	10/28/20 17:06	

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 576297 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569011, 92500569012

METHOD BLANK: 3049850 Matrix: Water

Associated Lab Samples: 92500569011, 92500569012

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Alkalinity,Bicarbonate (CaCO3)	mg/L	ND ND	5.0	5.0	10/28/20 12:39	
Alkalinity, Carbonate (CaCO3)	mg/L	ND	5.0	5.0	10/28/20 12:39	

Qualifiers

QUALITY CONTROL DATA

MCMANUS APP III Project:

Parameter

Pace Project No.: 92500569

QC Batch: 574190 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

> Laboratory: Pace Analytical Services - Asheville

92500569004, 92500569005, 92500569006, 92500569007, 92500569008, 92500569009 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 92500569004, 92500569005, 92500569006, 92500569007, 92500569008, 92500569009

> Blank Reporting Units Result Limit MDL

Analyzed Total Dissolved Solids ND 25.0 25.0 10/19/20 18:31 mg/L

LABORATORY CONTROL SAMPLE: 3040152

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 250 266 106 90-110 mg/L

SAMPLE DUPLICATE: 3040153

92500314013 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 8750 **Total Dissolved Solids** 0 mg/L 8750 25

SAMPLE DUPLICATE: 3040154

Date: 11/02/2020 08:36 PM

92500507001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 62.0 mg/L 64.0 3 25

Project: MCMANUS APP III

Pace Project No.: 92500569

QC Batch: 574334 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569010, 92500569011, 92500569012, 92500569015, 92500569016, 92500569017, 92500569018,

92500569019

METHOD BLANK: 3040507 Matrix: Water

Associated Lab Samples: 92500569010, 92500569011, 92500569012, 92500569015, 92500569016, 92500569017, 92500569018,

92500569019

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND25.025.010/20/20 12:07

LABORATORY CONTROL SAMPLE: 3040508

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. **Total Dissolved Solids** mg/L 250 258 103 90-110

SAMPLE DUPLICATE: 3040509

92500569010 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers **Total Dissolved Solids** 11800 15500 27 25 D6 mg/L

SAMPLE DUPLICATE: 3040510

Date: 11/02/2020 08:36 PM

92500569017 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** mg/L 16400 16000 2 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

QC Batch: 574953 Analysis Method: SM 3500-Fe B-2011

QC Batch Method: SM 3500-Fe B-2011 Analysis Description: Iron, Ferrous

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569002, 92500569003, 92500569004, 92500569005, 92500569007, 92500569008, 92500569009,

92500569010, 92500569011

METHOD BLANK: 3043506 Matrix: Water

Associated Lab Samples: 92500569002, 92500569003, 92500569004, 92500569005, 92500569007, 92500569008, 92500569009,

92500569010, 92500569011

Blank Reporting Parameter Units Limit MDL Qualifiers Result Analyzed Iron, Ferrous mg/L ND 0.50 0.084 10/22/20 11:57 N2

LABORATORY CONTROL SAMPLE: 3043507

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 90-110 N2 Iron, Ferrous mg/L 1.5 1.5 102

SAMPLE DUPLICATE: 3043513

ParameterUnits35585184001 ResultDup ResultRPDMax RPDQualifiersIron, Ferrousmg/L0.26J0.24J10 H3,N2

SAMPLE DUPLICATE: 3043514

Date: 11/02/2020 08:36 PM

Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Iron, Ferrous	mg/L	0.74	0.71	3	1	0 H3,N2

Dun

May

35595193001

Project: MCMANUS APP III

Pace Project No.: 92500569

QC Batch: 574956 Analysis Method: SM 3500-Fe B-2011

QC Batch Method: SM 3500-Fe B-2011 Analysis Description: Iron, Ferrous

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569001, 92500569006, 92500569012, 92500569013, 92500569014, 92500569015, 92500569016,

92500569017, 92500569018, 92500569019

METHOD BLANK: 3043510 Matrix: Water

Associated Lab Samples: 92500569001, 92500569006, 92500569012, 92500569013, 92500569014, 92500569015, 92500569016,

92500569017, 92500569018, 92500569019

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Iron, Ferrous
 mg/L
 ND
 0.50
 0.084
 10/22/20 12:31
 N2

LABORATORY CONTROL SAMPLE: 3043511

Spike LCS LCS % Rec Parameter Units Result % Rec Limits Qualifiers Conc. 90-110 N2 Iron, Ferrous mg/L 1.5 1.5 102

SAMPLE DUPLICATE: 3043512

Date: 11/02/2020 08:36 PM

 Parameter
 Units
 92500569012 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 Iron, Ferrous
 mg/L
 ND
 ND
 10 H3,N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: MCMANUS APP III

92500569 Pace Project No.:

Sulfide

Date: 11/02/2020 08:36 PM

QC Batch: 574003 SM 4500-S2D-2011 Analysis Method: QC Batch Method: SM 4500-S2D-2011 Analysis Description: 4500S2D Sulfide Water

Pace Analytical Services - Asheville Laboratory:

92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007, Associated Lab Samples:

92500569008, 92500569009, 92500569010, 92500569011

METHOD BLANK: 3038954 Matrix: Water

92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007, Associated Lab Samples:

92500569008, 92500569009, 92500569010, 92500569011

Blank Reporting Parameter Limit MDL Units Result Analyzed

ND

0.10

0.050

10/19/20 18:04

mg/L

LABORATORY CONTROL SAMPLE: 3038955

LCS LCS % Rec Spike Limits Parameter Units Conc. Result % Rec Qualifiers Sulfide mg/L 0.5 0.52 104 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3038956 3038957

MSD MS

mg/L

92500502010 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfide ND 0.5 0.5 0.47 0.47 92 92 80-120 0 10 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3038958 3038959 MS MSD MSD MSD 92500502011 Spike Spike MS MS % Rec Max Parameter Conc. Conc. % Rec RPD Qual Units Result Result Result % Rec Limits RPD Sulfide ND 0.5 0.5 0.44 0.44 83 84 80-120 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 574068 Analysis Method: SM 4500-S2D-2011

QC Batch Method: SM 4500-S2D-2011 Analysis Description: 4500S2D Sulfide Water

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

METHOD BLANK: 3039206 Matrix: Water

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Sulfide mg/L ND 0.10 0.050 10/19/20 18:32

LABORATORY CONTROL SAMPLE: 3039207

Spike LCS LCS % Rec Conc. Limits Parameter Units Result % Rec Qualifiers Sulfide 0.5 0.51 102 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3039214 3039215

MS MSD 92500876001 Spike Spike

92500876001 Spike Spike MS MSD MS MSD % Rec Max Units Result RPD Parameter Result Conc. Conc. Result % Rec % Rec Limits **RPD** Qual Sulfide mg/L ND 0.5 0.5 0.50 0.50 92 93 80-120 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3039216 3039217

MS MSD 92500876002 MS MS MSD % Rec Spike Spike MSD Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual Sulfide 0.5 ND 0.5 0.49 0.49 93 93 10 mg/L 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

QC Batch: 573671 Analysis Method: SM 5210B-2011
QC Batch Method: SM 5210B-2011 Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569002, 92500569003, 92500569004, 92500569005, 92500569007, 92500569009, 92500569010,

92500569011

METHOD BLANK: 3037385 Matrix: Water

Associated Lab Samples: 92500569002, 92500569003, 92500569004, 92500569005, 92500569007, 92500569009, 92500569010,

92500569011

 Parameter
 Units
 Blank Reporting Result
 Reporting Limit
 MDL
 Analyzed
 Qualifiers

 BOD, 5 day
 mg/L
 ND
 2.0
 2.0
 10/21/20 00:58

LABORATORY CONTROL SAMPLE: 3037386

Spike LCS LCS % Rec Parameter Units Result % Rec Limits Qualifiers Conc. BOD, 5 day mg/L 198 201 101 84.6-115

SAMPLE DUPLICATE: 3037388

Date: 11/02/2020 08:36 PM

92500755001 Dup Max RPD **RPD** Parameter Units Result Result Qualifiers BOD, 5 day 121 128 6 25 mg/L

Project: MCMANUS APP III

Pace Project No.: 92500569

QC Batch: 573672 Analysis Method: SM 5210B-2011
QC Batch Method: SM 5210B-2011 Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569001, 92500569006, 92500569008

METHOD BLANK: 3037389 Matrix: Water

Associated Lab Samples: 92500569001, 92500569006, 92500569008

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

BOD, 5 day mg/L ND 2.0 2.0 10/21/20 02:16

LABORATORY CONTROL SAMPLE: 3037390

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 202 102 84.6-115

SAMPLE DUPLICATE: 3037392

Date: 11/02/2020 08:36 PM

 Parameter
 Units
 Result Result Result
 Reput
 RPD RPD
 Qualifiers

 BOD, 5 day
 mg/L
 ND
 ND
 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

QC Batch: 573919 Analysis Method: SM 5210B-2011
QC Batch Method: SM 5210B-2011 Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

METHOD BLANK: 3038668 Matrix: Water

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

Blank Reporting

 Blank Peporting Parameter
 Units
 Result Result
 Limit Limit
 MDL MDL Analyzed
 Analyzed Qualifiers

 BOD, 5 day
 mg/L
 ND
 2.0
 2.0
 10/22/20 00:15

LABORATORY CONTROL SAMPLE: 3038669

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result BOD, 5 day mg/L 198 189 95 84.6-115

SAMPLE DUPLICATE: 3038671

Date: 11/02/2020 08:36 PM

 Parameter
 Units
 92500914001 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 ND
 ND
 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

MATRIX CRIZE & MATRIX CRIZE DURI ICATE.

Date: 11/02/2020 08:36 PM

Pace Project No.: 92500569

QC Batch: 573642 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007,

92500569008, 92500569009

METHOD BLANK: 3037306 Matrix: Water

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007,

92500569008, 92500569009

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	10/17/20 05:12	
Sulfate	mg/L	ND	1.0	0.50	10/17/20 05:12	

LABORATORY CONTROL SAMPLE:	3037307					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	49.5	99	90-110	
Sulfate	mg/L	50	48.2	96	90-110	

2027240

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 3037	308		3037309							
			MS	MSD								
	92	2500314017	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	52.1	52.0	104	104	90-110	0	10	
Sulfate	mg/L	ND	50	50	50.5	50.2	101	100	90-110	0	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3037			3037311							
			MS	MSD								
		92500314018	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	52.1	52.4	104	105	90-110	1	10	
Sulfate	mg/L	ND	50	50	50.6	50.9	101	102	90-110	1	10	

2027244

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

MATRIX ORIGE & MATRIX ORIGE BURLOATE

Date: 11/02/2020 08:36 PM

Pace Project No.: 92500569

QC Batch: 573643 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569010, 92500569011, 92500569012

METHOD BLANK: 3037312 Matrix: Water

Associated Lab Samples: 92500569010, 92500569011, 92500569012

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	10/17/20 23:06	
Sulfate	mg/L	ND	1.0	0.50	10/17/20 23:06	

LABORATORY CONTROL SAMPLE: 3037313 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 50 51.5 103 90-110 mg/L Sulfate mg/L 50 51.3 103 90-110

0007040

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3037314 3037315											
	(92500569012	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride Sulfate	mg/L mg/L	1.3 ND	50 50	50 50	53.3 52.4	53.5 52.9	104 105	104 106	90-110 90-110	 0 1	10	

MATRIX SPIKE & MATRIX SI	PIKE DUPL	LICATE: 3037	316		3037317							
			MS	MSD								
		92499689018	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	53.0	53.2	106	106	90-110	0	10	
Sulfate	mg/L	ND	50	50	52.5	52.6	105	105	90-110	0	10	

0007047

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 574246 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

METHOD BLANK: 3040304 Matrix: Water

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	10/20/20 20:54	
Sulfate	mg/L	ND	1.0	0.50	10/20/20 20:54	

LABORATORY CONTROL SAMPLE:	3040305	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	50.0	100	90-110	
Sulfate	ma/l	50	48.7	97	90-110	

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3040306 3040307											
MS M												
	92	2500860056	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	7.8	50	50	59.7	60.0	104	104	90-110	0	10	
Sulfate	mg/L	10	50	50	61.1	61.4	102	103	90-110	1	10	

MATRIX SPIKE & MATRIX SF												
	92	2500314023	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	51.3	51.8	102	103	90-110	1	10	
Sulfate	mg/L	ND	50	50	49.6	50.2	99	100	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

MCMANUS APP III Project:

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 573633 Analysis Method: EPA 353.2 Rev 2.0 1993

QC Batch Method: EPA 353.2 Rev 2.0 1993 Analysis Description: 353.2 Nitrate + Nitrite, Unpres.

> Laboratory: Pace Analytical Services - Asheville

92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007, Associated Lab Samples:

92500569008, 92500569009, 92500569010, 92500569011

METHOD BLANK: 3037270 Matrix: Water

92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007, Associated Lab Samples:

92500569008, 92500569009, 92500569010, 92500569011

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Nitrogen, Nitrate	mg/L	ND	0.040	0.010	10/16/20 00:01	
Nitrogen, Nitrite	mg/L	ND	0.040	0.010	10/16/20 00:01	

LABORATORY CONTROL SAMPLE:	3037271					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate	mg/L	1.5	1.5	100	90-110	
Nitrogen, Nitrite	mg/L	1	1.0	102	90-110	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 3037	272		3037273							
			MS	MSD								
	9	2500507001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, Nitrate	mg/L	0.042	1.5	1.5	1.5	1.5	98	97	90-110	1	10	
Nitrogen, Nitrite	mg/L	ND	1	1	1.0	1.0	100	100	90-110	0	10	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 3037	274		3037275							
			MS	MSD								
	9	2500507002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, Nitrate	mg/L	0.069	1.5	1.5	1.4	1.4	91	91	90-110	0	10	
Nitrogen, Nitrite	mg/L	ND	1	1	0.91	0.91	91	91	90-110	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 573905 Analysis Method: EPA 353.2 Rev 2.0 1993

QC Batch Method: EPA 353.2 Rev 2.0 1993 Analysis Description: 353.2 Nitrate + Nitrite, Unpres.

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

METHOD BLANK: 3038616 Matrix: Water

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Nitrogen, Nitrate mg/L ND 0.040 0.010 10/17/20 00:19 Nitrogen, Nitrite mg/L ND 0.040 0.010 10/17/20 00:19

LABORATORY CONTROL SAMPLE: 3038617

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Nitrate 1.5 101 90-110 mg/L 1.5 mg/L Nitrogen, Nitrite 0.98 98 90-110 1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3038618 3038619 MS MSD 92500878001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Nitrogen, Nitrate mg/L ND 1.5 1.5 1.5 1.5 101 100 90-110 10 Nitrogen, Nitrite ND 0.99 0.99 99 90-110 10 mg/L 1 1 99 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 573616 Analysis Method: SM 4500-P E-2011

QC Batch Method: SM 4500-P E-2011 Analysis Description: SM4500P-E Phosphorus, Ortho

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007,

92500569008, 92500569009, 92500569010, 92500569011

METHOD BLANK: 3037154 Matrix: Water

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004, 92500569005, 92500569006, 92500569007,

92500569008, 92500569009, 92500569010, 92500569011

Blank Reporting
Parameter Units Result Limit MDL

ParameterUnitsResultLimitMDLAnalyzedQualifiersOrthophosphate as Pmg/LND0.0500.01210/15/20 20:39

LABORATORY CONTROL SAMPLE: 3037155

Spike LCS LCS % Rec Units % Rec Limits Qualifiers Parameter Conc. Result Orthophosphate as P mg/L 0.25 0.25 100 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3037156 3037157

MS MSD

92500569004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Orthophosphate as P 10 M1 0.65 0.25 0.25 0.81 0.80 62 61 90-110 0 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3037158 3037159

MS MSD MSD MSD 92500569003 Spike Spike MS MS % Rec Max Units Parameter Conc. Conc. Result % Rec % Rec **RPD** RPD Qual Result Result Limits Orthophosphate as P 0.58 0.25 0.25 1.0 1.0 169 167 90-110 10 M1 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 573921 Analysis Method: SM 4500-P E-2011

QC Batch Method: SM 4500-P E-2011 Analysis Description: SM4500P-E Phosphorus, Ortho

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

METHOD BLANK: 3038676 Matrix: Water

Associated Lab Samples: 92500569013, 92500569014, 92500569015, 92500569016, 92500569017, 92500569018, 92500569019

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersOrthophosphate as Pmg/LND0.0500.01210/17/20 05:05

LABORATORY CONTROL SAMPLE: 3038677

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits

Orthophosphate as P mg/L 0.25 0.25 100 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3038678 3038679

MSD MS 92500878001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Result **RPD** RPD Result Conc. Conc. % Rec % Rec Limits

Orthophosphate as P mg/L 0.015J 0.25 0.25 0.26 0.26 96 96 90-110 0 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3038680 3038681

MS MSD 92500569019 MS MSD MS MSD % Rec Spike Spike Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual ND 92 92 Orthophosphate as P 0.25 0.25 0.24 0.24 0 10 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Qual

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 576014 Analysis Method: SM 5310B-2011
QC Batch Method: SM 5310B-2011 Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004

METHOD BLANK: 3048566 Matrix: Water

Associated Lab Samples: 92500569001, 92500569002, 92500569003, 92500569004

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Total Organic Carbon mg/L ND 1.0 0.50 10/28/20 01:16

LABORATORY CONTROL SAMPLE: 3048567

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** 25 26.3 105 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3048568 3048569

MS MSD

92500507002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result RPD Result Conc. % Rec % Rec Limits **RPD** Qual **Total Organic Carbon** mg/L 1.3 25 25 27.9 28.3 106 108 90-110 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3048570 3048571

MS MSD 92501837001 MS MSD MS MSD % Rec Spike Spike Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Total Organic Carbon 72.8 25 25 2 101 99.1 114 105 10 M1 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

QC Batch: 576358 Analysis Method: SM 5310B-2011
QC Batch Method: SM 5310B-2011 Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569005, 92500569006, 92500569007, 92500569008, 92500569009, 92500569010, 92500569011,

92500569013, 92500569014, 92500569015, 92500569016, 92500569017

METHOD BLANK: 3050151 Matrix: Water

Associated Lab Samples: 92500569005, 92500569006, 92500569007, 92500569008, 92500569009, 92500569010, 92500569011,

92500569013, 92500569014, 92500569015, 92500569016, 92500569017

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersTotal Organic Carbonmg/LND1.00.5010/28/20 18:26

LABORATORY CONTROL SAMPLE: 3050152

Date: 11/02/2020 08:36 PM

LCS LCS % Rec Spike Limits Qualifiers Parameter Units Conc. Result % Rec Total Organic Carbon mg/L 25 26.4 106 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3050155 3050156

MS MSD 92499689001 Spike Spike MS MSD

MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Total Organic Carbon 0.87J 25 25 27.0 27.4 105 106 90-110 10 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3050157 3050158

MS MSD MSD MSD 92499689003 Spike Spike MS MS % Rec Max Parameter Conc. Conc. Result % Rec % Rec RPD Qual Units Result Result Limits RPD **Total Organic Carbon** 0.86J 25 25 26.8 27.2 104 105 90-110 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

QC Batch: 576359 Analysis Method: SM 5310B-2011
QC Batch Method: SM 5310B-2011 Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92500569018, 92500569019

METHOD BLANK: 3050169 Matrix: Water

Associated Lab Samples: 92500569018, 92500569019

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Organic Carbon mg/L ND 1.0 0.50 10/29/20 04:00

LABORATORY CONTROL SAMPLE: 3050170

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** 25 26.1 105 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3050171 3050172

MSD MS 92499689007 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec **RPD** RPD Result % Rec Limits Qual **Total Organic Carbon** ND mg/L 25 25 27.1 27.4 106 108 90-110 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3050173 3050174

MS MSD 92499689008 MS MSD MS MSD % Rec Spike Spike Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Total Organic Carbon 25 25 0.70J 26.6 26.6 103 104 0 10 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: MCMANUS APP III

Pace Project No.: 92500569

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

RPD value was outside control limits.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

R1

Date: 11/02/2020 08:36 PM

B2	Oxygen usage is less than 2.0 for all dilutions set. The reported value is an estimated less than value and is calculated for the dilution using the most amount of sample.
D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
Е	Analyte concentration exceeded the calibration range. The reported result is estimated.
H1	Analysis conducted outside the EPA method holding time.
H2	Extraction or preparation conducted outside EPA method holding time.
H3	Sample was received or analysis requested beyond the recognized method holding time.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
M6	Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
N2	The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2500569001	\$9001 MCM-06 \$9002 MCM-07 \$9003 MCM-14 \$9004 RW-1 \$9005 RW-2 \$9006 RW-3 \$9007 RW-7 \$9008 RW-8 \$9009 RW-9 \$9010 RW-10 \$9013 MCM-05 \$9014 DPZ-2 \$9015 RW-4 \$9016 RW-5 \$9001 MCM-06 \$9002 MCM-07 \$9003 MCM-14 \$9004 RW-1 \$9004 RW-1 \$9004 RW-1 \$9005 RW-2 \$9006 RW-3 \$9007 RW-7 \$9008 RW-9 \$9001 MCM-06 \$9000 RW-1 \$9000 RW-2 \$9000 RW-9 \$9000 RW-9 \$9001 DUP-1 \$9001 DUP-1 \$9001 DUP-1 \$9001 FBL101420 \$9001 MCM-05 \$9001 MCM-05 \$9001 MCM-05 \$9001 FBL101520 \$9001 MCM-06 \$9000 MCM-07 \$90003 MCM-14			_	
2500569002	MCM-07				
2500569003	MCM-14				
2500569004	RW-1				
2500569005	RW-2				
2500569006	RW-3				
2500569007	RW-7				
2500569008	RW-8				
2500569009	RW-9				
2500569010	RW-10				
2500569013	MCM-05				
2500569014	DPZ-2				
2500569015	RW-4				
2500569016	RW-5				
2500569017	RW-6				
2500569001		EPA 3010A	576182	EPA 6010D	576205
2500569002		EPA 3010A	576182	EPA 6010D	576205
2500569003	MCM-14	EPA 3010A	576182	EPA 6010D	576205
2500569004	RW-1	EPA 3010A	576182	EPA 6010D	576205
2500569005	RW-2	EPA 3010A	576182	EPA 6010D	576205
2500569006		EPA 3010A	576182	EPA 6010D	576205
2500569007	RW-7	EPA 3010A	576182	EPA 6010D	576205
2500569008	RW-8	EPA 3010A	576182	EPA 6010D	576205
2500569009	RW-9	EPA 3010A	573915	EPA 6010D	573927
2500569010	RW-10	EPA 3010A	573915	EPA 6010D	573927
2500569011	DUP-1	EPA 3010A	573915	EPA 6010D	573927
2500569012	FBL101420	EPA 3010A	573915	EPA 6010D	573927
2500569013	MCM-05	EPA 3010A	573915	EPA 6010D	573927
2500569014	DPZ-2	EPA 3010A	573915	EPA 6010D	573927
2500569015	RW-4	EPA 3010A	573915	EPA 6010D	573927
2500569016	RW-5	EPA 3010A	573915	EPA 6010D	573927
2500569017		EPA 3010A	573915	EPA 6010D	573927
2500569018	DUP-2	EPA 3010A	573915	EPA 6010D	573927
2500569019	FBL101520	EPA 3010A	573915	EPA 6010D	573927
2500569001	MCM-06	EPA 3010A	573667	EPA 6020B	573681
2500569002	MCM-07	EPA 3010A	573667	EPA 6020B	573681
2500569003	MCM-14	EPA 3010A	573667	EPA 6020B	573681
2500569004		EPA 3010A	573667	EPA 6020B	573681
2500569005	RW-2	EPA 3010A	573667	EPA 6020B	573681
2500569006	RW-3	EPA 3010A	574264	EPA 6020B	574298
2500569007	RW-7	EPA 3010A	574264	EPA 6020B	574298
2500569008	RW-8	EPA 3010A	574264	EPA 6020B	574298
2500569009	RW-9	EPA 3010A	573916	EPA 6020B	573935
2500569010	RW-10	EPA 3010A	573916	EPA 6020B	573935
2500569011	DUP-1	EPA 3010A	573916	EPA 6020B	573935
2500569012	FBL101420	EPA 3010A	573916	EPA 6020B	573935

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
2500569013	MCM-05	EPA 3010A	573916	EPA 6020B	573935
2500569014	DPZ-2	EPA 3010A	573916	EPA 6020B	573935
2500569015	RW-4	EPA 3010A	573916	EPA 6020B	573935
2500569016	RW-5	EPA 3010A	573916	EPA 6020B	573935
2500569017	RW-6	EPA 3010A	573916	EPA 6020B	573935
2500569018	DUP-2	EPA 3010A	573916	EPA 6020B	573935
500569019	FBL101520	EPA 3010A	573916	EPA 6020B	573935
2500569001	MCM-06	SM 2320B-2011	575956		
2500569002	MCM-07	SM 2320B-2011	575956		
500569003	MCM-14	SM 2320B-2011	575956		
500569004	RW-1	SM 2320B-2011	575956		
500569005	RW-2	SM 2320B-2011	575956		
500569006	RW-3	SM 2320B-2011	575956		
500569007	RW-7	SM 2320B-2011	575956		
2500569008	RW-8	SM 2320B-2011	575956		
2500569009	RW-9	SM 2320B-2011	575956		
500569010	RW-10	SM 2320B-2011	575956		
2500569011	DUP-1	SM 2320B-2011	576297		
2500569012	FBL101420	SM 2320B-2011	576297		
2500569013	MCM-05	SM 2320B-2011	575959		
2500569014	DPZ-2	SM 2320B-2011	575959		
500569015	RW-4	SM 2320B-2011	575959		
500569016	RW-5	SM 2320B-2011	575959		
500569017	RW-6	SM 2320B-2011	575959		
500569018	DUP-2	SM 2320B-2011	575959		
500569019	FBL101520	SM 2320B-2011	575959		
2500569004	RW-1	SM 2540C-2011	574190		
500569005	RW-2	SM 2540C-2011	574190		
500569006	RW-3	SM 2540C-2011	574190		
500569007	RW-7	SM 2540C-2011	574190		
2500569008	RW-8	SM 2540C-2011	574190		
2500569009	RW-9	SM 2540C-2011	574190		
500569010	RW-10	SM 2540C-2011	574334		
2500569011	DUP-1	SM 2540C-2011	574334		
2500569012	FBL101420	SM 2540C-2011	574334		
2500569015	RW-4	SM 2540C-2011	574334		
2500569016	RW-5	SM 2540C-2011	574334		
500569017	RW-6	SM 2540C-2011	574334		
500569018	DUP-2	SM 2540C-2011	574334		
2500569019	FBL101520	SM 2540C-2011	574334		
2500569001	MCM-06	SM 3500-Fe D#4	576787		
500569002	MCM-07	SM 3500-Fe D#4	576787		
2500569003	MCM-14	SM 3500-Fe D#4	576787		
500569004	RW-1	SM 3500-Fe D#4	576787		
2500569005	RW-2	SM 3500-Fe D#4	576787		
2500569006	RW-3	SM 3500-Fe D#4	576787		

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2500569007	RW-7	SM 3500-Fe D#4	576787	_	
2500569008	RW-8	SM 3500-Fe D#4	576787		
2500569009	RW-9	SM 3500-Fe D#4	575464		
2500569010	RW-10	SM 3500-Fe D#4	575464		
2500569011	DUP-1	SM 3500-Fe D#4	575464		
2500569012	FBL101420	SM 3500-Fe D#4	575465		
2500569013	MCM-05	SM 3500-Fe D#4	575465		
2500569014	DPZ-2	SM 3500-Fe D#4	575465		
2500569015	RW-4	SM 3500-Fe D#4	575465		
2500569016	RW-5	SM 3500-Fe D#4	575465		
2500569017	RW-6	SM 3500-Fe D#4	575465		
2500509017 2500569018	DUP-2	SM 3500-Fe D#4	575465		
2500569018 2500569019	FBL101520	SM 3500-Fe D#4	575465 575465		
2500569001	MCM-06	SM 3500-Fe B-2011	574956		
2500569002	MCM-07	SM 3500-Fe B-2011	574953		
2500569003	MCM-14	SM 3500-Fe B-2011	574953		
2500569004	RW-1	SM 3500-Fe B-2011	574953		
2500569005	RW-2	SM 3500-Fe B-2011	574953		
2500569006	RW-3	SM 3500-Fe B-2011	574956		
2500569007	RW-7	SM 3500-Fe B-2011	574953		
2500569008	RW-8	SM 3500-Fe B-2011	574953		
2500569009	RW-9	SM 3500-Fe B-2011	574953		
2500569010	RW-10	SM 3500-Fe B-2011	574953		
2500569011	DUP-1	SM 3500-Fe B-2011	574953		
2500569012	FBL101420	SM 3500-Fe B-2011	574956		
2500569013	MCM-05	SM 3500-Fe B-2011	574956		
2500569014	DPZ-2	SM 3500-Fe B-2011	574956		
2500569015	RW-4	SM 3500-Fe B-2011	574956		
2500569016	RW-5	SM 3500-Fe B-2011	574956		
2500569017	RW-6	SM 3500-Fe B-2011	574956		
2500569018	DUP-2	SM 3500-Fe B-2011	574956		
2500569019	FBL101520	SM 3500-Fe B-2011	574956		
2500569001	MCM-06	SM 4500-S2D-2011	574003		
2500569002	MCM-07	SM 4500-S2D-2011	574003		
2500569003	MCM-14	SM 4500-S2D-2011	574003		
2500569004	RW-1	SM 4500-S2D-2011	574003		
2500569005	RW-2	SM 4500-S2D-2011	574003		
2500569006	RW-3	SM 4500-S2D-2011	574003		
2500569000 2500569007	RW-7	SM 4500-S2D-2011	574003		
2500569008	RW-8	SM 4500-S2D-2011	574003 574003		
2500569009	RW-9	SM 4500-S2D-2011	574003 574003		
2500569010 2500569011	RW-10 DUP-1	SM 4500-S2D-2011 SM 4500-S2D-2011	574003 574003		
2500569013	MCM-05	SM 4500-S2D-2011	574068		

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92500569014	DPZ-2	SM 4500-S2D-2011	574068		
2500569015	RW-4	SM 4500-S2D-2011	574068		
2500569016	RW-5	SM 4500-S2D-2011	574068		
2500569017	RW-6	SM 4500-S2D-2011	574068		
2500569018	DUP-2	SM 4500-S2D-2011	574068		
2500569019	FBL101520	SM 4500-S2D-2011	574068		
2500569001	MCM-06	SM 5210B-2011	573672	SM 5210B-2011	573696
2500569002	MCM-07	SM 5210B-2011	573671	SM 5210B-2011	573695
2500569003	MCM-14	SM 5210B-2011	573671	SM 5210B-2011	573695
2500569004	RW-1	SM 5210B-2011	573671	SM 5210B-2011	573695
2500569005	RW-2	SM 5210B-2011	573671	SM 5210B-2011	573695
2500569006	RW-3	SM 5210B-2011	573672	SM 5210B-2011	573696
2500569007	RW-7	SM 5210B-2011	573671	SM 5210B-2011	573695
2500569008	RW-8	SM 5210B-2011	573672	SM 5210B-2011	573696
2500569009	RW-9	SM 5210B-2011	573671	SM 5210B-2011	573695
2500569010	RW-10	SM 5210B-2011	573671	SM 5210B-2011	573695
2500569011	DUP-1	SM 5210B-2011	573671	SM 5210B-2011	573695
2500569013	MCM-05	SM 5210B-2011	573919	SM 5210B-2011	573940
2500569014	DPZ-2	SM 5210B-2011	573919	SM 5210B-2011	573940
2500569015	RW-4	SM 5210B-2011	573919	SM 5210B-2011	573940
2500569016	RW-5	SM 5210B-2011	573919	SM 5210B-2011	573940
2500569017	RW-6	SM 5210B-2011	573919	SM 5210B-2011	573940
2500569018	DUP-2	SM 5210B-2011	573919	SM 5210B-2011	573940
2500569019	FBL101520	SM 5210B-2011	573919	SM 5210B-2011	573940
2500569001	MCM-06	EPA 300.0 Rev 2.1 1993	573642		
2500569002	MCM-07	EPA 300.0 Rev 2.1 1993	573642		
2500569003	MCM-14	EPA 300.0 Rev 2.1 1993	573642		
2500569004	RW-1	EPA 300.0 Rev 2.1 1993	573642		
2500569005	RW-2	EPA 300.0 Rev 2.1 1993	573642		
2500569006	RW-3	EPA 300.0 Rev 2.1 1993	573642		
2500569007	RW-7	EPA 300.0 Rev 2.1 1993	573642		
2500569008	RW-8	EPA 300.0 Rev 2.1 1993	573642		
2500569009	RW-9	EPA 300.0 Rev 2.1 1993	573642		
2500569010	RW-10	EPA 300.0 Rev 2.1 1993	573643		
2500569011	DUP-1	EPA 300.0 Rev 2.1 1993	573643		
2500569012	FBL101420	EPA 300.0 Rev 2.1 1993	573643		
2500569013	MCM-05	EPA 300.0 Rev 2.1 1993	574246		
2500569014	DPZ-2	EPA 300.0 Rev 2.1 1993	574246		
2500569015	RW-4	EPA 300.0 Rev 2.1 1993	574246		
2500569016	RW-5	EPA 300.0 Rev 2.1 1993	574246		
2500569017	RW-6	EPA 300.0 Rev 2.1 1993	574246		
2500569018	DUP-2	EPA 300.0 Rev 2.1 1993	574246		
2500569019	FBL101520	EPA 300.0 Rev 2.1 1993	574246		

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92500569001	MCM-06	EPA 353.2 Rev 2.0 1993	573633		
92500569002	MCM-07	EPA 353.2 Rev 2.0 1993	573633		
2500569003	MCM-14	EPA 353.2 Rev 2.0 1993	573633		
2500569004	RW-1	EPA 353.2 Rev 2.0 1993	573633		
2500569005	RW-2	EPA 353.2 Rev 2.0 1993	573633		
2500569006	RW-3	EPA 353.2 Rev 2.0 1993	573633		
2500569007	RW-7	EPA 353.2 Rev 2.0 1993	573633		
2500569008	RW-8	EPA 353.2 Rev 2.0 1993	573633		
2500569009	RW-9	EPA 353.2 Rev 2.0 1993	573633		
2500569010	RW-10	EPA 353.2 Rev 2.0 1993	573633		
2500569011	DUP-1	EPA 353.2 Rev 2.0 1993	573633		
2500569013	MCM-05	EPA 353.2 Rev 2.0 1993	573905		
2500569014	DPZ-2	EPA 353.2 Rev 2.0 1993	573905		
2500569015	RW-4	EPA 353.2 Rev 2.0 1993	573905		
2500569016	RW-5	EPA 353.2 Rev 2.0 1993	573905		
2500569017	RW-6	EPA 353.2 Rev 2.0 1993	573905		
2500569018	DUP-2	EPA 353.2 Rev 2.0 1993	573905		
2500569019	FBL101520	EPA 353.2 Rev 2.0 1993	573905		
2500569001	MCM-06	SM 4500-P E-2011	573616		
2500569002	MCM-07	SM 4500-P E-2011	573616		
2500569003	MCM-14	SM 4500-P E-2011	573616		
2500569004	RW-1	SM 4500-P E-2011	573616		
2500569005	RW-2	SM 4500-P E-2011	573616		
2500569006	RW-3	SM 4500-P E-2011	573616		
2500569007	RW-7	SM 4500-P E-2011	573616		
2500569008	RW-8	SM 4500-P E-2011	573616		
2500569009	RW-9	SM 4500-P E-2011	573616		
2500569010	RW-10	SM 4500-P E-2011	573616		
2500569011	DUP-1	SM 4500-P E-2011	573616		
2500569013	MCM-05	SM 4500-P E-2011	573921		
2500569014	DPZ-2	SM 4500-P E-2011	573921		
2500569015	RW-4	SM 4500-P E-2011	573921		
2500569016	RW-5	SM 4500-P E-2011	573921		
2500569017	RW-6	SM 4500-P E-2011	573921		
2500569018	DUP-2	SM 4500-P E-2011	573921		
2500569019	FBL101520	SM 4500-P E-2011	573921		
2500569001	MCM-06	SM 5310B-2011	576014		
2500569002	MCM-07	SM 5310B-2011	576014		
2500569003	MCM-14	SM 5310B-2011	576014		
2500569004	RW-1	SM 5310B-2011	576014		
2500569005	RW-2	SM 5310B-2011	576358		
92500569006	RW-3	SM 5310B-2011	576358		
2500569007	RW-7	SM 5310B-2011	576358		
2500569008	RW-8	SM 5310B-2011	576358		
92500569009	RW-9	SM 5310B-2011	576358		
92500569010	RW-10	SM 5310B-2011	576358		

Project: MCMANUS APP III

Pace Project No.: 92500569

Date: 11/02/2020 08:36 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92500569011	DUP-1	SM 5310B-2011	576358		
92500569013	MCM-05	SM 5310B-2011	576358		
92500569014	DPZ-2	SM 5310B-2011	576358		
92500569015	RW-4	SM 5310B-2011	576358		
92500569016	RW-5	SM 5310B-2011	576358		
92500569017	RW-6	SM 5310B-2011	576358		
92500569018	DUP-2	SM 5310B-2011	576359		
92500569019	FBL101520	SM 5310B-2011	576359		

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

Laboratory receiving samples: Asheville	Greenwood 🗌	Hunters	sville [Raleigh [Mechanics ville 🗌
Sample Condition Upon Receipt Client Name:	ia Power	Proje	ct # WO:	#:9250	0569
Courier: Fed Ex Pace	UPS USPS Other:	Client	92500		
Custody Seal Present? Yes No	Seals Intact? Yes	Þ.v∘	Date/II	nitials Person Examining (Contents: 567.
Packing Material: Bubble Wrap	☐Bubble Bags ☐None	Other		Biological Tissue	Frozen?
Thermometer: 2370(d	Type of Ice: V		None		
Cooler Temp (°C): 1. 41, 2. 10, 3 correction		<u> </u>	Temp should		°C oples on ice, cooling process
USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within Yes No	the United States: CA, NY, or SC	(check maps)?	Old samples o Including Haw	riginate from a foreign so aii and Puerto Rico)?	esNo
	^			Comments/Discrepa	incy:
Chain of Custody Present?	∑Yes □No	□N/A 1.			
Samples Arrived within Hold Time?	∠DYes □No	□N/A 2.			
Short Hold Time Analysis (<72 hr.)?	Yes No	□N/A 3.			
Rush Turn Around Time Requested?	□Yes □No	□N/A 4.			
Sufficient Volume?	☐Yes ☐No	□N/A 5.			
Correct Containers Used? -Pace Containers Used?	∑Yes □No ☐Yes □No	□N/A 6. □N/A			
Containers Intact?	☐Yes ☐No	□N/A 7.			
Dissolved analysis: Samples Field Filtered?	☐Yes ☐No	□N/A 8.			
Sample Labels Match COC?	5 G - 10-15-20 Pho	□N/A 9. ∫	Vo TO 12.	C vials for	- Sample.
-Includes Date/Time/ID/Analysis Matrix	:		· C		
Headspace in VOA Vials (>5-6mm)?	□Yes □No	□N/A 10. □N/A 11.			
Trip Blank Present?	□Yes □No				
Trip Blank Custody Seals Present? COMMENTS/SAMPLE DISCREPANCY	∏Yes ∏No	/		Field Data	Required? Yes No
				ontainers:	
CLIENT NOTIFICATION/RESOLUTION		LC	io or spire co	mianici 3.	
Person contacted:		Date/Time:	ia.		П
				#	
Project Manager SRF Review:			Date		

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project #

WO#: 92500569

PM: KLH1

Due Date: 10/29

CLIENT: GA-GA Power

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	8P1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	8P4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)	BPIN	BP3A-250 mL Plastic (NH2)25O4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	/	3		1		X	/						1						3								12	
2		3				1	1	/			/		/	1	/				3					1	1			
3	7	3		1		N.	X	/			/		/	1	/				3						1			
4	X	3	1	Ī		V	V	/					7	1	/				3						/			
5	Z	3	1	1		X	X	1			7		7	7	7				3					7				
6	1	3	i	i	1	7	X							7	1				3					7				
7		3	İ	1	1	Y	14				1		7	/	1				3							414		
8		3	ī	ī	7	V	7						7	/	7				3					1				
9	X	3	i	1	1	X	V	1			7	\neg	7	1	7				3					7	1			\neg
10	X	3	1		1	W	V	1			1	7		1	7				3									
11	N	3	i		1	X	X	7			1		7	7	7				3					7	1			
12						X		1			1		1		7									X				

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
						.8
					U	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

SAMPLE ID One Character per box. (AZ.0-9/ Sample Ids must be unique 1 McM - 0 G 2 McM - 14 3 McM - 14 4 RW-1 5 RW-2 8 RW-3 6 RW-3 7 RW-1 10 RW-10 11 Dup-1 12 F6L 10 14 20 SAMPLE ID ONE WITH SAMPLE ID SAMPLE ID ONE WITH SAMPLE ID SAMPLE ID SAMPLE ID ONE WITH SAMPLE ID ONE
Training Water Water To This grows Carlong Water To This grows Carlong To The Car
MATERIAL COOK COLLECTED
SAMPLE TEMP AT COLLECTION OF SAMPLE TEMP AT COLLECTION SO S S S S S S S S S S S S S S S S S S
HCI
Analyses Test Y. Analyses Tes
Received on ced (Y/N) Received on ced (Y/N) Custody Gealed Cooler Coo

October 30, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: MCMANUS AS SPECIATION

Pace Project No.: 92500800

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on October 15, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kan Slave

Kevin Herring

kevin.herring@pacelabs.com

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Veronica Fay

Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko

Ms. Lauren Petty, Southern Co. Services Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC

SAMPLE SUMMARY

Project: MCMANUS AS SPECIATION

Pace Project No.: 92500800

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92500800001	RW-1	Water	10/14/20 12:19	10/15/20 00:00
92500800002	RW-2	Water	10/14/20 15:04	10/15/20 00:00
92500800003	RW-3	Water	10/14/20 17:17	10/15/20 00:00
92500800004	RW-7	Water	10/14/20 15:43	10/15/20 00:00
92500800005	RW-8	Water	10/14/20 16:30	10/15/20 00:00
92500800006	RW-9	Water	10/14/20 13:04	10/15/20 00:00
92500800007	RW-10	Water	10/14/20 15:00	10/15/20 00:00
92500800008	DUP-1	Water	10/14/20 00:00	10/15/20 00:00
92500800009	MCM-06	Water	10/14/20 16:52	10/15/20 00:00
92500800010	MCM-07	Water	10/14/20 14:42	10/15/20 00:00
92500800011	MCM-14	Water	10/14/20 13:00	10/15/20 00:00

Contact: Karashan Karashan Client Project ID:

Samples Collected By: كوين كالمان المال المالية في المالية ال

	chain-or-custody Form	For BAL use only
APPLIED	Ship samples to:	Mork-Order ID.
LABS	18804 North Creek Parkway, Suite 100 Bothell, WA 98011	Project ID:
Client: (See Jone Power Come	Client: (See-Alon School Compony PO Number:	Mailing Address: 24 (24) A Mailing Address:
Contact: Krastan Thursday	Phone: 404-506-This	Part 10300
Client Project ID:	Email: Company Company Email R	eceipt Cont

Political properties Requested TAT	Collection	Client :	Client Sample Info		BA		L Analyses Required	ired	Comments	
Date: Date	(business days)			'S				vn	<i>A</i>	
Date	☐ 20 (standard) ☐ 15* ☐ 45*			ıtainers		NS.	ecify)	ecify) I, Uknown	w As	
Date: Die ID Date Date	☐ 10* ☐ 5* ☐ Other		Туре	iltered?	0₃/Other	S Metals	cies (spe VOMMA D	e(VI), SeCN	2 improo	
Die ID	Surcharges may apply to expedited TATs		atrix ⁻	eld Fi	I/HNO	P-MS	Spe rg/m	IV), Se	س ئ	
Malyzo 1219 Galo 2 4 Face	Sample ID		Ма	Fie	HC	IC	As	Se(<u>Su</u>	Specify Here
Indicatives				7	¥1 Fr	۲.	X		*	
Solution 1317 Gw 2 4 Fire	RN-2	S).	G U		27.82	×	X		*	
Time:	PW-3			_	T. S	*	Y.		*	
Included Incompare Inco	F-143			7	ri si	K.	7		7	
	P.W - 00			7	Ę.	7	×		*	
S Ichwilzo 1500 Gw 2 7 Y Y E	Sm -c	_		-	7-1	×	Х		κ.	
S H H H H H H H H H					rr Fr	۲	7		у.	
OF IQHIPO IISIZ Caw 2 Y ECE K X	Dup -1	12			3:25	*	×		*	
Trip Blank Date: Ca い 2 り 元 2 り 元 2 と と と と り か	MCVA-OL	<u> </u>			#CE	አ	×		ĸ	
Trip Blank Date: Time: אפריים אוני איני איני איני איני איני איני איני	786.82.057	1	\vdash	7	3.75	*	۲,		ķ.	
By: צייסייס Date: סלואן Date: Pate: Pate	rip Blank		\vdash						,	
Date: Time:	Relinquished By: کارین	0			linquished By)ate:	Time:
	Received By:	Date:	Time:	Тс	tal Number of	Packages:				

WO#:92500800

Page \ of \

List Hazardous Contaminants:

Chain -of-Custody

Bothell, WA 98011 18804 North Creek Parkwa Ship samples to:

Samples Collected By: كستميك الكوناية الكوناية المرابعة الكوناية
Email: حوزووصورافليوي @مكاسموروي

Email Receipt Confirmation?

(Yes/No)

Client Project ID:

Contact: Konta Tunks

Client: Grange Power Controlly

	The Coan Coan DON	Phone: 404-506-7416
	Mailing Address: 241 Entro was will Ship	PO Number:
	Project ID:	WA 98011
	Time IIDO	Jorth Creek Parkway, Suite 100
		mples to:
Pa	Received by: Spenar Jan Buys Date 10/15/20	•
ae 4	For BAL use only	n-ot-Custody Form

9000		5									ınts:	ntamina	ous Cor	List Hazardous Contaminants:	of 2 Lis	Page 2
					kages	of Pag	ımber	Total Number of Packages:	=	-	Time:		Date:	•	By: Fisher	Received By: 汇
Time:	Date:	Da				Ву:	ished I	Relinquished By:		حطهاه	Time:	320	Date: 1825		Relinquished By: المعرفة	Relinquis
														ık	Trip Blank	
																10
																9
																8
																7
													0.0			တ
																5
					74											4
																ω
			-									a raist			3	2
	۴			×	*			t) Ce		۲	رياف	1300 (Ordenor	MCM-14	1 K
Specify Here	یک		Se	As	ICI	Me		Pr		Νι	Ma	Ti		D	Sample ID	
	ner (specify) ner (specify)	ration	Species (specify) IV), Se(VI), SeCN, Uknowi	Species (specify)	P-MS Metals Ass	thyl Hg, EPA 1630	tal Hg, EPA 1631	eservation Type	eld Filtered? es/No)	ımber of Containers	atrix Type	ne		ate	 20 (standard) 15* 5* Other *Surcharges may apply to expedited TATs 	☐ 20 (sta ☐ 15* ☐ 10* ☐ 5* ☐ Other ☐ *
				.)			\$) =		days)	(business days)
Comments	ed	AL Analyses Required	าalyses	3AL Ar	В				le Info	Client Sample Info	C		Collection		ed TAT	Requested TAT

CLIENT: GA-GA Power

Due Date: 10/29/20

WO#:92500800

4 of 24

18804 North Creek Parkway, Ste 100, Bothell, WA 98011 • USA • T: 206 632 6206 F: 206 632 6017 • info@brooksapplied.com

October 29, 2020

Pace Analytical Services – Huntersville ATTN: Kevin Herring 9800 Kincey Ave., Suite 100 Huntersville, NC 28078 Kevin.Herring@pacelabs.com

RE: Project PAC-HN2007 Client Project: 92500800

Dear Kevin Herring,

On October 15, 2020, Brooks Applied Labs (BAL) received eleven (11) water samples at a temperature of 7.1°C. The samples were logged-in for the analysis of arsenic (As) speciation per the chain-of-custody (COC). The client directly filtered (0.45µm) each sample into an evacuated container prior to receipt at BAL. All samples were stored according to BAL SOPs and EPA methodology.

BAL strongly recommends that all samples submitted for arsenic speciation remain at a temperature of less than or equal to 6° Celsius to maintain sample integrity prior to analysis. Consequently, the As speciation results were qualified (**Z**), indicating that the samples were received above the recommended temperature.

Arsenic Speciation by IC-ICP-CRC-MS

All aqueous samples for As speciation were analyzed using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). In accordance with the project agreement, As speciation was defined as dissolved arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMAs], and dimethylarsinic acid [DMAs]; the total estimated concentration of any unidentified arsenic-containing species detected in each sample has also been reported as Unk As Sp. Arsenic species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the Interference Reduction Technology section on our website, brooksapplied.com.

In instances where the native sample result and/or the associated duplicate (DUP) result were below the MDL the RPD was not calculated (**N/C**).

The results were not method blank corrected as described in the calculations section of the relevant BAL SOP(s) and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

It should be noted that all Brooks Applied Labs, LLC methods, standard operating procedures, inventions, ideas, processes, improvements, designs and techniques included or referred to therein, must be considered and treated as Proprietary Information, protected by the Washington State Trade Secret Act, RCW 19.108 et seq., and other laws. All Proprietary Information, written or implied, will not be distributed,

copied, or altered in any fashion without prior written consent from Brooks Applied Labs, LLC. All Proprietary Information (including originals, copies, summaries or other reproductions thereof) shall remain the property of Brooks Applied Labs, LLC at all times and must be returned upon demand. Furthermore, products presented in this document may be protected by Federal Patent laws and infringement will be subject to prosecution in accordance with Title 35 US Code 271.

All data was reported without further qualification and all other associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information please see the *Report Information* page in your report. Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Amy Goodall Project Manager

Brooks Applied Labs

amy@brooksapplied.com

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- N Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 27, 2020; Valid to: June 30, 2021

Certificate Number: E87982-35

r	Certifi	cate Number: E87982-35		
Method	Matrix	TNI Accredited Analyte(s)		
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn		
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn		
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn		
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn		
BAL-5000 EPA 1640	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness		
	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn		
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn		
EPA 1640	Non-Potable Waters	Ag, As, Cd, Cu, Pb, Ni, Zn		
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury		
EPA 1630	Non-Potable Waters	Methyl Mercury		
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury		
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs		
BAL-4200	Non-Potable Waters	Se(IV), Se(VI)		
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)		
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)		
SM2340B	Non-Potable Waters	Hardness		

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: January 10, 2020; Valid to: March 30, 2022

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
EPA 6020 Mod BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn	Ag, As, Cd, Cr, Cu, Pb, Ni, Se, Zn
EPA 1640 Mod	Non-Potable Waters	Ag, As, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Tl, V, Zn	Not Accredited
EPA 1631E Mod BAL-3100 (waters) BAL-3101 (solids)	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters Solids/Chemicals	Inorganic Arsenic, As(III)	Inorganic Arsenic. As(III) for waters only.
BAL-3300	Biological/Food	Ag, As, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, TI, V, Zn Re Waters, Micals & Total Mercury Re Waters, Micals Biological Re Waters, Methyl Mercury Re Waters, Micals Biological Re Waters Ricals Rood	
AOAC 2015.01 Mod BAL-5000 by BAL-5040	Food	As, Cd, Hg, Pb	Not Accredited
	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4115		Not Accredited
BAL-4101	Food by BAL-4116		Not Accredited
BAL-4200	Non-Potable Waters	Se(IV), Se(VI), SeCN	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G EPA 160.3 BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.2

 ⁽²⁾ Non-Governmental NELAC Institute 2016 Standard – Certificate Number ADE-1447.1
 (3) Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.3 for DOE.

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Sample Information

Sample	Alias	Lab ID	Report Matrix	Туре	Sampled	Received
RW-1	92500800001	2042040-01	GW	Sample	10/14/2020	10/15/2020
RW-2	92500800002	2042040-02	GW	Sample	10/14/2020	10/15/2020
RW-3	92500800003	2042040-03	GW	Sample	10/14/2020	10/15/2020
RW-7	92500800004	2042040-04	GW	Sample	10/14/2020	10/15/2020
RW-8	92500800005	2042040-05	GW	Sample	10/14/2020	10/15/2020
RW-9	92500800006	2042040-06	GW	Sample	10/14/2020	10/15/2020
RW-10	92500800007	2042040-07	GW	Sample	10/14/2020	10/15/2020
Dup-1	92500800008	2042040-08	GW	Field Duplicate	10/14/2020	10/15/2020
MCM-06	92500800009	2042040-09	GW	Sample	10/14/2020	10/15/2020
MCM-07	92500800010	2042040-10	GW	Sample	10/14/2020	10/15/2020
MCM-14	92500800011	2042040-11	GW	Sample	10/14/2020	10/15/2020

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
As(III)	Water	SOP BAL-4100	10/20/2020	10/21/2020	B202845	2001257
As(V)	Water	SOP BAL-4100	10/20/2020	10/21/2020	B202845	2001257
DMAs	Water	SOP BAL-4100	10/20/2020	10/21/2020	B202845	2001257
MMAs	Water	SOP BAL-4100	10/20/2020	10/21/2020	B202845	2001257
Unk As Sp	Water	SOP BAL-4100	10/20/2020	10/21/2020	B202845	2001257

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RW-1, 92500800001										
2042040-01	As(III)	GW	D	0.687	ΖJ	0.400	2.10	μg/L	B202845	2001257
2042040-01	As(V)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-01	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257
2042040-01	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-01	Unk As Sp	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257
RW-2, 92500800002										
2042040-02	As(III)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-02	As(V)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-02	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257
2042040-02	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-02	Unk As Sp	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257
RW-3, 925008	00003									
2042040-03	As(III)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-03	As(V)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-03	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257
2042040-03	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-03	Unk As Sp	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257
RW-7, 925008	00004									
2042040-04	As(III)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-04	As(V)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-04	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257
2042040-04	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-04	Unk As Sp	GW	D	10.3	Z	0.500	2.10	μg/L	B202845	2001257
RW-8, 925008	00005									
2042040-05	As(III)	GW	D	0.541	ZJ	0.400	2.10	μg/L	B202845	2001257
2042040-05	As(V)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-05	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257
2042040-05	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-05	Unk As Sp	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence	
RW-9, 92500800006											
2042040-06	As(III)	GW	D	0.460	ΖJ	0.400	2.10	μg/L	B202845	2001257	
2042040-06	As(V)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-06	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257	
2042040-06	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-06	Unk As Sp	GW	D	32.5	Z	0.500	2.10	μg/L	B202845	2001257	
RW-10, 92500800007											
2042040-07	As(III)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-07	As(V)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-07	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257	
2042040-07	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-07	Unk As Sp	GW	D	3.92	Z	0.500	2.10	μg/L	B202845	2001257	
Dup-1, 925008	800008										
2042040-08	As(III)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-08	As(V)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-08	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257	
2042040-08	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-08	Unk As Sp	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257	
MCM-06, 9250	0800009										
2042040-09	As(III)	GW	D	53.6	Z	0.400	2.10	μg/L	B202845	2001257	
2042040-09	As(V)	GW	D	1.69	ΖJ	0.400	2.10	μg/L	B202845	2001257	
2042040-09	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257	
2042040-09	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-09	Unk As Sp	GW	D	291	Z	0.500	2.10	μg/L	B202845	2001257	
MCM-07, 9250	0800010										
2042040-10	As(III)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-10	As(V)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-10	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257	
2042040-10	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257	
2042040-10	Unk As Sp	GW	D	8.98	Z	0.500	2.10	μg/L	B202845	2001257	

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
MCM-14, 92500800011										
2042040-11	As(III)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-11	As(V)	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-11	DMAs	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257
2042040-11	MMAs	GW	D	≤ 0.400	ΖU	0.400	2.10	μg/L	B202845	2001257
2042040-11	Unk As Sp	GW	D	≤ 0.500	ΖU	0.500	2.10	μg/L	B202845	2001257

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Accuracy & Precision Summary

Batch: B202845 Lab Matrix: Water Method: SOP BAL-4100

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B202845-BS1	Blank Spike, (2042031)	1141110	Opino	rtoodit	O mito		
	As(III)		5.150	4.567	μg/L	89% 75-125	
	As(V)		5.200	5.043	μg/L	97% 75-125	
	DMAs		5.210	4.946	μg/L	95% 75-125	
	Divirio		0.210	1.010	µg/∟	0070 70 120	
B202845-BS2	Blank Spike, (2006012)						
	MMAs		5.000	4.805	μg/L	96% 75-125	
B202845-DUP1	Duplicate, (2042040-07)						
D202045-DUF 1	As(III)	ND		ND	μg/L		N/C 25
	As(V)	ND		ND	μg/L		N/C 25
	DMAs	ND		ND	μg/L		N/C 25
	MMAs	ND		ND	μg/L μg/L		N/C 25
	Unk As Sp	3.917		3.872	μg/L μg/L		1% 25
	опк до ор	5.517		5.072	μg/L		170 23
B202845-MS1	Matrix Spike, (2042040-07	')					
	As(III)	ND	104.5	104.4	μg/L	100% 75-125	
	As(V)	ND	97.10	104.3	μg/L	107% 75-125	
	DMAs	ND	100.0	102.3	μg/L	102% 75-125	
	MMAs	ND	97.40	97.33	μg/L	100% 75-125	
D000045 MCD4	Matrix Cuiles Dunlingto /S	0.400.40.07	`				
B202845-MSD1	Matrix Spike Duplicate, (2 As(III)	042040-07 ND) 104.5	106.3	μg/L	102% 75-125	2% 25
	As(III) As(V)	ND	97.10	100.3	μg/L μg/L	107% 75-125	0.4% 25
	DMAs	ND	100.0	103.9	μg/L μg/L	107% 75-125	0.4% 25
	MMAs	ND	97.40	97.93	μg/L μg/L	101% 75-125	0.6% 25
	IVIIVIAS	ND	97.40	91.93	µg/L	10170 73-123	0.076 23
B202845-DUP2	Duplicate, (2042050-03)						
	As(III)	1.271		1.264	μg/L		0.6% 25
	As(V)	ND		ND	μg/L		N/C 25
	DMAs	ND		ND	μg/L		N/C 25
	MMAs	ND		ND	μg/L		N/C 25
	Unk As Sp	ND		ND	μg/L		N/C 25

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Accuracy & Precision Summary

Batch: B202845 Lab Matrix: Water Method: SOP BAL-4100

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B202845-MS2	Matrix Spike, (2042050-0	3)	•				
	As(III)	1.271	104.5	109.1	μg/L	103% 75-125	
	As(V)	ND	97.10	101.7	μg/L	105% 75-125	
	DMAs	ND	100.0	103.8	μg/L	104% 75-125	
	MMAs	ND	97.40	100.4	μg/L	103% 75-125	
B202845-MSD2	Matrix Spike Duplicate, (2042050-03)					
	As(III)	1.271	104.5	110.3	μg/L	104% 75-125	1% 25
	As(V)	ND	97.10	101.2	μg/L	104% 75-125	0.5% 25
	DMAs	ND	100.0	104.5	μg/L	104% 75-125	0.7% 25
	MMAs	ND	97.40	100.6	μg/L	103% 75-125	0.3% 25

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Method Blanks & Reporting Limits

Batch: B202845 Matrix: Water

Method: SOP BAL-4100

Analyte: As(III)

Sample	Result	Units
B202845-BLK1	0.00	μg/L
B202845-BLK2	0.00	μg/L
B202845-BLK3	0.00	μg/L
B202845-BLK4	0.00	μg/L

Average: 0.000 **MDL**: 0.004 Limit: 0.021 MRL: 0.021

Analyte: As(V)

Sample	Result	Units
B202845-BLK1	0.004	μg/L
B202845-BLK2	0.002	μg/L
B202845-BLK3	0.003	μg/L
B202845-BLK4	0.004	μg/L

Average: 0.003 **MDL:** 0.004 Limit: 0.021 MRL: 0.021

Analyte: DMAs

Sample	Result	Units
B202845-BLK1	0.00	μg/L
B202845-BLK2	0.00	μg/L
B202845-BLK3	0.00	μg/L
B202845-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.005 Limit: 0.021 MRL: 0.021

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Method Blanks & Reporting Limits

Analyte: MMAs

Sample	Result	Units
B202845-BLK1	0.00	μg/L
B202845-BLK2	0.00	μg/L
B202845-BLK3	0.00	μg/L
B202845-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.004 Limit: 0.021 MRL: 0.021

Analyte: Unk As Sp

Sample	Result	Units
B202845-BLK1	0.00	μg/L
B202845-BLK2	0.00	μg/L
B202845-BLK3	0.00	μg/L
B202845-BLK4	0.00	μg/L

Average: 0.000 **MDL**: 0.005 Limit: 0.021 MRL: 0.021

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Sample Containers

	ID: 2042040-01 ple: RW-1				eted: 10/14/2020 ved: 10/15/2020		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
	ID: 2042040-02		Report			cted: 10/14/2020	
	nple: RW-2	0:	-	Type: Sample	D.14		ved: 10/15/2020
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
	ID: 2042040-03		•	Matrix: GW Type: Sample			ted: 10/14/2020 ved: 10/15/2020
	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
Lab	ID : 2042040-04		Report	Matrix: GW		Collec	ted: 10/14/2020
	ple: RW-7		-	Type: Sample			ved: 10/15/2020
Des		Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Sample Containers

	ID: 2042040-05 ple: RW-8		Report Sample			ted: 10/14/2020 ved: 10/15/2020	
Des	Container	Size	Lot	Preservation	P-Lot	pН	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
	ID: 2042040-06		Report			ted: 10/14/2020	
	ple: RW-9	0:	-	Type: Sample	D.1 -4		ved: 10/15/2020
	Container	Size	Lot	Preservation	P-Lot	pН	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
	ID: 2042040-07 ple: RW-10	Report Matrix: GW Sample Type: Sample					ted: 10/14/2020 ved: 10/15/2020
	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
Lab	ID: 2042040-08		Report	Matrix: GW		Collec	ted: 10/14/2020
	ple: Dup-1		-	Type: Field Duplicate			ved: 10/15/2020
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040

BAL Report 2042040 Client PM: Kevin Herring Client Project: 92500800

Sample Containers

	D: 2042040-09 ple: MCM-06				ted: 10/14/2020 ved: 10/15/2020		
Des	Container	Size	Lot	Type: Sample Preservation	P-Lot	рН	Ship. Cont.
Α	Vacutainer	10 mL	20-0160 EDTA (Vial)		n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160 EDTA (Vial)		n/a	n/a	Cooler - 2042040
	ID: 2042040-10 ple: MCM-07				ted: 10/14/2020 ved: 10/15/2020		
Des	Container	Size	Lot	Type: Sample Preservation	P-Lot	pH	Ship. Cont.
A	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
	I D: 2042040-11 ple: MCM-14		Report Sample			:ted: 10/14/2020 ved: 10/15/2020	
Des	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042040

Shipping Containers

Cooler - 2042040

Received: October 15, 2020 11:00 Tracking No: 8126 1269 6086 via FedEx

Coolant Type: Ice Temperature: 7.1 °C **Description:** Cooler Damaged in transit? No Returned to client? No Comments: IR #21

Custody seals present? Yes **Custody seals intact?** Yes **COC present?** Yes

Chain of Custody

PASI Charlotte Laboratory

Workorder: 92500800 Workorder Name: MCMANUS AS SPECIATION Results Requested By: 10/29/2020 Kevin Herring Pace Analytical Charlotte P.O. KLH 92500860 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 Phone 1(704)875-9092 **Brooks Applied Labs** Email: kevin.herring@pacelabs.com 18804 North Creek Pkwy, Suite 100 As Speciation Bothell, WA 98011 State of Sample Origin: Célleci -Date/Jame (lem | Sample 10 Labro Matrix LAB USE ONLY RW-1 10/14/2020 12:19 92500800001 Water 2 X 2 RW-2 10/14/2020 15:04 Z 925008000002 Water Х 3 RW-3 10/14/2020 17:17 92500800003 2 Water Х RW-7 10/14/2020 15:43 92500800004 Water X 7_ 5 RW-8 10/14/2020 16:30 92500800005 2 Water X 6 RW-9 10/14/2020 13:04 92500800006 Water X 2 RW-10 10/14/2020 15:00 92500800007 Water 2 X 8 DUP-1 10/14/2020 00:00 925008000008 Water 1 X 9 MCM-06 10/14/2020 16:52 92500800009 Water 2 X 10 MCM-07 10/14/2020 14:42 92500800010 2 Water X 11 MCM-14 10/14/2020 13:00 92500800011 Water X 12 13 14 15

ransfers	Released By	Date/Time	Received By	Date/Time		Commens :
			high Vill	lamba		
2			July Voce	11.00	1	
3				1,7		

Chain -of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

Received by:	For BAL use only Spenar Shibuya Date:	BAL Report 2042040
Work Order ID:	Time.	11:00
Project ID:		

Client: Gaorgia Para Congony Contact: Client Project ID: Samples Collected By: Vesso Stephenson			PC Ph Em	PO Number: Phone: 404-506-7116 Email: 404-506-7116				۸ <u>دره</u> علمت حد	Mailing Address: 222 Rays Mab. 11 Bis 20308 Email Receipt Confirmation? (Yes/No)									
	ested TAT	Collect	ion		Clien	t Sampl	e Info			7 3	ВА	L Anal	yses R	lequire	ed		Comments	
20 15 10 5*	* ther ges may apply to expedited TATs	Date	Time		Matrix Type	Number of Containers	Field Filtered? (Yes/No)	Preservation Type	Total Hg, EPA 1631	Methyl Hg, EPA 1630	ICP-MS Metals Nes (specify) たいい Recいつが	As Species (specify)	Se Species (specify) Se(IV), Se(VI), SeCN, Uknown	Filtration	Other (specify)	Other (specify)		
1 5	Sample ID		-				- 13			2	1		တတ	Ц.,		0 1	Specify Here	
	1-W2		1219	Gi		2	4	Tes			×	×			×	-		
	2W-Z 2W-3	10/14/32				2	77	ILE			× ×	У.			X ₁			
	zw-7	व्यामावा व्यामावा				2	4	Tex			*	X			Χ.			_
- 1	8-14-8	10/14/20				2	Y	TCE			义	2			×			_
1	P-1415	व्यामाञ				2	4	Tate			X	×			×			
- ·	OI-WS	12/4/20	1.7			2	Y	THE			×	X			X.			
	Jug . (astrila		Gu		2	Y	TIE			×	X.			X			
	rem 06	asirilai				2	7	TCE			×	X			X			
	new ort	10/14/20				2	Y	305			L	X.			y.			
	Trip Blank																	
Relin	quished By: Leaves	Date	10/14	20	Time:	Bz0	R	elinquis	shed B	By:				Da	ate:		Time:	
	ived By:	Date	8 1	`	Time:		Т	otal Nu	mber o	of Pac	kages:							
	Page \ of \ \ List Hazardous Contaminants: samples@brooksapplied.com brooksapplied.com brooksapplied.com																	

Chain-of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

Received by:	Spencer	For BAL use	only Date:	BAL Report 2042040
Work Order ID:			Time:	1100
Project ID:				

Contact: Phone:								3DK.								
Client Project	ID:ected By:			⊨maii: 🗸		يدين (2) جند	mulber	C53.623	> t	Email R BAL PM	leceipt I·	Confir	matio	n? (Yes/No))
Requested T		Collect			nt Sampl			H				yses F		_		Comments
(business days)																
☐ 20 (stand: ☐ 15* ☐ 10* ☐ 5* ☐ Other *Surcharges may ap		Date	Time	Matrix Type	Number of Containers	Field Filtered? (Yes/No)	Preservation Type HCI /HNO₃/Other	Total Hg, EPA 1631	Methyl Hg, EPA 1630	ICP-MS Metals Nos (specify)	As Species (specify)	Se Species (specify) Se(IV), Se(VI), SeCN, Uknown	Filtration	Other (specify)		
	ple ID	Ď	ΙĒ	Σ	ž		9 8	۲	Š	<u>⊃</u> ⊗	A A	Ω S	匝	ō 🗸	δl	Specify Here
1 NCM	19	10/14/50	1300	COMO	2_	7	Eco			X	×			×	-	
3		1														
4																
5																
6																
7 8																
9																
10																
	Trip Blank															L.
Relinquished	By: Vwassa	Dat	e: 182	Time:	oliubi	> R	elinquis	shed B	By:				D	ate:		Time:
Received By	Federal	Date		Time:	2.9		otal Nu	mber o	of Pac	kages:						
Page 7 of		Hazardous	Contar	ninants:									samr	oles@hr/	nksannli	ed com I brooksannlied com

October 30, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: MCMANUS AS SPECIATION

Pace Project No.: 92501055

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on October 16, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Kan Slery

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Veronica Fay

Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko

Ms. Lauren Petty, Southern Co. Services Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: MCMANUS AS SPECIATION

Pace Project No.: 92501055

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92501055001	MCM-05	Water	10/15/20 13:48	10/16/20 00:00
92501055002	DPZ-2	Water	10/15/20 16:00	10/16/20 00:00
92501055003	RW-4	Water	10/15/20 14:46	10/16/20 00:00
92501055004	RW-5	Water	10/15/20 15:55	10/16/20 00:00
92501055005	RW-6	Water	10/15/20 14:03	10/16/20 00:00
92501055006	DUP-2	Water	10/15/20 00:00	10/16/20 00:00
92501055007	FBL101520	Water	10/15/20 17:36	10/16/20 00:00

REPORT OF LABORATORY ANALYSIS

Chain -of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

Work Order ID:	Received by:
	- Ror BAK USEDAN
. Time: L	body Date: OL
10:28	মাগাত

		riojectio.
Client: Georgia Power Company	PO Number:	Mailing Address: 741 Rails McGi) Rive
	Phone: 404 - 506 - 7116	Attento (A Zozox
Client Project ID:	Email: kn itting & spetternes com Email I	Email Receipt Confirmation? (Yes/No)
Samples Collected By: Kevin Stephenson, Verenica Fay, Will Locker, Trent Gedwin BAL PM	Verenica Foy, Will Lacker, Trent Gedus	

Received By: Fcdtx	Relinquished By: William Loaker	Trip Blank	10	9	8	7 FBL 101520	6 DUP-2			3 RW-H		4	Sample ID	20 (standard) 15* 10* 5* Other	Requested TAT (business days)		
De	1					10 15 20	16 15 20	16/15/26	10/15/20	10/15/20	16/15/20	10/15/20	Da	ıte	Collection		
Date: (c//5/20	Date: 10/15/20					1736	•	£041	1 1555	3441	1600	1348					
Zo Time:						GW GW	GW	GW	GW	6W	GW	CMS	Ma				
e: 1800	Time: /‱					در	2	2	2	2	2	2	Number of Containers				
Tc	_Z					-<	~	~	<	~	~	~	Fie (Y	Client Sample Info			
Total Number of Packages:	elinquis	Preservation Type Head of the control of the con															
nber o	hed By								and detailed in contrast of the second				То	tal Hg, EPA 1631			
f Pack	j.				The state of the s							-	Ме	thyl Hg, EPA 1630			
ages:						×	×	×	×	×	×	X		P-MS Metals As ecify) Total Rec. Diss	BA		
			The second second			X	X	×	×	×	×	×	As	Species (specify) g,(IIIV)MMA(DMA)	Ana		
				-										Species (specify) V), Se(VI), SeCN, Uknown	AL Analyses Required		
	D _e												Filt	ration	equire		
	Date:					×	×	×	×	×	×	×		ier (specify) of unknown As	ď		
													Oth	er (specify)			
	Time:			A THE RESIDENCE OF THE PARTY OF									Specify Here		Comments		

WO#: 92501055

Page 1 of 1

List Hazardous Contaminants:

18804 North Creek Parkway, Ste 100, Bothell, WA 98011 • USA • T: 206 632 6206 F: 206 632 6017 • info@brooksapplied.com

October 29, 2020

Pace Analytical Services – Huntersville ATTN: Kevin Herring 9800 Kincey Ave., Suite 100 Huntersville, NC 28078 Kevin.Herring@pacelabs.com

RE: Project PAC-HN2007 Client Project: 92501055

Dear Kevin Herring,

On October 16, 2020, Brooks Applied Labs (BAL) received seven (7) water samples at a temperature of 1.6°C. The samples were logged-in for the analysis of arsenic (As) speciation per the chain-of-custody (COC). The client directly filtered (0.45µm) each sample into an evacuated container prior to receipt at BAL. All samples were stored according to BAL SOPs and EPA methodology.

Arsenic Speciation by IC-ICP-CRC-MS

All aqueous samples for As speciation were analyzed using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). In accordance with the project agreement, As speciation was defined as dissolved arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMAs], and dimethylarsinic acid [DMAs]; the total estimated concentration of any unidentified arsenic-containing species detected in each sample has also been reported as Unk As Sp. Arsenic species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the Interference Reduction Technology section on our website, brooksapplied.com.

In instances where the native sample result and/or the associated duplicate (DUP) result were below the MDL the RPD was not calculated (N/C).

The results were not method blank corrected as described in the calculations section of the relevant BAL SOP(s) and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

It should be noted that all Brooks Applied Labs, LLC methods, standard operating procedures, inventions, ideas, processes, improvements, designs and techniques included or referred to therein, must be considered and treated as Proprietary Information, protected by the Washington State Trade Secret Act, RCW 19.108 et seq., and other laws. All Proprietary Information, written or implied, will not be distributed, copied, or altered in any fashion without prior written consent from Brooks Applied Labs, LLC. All Proprietary Information (including originals, copies, summaries or other reproductions thereof) shall remain the property of Brooks Applied Labs, LLC at all times and must be returned upon demand. Furthermore, products presented in this document may be protected by Federal Patent laws and infringement will be subject to prosecution in accordance with Title 35 US Code 271.

All data was reported without further qualification and all other associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information please see the *Report Information* page in your report. Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Amy Goodall

Project Manager Brooks Applied Labs

amy@brooksapplied.com

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	scv	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	Т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Page 6 of 19 18804 North Creek Parkway, Suite 100, Bothell, WA 98011 · P(206) 632-6206 · F(206) 632-6017 · info@brooksapplied.com · www.brooksapplied.com

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 27, 2020; Valid to: June 30, 2021

Certificate Number: E87982-35

	1	icate Number: E87982-35					
Method	Matrix	TNI Accredited Analyte(s)					
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn					
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn					
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn					
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn					
BAL-5000	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness					
	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn					
	Solids/Chemicals & Biological Non-Potable Waters Solids/Chemicals Biological 640 Non-Potable Waters Non-Potable Waters, Solids/Chemicals & Biological 630 Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn					
EPA 1640	Non-Potable Waters	Ag, As, Cd, Cu, Pb, Ni, Zn					
EPA 1631E	,	Total Mercury					
EPA 1630	Non-Potable Waters	Methyl Mercury					
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury					
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs					
BAL-4200	Non-Potable Waters	Se(IV), Se(VI)					
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)					
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)					
SM2340B	Non-Potable Waters	Hardness					

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: January 10, 2020; Valid to: March 30, 2022

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
EPA 6020 Mod BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn	Ag, As, Cd, Cr, Cu, Pb, Ni, Se, Zn
EPA 1640 Mod	Non-Potable Waters	Ag, As, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Tl, V, Zn	Not Accredited
EPA 1631E Mod BAL-3100 (waters) BAL-3101 (solids)	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters Solids/Chemicals	Inorganic Arsenic, As(III)	Inorganic Arsenic. As(III) for waters only.
BAL-3300	Biological/Food	Inorganic Arsenic	Inorganic Arsenic (excluding Food)
AOAC 2015.01 Mod BAL-5000 by BAL-5040	Food	As, Cd, Hg, Pb	Not Accredited
	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4115	Inorganic Arsenic, DMAs, MMAs	Not Accredited
BAL-4101	Food by BAL-4116	Inorganic Arsenic, DMAs, MMAs	Not Accredited
BAL-4200	Non-Potable Waters	Se(IV), Se(VI), SeCN	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G EPA 160.3 BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.2

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard – Certificate Number ADE-1447.1

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 - Certificate Numbers ADE-1447 for DoD, ADE-1447.3 for DOE.

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Sample Information

Sample	Alias	Lab ID	Report Matrix	Туре	Sampled	Received
MCM-05	92501055001	2042050-01	Water-D	Sample	10/15/2020	10/16/2020
DPZ-2	92501055002	2042050-02	Water-D	Sample	10/15/2020	10/16/2020
RW-4	92501055003	2042050-03	Water-D	Sample	10/15/2020	10/16/2020
RW-5	92501055004	2042050-04	Water-D	Sample	10/15/2020	10/16/2020
RW-6	92501055005	2042050-05	Water-D	Sample	10/15/2020	10/16/2020
DUP-2	92501055006	2042050-06	Water-D	Sample	10/15/2020	10/16/2020
FBL101520	92501055007	2042050-07	Water-D	Sample	10/15/2020	10/16/2020

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
As(III)	Water	SOP BAL-4100	10/20/2020	10/21/2020	B202845	2001257
As(V)	Water	SOP BAL-4100	10/20/2020	10/21/2020	B202845	2001257
DMAs	Water	SOP BAL-4100	10/20/2020	10/21/2020	B202845	2001257
MMAs	Water	SOP BAL-4100	10/20/2020	10/21/2020	B202845	2001257
Unk As Sp	Water	SOP BAL-4100	10/20/2020	10/21/2020	B202845	2001257

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
MCM-05, 9250	1055001									
2042050-01	As(III)	Water-D	D	1.13	J	0.400	2.10	μg/L	B202845	2001257
2042050-01	As(V)	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-01	DMAs	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
2042050-01	MMAs	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-01	Unk As Sp	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
DPZ-2, 925010	055002									
2042050-02	As(III)	Water-D	D	0.461	J	0.400	2.10	μg/L	B202845	2001257
2042050-02	As(V)	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-02	DMAs	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
2042050-02	MMAs	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-02	Unk As Sp	Water-D	D	17.3		0.500	2.10	μg/L	B202845	2001257
RW-4, 925010	55003									
2042050-03	As(III)	Water-D	D	1.27	J	0.400	2.10	μg/L	B202845	2001257
2042050-03	As(V)	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-03	DMAs	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
2042050-03	MMAs	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-03	Unk As Sp	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
RW-5, 925010	55004									
2042050-04	As(III)	Water-D	D	0.401	J	0.400	2.10	μg/L	B202845	2001257
2042050-04	As(V)	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-04	DMAs	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
2042050-04	MMAs	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-04	Unk As Sp	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
RW-6, 925010	55005									
2042050-05	As(III)	Water-D	D	0.714	J	0.400	2.10	μg/L	B202845	2001257
2042050-05	As(V)	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-05	DMAs	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
2042050-05	MMAs	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-05	Unk As Sp	Water-D	D	0.946	J	0.500	2.10	μg/L	B202845	2001257

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
DUP-2, 925010	55006									
2042050-06	As(III)	Water-D	D	0.412	J	0.400	2.10	μg/L	B202845	2001257
2042050-06	As(V)	Water-D	D	0.572	J	0.400	2.10	μg/L	B202845	2001257
2042050-06	DMAs	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
2042050-06	MMAs	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-06	Unk As Sp	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
FBL101520, 92	2501055007									
2042050-07	As(III)	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-07	As(V)	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-07	DMAs	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257
2042050-07	MMAs	Water-D	D	≤ 0.400	U	0.400	2.10	μg/L	B202845	2001257
2042050-07	Unk As Sp	Water-D	D	≤ 0.500	U	0.500	2.10	μg/L	B202845	2001257

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Accuracy & Precision Summary

Batch: B202845 Lab Matrix: Water Method: SOP BAL-4100

Commis	Amalusta	Matica	Owiles	Deculé	Umita	REC & Limits	DDD 9 Limits
Sample B202845-BS1	Analyte Blank Spike, (2042031)	Native	Spike	Result	Units	REC & LIMITS	RPD & Limits
D202043-D31	As(III)		5.150	4.567	μg/L	89% 75-125	
	As(V)		5.200	5.043	μg/L μg/L	97% 75-125	
	DMAs		5.210	4.946	μg/L μg/L	95% 75-125	
	DIVIAS		3.210	4.940	µg/L	9370 73-123	
B202845-BS2	Blank Spike, (2006012)						
	MMAs		5.000	4.805	μg/L	96% 75-125	
B202845-DUP1	Duplicate, (2042040-07)						
D202043-D0F1	As(III)	ND		ND	μg/L		N/C 25
	As(V)	ND		ND	μg/L		N/C 25
	DMAs	ND		ND	μg/L		N/C 25
	MMAs	ND		ND	μg/L		N/C 25
	Unk As Sp	3.917		3.872	μg/L		1% 25
B202845-MS1	Matrix Spike, (2042040-07	7)					
	As(III)	ND	104.5	104.4	μg/L	100% 75-125	
	As(V)	ND	97.10	104.3	μg/L	107% 75-125	
	DMAs	ND	100.0	102.3	μg/L	102% 75-125	
	MMAs	ND	97.40	97.33	μg/L	100% 75-125	
B202845-MSD1	Matrix Spike Duplicate, (2	2042040 07	`				
D202045-W3D1	As(III)	ND) 104.5	106.3	μg/L	102% 75-125	2% 25
	As(V)	ND	97.10	103.9	μg/L	107% 75-125	0.4% 25
	DMAs	ND	100.0	102.5	μg/L	103% 75-125	0.2% 25
	MMAs	ND	97.40	97.93	μg/L	101% 75-125	0.6% 25
			00	000	F-9' -	.0.70 .0 .20	0.075 _0
B202845-DUP2	Duplicate, (2042050-03)						
	As(III)	1.271		1.264	μg/L		0.6% 25
	As(V)	ND		ND	μg/L		N/C 25
	DMAs	ND		ND	μg/L		N/C 25
	MMAs	ND		ND	μg/L		N/C 25
	Unk As Sp	ND		ND	μg/L		N/C 25

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Accuracy & Precision Summary

Batch: B202845 Lab Matrix: Water Method: SOP BAL-4100

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B202845-MS2	Matrix Spike, (204205	0-03)					
	As(III)	1.271	104.5	109.1	μg/L	103% 75-125	
	As(V)	ND	97.10	101.7	μg/L	105% 75-125	
	DMAs	ND	100.0	103.8	μg/L	104% 75-125	
	MMAs	ND	97.40	100.4	μg/L	103% 75-125	
B202845-MSD2	Matrix Spike Duplicate	e, (2042050-03)				
	As(III)	1.271	104.5	110.3	μg/L	104% 75-125	1% 25
	As(V)	ND	97.10	101.2	μg/L	104% 75-125	0.5% 25
	DMAs	ND	100.0	104.5	μg/L	104% 75-125	0.7% 25
	MMAs	ND	97.40	100.6	μg/L	103% 75-125	0.3% 25

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Method Blanks & Reporting Limits

Batch: B202845 Matrix: Water

Method: SOP BAL-4100

Analyte: As(III)

Sample	Result	Units
B202845-BLK1	0.00	μg/L
B202845-BLK2	0.00	μg/L
B202845-BLK3	0.00	μg/L
B202845-BLK4	0.00	μg/L

Average: 0.000 **MDL**: 0.004 Limit: 0.021 MRL: 0.021

Analyte: As(V)

Sample	Result	Units
B202845-BLK1	0.004	μg/L
B202845-BLK2	0.002	μg/L
B202845-BLK3	0.003	μg/L
B202845-BLK4	0.004	μg/L

Average: 0.003 **MDL:** 0.004 Limit: 0.021 MRL: 0.021

Analyte: DMAs

Sample	Result	Units
B202845-BLK1	0.00	μg/L
B202845-BLK2	0.00	μg/L
B202845-BLK3	0.00	μg/L
B202845-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.005 Limit: 0.021 MRL: 0.021

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Method Blanks & Reporting Limits

Analyte: MMAs

Sample	Result	Units
B202845-BLK1	0.00	μg/L
B202845-BLK2	0.00	μg/L
B202845-BLK3	0.00	μg/L
B202845-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.004 Limit: 0.021 MRL: 0.021

Analyte: Unk As Sp

Sample	Result	Units
B202845-BLK1	0.00	μg/L
B202845-BLK2	0.00	μg/L
B202845-BLK3	0.00	μg/L
B202845-BLK4	0.00	μg/L

Average: 0.000 **MDL**: 0.005 Limit: 0.021 MRL: 0.021

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Sample Containers

	ID: 2042050-01 ple: MCM-05		Report Sample		Collected: 10/15/2020 Received: 10/16/2020				
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050		
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050		
	ID: 2042050-02		•	: Matrix: Water-D e Type: Sample		Collected: 10/15/2020 Received: 10/16/2020			
	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.		
A	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050		
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050		
	ID: 2042050-03 uple: RW-4		-	: Matrix: Water-D e Type: Sample			eted: 10/15/2020 ved: 10/16/2020		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050		
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050		
Sam	ID: 2042050-04 uple: RW-5		Sample	t Matrix: Water-D e Type: Sample		Recei	ted: 10/15/2020 ved: 10/16/2020		
Des		Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050		
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050		

BAL Report 2042050 Client PM: Kevin Herring Client Project: 92501055

Sample Containers

	D : 2042050-05 ple: RW-6		•	Matrix: Water-D			ted: 10/15/2020 ved: 10/16/2020
Des	Container	Size	Lot Preservation P-Lot		P-Lot	рН	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050
	D: 2042050-06			ted: 10/15/2020 ved: 10/16/2020			
Des	ple: DUP-2 Container	Size	Sample Type: Sample lize Lot Preservation P-Lot		P-Lot	pH	Ship. Cont.
		10 mL					Cooler -
Α	Vacutainer	10 IIIL	20-0160	EDTA (Vial)	n/a	n/a	2042050
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050
	D: 2042050-07 ple: FBL101520		•	Matrix: Water-D			ted: 10/15/2020 ved: 10/16/2020
Des	Container	Size	Lot	Preservation P-Lot		pH	Ship. Cont.
Α	Vacutainer	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050
В	XTRA_VOL	10 mL	20-0160	EDTA (Vial)	n/a	n/a	Cooler - 2042050

Shipping Containers

Cooler - 2042050

Received: October 16, 2020 10:25 Tracking No: 8126 1271 3299 via FedEx

Coolant Type: Ice Temperature: 1.6 °C **Description:** Cooler Damaged in transit? No Returned to client? No Comments: IR# 21

Custody seals present? Yes **Custody seals intact?** Yes COC present? Yes

Chain of Custody

PASI Charlotte Laboratory

Workorder: 92501055 Workorder Name: MCMANUS AS SPECIATION Results Requested By: 10/30/2020 Report / Invoice To Requested Analysis Kevin Herring P.O. KLH92501055 Pace Analytical Charlotte 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 Phone 1(704)875-9092 **Brooks Applied Labs** Email: kevin.herring@pacelabs.com 18804 North Creek Pkwy, Suite 100 Bothell, WA 98011 State of Sample Origin: GA Collect Gener Item Sample ID Date/Time Lab ID Matrix LAB USE ONLY MCM-05 10/15/2020 13:48 92501055001 Water Х DPZ-2 10/15/2020 16:00 て 92501055002 Water X 3 RW-4 10/15/2020 14:46 7 92501055003 Water RW-5 10/15/2020 15:55 92501055004 Z Water Х RW-6 10/15/2020 14:03 92501055005 Water Х 7 6 DUP-2 10/15/2020 00:00 2 92501055006 Water Х FBL101520 10/15/2020 17:36 て 92501055007 Water X Comments **Transfers** Released By Date/Time Received By Date/Time 2 3 Cooler Temperature on Receipt °C Custody Seal Y or N Received on Ice Y or N Samples Intact Y or N

BROOKS Chain-of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

Received by: Att For BALUS	Ponly BAL Report 2042050 Date: O 16 16
Work Order ID:	Time: 10:25
Project ID:	

Client: Georgia Power Company PO Number: Contact: Kristen Jurinko Phone: 404-506-7116 Client Project ID: Email: Knjurink@ South Samples Collected By: Kevin Stephenson, Verenica Fay, Will Lacker						711G souther	nco.co	m E	Mailing A Email R BAL PM	eceipt	Confir	Atlant matior	a, <u>G</u> A 1? ()	3030 es/No	8	
	uested TAT	Collect	ion	Clie	nt Sampl	e Info				ВА	L Anal	yses R	lequire	ed	Iu	Comments
	iness days) 20 (standard) 5* 10* 5* Other	Date	Time	Matrix Type	Number of Containers	Field Filtered? (Yes/No)	Preservation Type HCI/HNO ₃ /Other	Total Hg, EPA 1631	Methyl Hg, EPA 1630	ICP-MS Metals As (specify) זפימן Rec. Diss	As Species (specify) Inorg.(II)(O(MMA)(DMA)	Se Species (specify) Se(VI), Se(VI), SeCN, Uknown	Filtration	Other (specify) sum of unknown As	Other (specify)	
	Sample ID	ä	Ē	ž	ž	نٿڪ	P S	2	ž	∑ (§	As	Sec	匝	\$ 9	ŏ ∣	Specify Here
1	MCM-05	10/15/20	1348	GW	2	Υ	Tice			×	×			×		
2	DPZ-2	10/15/20	1600	GW	2	Y	Iœ			X	X			X		
3	RW-4	10/15/20	1446	GW	2	Y	Ice			×	×			X		
4	RW-5	10 15 /20	1555	GW	2	Y	30I			×	X			×		
5	RW-6	10 /15/20	1403	GW	2	Y	Tce			×	X			X		
6	DUP-2	10 15 20		GW	2	Y	Tee			×	×			×		
7	FBL101520	10 15/20	1736	GW	2	Y	Tee			×	×			X		
8																
9																
10																
	Trip Blank															
Rel	inquished By: William La	aker Date	e: 10/15/	20 Time:	1800	Re	elinquis	shed B	y:				Da	ate:		Time:
Re	ceived By: Fedex	Date	e: 10/15/	ZO Time:	1800	To	otal Nu	mber o	of Pacl	kages:						
Pag	Page of List Hazardous Contaminants: samples@brooksapplied.com brooksapplied.com															

ATTACHMENT 2

Bench-scale Treatability Testing for Soluble Arsenic and Lithium in Groundwater (Phase I and Phase II Summary Report) (PeroxyChem 2020)

9 September 2020

Stephen K. Wilson, P.G.
Principal
Resolute Consulting
1003 Weatherstone Parkway, Suite 320
Woodstock, Georgia 30188

Subject: Bench-scale Treatability Testing for Soluble Arsenic and Lithium in Groundwater (Phase I and Phase II Summary Report)

Dear Mr. Wilson:

Bench-scale treatability testing was conducted using PeroxyChem's MetaFix® reagents and soil and groundwater samples collected from the Dike area of an industrial site in Georgia (the Site). The objective of the work was to evaluate the efficacy of MetaFix® reagents for removal of soluble arsenic and lithium in groundwater at the Site. The treatability testing was conducted by Resolution Partners LLC at their laboratory in Madison Wisconsin, under the direction of PeroxyChem.

Baseline Groundwater Characterization

A plastic cooler containing groundwater (2.0 gallons) and soil (1 gallon) samples packed in ice was received by Resolution Partners LLC at their laboratory in Madison WI on 24 March 2020. The groundwater was labeled as MCM-06 and the soil was labeled as DPZ-2 (7-10). The soil sample was homogenized, and subsamples of the soil and groundwater were subjected to baseline characterization including pH, arsenic, and lithium.

Subsamples of the homogenized groundwater and soil samples were submitted to URSUS Laboratories (Mt. Horeb WI) for determination of the as-received arsenic and lithium concentrations by US EPA Method 6010 (inductively coupled plasma—optical emission spectrometry). The pH of both soil and groundwater were determined in-house by Resolution Partners. The results are presented in Table 1.

Arsenic and lithium concentrations in the MCM-06 groundwater were 220 μ g/L and 120 μ g/L, respectively. The DPZ-2 (7-10) soil analysis indicated arsenic and lithium concentrations of 4,100 μ g/kg and 12,000 μ g/kg, respectively. The pH of the MCM-06 groundwater was near neutral at 6.95 while the DPZ-2 (7-10) soil was somewhat more alkaline (7.58).

Following consultation with Resolute, it was agreed to proceed with the bench-scale treatability testing using the as-received groundwater and soil samples (i.e., no spiking of arsenic or lithium was required).

Table 1: Baseline characterization of soil and groundwater samples from the Dike site.

Groundwater & Soil Samples	Description	рН	Analyte (μg/L groundwater, μg/kg soil)			
			Arsenic	Lithium		
MCM-06 (Dike site groundwater)	Clear, no odor.	6.95	220	120		
DPZ-2 (7-10) (Dike site soil)	Poorly graded sand (SP), fine sand, non-plastic, light brownish grey 10YR6/2, no odor, moist.	7.58	4,100	12,000		

Treatability Test Set-up

To determine the influence of the reagents and their dosages on soluble arsenic and lithium concentrations, amber glass microcosms were loaded with 200 mL of MCM-06 groundwater and 20.0 g of DPZ-2 (7-10) soil and then amended with the prescribed mass of each reagent. The microcosms were sealed with Teflon®-lined lids and then incubated for 14 days with daily tumbling. The control contained only groundwater and soil (i.e., no reagent was added). Upon completion of the incubation, samples were filtered through a 0.45 μ m glass fiber filter and the filtered groundwater was analyzed for total arsenic.

Treatability Test Results: Phase I

The influence of these treatments on total soluble arsenic and lithium in the filtered groundwater is presented in Table 2.

Table 2. Influence of Phase I treatments on soluble As and Li in the MCM-06 groundwater/DPZ-2 (7-10) soil blend.

Each microcosm contained DPZ-2 (7-10) soil (20.0 g) + MCM-06 groundwater (200 mL)								
	Dosage	pH	Total Arsenic	Total Lithium				
Identifier	(% w/w)	(s.u.)	(μg/L groundwater; μg/kg soil)					
As-received Groundwater	-	6.95	220	120				
As-received Soil	-	7.58	4,100	12,000				
Untreated Control	-	6.45	6.0	100				
MetaFix® 1	1.25	6.14	<3.0	130				
MetaFix® 2	1.25	6.20	<3.0	120				
MetaFix® 3	1.0	8.56	16	49				
MetaFix® 4	1.0	7.88	23	74				
MetaFix® 5	0.75	5.25	170	140				
MetaFix® 6	1.0	6.27	<3.0	130				

Arsenic

Substantial reductions in soluble arsenic concentration, as compared to the as received groundwater, and the untreated control, were observed in response to three of the treatments (MetaFix 1, MetaFix 2, and MetaFix 6). In response to these treatments, soluble arsenic was reduced to less than the method detection limit of 3.0 μ g/L. Other treatments reduced arsenic as compared to the as-received groundwater but not as compared with the untreated control.

The observed reduction in soluble arsenic in the untreated control was most probably caused by coprecipitation of arsenic with iron as ferric arsenate (Equation 1).

$$Fe^{+3} + AsO_4^{-3} \rightarrow FeAsO_4 \tag{1}$$

Such coprecipitation may have been promoted by oxic, near neutral pH conditions in the untreated control as (a) native ferrous iron (Fe^{+2}) was oxidized to ferric form (Fe^{+3}) and the uncharged form of arsenic (i.e., As(III), arsenite) was oxidized to the anionic form (As(V), arsenate). If trace amounts of barium were present in the groundwater it is also possible that soluble arsenic in the untreated control may have precipitated as barium arsenate ($Ba_3As_2O_8$). Both ferric arsenate and barium arsenate have aqueous solubilities below $0.3 \mu g/L$.

Lithium

Lithium in the untreated control was 100 μ g/L, comparable to that determined for the as-received groundwater (120 μ g/L). Only one treatment (MetaFix 3) supported appreciable removal of soluble lithium. In response to this treatment soluble lithium was reduced about 60% as compared to the as-received groundwater (i.e., from 120 μ g/L to 49 μ g/L). The MetaFix 3 treatment was designed to promote precipitation and coprecipitation of lithium (Li⁺) in the form of low solubility minerals with broad pH stability. The observed degree of lithium removal is high enough to serve as proof of concept. We are confident that greater lithium removal efficiency could be achieved with optimization of the treatment conditions including pH, reagent dosage, and a longer reaction period.

None of the treatments was found to be effective for removal of both soluble arsenic and soluble lithium. As a result, a second treatability investigation designed to focus on increasing lithium removal and combining the more effective treatments for arsenic with the most effective treatment for lithium. The set-up used in the second treatability test (Phase II) was the same as that used in the first treatability test (Phase I); however, the incubation period was increased from 14 days to 28 days.

Treatability Test Results: Phase II

The influence of the Phase II treatments on pH, soluble arsenic and soluble lithium in the groundwater/soil blend is presented in Table 3.

<u>Arsenic</u>

Several of the MetaFix treatments produced substantial reductions in soluble arsenic concentration as compared to the as received groundwater. The most effective treatment for arsenic was MetaFix 7 which

reduced soluble As to below the method detection limit of $5.0 \,\mu\text{g/L}$. It should also be noted that arsenic in the untreated control was below the method detection limit of $5.0 \,\mu\text{g/L}$. A discussion of the chemistry most probably involved in removal of soluble arsenic in the control is provided in the section on Phase I test results (above).

Table 3: Influence of Phase II treatments on soluble As and Li in the MCM-06 groundwater/DPZ-2 soil blend.

Each microcosm contained DPZ-2 (7-10) soil (20.0 g) + MCM-06 groundwater (200 mL)							
Identifier	Dosage	Final pH	Total Arsenic	Total Lithium			
	(% w/w)	(s.u.)	(μg/L groundw	vater; μg/kg soil)			
As-received	_	6.95	220	120			
Groundwater	-	0.93	220	120			
As-received Soil	-	7.58	4,100	12,000			
Untreated Control	-	5.31	<5.0	48			
MetaFix® 1	1.0	8.02	7.0	26			
MetaFix® 2	1.5	8.51	7.0	23			
MetaFix® 3	2.25	8.86	16	15			
MetaFix® 4	1.75	8.03	10	33			
MetaFix® 5	1.5	8.05	8.0	30			
MetaFix® 6	1.5	7.87	9.0	32			
MetaFix® 7	1.25	7.77	<6.0	31			
MetaFix® 8	1.75	8.26	9.0	34			
MetaFix® 9	1.5	8.11	11	33			

<u>Lithium</u>

Lithium in the untreated control was found to be 48 μ g/L as compared to 120 μ g/L in the as-received groundwater. A relatively stable concentration of lithium in the untreated control is expected, because lithium in its most common and soluble form (Li⁺) is the least reactive of the alkali metals. Relative to the untreated control, all the MetaFix treatments reduced soluble lithium. The most effective treatment for lithium was MetaFix 3 which reduced by almost 70% to 15 μ g/L. It should be noted that the MetaFix 7 treatment reduced soluble lithium from 48 μ g/L to 31 μ g/L and also achieved complete removal of soluble arsenic.

Other Metals

Samples from MetaFix 7 treatment and the untreated control were submitted for determination of a range of other metals and the results are presented in Table 4.

Table 4: Influence of MetaFix® 7 treatment on concentrations of selected metals.

Control or	Analyte (μg/L)												
Treatment	As	Li	Ва	Ве	Cd	Co	Cr	Hg	Мо	Pb	Sb	Se	TI
Control	<5.0	48	250	1.0	3.0	49	<5.0	<50	<10	<30	<50	<30	<10
MetaFix 7	<6.0	31	140	<1.0	<3.0	<10	<5.0	<50	91	<30	<50	<30	<10

Summary and Recommendations

Given the relatively short reaction period (14 days in Phase I and 28 days in Phase II) we believe that the treatability test results should be viewed as conservative and that continued removal of both arsenic and lithium may be expected over time at the Site. Since MetaFix 7 achieved complete removal of soluble arsenic as well as substantial removal of soluble lithium we recommend this treatment for application to groundwater at the Site.

I would be pleased to answer any questions you may have about the treatability testing and this report.

Sincerely,

Alan Seech, Ph.D.

Senior Manager – Technology Applications

PeroxyChem Environmental Solutions

Copy: Dr. Patrick Hicks, PeroxyChem

Arcadis, Inc.

2389 Paces Ferry Road SE

Suite 900

Atlanta, Georgia 30339

Tel 770 431 8666

Fax 770 435 2666

APPENDIX D

Surface Water Sampling Laboratory Results and Field Sampling Forms

October 14, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory between September 25, 2021 and October 01, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Woole D'oler

Nicole D'Oleo nicole.d'oleo@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Joe Booth, Resolute Environmental & Water Resources
Trent Godwin, Resolute Environmental & Water Resources
Kristen Jurinko
Ms. Lauren Petty, Southern Company
Kevin Stephenson, Resolute Environmental & Water
Resources Consulting, LLC
Stephen Wilson, Resolute Environmental & Water
Resources Consulting, LLC

CERTIFICATIONS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712

South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40

South Carolina Certification #: 99030001

Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92563385001	T1-1HT	Water	09/23/21 12:07	09/25/21 11:00
92563385002	T1-2HT	Water	09/23/21 12:13	09/25/21 11:00
92563385003	T1-2HTS	Water	09/23/21 12:17	09/25/21 11:00
92563385004	T1-3HT	Water	09/23/21 12:28	09/25/21 11:00
92563385005	T1-3HTS	Water	09/23/21 12:23	09/25/21 11:00
92563385006	T1-4HT	Water	09/23/21 14:09	09/25/21 11:00
92563385007	T1-4HTS	Water	09/23/21 14:02	09/25/21 11:00
92563385008	T2-1HT	Water	09/23/21 11:41	09/25/21 11:00
92563385009	T2-2HT	Water	09/23/21 11:49	09/25/21 11:00
92563385010	T2-2HTS	Water	09/23/21 11:53	09/25/21 11:00
92563385011	T2-3HT	Water	09/23/21 12:52	09/25/21 11:00
92563385012	T2-3HTS	Water	09/23/21 12:45	09/25/21 11:00
92563385013	T2-4HT	Water	09/23/21 13:47	09/25/21 11:00
92563385014	T2-4HTS	Water	09/23/21 13:40	09/25/21 11:00
92563385015	T3-1HT	Water	09/23/21 11:16	09/25/21 11:00
92563385016	T3-2HT	Water	09/23/21 11:25	09/25/21 11:00
92563385017	T3-2HTS	Water	09/23/21 11:30	09/25/21 11:00
92563385018	T3-3HT	Water	09/23/21 13:13	09/25/21 11:00
92563385019	T3-3HTS	Water	09/23/21 13:07	09/25/21 11:00
92563385020	T3-4HT	Water	09/23/21 13:29	09/25/21 11:00
92563385021	T3-4HTS	Water	09/23/21 13:24	09/25/21 11:00
92563385022	T4-1HB	Water	09/22/21 12:56	09/25/21 11:00
92563385023	T4-1HS	Water	09/22/21 12:51	09/25/21 11:00
92563385024	T4-2HB	Water	09/22/21 13:08	09/25/21 11:00
92563385025	T4-2HS	Water	09/22/21 13:03	09/25/21 11:00
92563385026	T4-3HB	Water	09/22/21 13:23	09/25/21 11:00
92563385027	T4-3HS	Water	09/22/21 13:15	09/25/21 11:00
92563385028	T4-4HB	Water	09/22/21 13:39	09/25/21 11:00
92563385029	T4-4HS	Water	09/22/21 13:35	09/25/21 11:00
92563385030	T4-1L	Water	09/22/21 19:24	09/25/21 11:00
92563385031	T4-2L	Water	09/22/21 19:11	09/25/21 11:00
92563385032	T4-3L	Water	09/22/21 19:05	09/25/21 11:00
92563385033	T4-4L	Water	09/22/21 18:17	09/25/21 11:00
92563385034	BG-2HT	Water	09/22/21 10:21	09/25/21 11:00
92563385035	DUP-1	Water	09/22/21 00:00	09/25/21 11:00
92563385036	DUP-2	Water	09/23/21 00:00	09/25/21 11:00
92563385037	DUP-3	Water	09/23/21 00:00	09/25/21 11:00

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92563385038	FB-1	Water	09/23/21 15:10	09/25/21 11:00
92563385039	EB-1	Water	09/23/21 15:15	09/25/21 11:00
92563385040	T1-1LT	Water	09/30/21 14:10	10/01/21 11:10
92563385041	T1-2LT	Water	09/30/21 14:07	10/01/21 11:10
92563385042	T1-3LT	Water	09/30/21 14:00	10/01/21 11:10
92563385043	T1-4LT	Water	09/30/21 10:54	10/01/21 11:10
92563385044	T2-2LT	Water	09/30/21 13:45	10/01/21 11:10
92563385045	T2-3LT	Water	09/30/21 13:33	10/01/21 11:10
92563385046	T2-4LT	Water	09/30/21 11:09	10/01/21 11:10
92563385047	T3-2LT	Water	09/30/21 12:53	10/01/21 11:10
92563385048	T3-3LT	Water	09/30/21 12:19	10/01/21 11:10
92563385049	T3-4LT	Water	09/30/21 11:25	10/01/21 11:10
92563385050	BG-1LT	Water	09/30/21 10:27	10/01/21 11:10
92563385051	DUP-4	Water	09/30/21 00:00	10/01/21 11:10
92563385052	DUP-5	Water	09/30/21 00:00	10/01/21 11:10
92563385053	FB-2	Water	09/30/21 15:15	10/01/21 11:10
92563385054	EB-2	Water	09/30/21 15:20	10/01/21 11:10

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92563385001	T1-1HT	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385002	T1-2HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385003	T1-2HTS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385004	T1-3HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385005	T1-3HTS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385006	T1-4HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385007	T1-4HTS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385008	T2-1HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385009	T2-2HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385010	T2-2HTS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385011 T2-3H	T2-3HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385012	T2-3HTS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385013	T2-4HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385014	T2-4HTS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385015	T3-1HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 300.0 Rev 2.1 1993		3	PASI-A
92563385016	T3-2HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385017	T3-2HTS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385018 T3-3HT	EPA 6010D	CBV	4	PASI-A	
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385019	T3-3HTS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385020	T3-4HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385021	T3-4HTS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385022	T4-1HB	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385023	T4-1HS	EPA 6010D	CBV	4	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385024	T4-2HB	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
	SM 2540C-2011	ZMC	1	PASI-A	
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385025	T4-2HS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
	SM 2320B-2011	SMK	3	PASI-A	
	SM 2540C-2011	ZMC	1	PASI-A	
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385026	T4-3HB	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385027	T4-3HS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385028	T4-4HB	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385029	T4-4HS	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385030	T4-1L	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385031	T4-2L	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385032	T4-3L	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385033 T4-4L	T4-4L	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385034	BG-2HT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385035	DUP-1	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385036	DUP-2	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2563385037	DUP-3	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92563385038	FB-1	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92563385039	EB-1	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	CRW	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2563385040	T1-1LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2563385041	T1-2LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92563385042	T1-3LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2563385043	T1-4LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2563385044	T2-2LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92563385045	T2-3LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2563385046	T2-4LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2563385047	T3-2LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92563385048 T3-3LT	T3-3LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2563385049	T3-4LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2563385050	BG-1LT	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2563385051	DUP-4	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2563385052	DUP-5	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92563385053	FB-2	EPA 6010D	DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92563385054	EB-2	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2563385001	T1-1HT					
	Performed by	CUSTOME R			09/27/21 11:42	
	рН	7.05	Std. Units		09/27/21 11:42	
EPA 6010D	Calcium	126	mg/L	2.0	10/05/21 07:28	M1
EPA 6010D	Magnesium	366	mg/L	2.0	10/05/21 07:28	M1
EPA 6010D	Potassium	122	mg/L	100	10/05/21 07:28	M1
EPA 6010D	Sodium	3230	mg/L	500	10/05/21 20:47	
PA 6020B	Arsenic	0.0027J	mg/L	0.020	09/30/21 21:49	
PA 6020B	Boron	1.7J	mg/L	2.5	09/29/21 16:45	M1
PA 6020B	Lithium	0.060	mg/L	0.050	09/30/21 21:49	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	66.7	mg/L	5.0	10/06/21 16:12	
SM 2320B-2011	Alkalinity, Total as CaCO3	66.7	mg/L	5.0	10/06/21 16:12	
SM 2540C-2011	Total Dissolved Solids	11800	mg/L	1250	09/29/21 11:29	
PA 300.0 Rev 2.1 1993	Chloride	4790	mg/L	90.0	09/28/21 13:17	
PA 300.0 Rev 2.1 1993	Sulfate	668	mg/L	20.0	09/27/21 21:50	
2563385002	T1-2HT					
	Performed by	CUSTOME R			09/27/21 11:42	
	рН	6.97	Std. Units		09/27/21 11:42	
PA 6010D	Calcium	185	mg/L	2.0	10/05/21 07:41	
PA 6010D	Magnesium	538	mg/L	2.0	10/05/21 07:41	
PA 6010D	Potassium	177	mg/L	100	10/05/21 07:41	
PA 6010D	Sodium	4650	mg/L	500	10/05/21 04:47	
PA 6020B	Arsenic	0.0025J	mg/L	0.020	09/30/21 22:04	
PA 6020B	Boron	2.1J	mg/L	2.5	09/30/21 19:12	
PA 6020B	Lithium	0.076	mg/L	0.050	09/30/21 22:04	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	87.9	mg/L	5.0	10/06/21 16:18	
SM 2320B-2011	Alkalinity, Total as CaCO3	87.9	mg/L	5.0	10/06/21 16:18	
M 2540C-2011	Total Dissolved Solids	18300	mg/L	2500	09/29/21 11:29	
PA 300.0 Rev 2.1 1993	Chloride	7100	mg/L	90.0	09/28/21 13:33	
PA 300.0 Rev 2.1 1993	Sulfate	982	mg/L	20.0	09/27/21 22:06	
2563385003	T1-2HTS					
	Performed by	CUSTOME R			09/27/21 11:42	
	рН	7.15	Std. Units		09/27/21 11:42	
PA 6010D	Calcium	124	mg/L	-	10/05/21 07:44	
PA 6010D	Magnesium	351	mg/L	2.0	10/05/21 07:44	
PA 6010D	Potassium	118	mg/L	100	10/05/21 07:44	
PA 6010D	Sodium	3060	mg/L	500	10/05/21 04:50	
PA 6020B	Arsenic	0.0025J	mg/L	0.020	09/30/21 22:07	
PA 6020B	Boron	1.5J	mg/L	2.5	09/30/21 19:15	
PA 6020B	Lithium	0.057	mg/L	0.050	09/30/21 22:07	
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	64.6	mg/L	5.0	10/06/21 16:25	
SM 2320B-2011	Alkalinity, Total as CaCO3	64.6	mg/L	5.0	10/06/21 16:25	
SM 2540C-2011	Total Dissolved Solids	12000	mg/L	1250	09/29/21 11:29	
PA 300.0 Rev 2.1 1993	Chloride	4750	mg/L	90.0	09/28/21 13:49	
PA 300.0 Rev 2.1 1993	Sulfate	1670	mg/L	50.0	09/27/21 22:21	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result _	Units	Report Limit	Analyzed	Qualifier
2563385004	T1-3HT					
	Performed by	CUSTOME R			09/27/21 11:42	
	рН	6.99	Std. Units		09/27/21 11:42	
EPA 6010D	Calcium	173	mg/L	2.0	10/05/21 07:48	
EPA 6010D	Magnesium	499	mg/L	2.0	10/05/21 07:48	
EPA 6010D	Potassium	166	mg/L	100	10/05/21 07:48	
EPA 6010D	Sodium	4400	mg/L	500	10/05/21 04:53	
PA 6020B	Arsenic	0.0021J	mg/L	0.020	09/30/21 22:14	
PA 6020B	Boron	2.0J	mg/L	2.5	09/30/21 19:22	
PA 6020B	Lithium	0.073	mg/L	0.050	09/30/21 22:14	
M 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	90.2	mg/L	5.0	10/06/21 16:31	
SM 2320B-2011	Alkalinity, Total as CaCO3	90.2	mg/L	5.0	10/06/21 16:31	
SM 2540C-2011	Total Dissolved Solids	15700	mg/L	2500	09/29/21 11:31	
EPA 300.0 Rev 2.1 1993	Chloride	6880	mg/L	90.0	09/28/21 14:04	
PA 300.0 Rev 2.1 1993	Sulfate	953	mg/L	50.0	09/27/21 22:37	
2563385005	T1-3HTS					
	Performed by	CUSTOME R			09/27/21 11:43	
	рН	7.08	Std. Units		09/27/21 11:43	
PA 6010D	Calcium	131	mg/L	2.0	10/05/21 07:51	
PA 6010D	Magnesium	375	mg/L	2.0	10/05/21 07:51	
PA 6010D	Potassium	124	mg/L	100	10/05/21 07:51	
PA 6010D	Sodium	3300	mg/L	500	10/05/21 04:56	
PA 6020B	Arsenic	0.0023J	mg/L	0.020	09/30/21 22:18	
PA 6020B	Boron	1.7J	mg/L	2.5	09/30/21 19:26	
PA 6020B	Lithium	0.060	mg/L	0.050	09/30/21 22:18	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	73.0	mg/L	5.0	10/06/21 16:38	
SM 2320B-2011	Alkalinity, Total as CaCO3	73.0	mg/L	5.0	10/06/21 16:38	
SM 2540C-2011	Total Dissolved Solids	12900	mg/L	1250	09/29/21 11:31	
PA 300.0 Rev 2.1 1993	Chloride	5000	mg/L	50.0	09/27/21 22:53	
PA 300.0 Rev 2.1 1993	Sulfate	698	mg/L	50.0	09/27/21 22:53	
2563385006	T1-4HT					
	Performed by	CUSTOME R			09/27/21 11:43	
	рН	6.98	Std. Units		09/27/21 11:43	
PA 6010D	Calcium	152	mg/L	2.0	10/05/21 07:54	
PA 6010D	Magnesium	439	mg/L	2.0	10/05/21 07:54	
PA 6010D	Potassium	144	mg/L	100	10/05/21 07:54	
PA 6010D	Sodium	3900	mg/L	500	10/05/21 05:00	
PA 6020B	Arsenic	0.0022J	mg/L	0.020	09/30/21 22:22	
PA 6020B	Boron	1.9J	mg/L	2.5	09/30/21 19:29	
PA 6020B	Lithium	0.069	mg/L	0.050	09/30/21 22:22	
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	81.1	mg/L	5.0	09/30/21 17:18	
SM 2320B-2011	Alkalinity, Total as CaCO3	81.1	mg/L	5.0	09/30/21 17:18	
M 2540C-2011	Total Dissolved Solids	15400	mg/L	2500	09/29/21 11:31	
PA 300.0 Rev 2.1 1993	Chloride	7960	mg/L	90.0	09/27/21 23:40	
PA 300.0 Rev 2.1 1993	Sulfate	1110	mg/L	90.0	09/27/21 23:40	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2563385007	T1-4HTS					
	Performed by	CUSTOME R			09/27/21 11:43	
	рН	7.14	Std. Units		09/27/21 11:43	
EPA 6010D	Calcium	136	mg/L	2.0	10/05/21 08:11	
EPA 6010D	Magnesium	402	mg/L	2.0	10/05/21 08:11	
EPA 6010D	Potassium	130	mg/L	100	10/05/21 08:11	
EPA 6010D	Sodium	3450	mg/L	500	10/05/21 05:03	
EPA 6020B	Arsenic	0.0021J	mg/L	0.020	09/30/21 22:29	
EPA 6020B	Boron	1.7J	mg/L	2.5	09/30/21 19:33	
PA 6020B	Lithium	0.066	mg/L	0.050	09/30/21 22:29	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	74.9	mg/L	5.0	09/30/21 17:28	
SM 2320B-2011	Alkalinity, Total as CaCO3	74.9	mg/L	5.0	09/30/21 17:28	
SM 2540C-2011	Total Dissolved Solids	13000	mg/L	1250	09/29/21 11:31	
EPA 300.0 Rev 2.1 1993	Chloride	5270	mg/L	90.0	09/27/21 23:56	
EPA 300.0 Rev 2.1 1993	Sulfate	717	mg/L	90.0	09/27/21 23:56	
2563385008	T2-1HT	, . ,	mg/L	30.0	00/21/21 20:00	
2303363006	Performed by	CUSTOME			09/27/21 11:43	
	•	R			09/21/21 11.43	
	рН	6.89	Std. Units		09/27/21 11:43	
PA 6010D	Calcium	124	mg/L	2.0	10/05/21 08:14	
PA 6010D	Magnesium	363	mg/L	2.0	10/05/21 08:14	
PA 6010D	Potassium	118	mg/L	100	10/05/21 08:14	
PA 6010D	Sodium	3100	mg/L	500	10/05/21 05:06	
PA 6020B	Arsenic	0.0020J	mg/L	0.020	09/30/21 22:32	
PA 6020B	Boron	1.4J	mg/L	2.5	09/30/21 19:40	
PA 6020B	Lithium	0.054	mg/L	0.050	09/30/21 22:32	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	68.7	mg/L	5.0	09/30/21 17:36	
SM 2320B-2011	Alkalinity, Total as CaCO3	68.7	mg/L	5.0	09/30/21 17:36	
SM 2540C-2011	Total Dissolved Solids	11700	mg/L	1250	09/29/21 11:31	
PA 300.0 Rev 2.1 1993	Chloride	4750	mg/L	90.0	09/28/21 00:12	
PA 300.0 Rev 2.1 1993	Sulfate	638	mg/L	90.0	09/28/21 00:12	
2563385009	T2-2HT					
	Performed by	CUSTOME			09/27/21 11:44	
	рН	R 6.87	Std. Units		09/27/21 11:44	
PA 6010D	Calcium	165	mg/L	2.0	10/05/21 08:17	
EPA 6010D	Magnesium	496	mg/L	2.0	10/05/21 08:17	
EPA 6010D	Potassium	160	•	100	10/05/21 08:17	
PA 6010D	Sodium	4250	mg/L	500	10/05/21 05:17	
			mg/L			
PA 6020B	Arsenic	0.0032J	mg/L	0.020	09/30/21 22:43	
PA 6020B	Boron	1.9J	mg/L	2.5	09/30/21 19:44	
PA 6020B	Lithium	0.071	mg/L	0.050	09/30/21 22:43	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	83.1	mg/L	5.0	09/30/21 17:43	
SM 2320B-2011	Alkalinity, Total as CaCO3	83.1	mg/L	5.0	09/30/21 17:43	
SM 2540C-2011	Total Dissolved Solids	16400	mg/L	2500	09/29/21 11:31	
PA 300.0 Rev 2.1 1993	Chloride	6450	mg/L	90.0	09/28/21 00:27	M1
EPA 300.0 Rev 2.1 1993	Sulfate	884	mg/L	90.0	09/28/21 00:27	M1

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifier
2563385010	T2-2HTS					
	Performed by	CUSTOME R			09/27/21 11:44	
	рН	7.05	Std. Units		09/27/21 11:44	
EPA 6010D	Calcium	113	mg/L	2.0	10/05/21 08:20	
EPA 6010D	Magnesium	330	mg/L	2.0	10/05/21 08:20	
EPA 6010D	Potassium	106	mg/L	100	10/05/21 08:20	
PA 6010D	Sodium	2810	mg/L	500	10/05/21 05:19	
PA 6020B	Arsenic	0.0024J	mg/L	0.020	09/30/21 22:47	
PA 6020B	Boron	1.5J	mg/L	2.5	09/30/21 19:47	
PA 6020B	Lithium	0.048J	mg/L	0.050	09/30/21 22:47	
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	65.2	mg/L	5.0	09/30/21 17:51	
SM 2320B-2011	Alkalinity, Total as CaCO3	65.2	mg/L	5.0	09/30/21 17:51	
M 2540C-2011	Total Dissolved Solids	10400	mg/L	1250	09/29/21 11:31	
PA 300.0 Rev 2.1 1993	Chloride	4400	mg/L	90.0	09/28/21 01:14	
PA 300.0 Rev 2.1 1993	Sulfate	585	mg/L	90.0	09/28/21 01:14	
2563385011	T2-3HT					
	Performed by	CUSTOME R			09/27/21 11:44	
	рН	6.96	Std. Units		09/27/21 11:44	
PA 6010D	Calcium	172	mg/L	2.0	10/05/21 08:24	
PA 6010D	Magnesium	516	mg/L	2.0	10/05/21 08:24	
PA 6010D	Potassium	166	mg/L	100	10/05/21 08:24	
PA 6010D	Sodium	4370	mg/L	500	10/05/21 05:23	
PA 6020B	Arsenic	0.0026J	mg/L	0.020	09/30/21 22:50	
PA 6020B	Boron	2.2J	mg/L	2.5	09/30/21 19:51	
PA 6020B	Lithium	0.078	mg/L	0.050	09/30/21 22:50	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	84.0	mg/L	5.0	09/30/21 17:59	
SM 2320B-2011	Alkalinity, Total as CaCO3	84.0	mg/L	5.0	09/30/21 17:59	
SM 2540C-2011	Total Dissolved Solids	16200	mg/L	2500	09/29/21 11:31	
PA 300.0 Rev 2.1 1993	Chloride	6700	mg/L	90.0	09/28/21 01:30	
PA 300.0 Rev 2.1 1993	Sulfate	918	mg/L	90.0	09/28/21 01:30	
2563385012	T2-3HTS					
	Performed by	CUSTOME R			09/27/21 11:45	
	рН	7.18	Std. Units		09/27/21 11:45	
PA 6010D	Calcium	104	mg/L	2.0	10/05/21 08:27	
PA 6010D	Magnesium	303	mg/L	2.0	10/05/21 08:27	
PA 6010D	Potassium	97.6J	mg/L	100	10/05/21 08:27	
PA 6010D	Sodium	2570	mg/L	500	10/05/21 05:26	
PA 6020B	Arsenic	0.0023J	mg/L	0.020	09/30/21 20:22	
PA 6020B	Boron	1.4	mg/L	1.0	09/30/21 20:22	
PA 6020B	Lithium	0.048J	mg/L	0.050	09/30/21 20:22	
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	61.5	mg/L	5.0	09/30/21 18:22	
M 2320B-2011	Alkalinity, Total as CaCO3	61.5	mg/L	5.0	09/30/21 18:22	
SM 2540C-2011	Total Dissolved Solids	10000	mg/L	1250	09/29/21 11:31	
PA 300.0 Rev 2.1 1993	Chloride	4090	mg/L	90.0	09/28/21 01:46	
PA 300.0 Rev 2.1 1993	Sulfate	540	mg/L	90.0	09/28/21 01:46	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
2563385013	T2-4HT					
	Performed by	CUSTOME R			09/27/21 11:45	
	рН	6.96	Std. Units		09/27/21 11:45	
EPA 6010D	Calcium	154	mg/L	2.0	10/05/21 08:30	
EPA 6010D	Magnesium	460	mg/L	2.0	10/05/21 08:30	
EPA 6010D	Potassium	148	mg/L	100	10/05/21 08:30	
EPA 6010D	Sodium	3930	mg/L	500	10/05/21 05:29	
PA 6020B	Arsenic	0.0019J	mg/L	0.020	09/30/21 22:58	
EPA 6020B	Boron	1.9J	mg/L	2.5	09/30/21 20:18	
PA 6020B	Lithium	0.064	mg/L	0.050	09/30/21 22:58	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	77.1	mg/L	5.0	09/30/21 18:29	
SM 2320B-2011	Alkalinity, Total as CaCO3	77.1	mg/L	5.0	09/30/21 18:29	
SM 2540C-2011	Total Dissolved Solids	13600	mg/L	1250	09/29/21 11:31	
EPA 300.0 Rev 2.1 1993	Chloride	5670	mg/L	90.0	09/28/21 02:01	
EPA 300.0 Rev 2.1 1993	Sulfate	768	mg/L	90.0	09/28/21 02:01	
2563385014	T2-4HTS					
	Performed by	CUSTOME R			09/27/21 11:47	
	рН	7.09	Std. Units		09/27/21 11:47	
PA 6010D	Calcium	130	mg/L	2.0	10/05/21 08:33	
PA 6010D	Magnesium	381	mg/L	2.0	10/05/21 08:33	
PA 6010D	Potassium	123	mg/L	100	10/05/21 08:33	
PA 6010D	Sodium	3230	mg/L	500	10/05/21 05:33	
PA 6020B	Arsenic	0.0019J	mg/L	0.020	09/30/21 23:01	
PA 6020B	Boron	1.4J	mg/L	2.5	09/30/21 20:29	
PA 6020B	Lithium	0.053	mg/L	0.050	09/30/21 23:01	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	54.5	mg/L	5.0	10/04/21 20:27	
SM 2320B-2011	Alkalinity, Total as CaCO3	54.5	mg/L	5.0	10/04/21 20:27	
SM 2540C-2011	Total Dissolved Solids	12000	mg/L	1250	09/29/21 11:31	
PA 300.0 Rev 2.1 1993	Chloride	5130	mg/L	90.0	09/28/21 02:49	
PA 300.0 Rev 2.1 1993	Sulfate	694	mg/L	90.0	09/28/21 02:49	
2563385015	T3-1HT					
	Performed by	CUSTOME R			09/27/21 11:47	
	рН	7.12	Std. Units		09/27/21 11:47	
PA 6010D	Calcium	88.6	mg/L	2.0	10/05/21 08:37	
PA 6010D	Magnesium	252	mg/L	2.0	10/05/21 08:37	
PA 6010D	Potassium	81.1J	mg/L	100	10/05/21 08:37	
PA 6010D	Sodium	2150	mg/L	500	10/05/21 05:36	
PA 6020B	Arsenic	0.0022J	mg/L	0.020	09/30/21 20:55	
PA 6020B	Boron	1.2	mg/L	1.0	09/30/21 20:55	
PA 6020B	Lithium	0.040J	mg/L	0.050	09/30/21 20:55	
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	71.2	mg/L	5.0	10/04/21 20:35	
SM 2320B-2011	Alkalinity, Total as CaCO3	71.2	mg/L	5.0	10/04/21 20:35	
SM 2540C-2011	Total Dissolved Solids	8300	mg/L	1250	09/29/21 11:34	
PA 300.0 Rev 2.1 1993	Chloride	3230	mg/L	90.0	09/28/21 03:04	
PA 300.0 Rev 2.1 1993	Sulfate	419	mg/L	90.0	09/28/21 03:04	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifier
2563385016	T3-2HT					
	Performed by	CUSTOME R			09/27/21 11:47	
	рН	6.79	Std. Units		09/27/21 11:47	
EPA 6010D	Calcium	138	mg/L	2.0	10/05/21 08:40	
EPA 6010D	Magnesium	402	mg/L	2.0	10/05/21 08:40	
EPA 6010D	Potassium	130	mg/L	100	10/05/21 08:40	
EPA 6010D	Sodium	3430	mg/L	500	10/05/21 05:39	
EPA 6020B	Arsenic	0.0034J	mg/L	0.020	09/30/21 23:05	
EPA 6020B	Boron	1.8J	mg/L	2.5	09/30/21 20:45	
PA 6020B	Lithium	0.071	mg/L	0.050	09/30/21 23:05	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	75.0	mg/L	5.0	10/04/21 20:43	
SM 2320B-2011	Alkalinity, Total as CaCO3	75.0	mg/L	5.0	10/04/21 20:43	
SM 2540C-2011	Total Dissolved Solids	13400	mg/L	1250	09/29/21 11:34	
EPA 300.0 Rev 2.1 1993	Chloride	5520	mg/L	90.0	09/28/21 03:20	
PA 300.0 Rev 2.1 1993	Sulfate	744	mg/L	90.0	09/28/21 03:20	
2563385017	T3-2HTS					
	Performed by	CUSTOME R			09/27/21 11:47	
	рН	7.04	Std. Units		09/27/21 11:47	
PA 6010D	Calcium	83.7	mg/L	2.0	10/05/21 08:50	
PA 6010D	Magnesium	234	mg/L	2.0	10/05/21 08:50	
PA 6010D	Potassium	77.2J	mg/L	100	10/05/21 08:50	
PA 6010D	Sodium	2050	mg/L	500	10/05/21 05:42	
PA 6020B	Arsenic	0.0021J	mg/L	0.020	09/30/21 20:59	
PA 6020B	Boron	1.1	mg/L	1.0	09/30/21 20:59	
PA 6020B	Lithium	0.034J	mg/L	0.050	09/30/21 20:59	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	55.6	mg/L	5.0	10/04/21 20:50	
SM 2320B-2011	Alkalinity, Total as CaCO3	55.6	mg/L	5.0	10/04/21 20:50	
SM 2540C-2011	Total Dissolved Solids	7450	mg/L	1250	09/29/21 11:34	
PA 300.0 Rev 2.1 1993	Chloride	3180	mg/L	90.0	09/28/21 03:36	
PA 300.0 Rev 2.1 1993	Sulfate	410	mg/L	90.0	09/28/21 03:36	
2563385018	Т3-3НТ					
	Performed by	CUSTOME R			09/27/21 11:54	
	рН	6.92	Std. Units		09/27/21 11:54	
PA 6010D	Calcium	156	mg/L	2.0	10/05/21 08:53	
PA 6010D	Magnesium	467	mg/L	2.0	10/05/21 08:53	
PA 6010D	Potassium	152	mg/L	100	10/05/21 08:53	
PA 6010D	Sodium	4160	mg/L	500	10/05/21 05:46	
PA 6020B	Arsenic	0.0024J	mg/L	0.020	09/30/21 23:12	
PA 6020B	Boron	1.8J	mg/L	2.5	09/30/21 20:52	
PA 6020B	Lithium	0.071	mg/L	0.050	09/30/21 23:12	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	82.7	mg/L	5.0	10/04/21 20:57	
SM 2320B-2011	Alkalinity, Total as CaCO3	82.7	mg/L	5.0	10/04/21 20:57	
SM 2540C-2011	Total Dissolved Solids	14100	mg/L	2500	09/29/21 11:34	
PA 300.0 Rev 2.1 1993	Chloride	6340	mg/L	90.0	09/28/21 03:51	
EPA 300.0 Rev 2.1 1993	Sulfate	862	mg/L	90.0	09/28/21 03:51	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2563385019	тз-знтѕ					
	Performed by	CUSTOME R			09/27/21 11:51	
	рН	7.24	Std. Units		09/27/21 11:51	
EPA 6010D	Calcium	70.4	mg/L	2.0	10/05/21 08:56	
EPA 6010D	Magnesium	193	mg/L	2.0	10/05/21 08:56	
EPA 6010D	Potassium	64.3J	mg/L	100	10/05/21 08:56	
PA 6010D	Sodium	1690	mg/L	100	10/05/21 08:56	
PA 6020B	Arsenic	0.0020J	mg/L	0.020	09/30/21 21:17	
PA 6020B	Boron	0.83J	mg/L	1.0	09/30/21 21:17	
PA 6020B	Lithium	0.027J	mg/L	0.050	09/30/21 21:17	
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	45.4	mg/L	5.0	10/04/21 21:05	
SM 2320B-2011	Alkalinity, Total as CaCO3	45.4	mg/L	5.0	10/04/21 21:05	
SM 2540C-2011	Total Dissolved Solids	6600	mg/L	1250	09/29/21 11:34	
EPA 300.0 Rev 2.1 1993	Chloride	2500	mg/L	90.0	09/28/21 04:38	M1
PA 300.0 Rev 2.1 1993	Sulfate	315	mg/L	90.0	09/28/21 04:38	
2563385020	T3-4HT					
	Performed by	CUSTOME R			09/27/21 11:51	
	рН	6.94	Std. Units		09/27/21 11:51	
PA 6010D	Calcium	122	mg/L	2.0	10/05/21 09:00	
PA 6010D	Magnesium	374	mg/L	2.0	10/05/21 09:00	
PA 6010D	Potassium	121	mg/L	100	10/05/21 09:00	
PA 6010D	Sodium	3860	mg/L	500	10/05/21 06:06	
PA 6020B	Arsenic	0.0022J	mg/L	0.020	09/30/21 23:15	
PA 6020B	Boron	1.8J	mg/L	2.5	09/30/21 21:21	
PA 6020B	Lithium	0.069	mg/L	0.050	09/30/21 23:15	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	80.0	mg/L	5.0	10/04/21 21:12	
SM 2320B-2011	Alkalinity, Total as CaCO3	80.0	mg/L	5.0	10/04/21 21:12	
SM 2540C-2011	Total Dissolved Solids	14200	mg/L	2500	09/29/21 11:34	
PA 300.0 Rev 2.1 1993	Chloride	6020	mg/L	90.0	09/28/21 05:57	
PA 300.0 Rev 2.1 1993	Sulfate	815	mg/L	90.0	09/28/21 05:57	
2563385021	T3-4HTS					
	Performed by	CUSTOME R			09/27/21 11:51	
	pH	7.09	Std. Units		09/27/21 11:51	
EPA 6010D	Calcium	107	mg/L	2.0	10/05/21 06:09	M1
PA 6010D	Magnesium	312	mg/L	2.0	10/05/21 06:09	M1
PA 6010D	Potassium	103	mg/L	100	10/05/21 06:09	M1
PA 6010D	Sodium	2640	mg/L	500	10/05/21 02:48	M1
PA 6020B	Arsenic	0.0023J	mg/L	0.020	09/29/21 22:45	M1
PA 6020B	Boron	1.0J	mg/L	2.5	09/30/21 16:35	M1
PA 6020B	Lithium	0.041J	mg/L	0.050	09/30/21 19:16	M1
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	61.5	mg/L	5.0	10/05/21 20:58	
M 2320B-2011	Alkalinity, Total as CaCO3	61.5	mg/L	5.0	10/05/21 20:58	
M 2540C-2011	Total Dissolved Solids	9850	mg/L	1250	09/29/21 11:34	
PA 300.0 Rev 2.1 1993	Chloride	4080	mg/L	90.0	09/28/21 06:13	
EPA 300.0 Rev 2.1 1993	Sulfate	538	mg/L	90.0	09/28/21 06:13	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2563385022	T4-1HB					
	Performed by	CUSTOME R			09/27/21 11:51	
	рН	7.06	Std. Units		09/27/21 11:51	
EPA 6010D	Calcium	174	mg/L	2.0	10/05/21 06:22	
EPA 6010D	Magnesium	530	mg/L	2.0	10/05/21 06:22	
EPA 6010D	Potassium	170	mg/L	100	10/05/21 06:22	
PA 6010D	Sodium	4540	mg/L	500	10/05/21 03:01	
PA 6020B	Arsenic	0.0031J	mg/L	0.020	09/29/21 22:56	
PA 6020B	Boron	1.8J	mg/L	2.5	09/30/21 16:42	
PA 6020B	Lithium	0.077	mg/L	0.050	09/30/21 19:23	
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	90.4	mg/L	5.0	10/05/21 21:20	
M 2320B-2011	Alkalinity, Total as CaCO3	90.4	mg/L	5.0	10/05/21 21:20	
SM 2540C-2011	Total Dissolved Solids	15500	mg/L	1250	09/28/21 17:33	
PA 300.0 Rev 2.1 1993	Chloride	7160	mg/L	90.0	09/28/21 06:28	
PA 300.0 Rev 2.1 1993	Sulfate	983	mg/L	90.0	09/28/21 06:28	
2563385023	T4-1HS					
	Performed by	CUSTOME R			09/27/21 11:54	
	рН	7.22	Std. Units		09/27/21 11:54	
PA 6010D	Calcium	172	mg/L	2.0	10/05/21 06:25	
PA 6010D	Magnesium	513	mg/L	2.0	10/05/21 06:25	
PA 6010D	Potassium	169	mg/L	100	10/05/21 06:25	
PA 6010D	Sodium	4400	mg/L	500	10/05/21 03:04	
PA 6020B	Arsenic	0.0028J	mg/L	0.020	09/29/21 22:59	
PA 6020B	Boron	1.8J	mg/L	2.5	09/30/21 16:50	
PA 6020B	Lithium	0.067	mg/L	0.050	09/30/21 19:27	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	88.5	mg/L	5.0	10/05/21 21:37	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	88.5	mg/L	5.0	10/05/21 21:37	v1
SM 2540C-2011	Total Dissolved Solids	12900	mg/L	1250	09/28/21 17:33	
PA 300.0 Rev 2.1 1993	Chloride	6540	mg/L	90.0	09/28/21 06:44	
PA 300.0 Rev 2.1 1993	Sulfate	891	mg/L	90.0	09/28/21 06:44	
2563385024	T4-2HB					
	Performed by	CUSTOME R			09/27/21 11:54	
	рН	7.04	Std. Units		09/27/21 11:54	
PA 6010D	Calcium	180	mg/L	2.0	10/05/21 06:29	
PA 6010D	Magnesium	541	mg/L	2.0	10/05/21 06:29	
PA 6010D	Potassium	179	mg/L	100	10/05/21 06:29	
PA 6010D	Sodium	4870	mg/L	500	10/05/21 03:14	
PA 6020B	Arsenic	0.0025J	mg/L	0.020	09/29/21 23:03	
PA 6020B	Boron	2.0J	mg/L	2.5	09/30/21 16:57	
PA 6020B	Lithium	0.076	mg/L	0.050	09/30/21 19:34	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	97.3	mg/L	5.0	10/05/21 21:45	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	97.3	mg/L	5.0	10/05/21 21:45	v1
SM 2540C-2011	Total Dissolved Solids	15800	mg/L	1250	09/28/21 17:33	
PA 300.0 Rev 2.1 1993	Chloride	7420	mg/L	90.0	09/28/21 07:00	
EPA 300.0 Rev 2.1 1993	Sulfate	1020	mg/L	90.0	09/28/21 07:00	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID Method	Client Sample ID Parameters	Result	Llaita	Papart Limit	Apolyzod	Qualifier
vietriod	- Falameters	— Kesuit —	Units	Report Limit	Analyzed	- Qualifier
2563385025	T4-2HS					
	Performed by	CUSTOME R			09/27/21 11:55	
	рН	7.13	Std. Units		09/27/21 11:55	
EPA 6010D	Calcium	170	mg/L	2.0	10/05/21 06:32	
EPA 6010D	Magnesium	504	mg/L	2.0	10/05/21 06:32	
EPA 6010D	Potassium	166	mg/L	100	10/05/21 06:32	
PA 6010D	Sodium	4440	mg/L	500	10/05/21 03:17	
PA 6020B	Arsenic	0.0028J	mg/L	0.020	09/29/21 23:06	
PA 6020B	Boron	1.8J	mg/L	2.5	09/30/21 17:04	
PA 6020B	Lithium	0.069	mg/L	0.050	09/30/21 19:38	
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	90.5	mg/L	5.0	10/05/21 21:55	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	90.5	mg/L	5.0	10/05/21 21:55	v1
SM 2540C-2011	Total Dissolved Solids	14800	mg/L	1250	09/28/21 17:34	
PA 300.0 Rev 2.1 1993	Chloride	6730	mg/L	90.0	09/28/21 07:15	
PA 300.0 Rev 2.1 1993	Sulfate	918	mg/L	90.0	09/28/21 07:15	
2563385026	Т4-3НВ					
	Performed by	CUSTOME R			09/27/21 11:55	
	рН	7.04	Std. Units		09/27/21 11:55	
PA 6010D	Calcium	168	mg/L	2.0	10/05/21 06:35	
PA 6010D	Magnesium	506	mg/L	2.0	10/05/21 06:35	
PA 6010D	Potassium	168	mg/L	100	10/05/21 06:35	
PA 6010D	Sodium	4800	mg/L	500	10/05/21 03:21	
PA 6020B	Arsenic	0.0025J	mg/L	0.020	09/29/21 23:10	
PA 6020B	Boron	2.1J	mg/L	2.5	09/30/21 17:24	
PA 6020B	Lithium	0.076	mg/L	0.050	09/30/21 19:59	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	92.0	mg/L	5.0	10/05/21 22:03	v1
M 2320B-2011	Alkalinity, Total as CaCO3	92.0	mg/L	5.0	10/05/21 22:03	v1
M 2540C-2011	Total Dissolved Solids	16000	mg/L	1250	09/28/21 17:34	
PA 300.0 Rev 2.1 1993	Chloride	7410	mg/L	90.0	09/28/21 07:31	
PA 300.0 Rev 2.1 1993	Sulfate	1020	mg/L	90.0	09/28/21 07:31	
2563385027	T4-3HS					
	Performed by	CUSTOME R			09/27/21 11:55	
	pH	7.16	Std. Units		09/27/21 11:55	
PA 6010D	Calcium	168	mg/L	2.0	10/05/21 06:45	
PA 6010D	Magnesium	502	mg/L	2.0	10/05/21 06:45	
PA 6010D	Potassium	165	mg/L	100	10/05/21 06:45	
PA 6010D	Sodium	4600	mg/L	500	10/05/21 03:24	
PA 6020B	Arsenic	0.0027J	mg/L	0.020	09/29/21 23:13	
PA 6020B	Boron	1.9J	mg/L	2.5	09/30/21 17:31	
PA 6020B	Lithium	0.072	mg/L	0.050	09/30/21 20:06	
M 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	92.4	mg/L	5.0	10/05/21 22:12	
M 2320B-2011	Alkalinity, Total as CaCO3	92.4	mg/L	5.0	10/05/21 22:12	v1
M 2540C-2011	Total Dissolved Solids	15400	mg/L	1250	09/28/21 17:34	
PA 300.0 Rev 2.1 1993	Chloride	6790	mg/L	90.0	09/28/21 07:47	
EPA 300.0 Rev 2.1 1993	Sulfate	928	mg/L	90.0	09/28/21 07:47	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result _	Units	Report Limit	Analyzed	Qualifier
2563385028	T4-4HB					
	Performed by	CUSTOME R			09/27/21 11:56	
	рН	7.08	Std. Units		09/27/21 11:56	
EPA 6010D	Calcium	167	mg/L	2.0	10/05/21 06:48	
EPA 6010D	Magnesium	499	mg/L	2.0	10/05/21 06:48	
EPA 6010D	Potassium	165	mg/L	100	10/05/21 06:48	
EPA 6010D	Sodium	4620	mg/L	500	10/05/21 03:27	
PA 6020B	Arsenic	0.0027J	mg/L	0.020	09/29/21 23:17	
EPA 6020B	Boron	2.0J	mg/L	2.5	09/30/21 17:38	
PA 6020B	Lithium	0.081	mg/L	0.050	09/30/21 20:09	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	92.5	mg/L	5.0	10/05/21 22:21	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	92.5	mg/L	5.0	10/05/21 22:21	v1
SM 2540C-2011	Total Dissolved Solids	16400	mg/L	1250	09/28/21 17:34	
EPA 300.0 Rev 2.1 1993	Chloride	7310	mg/L	90.0	09/28/21 08:02	
PA 300.0 Rev 2.1 1993	Sulfate	1090	mg/L	90.0	09/28/21 08:02	
2563385029	T4-4HS		· ·			
	Performed by	CUSTOME R			09/27/21 11:56	
	pН	7.17	Std. Units		09/27/21 11:56	
PA 6010D	Calcium	186	mg/L	2.0	10/05/21 06:52	
PA 6010D	Magnesium	547	mg/L	2.0	10/05/21 06:52	
PA 6010D	Potassium	180	mg/L	100	10/05/21 06:52	
PA 6010D	Sodium	4810	mg/L	500	10/05/21 03:31	
PA 6020B	Arsenic	0.0028J	mg/L	0.020	09/29/21 23:31	
EPA 6020B	Boron	2.1J	mg/L	2.5	09/30/21 17:45	
EPA 6020B	Lithium	0.087	mg/L	0.050	09/29/21 23:31	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	88.9	mg/L	5.0	10/05/21 22:29	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	88.9	mg/L	5.0	10/05/21 22:29	v1
SM 2540C-2011	Total Dissolved Solids	16200	mg/L	1250	09/28/21 17:34	
PA 300.0 Rev 2.1 1993	Chloride	7220	mg/L	90.0	09/28/21 08:18	M1
EPA 300.0 Rev 2.1 1993	Sulfate	994	mg/L	90.0	09/28/21 08:18	M1
2563385030	T4-1L		· ·			
	Performed by	CUSTOME R			09/27/21 11:56	
	рН	7.35	Std. Units		09/27/21 11:56	
PA 6010D	Calcium	165	mg/L	2.0	10/05/21 06:55	
PA 6010D	Magnesium	495	mg/L	2.0	10/05/21 06:55	
PA 6010D	Potassium	165	mg/L	100	10/05/21 06:55	
PA 6010D	Sodium	4650	mg/L	500	10/05/21 03:34	
PA 6020B	Arsenic	0.0042J	mg/L	0.020	09/29/21 23:34	
PA 6020B	Boron	1.7J	mg/L	2.5	09/30/21 17:52	
PA 6020B	Lithium	0.088	mg/L	0.050	09/29/21 23:34	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	90.3	mg/L	5.0	10/05/21 22:38	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	90.3	mg/L	5.0		v1
SM 2540C-2011	Total Dissolved Solids	15600	mg/L	1250	09/28/21 17:34	
PA 300.0 Rev 2.1 1993	Chloride	6920	mg/L	90.0	09/28/21 10:09	
EPA 300.0 Rev 2.1 1993	Sulfate	944	mg/L	90.0	09/28/21 10:09	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

_ab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2563385031	T4-2L					
	Performed by	CUSTOME R			09/27/21 11:56	
	рН	7.31	Std. Units		09/27/21 11:56	
EPA 6010D	Calcium	174	mg/L	2.0	10/05/21 06:58	
EPA 6010D	Magnesium	512	mg/L	2.0	10/05/21 06:58	
EPA 6010D	Potassium	170	mg/L	100	10/05/21 06:58	
EPA 6010D	Sodium	4520	mg/L	500	10/05/21 03:37	
PA 6020B	Arsenic	0.0040J	mg/L	0.020	09/29/21 23:38	
PA 6020B	Boron	2.0J	mg/L	2.5	09/30/21 18:09	
PA 6020B	Lithium	0.090	mg/L	0.050	09/29/21 23:38	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	94.8	mg/L	5.0		v1
SM 2320B-2011	Alkalinity, Total as CaCO3	94.8	mg/L	5.0	10/05/21 22:46	v1
M 2540C-2011	Total Dissolved Solids	14800	mg/L	1250	09/28/21 17:36	-
EPA 300.0 Rev 2.1 1993	Chloride	6820	mg/L	90.0	09/28/21 10:24	
PA 300.0 Rev 2.1 1993	Sulfate	933	mg/L	90.0	09/28/21 10:24	
2563385032	T4-3L	300	mg/L	00.0	05/20/21 10:24	
.505505052	Performed by	CUSTOME			09/27/21 11:57	
	-11	R	0.4.11-26		00/07/04 44 57	
D1 0010D	pH	7.38	Std. Units	0.0	09/27/21 11:57	
PA 6010D	Calcium	182	mg/L	2.0	10/05/21 20:44	
PA 6010D	Magnesium	542	mg/L	2.0	10/05/21 20:44	
PA 6010D	Potassium	178	mg/L	100	10/05/21 20:44	
PA 6020B	Arsenic	0.0037J	mg/L	0.020	09/29/21 23:42	
PA 6020B	Boron	1.7J	mg/L	2.5	09/30/21 18:16	
PA 6020B	Lithium	0.086	mg/L	0.050	09/29/21 23:42	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	95.8	mg/L	5.0	10/05/21 23:20	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	95.8	mg/L	5.0		v1
M 2540C-2011	Total Dissolved Solids	15200	mg/L	1250	09/28/21 17:36	
PA 300.0 Rev 2.1 1993	Chloride	7160	mg/L	90.0	09/28/21 10:40	
PA 300.0 Rev 2.1 1993	Sulfate	966	mg/L	90.0	09/28/21 10:40	
2563385033	T4-4L					
	Performed by	CUSTOME R			09/27/21 11:57	
	рН	7.32	Std. Units		09/27/21 11:57	
PA 6010D	Calcium	313	mg/L	2.0	10/05/21 07:05	
PA 6010D	Magnesium	953	mg/L	2.0	10/05/21 07:05	
PA 6010D	Potassium	307	mg/L	100	10/05/21 07:05	
PA 6010D	Sodium	4500	mg/L	500	10/05/21 03:44	
PA 6020B	Arsenic	0.0035J	mg/L	0.020	09/29/21 23:53	
PA 6020B	Boron	1.9J	mg/L	2.5	09/30/21 18:24	
PA 6020B	Lithium	0.086	mg/L	0.050	09/29/21 23:53	
M 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	95.1	mg/L	5.0		v1
SM 2320B-2011	Alkalinity, Total as CaCO3	95.1	mg/L	5.0	10/05/21 23:29	
M 2540C-2011	Total Dissolved Solids	15200	mg/L	1250	09/28/21 17:36	
PA 300.0 Rev 2.1 1993	Chloride	6830	mg/L	90.0	09/28/21 17:56	
1 / 1000.0 1 100 2.1 1000	Sulfate	1250	mg/L	30.0	00/20/21 10.00	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result _	Units	Report Limit	Analyzed	Qualifiers
92563385034	BG-2HT					
	Performed by	CUSTOME			09/27/21 11:57	
	рН	R 7.13	Std. Units		09/27/21 11:57	
EPA 6010D	Calcium	178	mg/L	2.0	10/05/21 07:08	
EPA 6010D	Magnesium	524	mg/L	2.0	10/05/21 07:08	
EPA 6010D	Potassium	171	mg/L	100	10/05/21 07:08	
EPA 6010D	Sodium	6380	mg/L	500	10/05/21 04:00	
EPA 6020B	Arsenic	0.0040J	mg/L	0.020	09/29/21 23:56	
EPA 6020B	Boron	2.8	mg/L	2.5	09/30/21 18:31	
EPA 6020B	Lithium	0.14	mg/L	0.050	09/29/21 23:56	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	108	mg/L	5.0	10/05/21 23:38	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	108	mg/L	5.0	10/05/21 23:38	v1
SM 2540C-2011	Total Dissolved Solids	21100	mg/L	2500	09/28/21 17:36	
EPA 300.0 Rev 2.1 1993	Chloride	9780	mg/L	100	09/28/21 13:02	
EPA 300.0 Rev 2.1 1993	Sulfate	1710	mg/L	90.0	09/28/21 11:11	
92563385035	DUP-1					
EPA 6010D	Calcium	192	mg/L	2.0	10/05/21 07:12	
EPA 6010D	Magnesium	572	mg/L	2.0	10/05/21 07:12	
EPA 6010D	Potassium	185	mg/L	100	10/05/21 07:12	
EPA 6010D	Sodium	4880	mg/L	500	10/05/21 04:04	
EPA 6020B	Arsenic	0.0027J	mg/L	0.020	09/30/21 00:00	
EPA 6020B	Boron	1.9J	mg/L	2.5	09/30/21 18:38	
EPA 6020B	Lithium	0.089	mg/L	0.050	09/30/21 00:00	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	89.8	mg/L	5.0	10/05/21 23:48	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	89.8	mg/L	5.0	10/05/21 23:48	v1
SM 2540C-2011	Total Dissolved Solids	16600	mg/L	1250	09/28/21 17:36	
EPA 300.0 Rev 2.1 1993	Chloride	7310	mg/L	90.0	09/28/21 11:27	
EPA 300.0 Rev 2.1 1993	Sulfate	1330	mg/L	90.0	09/28/21 11:27	
2563385036	DUP-2					
EPA 6010D	Calcium	119	mg/L	2.0	10/05/21 07:15	
EPA 6010D	Magnesium	346	mg/L	2.0	10/05/21 07:15	
EPA 6010D	Potassium	116	mg/L	100	10/05/21 07:15	
EPA 6010D	Sodium	3030	mg/L	500	10/05/21 04:07	
EPA 6020B	Arsenic	0.0021J	mg/L	0.020	09/30/21 00:03	
EPA 6020B	Boron	1.2	mg/L	1.0	09/30/21 18:45	
EPA 6020B	Lithium	0.056	mg/L	0.050	09/30/21 00:03	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	66.5	mg/L	5.0	10/07/21 14:48	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	66.5	mg/L	5.0	10/07/21 14:48	v1
SM 2540C-2011	Total Dissolved Solids	10600	mg/L	1250	09/29/21 11:34	
EPA 300.0 Rev 2.1 1993	Chloride	4780	mg/L	90.0	09/28/21 12:14	
EPA 300.0 Rev 2.1 1993	Sulfate	650	mg/L	90.0	09/28/21 12:14	
2563385037	DUP-3					
EPA 6010D	Calcium	139	mg/L	2.0	10/05/21 07:25	
EPA 6010D	Magnesium	412	mg/L	2.0	10/05/21 07:25	
EPA 6010D	Potassium	138	mg/L	100	10/05/21 07:25	
EPA 6010D	Sodium	3640	mg/L	500	10/05/21 04:10	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID Method	Client Sample ID Parameters	Result	Llaita	Report Limit	Apolyzod	Qualifiers
- Ivietriou		— Result	Units	- Report Limit	Analyzed	- Qualifiers
2563385037	DUP-3					
EPA 6020B	Arsenic	0.0024J	mg/L	0.020	09/30/21 00:07	
EPA 6020B	Boron	1.5	mg/L	1.0	09/30/21 18:52	
EPA 6020B	Lithium	0.070	mg/L	0.050	09/30/21 00:07	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	80.0	mg/L	5.0	10/07/21 14:56	v1
SM 2320B-2011	Alkalinity, Total as CaCO3	80.0	mg/L	5.0	10/07/21 14:56	v1
SM 2540C-2011	Total Dissolved Solids	13600	mg/L	1250	09/29/21 11:34	
EPA 300.0 Rev 2.1 1993	Chloride	5890	mg/L	90.0	09/28/21 12:30	
EPA 300.0 Rev 2.1 1993	Sulfate	799	mg/L	90.0	09/28/21 12:30	
2563385040	T1-1LT					
	Performed by	CUSTOME R			10/01/21 13:41	
	рН	6.99	Std. Units		10/01/21 13:41	
EPA 6010D	Calcium	141	mg/L	2.0	10/11/21 20:27	M1
EPA 6010D	Magnesium	411	mg/L	2.0	10/11/21 20:27	M1
EPA 6010D	Potassium	130	mg/L	100	10/11/21 20:27	M1
EPA 6010D	Sodium	3530	mg/L	500	10/11/21 19:16	M1
EPA 6020B	Arsenic	0.0014J	mg/L	0.015	10/03/21 17:57	
EPA 6020B	Boron	1.1	mg/L	0.75	10/03/21 17:57	
EPA 6020B	Lithium	0.042	mg/L	0.038	10/03/21 17:57	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	76.2	mg/L	5.0	10/07/21 19:53	
SM 2320B-2011	Alkalinity, Total as CaCO3	76.2	mg/L	5.0	10/07/21 19:53	
SM 2540C-2011	Total Dissolved Solids	11600	mg/L	1250	10/04/21 17:58	
EPA 300.0 Rev 2.1 1993	Chloride	5160	mg/L	100	10/02/21 13:54	
EPA 300.0 Rev 2.1 1993	Sulfate	689	mg/L	100	10/02/21 13:54	
2563385041	T1-2LT					
	Performed by	CUSTOME R			10/01/21 13:42	
	рН	7.00	Std. Units		10/01/21 13:42	
PA 6010D	Calcium	132	mg/L	2.0	10/11/21 20:49	
PA 6010D	Magnesium	388	mg/L	2.0	10/11/21 20:49	
PA 6010D	Potassium	124	mg/L	100	10/11/21 20:49	
PA 6010D	Sodium	3320	mg/L	500	10/11/21 19:29	
PA 6020B	Arsenic	0.0014J	mg/L	0.015	10/03/21 18:19	
PA 6020B	Boron	1.1	mg/L	0.75	10/03/21 18:19	
PA 6020B	Lithium	0.041	mg/L	0.038	10/03/21 18:19	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	67.5	mg/L	5.0	10/11/21 18:49	
SM 2320B-2011	Alkalinity, Total as CaCO3	67.5	mg/L	5.0	10/11/21 18:49	
SM 2540C-2011	Total Dissolved Solids	11200	mg/L	1250	10/04/21 17:58	
PA 300.0 Rev 2.1 1993	Chloride	5110	mg/L	100	10/02/21 14:09	
PA 300.0 Rev 2.1 1993	Sulfate	679	mg/L	100	10/02/21 14:09	
2563385042	T1-3LT					
	Performed by	CUSTOME R			10/01/21 13:42	
	рН	7.14	Std. Units		10/01/21 13:42	
PA 6010D	Calcium	125	mg/L	2.0	10/11/21 20:52	
PA 6010D	Magnesium	360	mg/L	2.0	10/11/21 20:52	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2563385042	T1-3LT					
EPA 6010D	Potassium	116	mg/L	100	10/11/21 20:52	
EPA 6010D	Sodium	3110	mg/L	500	10/11/21 19:32	
EPA 6020B	Arsenic	0.0016J	mg/L	0.015	10/03/21 18:28	
EPA 6020B	Boron	1.0	mg/L	0.75	10/03/21 18:28	
EPA 6020B	Lithium	0.038	mg/L	0.038	10/03/21 18:28	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	66.6	mg/L	5.0	10/11/21 18:57	
SM 2320B-2011	Alkalinity, Total as CaCO3	66.6	mg/L	5.0	10/11/21 18:57	
SM 2540C-2011	Total Dissolved Solids	11900	mg/L	1250	10/04/21 18:00	
EPA 300.0 Rev 2.1 1993	Chloride	4680	mg/L	100	10/02/21 14:25	
EPA 300.0 Rev 2.1 1993	Sulfate	614	mg/L	100	10/02/21 14:25	
2563385043	T1-4LT					
	Performed by	CUSTOME R			10/01/21 13:42	
	рН	7.09	Std. Units		10/01/21 13:42	
EPA 6010D	Calcium	101	mg/L	2.0	10/11/21 20:55	
EPA 6010D	Magnesium	288	mg/L	2.0	10/11/21 20:55	
EPA 6010D	Potassium	90.7J	mg/L	100	10/11/21 20:55	D3
EPA 6010D	Sodium	2410	mg/L	500	10/11/21 19:35	
EPA 6020B	Arsenic	0.0019J	mg/L	0.015	10/03/21 19:00	
EPA 6020B	Boron	1.2	mg/L	0.75	10/03/21 19:00	
EPA 6020B	Lithium	0.046	mg/L	0.038	10/03/21 19:00	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	60.8	mg/L	5.0	10/11/21 19:05	
SM 2320B-2011	Alkalinity, Total as CaCO3	60.8	mg/L	5.0	10/11/21 19:05	
SM 2540C-2011	Total Dissolved Solids	8100	mg/L	833	10/04/21 18:00	
EPA 300.0 Rev 2.1 1993	Chloride	3850	mg/L	100	10/02/21 14:41	
EPA 300.0 Rev 2.1 1993	Sulfate	496	mg/L	100	10/02/21 14:41	
2563385044	T2-2LT					
	Performed by	CUSTOME R			10/01/21 13:42	
	рН	7.16	Std. Units		10/01/21 13:42	
PA 6010D	Calcium	124	mg/L	2.0	10/11/21 20:59	
EPA 6010D	Magnesium	358	mg/L	2.0	10/11/21 20:59	
EPA 6010D	Potassium	115	mg/L	100	10/11/21 20:59	
PA 6010D	Sodium	3080	mg/L	500	10/11/21 19:39	
EPA 6020B	Arsenic	0.0016J	mg/L		10/03/21 19:07	
EPA 6020B	Boron	0.91	mg/L		10/03/21 19:07	
EPA 6020B	Lithium	0.036J	mg/L		10/03/21 19:07	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	69.9	mg/L		10/11/21 19:12	
SM 2320B-2011	Alkalinity, Total as CaCO3	69.9	mg/L	5.0	10/11/21 19:12	
SM 2540C-2011	Total Dissolved Solids	10000	mg/L	1250	10/04/21 18:00	
EPA 300.0 Rev 2.1 1993	Chloride	4530	mg/L	100	10/02/21 14:56	
EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993	Sulfate	4530 586	mg/L	100	10/02/21 14:56	
2563385045	T2-3LT		<i>3</i> . –	. 30		
	Performed by	CUSTOME			10/01/21 13:43	
	рН	R 7.15	Std. Units		10/01/21 13:43	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result _	Units	Report Limit	Analyzed	Qualifiers
92563385045	T2-3LT					
EPA 6010D	Calcium	129	mg/L	2.0	10/11/21 21:02	
EPA 6010D	Magnesium	372	mg/L	2.0	10/11/21 21:02	
EPA 6010D	Potassium	119	mg/L	100	10/11/21 21:02	
EPA 6010D	Sodium	3200	mg/L	500	10/11/21 19:42	
EPA 6020B	Arsenic	0.0016J	mg/L	0.015	10/03/21 19:19	
EPA 6020B	Boron	1.1	mg/L	0.75	10/03/21 19:19	
EPA 6020B	Lithium	0.041	mg/L	0.038	10/03/21 19:19	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	69.0	mg/L	5.0	10/11/21 19:20	
SM 2320B-2011	Alkalinity, Total as CaCO3	69.0	mg/L	5.0	10/11/21 19:20	
SM 2540C-2011	Total Dissolved Solids	11400	mg/L	1250	10/04/21 18:00	
EPA 300.0 Rev 2.1 1993	Chloride	5020	mg/L	100	10/02/21 15:44	
EPA 300.0 Rev 2.1 1993	Sulfate	664	mg/L	100	10/02/21 15:44	
2563385046	T2-4LT					
	Performed by	CUSTOME R			10/01/21 13:43	
	рН	6.97	Std. Units		10/01/21 13:43	
EPA 6010D	Calcium	80.1	mg/L	2.0	10/11/21 21:05	D3
EPA 6010D	Magnesium	222	mg/L	2.0	10/11/21 21:05	
EPA 6010D	Potassium	70.6J	mg/L	100	10/11/21 21:05	D3
EPA 6010D	Sodium	1880	mg/L	100	10/11/21 21:05	
EPA 6020B	Boron	0.58J	mg/L	0.75	10/03/21 19:26	
EPA 6020B	Lithium	0.022J	mg/L	0.038	10/03/21 19:26	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	54.1	mg/L	5.0	10/11/21 19:28	
SM 2320B-2011	Alkalinity, Total as CaCO3	54.1	mg/L	5.0	10/11/21 19:28	
SM 2540C-2011	Total Dissolved Solids	6770	mg/L	833	10/04/21 18:00	
EPA 300.0 Rev 2.1 1993	Chloride	2870	mg/L	100	10/02/21 15:59	
EPA 300.0 Rev 2.1 1993	Sulfate	361	mg/L	100	10/02/21 15:59	
2563385047	T3-2LT					
	Performed by	CUSTOME R			10/01/21 13:44	
	рН	7.13	Std. Units		10/01/21 13:44	
EPA 6010D	Calcium	107	mg/L	2.0	10/11/21 21:08	
EPA 6010D	Magnesium	301	mg/L	2.0	10/11/21 21:08	
EPA 6010D	Potassium	96.8J	mg/L	100	10/11/21 21:08	D3
EPA 6010D	Sodium	2600	mg/L	500	10/11/21 20:01	
EPA 6020B	Arsenic	0.0015J	mg/L		10/03/21 19:33	
EPA 6020B	Boron	0.75J	mg/L		10/03/21 19:33	
EPA 6020B	Lithium	0.029J	mg/L	0.038	10/03/21 19:33	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	64.1	mg/L		10/11/21 19:35	
SM 2320B-2011	Alkalinity, Total as CaCO3	64.1	mg/L		10/11/21 19:35	
SM 2540C-2011	Total Dissolved Solids	9170	mg/L		10/04/21 18:02	
EPA 300.0 Rev 2.1 1993	Chloride	3960	mg/L	100	10/02/21 16:15	
EPA 300.0 Rev 2.1 1993	Sulfate	503	mg/L	100	10/02/21 16:15	
2563385048	T3-3LT					
	Performed by	CUSTOME R			10/01/21 13:44	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2563385048	T3-3LT					
	рН	6.89	Std. Units		10/01/21 13:44	
EPA 6010D	Calcium	101	mg/L	2.0	10/11/21 21:12	
EPA 6010D	Magnesium	289	mg/L	2.0	10/11/21 21:12	
EPA 6010D	Potassium	90.0J	mg/L	100	10/11/21 21:12	D3
EPA 6010D	Sodium	2460	mg/L	500	10/11/21 20:05	
EPA 6020B	Arsenic	0.0015J	mg/L	0.015	10/03/21 19:40	
EPA 6020B	Boron	0.75	mg/L	0.75	10/03/21 19:40	
PA 6020B	Lithium	0.028J	mg/L	0.038	10/03/21 19:40	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	62.5	mg/L	5.0	10/11/21 19:52	
SM 2320B-2011	Alkalinity, Total as CaCO3	62.5	mg/L	5.0	10/11/21 19:52	
SM 2540C-2011	Total Dissolved Solids	8670	mg/L	833	10/04/21 18:02	
EPA 300.0 Rev 2.1 1993	Chloride	3740	mg/L	100	10/02/21 16:31	
EPA 300.0 Rev 2.1 1993	Sulfate	475	mg/L	100	10/02/21 16:31	
2563385049	T3-4LT	410	mg/L	100	10/02/21 10:01	
1303303043	Performed by	CUSTOME			10/01/21 13:44	
	•	R				
	pН	6.90	Std. Units		10/01/21 13:44	
PA 6010D	Calcium	84.1	mg/L	2.0	10/11/21 21:21	D3
PA 6010D	Magnesium	232	mg/L	2.0	10/11/21 21:21	
PA 6010D	Potassium	73.1J	mg/L	100	10/11/21 21:21	D3
PA 6010D	Sodium	1990	mg/L	100	10/11/21 21:21	
PA 6020B	Boron	0.65J	mg/L	0.75	10/03/21 19:47	
PA 6020B	Lithium	0.025J	mg/L	0.038	10/03/21 19:47	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	56.2	mg/L	5.0	10/11/21 20:00	
SM 2320B-2011	Alkalinity, Total as CaCO3	56.2	mg/L	5.0	10/11/21 20:00	
SM 2540C-2011	Total Dissolved Solids	8070	mg/L	833	10/04/21 18:02	
PA 300.0 Rev 2.1 1993	Chloride	3110	mg/L	100	10/02/21 16:46	M1
PA 300.0 Rev 2.1 1993	Sulfate	396	mg/L	100	10/02/21 16:46	M1
2563385050	BG-1LT					
	Performed by	CUSTOME			10/01/21 13:44	
	рН	R 6.90	Std. Units		10/01/21 13:44	
PA 6010D	Calcium	147	mg/L	2.0	10/11/21 21:24	
PA 6010D	Magnesium	434	mg/L		10/11/21 21:24	
PA 6010D	Potassium	138	mg/L	100	10/11/21 21:24	
PA 6010D	Sodium	3720	mg/L		10/11/21 20:11	
EPA 6020B	Arsenic	0.0027J			10/03/21 20:01	
EPA 6020B	Boron	1.3	mg/L mg/L		10/03/21 20:01	
PA 6020B	Lithium	0.060	mg/L		10/03/21 20:01	
			•			
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	78.2	mg/L		10/11/21 20:07	
SM 2320B-2011	Alkalinity, Total as CaCO3	78.2	mg/L		10/11/21 20:07	
SM 2540C-2011	Total Dissolved Solids	13400	mg/L		10/04/21 18:02	
EPA 300.0 Rev 2.1 1993	Chloride	5520	mg/L		10/02/21 17:33	
EPA 300.0 Rev 2.1 1993	Sulfate	725	mg/L	100	10/02/21 17:33	
2563385051	DUP-4			_		
PA 6010D	Calcium	101	mg/L	2.0	10/11/21 21:28	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92563385051	DUP-4			_		
EPA 6010D	Magnesium	283	mg/L	2.0	10/11/21 21:28	
EPA 6010D	Potassium	90.2J	mg/L	100	10/11/21 21:28	D3
EPA 6010D	Sodium	2400	mg/L	500	10/11/21 20:14	
EPA 6020B	Boron	0.74J	mg/L	0.75	10/03/21 20:08	
EPA 6020B	Lithium	0.027J	mg/L	0.038	10/03/21 20:08	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	61.2	mg/L	5.0	10/11/21 20:15	
SM 2320B-2011	Alkalinity, Total as CaCO3	61.2	mg/L	5.0	10/11/21 20:15	
SM 2540C-2011	Total Dissolved Solids	8300	mg/L	833	10/04/21 18:02	
EPA 300.0 Rev 2.1 1993	Chloride	3770	mg/L	100	10/02/21 17:49	
EPA 300.0 Rev 2.1 1993	Sulfate	478	mg/L	100	10/02/21 17:49	
92563385052	DUP-5					
EPA 6010D	Calcium	129	mg/L	2.0	10/11/21 21:31	
EPA 6010D	Magnesium	370	mg/L	2.0	10/11/21 21:31	
EPA 6010D	Potassium	121	mg/L	100	10/11/21 21:31	
EPA 6010D	Sodium	3190	mg/L	500	10/11/21 20:18	
EPA 6020B	Boron	0.94	mg/L	0.75	10/03/21 20:15	
EPA 6020B	Lithium	0.036J	mg/L	0.038	10/03/21 20:15	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	68.8	mg/L	5.0	10/11/21 20:23	
SM 2320B-2011	Alkalinity, Total as CaCO3	68.8	mg/L	5.0	10/11/21 20:23	
SM 2540C-2011	Total Dissolved Solids	11000	mg/L	1250	10/04/21 18:02	
EPA 300.0 Rev 2.1 1993	Chloride	4920	mg/L	100	10/02/21 18:05	
EPA 300.0 Rev 2.1 1993	Sulfate	637	mg/L	100	10/02/21 18:05	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-1HT	Lab ID:	92563385001	Collected	09/23/21	12:07	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report					0.0	
Parameters	Results	Units	Limit —	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:42		
PΗ	7.05	Std. Units			1		09/27/21 11:42		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	126	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:28	7440-70-2	M1
Magnesium	366	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:28	7439-95-4	M1
Potassium	122	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:28	7440-09-7	M1
Sodium	3230	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 20:47	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Metl	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0027J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 21:49	7440-38-2	
Boron	1.7J	mg/L	2.5	0.42	50	09/29/21 10:37	09/29/21 16:45	7440-42-8	M1
Lithium	0.060	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 21:49	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 2	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	66.7	mg/L	5.0	5.0	1		10/06/21 16:12		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/06/21 16:12		
Alkalinity, Total as CaCO3	66.7	mg/L	5.0	5.0	1		10/06/21 16:12		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	11800	mg/L	1250	1250	1		09/29/21 11:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	4790	mg/L	90.0	54.0	90		09/28/21 13:17	16887-00-6	
Fluoride	ND	mg/L	2.0	1.0	20		09/27/21 21:50	16984-48-8	D3
Sulfate	668	mg/L	20.0	10.0	20		09/27/21 21:50	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-2HT	Lab ID:	92563385002	Collected	d: 09/23/2	1 12:13	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit ———————————————————————————————————	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:42		
Н	6.97	Std. Units			1		09/27/21 11:42		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	185	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:41	7440-70-2	
Magnesium	538	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:41	7439-95-4	
Potassium	177	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:41	7440-09-7	
Sodium	4650	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 04:47	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0025J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:04	7440-38-2	
Boron	2.1J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 19:12	7440-42-8	
Lithium	0.076	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:04	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	20B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	87.9	mg/L	5.0	5.0	1		10/06/21 16:18		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/06/21 16:18		
Alkalinity, Total as CaCO3	87.9	mg/L	5.0	5.0	1		10/06/21 16:18		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	18300	mg/L	2500	2500	1		09/29/21 11:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	7100	mg/L	90.0	54.0	90		09/28/21 13:33	16887-00-6	
Fluoride	ND	mg/L	2.0	1.0	20		09/27/21 22:06		D3
Sulfate	982	mg/L	20.0	10.0	20		09/27/21 22:06	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-2HTS	Lab ID:	92563385003	Collected	l: 09/23/2 ²	12:17	Received: 09/	25/21 11:00 Ma	atrix: Water	
	-		Report					0.0	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:42		
Н	7.15	Std. Units			1		09/27/21 11:42		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	124	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:44	7440-70-2	
Magnesium	351	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:44	7439-95-4	
Potassium	118	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:44	7440-09-7	
Sodium	3060	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 04:50	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0025J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:07	7440-38-2	
Boron	1.5J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 19:15	7440-42-8	
ithium	0.057	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:07	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
·	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	64.6	mg/L	5.0	5.0	1		10/06/21 16:25		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/06/21 16:25		
Alkalinity, Total as CaCO3	64.6	mg/L	5.0	5.0	1		10/06/21 16:25		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	12000	mg/L	1250	1250	1		09/29/21 11:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
•	•	ytical Services							
Chloride	4750	mg/L	90.0	54.0	90		09/28/21 13:49	16887-00-6	
Fluoride	ND	mg/L	5.0	2.5	50		09/27/21 22:21		D3
Sulfate	1670	mg/L	50.0	25.0	50		09/27/21 22:21		-

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-3HT	Lab ID:	92563385004	Collected	d: 09/23/2	1 12:28	Received: 09/	25/21 11:00 Ma	atrix: Water	
5 .	5	11.2	Report	MDI	5-			0404	_
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:42		
Н	6.99	Std. Units			1		09/27/21 11:42		
6010 MET ICP	Analytical	Method: EPA	6010D Prep	aration Me	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	173	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:48	7440-70-2	
Magnesium	499	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:48	7439-95-4	
Potassium	166	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:48	7440-09-7	
Sodium	4400	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 04:53	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	s - Asheville						
Arsenic	0.0021J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:14	7440-38-2	
Boron	2.0J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 19:22	7440-42-8	
_ithium	0.073	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:14	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 2	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	90.2	mg/L	5.0	5.0	1		10/06/21 16:31		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/06/21 16:31		
Alkalinity, Total as CaCO3	90.2	mg/L	5.0	5.0	1		10/06/21 16:31		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	15700	mg/L	2500	2500	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2.	1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	6880	mg/L	90.0	54.0	90		09/28/21 14:04	16887-00-6	
Fluoride	ND	mg/L	5.0	2.5	50		09/27/21 22:37	16984-48-8	D3
Sulfate	953	mg/L	50.0	25.0	50		09/27/21 22:37	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-3HTS	Lab ID:	92563385005	Collected	: 09/23/21	12:23	Received: 09/	25/21 11:00 Ma	atrix: Water	
D	D 1	11.2	Report	145	5-			0404	•
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:43		
Н	7.08	Std. Units			1		09/27/21 11:43		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	131	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:51	7440-70-2	
Magnesium	375	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:51	7439-95-4	
Potassium	124	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:51	7440-09-7	
Sodium	3300	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 04:56	7440-23-5	
020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0023J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:18	7440-38-2	
Boron	1.7J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 19:26	7440-42-8	
Lithium	0.060	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:18	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
-	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	73.0	mg/L	5.0	5.0	1		10/06/21 16:38		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/06/21 16:38		
Alkalinity, Total as CaCO3	73.0	mg/L	5.0	5.0	1		10/06/21 16:38		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	12900	mg/L	1250	1250	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	5000	mg/L	50.0	30.0	50		09/27/21 22:53	16887-00-6	
Fluoride	ND	mg/L	5.0	2.5	50		09/27/21 22:53	16984-48-8	D3
Sulfate	698	mg/L	50.0	25.0	50		09/27/21 22:53	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-4HT	Lab ID:	92563385006	Collected	l: 09/23/2 ²	1 14:09	Received: 09/	25/21 11:00 Ma	atrix: Water	
	-		Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:43		
Н	6.98	Std. Units			1		09/27/21 11:43		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	152	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:54	7440-70-2	
Magnesium	439	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:54	7439-95-4	
Potassium	144	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:54	7440-09-7	
Sodium	3900	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:00	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0022J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:22	7440-38-2	
Boron	1.9J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 19:29	7440-42-8	
_ithium	0.069	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:22	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 2	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	81.1	mg/L	5.0	5.0	1		09/30/21 17:18		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/30/21 17:18		
Alkalinity, Total as CaCO3	81.1	mg/L	5.0	5.0	1		09/30/21 17:18		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	15400	mg/L	2500	2500	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
-	Pace Anal	ytical Services	- Asheville						
Chloride	7960	mg/L	90.0	54.0	90		09/27/21 23:40	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/27/21 23:40	16984-48-8	D3
Sulfate	1110	mg/L	90.0	45.0	90		09/27/21 23:40	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-4HTS	Lab ID:	92563385007	Collected	l: 09/23/2	1 14:02	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						_
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:43		
Н	7.14	Std. Units			1		09/27/21 11:43		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	136	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:11	7440-70-2	
Magnesium	402	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:11	7439-95-4	
Potassium	130	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:11	7440-09-7	
Sodium	3450	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:03	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0021J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:29	7440-38-2	
Boron	1.7J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 19:33	7440-42-8	
Lithium	0.066	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:29	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	74.9	mg/L	5.0	5.0	1		09/30/21 17:28		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/30/21 17:28		
Alkalinity, Total as CaCO3	74.9	mg/L	5.0	5.0	1		09/30/21 17:28		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	13000	mg/L	1250	1250	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	5270	mg/L	90.0	54.0	90		09/27/21 23:56	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/27/21 23:56	16984-48-8	D3
Sulfate	717	mg/L	90.0	45.0	90		09/27/21 23:56	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T2-1HT	Lab ID:	92563385008	Collected	d: 09/23/2	1 11:41	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:43		
Н	6.89	Std. Units			1		09/27/21 11:43		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	124	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:14	7440-70-2	
Magnesium	363	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:14	7439-95-4	
Potassium	118	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:14	7440-09-7	
Sodium	3100	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:06	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0020J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:32	7440-38-2	
Boron	1.4J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 19:40	7440-42-8	
Lithium	0.054	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:32	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	68.7	mg/L	5.0	5.0	1		09/30/21 17:36		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/30/21 17:36		
Alkalinity, Total as CaCO3	68.7	mg/L	5.0	5.0	1		09/30/21 17:36		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	11700	mg/L	1250	1250	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	4750	mg/L	90.0	54.0	90		09/28/21 00:12	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 00:12	16984-48-8	D3
Sulfate	638	mg/L	90.0	45.0	90		09/28/21 00:12	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T2-2HT	Lab ID:	92563385009	Collected	: 09/23/21	11:49	Received: 09/	25/21 11:00 Ma	atrix: Water	
Davamatava	Desults	l laita	Report	MDI	DE	Danasad	A ll	CACNE	0
Parameters	Results	Units -	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:44		
рН	6.87	Std. Units			1		09/27/21 11:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: Ef	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Calcium	165	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:17	7440-70-2	
Magnesium	496	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:17	7439-95-4	
Potassium	160	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:17	7440-09-7	
Sodium	4250	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:10	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Arsenic	0.0032J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:43	7440-38-2	
Boron	1.9J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 19:44	7440-42-8	
Lithium	0.071	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:43	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	83.1	mg/L	5.0	5.0	1		09/30/21 17:43		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/30/21 17:43		
Alkalinity, Total as CaCO3	83.1	mg/L	5.0	5.0	1		09/30/21 17:43		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	lytical Services	- Asheville						
Total Dissolved Solids	16400	mg/L	2500	2500	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	lytical Services	- Asheville						
Chloride	6450	mg/L	90.0	54.0	90		09/28/21 00:27	16887-00-6	M1
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 00:27	16984-48-8	D3,M1
Sulfate	884	mg/L	90.0	45.0	90		09/28/21 00:27	14808-79-8	M1

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T2-2HTS	Lab ID:	92563385010	Collected	d: 09/23/2	1 11:53	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:44		
ЭН	7.05	Std. Units			1		09/27/21 11:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	113	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:20	7440-70-2	
Magnesium	330	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:20	7439-95-4	
Potassium	106	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:20	7440-09-7	
Sodium	2810	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:19	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0024J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:47	7440-38-2	
Boron	1.5J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 19:47	7440-42-8	
Lithium	0.048J	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:47	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	65.2	mg/L	5.0	5.0	1		09/30/21 17:51		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/30/21 17:51		
Alkalinity, Total as CaCO3	65.2	mg/L	5.0	5.0	1		09/30/21 17:51		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	10400	mg/L	1250	1250	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
-	Pace Anal	ytical Services	- Asheville						
Chloride	4400	mg/L	90.0	54.0	90		09/28/21 01:14	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 01:14	16984-48-8	D3
Sulfate	585	mg/L	90.0	45.0	90		09/28/21 01:14	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T2-3HT	Lab ID:	92563385011	Collected	d: 09/23/2	1 12:52	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:44		
ρΗ	6.96	Std. Units			1		09/27/21 11:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	172	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:24	7440-70-2	
Magnesium	516	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:24	7439-95-4	
Potassium	166	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:24	7440-09-7	
Sodium	4370	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:23	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0026J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:50	7440-38-2	
Boron	2.2J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 19:51	7440-42-8	
_ithium	0.078	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:50	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	84.0	mg/L	5.0	5.0	1		09/30/21 17:59		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/30/21 17:59		
Alkalinity, Total as CaCO3	84.0	mg/L	5.0	5.0	1		09/30/21 17:59		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	16200	mg/L	2500	2500	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	6700	mg/L	90.0	54.0	90		09/28/21 01:30	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 01:30		D3
Sulfate	918	mg/L	90.0	45.0	90		09/28/21 01:30		•

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T2-3HTS	Lab ID:	92563385012	Collected	d: 09/23/2	1 12:45	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:45		
Н	7.18	Std. Units			1		09/27/21 11:45		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	104	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:27	7440-70-2	
Magnesium	303	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:27	7439-95-4	
Potassium	97.6J	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:27	7440-09-7	
Sodium	2570	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:26	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0023J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 20:22	7440-38-2	
Boron	1.4	mg/L	1.0	0.17	20	09/29/21 10:37	09/30/21 20:22	7440-42-8	
_ithium	0.048J	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 20:22	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	61.5	mg/L	5.0	5.0	1		09/30/21 18:22		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/30/21 18:22		
Alkalinity, Total as CaCO3	61.5	mg/L	5.0	5.0	1		09/30/21 18:22		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	10000	mg/L	1250	1250	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	4090	mg/L	90.0	54.0	90		09/28/21 01:46	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 01:46	16984-48-8	D3
Sulfate	540	mg/L	90.0	45.0	90		09/28/21 01:46	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T2-4HT	Lab ID:	92563385013		: 09/23/21	13:47	Received: 09/	25/21 11:00 Ma	atrix: Water	
Damanatana	Danuta	11-26	Report	MDI	D E	Decreed	A b d	040 N=	0
Parameters	Results	Units -	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:45		
ρΗ	6.96	Std. Units			1		09/27/21 11:45		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	154	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:30	7440-70-2	
Magnesium	460	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:30	7439-95-4	
Potassium	148	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:30	7440-09-7	
Sodium	3930	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:29	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0019J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 22:58	7440-38-2	
Boron	1.9J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 20:18	7440-42-8	
Lithium	0.064	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 22:58	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	77.1	mg/L	5.0	5.0	1		09/30/21 18:29		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		09/30/21 18:29		
Alkalinity, Total as CaCO3	77.1	mg/L	5.0	5.0	1		09/30/21 18:29		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	13600	mg/L	1250	1250	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	5670	mg/L	90.0	54.0	90		09/28/21 02:01	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 02:01	16984-48-8	D3
Sulfate	768	mg/L	90.0	45.0	90		09/28/21 02:01	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T2-4HTS	Lab ID:	92563385014	Collected	: 09/23/21	13:40	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:47		
Н	7.09	Std. Units			1		09/27/21 11:47		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	130	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:33	7440-70-2	
Magnesium	381	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:33	7439-95-4	
Potassium	123	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:33	7440-09-7	
Sodium	3230	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:33	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0019J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 23:01	7440-38-2	
Boron	1.4J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 20:29	7440-42-8	
Lithium	0.053	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 23:01	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	54.5	mg/L	5.0	5.0	1		10/04/21 20:27		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/04/21 20:27		
Alkalinity, Total as CaCO3	54.5	mg/L	5.0	5.0	1		10/04/21 20:27		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	12000	mg/L	1250	1250	1		09/29/21 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	5130	mg/L	90.0	54.0	90		09/28/21 02:49	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 02:49	16984-48-8	D3
Sulfate	694	mg/L	90.0	45.0	90		09/28/21 02:49	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T3-1HT	Lab ID:	92563385015	Collected	d: 09/23/2	1 11:16	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:47		
Н	7.12	Std. Units			1		09/27/21 11:47		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	88.6	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:37	7440-70-2	
Magnesium	252	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:37	7439-95-4	
Potassium	81.1J	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:37	7440-09-7	
Sodium	2150	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:36	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0022J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 20:55	7440-38-2	
Boron	1.2	mg/L	1.0	0.17	20	09/29/21 10:37	09/30/21 20:55	7440-42-8	
Lithium	0.040J	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 20:55	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	71.2	mg/L	5.0	5.0	1		10/04/21 20:35		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/04/21 20:35		
Alkalinity, Total as CaCO3	71.2	mg/L	5.0	5.0	1		10/04/21 20:35		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	8300	mg/L	1250	1250	1		09/29/21 11:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-		lytical Services							
Chloride	3230	mg/L	90.0	54.0	90		09/28/21 03:04	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 03:04		D3
Sulfate	419	mg/L	90.0	45.0	90		09/28/21 03:04	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T3-2HT	Lab ID:	92563385016	Collected	: 09/23/21	11:25	Received: 09/	25/21 11:00 Ma	atrix: Water	
Davassatava	Desults	l laita	Report	MDI	DE	Danasad	A ll	CACNE	0
Parameters	Results	Units -	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:47		
Н	6.79	Std. Units			1		09/27/21 11:47		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	138	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:40	7440-70-2	
Magnesium	402	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:40	7439-95-4	
Potassium	130	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:40	7440-09-7	
Sodium	3430	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:39	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0034J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 23:05	7440-38-2	
Boron	1.8J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 20:45	7440-42-8	
_ithium	0.071	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 23:05	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	75.0	mg/L	5.0	5.0	1		10/04/21 20:43		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/04/21 20:43		
Alkalinity, Total as CaCO3	75.0	mg/L	5.0	5.0	1		10/04/21 20:43		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	13400	mg/L	1250	1250	1		09/29/21 11:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	5520	mg/L	90.0	54.0	90		09/28/21 03:20	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 03:20	16984-48-8	D3
Sulfate	744	mg/L	90.0	45.0	90		09/28/21 03:20		

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T3-2HTS	Lab ID:	92563385017	Collected	d: 09/23/2	1 11:30	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:47		
Н	7.04	Std. Units			1		09/27/21 11:47		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	83.7	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:50	7440-70-2	
Magnesium	234	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:50	7439-95-4	
Potassium	77.2J	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:50	7440-09-7	
Sodium	2050	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:42	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0021J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 20:59	7440-38-2	
Boron	1.1	mg/L	1.0	0.17	20	09/29/21 10:37	09/30/21 20:59	7440-42-8	
Lithium	0.034J	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 20:59	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	55.6	mg/L	5.0	5.0	1		10/04/21 20:50		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/04/21 20:50		
Alkalinity, Total as CaCO3	55.6	mg/L	5.0	5.0	1		10/04/21 20:50		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	7450	mg/L	1250	1250	1		09/29/21 11:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	3180	mg/L	90.0	54.0	90		09/28/21 03:36	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 03:36	16984-48-8	D3
Sulfate	410	mg/L	90.0	45.0	90		09/28/21 03:36	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T3-3HT	Lab ID:	92563385018	Collected	d: 09/23/2	13:13	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:54		
Н	6.92	Std. Units			1		09/27/21 11:54		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	156	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:53	7440-70-2	
Magnesium	467	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:53	7439-95-4	
Potassium	152	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:53	7440-09-7	
Sodium	4160	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 05:46	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0024J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 23:12	7440-38-2	
Boron	1.8J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 20:52	7440-42-8	
Lithium	0.071	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 23:12	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 2	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	82.7	mg/L	5.0	5.0	1		10/04/21 20:57		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/04/21 20:57		
Alkalinity, Total as CaCO3	82.7	mg/L	5.0	5.0	1		10/04/21 20:57		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	14100	mg/L	2500	2500	1		09/29/21 11:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	6340	mg/L	90.0	54.0	90		09/28/21 03:51	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 03:51	16984-48-8	D3
Sulfate	862	mg/L	90.0	45.0	90		09/28/21 03:51	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T3-3HTS	Lab ID:	92563385019	Collected	d: 09/23/2	1 13:07	Received: 09/	/25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:51		
рН	7.24	Std. Units			1		09/27/21 11:51		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	70.4	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 08:56	7440-70-2	
Magnesium	193	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 08:56	7439-95-4	
Potassium	64.3J	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 08:56	7440-09-7	
Sodium	1690	mg/L	100	12.2	20	09/28/21 12:46	10/05/21 08:56	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0020J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 21:17	7440-38-2	
Boron	0.83J	mg/L	1.0	0.17	20	09/29/21 10:37	09/30/21 21:17	7440-42-8	
Lithium	0.027J	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 21:17	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	45.4	mg/L	5.0	5.0	1		10/04/21 21:05		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/04/21 21:05		
Alkalinity, Total as CaCO3	45.4	mg/L	5.0	5.0	1		10/04/21 21:05		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	6600	mg/L	1250	1250	1		09/29/21 11:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•		lytical Services							
Chloride	2500	mg/L	90.0	54.0	90		09/28/21 04:38	16887-00-6	M1
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 04:38		D3,M1
Sulfate	315	mg/L	90.0	45.0	90		09/28/21 04:38		-,

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T3-4HT	Lab ID:	92563385020	Collected	d: 09/23/2	1 13:29	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:51		
Н	6.94	Std. Units			1		09/27/21 11:51		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	122	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 09:00	7440-70-2	
Magnesium	374	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 09:00	7439-95-4	
Potassium	121	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 09:00		
Sodium	3860	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 06:06	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0022J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 23:15	7440-38-2	
Boron	1.8J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 21:21	7440-42-8	
Lithium	0.069	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 23:15	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
-	Pace Ana	lytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	80.0	mg/L	5.0	5.0	1		10/04/21 21:12		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/04/21 21:12		
Alkalinity, Total as CaCO3	80.0	mg/L	5.0	5.0	1		10/04/21 21:12		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	14200	mg/L	2500	2500	1		09/29/21 11:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
·	•	lytical Services							
Chloride	6020	mg/L	90.0	54.0	90		09/28/21 05:57	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 05:57	16984-48-8	D3
Sulfate	815	mg/L	90.0	45.0	90		09/28/21 05:57	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T3-4HTS	Lab ID:	92563385021	Collected:	09/23/21	13:24	Received: 09/	25/21 11:00 Ma	atrix: Water	
	-		Report					0.0	
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:51		
Н	7.09	Std. Units			1		09/27/21 11:51		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	107	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:09	7440-70-2	M1
Magnesium	312	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:09	7439-95-4	M1
Potassium	103	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:09	7440-09-7	M1
Sodium	2640	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 02:48	7440-23-5	M1
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Prepa	ration Metl	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0023J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 22:45	7440-38-2	M1
Boron	1.0J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 16:35	7440-42-8	M1
_ithium	0.041J	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 19:16	7439-93-2	M1
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	61.5	mg/L	5.0	5.0	1		10/05/21 20:58		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 20:58		
Alkalinity, Total as CaCO3	61.5	mg/L	5.0	5.0	1		10/05/21 20:58		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	9850	mg/L	1250	1250	1		09/29/21 11:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	4080	mg/L	90.0	54.0	90		09/28/21 06:13	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 06:13	16984-48-8	D3
Sulfate	538	mg/L	90.0	45.0	90		09/28/21 06:13	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-1HB	Lab ID:	92563385022	Collected	1: 09/22/21	12:56	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:51		
ρΗ	7.06	Std. Units			1		09/27/21 11:51		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	174	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:22	7440-70-2	
Magnesium	530	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:22	7439-95-4	
Potassium	170	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:22	7440-09-7	
Sodium	4540	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:01	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0031J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 22:56	7440-38-2	
Boron	1.8J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 16:42	7440-42-8	
_ithium	0.077	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 19:23	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	90.4	mg/L	5.0	5.0	1		10/05/21 21:20		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 21:20		
Alkalinity, Total as CaCO3	90.4	mg/L	5.0	5.0	1		10/05/21 21:20		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	15500	mg/L	1250	1250	1		09/28/21 17:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	7160	mg/L	90.0	54.0	90		09/28/21 06:28	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 06:28	16984-48-8	D3
Sulfate	983	mg/L	90.0	45.0	90		09/28/21 06:28	1/19/09 70 9	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-1HS	Lab ID:	92563385023	Collected	09/22/21	12:51	Received: 09/	25/21 11:00 Ma	atrix: Water	
	5		Report					0.0	
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:54		
Н	7.22	Std. Units			1		09/27/21 11:54		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	172	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:25	7440-70-2	
Magnesium	513	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:25	7439-95-4	
Potassium	169	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:25	7440-09-7	
Sodium	4400	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:04	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0028J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 22:59	7440-38-2	
Boron	1.8J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 16:50	7440-42-8	
Lithium	0.067	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 19:27	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	88.5	mg/L	5.0	5.0	1		10/05/21 21:37		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 21:37		v1
Alkalinity, Total as CaCO3	88.5	mg/L	5.0	5.0	1		10/05/21 21:37		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	12900	mg/L	1250	1250	1		09/28/21 17:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	6540	mg/L	90.0	54.0	90		09/28/21 06:44	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 06:44	16984-48-8	D3
Sulfate	891	mg/L	90.0	45.0	90		09/28/21 06:44	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-2HB	Lab ID:	92563385024	Collected	d: 09/22/2	1 13:08	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:54		
ρΗ	7.04	Std. Units			1		09/27/21 11:54		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	180	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:29	7440-70-2	
Magnesium	541	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:29	7439-95-4	
Potassium	179	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:29	7440-09-7	
Sodium	4870	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:14	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0025J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:03	7440-38-2	
Boron	2.0J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 16:57	7440-42-8	
Lithium	0.076	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 19:34	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	97.3	mg/L	5.0	5.0	1		10/05/21 21:45		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 21:45		v1
Alkalinity, Total as CaCO3	97.3	mg/L	5.0	5.0	1		10/05/21 21:45		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	15800	mg/L	1250	1250	1		09/28/21 17:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	7420	mg/L	90.0	54.0	90		09/28/21 07:00	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 07:00		D3
Sulfate	1020	mg/L	90.0	45.0	90		09/28/21 07:00	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-2HS	Lab ID:	92563385025	Collected	d: 09/22/2	1 13:03	Received: 09/	/25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:55		
PΗ	7.13	Std. Units			1		09/27/21 11:55		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	170	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:32	7440-70-2	
Magnesium	504	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:32	7439-95-4	
Potassium	166	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:32	7440-09-7	
Sodium	4440	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:17	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0028J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:06	7440-38-2	
Boron	1.8J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 17:04	7440-42-8	
Lithium	0.069	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 19:38	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	90.5	mg/L	5.0	5.0	1		10/05/21 21:55		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 21:55		v1
Alkalinity, Total as CaCO3	90.5	mg/L	5.0	5.0	1		10/05/21 21:55		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	14800	mg/L	1250	1250	1		09/28/21 17:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	6730	mg/L	90.0	54.0	90		09/28/21 07:15	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 07:15	16984-48-8	D3
Sulfate	918	mg/L	90.0	45.0	90		09/28/21 07:15	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-3HB	Lab ID:	92563385026	Collected	d: 09/22/2	1 13:23	Received: 09/	/25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:55		
рН	7.04	Std. Units			1		09/27/21 11:55		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	168	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:35	7440-70-2	
Magnesium	506	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:35	7439-95-4	
Potassium	168	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:35	7440-09-7	
Sodium	4800	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:21	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0025J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:10	7440-38-2	
Boron	2.1J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 17:24	7440-42-8	
Lithium	0.076	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 19:59	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	92.0	mg/L	5.0	5.0	1		10/05/21 22:03		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 22:03		v1
Alkalinity, Total as CaCO3	92.0	mg/L	5.0	5.0	1		10/05/21 22:03		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	16000	mg/L	1250	1250	1		09/28/21 17:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	7410	mg/L	90.0	54.0	90		09/28/21 07:31	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 07:31		D3
Sulfate	1020	mg/L	90.0	45.0	90		09/28/21 07:31	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-3HS	Lab ID:	92563385027	Collected	l: 09/22/2	1 13:15	Received: 09/	/25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:55		
ρΗ	7.16	Std. Units			1		09/27/21 11:55		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	168	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:45	7440-70-2	
Magnesium	502	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:45	7439-95-4	
Potassium	165	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:45	7440-09-7	
Sodium	4600	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:24	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0027J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:13	7440-38-2	
Boron	1.9J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 17:31	7440-42-8	
Lithium	0.072	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 20:06	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	92.4	mg/L	5.0	5.0	1		10/05/21 22:12		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 22:12		v1
Alkalinity, Total as CaCO3	92.4	mg/L	5.0	5.0	1		10/05/21 22:12		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	15400	mg/L	1250	1250	1		09/28/21 17:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	6790	mg/L	90.0	54.0	90		09/28/21 07:47	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 07:47		D3
Sulfate	928	mg/L	90.0	45.0	90		09/28/21 07:47		

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-4HB	Lab ID:	92563385028	Collected	d: 09/22/2	1 13:39	Received: 09/	/25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:56		
pH	7.08	Std. Units			1		09/27/21 11:56		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	167	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:48	7440-70-2	
Magnesium	499	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:48	7439-95-4	
Potassium	165	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:48	7440-09-7	
Sodium	4620	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:27	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0027J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:17	7440-38-2	
Boron	2.0J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 17:38	7440-42-8	
Lithium	0.081	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 20:09	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	92.5	mg/L	5.0	5.0	1		10/05/21 22:21		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 22:21		v1
Alkalinity, Total as CaCO3	92.5	mg/L	5.0	5.0	1		10/05/21 22:21		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	16400	mg/L	1250	1250	1		09/28/21 17:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	7310	mg/L	90.0	54.0	90		09/28/21 08:02	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 08:02	16984-48-8	D3
Sulfate	1090	mg/L	90.0	45.0	90		09/28/21 08:02	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-4HS	Lab ID:	92563385029	Collected	d: 09/22/2	1 13:35	Received: 09/	25/21 11:00 Ma	atrix: Water	
Daramatara	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Ougl
Parameters	— Results	——————————————————————————————————————		IVIDL		- Prepared	- Analyzeu	CAS NO.	Qual
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:56		
рН	7.17	Std. Units			1		09/27/21 11:56		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: Ef	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Calcium	186	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:52	7440-70-2	
Magnesium	547	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:52	7439-95-4	
Potassium	180	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:52	7440-09-7	
Sodium	4810	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:31	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Arsenic	0.0028J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:31	7440-38-2	
Boron	2.1J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 17:45	7440-42-8	
Lithium	0.087	mg/L	0.050	0.010	20	09/29/21 10:37	09/29/21 23:31	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	88.9	mg/L	5.0	5.0	1		10/05/21 22:29		v1
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 22:29		v1
Alkalinity, Total as CaCO3	88.9	mg/L	5.0	5.0	1		10/05/21 22:29		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	lytical Services	- Asheville						
Total Dissolved Solids	16200	mg/L	1250	1250	1		09/28/21 17:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Anal	lytical Services	- Asheville						
Chloride	7220	mg/L	90.0	54.0	90		09/28/21 08:18	16887-00-6	M1
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 08:18	16984-48-8	D3,M1
Sulfate	994	mg/L	90.0	45.0	90		09/28/21 08:18	14808-79-8	M1

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-1L	Lab ID:	92563385030	Collected:	09/22/21	19:24	Received: 09/	25/21 11:00 Ma	atrix: Water	
5	.	11.2	Report	MDI	D E	5 .		04011	•
Parameters	Results	Units -	Limit	MDL -	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:56		
Н	7.35	Std. Units			1		09/27/21 11:56		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Metl	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	165	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:55	7440-70-2	
Magnesium	495	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:55	7439-95-4	
Potassium	165	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:55	7440-09-7	
Sodium	4650	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:34	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0042J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:34	7440-38-2	
Boron	1.7J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 17:52	7440-42-8	
Lithium	0.088	mg/L	0.050	0.010	20	09/29/21 10:37	09/29/21 23:34	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	90.3	mg/L	5.0	5.0	1		10/05/21 22:38		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 22:38		v1
Alkalinity, Total as CaCO3	90.3	mg/L	5.0	5.0	1		10/05/21 22:38		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	15600	mg/L	1250	1250	1		09/28/21 17:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	6920	mg/L	90.0	54.0	90		09/28/21 10:09	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 10:09	16984-48-8	D3
Sulfate	944	mg/L	90.0	45.0	90		09/28/21 10:09	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-2L	Lab ID:	92563385031	Collected	d: 09/22/2	1 19:11	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:56		
рН	7.31	Std. Units			1		09/27/21 11:56		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	174	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 06:58	7440-70-2	
Magnesium	512	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 06:58	7439-95-4	
Potassium	170	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 06:58	7440-09-7	
Sodium	4520	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:37	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0040J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:38	7440-38-2	
Boron	2.0J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 18:09	7440-42-8	
Lithium	0.090	mg/L	0.050	0.010	20	09/29/21 10:37	09/29/21 23:38	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	94.8	mg/L	5.0	5.0	1		10/05/21 22:46		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 22:46		v1
Alkalinity, Total as CaCO3	94.8	mg/L	5.0	5.0	1		10/05/21 22:46		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	14800	mg/L	1250	1250	1		09/28/21 17:36		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	6820	mg/L	90.0	54.0	90		09/28/21 10:24	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 10:24		D3
Sulfate	933	mg/L	90.0	45.0	90		09/28/21 10:24		

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-3L	Lab ID:	92563385032	Collected	d: 09/22/2	1 19:05	Received: 09/	/25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:57		
рН	7.38	Std. Units			1		09/27/21 11:57		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: El	PA 3010A			
	Pace Ana	ytical Services	- Asheville						
Calcium	182	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 20:44	7440-70-2	
Magnesium	542	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 20:44	7439-95-4	
Potassium	178	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 20:44	7440-09-7	
Sodium	ND	mg/L	100	12.2	20	09/28/21 12:46	10/05/21 07:02	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Ana	ytical Services	- Asheville						
Arsenic	0.0037J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:42	7440-38-2	
Boron	1.7J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 18:16	7440-42-8	
Lithium	0.086	mg/L	0.050	0.010	20	09/29/21 10:37	09/29/21 23:42	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	95.8	mg/L	5.0	5.0	1		10/05/21 23:20		v1
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 23:20		v1
Alkalinity, Total as CaCO3	95.8	mg/L	5.0	5.0	1		10/05/21 23:20		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	ytical Services	- Asheville						
Total Dissolved Solids	15200	mg/L	1250	1250	1		09/28/21 17:36		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
·	Pace Ana	ytical Services	- Asheville						
Chloride	7160	mg/L	90.0	54.0	90		09/28/21 10:40	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 10:40	16984-48-8	D3
Sulfate	966	mg/L	90.0	45.0	90		09/28/21 10:40	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T4-4L	Lab ID:	92563385033	Collected	d: 09/22/2	1 18:17	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:57		
PΗ	7.32	Std. Units			1		09/27/21 11:57		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	313	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:05	7440-70-2	
Magnesium	953	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:05	7439-95-4	
Potassium	307	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:05	7440-09-7	
Sodium	4500	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 03:44	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0035J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:53	7440-38-2	
Boron	1.9J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 18:24	7440-42-8	
Lithium	0.086	mg/L	0.050	0.010	20	09/29/21 10:37	09/29/21 23:53	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	95.1	mg/L	5.0	5.0	1		10/05/21 23:29		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 23:29		v1
Alkalinity, Total as CaCO3	95.1	mg/L	5.0	5.0	1		10/05/21 23:29		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	15200	mg/L	1250	1250	1		09/28/21 17:36		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	6830	mg/L	90.0	54.0	90		09/28/21 10:56	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 10:56		D3
Sulfate	1250	mg/L	90.0	45.0	90		09/28/21 10:56	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: BG-2HT	Lab ID:	92563385034	Collected	d: 09/22/2	1 10:21	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		09/27/21 11:57		
pH	7.13	Std. Units			1		09/27/21 11:57		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	178	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:08	7440-70-2	
Magnesium	524	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:08	7439-95-4	
Potassium	171	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:08	7440-09-7	
Sodium	6380	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 04:00	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0040J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/29/21 23:56	7440-38-2	
Boron	2.8	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 18:31	7440-42-8	
Lithium	0.14	mg/L	0.050	0.010	20	09/29/21 10:37	09/29/21 23:56	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	108	mg/L	5.0	5.0	1		10/05/21 23:38		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 23:38		v1
Alkalinity, Total as CaCO3	108	mg/L	5.0	5.0	1		10/05/21 23:38		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	21100	mg/L	2500	2500	1		09/28/21 17:36		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	9780	mg/L	100	60.0	100		09/28/21 13:02	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 11:11	16984-48-8	D3
Sulfate	1710	mg/L	90.0	45.0	90		09/28/21 11:11	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: DUP-1	Lab ID:	92563385035	Collected	d: 09/22/2	00:00	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	192	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:12	7440-70-2	
Magnesium	572	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:12	7439-95-4	
Potassium	185	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:12	7440-09-7	
Sodium	4880	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 04:04	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0027J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 00:00	7440-38-2	
Boron	1.9J	mg/L	2.5	0.42	50	09/29/21 10:37	09/30/21 18:38	7440-42-8	
Lithium	0.089	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 00:00	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
-	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	89.8	mg/L	5.0	5.0	1		10/05/21 23:48		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/05/21 23:48		v1
Alkalinity, Total as CaCO3	89.8	mg/L	5.0	5.0	1		10/05/21 23:48		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	16600	mg/L	1250	1250	1		09/28/21 17:36		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	7310	mg/L	90.0	54.0	90		09/28/21 11:27	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 11:27	16984-48-8	
Sulfate	1330	mg/L	90.0	45.0	90		09/28/21 11:27	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: DUP-2	Lab ID:	92563385036	Collected:	09/23/21	00:00	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical I	Method: EPA	6010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	- Asheville						
Calcium	119	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:15	7440-70-2	
Magnesium	346	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:15	7439-95-4	
Potassium	116	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:15	7440-09-7	
Sodium	3030	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 04:07	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA	6020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	- Asheville						
Arsenic	0.0021J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 00:03	7440-38-2	
Boron	1.2	mg/L	1.0	0.17	20	09/29/21 10:37	09/30/21 18:45	7440-42-8	
Lithium	0.056	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 00:03	7439-93-2	
2320B Alkalinity	Analytical I	Method: SM 2	320B-2011						
	Pace Analy	tical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	66.5	mg/L	5.0	5.0	1		10/07/21 14:48		v1
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/07/21 14:48		v1
Alkalinity, Total as CaCO3	66.5	mg/L	5.0	5.0	1		10/07/21 14:48		v1
2540C Total Dissolved Solids	Analytical I	Method: SM 2	540C-2011						
	Pace Analy	tical Services	- Asheville						
Total Dissolved Solids	10600	mg/L	1250	1250	1		09/29/21 11:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2.1	1993					
	Pace Analy	tical Services	- Asheville						
Chloride	4780	mg/L	90.0	54.0	90		09/28/21 12:14	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 12:14	16984-48-8	D3
Sulfate	650	mg/L	90.0	45.0	90		09/28/21 12:14	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: DUP-3	Lab ID:	92563385037	Collected	1: 09/23/21	00:00	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	139	mg/L	2.0	1.9	20	09/28/21 12:46	10/05/21 07:25	7440-70-2	
Magnesium	412	mg/L	2.0	1.4	20	09/28/21 12:46	10/05/21 07:25	7439-95-4	
Potassium	138	mg/L	100	60.8	20	09/28/21 12:46	10/05/21 07:25	7440-09-7	
Sodium	3640	mg/L	500	61.1	100	09/28/21 12:46	10/05/21 04:10	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0024J	mg/L	0.020	0.0017	20	09/29/21 10:37	09/30/21 00:07	7440-38-2	
Boron	1.5	mg/L	1.0	0.17	20	09/29/21 10:37	09/30/21 18:52	7440-42-8	
_ithium	0.070	mg/L	0.050	0.010	20	09/29/21 10:37	09/30/21 00:07	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Analy	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	80.0	mg/L	5.0	5.0	1		10/07/21 14:56		v1
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/07/21 14:56		v1
Alkalinity, Total as CaCO3	80.0	mg/L	5.0	5.0	1		10/07/21 14:56		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Analy	ytical Services	- Asheville						
Total Dissolved Solids	13600	mg/L	1250	1250	1		09/29/21 11:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Analy	ytical Services	- Asheville						
Chloride	5890	mg/L	90.0	54.0	90		09/28/21 12:30	16887-00-6	
Fluoride	ND	mg/L	9.0	4.5	90		09/28/21 12:30	16984-48-8	D3
Sulfate	799	mg/L	90.0	45.0	90		09/28/21 12:30	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: FB-1	Lab ID:	92563385038	Collecte	ed: 09/23/2	15:10	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	paration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	ND	mg/L	0.10	0.094	1	09/28/21 12:46	10/05/21 04:13	7440-70-2	
Magnesium	ND	mg/L	0.10	0.068	1	09/28/21 12:46	10/05/21 04:13	7439-95-4	
Potassium	ND	mg/L	5.0	3.0	1	09/28/21 12:46	10/05/21 04:13	7440-09-7	
Sodium	ND	mg/L	5.0	0.61	1	09/28/21 12:46	10/05/21 04:13	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	paration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0010	0.000087	1	09/29/21 10:37	09/30/21 16:46	7440-38-2	
Boron	ND	mg/L	0.050	0.0085	1	09/29/21 10:37	09/30/21 16:46	7440-42-8	
Lithium	ND	mg/L	0.0025	0.00050	1	09/29/21 10:37	09/30/21 16:46	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/07/21 15:05		v1
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/07/21 15:05		v1
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		10/07/21 15:05		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		09/29/21 11:36		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		09/28/21 12:46	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/28/21 12:46	16984-48-8	D3
Sulfate	ND	mg/L	1.0	0.50	1		09/28/21 12:46	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: EB-1	Lab ID:	92563385039	Collected	d: 09/23/21	15:15	Received: 09/	25/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units -	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP		Method: EPA 6		aration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	ND	mg/L	0.10	0.094	1	09/28/21 12:46	10/05/21 04:17	7440-70-2	
Magnesium	ND	mg/L	0.10	0.068	1	09/28/21 12:46	10/05/21 04:17	7439-95-4	
Potassium	ND	mg/L	5.0	3.0	1	09/28/21 12:46	10/05/21 04:17	7440-09-7	
Sodium	ND	mg/L	5.0	0.61	1	09/28/21 12:46	10/05/21 04:17	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Metl	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0010	0.000087	1	09/29/21 10:37	09/30/21 16:39	7440-38-2	
Boron	ND	mg/L	0.050	0.0085	1	09/29/21 10:37	09/30/21 16:39	7440-42-8	
Lithium	ND	mg/L	0.0025	0.00050	1	09/29/21 10:37	09/30/21 16:39	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
•	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/07/21 15:09		v1
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/07/21 15:09		v1
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		10/07/21 15:09		v1
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		09/29/21 11:36		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		09/29/21 08:27	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/29/21 08:27	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		09/29/21 08:27	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-1LT	Lab ID:	92563385040	Collected	d: 09/30/2	1 14:10	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:41		
Н	6.99	Std. Units			1		10/01/21 13:41		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	141	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 20:27	7440-70-2	M1
Magnesium	411	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 20:27	7439-95-4	M1
Potassium	130	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 20:27	7440-09-7	M1
Sodium	3530	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 19:16	7440-23-5	M1
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0014J	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 17:57	7440-38-2	
Boron	1.1	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 17:57	7440-42-8	
Lithium	0.042	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 17:57	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	76.2	mg/L	5.0	5.0	1		10/07/21 19:53		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/07/21 19:53		
Alkalinity, Total as CaCO3	76.2	mg/L	5.0	5.0	1		10/07/21 19:53		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	11600	mg/L	1250	1250	1		10/04/21 17:58		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	5160	mg/L	100	60.0	100		10/02/21 13:54	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 13:54	16984-48-8	D3
Sulfate	689	mg/L	100	50.0	100		10/02/21 13:54	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-2LT	Lab ID:	92563385041	Collected	d: 09/30/2	1 14:07	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:42		
Н	7.00	Std. Units			1		10/01/21 13:42		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Calcium	132	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 20:49	7440-70-2	
Magnesium	388	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 20:49	7439-95-4	
Potassium	124	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 20:49	7440-09-7	
Sodium	3320	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 19:29	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Arsenic	0.0014J	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 18:19	7440-38-2	
Boron	1.1	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 18:19	7440-42-8	
_ithium	0.041	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 18:19	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	67.5	mg/L	5.0	5.0	1		10/11/21 18:49		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 18:49		
Alkalinity, Total as CaCO3	67.5	mg/L	5.0	5.0	1		10/11/21 18:49		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	lytical Services	- Asheville						
Total Dissolved Solids	11200	mg/L	1250	1250	1		10/04/21 17:58		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Anal	lytical Services	- Asheville						
Chloride	5110	mg/L	100	60.0	100		10/02/21 14:09	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 14:09		D3
Sulfate	679	mg/L	100	50.0	100		10/02/21 14:09		-

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-3LT	Lab ID:	92563385042	Collected	09/30/21	14:00	Received: 10/	01/21 11:10 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:42		
Н	7.14	Std. Units			1		10/01/21 13:42		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	125	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 20:52	7440-70-2	
Magnesium	360	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 20:52	7439-95-4	
Potassium	116	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 20:52	7440-09-7	
Sodium	3110	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 19:32	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0016J	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 18:28	7440-38-2	
Boron	1.0	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 18:28	7440-42-8	
Lithium	0.038	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 18:28	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	66.6	mg/L	5.0	5.0	1		10/11/21 18:57		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 18:57		
Alkalinity, Total as CaCO3	66.6	mg/L	5.0	5.0	1		10/11/21 18:57		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	11900	mg/L	1250	1250	1		10/04/21 18:00		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	4680	mg/L	100	60.0	100		10/02/21 14:25	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 14:25	16984-48-8	D3
Sulfate	614	mg/L	100	50.0	100		10/02/21 14:25	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T1-4LT	Lab ID:	92563385043	Collected	d: 09/30/2	1 10:54	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:42		
pΗ	7.09	Std. Units			1		10/01/21 13:42		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	101	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 20:55	7440-70-2	
Magnesium	288	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 20:55	7439-95-4	
Potassium	90.7J	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 20:55	7440-09-7	D3
Sodium	2410	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 19:35	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0019J	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 19:00	7440-38-2	
Boron	1.2	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 19:00	7440-42-8	
Lithium	0.046	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 19:00	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	60.8	mg/L	5.0	5.0	1		10/11/21 19:05		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 19:05		
Alkalinity, Total as CaCO3	60.8	mg/L	5.0	5.0	1		10/11/21 19:05		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	8100	mg/L	833	833	1		10/04/21 18:00		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	3850	mg/L	100	60.0	100		10/02/21 14:41	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 14:41		D3
Sulfate	496	mg/L	100	50.0	100		10/02/21 14:41	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T2-2LT	Lab ID:	92563385044	Collected	d: 09/30/2	1 13:45	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit ———————————————————————————————————	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:42		
PΗ	7.16	Std. Units			1		10/01/21 13:42		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	124	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 20:59	7440-70-2	
Magnesium	358	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 20:59	7439-95-4	
Potassium	115	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 20:59	7440-09-7	
Sodium	3080	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 19:39	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0016J	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 19:07	7440-38-2	
Boron	0.91	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 19:07	7440-42-8	
_ithium	0.036J	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 19:07	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	20B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	69.9	mg/L	5.0	5.0	1		10/11/21 19:12		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 19:12		
Alkalinity, Total as CaCO3	69.9	mg/L	5.0	5.0	1		10/11/21 19:12		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	10000	mg/L	1250	1250	1		10/04/21 18:00		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
	,	ytical Services							
Chloride	4530	mg/L	100	60.0	100		10/02/21 14:56	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 14:56		D3
Sulfate	586	mg/L	100	50.0	100		10/02/21 14:56		-

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T2-3LT	Lab ID:	92563385045	Collected	d: 09/30/2	1 13:33	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit ———————————————————————————————————	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:43		
Н	7.15	Std. Units			1		10/01/21 13:43		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	129	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 21:02	7440-70-2	
Magnesium	372	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 21:02	7439-95-4	
Potassium	119	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 21:02	7440-09-7	
Sodium	3200	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 19:42	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0016J	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 19:19	7440-38-2	
Boron	1.1	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 19:19	7440-42-8	
Lithium	0.041	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 19:19	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	20B-2011						
-	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	69.0	mg/L	5.0	5.0	1		10/11/21 19:20		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 19:20		
Alkalinity, Total as CaCO3	69.0	mg/L	5.0	5.0	1		10/11/21 19:20		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	11400	mg/L	1250	1250	1		10/04/21 18:00		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
, -	,	ytical Services							
Chloride	5020	mg/L	100	60.0	100		10/02/21 15:44	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 15:44		D3
Sulfate	664	mg/L	100	50.0	100		10/02/21 15:44	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T2-4LT	Lab ID:	92563385046	Collected	: 09/30/21	11:09	Received: 10/	01/21 11:10 Ma	atrix: Water	
	5		Report					0.0	
Parameters	Results	Units	Limit —	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:43		
Н	6.97	Std. Units			1		10/01/21 13:43		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Calcium	80.1	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 21:05	7440-70-2	D3
Magnesium	222	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 21:05	7439-95-4	
Potassium	70.6J	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 21:05	7440-09-7	D3
Sodium	1880	mg/L	100	12.2	20	10/04/21 11:58	10/11/21 21:05	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 19:26	7440-38-2	
Boron	0.58J	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 19:26	7440-42-8	
Lithium	0.022J	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 19:26	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	54.1	mg/L	5.0	5.0	1		10/11/21 19:28		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 19:28		
Alkalinity, Total as CaCO3	54.1	mg/L	5.0	5.0	1		10/11/21 19:28		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	lytical Services	- Asheville						
Total Dissolved Solids	6770	mg/L	833	833	1		10/04/21 18:00		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
•	•	lytical Services							
Chloride	2870	mg/L	100	60.0	100		10/02/21 15:59	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 15:59		D3
Sulfate	361	mg/L	100	50.0	100		10/02/21 15:59	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T3-2LT	Lab ID:	92563385047	Collected	d: 09/30/2	1 12:53	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:44		
pΗ	7.13	Std. Units			1		10/01/21 13:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	107	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 21:08	7440-70-2	
Magnesium	301	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 21:08	7439-95-4	
Potassium	96.8J	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 21:08	7440-09-7	D3
Sodium	2600	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 20:01	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0015J	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 19:33	7440-38-2	
Boron	0.75J	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 19:33	7440-42-8	
Lithium	0.029J	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 19:33	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	64.1	mg/L	5.0	5.0	1		10/11/21 19:35		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 19:35		
Alkalinity, Total as CaCO3	64.1	mg/L	5.0	5.0	1		10/11/21 19:35		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	9170	mg/L	833	833	1		10/04/21 18:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	3960	mg/L	100	60.0	100		10/02/21 16:15	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 16:15		D3
Sulfate	503	mg/L	100	50.0	100		10/02/21 16:15	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T3-3LT	Lab ID:	92563385048	Collected	: 09/30/2	12:19	Received: 10/	01/21 11:10 Ma	atrix: Water	
.			Report					0.0.1	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:44		
Н	6.89	Std. Units			1		10/01/21 13:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	101	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 21:12	7440-70-2	
Magnesium	289	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 21:12	7439-95-4	
Potassium	90.0J	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 21:12	7440-09-7	D3
Sodium	2460	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 20:05	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0015J	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 19:40	7440-38-2	
Boron	0.75	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 19:40	7440-42-8	
_ithium	0.028J	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 19:40	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	62.5	mg/L	5.0	5.0	1		10/11/21 19:52		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 19:52		
Alkalinity, Total as CaCO3	62.5	mg/L	5.0	5.0	1		10/11/21 19:52		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	8670	mg/L	833	833	1		10/04/21 18:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	I 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	3740	mg/L	100	60.0	100		10/02/21 16:31	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 16:31	16984-48-8	D3
Sulfate	475	mg/L	100	50.0	100		10/02/21 16:31		

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: T3-4LT	Lab ID:	92563385049	Collected	d: 09/30/2	1 11:25	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:44		
рН	6.90	Std. Units			1		10/01/21 13:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	84.1	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 21:21	7440-70-2	D3
Magnesium	232	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 21:21	7439-95-4	
Potassium	73.1J	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 21:21	7440-09-7	D3
Sodium	1990	mg/L	100	12.2	20	10/04/21 11:58	10/11/21 21:21	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 19:47	7440-38-2	
Boron	0.65J	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 19:47	7440-42-8	
Lithium	0.025J	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 19:47	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	56.2	mg/L	5.0	5.0	1		10/11/21 20:00		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 20:00		
Alkalinity, Total as CaCO3	56.2	mg/L	5.0	5.0	1		10/11/21 20:00		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	8070	mg/L	833	833	1		10/04/21 18:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	3110	mg/L	100	60.0	100		10/02/21 16:46	16887-00-6	M1
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 16:46		D3,M1
Sulfate	396	mg/L	100	50.0	100		10/02/21 16:46	14808-79-8	M1

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: BG-1LT	Lab ID:	92563385050	Collected	09/30/21	10:27	Received: 10/	01/21 11:10 Ma	atrix: Water	
5	5 . II	11.5	Report	MDI	D.E.			0404	_
Parameters	Results	Units -	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/01/21 13:44		
Н	6.90	Std. Units			1		10/01/21 13:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	147	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 21:24	7440-70-2	
Magnesium	434	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 21:24	7439-95-4	
Potassium	138	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 21:24	7440-09-7	
Sodium	3720	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 20:11	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0027J	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 20:01	7440-38-2	
Boron	1.3	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 20:01	7440-42-8	
Lithium	0.060	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 20:01	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	78.2	mg/L	5.0	5.0	1		10/11/21 20:07		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 20:07		
Alkalinity, Total as CaCO3	78.2	mg/L	5.0	5.0	1		10/11/21 20:07		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	13400	mg/L	1250	1250	1		10/04/21 18:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	5520	mg/L	100	60.0	100		10/02/21 17:33	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 17:33	16984-48-8	D3
Sulfate	725	mg/L	100	50.0	100		10/02/21 17:33	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: DUP-4	Lab ID:	92563385051	Collected	d: 09/30/2°	00:00	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	101	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 21:28	7440-70-2	
Magnesium	283	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 21:28	7439-95-4	
Potassium	90.2J	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 21:28	7440-09-7	D3
Sodium	2400	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 20:14	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 20:08	7440-38-2	
Boron	0.74J	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 20:08	7440-42-8	
Lithium	0.027J	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 20:08	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 2	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	61.2	mg/L	5.0	5.0	1		10/11/21 20:15		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 20:15		
Alkalinity, Total as CaCO3	61.2	mg/L	5.0	5.0	1		10/11/21 20:15		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	8300	mg/L	833	833	1		10/04/21 18:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	3770	mg/L	100	60.0	100		10/02/21 17:49	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 17:49	16984-48-8	D3
Sulfate	478	mg/L	100	50.0	100		10/02/21 17:49	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: DUP-5	Lab ID:	92563385052	2 Collected:	09/30/21	00:00	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA	6010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	s - Asheville						
Calcium	129	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 21:31	7440-70-2	
Magnesium	370	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 21:31	7439-95-4	
Potassium	121	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 21:31	7440-09-7	
Sodium	3190	mg/L	500	61.1	100	10/04/21 11:58	10/11/21 20:18	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA	6020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	s - Asheville						
Arsenic	ND	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 20:15	7440-38-2	
Boron	0.94	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 20:15	7440-42-8	
_ithium	0.036J	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 20:15	7439-93-2	
2320B Alkalinity	Analytical I	Method: SM 2	320B-2011						
	Pace Analy	tical Services	s - Asheville						
Alkalinity,Bicarbonate (CaCO3)	68.8	mg/L	5.0	5.0	1		10/11/21 20:23		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 20:23		
Alkalinity, Total as CaCO3	68.8	mg/L	5.0	5.0	1		10/11/21 20:23		
2540C Total Dissolved Solids	Analytical I	Method: SM 2	540C-2011						
	Pace Analy	tical Services	s - Asheville						
Total Dissolved Solids	11000	mg/L	1250	1250	1		10/04/21 18:02		
300.0 IC Anions 28 Days	Analytical I	Method: EPA	300.0 Rev 2.1	1993					
	Pace Analy	tical Services	s - Asheville						
Chloride	4920	mg/L	100	60.0	100		10/02/21 18:05	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		10/02/21 18:05	16984-48-8	D3
Sulfate	637	mg/L	100	50.0	100		10/02/21 18:05	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: FB-2	Lab ID:	92563385053	Collected:	09/30/21	15:15	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	6010D Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Anal	tical Services	- Asheville						
Calcium	ND	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 21:34	7440-70-2	D3
Magnesium	ND	mg/L	2.0	1.4	20	10/04/21 11:58	10/11/21 21:34	7439-95-4	D3
Potassium	ND	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 21:34	7440-09-7	D3
Sodium	ND	mg/L	100	12.2	20	10/04/21 11:58	10/11/21 21:34	7440-23-5	D3
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Anal	tical Services	- Asheville						
Arsenic	ND	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 20:22	7440-38-2	
Boron	ND	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 20:22	7440-42-8	
Lithium	ND	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 20:22	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 2	320B-2011						
	Pace Analy	tical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 20:31		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 20:31		
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		10/11/21 20:31		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Analy	tical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		10/05/21 17:37		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
	Pace Anal	tical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		10/02/21 18:52	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		10/02/21 18:52	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		10/02/21 18:52	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Sample: EB-2	Lab ID:	92563385054	Collected:	09/30/21	15:20	Received: 10/	01/21 11:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	6010D Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Analy	ytical Services	- Asheville						
Calcium	ND	mg/L	2.0	1.9	20	10/04/21 11:58	10/11/21 21:37	7440-70-2	D3
Magnesium	ND	mg/L	0.10	0.068	1	10/04/21 11:58	10/11/21 08:06	7439-95-4	
Potassium	ND	mg/L	100	60.8	20	10/04/21 11:58	10/11/21 21:37	7440-09-7	D3
Sodium	ND	mg/L	100	12.2	20	10/04/21 11:58	10/11/21 21:37	7440-23-5	D3
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Analy	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.015	0.0013	1	10/02/21 05:00	10/03/21 20:29	7440-38-2	
Boron	ND	mg/L	0.75	0.13	1	10/02/21 05:00	10/03/21 20:29	7440-42-8	
_ithium	ND	mg/L	0.038	0.0075	1	10/02/21 05:00	10/03/21 20:29	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 2	320B-2011						
	Pace Analy	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 20:36		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		10/11/21 20:36		
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		10/11/21 20:36		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Analy	ytical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		10/05/21 17:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2.1	1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		10/02/21 19:08	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		10/02/21 19:08	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		10/02/21 19:08	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 649649 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385001, 92563385002, 92563385003, 92563385004, 92563385005, 92563385006, 92563385007,

92563385008, 92563385009, 92563385010, 92563385011, 92563385012, 92563385013, 92563385014,

92563385015, 92563385016, 92563385017, 92563385018, 92563385019, 92563385020

METHOD BLANK: 3407007 Matrix: Water

Associated Lab Samples: 92563385001, 92563385002, 92563385003, 92563385004, 92563385005, 92563385006, 92563385007,

92563385008, 92563385009, 92563385010, 92563385011, 92563385012, 92563385013, 92563385014,

92563385015, 92563385016, 92563385017, 92563385018, 92563385019, 92563385020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND ND	0.10	0.094	10/05/21 04:20	
Magnesium	mg/L	ND	0.10	0.068	10/05/21 04:20	
Potassium	mg/L	ND	5.0	3.0	10/05/21 04:20	
Sodium	ma/L	ND	5.0	0.61	10/05/21 04:20	

LABORATORY CONTROL SAMPLE:	3407008					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Calcium	mg/L		5.0	99	80-120	
Magnesium	mg/L	5	5.0	101	80-120	
Potassium	mg/L	5	5.2	103	80-120	
Sodium	mg/L	5	5.2	103	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLI	ICATE: 3407	009		3407010							
Parameter	Units	92563385001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Calcium	mg/L	126	5	5	127	131	30	108	75-125	3	20	M1
Magnesium	mg/L	366	5	5	358	369	-176	44	75-125	3	20	M1
Potassium	mg/L	122	5	5	122	126	11	80	75-125	3	20	M1
Sodium	mg/L	3230	5	5	3170	3270	-1220	720	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 649653 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385021, 92563385022, 92563385023, 92563385024, 92563385025, 92563385026, 92563385027,

92563385028, 92563385029, 92563385030, 92563385031, 92563385032, 92563385033, 92563385034,

92563385035, 92563385036, 92563385037, 92563385038, 92563385039

METHOD BLANK: 3407017 Matrix: Water

Associated Lab Samples: 92563385021, 92563385022, 92563385023, 92563385024, 92563385025, 92563385026, 92563385027,

92563385028, 92563385029, 92563385030, 92563385031, 92563385032, 92563385033, 92563385034,

92563385035, 92563385036, 92563385037, 92563385038, 92563385039

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND	0.10	0.094	10/05/21 02:41	
Magnesium	mg/L	ND	0.10	0.068	10/05/21 02:41	
Potassium	mg/L	ND	5.0	3.0	10/05/21 02:41	
Sodium	mg/L	ND	5.0	0.61	10/05/21 02:41	

LABORATORY CONTROL SAMPLE: 3407018 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Calcium 5 4.8 95 80-120 mg/L Magnesium mg/L 5 4.8 95 80-120 Potassium mg/L 5 4.9J 99 80-120 Sodium 80-120 mg/L 5 5.0J 100

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3407	019		3407020	1						
Parameter	Units	92563385021 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Calcium	mg/L	107	5	5	ND	107	-2140	-5	75-125		20	M1
Magnesium	mg/L	312	5	5	ND	301	-6230	-216	75-125		20	M1
Potassium	mg/L	103	5	5	ND	103	-2060	-17	75-125		20	M1
Sodium	mg/L	2640	5	5	2660	2580	360	-1140	75-125	3	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

QC Batch: 650616 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385040, 92563385041, 92563385042, 92563385043, 92563385044, 92563385045, 92563385046,

92563385047, 92563385048, 92563385049, 92563385050, 92563385051, 92563385052, 92563385053,

92563385054

METHOD BLANK: 3412259 Matrix: Water

Associated Lab Samples: 92563385040, 92563385041, 92563385042, 92563385043, 92563385044, 92563385045, 92563385046,

92563385047, 92563385048, 92563385049, 92563385050, 92563385051, 92563385052, 92563385053,

92563385054

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND	0.10	0.094	10/11/21 19:03	
Magnesium	mg/L	ND	0.10	0.068	10/11/21 19:03	
Potassium	mg/L	ND	5.0	3.0	10/11/21 19:03	
Sodium	mg/L	ND	5.0	0.61	10/11/21 19:03	

LABORATORY CONTROL SAMPLE: 3412260

Date: 10/14/2021 04:41 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Calcium	mg/L		5.1	102	80-120	
Magnesium	mg/L	5	4.9	98	80-120	
Potassium	mg/L	5	4.9J	98	80-120	
Sodium	mg/L	5	5.1	103	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPL		3412262									
Parameter	Units	92563385040 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Calcium	mg/L	141	5	5	145	142	92	31	75-125	2	20	M1
Magnesium	mg/L	411	5	5	415	411	64	-16	75-125	1	20	M1
Potassium	mg/L	130	5	5	137	134	126	63	75-125	2	20	M1
Sodium	mg/L	3530	5	5	3560	3540	560	320	75-125	0	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 649881 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385001, 92563385002, 92563385003, 92563385004, 92563385005, 92563385006, 92563385007,

92563385008, 92563385009, 92563385010, 92563385011, 92563385012, 92563385013, 92563385014,

92563385015, 92563385016, 92563385017, 92563385018, 92563385019, 92563385020

METHOD BLANK: 3408321 Matrix: Water

Associated Lab Samples: 92563385001, 92563385002, 92563385003, 92563385004, 92563385005, 92563385006, 92563385007,

92563385008, 92563385009, 92563385010, 92563385011, 92563385012, 92563385013, 92563385014,

92563385015, 92563385016, 92563385017, 92563385018, 92563385019, 92563385020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0010	0.000087	09/30/21 19:00	
Boron	mg/L	ND	0.050	0.0085	09/29/21 16:38	
Lithium	ma/L	ND	0.0025	0.00050	09/29/21 16:38	

LABORATORY CONTROL SAMPLE:	3408322					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.05	0.050	99	80-120	
Boron	mg/L	0.05	0.051	102	80-120	
Lithium	mg/L	0.05	0.051	101	80-120	

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3408323											
			MS	MSD								
	9	92563385001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.0027J	0.05	0.05	0.058	0.057	110	109	75-125	2	20	
Boron	mg/L	1.7J	0.05	0.05	1.9J	1.9J	245	327	75-125		20	M1
Lithium	mg/L	0.060	0.05	0.05	0.11	0.10	103	89	75-125	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 649882 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385021, 92563385022, 92563385023, 92563385024, 92563385025, 92563385026, 92563385027,

92563385028, 92563385029, 92563385030, 92563385031, 92563385032, 92563385033, 92563385034,

92563385035, 92563385036, 92563385037, 92563385038, 92563385039

METHOD BLANK: 3408327 Matrix: Water

 $Associated \ Lab \ Samples: \quad 92563385021, \ 92563385022, \ 92563385023, \ 92563385024, \ 92563385025, \ 92563385026, \ 92563385027, \ 9256$

92563385028, 92563385029, 92563385030, 92563385031, 92563385032, 92563385033, 92563385034,

92563385035, 92563385036, 92563385037, 92563385038, 92563385039

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0010	0.000087	09/29/21 20:17	
Boron	mg/L	ND	0.050	0.0085	09/29/21 20:17	
Lithium	ma/L	ND	0.0025	0.00050	09/29/21 20:17	

LABORATORY CONTROL SAMPLE:	3408328					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.05	0.047	93	80-120	
Boron	mg/L	0.05	0.055	109	80-120	
Lithium	mg/L	0.05	0.051	102	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3408329					3408330							
			MS	MSD								
		92563385021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.0023J	0.05	0.05	0.064	0.067	124	130	75-125	5	20	M1
Boron	mg/L	1.0J	0.05	0.05	1.9J	1.8J	1650	1600	75-125		20	M1
Lithium	mg/L	0.041J	0.05	0.05	0.10J	0.091J	126	99	75-125		20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 650489 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385040, 92563385041, 92563385042, 92563385043, 92563385044, 92563385045, 92563385046,

92563385054

METHOD BLANK: 3411918 Matrix: Water

Associated Lab Samples: 92563385040, 92563385041, 92563385042, 92563385043, 92563385044, 92563385045, 92563385046,

92563385047, 92563385048, 92563385049, 92563385050, 92563385051, 92563385052, 92563385053,

92563385054

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.015	0.0013	10/03/21 16:30	
Boron	mg/L	ND	0.75	0.13	10/03/21 16:30	
Lithium	mg/L	ND	0.038	0.0075	10/03/21 16:30	

LABORATORY CONTROL SAMPLE:	3411919					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.75	0.72	96	80-120	
Boron	mg/L	0.75	0.65J	86	80-120	
Lithium	mg/L	0.75	0.74	99	80-120	

MATRIX SPIKE & MATRIX SF	PIKE DUPLI	CATE: 3411	920		3411921							
			MS	MSD								
		92563385040	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.0014J	0.75	0.75	0.74	0.76	99	101	75-125	2	20	
Boron	mg/L	1.1	0.75	0.75	1.8	1.9	106	112	75-125	2	20	
Lithium	mg/L	0.042	0.75	0.75	0.79	0.80	100	101	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 649659 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385006, 92563385007, 92563385008, 92563385009, 92563385010, 92563385011, 92563385012,

92563385020

METHOD BLANK: 3407041 Matrix: Water

Associated Lab Samples: 92563385006, 92563385007, 92563385008, 92563385009, 92563385010, 92563385011, 92563385012,

92563385013, 92563385014, 92563385015, 92563385016, 92563385017, 92563385018, 92563385019,

92563385020

Parameter		Units	Bla Res		Reporting Limit	MD	L	Analyz	ed Q	ualifiers	į	
Alkalinity, Total as CaCO3		mg/L		ND	5	5.0	5.0	09/30/21	14:15			
Alkalinity, Bicarbonate (CaCO	3)	mg/L		ND	5	5.0	5.0	09/30/21	14:15			
Alkalinity,Carbonate (CaCO3))	mg/L		ND	5	5.0	5.0	09/30/21	14:15			
LABORATORY CONTROL SA	AMPLE:	3407042										
			Spike	LC	cs	LCS	9	% Rec				
Parameter		Units	Conc.	Re	sult	% Rec	l	Limits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L		50	51.5	10	3	80-120				
LABORATORY CONTROL SA	AMPLE:	3407043										
Parameter		Units	Spike Conc.	L(S sult	LCS % Rec		% Rec Limits	Qualifiers			
									Qualificis	_		
Alkalinity, Total as CaCO3		mg/L		50	53.3	10	7	80-120				
MATRIX SPIKE & MATRIX SI	PIKE DUPL	LICATE: 3407	046		340704	7						
			MS	MSD								
Parameter	Units	92563385011 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Re	MSD c % Red		RPD	Max RPD	Qual
												———
Alkalinity, Total as CaCO3	mg/L	84.0	50	50	132	132		96	96 80-120	0	25	
MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 3410	461		341046	2						
			MS	MSD								
		92562300002	Spike	Spike	MS	MSD	MS	MSD			Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Re	c % Red	c Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	88.4	50	50	136	140		95 1	04 80-120	3	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 649661 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385021, 92563385022, 92563385023, 92563385024, 92563385025, 92563385026, 92563385027,

 $92563385028, \, 92563385029, \, 92563385030, \, 92563385031, \, 92563385032, \, 92563385033, \, 92563385034, \, 92563385032, \, 92563385033, \, 92563385034, \, 92565638504, \, 9256638504, \, 9256638504, \, 9256638504, \, 9256638504, \, 9256638504, \, 9256638504, \, 9256638504$

92563385035

METHOD BLANK: 3407053 Matrix: Water

Associated Lab Samples: 92563385021, 92563385022, 92563385023, 92563385024, 92563385025, 92563385026, 92563385027,

92563385028, 92563385029, 92563385030, 92563385031, 92563385032, 92563385033, 92563385034,

92563385035

Parameter		Units	Bla Res		Reporting Limit	MD	ı	Analyz	ed O	ualifiers		
				ND —			5.0	10/05/21 2		aamicis		
Alkalinity, Total as CaCO3 Alkalinity, Bicarbonate (CaCO3	8)	mg/L mg/L		ND ND		5.0 5.0	5.0	10/05/21 2				
Alkalinity, Carbonate (CaCO3)	,	mg/L		ND		5.0	5.0	10/05/21 2				
LABORATORY CONTROL SA	AMPLE:	3407054										
			Spike	LC	CS	LCS	9	% Rec				
Parameter		Units	Conc.	Re	sult	% Rec	l	Limits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L		50	53.6	10	7	80-120				
LABORATORY CONTROL SA	AMPLE:	3407055										
Parameter		Units	Spike Conc.		CS sult	LCS % Rec		% Rec Limits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L		50	53.5	10	7	80-120				
MATRIX SPIKE & MATRIX SF	PIKE DUP	LICATE: 34	07056		340705	57						
			MS	MSD								
Parameter	Units	9256338502 Result	1 Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Re	MSD c % Red	% Rec Limits	RPD	Max RPD	Qual
Alkalinity, Total as CaCO3	mg/L	61.	5 50	50	119	111	1	115	99 80-120	7	25	
MATRIX SPIKE & MATRIX SF	PIKE DUP	LICATE: 34	07058		340705	i9						
			MS	MSD								
5	11.5	9256338503		Spike	MS	MSD	MS	MSD	% Rec	0.00	Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Re	c % Red	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	94.	8 50	50	140	152		91 1	14 80-120	8	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 651103 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385001, 92563385002, 92563385003, 92563385004, 92563385005

METHOD BLANK: 3414517 Matrix: Water

Associated Lab Samples: 92563385001, 92563385002, 92563385003, 92563385004, 92563385005

Parameter		Units	Blar Resi		Reporting Limit	MD		Analyza	٠	.alifiara		
			Resi					Analyze		ualifiers		
Alkalinity, Total as CaCO3		mg/L		ND	_	.0	5.0	10/06/21 1	_			
Alkalinity, Bicarbonate (CaCO3	3)	mg/L		ND	_	.0	5.0	10/06/21 1	_			
Alkalinity, Carbonate (CaCO3)		mg/L		ND	5	.0	5.0	10/06/21 1	1:52			
LABORATORY CONTROL SA	MPLE:	3414518										
			Spike	LO	CS	LCS	%	Rec				
Parameter		Units	Conc.	Re	sult	% Rec	Li	imits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L	5	0	50.4	10	1	80-120				
LABORATORY CONTROL SA	MPLE:	3414519										
			Spike		CS	LCS		Rec				
Parameter		Units	Conc.	Re	sult ————————————————————————————————————	% Rec	_ Li	imits ————————————————————————————————————	Qualifiers	_		
Alkalinity, Total as CaCO3		mg/L	5	0	51.8	10-	4	80-120				
MATRIX SPIKE & MATRIX SF	IKE DUPL	LICATE: 3414	520		341452	1						
			MS	MSD								
_		92563901001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	: % Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	15.9	50	50	64.7	63.7	9	98 9	5 80-120	2	25	
MATRIX SPIKE & MATRIX SF	IKE DUPL	LICATE: 3414	522		341452	3						
			MS	MSD								
		92563901002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	16.5	50	50	68.6	68.5	10	04 10	4 80-120	0	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 651424 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385036, 92563385037, 92563385038, 92563385039, 92563385040

METHOD BLANK: 3416272 Matrix: Water

			Blan	k	Reporting							
Parameter		Units	Resu	ılt	Limit	ME	DL	Analy	zed (Qualifiers	;	
Alkalinity, Total as CaCO3		mg/L		ND	5		5.0	10/07/21	17:20			
Alkalinity, Bicarbonate (CaCO:	,	mg/L		ND		5.0	5.0	10/07/21	-			
Alkalinity, Carbonate (CaCO3)	1	mg/L		ND	5	5.0	5.0	10/07/21	17:20			
LABORATORY CONTROL SA	AMPLE:	3416273										
			Spike	L	CS	LCS	Ġ.	% Rec				
Parameter		Units	Conc.	Re	sult	% Rec		Limits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L	5	0	51.9	10)4	80-120		_		
LABORATORY CONTROL SA	AMPLE:	3416274										
_			Spike		CS	LCS		% Rec				
Parameter		Units	Conc.	Re 	sult	% Rec		Limits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L	5	0	51.2	10)2	80-120				
MATRIX SPIKE & MATRIX SI	PIKE DUP	LICATE: 3416	-		341627	76						
			MS	MSD								
Parameter	Units	92563915005 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Re			RPD	Max RPD	Qual
Alkalinity, Total as CaCO3	mg/L	— Result ND	50 -	50			70 KE		110 80-12			Quai
Alkalifity, Total as CaCO3	mg/L	ND	30	30	31.0) 59.9		93	110 80-12	5 10	25	
MATRIX SPIKE & MATRIX SI	PIKE DUP	LICATE: 3416	277		341627	78						
			MS	MSD								
		92563915006	Spike	Spike	MS	MSD	MS	_			Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% R∈	ec % Re	ec Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	25.0	50	50	72.9	73.7		96	97 80-12	0 1	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 651989 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385041, 92563385042, 92563385044, 92563385045, 92563385046, 92563385047,

 $92563385048, \, 92563385049, \, 92563385050, \, 92563385051, \, 92563385052, \, 92563385053, \, 92563385054$

METHOD BLANK: 3419006 Matrix: Water

Associated Lab Samples: 92563385041, 92563385042, 92563385043, 92563385044, 92563385045, 92563385046, 92563385047,

		048, 9256338504	Blan	k l	Reporting		•					
Parameter		Units	Resu		Limit	MD		Analyze		ualifiers		
Alkalinity, Total as CaCO3	- \	mg/L		ND	5.	-	5.0	10/11/21 1	-			
Alkalinity, Bicarbonate (CaCO3) Alkalinity, Carbonate (CaCO3)	,	mg/L		ND ND	5 5	-	5.0 5.0	10/11/21 1° 10/11/21 1°				
Alkalifity, Carbonate (CaCOS)	•	mg/L		ND	5	U	5.0	10/11/21 1	7.07			
LABORATORY CONTROL SA	AMPLE:	3419007										
			Spike	LC	S	LCS	%	6 Rec				
Parameter		Units	Conc.	Res	sult	% Rec	L	Limits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L	5	0	50.6	10	1	80-120		_		
LABORATORY CONTROL SA	AMPLE:	3419008										
			Spike	LC	_	LCS		6 Rec				
Parameter		Units	Conc.	Res	sult	% Rec	L	imits	Qualifiers	_		
Alkalinity, Total as CaCO3		mg/L	5	0	51.9	10-	4	80-120				
MATRIX SPIKE & MATRIX SI	PIKE DUP	LICATE: 3419	009		3419010)						
			MS	MSD								
_		92563695001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Re	c % Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	ND	50	50	90.4	75.9	1	81 15	2 80-120	17	25	M1
MATRIX SPIKE & MATRIX SI	PIKE DUP	LICATE: 3419	011		3419012	2						
			MS	MSD								
		92563695004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Re	c % Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	103	50	50	153	174	1	01 14	3 80-120	13	25	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

QC Batch: 649735

QC Batch Method: SM 2540C-2011

Analysis Method: SM 2540C-2011

Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385022, 92563385023, 92563385024, 92563385025, 92563385026, 92563385027, 92563385028,

92563385029, 92563385030, 92563385031, 92563385032, 92563385033, 92563385034, 92563385035

METHOD BLANK: 3407484 Matrix: Water

Associated Lab Samples: 92563385022, 92563385023, 92563385024, 92563385025, 92563385026, 92563385027, 92563385028,

92563385029, 92563385030, 92563385031, 92563385032, 92563385033, 92563385034, 92563385035

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND25.025.009/28/21 17:32

LABORATORY CONTROL SAMPLE: 3407485

LCS LCS % Rec Spike Parameter Units % Rec Limits Qualifiers Conc. Result **Total Dissolved Solids** mg/L 250 250 100 90-110

SAMPLE DUPLICATE: 3407486

92563385022 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 15500 15400 25 **Total Dissolved Solids** 1 mg/L

SAMPLE DUPLICATE: 3407487

Date: 10/14/2021 04:41 PM

92563385032 Dup Max RPD Parameter Units Result Result **RPD** Qualifiers **Total Dissolved Solids** mg/L 15200 14900 2 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

QC Batch: 649877 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385001, 92563385002, 92563385003, 92563385004, 92563385005, 92563385006, 92563385007,

92563385008, 92563385009, 92563385010, 92563385011, 92563385012, 92563385013, 92563385014

METHOD BLANK: 3408305 Matrix: Water

Associated Lab Samples: 92563385001, 92563385002, 92563385003, 92563385004, 92563385005, 92563385006, 92563385007,

92563385008, 92563385009, 92563385010, 92563385011, 92563385012, 92563385013, 92563385014

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND25.025.009/29/21 11:28

LABORATORY CONTROL SAMPLE: 3408306

LCS LCS % Rec Spike Units % Rec Limits Qualifiers Parameter Conc. Result **Total Dissolved Solids** mg/L 250 246 98 90-110

SAMPLE DUPLICATE: 3408307

92563367001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 248 250 25 **Total Dissolved Solids** 1 mg/L

SAMPLE DUPLICATE: 3408308

Date: 10/14/2021 04:41 PM

Parameter Units Pesult Result RPD Max Result RPD Qualifiers

Total Dissolved Solids mg/L 12900 12800 1 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

QC Batch: 649879 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385015, 92563385016, 92563385017, 92563385018, 92563385019, 92563385020, 92563385021,

92563385036, 92563385037, 92563385038, 92563385039

METHOD BLANK: 3408313 Matrix: Water

Associated Lab Samples: 92563385015, 92563385016, 92563385017, 92563385018, 92563385019, 92563385020, 92563385021,

92563385036, 92563385037, 92563385038, 92563385039

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND25.025.009/29/21 11:34

LABORATORY CONTROL SAMPLE: 3408314

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. **Total Dissolved Solids** mg/L 250 252 101 90-110

SAMPLE DUPLICATE: 3408315

92563385015 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 8300 8300 0 25 **Total Dissolved Solids** mg/L

SAMPLE DUPLICATE: 3408316

Date: 10/14/2021 04:41 PM

ParameterUnits92563385039 ResultDup ResultRPDMax RPDTotal Dissolved Solidsmg/LNDND25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

QC Batch: 650699

QC Batch Method: SM 2540C-2011

Analysis Method: SM 2540C-2011

Analysis Description: 2540C Total Dissolved Solids

1400

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385040, 92563385041, 92563385042, 92563385043, 92563385044, 92563385045, 92563385046,

92563385047, 92563385048, 92563385049, 92563385050, 92563385051, 92563385052

METHOD BLANK: 3412630

Matrix: Water

Associated Lab Samples: 92563385040, 92563385041, 92563385042, 92563385043, 92563385044, 92563385045, 92563385046,

92563385047, 92563385048, 92563385049, 92563385050, 92563385051, 92563385052

Blank

Reporting

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Total Dissolved Solids	mg/L	ND	25.0	25.0	10/04/21 17:55	

LABORATORY CONTROL SAMPLE: 341263

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Dissolved Solids	mg/L	251	264	105	90-110	

SAMPLE DUPLICATE: 3412632

		92564521002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	269	267	1	25	

SAMPLE DUPLICATE: 3412633

Date: 10/14/2021 04:41 PM

Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	8100	8070	0	25	

02562205042

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

QC Batch: 650950 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385053, 92563385054

METHOD BLANK: 3413727 Matrix: Water

Associated Lab Samples: 92563385053, 92563385054

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 10/05/21 17:37

LABORATORY CONTROL SAMPLE: 3413728

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 251 236 94 90-110

SAMPLE DUPLICATE: 3413729

35666709002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 557 **Total Dissolved Solids** mg/L 558 0 25

SAMPLE DUPLICATE: 3413730

Date: 10/14/2021 04:41 PM

92564509004 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 194 192 25 mg/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 649577 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385001, 92563385002, 92563385003, 92563385004, 92563385005, 92563385006, 92563385007,

92563385008, 92563385009, 92563385010, 92563385011, 92563385012, 92563385013, 92563385014,

92563385015, 92563385016, 92563385017, 92563385018

METHOD BLANK: 3406750 Matrix: Water

Associated Lab Samples: 92563385001, 92563385002, 92563385003, 92563385004, 92563385005, 92563385006, 92563385007,

92563385008, 92563385009, 92563385010, 92563385011, 92563385012, 92563385013, 92563385014,

92563385015, 92563385016, 92563385017, 92563385018

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/27/21 20:30	
Fluoride	mg/L	ND	0.10	0.050	09/27/21 20:30	
Sulfate	mg/L	ND	1.0	0.50	09/27/21 20:30	

LABORATORY CONTROL SAMPLE:	3406751					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	46.0	92	90-110	
Fluoride	mg/L	2.5	2.5	98	90-110	
Sulfate	mg/L	50	48.8	98	90-110	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 3406	752		3406753							
			MS	MSD								
	9	2555214003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	23.4	50	50	69.4	70.3	92	94	90-110	1	10	H1
Fluoride	mg/L	ND	2.5	2.5	2.4	2.5	94	96	90-110	2	10	H1
Sulfate	mg/L	37.7	50	50	87.5	89.6	100	104	90-110	2	10	H1

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3406	754		3406755							
Parameter	Units	92563385009 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	6450	50	50	6400	6460	-94	28	90-110	1	10	M1
Fluoride Sulfate	mg/L mg/L	ND 884	2.5 50	2.5 50	ND 914	ND 923	76 59	79 78	90-110 90-110	1	_	D3,M1 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 649578 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385019, 92563385020, 92563385021, 92563385022, 92563385023, 92563385024, 92563385025,

92563385026, 92563385027, 92563385028, 92563385029, 92563385030, 92563385031, 92563385032,

92563385033, 92563385034, 92563385035, 92563385036, 92563385037, 92563385038

METHOD BLANK: 3406756 Matrix: Water

Associated Lab Samples: 92563385019, 92563385020, 92563385021, 92563385022, 92563385023, 92563385024, 92563385025,

92563385026, 92563385027, 92563385028, 92563385029, 92563385030, 92563385031, 92563385032,

92563385033, 92563385034, 92563385035, 92563385036, 92563385037, 92563385038

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/28/21 09:21	
Fluoride	mg/L	ND	0.10	0.050	09/28/21 09:21	
Sulfate	mg/L	ND	1.0	0.50	09/28/21 09:21	

LABORATORY CONTROL SAMPLE:	3406757	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	46.2	92	90-110	
Fluoride	mg/L	2.5	2.5	98	90-110	
Sulfate	mg/L	50	48.6	97	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	ICATE: 3406	758		3406759							
			MS	MSD								
		92563385019	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2500	50	50	2570	2540	127	79	90-110	1	10	M1
Fluoride	mg/L	ND	2.5	2.5	ND	ND	86	94	90-110		10	D3,M1
Sulfate	mg/L	315	50	50	363	361	96	93	90-110	0	10	

MATRIX SPIKE & MATRIX SF	PIKE DUPLI	CATE: 3406	760		3406761							
Parameter	Units	92563385029 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	7220	50	50	7230	7180	6	-83	90-110	1	10	M1
Fluoride Sulfate	mg/L mg/L	ND 994	2.5 50	2.5 50	ND 1030	ND 1020	94 82	86 61	90-110 90-110	1	_	D3,M1 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 649791

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

EPA 300.0 Rev 2.1 1993

Associated Lab Samples: 92563385039

METHOD BLANK: 3408045 Matrix: Water

Associated Lab Samples: 92563385039

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/29/21 01:25	
Fluoride	mg/L	ND	0.10	0.050	09/29/21 01:25	
Sulfate	mg/L	ND	1.0	0.50	09/29/21 01:25	

Analysis Method:

LABORATORY CONTROL SAMPLE:	3408046					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	49.9	100	90-110	
Fluoride	mg/L	2.5	2.4	94	90-110	
Sulfate	mg/L	50	51.4	103	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 3408	047		3408048							
			MS	MSD								
		92563385039	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	52.0	52.6	104	105	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.5	2.5	101	100	90-110	1	10	
Sulfate	mg/L	ND	50	50	53.5	54.1	107	108	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

QC Batch: 650528 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92563385040, 92563385041, 92563385042, 92563385043, 92563385044, 92563385045, 92563385046,

92563385047, 92563385048, 92563385049, 92563385050, 92563385051, 92563385052, 92563385053,

92563385054

METHOD BLANK: 3412021 Matrix: Water

Associated Lab Samples: 92563385040, 92563385041, 92563385042, 92563385043, 92563385044, 92563385045, 92563385046,

92563385047, 92563385048, 92563385049, 92563385050, 92563385051, 92563385052, 92563385053,

92563385054

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	10/02/21 12:34	
Fluoride	mg/L	ND	0.10	0.050	10/02/21 12:34	
Sulfate	mg/L	ND	1.0	0.50	10/02/21 12:34	

LABORATORY CONTROL SAMPLE:	3412022					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	46.6	93	90-110	
Fluoride	mg/L	2.5	2.4	98	90-110	
Sulfate	mg/L	50	48.8	98	90-110	

MATRIX SPIKE & MATRIX SF	IKE DUPLI	CATE: 3412	023		3412024							
			MS	MSD								
	,	92563801001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	19.5	50	50	65.9	66.8	93	95	90-110	1	10	
Fluoride	mg/L	0.47	2.5	2.5	3.1	3.1	105	107	90-110	1	10	
Sulfate	mg/L	12.1	50	50	61.3	62.5	99	101	90-110	2	10	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3412	025		3412026							
Parameter	Units	92563385049 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	3110	50	50	3100	3080	-25	-70	90-110	1	10	M1
Fluoride	mg/L	ND	2.5	2.5	ND	ND	84	88	90-110		10	D3,M1
Sulfate	mg/L	396	50	50	426	424	60	55	90-110	1	10	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/14/2021 04:41 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

H1 Analysis conducted outside the EPA method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the

associated samples may have a high bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92563385001	T1-1HT				
2563385002	T1-2HT				
92563385003	T1-2HTS				
2563385004	T1-3HT				
2563385005	T1-3HTS				
2563385006	T1-4HT				
2563385007	T1-4HTS				
2563385008	T2-1HT				
2563385009	T2-2HT				
2563385010	T2-2HTS				
2563385011	T2-3HT				
2563385012	T2-3HTS				
2563385013	T2-4HT				
2563385014	T2-4HTS				
2563385015	T3-1HT				
2563385016	T3-2HT				
2563385017	T3-2HTS				
2563385018	T3-3HT				
2563385019	T3-3HTS				
2563385020	T3-4HT				
2563385021	T3-4HTS				
2563385022	T4-1HB				
2563385023	T4-1HS				
2563385024	T4-2HB				
2563385025	T4-2HS				
2563385026	T4-3HB				
2563385027	T4-3HS				
2563385028	T4-4HB				
2563385029	T4-4HS				
2563385030 2563385030	T4-1L				
2563385030 2563385031	T4-2L				
2563385032	T4-3L				
2563385032 2563385033	T4-4L				
2563385034	BG-2HT				
2563385040	T1-1LT				
2563385041	T1-2LT				
2563385042	T1-3LT				
2563385043	T1-4LT				
2563385044	T2-2LT				
2563385045	T2-3LT				
2563385046	T2-4LT				
2563385047	T3-2LT				
2563385048	T3-3LT				
2563385049	T3-4LT				
2563385050	BG-1LT				
2563385001	T1-1HT	EPA 3010A	649649	EPA 6010D	649692
2563385002	T1-2HT	EPA 3010A	649649	EPA 6010D	649692
2563385003	T1-2HTS	EPA 3010A	649649	EPA 6010D	649692

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2563385004	T1-3HT	EPA 3010A	649649	EPA 6010D	649692
2563385005	T1-3HTS	EPA 3010A	649649	EPA 6010D	649692
2563385006	T1-4HT	EPA 3010A	649649	EPA 6010D	649692
2563385007	T1-4HTS	EPA 3010A	649649	EPA 6010D	649692
2563385008	T2-1HT	EPA 3010A	649649	EPA 6010D	649692
2563385009	T2-2HT	EPA 3010A	649649	EPA 6010D	649692
2563385010	T2-2HTS	EPA 3010A	649649	EPA 6010D	649692
2563385011	T2-3HT	EPA 3010A	649649	EPA 6010D	649692
2563385012	T2-3HTS	EPA 3010A	649649	EPA 6010D	649692
2563385013	T2-4HT	EPA 3010A	649649	EPA 6010D	649692
2563385014	T2-4HTS	EPA 3010A	649649	EPA 6010D	649692
2563385015	T3-1HT	EPA 3010A	649649	EPA 6010D	649692
2563385016	T3-2HT	EPA 3010A	649649	EPA 6010D	649692
2563385017	T3-2HTS	EPA 3010A	649649	EPA 6010D	649692
2563385018	T3-3HT	EPA 3010A	649649	EPA 6010D	649692
2563385019	T3-3HTS	EPA 3010A	649649	EPA 6010D	649692
2563385020	T3-4HT	EPA 3010A EPA 3010A	649649	EPA 6010D	649692
2563385021	T3-4HTS	EPA 3010A	649653	EPA 6010D	649690
2563385022	T4-1HB	EPA 3010A	649653	EPA 6010D	649690
2563385023	T4-1HS	EPA 3010A	649653	EPA 6010D	649690
2563385024	T4-2HB	EPA 3010A	649653	EPA 6010D	649690
2563385025	T4-2HS	EPA 3010A	649653	EPA 6010D	649690
2563385026	T4-3HB	EPA 3010A	649653	EPA 6010D	649690
2563385027	T4-3HS	EPA 3010A	649653	EPA 6010D	649690
2563385028	T4-4HB	EPA 3010A	649653	EPA 6010D	649690
2563385029	T4-4HS	EPA 3010A	649653	EPA 6010D	649690
2563385030	T4-1L	EPA 3010A	649653	EPA 6010D	649690
2563385031	T4-2L	EPA 3010A	649653	EPA 6010D	649690
2563385032	T4-3L	EPA 3010A	649653	EPA 6010D	649690
2563385033	T4-4L	EPA 3010A	649653	EPA 6010D	649690
2563385034	BG-2HT	EPA 3010A	649653	EPA 6010D	649690
2563385035	DUP-1	EPA 3010A	649653	EPA 6010D	649690
2563385036	DUP-2	EPA 3010A	649653	EPA 6010D	649690
2563385037	DUP-3	EPA 3010A	649653	EPA 6010D	649690
2563385038	FB-1	EPA 3010A	649653	EPA 6010D	649690
2563385039	EB-1	EPA 3010A	649653	EPA 6010D	649690
2563385040	T1-1LT	EPA 3010A	650616	EPA 6010D	650714
2563385041	T1-2LT	EPA 3010A	650616	EPA 6010D	650714
2563385042	T1-3LT	EPA 3010A	650616	EPA 6010D	650714
2563385043	T1-4LT	EPA 3010A	650616	EPA 6010D	650714
2563385044	T2-2LT	EPA 3010A	650616	EPA 6010D	650714
2563385045	T2-3LT	EPA 3010A	650616	EPA 6010D	650714
2563385046	T2-4LT	EPA 3010A	650616	EPA 6010D	650714
2563385047	T3-2LT	EPA 3010A	650616	EPA 6010D	650714
2563385048	T3-3LT	EPA 3010A	650616	EPA 6010D	650714
2563385049	T3-4LT	EPA 3010A	650616	EPA 6010D	650714
2563385050	BG-1LT	EPA 3010A	650616	EPA 6010D	650714
	DUP-4	EPA 3010A	650616	EPA 6010D	000714

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92563385052	DUP-5	EPA 3010A	650616	EPA 6010D	650714
92563385053	FB-2	EPA 3010A	650616	EPA 6010D	650714
92563385054	EB-2	EPA 3010A	650616	EPA 6010D	650714
92563385001	T1-1HT	EPA 3010A	649881	EPA 6020B	649965
92563385002	T1-2HT	EPA 3010A	649881	EPA 6020B	649965
92563385003	T1-2HTS	EPA 3010A	649881	EPA 6020B	649965
2563385004	T1-3HT	EPA 3010A	649881	EPA 6020B	649965
2563385005	T1-3HTS	EPA 3010A	649881	EPA 6020B	649965
2563385006	T1-4HT	EPA 3010A	649881	EPA 6020B	649965
2563385007	T1-4HTS	EPA 3010A	649881	EPA 6020B	649965
2563385008	T2-1HT	EPA 3010A	649881	EPA 6020B	649965
2563385009	T2-2HT	EPA 3010A	649881	EPA 6020B	649965
2563385010	T2-2HTS	EPA 3010A	649881	EPA 6020B	649965
2563385011	T2-3HT	EPA 3010A	649881	EPA 6020B	649965
2563385012	T2-3HTS	EPA 3010A	649881	EPA 6020B	649965
2563385013	T2-4HT	EPA 3010A	649881	EPA 6020B	649965
2563385014	T2-4HTS	EPA 3010A	649881	EPA 6020B	649965
2563385015	T3-1HT	EPA 3010A	649881	EPA 6020B	649965
2563385016	T3-2HT	EPA 3010A	649881	EPA 6020B	649965
2563385017	T3-2HTS	EPA 3010A	649881	EPA 6020B	649965
2563385018	T3-3HT	EPA 3010A	649881	EPA 6020B	649965
2563385019	T3-3HTS	EPA 3010A	649881	EPA 6020B	649965
2563385020	T3-4HT	EPA 3010A	649881	EPA 6020B	649965
2563385021	T3-4HTS	EPA 3010A	649882	EPA 6020B	649964
2563385022	T4-1HB	EPA 3010A	649882	EPA 6020B	649964
2563385023	T4-1HS	EPA 3010A	649882	EPA 6020B	649964
2563385024	T4-2HB	EPA 3010A	649882	EPA 6020B	649964
2563385025	T4-2HS	EPA 3010A	649882	EPA 6020B	649964
2563385026	T4-3HB	EPA 3010A	649882	EPA 6020B	649964
2563385027	T4-3HS	EPA 3010A	649882	EPA 6020B	649964
2563385028	T4-4HB	EPA 3010A	649882	EPA 6020B	649964
2563385029	T4-4HS	EPA 3010A	649882	EPA 6020B	649964
2563385030	T4-1L	EPA 3010A	649882	EPA 6020B	649964
2563385031	T4-2L	EPA 3010A	649882	EPA 6020B	649964
2563385032	T4-3L	EPA 3010A	649882	EPA 6020B	649964
2563385033	T4-4L	EPA 3010A	649882	EPA 6020B	649964
2563385034	BG-2HT	EPA 3010A	649882	EPA 6020B	649964
2563385035	DUP-1	EPA 3010A	649882	EPA 6020B	649964
2563385036	DUP-2	EPA 3010A	649882	EPA 6020B	649964
2563385037	DUP-3	EPA 3010A	649882	EPA 6020B	649964
2563385038	FB-1	EPA 3010A	649882	EPA 6020B	649964
2563385039	EB-1	EPA 3010A	649882	EPA 6020B	649964
2563385040	T1-1LT	EPA 3010A	650489	EPA 6020B	650506
2563385041	T1-2LT	EPA 3010A	650489	EPA 6020B	650506
2563385042	T1-3LT	EPA 3010A	650489	EPA 6020B	650506
2563385043	T1-4LT	EPA 3010A	650489	EPA 6020B	650506
2563385044	T2-2LT	EPA 3010A	650489	EPA 6020B	650506

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92563385045	T2-3LT	EPA 3010A	650489	EPA 6020B	650506
2563385046	T2-4LT	EPA 3010A	650489	EPA 6020B	650506
2563385047	T3-2LT	EPA 3010A	650489	EPA 6020B	650506
2563385048	T3-3LT	EPA 3010A	650489	EPA 6020B	650506
2563385049	T3-4LT	EPA 3010A	650489	EPA 6020B	650506
2563385050	BG-1LT	EPA 3010A	650489	EPA 6020B	650506
2563385051	DUP-4	EPA 3010A	650489	EPA 6020B	650506
2563385052	DUP-5	EPA 3010A	650489	EPA 6020B	650506
2563385053	FB-2	EPA 3010A	650489	EPA 6020B	650506
2563385054	EB-2	EPA 3010A	650489	EPA 6020B	650506
2563385001	T1-1HT	SM 2320B-2011	651103		
2563385002	T1-2HT	SM 2320B-2011	651103		
2563385003	T1-2HTS	SM 2320B-2011	651103		
2563385004	T1-3HT	SM 2320B-2011	651103		
2563385005	T1-3HTS	SM 2320B-2011	651103		
2563385006	T1-4HT	SM 2320B-2011	649659		
2563385007	T1-4HTS	SM 2320B-2011	649659		
2563385008	T2-1HT	SM 2320B-2011	649659		
2563385009	T2-2HT	SM 2320B-2011	649659		
2563385010	T2-2HTS	SM 2320B-2011	649659		
2563385011	T2-3HT	SM 2320B-2011	649659		
2563385012	T2-3HTS	SM 2320B-2011	649659		
2563385013	T2-4HT	SM 2320B-2011	649659		
2563385014	T2-4HTS	SM 2320B-2011	649659		
2563385015	T3-1HT	SM 2320B-2011	649659		
2563385016	T3-2HT	SM 2320B-2011	649659		
2563385017	T3-2HTS	SM 2320B-2011	649659		
2563385018	T3-3HT	SM 2320B-2011	649659		
2563385019	T3-3HTS	SM 2320B-2011	649659		
2563385020	T3-4HT	SM 2320B-2011	649659		
2563385021	T3-4HTS	SM 2320B-2011	649661		
2563385022	T4-1HB	SM 2320B-2011	649661		
2563385023	T4-1HS	SM 2320B-2011	649661		
2563385024	T4-1113	SM 2320B-2011	649661		
2563385025	T4-2HS	SM 2320B-2011	649661		
2563385025 2563385026	T4-2HB	SM 2320B-2011 SM 2320B-2011	649661		
2563385027	T4-3HS	SM 2320B-2011	649661		
256338502 <i>1</i> 2563385028	T4-3H3 T4-4HB	SM 2320B-2011	649661		
2563385029	T4-4HS	SM 2320B-2011	649661		
2563385029 2563385030	T4-4H3	SM 2320B-2011 SM 2320B-2011			
2563385030 2563385031	T4-1L T4-2L	SM 2320B-2011 SM 2320B-2011	649661 649661		
	T4-2L T4-3L				
2563385032		SM 2320B-2011	649661 649661		
2563385033	T4-4L	SM 2320B-2011	649661		
2563385034 2563385035	BG-2HT DUP-1	SM 2320B-2011 SM 2320B-2011	649661 649661		
2563385036	DUP-2	SM 2320B-2011	651424		
92563385037	DUP-3	SM 2320B-2011	651424		

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92563385038	—— ———————— FB-1	SM 2320B-2011	651424	_	
2563385039	EB-1	SM 2320B-2011	651424		
2563385040	T1-1LT	SM 2320B-2011	651424		
2563385041	T1-2LT	SM 2320B-2011	651989		
2563385042	T1-3LT	SM 2320B-2011	651989		
2563385043	T1-4LT	SM 2320B-2011	651989		
2563385044	T2-2LT	SM 2320B-2011	651989		
2563385045	T2-3LT	SM 2320B-2011	651989		
2563385046	T2-4LT	SM 2320B-2011	651989		
2563385047	T3-2LT	SM 2320B-2011	651989		
2563385048	T3-3LT	SM 2320B-2011	651989		
2563385049	T3-4LT	SM 2320B-2011	651989		
2563385050	BG-1LT	SM 2320B-2011	651989		
2563385051	DUP-4	SM 2320B-2011	651989		
2563385052	DUP-5	SM 2320B-2011	651989		
2563385053	FB-2	SM 2320B-2011	651989		
2563385054	EB-2	SM 2320B-2011	651989		
2563385001	T1-1HT	SM 2540C-2011	649877		
2563385002	T1-2HT	SM 2540C-2011	649877		
2563385003	T1-2HTS	SM 2540C-2011	649877		
2563385004	T1-3HT	SM 2540C-2011	649877		
2563385005	T1-3HTS	SM 2540C-2011	649877		
2563385006	T1-4HT	SM 2540C-2011	649877		
2563385007	T1-4HTS	SM 2540C-2011	649877		
2563385008	T2-1HT	SM 2540C-2011	649877		
2563385009	T2-2HT	SM 2540C-2011	649877		
2563385010	T2-2HTS	SM 2540C-2011	649877		
2563385011	T2-3HT	SM 2540C-2011	649877		
2563385012	T2-3HTS	SM 2540C-2011	649877		
2563385013	T2-4HT	SM 2540C-2011	649877		
2563385014	T2-4HTS	SM 2540C-2011	649877		
2563385015	T3-1HT	SM 2540C-2011	649879		
2563385016	T3-2HT	SM 2540C-2011	649879		
2563385017	T3-2HTS	SM 2540C-2011	649879		
2563385018	Т3-3НТ	SM 2540C-2011	649879		
2563385019	T3-3HTS	SM 2540C-2011	649879		
2563385020	T3-4HT	SM 2540C-2011	649879		
2563385021	T3-4HTS	SM 2540C-2011	649879		
2563385022	T4-1HB	SM 2540C-2011	649735		
2563385023	T4-1HS	SM 2540C-2011	649735		
2563385024	T4-2HB	SM 2540C-2011	649735		
2563385025	T4-2HS	SM 2540C-2011	649735		
2563385026	T4-3HB	SM 2540C-2011	649735		
2563385027	T4-3HS	SM 2540C-2011	649735		
2563385028	T4-4HB	SM 2540C-2011	649735		
2563385029	T4-4HS	SM 2540C-2011	649735		
2563385030	T4-1L	SM 2540C-2011	649735		

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92563385031	T4-2L	SM 2540C-2011	649735		
2563385032	T4-3L	SM 2540C-2011	649735		
2563385033	T4-4L	SM 2540C-2011	649735		
2563385034	BG-2HT	SM 2540C-2011	649735		
2563385035	DUP-1	SM 2540C-2011	649735		
2563385036	DUP-2	SM 2540C-2011	649879		
2563385037	DUP-3	SM 2540C-2011	649879		
2563385038	FB-1	SM 2540C-2011	649879		
2563385039	EB-1	SM 2540C-2011	649879		
2563385040	T1-1LT	SM 2540C-2011	650699		
2563385041	T1-2LT	SM 2540C-2011	650699		
2563385042	T1-3LT	SM 2540C-2011	650699		
2563385043	T1-4LT	SM 2540C-2011	650699		
2563385044	T2-2LT	SM 2540C-2011	650699		
2563385045	T2-3LT	SM 2540C-2011	650699		
2563385046	T2-4LT	SM 2540C-2011	650699		
2563385047	T3-2LT	SM 2540C-2011	650699		
2563385048	T3-3LT	SM 2540C-2011	650699		
2563385049	T3-4LT	SM 2540C-2011	650699		
2563385050	BG-1LT	SM 2540C-2011	650699		
2563385051	DUP-4	SM 2540C-2011	650699		
2563385052	DUP-5	SM 2540C-2011	650699		
2563385053	FB-2	SM 2540C-2011	650950		
2563385054	EB-2	SM 2540C-2011	650950		
2563385001	T1-1HT	EPA 300.0 Rev 2.1 1993	649577		
2563385002	T1-2HT	EPA 300.0 Rev 2.1 1993	649577		
2563385003	T1-2HTS	EPA 300.0 Rev 2.1 1993	649577		
2563385004	T1-3HT	EPA 300.0 Rev 2.1 1993	649577		
2563385005	T1-3HTS	EPA 300.0 Rev 2.1 1993	649577		
2563385006	T1-4HT	EPA 300.0 Rev 2.1 1993	649577		
2563385007	T1-4HTS	EPA 300.0 Rev 2.1 1993	649577		
2563385008	T2-1HT	EPA 300.0 Rev 2.1 1993	649577		
2563385009	T2-2HT	EPA 300.0 Rev 2.1 1993	649577		
2563385010	T2-2HTS	EPA 300.0 Rev 2.1 1993	649577		
2563385011	T2-3HT	EPA 300.0 Rev 2.1 1993	649577		
2563385012	T2-3HTS	EPA 300.0 Rev 2.1 1993	649577		
2563385013	T2-4HT	EPA 300.0 Rev 2.1 1993	649577		
2563385014	T2-4HTS	EPA 300.0 Rev 2.1 1993	649577		
2563385015	T3-1HT	EPA 300.0 Rev 2.1 1993	649577		
2563385016	T3-2HT	EPA 300.0 Rev 2.1 1993	649577		
2563385017	T3-2HTS	EPA 300.0 Rev 2.1 1993	649577		
2563385018	T3-3HT	EPA 300.0 Rev 2.1 1993	649577		
2563385019	T3-3HTS	EPA 300.0 Rev 2.1 1993	649578		
2563385020	T3-4HT	EPA 300.0 Rev 2.1 1993	649578		
2563385021	T3-4HTS	EPA 300.0 Rev 2.1 1993	649578		
2563385022	T4-1HB	EPA 300.0 Rev 2.1 1993	649578		

Project: MCMANUS SURFACE WATER

Pace Project No.: 92563385

Date: 10/14/2021 04:41 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92563385023	T4-1HS	EPA 300.0 Rev 2.1 1993	649578		
92563385024	T4-2HB	EPA 300.0 Rev 2.1 1993	649578		
92563385025	T4-2HS	EPA 300.0 Rev 2.1 1993	649578		
92563385026	T4-3HB	EPA 300.0 Rev 2.1 1993	649578		
92563385027	T4-3HS	EPA 300.0 Rev 2.1 1993	649578		
92563385028	T4-4HB	EPA 300.0 Rev 2.1 1993	649578		
92563385029	T4-4HS	EPA 300.0 Rev 2.1 1993	649578		
92563385030	T4-1L	EPA 300.0 Rev 2.1 1993	649578		
92563385031	T4-2L	EPA 300.0 Rev 2.1 1993	649578		
92563385032	T4-3L	EPA 300.0 Rev 2.1 1993	649578		
92563385033	T4-4L	EPA 300.0 Rev 2.1 1993	649578		
92563385034	BG-2HT	EPA 300.0 Rev 2.1 1993	649578		
92563385035	DUP-1	EPA 300.0 Rev 2.1 1993	649578		
92563385036	DUP-2	EPA 300.0 Rev 2.1 1993	649578		
92563385037	DUP-3	EPA 300.0 Rev 2.1 1993	649578		
92563385038	FB-1	EPA 300.0 Rev 2.1 1993	649578		
92563385039	EB-1	EPA 300.0 Rev 2.1 1993	649791		
92563385040	T1-1LT	EPA 300.0 Rev 2.1 1993	650528		
92563385041	T1-2LT	EPA 300.0 Rev 2.1 1993	650528		
92563385042	T1-3LT	EPA 300.0 Rev 2.1 1993	650528		
92563385043	T1-4LT	EPA 300.0 Rev 2.1 1993	650528		
92563385044	T2-2LT	EPA 300.0 Rev 2.1 1993	650528		
92563385045	T2-3LT	EPA 300.0 Rev 2.1 1993	650528		
92563385046	T2-4LT	EPA 300.0 Rev 2.1 1993	650528		
92563385047	T3-2LT	EPA 300.0 Rev 2.1 1993	650528		
92563385048	T3-3LT	EPA 300.0 Rev 2.1 1993	650528		
92563385049	T3-4LT	EPA 300.0 Rev 2.1 1993	650528		
92563385050	BG-1LT	EPA 300.0 Rev 2.1 1993	650528		
92563385051	DUP-4	EPA 300.0 Rev 2.1 1993	650528		
92563385052	DUP-5	EPA 300.0 Rev 2.1 1993	650528		
92563385053	FB-2	EPA 300.0 Rev 2.1 1993	650528		
92563385054	EB-2	EPA 300.0 Rev 2.1 1993	650528		

07	Document Name: Sample Condition Upon Rece	Int/SC(ID)	Occument Revised: October 28, 2020 Page 1 of 2
Pace Analytical"	Document No.:		issuing Authority:
1 1	F-CAR-CS-033-Rev.0	7	Pace Carolinas Quality Office
boratory receiving samples: Asheville	od Huntersville Ral	eigh M	1echanicsville Atlanta Kernersville
Sample Condition Client Name: Upon Receipt	A POWER	Project #:	AL M. LANCE DE CANAL DE LA CAN
ourier: Ped Ex V[] Commercial [] Pace	JUPS ☐USPS ☐ ☐Otheri	Clent	92563385
stody Seal Present? Tyes Two	22 2	Va	Date/Infitials Person Examining Contents: PM 912
cking Material: []Bubble Wrap	☐Bubble Bags ☐Hone ☐	Other	Biological Tissue Ecozen?
emometer: Onco		Tatue 🗇	Noon
11 1 10 10 1 1 1 1	Type of ice:		, sale
14-32 Correction		12.	es abouted his schooling from the en E ^o J ^o
ler Temp: Add/Subl	tract (°C)	⊤em	np should be above freezing to 6°C □Samples out of temp criteria. Samples on ico, coellan process
In Town Connected Hely	-3.2		ist began
oler Temp Corrected (*C): OA Regulated Soil (N/A, water sample)	1 31-	Ţ) or a second
samples originate in a quarant he zone within t	he United States: CA. NY. or SC (check)	e bid Stagen	samples originate from a foreign source (internationally,
Yes Dia	to an tea artists with this at sa felledd)	inclu	uting Hawatt and Puerto Ricul? (Yes 150
			Comments/Discrepancy:
Chain of Custody Present?	ETES ONG ONA	1	
chain or Lustody Present?			
Samples Arrived within Hold Time?	TYEL MO DY/A	7.	
Short Hold Time Analysis (<72 hr.)?	□Yes ØNg □NA	3,	
Rush Turn Around Time Requested?	Dyes And DN/A	4.	
	Offer DNo DN/A	5.	
Sufficient Volume? Correct Containers Used?	Zives, One ONIA	8.	
Page Containers Used?	Ores One One	91.	
		7.	
Containers Intact?	DITES DNO DN/A		
Dissolved analysis: Samples field filtered?	Dyes DNo DN/A	8.	
Sample Labels Match COC?	Over ONG ONA	9,	
-Includes Date/Time/ID/Analysis Matrix:	IVI		
Headspace in VOA Vials (>5-5mm)?	Dyes DNO DIS/A	10.	
Trip Blank Present?	DYES TONO DINA	11	
Trip Blank Custudy Seals Present?	LIVES TINO ONIA		
OMMENTS/SAMPLE DISCREPANCY			Finid Data Required? Tyei Tho
		Lot ID o	of split containers
ENT NOTIFICATION/RESOLUTION			
erson contacted:	Date/	Time:	
Figure Management Entire Designation			Dates
Project Manager SCURF Review:			
Project Manager SRF Review:			Date:

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 7020 Page 2 of 2

issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Collform, TOC, Oil and Gresse, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project

WO#: 92563385

PM: NMG

Due Date: 10/04/21

CLIENT: GA-GA Power

tem#	BP4U-125 mil Plastic Unpreserved (N/A) (CH)	BP3U-250 mi Plattic Unbreserved (N/A)	8P2U-500 mL Plastic Unpreserved (N/A)	BPILL-1 liter Plastic Unpreserved (N/A)	8P4S-125 mL Plastic H2504 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 ml Plastic ZN Acetate & NaOH (59)	6P4C-125 ml. Plastic NatCH (pH > 12) (CH)	Wei U-Wide-moinfied Glass Jan Unpreserved	AGIU-1 liter Amber Unpreserved (N/A) (Ct.)	AG16-1 Mer Amber MCI IPH < 2)	AG3U-750 mLamber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H25O4 (pH < 2)	AG3A(DG3A):250 mLAmber NH4G (N/A)(CF)	DG9H 40 mL VQA HCI (N/A)	VG9T-40 mt VOA Na25203 (N/A)	VG9U-40 mt VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vrats per kit) 5085 kit (N/A)	V/GN (3 vials per list)-VPH/Cas list (N/A)	SPST-125 muSterfie Platers (N/Alab)	SP2T-250 mL Sterile Plastic (N/A - ials).		BP34-250 ml. Plastic (NH2)2504 (9.3-5.7)	aG0U-100 ml, Amber Unpreserved vials [N/A]	VSGU-20 ml Schrillation vials (N/A)	DG5D-40 mt Amber Unpreserved vials (N/A)
1	/	ţ	1		1	X	1	1	H		1		1	1	1	L								1	7			
2	1	1	1		1	1	1	1	7		1		1	1	1									1	1			
3	1	1	1	H	1	X	1	1		1	1		1	1	1				H					1	1	1		
4	1	1	ĺ		1	1	1	1			/		1	1	1									1	1			
5	1	1	1		1	K	1	1			1		1	1	1	ij								1	1			
Z.	7	1	ĺ.		1	Y	1	1	6		1		1	1	/									1	1			
7	1	Í	1		1	X	1	1			1		1	1	1									1	1			
8	1	1	1		1	X	1	1			1		1	1	/							14		1	1			
9	1	1	i	Ţ	1	Y	1	1			1		1	1	/									1	1			
10	1	1	1		1	1	1	1			1		1	1	1									1	1			
11	1	1	1		1	1	1	1	111		1		1	1	1									1	1			
12	1	1	1		1	1	1	1			1		1	1	1									1	1			

		pH Ar	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	bil nhou tece,by	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot H
		1 -				

Note: Whenever there is a discrepancy effecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina OFHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect centainers.

Document Name: Sample Condition Upon Receipt(SCUR)

Document No. I F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliforn, TOC, Oil and Grease, DRO/8015 (water) DOC, 11Hg

**Bottom half of box is to list number of bottles

Project # WL

WO#:92563385

PM: NMG

Due Date: 10/04/21

CLIENT: GA-GA Power

ltem#	BP4U-125 mLPlastic Unpreserved (N/A) (다-)	BP3U-250 mt Plastic Unpreserved (N/A)	RP2U-500 mt. Plastic Unpreserved (N/A)	RP11J-A Nor Plastic Unprestruted (N/A)	8845-175 of Platfort2504 (pH < 2) (CI-)	SP3N-250 mL plastic HNO3 (pH < 2)	8P42-175 ml Plastic ZN Acetale & NBOH (>9)	8P4C-125 mLPlastic NaOH (pH > 12) (CL)	WGFU-Wide-mouthed Glass jer. Unpreserved	AG1U-1 litter Amber Unpreserved (N/A) (CI-)	AG1X-1 liter Amber HCl (pH < 3)	AGBU 250 mL Amber Unpreserved (N/A) (CI.)	AG15-1 lite: Amber H25G9 (pM < 2)	AG35 250 ml Amber H2504 (pH < 2)	AG34(DG3A)-250 mL Amber NH4C! (N/A)(CI-)	DGSH-40 mL VOA HIG (N/A)	VG9T-40 mt, VCA Na252G3 (N/A)	VG9U- 40 mt VOA Unn (N/A)	DG9P-10 mL VOAH3PD4 (N/A)	VOAK (6 vinte per list) 5035 kit (N/A)	V/GN (3 vials per Kit)-VPH/Sas Kit (N/A)	SP51-125 mil Sterile Plastic (N/A - lab)	SPZT-250 mc Sterile Plastic (N/A. rab)		8P3A-250 mt Plastic (NH2)25O4 (9.3-9.7)	AGDU-100 nu. Amber Unpreserved viels (N/A)	VSGU-50 mi Schrillation vials (N/A)	DG9L-40 mL Amber Unpreserved vials (N/A)
1	1	J.	1	2	1	X	1	1			1		1	1	1					Œ				1	1			
2	1	1	1		1	X	1	1			1		1	1	1									1	1			
3	1	r	1		1	X	1	1			1		1	1	1	ħ,								1	1			
4	1	1	1		1	N	1	1			1		1	1	1		-							1	1			1 3
5	1	1	1		1	1	7.	1			1		1	1	1								Ti	1	1			
6	1	1	K		1	X	1	1			1	1	1	1	1			1						1	1		U	
7		1	١		1	13	1	1			1		1	1	1								4	1	1			
8	1	1	1		1	7	1	1			1		1	1	1									1	1			
9	1	1	v		1	1	1	1			1		1	1	1									1	1			
10	1	1	A		1	13	1	1			1		1	1	1				Ī					1	1			
11	/	1	ì		1	13	1	1			/	1	1	1	1									1	1			
17	1	1	١		1	X	1	1			1		1	1	1									1	1			

		pH Ac	Justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
						-

Note: Whenever there is a disgrapancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DERINA Carolina Office (i.e. Out of hold, incorrect preservative, and of temp, incorrect containers.

Document Name: Sample Condition Upon Receipt(SCUR)

Dacument No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRC/8015 (water) DGC, LLHg

**Bottom half of box is to list number of bottles

Project WO#: 92563385

PM: NMG

Due Date: 10/04/21

CLIENT: GA-GA Power

(ternit	8P4L-135 mLP astic Unpreserved (N/A) (CI-)	BP3U-250 mt Riastic Unpreserved (N/A).	BP2U-500 mi. Plattic Unpreserved (N/A)	SPIU-4 liter Playte Unpreserved [N/A]	8P45:125 mL Plastic R.2504 [pfi < 2) (Ci-)	SP3N-250 mit plastic HNO3 (pH < 2)	8P42-125 ml Plustic ZN Arestate & NSOH (59)	AP4C-125 mu Plasne WeOki (pH > 12) (CL.)	WGPL-Wide-mouthed Glass Jur. Unpreserved	AG1U-1-liter Amber Unpreserved (N/A) (CF.)	AG1H-1 liter Amber HCl/pH < 2)	AGBU-250 mt Amber Lingteserved (N/A) (CH)	AG35-3 fiver Arribert H2SQ4 (pH < 2)	AG35.250 mt. Amber H2504 (pri < 2).	AG3A(DG3A)-250 mL Ambes NHGC (N/A)(CH)	DESHAG TIL VOA HCT (N/A)	VG9T-40 mt VQA Na75203 (W/A)	VGSU-10 INL VOA Unp (N/A)	DG9P-40 ML VQA-H3PD4 (N/A)	VOAK (6 vials per kit)-5085 kt (N/s)	V/GK (3 viels per Kitj-VRH/Gas kit (N/A)	SP51-125 mt Stenie Planic (N/A-lab)	SP2T-250 mt Sterile Plasue (N/A-lab)		BPSA-250 mt. Plastic (NH2)2504 (9.3-9.7)	AGOU-100 ML Amber Unpreserved vials (N/A)	VSGU-20 mL Schollston visis. (N/A)	DG9U-40 mt Amber Unpreserved wuls (N/A)
1	1	1	1		1	X	1	1			1		1	1	1									1	1			
2	1	1	1		1	X	1	1			1		1	1	1									1	1			Щ
3	1	1	(1	X	1	1			1		1	1	1						[4]			1	1			
4	1		1		/	K	/	1	T		1		1	1	1		Ħ							1	1			
3	1	1	1		1	K	1	1			1		1	1	1			T						1	1			
5	1	1	ŕ.		1	X	1	1			1		1	1	1						A			1	1			
7	1	į	1		1	X	1	1			1		1	1	1									1	1			
8	1	1	1		/	X	/	1			1		1	1	1									1	1			
9	1	1	1		1	1		1			1		1	1	1									1	1			
10	1	1	1		1	X	1	1			1		1	1	1		j ed							1	1			
11	1	1	l		1	X	1	1			1		1	1	1									1	1			
12	1	i	1		1	X	1	1		3 18	1		1	1	1	E						F		1	1			

		pH Ad	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation	Amount of Preservative andeu	Lut
_	1 1 1 1 1 1 1			the state of the s		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEFINR Certification Office (i.e., Out of bodd) frontiest preservative, out of temp, incertest containers.

Document Name: Sample Condition Upon Receipt(SCUR) Document No.

F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020 Page 2 of 2

issuing Authority:

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Caliform, TOC, Dil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project #

PM: NMG

Due Date: 10/04/21

CLIENT: GA-GA Power

them#	8P4U-125 ml Plastic Unpreserved (N/A) (CI-)	BP3U-250 ml. Plastic Unpreserved (N/A)	BP2U-500 mL Plestic Undreserved (N/A)	8P1U-3 Iliter Please Unpreserved (N/A)	BP45-125 ml Paptic H2504 (pile 2) (CI-)	BP3N-250 mL plastic MNP3 (pH < 2)	8PG2-125 mL Piastic ZN Acesate & NaOH (>9)	8P4C-125 mi. Plastic NaOH (pH > 12) (Cl-)	WGRU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amoer Digneserved (N/A) (CF)	ASIR-1 liter Amoer HCI (pH < 2)	AGSU-250 mi Amber Unpreserved (N/A) (CH)	AG15-5 liter Amber HZSO4 (pH < 2)	AG3S-250 mt Amber ((2504 (pH < 2)	AG3A(BG3A)-750 TL Amber NH4Cl (N/A)(CI-)	DG9H-40 mt VOA HT! (N/A)	VG9T-40 ml VOA Na 25203 (N/A)	VG90-40 mt VCA Uno (N/A)	DG9P-40 mL VOA H3PD4 (N/A)	VOAK (6 vials per kit) 5035 iii (N/A)	V/GK (3 vius per kit-VPH/Gas kit (N/A)	SPST-225 mi Sterije Plastic (N/A - Iab)	SP2T-25G ml. Sterve Plastic (M/A - Mo)		BP3A-250 mi Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 milAmber Unpreserved vials (N/N)	VSGU-20 mt. Schrilladen vials (N/A)	DG9U-40 mt Amber Unprimerved vials (N/A)
1	1	χ.	1		1	X	1	1			1		1	/	1									1	7			
2	1	1	1		1	X	X	1	-		1		1	1	1									1	1	H		
ă	1	1	1		1	X	1	1			1		1	1	1		1	Ш	Ħ					1	1			
A	1				1	1	1	1			1		1	1	1		9	'nď			-1			1	1			
5	1				1	1	1	1			1	H	1	/	1									1	1	-4		
5	1				1	1	1	1	П		1		1	1	1								-7	1	1	1		
7	1	- 7			1	1	1	1			1		1	1	1							4	34	1	1			
8	1				1	1	1	/			1	6	1	1	1									1	1			
9	1				1	1	1	1	T		1	В	1	1	1				Ħ					1	1			
10	1				1,	1	1	1			1		1	1	1			1				ħį		1	1			
11	1		1		1	1	1	1			1		1	1	1			HI P				7		1	1			
12	1				1	1	1	1			1		1	1	1									1	1	1		

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	by abou tecelbs	Date prescrivation adjusted	Time preservation adjusted	Amount of Preservative added	Lpt H
_		-				

Note: Whenever there is a discrepancy effecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DE-INR Certification Office (i.e. Out of hold, incorrect proservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be complete.

						3	L.	e e		0								ITEM #		Requesto	Phones	Wacasao	Address	Required
					Balling Stations of the second	72-3413	12-3HT	12-2HI S	12-2HI	T2-1HT	TIAKTS	11-481	TI-SHTS	TI-SHT	TIZHIS	THZHT	THEFT	SAMPLE ID One Character per box. (AZ 0-9 / -) Sample ids must be unique		П	(578)545-0415 Fax	Wandstock GA 30188	Georgia Power	유
				1. W														MATERY CODE Chrowing Water DAY Who on Will Work Water Whate Water Product Cil Wild Wild Wild Wild Wild Wild Wild Wi		Project #	Purchase Order At	and Care	Report To.	Required Project Information:
		h		William	TANOGE	TW	TW	TW	W.T	TW	1/4	N.	50	¥.	¥.	L/M	M	MATRIX CODE (600 valls codes to SAMPLE TYPE (G=GRAB C=COM		Ш	15		Kevir Si	ojeat Info
	-			Loaker	Charling the transpolitization	9/23/21 12/45	9/23/21/252	9/23/2: 1153	११४१। विद्या	शंभा वादा	8 p3 1402	शुःखोदः । ५०९	भाक्ष्या 1223	9/23/21 12/28	9/23/21 1217	RJ23/21 1213	R/23/24 1207	START START		Metaline Salas Abata Sellinia	Annual Constant		Kevir Sleoherson	armation:
PRINT					1000	5	2	نن	5	=	10	٤	(vi	ixo	1	te ^x	7	COLLECTED COLLECTED		W COURT	Malan Co.			
PRINT Name of SAMPLER: Por		F		9/2			-	H		-	H	H				H	H	END END		Saure				
MPLER				9/24/1		-						-	-	+		┝		SALIPLE TEMP AT COLLECTION	-	d	þ	I.		
		T		10		w	w	W	w	32	w	(i)	w	12	نرا درو	Ų,	(iii	# DF CONTAINERS		Pass	Page	Address	Attention	invoice In
Robert Mull	S. Carlot			1030		2	22	2	2	2	2	72	2	~	13	30	2	Unpreserved H2SO4	Ш	Pass Profile # 1076	Pace Quote:	Address:	IOT.	invoice Information:
N A			D	F6	E	Ξ	-	~		=	=	-	-	Y	*	Ξ	=	HNO3	ı II.			lan.	П	mation
			Adjuctor	Fedex				-		-		÷		-		-		HNO3. Pros.	1	10768-14	î.		П	#
III III III			En		6				1.6	iii	Ĩ	111			-			Na28203	443	nosie.do				
1/5000		1	-									111	1-1					Melhano) Other		1 2	9		U	
			PRI		Bruk Saut Kon										_			FADALYTER DEUT 15 YO	Viri is	eo@pacelabs.com		Ш	Ì	
			1			×	×	×	×	×	×	×	×	×	×	×	×	6010/6020 AM/CI F SO4	-	elabsic			П	
			18			×	×	×	×	×	×	×	×	8	×	×	×	TDS	Room	-m			П	
			1									Щ							Richard And Area					
	-		O.	٥											-							H	Н	
			8252	24/2		E					Y				1					185		MAN .		
	-			0.00						-					-	-			NO SECTION	記載				
			1100	030								1		77.1	173								-	
186	1		/,	u						-											H			Page:
in C	4	0	4	1			27					-						Residual Chlurine (Y/N)	4					
MC DR	4	~	1	1.		PH: 7 18	H (Hd	H	PH.	H.	HC	PH	PH (PH.	pH 6	H.	15)		A		No.	1	
dy	-	4		34.	signicaliza	7 18	PH 6.96	7.05	L8 3 Hd	689	PH 7 14	Ph 6 48	7.08	ନ୍ଦେ	7.15	6.97	7.05		- 	ON THE				
		3	4	•	100 100			5.	7	-		~		7	0,	7				GA		近日の村の地方である。 一般の最高の大きなのができない。 カー・	1	Of.
68	1	7	Y	1	1	113		4																a.

Required Client Information: woodstock, GA 30188 maill kevm stephenson@resolvteurs.com ITEM # T3.441 T3-2HT 73-HT T4-1118 13-31(15) 1003 Weatherstand Parkwa Georgia Power CHAIN-OF-CUSTODY / Analytical Request Document

Are Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately. (678)548-9415 One Character per box.
(AZ 0.9/, -)
Sample lds must be unique SAMPLEID Te. MATRIX
Landary Woler
Wale
Wale
Wale
Wale
Wale
Salväsle
Di
Salväsle
Other
Titave Copy for Project Name: Pundusu Ordor # Required Project information: Section B WILLIAM ž 3 3 ٤ ٤ MATRIX CODE (see waits codes to left) 3 ¥ ž Ş SAMPLE TYPE (G-GRAB C-DOMP) McMarkus Surface Water Sampling 5172121 디디기 9/23/21 9123121 6/23/24 Loaker 7 23 21 123/21 12/21 23/21 23/21 1321 13/2 START 1308 1251 1256 1324 1329 1307 1130 1125 1347 1116 1340 1313 COLLECTED SIGNATURE OF SAMPLER RINT Name of SAMPLER: HAI. 9/24/2 SAMPLE TEMP AT COLLECTION Attendor: Company Name: Robert Muil, William Lagger DATE Signed: 9/23/21 w W w w S w S w ww Ü # OF CONTAINERS Peos Profile # Pack Project Manager. Poce Quote. Address: 1030 2 N N 1 N N 14 2 N 2 2 Unpreserved H2\$Q4 HNOS Preserval HCI Cultor NaDH Na25203 Fice e d'oleo Opuscelais, com Methano Other Analyses/Testa ... Y/N 6010/6020 × × ANCL F. SO4 × TOS P152 9/24/21 1030 1100 Company of the second Page: 1,4 TEMP in C 9 Residual Chlorine (Y/N) PH 7.04 生 Heceived on PH PH: 7.04 PH 6 PH 7.12 양 OH G ¥ 7 24 7.09 (VIN) 6.94 6.92 7.09 22 .06 Custod 3 39. Sealed Cooler Q CON Samples ninel (Y/N)

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and

					となる	36	35	34	i u	3200	4	ğ	1	200	77	,	25	ITEM#		Request	1	TRUE	Address	Company
					Smith Colored		***	## ·	# 1			THE	TALIS	TH-HB	T43HS	T4-3HB	T4-2HS	SAMPLE ID One Character per boz. (A-Z 0-0 / -) Sample los must be unique		Requested Due Date:	(878)548-0415 Fax	mail kaymatemansandin-oblicesy our		Company. Georgia Power
				Wis							ř							Condex Value 104/ Value 1941 907 Vene Petal 197 Vene Petal 198 Condition)≟rojeci#	Project Name	Parchase O	Capy To:	Required P
				William	in State of the Late of the La	.VT	W	3	M	W	4	\$	¥	3	W.	¥	4	MATRIX CODE (see velid pode SAMPLE TYPE (G*GRAE CAI	-			der e		roject in
1789	g.			Lanker	Harpy West Williams		į		I				4 (z)zz(z) (4/22/2	1 12/22 15	शुक्राम १३८३	S/22/21	DATE	COMP		McMarius Scattler White Salvelle			Report To: Ratio Charles
PRINT NA				er	LANON	L	-	1	L				(335	1335	1315	323	1303	A	соцьстер		or Water	١.	1	
PRINT Name of SAMPLER:		H	Ļ	٥.			-	L			L	-			1	L		- S	ē	Company	Sullaniino			1
AMPLE	CHANGE.		16	9/24/21	APPLE													TIME			1			
	-	+				H	+	-	-	-	H	-	W	النا	W	OJ.	w	SAMPLE TEMP AT COLLECTION # OF CONTAINERS	4	701	1	2 2	5	
E STATE OF THE STA		1	113	1030			-		1		-		N	N	2	2	2	Uпривыелией		Page Profile 4. 1076	Priest Broker	Address	Company Name	lavoice Information:
. 2	5		H	0										İ	Ť		-	112804		Hydy	Sien a	4	N Vis	1
		1	B	-	POLICE.	7			1.3				-	-	-	-	-	HNO3	Ţ	4		11	ame	1
E 145701	4	Ш	3	63													1.1	HCI	2	109	1	П		200
뼮			Cucho	Fedex	쪮													NaOH	Preservatives	10758-14	Τ	П		
A. T.			0		Ġ.	ē,	F	1171	Γ,		17							Na25203	Vers.	38		П	П	П
		>	3		is and even		1											Methanol	1.74	DICOME GO			1	ш
	20		3		2	_											2.1	Other Control of the				П	Į.	1
	M		ME.			×	×	×	×	×	×	77	54	36	be	×	ж.	Analyses/Test Control	V/ (g)	la Ca	1	П	1	1
			N	-		×	×	*	2¢	×	ж	×	×	×	×	×	×	AMC, F. SD4		eo@pacelabs.com		il		П
			3		颜	×	K	ж	×	×	×	×	×	×	*	×	×	TOS	ulcage.	1		П	1	
		116	1		Bud Latin and Company					ining									600		1	Ш	H	
	<u> </u>	-	-	_					7	1									edud Corah Susualis				П	
			27	9/24/21		-			-			1	10	144					Type Control			Щ		
			252	4/2				-						#			-				-	We!	1	
			_		1/4/2							Ħ		114					-6					
		111	OOI,	1030															NECK EN	1 (1		E.		
		-		0										1.1	**				T W					70
Ċ	16	311	114	्ट र					=				i=1	1-4		\equiv			1	1 18		8		Page :
	2	7	1	٢				P				_						Residual Chlor ne (Y/N)		GA		Programa in Program in Property		
d on	1	4	-								1		HG	HG	.He	H	Kd	7		CA CO		S.		u
			`		980								7 17		7.6	7.	-(
	1	_		-									I,	7.08	6	7.04	Ū	F				1		0
		,			100005										*			2				E ST		0
	~	4	4	2	36.16														-//		П			
0.7	N		15				1		_ 8	ш						4.1	+44	N.		1	Ŀ	孋		ω

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Submitting a sample via this chain of custody constitues admonder/generit and acceptance of the Pace Terms and Conditions found at https://dicto-pace/scontinuos/generit-pace-decorptance.

				T		開業	480	47	6	5		43		1			E.	27	ITEM#			Reduest	Eman:	Address	Company:
						ACO COMMENTS	DIP3	DUP 2	OUF 1	BG-2HT	98467	1441	14-31	T4-2L	7411	TSACT.	100		SAMPLE ID One Character per box. (A-Z, 0-3 (,-) Sample ids must be unique			hone: (578)548-9415. Fox	in skipher son@reso uteo	1003 Weatherstone Perkway	
		-			William							2							54\$\$PF * § 5		T OPPOSE A	Project Name	Purthuse Didy #	Copy To	1.5
		ľ				RELINOVIS	4	TW	TW	TW	T.	W.	WT.	WT .	-TW	WT	TW	WT	MATRIX CODE (see valid ou SAMPLE TYPE (G=GRAS (31		(#	l	Kevin Stephenson:
			Ш	П	Laaker	PEDIENC MATERIALISM	9/23/21	9/23/1	12/12/18	4/22/21		9/22/21	श्यांय	4/22/21	भाष्य्या १६२५			I	DATE		П	S suns	ł	i	Distanta
.0	10 M		1		Rer		1	1	1	1621		1817	1905	1441	192				START	CC	Н	uriace (U	2 /
PRINT Name of SAMPLER: Robert Mult, William	SAMPLED WHIT WITH SEAR TIME TO THE TOTAL THE SEARCH THE		1				-					1	Ul		-5					COLLECTED	П	McManus Surface Water Sampling		Ш	I
S lo aum	Sec.	-	H		۵	2000 2000	-	-	H	¥ .						H			DATE 1	G	П	Buggans		П	1
MPL	Š				9/24/21	S paul													TIME		И			Ц	
F. F.	á	-	-	-	1		w	w	()J	w	-	(U)	w	US	w				SAMPLE TEMP AT COLLECT	ON	1 3	I.	70/2	0	٥
0000				1	1030	14	32	12	2	2		2	2	2	2				# OF CONTAINERS Unpreserved	1	Pacu Profile #	Paus Project Manage:	Page Queta:	Company Name	Attention:
2	8					1534	\mathbb{Z}_{+}^{+}			U					-				H2504	1	Drate a	PER	POCH:	N Na	e lation
5			1	A	71		=	**	•	-		-	-	1	=	9		111	HNO3	Pie	ш.	Varia		380	matio
Σ			Ш	00	Fedox		-		-										HCI	View	10768-14	8	ı,	Ш	ř.
Hier			12	A. Rocke	X								-		-		-	-	NaOH Na2S2O3	Preservatives	ī.	콩			L
		1		18	1	The Part of the Pa		4.											Methanol	lo.	Н	cole d'd	П	П	Ш
acher								μĪ	jiL.		114								Olhar		Ш		Н	П	П
1			-	E		á	×	35	- Lu	lo:		40	14	22.		6.0	Sec. 20		Analyses Test	WINE	120	eo@egesiabs.com,	Ш,		
١			143	3	Y.		×	*	×	×		×	×	×	×	×	×	×	6019/50ZU Alk/Cl, F-SO4			Bbs.			1
			118	2			*	×	×	×	100	×	12 40	*	×	×	×	Sc	TOS		8	,mc	1		ı
	1		14		Ы	A STATE AND A SECOND				1		φĸ		<				7.1			estechiested Analyzasteman			П	Ш
1				-5	0	E Da						- 1							4		Anal				
			T i	9-25-	9/24/2						-										2		T.		
	ෂ			Ž.	/2;				-	1											There		層	-	_
ı				2	5					14		111									STORY		20.00		
				00	1030			-	- 3		-	-		-	-		-	-			enak rogs	羅隆	100		E
m¢	2000	1.6	16	211	3		!			T										. 1	花器	THE PROPERTY OF THE PROPERTY O	Charles and the second		Page:
ed p		.,	-		1		-			0	-	7)	u-T	70 1	ti l	-	_	_	Residual Chlorina (V/N)	- Air.		1	THE REAL PROPERTY.		
160 L	" 1	1	1	1	4		14			T		HC	王	1.0	T	T.					Ď	0.0	135		
īķ.									1.8	100			7.38	73	7 35							BB	3		
	1	4	1	4	4	8						2	33	7	ŰΊ								1		Q.
las:	1					Block Control																	3		
		1	1	4	6																3				4

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Cristody is a LEGAL DOCUMENT. All relevant fields must be completed

			ĺ	1			1000	193	88	9	9	- 55	94	53			503		ITEM#			- Constant	Some of	Email: A	Woodslod	Company	Required
						COMMENS COMMENS									EB-4	F8.4	95°	9104	SAMPLE ID One Character per box. (A-Z, 0-9) (, .) Sample bis must be unique			and the second second	(878)548-0415 Fax	andine solutes	Woodshop, GA 30188	Georgia Power	8
		-			IM														Product Product 9. Supersolin 9. Supersolin 9. With William William OT Teams 178	100 April Maries 200		Project #.	Project Name	Purchase Dicks #:	Copy (a)	Report To	Required Project Information:
		ļ		N	Milliam	SEE ON CO				-	1	4	5	8	Š	٩	×	W	MATRIX CODE (see ve		7.7	1		Dide #.	11/2		Project h
					11.0	isheuja	-			i	H	H			5/B/21	9/23/21			SAMPLETYPE (G-GR	AB C-	COMP	1	McManus			Kevin Stephenson	ntormati
	Sugar	0			Lanker	温温品					+	-			23 1515	1510	H		START		o	П	Surface			2011	DINIC.
SIGNATURE of SAMPLER:			1	ŀ		EMERINGUISHEDIET TENTH TO TO THE	-	-	+	+	+	H			U)	a	-	-	-		COLLECTED		McManus Surface Water Sampling				
Name of SA	DANA	-	F	+	9	1050	1			+	+						-	H	DATE	ď	6	Ш	Sundur		1	J	
OF SAMPLER: Rebert	NO.		ļ.		9/24/21	26.11			+	-	-	4	Н	U		-			SAMPLE TEMP AT COLL	PCTIO	N	Н					
Repe	1				1030	が記れ			=	1				1.1	12	3 2			# OF CONTAINERS			Page	Page	Page Ou	Comp	Attent	invoice in
N. T.					Ŏ					1	1					/-			Unpreserved H2SO4	4		Page Profile #	Pace Project Manager.	Page Quete:	Соврану Макк	Attection	se Indon
1				A. Kucho	TI				-	+	+				-	-			HNO9		Presi		Manage		INI		mation
William Lauker				ich	Fedex	1			4	1	1		1.						NaDH		Preservatives	0768-14	5	1		I	
La			-	3		(0.404.0)			1	+	1		Post I						Ne2S2O3 Methanol	-	X		nicolo, d'o			ı	
Ser.				14.											Ī, II	+1		Ш	Other	7/3/5	e stretten				П		
1			-	HUE!		では、一般の一般の			T	×	×	c	×	×	34	s.	×	×	Analyses Tests B010/8020		YIN		eo@pacelate com		П	1	
DATE				HV						×	-	-	×	×	×		×	×	AWCL F. SO4			20	NO SO		Н	١	
Signed				(-		排		-	+	×	×		×	×	×	×	×	×	TOS	-		areasia areasia				1	
	一年の 情報の	-		2			2				1	1					14,	Į.,				Roquestedstant				1	
DATE Signed:				1-25-1	9/24/21																		1		Ш	1	
		H			21			1		4	+	1											Č.	NAME OF			
	ne de la			1/00	1030					+										1		all Thered I various 1					
AND		119	31	1.4	50	爨					-	-														rage:	9
MP in C		9	9	1	8.2		-			1		1							Residual Chlorine (Y/N)			9	Signatur	CHARLES.		6:	
TN) E(OOY		1	1	1	1	Allower Alle																. CΔ		THE PARTY OF THE STREET, THE PARTY OF THE PA		cn	
oler N)		1	4	1	1	unito							1							0.00		6		· ·		9	į
mples col	1	4	1	1	1					1								1	e	The second	y in c		77.3	No.		a	

January 13, 2022

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on December 16, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicola DIOIca

Woole D'oler

Nicole D'Oleo nicole.d'oleo@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Joe Booth, Resolute Environmental & Water Resources
Anna Bottum, ERM
Andrea Brazell, ERM
Trent Godwin, Resolute Environmental & Water Resources
Kristen Jurinko
Ms. Lauren Petty, Southern Company
Lacy Smith, ERM
Kevin Stephenson, Resolute Environmental & Water
Resources Consulting, LLC
Caitlin Tillema, ERM

Stephen Wilson, Resolute Environmental & Water Resources Consulting, LLC

CERTIFICATIONS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302

Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168

Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

Pace Analytical Services Charlotte

South Carolina Laboratory ID: 99006 9800 Kincey Ave. Ste 100, Huntersville, NC 28078

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12 South Carolina Laboratory ID: 99006

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712 North Carolina Wastewater Certification #: 40

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157

Federal Fish & Wildlife Permit #: LE51774A-0

South Carolina Certification #: 99006001

South Carolina Drinking Water Cert. #: 99006003

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Louisiana DoH Drinking Water #: LA029 Virginia/VELAP Certification #: 460221

South Carolina Laboratory ID: 99030 South Carolina Certification #: 99030001

Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92578470001		Water	12/15/21 09:50	12/16/21 11:00
92578470002	T1-4HTS	Water	12/15/21 09:54	12/16/21 11:00
92578470003	T2-1HT	Water	12/15/21 09:05	12/16/21 11:00
92578470004	T2-2HT	Water	12/15/21 09:16	12/16/21 11:00
92578470005	T2-2HTS	Water	12/15/21 09:20	12/16/21 11:00
92578470006	T2-3HT	Water	12/15/21 09:28	12/16/21 11:00
92578470007	T2-3HTS	Water	12/15/21 09:34	12/16/21 11:00
92578470008	T2-4HT	Water	12/15/21 10:16	12/16/21 11:00
92578470009	T2-4HTS	Water	12/15/21 10:20	12/16/21 11:00
92578470010	T3-4HT	Water	12/15/21 10:36	12/16/21 11:00
92578470011	T3-4HTS	Water	12/15/21 10:42	12/16/21 11:00
92578470012	T4-1HB	Water	12/15/21 07:06	12/16/21 11:00
92578470013	T4-1HS	Water	12/15/21 07:00	12/16/21 11:00
92578470014	T4-2HB	Water	12/15/21 07:22	12/16/21 11:00
92578470015	T4-2HS	Water	12/15/21 07:25	12/16/21 11:00
92578470016	T4-3HB	Water	12/15/21 07:40	12/16/21 11:00
92578470017	T4-3HS	Water	12/15/21 07:44	12/16/21 11:00
92578470018	T4-4HB	Water	12/15/21 08:04	12/16/21 11:00
92578470019	T4-4HS	Water	12/15/21 08:08	12/16/21 11:00
92578470020	T1-4LT	Water	12/15/21 14:48	12/16/21 11:00
92578470021	T2-4LT	Water	12/15/21 15:00	12/16/21 11:00
92578470022	T3-4LT	Water	12/15/21 15:10	12/16/21 11:00
92578470023	T4-4L	Water	12/15/21 13:48	12/16/21 11:00
92578470024	BG-1LT	Water	12/15/21 12:50	12/16/21 11:00
92578470025	BG-2HT	Water	12/15/21 08:41	12/16/21 11:00
92578470026	DUP-1	Water	12/15/21 00:00	12/16/21 11:00
92578470027	DUP-2	Water	12/15/21 00:00	12/16/21 11:00
92578470028	DUP-3	Water	12/15/21 00:00	12/16/21 11:00
92578470029	FB-1	Water	12/15/21 16:12	12/16/21 11:00
92578470030	EB-1	Water	12/15/21 16:20	12/16/21 11:00

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92578470001	 T1-4HT	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470002	T1-4HTS	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470003	T2-1HT	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470004	T2-2HT	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470005	T2-2HTS	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470006	T2-3HT	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470007	T2-3HTS	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470008	T2-4HT	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470009	T2-4HTS	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470010	T3-4HT	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470011	T3-4HTS	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470012	T4-1HB	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470013	T4-1HS	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470014	T4-2HB	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470015	T4-2HS	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470016	T4-3HB	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470017	T4-3HS	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470018	T4-4HB	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470019	T4-4HS	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470020	T1-4LT	EPA 6010D	CBV, DS	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470021	T2-4LT	EPA 6010D	CBV	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470022	T3-4LT	EPA 6010D	DS, RDT	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
92578470023	T4-4L	EPA 6010D	DS, RDT	4	PASI-A

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6020B		3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470024	BG-1LT	EPA 6010D	DS, RDT	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470025	BG-2HT	EPA 6010D	DS, RDT	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470026	DUP-1	EPA 6010D	DS, RDT	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470027	DUP-2	EPA 6010D	DS, RDT	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470028	DUP-3	EPA 6010D	DS, RDT	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470029	FB-1	EPA 6010D	RDT	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A
2578470030	EB-1	EPA 6010D	RDT	4	PASI-A
		EPA 6020B	JOR	3	PASI-A
		SM 2320B	TMK	3	PASI-G

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 2540C-2015	MAB2	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JCM	3	PASI-A

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte PASI-G = Pace Analytical Services - Green Bay

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab Sample ID Method	Client Sample ID Parameters	Result	l loito	Report Limit	Apolyzod	Qualifiers
			Units	- Report Limit	Analyzed	Qualifiers
2578470001	T1-4HT					
	Performed by	CUSTOME R			12/20/21 11:41	
	рН	7.47	Std. Units		12/20/21 11:41	
EPA 6010D	Calcium	254	mg/L	2.0	01/10/22 12:33	M1
EPA 6010D	Magnesium	748	mg/L	2.0	01/10/22 12:33	M1
EPA 6010D	Potassium	245	mg/L	100	01/10/22 12:33	M1
EPA 6010D	Sodium	6160	mg/L	1000	01/11/22 02:16	M1
EPA 6020B	Boron	2.2J	mg/L	2.5	12/27/21 12:56	D3,M1
EPA 6020B	Lithium	0.091J	mg/L	0.12	12/27/21 12:56	D3
SM 2320B	Alkalinity, Total as CaCO3	103	mg/L	10.0	12/20/21 21:09	
SM 2320B	Alkalinity, Bicarbonate (CaCO3)	103	mg/L	10.0	12/20/21 21:09	
SM 2540C-2015	Total Dissolved Solids	21000	mg/L	1250	12/20/21 11:53	
EPA 300.0 Rev 2.1 1993	Chloride	9760	mg/L	100	12/17/21 18:57	
EPA 300.0 Rev 2.1 1993	Sulfate	1350	mg/L	100	12/17/21 18:57	
2578470002	T1-4HTS					
	Performed by	CUSTOME			12/20/21 11:42	
	nЦ	R 7.44	Std. Units		10/00/01 11:40	
EPA 6010D	pH Calcium	7.44 241	mg/L	2.0	12/20/21 11:42 01/10/22 12:53	
EPA 6010D	Magnesium	712	mg/L	2.0	01/10/22 12:53	
EPA 6010D	Potassium	234	mg/L	100	01/10/22 12:53	
EPA 6010D	Sodium	5800	mg/L	1000	01/10/22 12:33	
EPA 6020B	Boron	2.2J	mg/L		12/27/21 13:27	D3
EPA 6020B	Lithium	0.091J	mg/L		12/27/21 13:27	D3
SM 2320B	Alkalinity, Total as CaCO3	99.3	mg/L	10.0	12/20/21 21:35	В
SM 2320B	Alkalinity, Fotal as Gacco	99.3	mg/L	10.0	12/20/21 21:35	
SM 2540C-2015	Total Dissolved Solids	21300	mg/L	1250	12/20/21 11:53	
EPA 300.0 Rev 2.1 1993	Chloride	9680	mg/L	100	12/17/21 19:11	
EPA 300.0 Rev 2.1 1993	Sulfate	1340	mg/L	100	12/17/21 19:11	
2578470003	T2-1HT		_			
	Performed by	CUSTOME			12/20/21 11:42	
	•	R				
	pH	7.58	Std. Units		12/20/21 11:42	
EPA 6010D	Calcium	252	mg/L	2.0	01/10/22 12:57	
EPA 6010D	Magnesium	739	mg/L	2.0	01/10/22 12:57	
EPA 6010D	Potassium	242	mg/L	100		
EPA 6010D	Sodium	5900	mg/L		01/11/22 02:45	
EPA 6020B	Boron	2.2J	mg/L		12/27/21 13:30	D3
EPA 6020B	Lithium	0.092J	mg/L		12/27/21 13:30	D3
SM 2320B	Alkalinity, Total as CaCO3	97.7	mg/L		12/20/21 21:41	
SM 2320B	Alkalinity,Bicarbonate (CaCO3)	97.7	mg/L	10.0	12/20/21 21:41	Do
SM 2540C-2015	Total Dissolved Solids	18800	mg/L	1250	12/21/21 10:27	D6
EPA 300.0 Rev 2.1 1993	Chloride Sulfate	9670 1340	mg/L	100	12/17/21 19:25 12/17/21 19:25	
EPA 300.0 Rev 2.1 1993		1340	mg/L	100	12/11/21 19.25	
2578470004	T2-2HT	011070115				
	Performed by	CUSTOME			12/20/21 11:42	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
92578470004	T2-2HT					
	рН	7.48	Std. Units		12/20/21 11:42	
EPA 6010D	Calcium	258	mg/L	2.0	01/10/22 13:00	
EPA 6010D	Magnesium	755	mg/L	2.0	01/10/22 13:00	
EPA 6010D	Potassium	248	mg/L	100	01/10/22 13:00	
EPA 6010D	Sodium	6050	mg/L	1000	01/11/22 02:48	
EPA 6020B	Boron	2.4J	mg/L	2.5	12/27/21 13:34	D3
EPA 6020B	Lithium	0.094J	mg/L	0.12	12/27/21 13:34	D3
SM 2320B	Alkalinity, Total as CaCO3	101	mg/L	10.0	12/20/21 21:47	
SM 2320B	Alkalinity, Bicarbonate (CaCO3)	101	mg/L	10.0	12/20/21 21:47	
SM 2540C-2015	Total Dissolved Solids	17200	mg/L	1250	12/21/21 10:27	
EPA 300.0 Rev 2.1 1993	Chloride	9630	mg/L	100	12/17/21 19:39	
EPA 300.0 Rev 2.1 1993	Sulfate	1330	mg/L	100	12/17/21 19:39	
2578470005	T2-2HTS					
	Performed by	CUSTOME R			12/20/21 11:43	
	рН	7.46	Std. Units		12/20/21 11:43	
EPA 6010D	Calcium	260	mg/L	2.0	01/10/22 13:03	
EPA 6010D	Magnesium	760	mg/L	2.0	01/10/22 13:03	
EPA 6010D	Potassium	248	mg/L	100	01/10/22 13:03	
EPA 6010D	Sodium	5840	mg/L	1000	01/11/22 02:51	
EPA 6020B	Boron	2.4J	mg/L	2.5	12/27/21 13:38	D3
EPA 6020B	Lithium	0.096J	mg/L	0.12	12/27/21 13:38	D3
SM 2320B	Alkalinity, Total as CaCO3	99.4	mg/L	10.0	12/20/21 21:53	
SM 2320B	Alkalinity, Bicarbonate (CaCO3)	99.4	mg/L	10.0	12/20/21 21:53	
SM 2540C-2015	Total Dissolved Solids	18600	mg/L	1250	12/21/21 10:27	
EPA 300.0 Rev 2.1 1993	Chloride	9700	mg/L	100	12/18/21 00:00	
EPA 300.0 Rev 2.1 1993	Sulfate	1340	mg/L	100	12/18/21 00:00	
2578470006	T2-3HT					
	Performed by	CUSTOME R			12/20/21 11:43	
	рН	7.45	Std. Units		12/20/21 11:43	
EPA 6010D	Calcium	239	mg/L	2.0	01/10/22 13:07	
EPA 6010D	Magnesium	699	mg/L	2.0	01/10/22 13:07	
EPA 6010D	Potassium	231	mg/L	100	01/10/22 13:07	
EPA 6010D	Sodium	5920	mg/L	1000	01/11/22 02:54	
EPA 6020B	Boron	2.4J	mg/L		12/27/21 13:41	
EPA 6020B	Lithium	0.095J	mg/L		12/27/21 13:41	D3
SM 2320B	Alkalinity, Total as CaCO3	96.6	mg/L		12/20/21 21:59	
SM 2320B	Alkalinity,Bicarbonate (CaCO3)	96.6	mg/L	10.0	12/20/21 21:59	
SM 2540C-2015	Total Dissolved Solids	19400	mg/L	1250	12/21/21 10:29	
EPA 300.0 Rev 2.1 1993	Chloride	9700	mg/L	100	12/18/21 00:14	
EPA 300.0 Rev 2.1 1993	Sulfate	1330	mg/L	100	12/18/21 00:14	
2578470007	T2-3HTS					
	Performed by	CUSTOME R			12/20/21 11:43	
	рН	7.45	Std. Units		12/20/21 11:43	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2578470007	T2-3HTS					
EPA 6010D	Calcium	248	mg/L	2.0	01/10/22 13:10	
EPA 6010D	Magnesium	733	mg/L	2.0	01/10/22 13:10	
EPA 6010D	Potassium	242	mg/L	100	01/10/22 13:10	
EPA 6010D	Sodium	6260	mg/L	1000	01/11/22 02:57	
EPA 6020B	Boron	2.4J	mg/L	2.5	12/27/21 17:14	D3
EPA 6020B	Lithium	0.093J	mg/L	0.12	12/27/21 17:14	D3
SM 2320B	Alkalinity, Total as CaCO3	102	mg/L	10.0	12/20/21 22:21	
SM 2320B	Alkalinity, Bicarbonate (CaCO3)	102	mg/L	10.0	12/20/21 22:21	
SM 2540C-2015	Total Dissolved Solids	19200	mg/L	1250	12/21/21 10:29	
EPA 300.0 Rev 2.1 1993	Chloride	9750	mg/L	100	12/18/21 00:28	
EPA 300.0 Rev 2.1 1993	Sulfate	1330	mg/L	100	12/18/21 00:28	
2578470008	T2-4HT					
	Performed by	CUSTOME			12/20/21 11:43	
		R	0.111.7		10/00/01 11 10	
	pH	7.49	Std. Units		12/20/21 11:43	
EPA 6010D	Calcium	251	mg/L	2.0	01/10/22 13:13	
EPA 6010D	Magnesium	734	mg/L	2.0	01/10/22 13:13	
PA 6010D	Potassium	240	mg/L	100	01/10/22 13:13	
EPA 6010D	Sodium	5840	mg/L	1000	01/11/22 03:00	
EPA 6020B	Boron	2.4J	mg/L	2.5	12/27/21 17:18	D3
EPA 6020B	Lithium	0.092J	mg/L		12/27/21 17:18	D3
SM 2320B	Alkalinity, Total as CaCO3	100	mg/L	10.0	12/20/21 22:27	
SM 2320B	Alkalinity,Bicarbonate (CaCO3)	100	mg/L	10.0	12/20/21 22:27	
SM 2540C-2015	Total Dissolved Solids	19100	mg/L	1250	12/21/21 10:29	
EPA 300.0 Rev 2.1 1993	Chloride	9480	mg/L	100	12/18/21 00:42	
EPA 300.0 Rev 2.1 1993	Sulfate	1290	mg/L	100	12/18/21 00:42	
2578470009	T2-4HTS					
	Performed by	CUSTOME			12/20/21 11:43	
	рН	R 7.50	Std. Units		12/20/21 11:43	
PA 6010D	Calcium	243	mg/L	2.0		
EPA 6010D	Magnesium	711	mg/L	2.0	01/10/22 13:17	
EPA 6010D	Potassium	235	mg/L	100	01/10/22 13:17	
EPA 6010D	Sodium	6000	mg/L	1000	01/11/22 03:10	
PA 6020B	Boron	2.3J	mg/L	2.5	12/27/21 17:21	D3
EPA 6020B	Lithium	0.089J	mg/L		12/27/21 17:21	
SM 2320B	Alkalinity, Total as CaCO3	101	_		12/20/21 17:21	D3
SM 2320B	•	101	mg/L		12/20/21 22:33	
SM 2540C-2015	Alkalinity,Bicarbonate (CaCO3) Total Dissolved Solids		mg/L		12/20/21 22:33	
		20000	mg/L	1250	12/18/21 10:29	N44
EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993	Chloride Sulfate	9540 1300	mg/L mg/L	100 100	12/18/21 00:56	M1 M1
2578470010	T3-4HT	.000	⊎, ⊏	130	,	
2010710010	Performed by	CUSTOME			12/20/21 11:44	
	•	R				
	рН	7.45	Std. Units		12/20/21 11:44	
EPA 6010D	Calcium	248	mg/L	2.0	01/10/22 13:27	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2578470010	T3-4HT					
EPA 6010D	Magnesium	732	mg/L	2.0	01/10/22 13:27	
PA 6010D	Potassium	241	mg/L	100	01/10/22 13:27	
PA 6010D	Sodium	6200	mg/L	1000	01/11/22 03:13	
PA 6020B	Boron	2.4J	mg/L	2.5	12/27/21 17:25	D3
PA 6020B	Lithium	0.091J	mg/L	0.12	12/27/21 17:25	D3
SM 2320B	Alkalinity, Total as CaCO3	101	mg/L	10.0	12/20/21 22:39	
SM 2320B	Alkalinity, Bicarbonate (CaCO3)	101	mg/L	10.0	12/20/21 22:39	
M 2540C-2015	Total Dissolved Solids	19800	mg/L	1250	12/21/21 10:29	
PA 300.0 Rev 2.1 1993	Chloride	9440	mg/L	100	12/18/21 01:39	
PA 300.0 Rev 2.1 1993	Sulfate	1290	mg/L	100	12/18/21 01:39	
2578470011	T3-4HTS					
	Performed by	CUSTOME R			12/20/21 11:44	
	рН	7.46	Std. Units		12/20/21 11:44	
PA 6010D	Calcium	246	mg/L	2.0	01/10/22 13:30	
PA 6010D	Magnesium	730	mg/L	2.0	01/10/22 13:30	
PA 6010D	Potassium	243	mg/L	100	01/10/22 13:30	
PA 6010D	Sodium	6180	mg/L	1000	01/11/22 03:16	
PA 6020B	Boron	2.4J	mg/L	2.5	12/27/21 17:29	D3
PA 6020B	Lithium	0.089J	mg/L	0.12	12/27/21 17:29	D3
M 2320B	Alkalinity, Total as CaCO3	99.0	mg/L	10.0	12/20/21 22:45	
M 2320B	Alkalinity, Bicarbonate (CaCO3)	99.0	mg/L	10.0	12/20/21 22:45	
M 2540C-2015	Total Dissolved Solids	19000	mg/L	1250	12/21/21 10:29	
PA 300.0 Rev 2.1 1993	Chloride	9740	mg/L	100	12/18/21 01:53	
PA 300.0 Rev 2.1 1993	Sulfate	1330	mg/L	100	12/18/21 01:53	
2578470012	T4-1HB					
	Performed by	CUSTOME R			12/20/21 11:44	
	рН	7.35	Std. Units		12/20/21 11:44	
PA 6010D	Calcium	263	mg/L	2.0	01/10/22 13:33	
PA 6010D	Magnesium	774	mg/L	2.0	01/10/22 13:33	
PA 6010D	Potassium	257	mg/L	100	01/10/22 13:33	
PA 6010D	Sodium	6190	mg/L	1000	01/11/22 03:19	
PA 6020B	Boron	2.5	mg/L	2.5	12/27/21 17:32	D3
PA 6020B	Lithium	0.094J	mg/L	0.12	12/27/21 17:32	D3
M 2320B	Alkalinity, Total as CaCO3	106	mg/L	10.0	12/20/21 22:51	
M 2320B	Alkalinity, Bicarbonate (CaCO3)	106	mg/L	10.0	12/20/21 22:51	
M 2540C-2015	Total Dissolved Solids	20800	mg/L	1250	12/21/21 10:31	
PA 300.0 Rev 2.1 1993	Chloride	11300	mg/L	200	12/18/21 14:05	
PA 300.0 Rev 2.1 1993	Sulfate	1410	mg/L	100	12/18/21 02:08	
2578470013	T4-1HS					
	Performed by	CUSTOME R			12/20/21 11:44	
	рН	7.40	Std. Units		12/20/21 11:44	
PA 6010D	Calcium	276	mg/L	2.0	01/10/22 13:37	
PA 6010D	Magnesium	814	mg/L	2.0	01/10/22 13:37	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result _	Units	Report Limit	Analyzed	Qualifiers
2578470013	T4-1HS					
EPA 6010D	Potassium	268	mg/L	100	01/10/22 13:37	
PA 6010D	Sodium	6430	mg/L	1000	01/11/22 03:23	
PA 6020B	Boron	2.5J	mg/L	2.5	12/27/21 17:36	D3
PA 6020B	Lithium	0.095J	mg/L	0.12	12/27/21 17:36	D3
SM 2320B	Alkalinity, Total as CaCO3	105	mg/L	10.0	12/20/21 22:57	
SM 2320B	Alkalinity,Bicarbonate (CaCO3)	105	mg/L	10.0	12/20/21 22:57	
SM 2540C-2015	Total Dissolved Solids	21200	mg/L	1250	12/21/21 10:31	
PA 300.0 Rev 2.1 1993	Chloride	10400	mg/L	200	12/18/21 14:19	
PA 300.0 Rev 2.1 1993	Sulfate	1430	mg/L	100	12/18/21 03:34	
2578470014	T4-2HB					
	Performed by	CUSTOME R			12/20/21 11:44	
	рН	7.44	Std. Units		12/20/21 11:44	
PA 6010D	Calcium	273	mg/L	2.0	01/10/22 13:40	
PA 6010D	Magnesium	808	mg/L	2.0	01/10/22 13:40	
PA 6010D	Potassium	269	mg/L	100	01/10/22 13:40	
PA 6010D	Sodium	6730	mg/L	1000	01/11/22 03:26	
PA 6020B	Boron	2.4J	mg/L	2.5	12/27/21 17:50	D3
PA 6020B	Lithium	0.096J	mg/L	0.12	12/27/21 17:50	D3
M 2320B	Alkalinity, Total as CaCO3	105	mg/L	10.0	12/20/21 23:03	
M 2320B	Alkalinity, Bicarbonate (CaCO3)	105	mg/L	10.0	12/20/21 23:03	
M 2540C-2015	Total Dissolved Solids	21100	mg/L	1250	12/21/21 10:31	
PA 300.0 Rev 2.1 1993	Chloride	10100	mg/L	200	12/18/21 14:33	
PA 300.0 Rev 2.1 1993	Sulfate	1440	mg/L	100	12/18/21 03:48	
2578470015	T4-2HS					
	Performed by	CUSTOME R			12/20/21 11:45	
	рН	7.45	Std. Units		12/20/21 11:45	
PA 6010D	Calcium	294	mg/L	2.0	01/10/22 13:44	
PA 6010D	Magnesium	868	mg/L	2.0	01/10/22 13:44	
PA 6010D	Potassium	284	mg/L	100	01/10/22 13:44	
PA 6010D	Sodium	6710	mg/L	1000	01/11/22 03:29	
PA 6020B	Boron	2.6	mg/L	2.5	12/27/21 17:54	D3
PA 6020B	Lithium	0.10J	mg/L	0.12	12/27/21 17:54	D3
M 2320B	Alkalinity, Total as CaCO3	108	mg/L		12/20/21 23:10	
M 2320B	Alkalinity,Bicarbonate (CaCO3)	108	mg/L		12/20/21 23:10	
SM 2540C-2015	Total Dissolved Solids	21100	mg/L		12/21/21 10:31	
PA 300.0 Rev 2.1 1993	Chloride	11300	mg/L		12/18/21 14:48	
PA 300.0 Rev 2.1 1993	Sulfate	1410	mg/L	100	12/18/21 04:03	
2578470016	T4-3HB					
	Performed by	CUSTOME R			12/20/21 11:45	
	рН	7.49	Std. Units		12/20/21 11:45	
PA 6010D	Calcium	284	mg/L	2.0	01/10/22 13:47	
PA 6010D	Magnesium	838	mg/L	2.0	01/10/22 13:47	
PA 6010D	Potassium	278	mg/L	100	01/10/22 13:47	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

ab Sample ID	Client Sample ID	5 "		5 (1)		0 ""
Method	Parameters —	Result _	Units	Report Limit	Analyzed	Qualifiers
2578470016	T4-3HB					
EPA 6010D	Sodium	6790	mg/L	1000	01/11/22 03:32	
PA 6020B	Boron	2.6	mg/L	2.5	12/27/21 17:58	D3
PA 6020B	Lithium	0.098J	mg/L	0.12	12/27/21 17:58	D3
SM 2320B	Alkalinity, Total as CaCO3	105	mg/L	10.0	12/20/21 23:16	
SM 2320B	Alkalinity, Bicarbonate (CaCO3)	105	mg/L	10.0	12/20/21 23:16	
SM 2540C-2015	Total Dissolved Solids	21800	mg/L	1250	12/21/21 10:31	
PA 300.0 Rev 2.1 1993	Chloride	9880	mg/L	200	12/18/21 15:02	
PA 300.0 Rev 2.1 1993	Sulfate	1420	mg/L	100	12/18/21 04:17	
2578470017	T4-3HS					
	Performed by	CUSTOME R			12/20/21 11:45	
	рН	7.55	Std. Units		12/20/21 11:45	
PA 6010D	Calcium	281	mg/L	2.0	01/10/22 13:50	
PA 6010D	Magnesium	832	mg/L	2.0	01/10/22 13:50	
PA 6010D	Potassium	274	mg/L	100	01/10/22 13:50	
PA 6010D	Sodium	6570	mg/L	1000	01/11/22 03:35	
PA 6020B	Boron	2.6	mg/L	2.5	12/27/21 18:01	D3
PA 6020B	Lithium	0.10J	mg/L	0.12	12/27/21 18:01	D3
SM 2320B	Alkalinity, Total as CaCO3	107	mg/L	10.0	12/20/21 23:37	
M 2320B	Alkalinity,Bicarbonate (CaCO3)	107	mg/L	10.0	12/20/21 23:37	
M 2540C-2015	Total Dissolved Solids	22200	mg/L	1250	12/21/21 10:33	
PA 300.0 Rev 2.1 1993	Chloride	11800	mg/L	200	12/18/21 15:16	
EPA 300.0 Rev 2.1 1993	Sulfate	1410	mg/L	100	12/18/21 04:31	
2578470018	T4-4HB					
	Performed by	CUSTOME			12/20/21 11:45	
	рH	R 7.52	Std. Units		12/20/21 11:45	
PA 6010D	Calcium	281	mg/L	2.0	01/10/22 13:54	
PA 6010D	Magnesium	830	mg/L	2.0	01/10/22 13:54	
PA 6010D	Potassium	275	mg/L	100	01/10/22 13:54	
PA 6010D	Sodium	6300	mg/L	1000	01/11/22 03:38	
PA 6020B	Boron	2.8	mg/L	2.5	12/27/21 18:05	D3
PA 6020B	Lithium	0.10J	mg/L		12/27/21 18:05	D3
M 2320B	Alkalinity, Total as CaCO3	105	mg/L	10.0	12/20/21 23:43	D3
SM 2320B	Alkalinity, Total as Gacco	105	mg/L		12/20/21 23:43	
SM 2540C-2015	Total Dissolved Solids	21400	•		12/21/21 10:33	
EPA 300.0 Rev 2.1 1993	Chloride	10800	mg/L		12/18/21 15:30	
EPA 300.0 Rev 2.1 1993	Sulfate	1420	mg/L mg/L		12/18/21 13:30	
2578470019	T4-4HS	0	9/=		12, 10, 2 1 0 11 10	
	Performed by	CUSTOME			12/20/21 11:46	
	рН	R 7.50	Std. Units		12/20/21 11:46	
	μι			0.0		
PA 6010D	Calcium	つこつ	ma/l			
	Calcium	252	mg/L		01/10/22 13:57	
PA 6010D PA 6010D PA 6010D	Calcium Magnesium Potassium	252 752 251	mg/L mg/L mg/L		01/10/22 13:57 01/10/22 13:57 01/10/22 13:57	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
	T4-4HS		Office			- Guamore
2578470019		2.0		2.5	12/27/21 10:00	Do
EPA 6020B	Boron	2.8	mg/L		12/27/21 18:08	D3
PA 6020B	Lithium	0.10J	mg/L		12/27/21 18:08	D3
M 2320B	Alkalinity, Total as CaCO3	104	mg/L	10.0	12/20/21 23:49	
M 2320B	Alkalinity, Bicarbonate (CaCO3)	104	mg/L	10.0	12/20/21 23:49	
SM 2540C-2015	Total Dissolved Solids Chloride	21500	mg/L	1250	12/21/21 10:33 12/18/21 16:28	M4 D4
PA 300.0 Rev 2.1 1993 PA 300.0 Rev 2.1 1993	Sulfate	11300 1430	mg/L mg/L	200 100	12/18/21 16:28	M1,R1 M1
2578470020	T1-4LT	1430	mg/L	100	12/10/21 00:20	IVII
2370470020	Performed by	CUSTOME			12/20/21 11:46	
	•	R	.			
'DA 0040D	pH	7.67	Std. Units	0.0	12/20/21 11:46	
PA 6010D	Calcium	245	mg/L		01/10/22 14:13	
PA 6010D	Magnesium	725	mg/L		01/10/22 14:13	
PA 6010D	Potassium	240	mg/L	100	01/10/22 14:13	
PA 6010D	Sodium	6000	mg/L	1000	01/11/22 03:51	D0
PA 6020B	Boron	2.6	mg/L		12/27/21 18:12	D3
PA 6020B	Lithium	0.099J	mg/L		12/27/21 18:12	D3
M 2320B	Alkalinity, Total as CaCO3	99.0	mg/L	10.0	12/20/21 23:55	
M 2320B	Alkalinity,Bicarbonate (CaCO3)	99.0	mg/L	10.0	12/20/21 23:55	
M 2540C-2015	Total Dissolved Solids	20400	mg/L	1250	12/21/21 10:33	
PA 300.0 Rev 2.1 1993	Chloride Sulfate	9790 1330	mg/L	100	12/18/21 07:23 12/18/21 07:23	
PA 300.0 Rev 2.1 1993		1330	mg/L	100	12/16/21 07:23	
2578470021	T2-4LT Performed by	CUSTOME			12/20/21 11:46	
	renormed by	R			12/20/21 11.40	
	рН	7.68	Std. Units		12/20/21 11:46	
PA 6010D	Calcium	224	mg/L	1.0	01/07/22 14:43	
PA 6010D	Magnesium	675	mg/L	1.0	01/07/22 14:43	
PA 6010D	Potassium	221	mg/L	50.0	01/07/22 14:43	
PA 6010D	Sodium	5760	mg/L	500	01/10/22 00:35	
PA 6020B	Boron	2.4J	mg/L		12/27/21 18:47	D3,M1
PA 6020B	Lithium	0.085J	mg/L	0.12	12/27/21 18:47	D3
M 2320B	Alkalinity, Total as CaCO3	102	mg/L	10.0	12/21/21 00:13	
M 2320B	Alkalinity,Bicarbonate (CaCO3)	102	mg/L	10.0	12/21/21 00:13	
M 2540C-2015	Total Dissolved Solids	19200	mg/L	1250	12/21/21 10:33	
PA 300.0 Rev 2.1 1993	Chloride	9780	mg/L		12/18/21 07:38	
PA 300.0 Rev 2.1 1993	Sulfate	1330	mg/L	100	12/18/21 07:38	
2578470022	T3-4LT	CUSTOME			10/00/01 11 10	
	Performed by	CUSTOME R			12/20/21 11:46	
	рН	7.62	Std. Units		12/20/21 11:46	
PA 6010D	Calcium	247	mg/L		01/12/22 07:13	M1
PA 6010D	Magnesium	744	mg/L		01/12/22 07:13	M1
PA 6010D	Potassium	251	mg/L		01/12/22 07:13	M1
PA 6010D	Sodium	6390	mg/L	1000	01/13/22 02:35	M1
PA 6020B	Boron	0.24J	mg/L	1.0	12/27/21 11:12	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2578470022	T3-4LT					
		400	/I	40.0	40/04/04 00:00	
SM 2320B	Alkalinity, Total as CaCO3	102	mg/L		12/21/21 00:38	
SM 2320B	Alkalinity,Bicarbonate (CaCO3)	102	mg/L	10.0	12/21/21 00:38	
SM 2540C-2015	Total Dissolved Solids	20800	mg/L	1250	12/21/21 10:33	
EPA 300.0 Rev 2.1 1993	Chloride	9790	mg/L	100	12/18/21 07:52	
EPA 300.0 Rev 2.1 1993	Sulfate	1330	mg/L	100	12/18/21 07:52	
2578470023	T4-4L	CUSTOME			40/00/04 44 47	
	Performed by	CUSTOME R			12/20/21 11:47	
	рН	7.60	Std. Units		12/20/21 11:47	
EPA 6010D	Calcium	249	mg/L	2.0	01/12/22 07:32	
PA 6010D	Magnesium	751	mg/L	2.0	01/12/22 07:32	
PA 6010D	Potassium	251	mg/L	100	01/12/22 07:32	
PA 6010D	Sodium	6270	mg/L	1000	01/13/22 03:00	
PA 6020B	Boron	0.26J	mg/L	1.0	12/27/21 11:38	
PA 6020B	Lithium	0.010J	mg/L	0.050	12/27/21 11:38	
SM 2320B	Alkalinity, Total as CaCO3	109	mg/L	10.0	12/21/21 00:59	
M 2320B	Alkalinity, Bicarbonate (CaCO3)	109	mg/L	10.0	12/21/21 00:59	
M 2540C-2015	Total Dissolved Solids	20700	mg/L	1250	12/21/21 10:37	
PA 300.0 Rev 2.1 1993	Chloride	10600	mg/L	200	12/18/21 17:11	
PA 300.0 Rev 2.1 1993	Sulfate	1410	mg/L	100	12/18/21 08:06	
2578470024	BG-1LT					
	Performed by	CUSTOME			12/20/21 11:47	
	рН	R 7.50	Std. Units		12/20/21 11:47	
PA 6010D	Calcium	235	mg/L	2.0	01/12/22 07:52	
PA 6010D	Magnesium	706	mg/L	2.0	01/12/22 07:52	
PA 6010D	Potassium	238	mg/L	100	01/12/22 07:52	
PA 6010D	Sodium	5730	mg/L	1000	01/13/22 03:04	
PA 6020B	Boron	0.25J	mg/L	1.0	12/27/21 11:41	
PA 6020B	Lithium	0.010J	mg/L	0.050	12/27/21 11:41	
M 2320B	Alkalinity, Total as CaCO3	103	mg/L	10.0	12/21/21 01:05	
SM 2320B	Alkalinity, Bicarbonate (CaCO3)	103	mg/L	10.0	12/21/21 01:05	
M 2540C-2015	Total Dissolved Solids	19800	mg/L	833	12/21/21 10:37	
PA 300.0 Rev 2.1 1993	Chloride	9830	mg/L	100	12/18/21 08:20	
PA 300.0 Rev 2.1 1993	Sulfate	1330	mg/L	100	12/18/21 08:20	
2578470025	BG-2HT					
	Performed by	CUSTOME			12/20/21 11:47	
	рН	R 7.62	Std. Units		12/20/21 11:47	
PA 6010D	Calcium	259	mg/L	2.0	01/12/22 07:56	
PA 6010D	Magnesium	796	mg/L	2.0	01/12/22 07:56	
PA 6010D	Potassium	268	mg/L	100	01/12/22 07:56	
PA 6010D	Sodium	7240	mg/L	1000	01/13/22 07:50	
PA 6020B	Boron	0.28J	mg/L	1.0	12/27/21 11:45	
PA 6020B	Lithium	0.28J 0.011J	mg/L	0.050	12/27/21 11:45	
. こ へ いひとひじ	LIGHUITI	0.0113	IIIQ/L	0.030	14/41/41 11.43	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2578470025	BG-2HT					
SM 2320B	Alkalinity,Bicarbonate (CaCO3)	109	mg/L	10.0	12/21/21 01:11	
SM 2540C-2015	Total Dissolved Solids	22600	mg/L	1250	12/21/21 10:37	
EPA 300.0 Rev 2.1 1993	Chloride	10600	mg/L	200	12/18/21 17:25	
EPA 300.0 Rev 2.1 1993	Sulfate	1540	mg/L	100	12/18/21 08:34	
2578470026	DUP-1					
EPA 6010D	Calcium	231	mg/L		01/12/22 07:36	
EPA 6010D	Magnesium	697	mg/L		01/12/22 07:36	
EPA 6010D	Potassium	234	mg/L	100	01/12/22 07:36	
EPA 6010D	Sodium	5850	mg/L	1000	01/13/22 03:10	
EPA 6020B	Boron	0.25J	mg/L	1.0	12/27/21 11:49	
EPA 6020B	Lithium	0.010J	mg/L	0.050	12/27/21 11:49	
SM 2320B	Alkalinity, Total as CaCO3	101	mg/L	10.0	12/21/21 01:17	
SM 2320B	Alkalinity, Bicarbonate (CaCO3)	101	mg/L	10.0	12/21/21 01:17	
SM 2540C-2015	Total Dissolved Solids	20000	mg/L	833	12/21/21 10:39	
EPA 300.0 Rev 2.1 1993	Chloride	9860	mg/L	100	12/18/21 08:49	
EPA 300.0 Rev 2.1 1993	Sulfate	1340	mg/L	100	12/18/21 08:49	
2578470027	DUP-2					
EPA 6010D	Calcium	260	mg/L	2.0	01/12/22 07:39	
EPA 6010D	Magnesium	766	mg/L	2.0	01/12/22 07:39	
EPA 6010D	Potassium	264	mg/L	100	01/12/22 07:39	
EPA 6010D	Sodium	6510	mg/L	1000	01/13/22 03:13	
EPA 6020B	Boron	0.27J	mg/L	1.0	12/27/21 11:52	
SM 2320B	Alkalinity, Total as CaCO3	108	mg/L	10.0	12/21/21 01:23	
SM 2320B	Alkalinity, Bicarbonate (CaCO3)	108	mg/L	10.0	12/21/21 01:23	
SM 2540C-2015	Total Dissolved Solids	20800	mg/L	833	12/21/21 10:39	
EPA 300.0 Rev 2.1 1993	Chloride	6830	mg/L	200	12/18/21 17:39	
EPA 300.0 Rev 2.1 1993	Sulfate	1420	mg/L	100	12/18/21 09:03	
2578470028	DUP-3					
EPA 6010D	Calcium	234	mg/L	2.0	01/12/22 07:43	
EPA 6010D	Magnesium	698	mg/L	2.0	01/12/22 07:43	
EPA 6010D	Potassium	237	mg/L	100	01/12/22 07:43	
PA 6010D	Sodium	5970	mg/L	1000	01/13/22 03:17	
PA 6020B	Boron	0.24J	mg/L	1.0	12/27/21 12:14	
SM 2320B	Alkalinity, Total as CaCO3	99.1	mg/L	10.0	12/21/21 01:29	
SM 2320B	Alkalinity, Bicarbonate (CaCO3)	99.1	mg/L	10.0	12/21/21 01:29	
SM 2540C-2015	Total Dissolved Solids	19800	mg/L		12/21/21 10:39	
EPA 300.0 Rev 2.1 1993	Chloride	9750	mg/L	100	12/18/21 09:17	
EPA 300.0 Rev 2.1 1993	Sulfate	1330	mg/L		12/18/21 09:17	
2578470029	FB-1					
SM 2320B	Alkalinity, Total as CaCO3	8.2J	mg/L	10.0	12/21/21 01:35	
SM 2320B	Alkalinity,Bicarbonate (CaCO3)	8.2J	mg/L		12/21/21 01:35	
2578470030	EB-1					
EPA 300.0 Rev 2.1 1993	Chloride	11.6	mg/L	1.0	12/18/21 13:21	
EPA 300.0 Rev 2.1 1993	Sulfate	1.5	mg/L	1.0	12/18/21 13:21	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T1-4HT	Lab ID:	92578470001	Collected	: 12/15/2 ⁻	1 09:50	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:41		
pΗ	7.47	Std. Units			1		12/20/21 11:41		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Calcium	254	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 12:33	7440-70-2	M1
Magnesium	748	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 12:33	7439-95-4	M1
Potassium	245	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 12:33	7440-09-7	M1
Sodium	6160	mg/L	1000	122	200	12/20/21 11:19	01/11/22 02:16	7440-23-5	M1
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 12:56	7440-38-2	D3
Boron	2.2J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 12:56	7440-42-8	D3,M1
Lithium	0.091J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 12:56	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 2	320B						
	Pace Anal	lytical Services	- Green Bay						
Alkalinity, Total as CaCO3	103	mg/L	10.0	5.0	1		12/20/21 21:09		
Alkalinity,Bicarbonate (CaCO3)	103	mg/L	10.0	5.0	1		12/20/21 21:09		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 21:09		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Anal	lytical Services	- Asheville						
Total Dissolved Solids	21000	mg/L	1250	1250	1		12/20/21 11:53		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
-	Pace Anal	lytical Services	- Asheville						
Chloride	9760	mg/L	100	60.0	100		12/17/21 18:57	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/17/21 18:57	16984-48-8	D3
Sulfate	1350	mg/L	100	50.0	100		12/17/21 18:57	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T1-4HTS	Lab ID:	92578470002	Collected	d: 12/15/2	1 09:54	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:42		
рН	7.44	Std. Units			1		12/20/21 11:42		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	241	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 12:53	7440-70-2	
Magnesium	712	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 12:53	7439-95-4	
Potassium	234	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 12:53	7440-09-7	
Sodium	5800	mg/L	1000	122	200	12/20/21 11:19	01/11/22 02:41	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 13:27	7440-38-2	D3
Boron	2.2J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 13:27	7440-42-8	D3
Lithium	0.091J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 13:27	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	99.3	mg/L	10.0	5.0	1		12/20/21 21:35		
Alkalinity,Bicarbonate (CaCO3)	99.3	mg/L	10.0	5.0	1		12/20/21 21:35		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 21:35		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	21300	mg/L	1250	1250	1		12/20/21 11:53		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-		lytical Services							
Chloride	9680	mg/L	100	60.0	100		12/17/21 19:11	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/17/21 19:11	16984-48-8	D3
Sulfate	1340	mg/L	100	50.0	100		12/17/21 19:11	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T2-1HT	Lab ID:	92578470003	Collected	d: 12/15/2	1 09:05	Received: 12/	/16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:42		
рН	7.58	Std. Units			1		12/20/21 11:42		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: El	PA 3010A			
	Pace Ana	ytical Services	- Asheville						
Calcium	252	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 12:57	7440-70-2	
Magnesium	739	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 12:57	7439-95-4	
Potassium	242	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 12:57	7440-09-7	
Sodium	5900	mg/L	1000	122	200	12/20/21 11:19	01/11/22 02:45	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	hod: El	PA 3010A			
	Pace Ana	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 13:30	7440-38-2	D3
Boron	2.2J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 13:30	7440-42-8	D3
Lithium	0.092J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 13:30	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	ytical Services	- Green Ba	y					
Alkalinity, Total as CaCO3	97.7	mg/L	10.0	5.0	1		12/20/21 21:41		
Alkalinity, Bicarbonate (CaCO3)	97.7	mg/L	10.0	5.0	1		12/20/21 21:41		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 21:41		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Ana	ytical Services	- Asheville						
Total Dissolved Solids	18800	mg/L	1250	1250	1		12/21/21 10:27		D6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
•		ytical Services							
Chloride	9670	mg/L	100	60.0	100		12/17/21 19:25	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/17/21 19:25	16984-48-8	D3
Sulfate	1340	mg/L	100	50.0	100		12/17/21 19:25	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T2-2HT	Lab ID:	92578470004	Collected	d: 12/15/2	1 09:16	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:42		
pΗ	7.48	Std. Units			1		12/20/21 11:42		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	258	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:00	7440-70-2	
Magnesium	755	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:00	7439-95-4	
Potassium	248	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:00	7440-09-7	
Sodium	6050	mg/L	1000	122	200	12/20/21 11:19	01/11/22 02:48	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 13:34	7440-38-2	D3
Boron	2.4J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 13:34	7440-42-8	D3
Lithium	0.094J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 13:34	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	101	mg/L	10.0	5.0	1		12/20/21 21:47		
Alkalinity,Bicarbonate (CaCO3)	101	mg/L	10.0	5.0	1		12/20/21 21:47		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 21:47		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	17200	mg/L	1250	1250	1		12/21/21 10:27		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	9630	mg/L	100	60.0	100		12/17/21 19:39	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/17/21 19:39		D3
Sulfate	1330	mg/L	100	50.0	100		12/17/21 19:39	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T2-2HTS	Lab ID:	92578470005	Collected	d: 12/15/2 ⁻	1 09:20	Received: 12/	/16/21 11:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Falameters	— — — —				- DI	- Frepareu	- Analyzeu		_ Qua
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:43		
рН	7.46	Std. Units			1		12/20/21 11:43		
6010 MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3010A								
	Pace Anal	lytical Services	- Asheville						
Calcium	260	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:03	7440-70-2	
Magnesium	760	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:03	7439-95-4	
Potassium	248	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:03	7440-09-7	
Sodium	5840	mg/L	1000	122	200	12/20/21 11:19	01/11/22 02:51	7440-23-5	
6020 MET ICPMS	Analytical Method: EPA 6020B Preparation Method: EPA 3010A								
	Pace Analytical Services - Asheville								
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 13:38	7440-38-2	D3
Boron	2.4J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 13:38	7440-42-8	D3
Lithium	0.096J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 13:38	7439-93-2	D3
2320B Alkalinity	Analytical Method: SM 2320B								
	Pace Anal	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	99.4	mg/L	10.0	5.0	1		12/20/21 21:53		
Alkalinity,Bicarbonate (CaCO3)	99.4	mg/L	10.0	5.0	1		12/20/21 21:53		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 21:53		
2540C Total Dissolved Solids	Analytical Method: SM 2540C-2015								
	Pace Analytical Services - Asheville								
Total Dissolved Solids	18600	mg/L	1250	1250	1		12/21/21 10:27		
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993								
	Pace Analytical Services - Asheville								
Chloride	9700	mg/L	100	60.0	100		12/18/21 00:00	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 00:00		D3
Sulfate	1340	mg/L	100	50.0	100		12/18/21 00:00	14808-70-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T2-3HT	Lab ID:	92578470006	Collected	12/15/2	1 09:28	Received: 12/	16/21 11:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Faiailleleis	— Results	——————————————————————————————————————		IVIDL	DF	- Frepareu	- Analyzeu		- Qua
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:43		
Н	7.45	Std. Units			1		12/20/21 11:43		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Me	hod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Calcium	239	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:07	7440-70-2	
Magnesium	699	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:07	7439-95-4	
Potassium	231	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:07	7440-09-7	
Sodium	5920	mg/L	1000	122	200	12/20/21 11:19	01/11/22 02:54	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 13:41	7440-38-2	D3
Boron	2.4J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 13:41	7440-42-8	D3
Lithium	0.095J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 13:41	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	lytical Services	- Green Bay						
Alkalinity, Total as CaCO3	96.6	mg/L	10.0	5.0	1		12/20/21 21:59		
Alkalinity,Bicarbonate (CaCO3)	96.6	mg/L	10.0	5.0	1		12/20/21 21:59		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 21:59		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	lytical Services	- Asheville						
Total Dissolved Solids	19400	mg/L	1250	1250	1		12/21/21 10:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	lytical Services	- Asheville						
Chloride	9700	mg/L	100	60.0	100		12/18/21 00:14	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 00:14	16984-48-8	D3
Sulfate	1330	mg/L	100	50.0	100		12/18/21 00:14	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T2-3HTS	Lab ID:	92578470007	Collected	12/15/2	1 09:34	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report					0.0	
Parameters	Results	Units -	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:43		
Н	7.45	Std. Units			1		12/20/21 11:43		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Me	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	248	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:10	7440-70-2	
Magnesium	733	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:10	7439-95-4	
Potassium	242	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:10	7440-09-7	
Sodium	6260	mg/L	1000	122	200	12/20/21 11:19	01/11/22 02:57	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 17:14	7440-38-2	D3
Boron	2.4J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 17:14	7440-42-8	D3
_ithium	0.093J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 17:14	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Green Bay						
Alkalinity, Total as CaCO3	102	mg/L	10.0	5.0	1		12/20/21 22:21		
Alkalinity,Bicarbonate (CaCO3)	102	mg/L	10.0	5.0	1		12/20/21 22:21		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 22:21		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2015						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	19200	mg/L	1250	1250	1		12/21/21 10:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	9750	mg/L	100	60.0	100		12/18/21 00:28	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 00:28	16984-48-8	D3
Sulfate	1330	mg/L	100	50.0	100		12/18/21 00:28	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T2-4HT	Lab ID:	92578470008	Collected	d: 12/15/2	10:16	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:43		
рН	7.49	Std. Units			1		12/20/21 11:43		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	251	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:13	7440-70-2	
Magnesium	734	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:13	7439-95-4	
Potassium	240	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:13	7440-09-7	
Sodium	5840	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:00	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 17:18	7440-38-2	D3
Boron	2.4J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 17:18	7440-42-8	D3
Lithium	0.092J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 17:18	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Ba	/					
Alkalinity, Total as CaCO3	100	mg/L	10.0	5.0	1		12/20/21 22:27		
Alkalinity,Bicarbonate (CaCO3)	100	mg/L	10.0	5.0	1		12/20/21 22:27		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 22:27		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	19100	mg/L	1250	1250	1		12/21/21 10:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	-	lytical Services							
Chloride	9480	mg/L	100	60.0	100		12/18/21 00:42	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 00:42	16984-48-8	D3
Sulfate	1290	mg/L	100	50.0	100		12/18/21 00:42	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T2-4HTS	Lab ID:	92578470009	Collected	d: 12/15/2	1 10:20	Received: 12/	/16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:43		
рН	7.50	Std. Units			1		12/20/21 11:43		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	243	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:17	7440-70-2	
Magnesium	711	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:17	7439-95-4	
Potassium	235	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:17	7440-09-7	
Sodium	6000	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:10	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 17:21	7440-38-2	D3
Boron	2.3J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 17:21	7440-42-8	D3
Lithium	0.089J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 17:21	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	101	mg/L	10.0	5.0	1		12/20/21 22:33		
Alkalinity,Bicarbonate (CaCO3)	101	mg/L	10.0	5.0	1		12/20/21 22:33		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 22:33		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	20000	mg/L	1250	1250	1		12/21/21 10:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	9540	mg/L	100	60.0	100		12/18/21 00:56	16887-00-6	M1
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 00:56	16984-48-8	D3,M1
Sulfate	1300	mg/L	100	50.0	100		12/18/21 00:56	14808-79-8	M1

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T3-4HT	Lab ID:	92578470010	Collected	d: 12/15/2	1 10:36	Received: 12/	/16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:44		
pΗ	7.45	Std. Units			1		12/20/21 11:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	248	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:27	7440-70-2	
Magnesium	732	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:27	7439-95-4	
Potassium	241	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:27	7440-09-7	
Sodium	6200	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:13	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 17:25	7440-38-2	D3
Boron	2.4J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 17:25	7440-42-8	D3
Lithium	0.091J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 17:25	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	101	mg/L	10.0	5.0	1		12/20/21 22:39		
Alkalinity,Bicarbonate (CaCO3)	101	mg/L	10.0	5.0	1		12/20/21 22:39		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 22:39		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	19800	mg/L	1250	1250	1		12/21/21 10:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•		lytical Services							
Chloride	9440	mg/L	100	60.0	100		12/18/21 01:39	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 01:39		D3
Sulfate	1290	mg/L	100	50.0	100		12/18/21 01:39	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T3-4HTS	Lab ID:	92578470011	Collected	d: 12/15/2	1 10:42	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:44		
PΗ	7.46	Std. Units			1		12/20/21 11:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	246	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:30	7440-70-2	
Magnesium	730	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:30	7439-95-4	
Potassium	243	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:30	7440-09-7	
Sodium	6180	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:16	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 17:29	7440-38-2	D3
Boron	2.4J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 17:29	7440-42-8	D3
Lithium	0.089J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 17:29	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	99.0	mg/L	10.0	5.0	1		12/20/21 22:45		
Alkalinity,Bicarbonate (CaCO3)	99.0	mg/L	10.0	5.0	1		12/20/21 22:45		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 22:45		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	19000	mg/L	1250	1250	1		12/21/21 10:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
•		lytical Services							
Chloride	9740	mg/L	100	60.0	100		12/18/21 01:53	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 01:53		D3
Sulfate	1330	mg/L	100	50.0	100		12/18/21 01:53		•

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T4-1HB	Lab ID:	92578470012	Collected	: 12/15/2 ⁻	1 07:06	Received: 12/	16/21 11:00 Ma	atrix: Water	
Danamatana	Desults	l laita	Report	MDI	DE	Dramanad	A II	CACNI	0
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:44		
pΗ	7.35	Std. Units			1		12/20/21 11:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Me	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	263	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:33	7440-70-2	
Magnesium	774	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:33	7439-95-4	
Potassium	257	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:33	7440-09-7	
Sodium	6190	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:19	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 17:32	7440-38-2	D3
Boron	2.5	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 17:32	7440-42-8	D3
Lithium	0.094J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 17:32	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Green Bay						
Alkalinity, Total as CaCO3	106	mg/L	10.0	5.0	1		12/20/21 22:51		
Alkalinity,Bicarbonate (CaCO3)	106	mg/L	10.0	5.0	1		12/20/21 22:51		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 22:51		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	20800	mg/L	1250	1250	1		12/21/21 10:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
-	Pace Anal	ytical Services	- Asheville						
Chloride	11300	mg/L	200	120	200		12/18/21 14:05	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 02:08	16984-48-8	D3
Sulfate	1410	mg/L	100	50.0	100		12/18/21 02:08	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T4-1HS	Lab ID:	92578470013	Collected	12/15/2	1 07:00	Received: 12/	16/21 11:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
r ai ai i letei s					DI	- Frepareu	Analyzeu		- Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:44		
Н	7.40	Std. Units			1		12/20/21 11:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Me	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	276	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:37	7440-70-2	
Magnesium	814	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:37	7439-95-4	
Potassium	268	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:37	7440-09-7	
Sodium	6430	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:23	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 17:36	7440-38-2	D3
Boron	2.5J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 17:36	7440-42-8	D3
Lithium	0.095J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 17:36	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Green Bay						
Alkalinity, Total as CaCO3	105	mg/L	10.0	5.0	1		12/20/21 22:57		
Alkalinity,Bicarbonate (CaCO3)	105	mg/L	10.0	5.0	1		12/20/21 22:57		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 22:57		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	21200	mg/L	1250	1250	1		12/21/21 10:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	10400	mg/L	200	120	200		12/18/21 14:19	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 03:34	16984-48-8	D3
Sulfate	1430	mg/L	100	50.0	100		12/18/21 03:34	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T4-2HB	Lab ID:	92578470014	Collected	d: 12/15/2	1 07:22	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:44		
PΗ	7.44	Std. Units			1		12/20/21 11:44		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	273	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:40	7440-70-2	
Magnesium	808	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:40	7439-95-4	
Potassium	269	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:40	7440-09-7	
Sodium	6730	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:26	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 17:50	7440-38-2	D3
Boron	2.4J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 17:50	7440-42-8	D3
Lithium	0.096J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 17:50	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	105	mg/L	10.0	5.0	1		12/20/21 23:03		
Alkalinity,Bicarbonate (CaCO3)	105	mg/L	10.0	5.0	1		12/20/21 23:03		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 23:03		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	21100	mg/L	1250	1250	1		12/21/21 10:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	10100	mg/L	200	120	200		12/18/21 14:33	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 03:48	16984-48-8	D3
Sulfate	1440	mg/L	100	50.0	100		12/18/21 03:48	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T4-2HS	Lab ID:	92578470015	Collected	d: 12/15/2	1 07:25	Received: 12/	/16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:45		
pH	7.45	Std. Units			1		12/20/21 11:45		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	294	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:44	7440-70-2	
Magnesium	868	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:44	7439-95-4	
Potassium	284	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:44	7440-09-7	
Sodium	6710	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:29	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 17:54	7440-38-2	D3
Boron	2.6	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 17:54	7440-42-8	D3
Lithium	0.10J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 17:54	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	108	mg/L	10.0	5.0	1		12/20/21 23:10		
Alkalinity,Bicarbonate (CaCO3)	108	mg/L	10.0	5.0	1		12/20/21 23:10		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 23:10		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	21100	mg/L	1250	1250	1		12/21/21 10:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	11300	mg/L	200	120	200		12/18/21 14:48	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 04:03		D3
Sulfate	1410	mg/L	100	50.0	100		12/18/21 04:03	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T4-3HB	Lab ID:	92578470016	Collected	12/15/2	1 07:40	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:45		
pH	7.49	Std. Units			1		12/20/21 11:45		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	284	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:47	7440-70-2	
Magnesium	838	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:47	7439-95-4	
Potassium	278	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:47	7440-09-7	
Sodium	6790	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:32	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 17:58	7440-38-2	D3
Boron	2.6	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 17:58	7440-42-8	D3
Lithium	0.098J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 17:58	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	,					
Alkalinity, Total as CaCO3	105	mg/L	10.0	5.0	1		12/20/21 23:16		
Alkalinity,Bicarbonate (CaCO3)	105	mg/L	10.0	5.0	1		12/20/21 23:16		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 23:16		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	21800	mg/L	1250	1250	1		12/21/21 10:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	9880	mg/L	200	120	200		12/18/21 15:02	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 04:17		D3
Sulfate	1420	mg/L	100	50.0	100		12/18/21 04:17	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T4-3HS	Lab ID:	92578470017	Collected	: 12/15/2 ⁻	1 07:44	Received: 12/	16/21 11:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Droporod	Analyzad	CAS No.	Oue
Parameters	— Results	————		MDL		Prepared	Analyzed		Qua
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:45		
Н	7.55	Std. Units			1		12/20/21 11:45		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: Ef	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Calcium	281	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:50	7440-70-2	
Magnesium	832	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:50	7439-95-4	
Potassium	274	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:50	7440-09-7	
Sodium	6570	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:35	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	thod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 18:01	7440-38-2	D3
Boron	2.6	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 18:01	7440-42-8	D3
Lithium	0.10J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 18:01	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	lytical Services	- Green Bay						
Alkalinity, Total as CaCO3	107	mg/L	10.0	5.0	1		12/20/21 23:37		
Alkalinity,Bicarbonate (CaCO3)	107	mg/L	10.0	5.0	1		12/20/21 23:37		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 23:37		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	lytical Services	- Asheville						
Total Dissolved Solids	22200	mg/L	1250	1250	1		12/21/21 10:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	I 1993					
•	•	lytical Services							
Chloride	11800	mg/L	200	120	200		12/18/21 15:16	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 04:31	16984-48-8	D3
Sulfate	1410	mg/L	100	50.0	100		12/18/21 04:31	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T4-4HB	Lab ID:	92578470018	Collected	d: 12/15/2	1 08:04	Received: 12/	/16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:45		
рН	7.52	Std. Units			1		12/20/21 11:45		
6010 MET ICP	•	Method: EPA 6		aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	281	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:54	7440-70-2	
Magnesium	830	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:54	7439-95-4	
Potassium	275	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:54	7440-09-7	
Sodium	6300	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:38	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 18:05	7440-38-2	D3
Boron	2.8	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 18:05	7440-42-8	D3
Lithium	0.10J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 18:05	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	105	mg/L	10.0	5.0	1		12/20/21 23:43		
Alkalinity,Bicarbonate (CaCO3)	105	mg/L	10.0	5.0	1		12/20/21 23:43		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 23:43		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	21400	mg/L	1250	1250	1		12/21/21 10:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	10800	mg/L	200	120	200		12/18/21 15:30	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 04:45		D3
Sulfate	1420	mg/L	100	50.0	100		12/18/21 04:45	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T4-4HS	Lab ID:	92578470019		12/15/2	1 08:08	Received: 12/	16/21 11:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
raidilleteis	— ————————————————————————————————————	——————————————————————————————————————				- — Frepareu	Analyzeu	- CAS NO.	- Qua
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:46		
PΗ	7.50	Std. Units			1		12/20/21 11:46		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Me	thod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Calcium	252	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 13:57	7440-70-2	
Magnesium	752	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 13:57	7439-95-4	
Potassium	251	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 13:57	7440-09-7	
Sodium	6180	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:48	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 18:08	7440-38-2	D3
Boron	2.8	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 18:08	7440-42-8	D3
Lithium	0.10J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 18:08	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	lytical Services	- Green Bay						
Alkalinity, Total as CaCO3	104	mg/L	10.0	5.0	1		12/20/21 23:49		
Alkalinity,Bicarbonate (CaCO3)	104	mg/L	10.0	5.0	1		12/20/21 23:49		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 23:49		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	lytical Services	- Asheville						
Total Dissolved Solids	21500	mg/L	1250	1250	1		12/21/21 10:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
•	•	lytical Services							
Chloride	11300	mg/L	200	120	200		12/18/21 16:28	16887-00-6	M1,R1
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 05:28	16984-48-8	D3,M1
Sulfate	1430	mg/L	100	50.0	100		12/18/21 05:28	14808-79-8	M1

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T1-4LT	Lab ID:	92578470020	Collected:	12/15/21	14:48	Received: 12/	16/21 11:00 Ma	atrix: Water	
Davastava	Desults	l laita	Report	MDI	DE	Duenened	A b	CACNI	0
Parameters	Results	Units -	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:46		
PΗ	7.67	Std. Units			1		12/20/21 11:46		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	245	mg/L	2.0	1.9	20	12/20/21 11:19	01/10/22 14:13	7440-70-2	
Magnesium	725	mg/L	2.0	1.4	20	12/20/21 11:19	01/10/22 14:13	7439-95-4	
Potassium	240	mg/L	100	60.8	20	12/20/21 11:19	01/10/22 14:13	7440-09-7	
Sodium	6000	mg/L	1000	122	200	12/20/21 11:19	01/11/22 03:51	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 18:12	7440-38-2	D3
Boron	2.6	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 18:12	7440-42-8	D3
Lithium	0.099J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 18:12	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Green Bay						
Alkalinity, Total as CaCO3	99.0	mg/L	10.0	5.0	1		12/20/21 23:55		
Alkalinity,Bicarbonate (CaCO3)	99.0	mg/L	10.0	5.0	1		12/20/21 23:55		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/20/21 23:55		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	20400	mg/L	1250	1250	1		12/21/21 10:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	•	ytical Services							
Chloride	9790	mg/L	100	60.0	100		12/18/21 07:23	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 07:23		D3
Sulfate	1330	mg/L	100	50.0	100		12/18/21 07:23	14808-70-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T2-4LT	Lab ID:	92578470021	Collected	d: 12/15/2	1 15:00	Received: 12/	/16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:46		
pΗ	7.68	Std. Units			1		12/20/21 11:46		
6010 MET ICP	•	Method: EPA 6		aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	224	mg/L	1.0	0.94	10	12/20/21 11:19	01/07/22 14:43	7440-70-2	
Magnesium	675	mg/L	1.0	0.68	10	12/20/21 11:19	01/07/22 14:43	7439-95-4	
Potassium	221	mg/L	50.0	30.4	10	12/20/21 11:19	01/07/22 14:43	7440-09-7	
Sodium	5760	mg/L	500	61.1	100	12/20/21 11:19	01/10/22 00:35	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	12/22/21 15:57	12/27/21 18:47	7440-38-2	D3
Boron	2.4J	mg/L	2.5	0.42	50	12/22/21 15:57	12/27/21 18:47	7440-42-8	D3,M1
Lithium	0.085J	mg/L	0.12	0.025	50	12/22/21 15:57	12/27/21 18:47	7439-93-2	D3
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	102	mg/L	10.0	5.0	1		12/21/21 00:13		
Alkalinity, Bicarbonate (CaCO3)	102	mg/L	10.0	5.0	1		12/21/21 00:13		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 00:13		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	19200	mg/L	1250	1250	1		12/21/21 10:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
•		lytical Services							
Chloride	9780	mg/L	100	60.0	100		12/18/21 07:38	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 07:38		D3
Sulfate	1330	mg/L	100	50.0	100		12/18/21 07:38	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T3-4LT	Lab ID:	92578470022	Collected	d: 12/15/2	1 15:10	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:46		
pΗ	7.62	Std. Units			1		12/20/21 11:46		
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	247	mg/L	2.0	1.9	20	01/03/22 10:29	01/12/22 07:13	7440-70-2	M1
Magnesium	744	mg/L	2.0	1.4	20	01/03/22 10:29	01/12/22 07:13	7439-95-4	M1
Potassium	251	mg/L	100	60.8	20	01/03/22 10:29	01/12/22 07:13	7440-09-7	M1
Sodium	6390	mg/L	1000	122	200	01/03/22 10:29	01/13/22 02:35	7440-23-5	M1
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.020	0.0017	1	12/22/21 05:34	12/27/21 11:12	7440-38-2	
Boron	0.24J	mg/L	1.0	0.17	1	12/22/21 05:34	12/27/21 11:12	7440-42-8	
Lithium	ND	mg/L	0.050	0.010	1	12/22/21 05:34	12/27/21 11:12	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	102	mg/L	10.0	5.0	1		12/21/21 00:38		
Alkalinity, Bicarbonate (CaCO3)	102	mg/L	10.0	5.0	1		12/21/21 00:38		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 00:38		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	20800	mg/L	1250	1250	1		12/21/21 10:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	9790	mg/L	100	60.0	100		12/18/21 07:52	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 07:52		D3
Sulfate	1330	mg/L	100	50.0	100		12/18/21 07:52	14808-70-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: T4-4L	Lab ID:	92578470023	Collected	: 12/15/2 ²	13:48	Received: 12/	16/21 11:00 Ma	atrix: Water	
	_		Report						_
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:47		
Н	7.60	Std. Units			1		12/20/21 11:47		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	249	mg/L	2.0	1.9	20	01/03/22 10:29	01/12/22 07:32	7440-70-2	
Magnesium	751	mg/L	2.0	1.4	20	01/03/22 10:29	01/12/22 07:32	7439-95-4	
Potassium	251	mg/L	100	60.8	20	01/03/22 10:29	01/12/22 07:32	7440-09-7	
Sodium	6270	mg/L	1000	122	200	01/03/22 10:29	01/13/22 03:00	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.020	0.0017	1	12/22/21 05:34	12/27/21 11:38	7440-38-2	
Boron	0.26J	mg/L	1.0	0.17	1	12/22/21 05:34			
Lithium	0.010J	mg/L	0.050	0.010	1	12/22/21 05:34	12/27/21 11:38	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Green Bay						
Alkalinity, Total as CaCO3	109	mg/L	10.0	5.0	1		12/21/21 00:59		
Alkalinity,Bicarbonate (CaCO3)	109	mg/L	10.0	5.0	1		12/21/21 00:59		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 00:59		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	20700	mg/L	1250	1250	1		12/21/21 10:37		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	10600	mg/L	200	120	200		12/18/21 17:11	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 08:06	16984-48-8	D3
Sulfate	1410	mg/L	100	50.0	100		12/18/21 08:06	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: BG-1LT	Lab ID:	92578470024	Collected	12/15/21	12:50	Received: 12/	16/21 11:00 Ma	atrix: Water	
Damanatana	Danilla	11-26-	Report	MDI	D.E.	December	A b d	040 N=	0
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:47		
Н	7.50	Std. Units			1		12/20/21 11:47		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	235	mg/L	2.0	1.9	20	01/03/22 10:29	01/12/22 07:52	7440-70-2	
Magnesium	706	mg/L	2.0	1.4	20	01/03/22 10:29	01/12/22 07:52	7439-95-4	
Potassium	238	mg/L	100	60.8	20	01/03/22 10:29	01/12/22 07:52	7440-09-7	
Sodium	5730	mg/L	1000	122	200	01/03/22 10:29	01/13/22 03:04	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.020	0.0017	1	12/22/21 05:34	12/27/21 11:41	7440-38-2	
Boron	0.25J	mg/L	1.0	0.17	1	12/22/21 05:34	12/27/21 11:41	7440-42-8	
_ithium	0.010J	mg/L	0.050	0.010	1	12/22/21 05:34	12/27/21 11:41	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Green Bay						
Alkalinity, Total as CaCO3	103	mg/L	10.0	5.0	1		12/21/21 01:05		
Alkalinity,Bicarbonate (CaCO3)	103	mg/L	10.0	5.0	1		12/21/21 01:05		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 01:05		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	19800	mg/L	833	833	1		12/21/21 10:37		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	9830	mg/L	100	60.0	100		12/18/21 08:20	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 08:20	16984-48-8	D3
Sulfate	1330	mg/L	100	50.0	100		12/18/21 08:20		

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: BG-2HT	Lab ID:	92578470025	Collected	l: 12/15/2	1 08:41	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		12/20/21 11:47		
PΗ	7.62	Std. Units			1		12/20/21 11:47		
6010 MET ICP	•	Method: EPA 6		aration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	259	mg/L	2.0	1.9	20	01/03/22 10:29	01/12/22 07:56	7440-70-2	
Magnesium	796	mg/L	2.0	1.4	20	01/03/22 10:29	01/12/22 07:56	7439-95-4	
Potassium	268	mg/L	100	60.8	20	01/03/22 10:29	01/12/22 07:56	7440-09-7	
Sodium	7240	mg/L	1000	122	200	01/03/22 10:29	01/13/22 03:07	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.020	0.0017	1	12/22/21 05:34	12/27/21 11:45	7440-38-2	
Boron	0.28J	mg/L	1.0	0.17	1	12/22/21 05:34	12/27/21 11:45	7440-42-8	
Lithium	0.011J	mg/L	0.050	0.010	1	12/22/21 05:34	12/27/21 11:45	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Ana	lytical Services	- Green Bay	/					
Alkalinity, Total as CaCO3	109	mg/L	10.0	5.0	1		12/21/21 01:11		
Alkalinity, Bicarbonate (CaCO3)	109	mg/L	10.0	5.0	1		12/21/21 01:11		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 01:11		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	22600	mg/L	1250	1250	1		12/21/21 10:37		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	10600	mg/L	200	120	200		12/18/21 17:25	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 08:34		D3
Sulfate	1540	mg/L	100	50.0	100		12/18/21 08:34	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: DUP-1	Lab ID:	92578470026	Collected:	12/15/2	00:00	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	231	mg/L	2.0	1.9	20	01/03/22 10:29	01/12/22 07:36	7440-70-2	
Magnesium	697	mg/L	2.0	1.4	20	01/03/22 10:29	01/12/22 07:36	7439-95-4	
Potassium	234	mg/L	100	60.8	20	01/03/22 10:29	01/12/22 07:36	7440-09-7	
Sodium	5850	mg/L	1000	122	200	01/03/22 10:29	01/13/22 03:10	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.020	0.0017	1	12/22/21 05:34	12/27/21 11:49	7440-38-2	
Boron	0.25J	mg/L	1.0	0.17	1	12/22/21 05:34	12/27/21 11:49	7440-42-8	
Lithium	0.010J	mg/L	0.050	0.010	1	12/22/21 05:34	12/27/21 11:49	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Analy	ytical Services	- Green Bay						
Alkalinity, Total as CaCO3	101	mg/L	10.0	5.0	1		12/21/21 01:17		
Alkalinity, Bicarbonate (CaCO3)	101	mg/L	10.0	5.0	1		12/21/21 01:17		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 01:17		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Analy	ytical Services	- Asheville						
Total Dissolved Solids	20000	mg/L	833	833	1		12/21/21 10:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Analy	ytical Services	- Asheville						
Chloride	9860	mg/L	100	60.0	100		12/18/21 08:49	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 08:49	16984-48-8	D3
Sulfate	1340	mg/L	100	50.0	100		12/18/21 08:49	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: DUP-2	Lab ID:	92578470027	Collected:	12/15/21	00:00	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	260	mg/L	2.0	1.9	20	01/03/22 10:29	01/12/22 07:39	7440-70-2	
Magnesium	766	mg/L	2.0	1.4	20	01/03/22 10:29	01/12/22 07:39	7439-95-4	
Potassium	264	mg/L	100	60.8	20	01/03/22 10:29	01/12/22 07:39	7440-09-7	
Sodium	6510	mg/L	1000	122	200	01/03/22 10:29	01/13/22 03:13	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.020	0.0017	1	12/22/21 05:34	12/27/21 11:52	7440-38-2	
Boron	0.27J	mg/L	1.0	0.17	1	12/22/21 05:34	12/27/21 11:52	7440-42-8	
_ithium	ND	mg/L	0.050	0.010	1	12/22/21 05:34	12/27/21 11:52	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Green Bay						
Alkalinity, Total as CaCO3	108	mg/L	10.0	5.0	1		12/21/21 01:23		
Alkalinity,Bicarbonate (CaCO3)	108	mg/L	10.0	5.0	1		12/21/21 01:23		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 01:23		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	20800	mg/L	833	833	1		12/21/21 10:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	6830	mg/L	200	120	200		12/18/21 17:39	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 09:03	16984-48-8	D3
Sulfate	1420	mg/L	100	50.0	100		12/18/21 09:03	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: DUP-3	Lab ID:	92578470028	Collected	: 12/15/2	00:00	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units -	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	234	mg/L	2.0	1.9	20	01/03/22 10:29	01/12/22 07:43	7440-70-2	
Magnesium	698	mg/L	2.0	1.4	20	01/03/22 10:29	01/12/22 07:43	7439-95-4	
Potassium	237	mg/L	100	60.8	20	01/03/22 10:29	01/12/22 07:43	7440-09-7	
Sodium	5970	mg/L	1000	122	200	01/03/22 10:29	01/13/22 03:17	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.020	0.0017	1	12/22/21 05:34	12/27/21 12:14	7440-38-2	
Boron	0.24J	mg/L	1.0	0.17	1	12/22/21 05:34	12/27/21 12:14	7440-42-8	
Lithium	ND	mg/L	0.050	0.010	1	12/22/21 05:34	12/27/21 12:14	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Green Bay	,					
Alkalinity, Total as CaCO3	99.1	mg/L	10.0	5.0	1		12/21/21 01:29		
Alkalinity, Bicarbonate (CaCO3)	99.1	mg/L	10.0	5.0	1		12/21/21 01:29		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 01:29		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	19800	mg/L	833	833	1		12/21/21 10:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
·	Pace Anal	ytical Services	- Asheville						
Chloride	9750	mg/L	100	60.0	100		12/18/21 09:17	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		12/18/21 09:17	16984-48-8	D3
Sulfate	1330	mg/L	100	50.0	100		12/18/21 09:17	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: FB-1	Lab ID:	92578470029	Collected	: 12/15/2	16:12	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	ND	mg/L	0.10	0.094	1	01/03/22 10:29	01/13/22 03:20	7440-70-2	
Magnesium	ND	mg/L	0.10	0.068	1	01/03/22 10:29	01/13/22 03:20	7439-95-4	
Potassium	ND	mg/L	5.0	3.0	1	01/03/22 10:29	01/13/22 03:20	7440-09-7	
Sodium	ND	mg/L	5.0	0.61	1	01/03/22 10:29	01/13/22 03:20	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.020	0.0017	1	12/22/21 05:34	12/27/21 12:18	7440-38-2	
Boron	ND	mg/L	1.0	0.17	1	12/22/21 05:34	12/27/21 12:18	7440-42-8	
Lithium	ND	mg/L	0.050	0.010	1	12/22/21 05:34	12/27/21 12:18	7439-93-2	
2320B Alkalinity	Analytical	Method: SM 23	320B						
-	Pace Anal	ytical Services	- Green Bay	•					
Alkalinity, Total as CaCO3	8.2J	mg/L	10.0	5.0	1		12/21/21 01:35		
Alkalinity, Bicarbonate (CaCO3)	8.2J	mg/L	10.0	5.0	1		12/21/21 01:35		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 01:35		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2015						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		12/21/21 10:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		12/18/21 10:27	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		12/18/21 10:27	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		12/18/21 10:27	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Sample: EB-1	Lab ID:	92578470030	Collected:	12/15/21	16:20	Received: 12/	16/21 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical I	Method: EPA	6010D Prepa	ration Met	hod: Ef	PA 3010A			
	Pace Analy	tical Services	s - Asheville						
Calcium	ND	mg/L	0.10	0.094	1	01/03/22 10:29	01/13/22 03:23	7440-70-2	
Magnesium	ND	mg/L	0.10	0.068	1	01/03/22 10:29	01/13/22 03:23	7439-95-4	
Potassium	ND	mg/L	5.0	3.0	1	01/03/22 10:29	01/13/22 03:23	7440-09-7	
Sodium	ND	mg/L	5.0	0.61	1	01/03/22 10:29	01/13/22 03:23	7440-23-5	
6020 MET ICPMS	Analytical I	Method: EPA	6020B Prepa	ration Met	nod: EF	PA 3010A			
	Pace Analy	tical Services	s - Asheville						
Arsenic	ND	mg/L	0.020	0.0017	1	12/22/21 05:34	12/27/21 12:32	7440-38-2	
Boron	ND	mg/L	1.0	0.17	1	12/22/21 05:34	12/27/21 12:32	7440-42-8	
_ithium	ND	mg/L	0.050	0.010	1	12/22/21 05:34	12/27/21 12:32	7439-93-2	
2320B Alkalinity	Analytical I	Method: SM 2	320B						
	Pace Analy	tical Services	s - Green Bay						
Alkalinity, Total as CaCO3	ND	mg/L	10.0	5.0	1		12/21/21 01:41		
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 01:41		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	10.0	5.0	1		12/21/21 01:41		
2540C Total Dissolved Solids	Analytical I	Method: SM 2	2540C-2015						
	Pace Analy	tical Services	s - Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		12/21/21 10:39		
300.0 IC Anions 28 Days	Analytical I	Method: EPA	300.0 Rev 2.1	1993					
-	Pace Analy	tical Services	s - Asheville						
Chloride	11.6	mg/L	1.0	0.60	1		12/18/21 13:21	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		12/18/21 13:21	16984-48-8	
Sulfate	1.5	mg/L	1.0	0.50	1		12/18/21 13:21	14808-79-8	

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

QC Batch: 667169 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92578470001, 92578470002, 92578470003, 92578470004, 92578470005, 92578470006, 92578470007,

92578470008, 92578470009, 92578470010, 92578470011, 92578470012, 92578470013, 92578470014,

92578470015, 92578470016, 92578470017, 92578470018, 92578470019, 92578470020

METHOD BLANK: 3495122 Matrix: Water

Associated Lab Samples: 92578470001, 92578470002, 92578470003, 92578470004, 92578470005, 92578470006, 92578470007,

92578470008, 92578470009, 92578470010, 92578470011, 92578470012, 92578470013, 92578470014,

92578470015, 92578470016, 92578470017, 92578470018, 92578470019, 92578470020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND	0.10	0.094	01/10/22 12:27	
Magnesium	mg/L	ND	0.10	0.068	01/10/22 12:27	
Potassium	mg/L	ND	5.0	3.0	01/10/22 12:27	
Sodium	mg/L	ND	5.0	0.61	01/10/22 12:27	

LABORATORY CONTROL SAMPLE: 3495123

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Calcium	mg/L		4.9	98	80-120	
Magnesium	mg/L	5	5.0	99	80-120	
Potassium	mg/L	5	4.9J	99	80-120	
Sodium	mg/L	5	5.1	102	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	LICATE: 3495	124		3495125							
		92578470001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	254	5	5	260	263	116	172	75-125	1	20	M1
Magnesium	mg/L	748	5	5	755	759	140	220	75-125	1	20	M1
Potassium	mg/L	245	5	5	252	252	152	156	75-125	0	20	M1
Sodium	mg/L	6160	5	5	6230	6160	1240	-160	75-125	1	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

QC Batch: 667170 QC Batch Method: EPA 3010A Analysis Method: EPA 6010D
Analysis Description: 6010 MET

Laboratory: F

Pace Analytical Services - Asheville

Associated Lab Samples: 92578470021

METHOD BLANK: 3495126

Date: 01/13/2022 03:22 PM

Matrix: Water

Associated Lab Samples: 92578470021

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND	0.10	0.094	01/06/22 00:54	
Magnesium	mg/L	ND	0.10	0.068	01/06/22 00:54	
Potassium	mg/L	ND	5.0	3.0	01/06/22 00:54	
Sodium	mg/L	ND	5.0	0.61	01/06/22 00:54	

LABORATORY CONTROL SAMPLE:	3495127	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Calcium	mg/L	5	4.9	98	80-120	
Magnesium	mg/L	5	4.9	98	80-120	
Potassium	mg/L	5	5.0	100	80-120	
Sodium	mg/L	5	5.0	101	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 3495	128		3495129)						
		92578199034	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	77100 ug/L	5	5	84.9	83.2	157	122	75-125	2	20	
Magnesium	mg/L	12000 ug/L	5	5	18.3	18.0	127	119	75-125	2	20	
Potassium	mg/L	15200 ug/L	5	5	21.4	21.0	124	116	75-125	2	20	
Sodium	mg/L	12300 ug/L	5	5	17.8	17.5	110	105	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

QC Batch: 669366 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92578470022, 92578470023, 92578470024, 92578470025, 92578470026, 92578470027, 92578470028,

92578470029, 92578470030

METHOD BLANK: 3505218 Matrix: Water

Associated Lab Samples: 92578470022, 92578470023, 92578470024, 92578470025, 92578470026, 92578470027, 92578470028,

92578470029, 92578470030

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND	0.10	0.094	01/12/22 07:06	
Magnesium	mg/L	ND	0.10	0.068	01/12/22 07:06	
Potassium	mg/L	ND	5.0	3.0	01/12/22 07:06	
Sodium	mg/L	ND	5.0	0.61	01/12/22 07:06	

LABORATORY CONTROL SAMPLE:	3505219					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Calcium	mg/L		4.6	93	80-120	
Magnesium	mg/L	5	4.8	95	80-120	
Potassium	mg/L	5	4.8J	96	80-120	
Sodium	mg/L	5	5.0	100	80-120	

MATRIX SPIKE & MATRIX SP	PIKE DUPLI	CATE: 3505	220		3505221							
			MS	MSD								
	(92578470022	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	247	5	5	243	243	-80	-80	75-125	0	20	M1
Magnesium	mg/L	744	5	5	714	713	-604	-628	75-125	0	20	M1
Potassium	mg/L	251	5	5	246	246	-104	-108	75-125	0	20	M1
Sodium	mg/L	6390	5	5	6110	6090	-5560	-6040	75-125	0	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

QC Batch: 667751 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92578470001, 92578470002, 92578470003, 92578470004, 92578470005, 92578470006, 92578470007,

92578470008, 92578470009, 92578470010, 92578470011, 92578470012, 92578470013, 92578470014, 925

92578470015, 92578470016, 92578470017, 92578470018, 92578470019, 92578470020

METHOD BLANK: 3498318 Matrix: Water

Associated Lab Samples: 92578470001, 92578470002, 92578470003, 92578470004, 92578470005, 92578470006, 92578470007,

92578470008, 92578470009, 92578470010, 92578470011, 92578470012, 92578470013, 92578470014,

92578470015, 92578470016, 92578470017, 92578470018, 92578470019, 92578470020

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0010	0.000087	12/27/21 12:25	
Boron	mg/L	ND	0.050	0.0085	12/27/21 12:25	
Lithium	ma/L	ND	0.0025	0.00050	12/27/21 12:25	

LABORATORY CONTROL SAMPLE:	3498319					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.05	0.052	103	80-120	
Boron	mg/L	0.05	0.051	101	80-120	
Lithium	mg/L	0.05	0.048	96	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3498320						3498321							
			MS	MSD									
		92578470001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Arsenic	mg/L	ND	0.05	0.05	0.055	0.055	107	108	75-125	0	20		
Boron	mg/L	2.2J	0.05	0.05	2.3J	2.3J	168	132	75-125		20	M1	
Lithium	mg/L	0.091J	0.05	0.05	0.14	0.14	90	104	75-125	5	20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

QC Batch: 667752 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92578470022, 92578470023, 92578470024, 92578470025, 92578470026, 92578470027, 92578470028,

92578470029, 92578470030

METHOD BLANK: 3498322 Matrix: Water

Associated Lab Samples: 92578470022, 92578470023, 92578470024, 92578470025, 92578470026, 92578470027, 92578470028,

92578470029, 92578470030

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0010	0.000087	12/22/21 15:16	
Boron	mg/L	ND	0.050	0.0085	12/22/21 15:16	
Lithium	mg/L	ND	0.0025	0.00050	12/22/21 15:16	

LABORATORY CONTROL SAMPLE:	3498323					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.05	0.051	102	80-120	
Boron	mg/L	0.05	0.051	101	80-120	
Lithium	mg/L	0.05	0.049	98	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 3498	334		3498335							
			MS	MSD								
		92578470022	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	ND	1	1	1.0	1.0	103	102	75-125	1	20	
Boron	mg/L	0.24J	1	1	1.1	1.1	84	86	75-125	2	20	
Lithium	mg/L	ND	1	1	0.93	0.92	92	91	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

QC Batch: 667969 QC Batch Method: EPA 3010A Analysis Method: E

EPA 6020B

Analysis Description: Laboratory: 6020 MET Pace Analytical Services - Asheville

Associated Lab Samples: 92578470021

METHOD BLANK: 3499273

Date: 01/13/2022 03:22 PM

Matrix: Water

Associated Lab Samples: 92578470021

92578470021

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND .	0.0010	0.000087	12/27/21 18:39	
Boron	mg/L	ND	0.050	0.0085	12/27/21 18:39	
Lithium	mg/L	ND	0.0025	0.00050	12/27/21 18:39	

LABORATORY CONTROL SAMPLE: 3499274

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.05	0.048	97	80-120	
Boron	mg/L	0.05	0.048J	96	80-120	
Lithium	mg/L	0.05	0.044	88	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3499275						3499276							
			MS	MSD									
		92578470021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Arsenic	mg/L	ND	0.05	0.05	0.055	0.055	106	106	75-125	0	20		
Boron	mg/L	2.4J	0.05	0.05	2.4J	2.6	-7	383	75-125		20	M1	
Lithium	mg/L	0.085J	0.05	0.05	0.14	0.14	103	108	75-125	2	20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

QC Batch: 404651 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 92578470001, 92578470002, 92578470003, 92578470004, 92578470005, 92578470006, 92578470007,

92578470008, 92578470009, 92578470010, 92578470011, 92578470012, 92578470013, 92578470014,

92578470015, 92578470016, 92578470017, 92578470018, 92578470019, 92578470020

METHOD BLANK: 2335903 Matrix: Water

Associated Lab Samples: 92578470001, 92578470002, 92578470003, 92578470004, 92578470005, 92578470006, 92578470007,

92578470008, 92578470009, 92578470010, 92578470011, 92578470012, 92578470013, 92578470014,

92578470015, 92578470016, 92578470017, 92578470018, 92578470019, 92578470020

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L ND 10.0 5.0 12/20/21 20:56

LABORATORY CONTROL SAMPLE: 2335904

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 200 213 107 80-120

MS

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2335905 2335906

92578470001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 200 200 303 303 100 80-120 0 20 mg/L 103 100

MSD

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

QC Batch: 404652 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 92578470021, 92578470022, 92578470023, 92578470024, 92578470025, 92578470026, 92578470027,

92578470028, 92578470029, 92578470030

METHOD BLANK: 2335909 Matrix: Water

Associated Lab Samples: 92578470021, 92578470022, 92578470023, 92578470024, 92578470025, 92578470027,

92578470028, 92578470029, 92578470030

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L ND 10.0 5.0 12/21/21 00:01

LABORATORY CONTROL SAMPLE: 2335910

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. Alkalinity, Total as CaCO3 mg/L 200 211 106 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2335911 2335912

MSD MS 92578470021 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 20 Alkalinity, Total as CaCO3 102 200 200 303 303 101 100 80-120 0 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

QC Batch: 667219 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92578470001, 92578470002

METHOD BLANK: 3495276 Matrix: Water

Associated Lab Samples: 92578470001, 92578470002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 12/20/21 11:47

LABORATORY CONTROL SAMPLE: 3495277

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 250 248 99 90-110

SAMPLE DUPLICATE: 3495278

92578448012 Dup Max
Parameter Units Result Result RPD RPD Qualifiers

Total Dissolved Solids mg/L 464 460 1 25

SAMPLE DUPLICATE: 3495279

Date: 01/13/2022 03:22 PM

92578448022 Dup Max RPD RPD Parameter Units Result Result Qualifiers 25 Total Dissolved Solids 1640 mg/L 1650 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Total Dissolved Solids

Date: 01/13/2022 03:22 PM

QC Batch: 667487 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92578470003, 92578470004, 92578470005, 92578470006, 92578470007, 92578470008, 92578470009,

92578470010, 92578470011, 92578470012, 92578470013, 92578470014, 92578470015, 92578470016,

92578470017, 92578470018, 92578470019, 92578470020, 92578470021, 92578470022

METHOD BLANK: 3496783 Matrix: Water

mg/L

Associated Lab Samples: 92578470003, 92578470004, 92578470005, 92578470006, 92578470007, 92578470008, 92578470009,

92578470010, 92578470011, 92578470012, 92578470013, 92578470014, 92578470015, 92578470016,

240

96

90-110

92578470017, 92578470018, 92578470019, 92578470020, 92578470021, 92578470022

Blank Reporting Result Limit Qualifiers Parameter Units MDL Analyzed Total Dissolved Solids mg/L ND 25.0 25.0 12/21/21 10:26 LABORATORY CONTROL SAMPLE: 3496784 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers

SAMPLE DUPLICATE: 3496785 92578470003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers **Total Dissolved Solids** 18800 43000 78 25 D6 mg/L

250

SAMPLE DUPLICATE: 3496786 92578470013 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 21200 Total Dissolved Solids mg/L 21200 0 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

LABORATORY CONTROL SAMPLE:

Date: 01/13/2022 03:22 PM

QC Batch: 667490 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92578470023, 92578470024, 92578470025, 92578470026, 92578470027, 92578470028, 92578470029,

92578470030

METHOD BLANK: 3496791 Matrix: Water

3496792

Associated Lab Samples: 92578470023, 92578470024, 92578470025, 92578470026, 92578470027, 92578470029,

92578470030

ParameterUnitsBlank ResultReporting LimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND25.025.012/21/21 10:37

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 250 240 96 90-110

 SAMPLE DUPLICATE: 3496793

 92578470023 Dup Max

 Parameter
 Units
 Result
 Result
 RPD
 RPD
 Qualifiers

Total Dissolved Solids mg/L 20700 20800 1 25

SAMPLE DUPLICATE: 3496794

92578650001 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** mg/L 1260 1260 0 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

QC Batch: 667029 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92578470001, 92578470002, 92578470003, 92578470004, 92578470005, 92578470006, 92578470007,

92578470008, 92578470009, 92578470010, 92578470011, 92578470012, 92578470013, 92578470014,

92578470015, 92578470016, 92578470017, 92578470018

METHOD BLANK: 3494332 Matrix: Water

Associated Lab Samples: 92578470001, 92578470002, 92578470003, 92578470004, 92578470005, 92578470006, 92578470007,

92578470008, 92578470009, 92578470010, 92578470011, 92578470012, 92578470013, 92578470014,

92578470015, 92578470016, 92578470017, 92578470018

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	12/17/21 17:30	
Fluoride	mg/L	ND	0.10	0.050	12/17/21 17:30	
Sulfate	mg/L	ND	1.0	0.50	12/17/21 17:30	

LABORATORY CONTROL SAMPLE:	3494333					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	50.5	101	90-110	
Fluoride	mg/L	2.5	2.7	107	90-110	
Sulfate	mg/L	50	50.0	100	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 3494	334		3494335							
			MS	MSD								
	9	92577887004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	15.7	50	50	66.0	67.2	100	103	90-110	2	10	
Fluoride	mg/L	ND	2.5	2.5	2.9	3.0	116	119	90-110	3	10	M1
Sulfate	mg/L	18.4	50	50	68.8	70.0	101	103	90-110	2	10	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 3494	336		3494337							
Parameter	g Units	92578470009 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	9540	50	50	9380	9390	-331	-297	90-110	0	10	M1
Fluoride	mg/L	ND	2.5	2.5	ND	ND	76	80	90-110		10	D3,M1
Sulfate	mg/L	1300	50	50	1320	1330	46	52	90-110	0	10	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

QC Batch: 667030 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92578470019, 92578470020, 92578470021, 92578470022, 92578470023, 92578470024, 92578470025,

 $92578470026,\,92578470027,\,92578470028,\,92578470029,\,92578470030$

METHOD BLANK: 3494342 Matrix: Water

Associated Lab Samples: 92578470019, 92578470020, 92578470021, 92578470022, 92578470023, 92578470024, 92578470025,

92578470026, 92578470027, 92578470028, 92578470029, 92578470030

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	12/18/21 04:59	
Fluoride	mg/L	ND	0.10	0.050	12/18/21 04:59	
Sulfate	mg/L	ND	1.0	0.50	12/18/21 04:59	

	Spike	LCS	LCS	% Rec	
Units	Conc.	Result	% Rec	Limits	Qualifiers
mg/L	50	53.1	106	90-110	
mg/L	2.5	2.7	109	90-110	
mg/L	50	52.4	105	90-110	
	mg/L mg/L	mg/L 50 mg/L 2.5	mg/L 50 53.1 mg/L 2.5 2.7	mg/L 50 53.1 106 mg/L 2.5 2.7 109	mg/L 50 53.1 106 90-110 mg/L 2.5 2.7 109 90-110

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 3494	344		3494345							
Parameter	g Units	2578470019 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	11300	50	50	11300	10100	55	-2340	90-110	11	10	M1,R1
Fluoride	mg/L	ND	2.5	2.5	ND	ND	68	76	90-110		10	D3,M1
Sulfate	mg/L	1430	50	50	1460	1480	53	102	90-110	2	10	M1

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3494	346		3494347							
			MS	MSD								
		92578470029	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	51.8	53.1	104	106	90-110	2	10	
Fluoride	mg/L	ND	2.5	2.5	2.7	2.7	108	107	90-110	1	10	
Sulfate	mg/L	ND	50	50	51.5	52.7	103	105	90-110	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 01/13/2022 03:22 PM

D3	Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
92578470001	 T1-4HT				
2578470002	T1-4HTS				
2578470003	T2-1HT				
2578470004	T2-2HT				
2578470005	T2-2HTS				
2578470006	T2-3HT				
2578470007	T2-3HTS				
2578470008	T2-4HT				
2578470009	T2-4HTS				
2578470010	T3-4HT				
2578470011	T3-4HTS				
2578470012	T4-1HB				
2578470013	T4-1HS				
2578470014	T4-2HB				
2578470015	T4-2HS				
2578470016	T4-3HB				
2578470017	T4-3HS				
2578470018	T4-4HB				
2578470019	T4-4HS				
2578470020	T1-4LT				
2578470021	T2-4LT				
2578470022	T3-4LT				
2578470023	T4-4L				
2578470024	BG-1LT				
2578470025	BG-2HT				
2578470001	T1-4HT	EPA 3010A	667169	EPA 6010D	667347
2578470002	T1-4HTS	EPA 3010A	667169	EPA 6010D	667347
2578470003	T2-1HT	EPA 3010A	667169	EPA 6010D	667347
2578470004	T2-2HT	EPA 3010A	667169	EPA 6010D	667347
2578470005	T2-2HTS	EPA 3010A	667169	EPA 6010D	667347
2578470006	T2-3HT	EPA 3010A	667169	EPA 6010D	667347
2578470007	T2-3HTS	EPA 3010A	667169	EPA 6010D	667347
2578470008	T2-4HT	EPA 3010A	667169	EPA 6010D	667347
2578470009	T2-4HTS	EPA 3010A	667169	EPA 6010D	667347
2578470010	T3-4HT	EPA 3010A	667169	EPA 6010D	667347
2578470011	T3-4HTS	EPA 3010A	667169	EPA 6010D	667347
2578470012	T4-1HB	EPA 3010A	667169	EPA 6010D	667347
2578470013	T4-1HS	EPA 3010A	667169	EPA 6010D	667347
2578470014	T4-2HB	EPA 3010A	667169	EPA 6010D	667347
2578470015	T4-2HS	EPA 3010A	667169	EPA 6010D	667347
2578470016	T4-3HB	EPA 3010A	667169	EPA 6010D	667347
2578470017	T4-3HS	EPA 3010A	667169	EPA 6010D	667347
2578470018	T4-4HB	EPA 3010A	667169	EPA 6010D	667347
2578470019	T4-4HS	EPA 3010A	667169	EPA 6010D	667347
2578470020	T1-4LT	EPA 3010A	667169	EPA 6010D	667347
2578470021	T2-4LT	EPA 3010A	667170	EPA 6010D	667350
	T3-4LT	EPA 3010A			

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92578470023	T4-4L	EPA 3010A	669366	EPA 6010D	669475
2578470024	BG-1LT	EPA 3010A	669366	EPA 6010D	669475
2578470025	BG-2HT	EPA 3010A	669366	EPA 6010D	669475
2578470026	DUP-1	EPA 3010A	669366	EPA 6010D	669475
2578470027	DUP-2	EPA 3010A	669366	EPA 6010D	669475
2578470028	DUP-3	EPA 3010A	669366	EPA 6010D	669475
2578470029	FB-1	EPA 3010A	669366	EPA 6010D	669475
2578470030	EB-1	EPA 3010A	669366	EPA 6010D	669475
2578470001	T1-4HT	EPA 3010A	667751	EPA 6020B	668069
2578470002	T1-4HTS	EPA 3010A	667751	EPA 6020B	668069
2578470003	T2-1HT	EPA 3010A	667751	EPA 6020B	668069
2578470004	T2-2HT	EPA 3010A	667751	EPA 6020B	668069
2578470005	T2-2HTS	EPA 3010A	667751	EPA 6020B	668069
2578470006	T2-3HT	EPA 3010A	667751	EPA 6020B	668069
2578470007	T2-3HTS	EPA 3010A	667751	EPA 6020B	668069
2578470008	T2-4HT	EPA 3010A	667751	EPA 6020B	668069
2578470009	T2-4HTS	EPA 3010A	667751	EPA 6020B	668069
2578470010	T3-4HT	EPA 3010A	667751	EPA 6020B	668069
2578470011	T3-4HTS	EPA 3010A	667751	EPA 6020B	668069
578470012	T4-1HB	EPA 3010A	667751	EPA 6020B	668069
578470013	T4-1HS	EPA 3010A	667751	EPA 6020B	668069
578470014	T4-2HB	EPA 3010A	667751	EPA 6020B	668069
578470015	T4-2HS	EPA 3010A	667751	EPA 6020B	668069
578470016	T4-3HB	EPA 3010A	667751	EPA 6020B	668069
578470017	T4-3HS	EPA 3010A	667751	EPA 6020B	668069
2578470018	T4-4HB	EPA 3010A	667751	EPA 6020B	668069
578470019	T4-4HS	EPA 3010A	667751	EPA 6020B	668069
2578470020	T1-4LT	EPA 3010A	667751	EPA 6020B	668069
2578470021	T2-4LT	EPA 3010A	667969	EPA 6020B	668074
2578470022	T3-4LT	EPA 3010A	667752	EPA 6020B	667778
2578470023	T4-4L	EPA 3010A	667752	EPA 6020B	667778
2578470024	BG-1LT	EPA 3010A	667752	EPA 6020B	667778
2578470025	BG-2HT	EPA 3010A	667752	EPA 6020B	667778
2578470026	DUP-1	EPA 3010A	667752	EPA 6020B	667778
2578470027	DUP-2	EPA 3010A	667752	EPA 6020B	667778
2578470028	DUP-3	EPA 3010A	667752	EPA 6020B	667778
2578470029	FB-1	EPA 3010A	667752	EPA 6020B	667778
2578470030	EB-1	EPA 3010A	667752	EPA 6020B	667778
2578470001	T1-4HT	SM 2320B	404651		
2578470002	T1-4HTS	SM 2320B	404651		
2578470003	T2-1HT	SM 2320B	404651		
2578470004	T2-2HT	SM 2320B	404651		
2578470005	T2-2HTS	SM 2320B	404651		
2578470006	T2-3HT	SM 2320B	404651		
2578470007	T2-3HTS	SM 2320B	404651		
2578470008	T2-4HT	SM 2320B	404651		
2578470009	T2-4HTS	SM 2320B	404651		

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92578470010	 T3-4HT	SM 2320B	404651	_	
2578470011	T3-4HTS	SM 2320B	404651		
2578470012	T4-1HB	SM 2320B	404651		
2578470013	T4-1HS	SM 2320B	404651		
2578470014	T4-2HB	SM 2320B	404651		
2578470015	T4-2HS	SM 2320B	404651		
2578470016	T4-3HB	SM 2320B	404651		
2578470017	T4-3HS	SM 2320B	404651		
2578470018	T4-4HB	SM 2320B	404651		
2578470019	T4-4HS	SM 2320B	404651		
2578470020	T1-4LT	SM 2320B	404651		
2578470021	T2-4LT	SM 2320B	404652		
2578470022	T3-4LT	SM 2320B	404652		
2578470023	T4-4L	SM 2320B	404652		
2578470024	BG-1LT	SM 2320B	404652		
2578470025	BG-2HT	SM 2320B	404652		
2578470026	DUP-1	SM 2320B	404652		
2578470027	DUP-2	SM 2320B	404652		
2578470028	DUP-3	SM 2320B	404652		
2578470029	FB-1	SM 2320B	404652		
2578470030	EB-1	SM 2320B	404652		
2578470001	T1-4HT	SM 2540C-2015	667219		
2578470001 2578470002	T1-4HTS	SM 2540C-2015	667219		
2578470003	T2-1HT	SM 2540C-2015	667487		
2578470003 2578470004	T2-2HT	SM 2540C-2015	667487		
257847000 5	T2-2HTS	SM 2540C-2015	667487		
2578470006	T2-3HT	SM 2540C-2015	667487		
2578470000 2578470007	T2-3HTS	SM 2540C-2015	667487		
2578470008	T2-4HT	SM 2540C-2015	667487		
2578470009	T2-4HTS	SM 2540C-2015	667487		
2578470010	T3-4HT	SM 2540C-2015	667487		
2578470011	T3-4HTS	SM 2540C-2015	667487		
2578470012	T4-1HB	SM 2540C-2015	667487		
2578470013	T4-1HS	SM 2540C-2015	667487		
2578470014	T4-2HB	SM 2540C-2015	667487		
2578470015	T4-2HS	SM 2540C-2015	667487		
2578470016	T4-3HB	SM 2540C-2015	667487		
2578470017	T4-3HS	SM 2540C-2015	667487		
2578470018	T4-4HB	SM 2540C-2015	667487		
2578470019	T4-4HS	SM 2540C-2015	667487		
2578470020	T1-4LT	SM 2540C-2015	667487		
2578470021	T2-4LT	SM 2540C-2015	667487		
2578470022	T3-4LT	SM 2540C-2015	667487		
2578470023	T4-4L	SM 2540C-2015	667490		
2578470024	BG-1LT	SM 2540C-2015	667490		
2578470025	BG-2HT	SM 2540C-2015	667490		
2578470026	DUP-1	SM 2540C-2015	667490		

Project: MCMANUS SURFACE WATER

Pace Project No.: 92578470

Date: 01/13/2022 03:22 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92578470027	DUP-2	SM 2540C-2015	667490		
92578470028	DUP-3	SM 2540C-2015	667490		
92578470029	FB-1	SM 2540C-2015	667490		
92578470030	EB-1	SM 2540C-2015	667490		
92578470001	T1-4HT	EPA 300.0 Rev 2.1 1993	667029		
92578470002	T1-4HTS	EPA 300.0 Rev 2.1 1993	667029		
92578470003	T2-1HT	EPA 300.0 Rev 2.1 1993	667029		
92578470004	T2-2HT	EPA 300.0 Rev 2.1 1993	667029		
92578470005	T2-2HTS	EPA 300.0 Rev 2.1 1993	667029		
92578470006	T2-3HT	EPA 300.0 Rev 2.1 1993	667029		
92578470007	T2-3HTS	EPA 300.0 Rev 2.1 1993	667029		
92578470008	T2-4HT	EPA 300.0 Rev 2.1 1993	667029		
92578470009	T2-4HTS	EPA 300.0 Rev 2.1 1993	667029		
92578470010	T3-4HT	EPA 300.0 Rev 2.1 1993	667029		
92578470011	T3-4HTS	EPA 300.0 Rev 2.1 1993	667029		
92578470012	T4-1HB	EPA 300.0 Rev 2.1 1993	667029		
92578470013	T4-1HS	EPA 300.0 Rev 2.1 1993	667029		
92578470014	T4-2HB	EPA 300.0 Rev 2.1 1993	667029		
92578470015	T4-2HS	EPA 300.0 Rev 2.1 1993	667029		
92578470016	T4-3HB	EPA 300.0 Rev 2.1 1993	667029		
92578470017	T4-3HS	EPA 300.0 Rev 2.1 1993	667029		
92578470018	T4-4HB	EPA 300.0 Rev 2.1 1993	667029		
92578470019	T4-4HS	EPA 300.0 Rev 2.1 1993	667030		
92578470020	T1-4LT	EPA 300.0 Rev 2.1 1993	667030		
92578470021	T2-4LT	EPA 300.0 Rev 2.1 1993	667030		
92578470022	T3-4LT	EPA 300.0 Rev 2.1 1993	667030		
92578470023	T4-4L	EPA 300.0 Rev 2.1 1993	667030		
92578470024	BG-1LT	EPA 300.0 Rev 2.1 1993	667030		
92578470025	BG-2HT	EPA 300.0 Rev 2.1 1993	667030		
92578470026	DUP-1	EPA 300.0 Rev 2.1 1993	667030		
92578470027	DUP-2	EPA 300.0 Rev 2.1 1993	667030		
92578470028	DUP-3	EPA 300.0 Rev 2.1 1993	667030		
92578470029	FB-1	EPA 300.0 Rev 2.1 1993	667030		
92578470030	EB-1	EPA 300.0 Rev 2.1 1993	667030		

Page Analytical	Sample Condition Upon Receipocument No.; F-CAR-C5-033-Rev.nz	Issuing Authority:
laboratory receiving semples:		
Asheville Eden Gre	enwood [] Huntersville [] Rale	eigh Mechanicsville Atlanta Kernersville
Sample Condition Client Nam Up on Receipt	Courses Course	Project #: WO#: 92578470
Courter: A Fed Ex		Client 92578470
Ustody Seal Present? Yes	No Seals Intact? Over N	Date/Initials Purson Examining Contents: 12/12/
ecking Material: Debible Wrap nermometer: Din Gun ID: 93 7071	Typa-office; Wet	Otifier Biological Tissue Frozon? Yes \[No \[No \]
oler Temp: 2.2/1.0/3,5 Ac oler Temp Corrected (*C); DA Regulated Soil (DN/A, watersam I samp les originate in a quarantine cone	rection Factor: d/Subtract (°C)	Temp should be above freating to 6°C Samples out of temp criteria, Samples on ice, cooling process has begon aps)? Old samples originate from a foreign source (Internationally; Incheling Hawaii and Puerto Ricul? Tives Tive
Uves □No		Including Hawaii and Puerto Ricul? Yes No Comments/Oiscrepancy:
Chain of Custody Present?	Duer DNO DNA	1.
Samples Arrived within Hold Time?	DIE DIE DIVA	2.
Short Hold Time Analysis (472 hr.)?	Otes 200 DNA	1.
Rush Turn Around Time Requested?	□Yes □Ka □N/A	4.
Sufficient Volume?	DVes ONO ORIA	5.
Correct Containers Used?	OVES ONO ON/A	6.
- Pace Containers Used?	DIES ONG ONA	Y
Containers Intact?	DING DINA	7,
Dissolved analysis: Samples Field Filtere	d? Dves DNo DNA	8.
Sample Labels Match COC?	Øres □no □n/a	ď.
-Includes Date/Time/ID/Arraiysk M	otrix: LT	<u></u>
leadspace in VOA Vials (>S-5mm)?	Cived One Onia	10.
rip Blank Present?	OYES ONS ONA	11.
Trip Blank Eustody Seals Fresent? MMENTS/SAMFLE DISCREPANCY	, □Yes □NO ☑N/A	Fleid Date Required? Tyes The
NT NOTIFICATION/RESOLUTION		Let ID of split containers:
NT NOTTH CATION/RESOLUTION		
rson contacted:	Date/Tin	nę:
roject Manager SCURF Review:		Date:

Project Manager SRF Review:

Document Name:

Document Revised: October 28, 2020

Pace Analytical*

Document Name: 5 ample Condition Upon Receipt(SCUR) Document No.:

F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020. Page 2 of 2 Issuing Authority:

Paga Carolinas Quality Office

Project # WO#: 9257847

PM: NMG

Due Date: 12/23/21

CLIENT: GR-GR Power

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DQC, LLHg

**Bottom half of box is to list number of bottles

temil	BP4U-125 mLPlastic Unpreserved (N/A) (CL)	BP3U-250 mi. Plastic Unbreserved (N/A)	BP3U-SOO INL Plastic Unpreserved (N/A)	BP10-3 illur Plante Innecessaria (M/A)	BP452735 THE PROPERTY OF THE PERSON OF THE P	TO THE STATE OF TH	PESSESSION PRESIDE HINGS [PH 52]	BP42-125 ml Phothe ZN Acetate & NaOH (>9)	8P4C-125 mLPlastic NaOH (pH > 12) (CL-)	WGFU-Wide-mounted Glass jar. Unpreserved	AG1U-1 Star Amber Unpresented (N/A) (CI-)	AGSH-1 files Amber HCl'IpH < 2]	AGRU-250 mL Amber Unpreserved (M/A) (CL.)	AG25-1 liter Amber H2SO4 (pH < 2)	AG35-250 mt. Amber H2504 (pH < 2)	AGSA[BGSA]-250 mLAmber NHGO (N/A)(CL)	DESH 40 mg, VGA HG (NVA).	VG9T-40 INLVOA NA25203 (N/A)	VG9U-40 mt VDA Unp IN/AJ	DG9P-40 mt VDA H3PO-f (N/A)	VOAK (6 vials per kit)-5035 lift (N/A)	V/GN (3 while per kit) WPH/Gas kit (N/A)	SPST-125 mL Sterlie Plastic (N/A ~ Iab)	SF2T-250 mL Stiffle Plastic (N/4,- lab)		8P34-250 mt Plastic (NH2)2504 (5.3-5.9)	AGOU-100 mL striber Unpreserved vials (N/A)	VSGU-20 m. Schnillation vials (NVA)	DGSU-40 mt. Amber Unpreserved wats (N/A)
1	1	2	1		1	1		V	1					/	1	1									1	1			
2	1	2	ţ	ĬĨ,	1	1	1	V	V			1		1		V		ļij			Ž,				1	/			
3	1	2	1		1	Y	1	V	/				Œ,		V	1								-	1	1	Ιď		
4	1	2	1		1	X	1	1	1			V						5							/	1	, In		
5	1	2	1		1	X	1	V	V			1		V	1	1									1	/	Tire		
6.	1	2	í		1	X		1	V			1		V	1	1										/			
7	1	2	V.		1	X	1	1	1			V		V	V	V					Ĭ.				7	/			
8	1	2	1		1	1	1	1	V						1	/									1	1	Щ		1
9	1	2	t		1	1	1	1	V			V		1	/	1				1					1	1			
LO	1	2	(1		1	X	1	1				1		1	V	1		4							1	/	ij	-	-
11	1	2	1		/	X	1	1	1			1		V	V	1									1	/	2		
12	1	2			/	X	1	1	V			V		V	V	1				1					/	1			

		рН Ас	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot I
		-				
		1			- Martin Carellan DECKIN Cartifical	

Note: Whenever there is a discrapancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Document Name: Sample Condition Upon Receipt(SCUR) Document No: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020. Page 2 of 2

issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

PM: NHG

Project #

Due Date: 12/23/21

CLIENT: GA-GA Power

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DCC, LLHg **Bottom half of box is to list number of bottles

lten8	8P4U-125 mL Plastic Unpreserved (N/A) (CL)	BP3U-250 mL Plastic Unpreserved (N/A)	BPZU-500 mL Playtly Unpreserved (N/A)	(A/N) between the state Unpreserved (N/A)	2P45-125 ml Plastic (12504 (pH < 2) (CL)	(Z ≥ Hd) EONH Jissic in da 25-Neda	8P4Z-12S ml. Plastic ZN-Azetate & NaGH (>9)	8P4C-125 mLPlastic NaOH (pH > 12) (CL)	WGFU-Wide-mouthed Glass Jan Unpreserved	AGILL In ambenumpreserved (N/A) (CF)	AGDH-1 liter Amber HClipH < 2)	AGBU-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 (tey Ambér H2509 (pH < 2)	AG35:250 mt Amber H2504 (pH < 2)	A634[D63A -250 mt. Ambgr 2H4Cl [N/A][CH]	DGSH-40 mt, VDA HCI (N/A)	VG9T-48 mUVDA NA2520Q-(N/A)	VGSU-40 mt VOA:Upp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 viels per kit)-5035 kit (N/A)	V/GK (3 visis per kit)-VRIV/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - ND)	SPZT-250 mLStérile Plastic (N/A-lab)		8P3A-250 mt. Plestic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20-rel Schrölladon vials (N/A)	DG9U-40 mt Amber Unpresenced viais (N/A)
1	1	2	1		/	X	1	V				hi					7		T					7	7			
7	1	2	ï	Ī	1	X	1				1		1	/							ĮĮ.			1				
3	1	2	1		1	X	1	1			1		/	1	1		"E	1						1	1			
4	1	2	1	Д	1	X	1	1			1		V	/										7	1			
5	1	2	1		1	X	1							V	/		Ш				IF)			1	1	1		
5	1	2	ī		1	N	/	1						1	/									1	7			11.
7	1	2	L		1	X	1	V			1		V		1		\coprod	_	. 11				Ċ	1	1			
6	1	2	1			X	1	1			V		V	1	1		Ήį				Щ			7	1			П
ġ	1	2				X	1	1	Ξij		V		V	1	/		iti,							1	1			
10	1	2			1	X	1	V			V		V	1	V						il.			1	1			
11	1	2	1		7	X	1				V		/	/	1		10				1			7	1			
12	1	8	1		V	X	1	1					V	1	1		li į							1	1			

	A CONTRACTOR OF THE PARTY OF TH		ljustment Log for Pres		Annount of Preservative	Lot /
iample ID	Type of Preservative	pH upan receipt	Date preservation adjusted	Time preservation adjusted	added	201

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Clince (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical*

Döcument Name: Sample Condition Upon Receipt(SCUR) Document No.:

F-CAR-CS-039-Asv.07

Document Revised: October 28, 2020.
Page 2 of 2
Issuine Authority:

Issuing Authority: Pase Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Collform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLH8

**Battam half of box is to list number of bottles

Proje LIO#: 92578470

PH: NMG

Due Date: 12/23/21

CLIENT: GA-GA Power

treme	8P4U-125 mL Plastic Unpreserved (N/A) (CL-)	8P3U-250 mL.Plastic Unpreserved (N/A)	BPZU-500 mL Plastic Unpreserved (N/A)	8P2U-2 liter Plastic Unpreserved (N/A)	BP45-225 mt Plastic H25OR (pH < 2) (CH)	893N-250 mil plasue nood (an 5.2)	8P42-125 mt. Plastic ZN Acetare & NaOH (>9)	. BP46-125 mLPlastic NaOH (pHマユ2) (こ)	WGFU-Wide-mouthed Glass Jar. Unpreserved	AG1U-; Iter Amber Unpresented (N/A) (C-)	AGIH-1 liter Amber MC (pH < 2)	AGBU-250 mL Amber Unpreserved (N/A) (CI-)	AGIS-1 (ter 4mber H2SO4 (pH < 2)	A635-250 mLAmber H2504 (pH < 2)	AGEA(BGSA)-250 mLAmber NH4CI (N/A)[CH]	DOSH 40 mt VOA HCI (N/A)	VG97-40 mt. VOA NAZS203 [N/A]	VG9U-40 mt VDA:Unp IN/A)	DGSP-40 mL VČA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A),	SPST-125 mi Startle Plustic (N/A – Iab)	SP2T-250 mt Steple Plastic (N/A-iab)		BP24-250 mL Plestic (NH2)2504 (9,3-5.7)	AGOU-100 mt. Amber Unpreserved vials (N/A)	VSGU-20 mt Schröllaceon vials (N/A)	DG9U-40 mt Amber Unpreserved vials (N/A)
1	1	2	1		1	X	/	/			/	13		1	V				T,					1	1	ļ.		
2	1	2	10		1	X	/	V			7			7	1						Ţ		fil	1	1			
3	1	2	1		1	1	1	1			1		1	1	1									/			- 1	
1	1	2			7	X	7	1			1		V	V	1		H											J
S	1	2	1		1	X	1	7			1		1	V	1		l, V										-	
δ	1	2	1		7	X	7	7	Ŧ,		1		1	1	1					-		#			1	14		1
7	1				7	7	1	1			1		1	7	1										1	II.		Ш
Ŕ	1				1	1	1	1			1		V	V	1									1	/	7		
9	1				1	1	1	1			1		/	1	1					Ī				/	/	1		
01	1				1	1	1	1			1	-	1	1	1									1				
11	1		1		1	1	1	1			1		1	7	1				E-					1	V			
12	1				1	1	1	7			1		1	7	1									/	1	14		

Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation	Amount of Preservative	Lot
				ad)usted	added	
			1			
	1000					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEMNR Certification Office (i.e. Out of hold, incorrect preservative, but of temp, incorrect containers.

CHAIN-OF-CUSTODY I Analytical Request Document

l	ASSESS THE MANAGEMENT	HI SOUTH	andr.					9	Section 1	j	į	į																					
Ü	Report To: Kinds Stephenson	Kinvin Stophenson	nosma	1	1	I	1	H.	Attention	7	District	95	Т	L	Т	1	П	L	ı	L	ı	l	•			Page:	F		Ī		Q	10	
	Copy Te:						1	ρ	Company Name:	3	E .	T		1	1	Т	1	П	ı	1											0	1	1
mail know GA 30188		1					И	3	Address	n	П	1			Н		1	17	П	1	И		AL.		を No. St. Company Co	ğ			2	21		6/	6
hone: (678)548-9415 Fac	Printed Name				1	l		12	Pasa Quole	E S		П	П	П	П	П	H	П	П	П	П					3	İ			13	F	1	1
and Dur Date:	Policy of the last	MONE	ine sm	Maren Bosting Smithton	TOTAL	١	1	13	Pace Project Manager	dea	Mari	8	L	8	nicole.doleo@pacekibs.com	8	8	24	ä				0.00		TO STATE OF	U		000		Ž.	2		
	- Constant		1	l		ľ	ı	3	Pace Profile &	a a	.9	1076	10758-14					И	П	П								Q.					
		1	l	l	l		1	1	1		П	П	П	П	П	56	K	鮲	ě.		ŝ	warsa Aliahaid Elika	40.50	2	d (Y/N)				8		Ĭ	AN.	XI.
		OMP)		3				_	=							rinis:	/NS	-	-			_			\dashv			30					
	12	0-0	1	100	- Courtering		TION		T	1	3	Preservative	- Pa	_ ঞ	4	87 W.		+	+	+	1	+	1	+	╀	†		No.	護		a de	機	煌
SAMPLEID	Product Will co	-ORAE (ſ	i			COLLECT	-	-			- 11				eanith.	NEW Y			_							YAN						
One Character per box.	\$ P	E (G	START	19		8	PATC	1.1	-							(C) = 15			-	_		_		_	_		ine (
Sample lds must be unique	233	PLE TYP					PLE TEM	CONTAL	eserved	_	3	90	_	203	enol		6020		and,	604					-		ual Chlo						
	MA	•	DATE	TIME	DATE	TIME	_	-	-	H25	HN	HCI	Nac		7	Oth	-	Alka	TOS	_		-					Rest						
7-47	, IM	1124	reparts.	250	Jil			E	w						_	-	-	×		-				-	+							- 1	- 1
TH-HTS	wr		niga.	Ž.			-	2	4		-	110		Ш	_		. 1	_		_		-		4	+								
12-11-1	TW		dicas	2	Ü		-	E .	4		-		_		4	_1	1	_	_	_		+		1	+	1	_					П	
() 12.2HT	TW						+	Þ.	J.		7		-	_	-	_	>	_	_	_	1				+			1	1				
5-3 T2-84TS	TW				1	7	=	-	1 1		-	-	1	4	4	_	þ	_	-	_	117			4	+			ı I					
TI MI			Car tes marks			1	+	: 1	. (*	- -		1	1	+	_	×	×	×	×		+		4	+	+	_						
	-	1	despression	3400	T	1	+	17	10		T	1	1	+	+	1	×	×	×	×		+		-	╁	-	Ţ	1					
72-3HTS	TW		जिल्ला ह	HEBO		1	+	F	U		-		_	_		- V	×	×	×	×			H	115	-	'y ET		H					
12-4HT	WI		अश्वा का	910				F	CH		-		_		15		×	×	54.	×	ji i		at I	$\overline{\Box}$	1							1	1
Name of the last o	wr		Szakajski	8		F	-	F	W	ijί	~	111				-	×	×	×	×													
100 T3-4HT	TW.		महारा	036				I	W	TI	-			_			×	×	×	×	F,		Ц			110							
T3-H1S	WT.	16.1	योषिय लिस्ट	1				E	W		~					-	×	×	×	×	ŢŢ,		1	1		11						- 1	1
720 T4-1HB	WI		नवन हम्ब	Ž	T.	Ī		F	W		-				-	_	<		_	(4		4	+					8			
Company of the Compan			Ne.an		TO DISPLACE OF THE PARTY OF THE	飁					10			OM CILL	STEPS GOTTS	31-	41 ,			题;		No.		剛_			就厂	NAME OF THE PERSON NAME OF THE P	靈	ST	SAOLI ONCO STANCE		6
	Koro	1	Story Con	2	2	2	100	-	CHA		-1	0		1000	D	1"						1						Š.	l i	1	NAT THE	1	The state of the s
				Ì			1			Ш		13	11	7	<u>L</u>		~					1/12		17.11	ż	100	3			,	I		

TEMP in C

Received on Ice
(Y/N)
Custody
Seeled
Cooler
(Y/N)
Samples
Intact
(Y/N)

3 ITEM# equired Client Information: Impany: Georgia Power MOCK GA SUTER TASHS EF.T. 14-1H5 (878)548-9415 Fac 1003 Weatherstone Parkway Sample lds must be uniqu One Character per box. SAMPLE ID Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hulds/pas-standard-terms.pdf Required Project Information: Report To: Kavin Stephengon Copy To: untrass Order # THE LAND THE STATE OF THE PARTY OF THE P 日本書書なるよる書書を × ¥ W š S ş M S WIT W ş MATRIX CODE (see valid onder to laft) SAMPLETYPE (G-GRAS C-COMP) TRANSPORT OF THE PARTY OF THE P McManus Surtece Water 正正是一些的 O STATESTE 日本日 DEED CITE 4514-725 Cass Traisi 132 DATE を日本 START CHI 1750 HHO. 200 0.51 8 COLLECTED PRINT Name of SAMPLER: DATE The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accuralety. CHAIN-OF-CUSTODY / Analytical Request Document 몽 repsyla SAMPLE TEMP AT COLLECTION 100 £ L Company Name: Address: £ E 2 OF CONTAINERS Pace Profile #: 10758-14 Pace Ovola: Pace Project Manager: Attention: transfer information: W (vi u) w Ü U 3 ij 10 U 14 Unpreserved H2S04 HNO3 3 KCI EL CY NaOH Section in the property of Na28203 Mulhanol Other Analyses Test Sc Y/N 8010/6020 × × × × × Alkalinity × × × × × × × × × × × TDS × × CI, F, 904 PATE TO BUILDING TO HOSpitalday Agency 37 50 San Horson THE A Page : TEMP in C Residual Chlorine (Y/N) Ruceivad on (Y/N) Custody Sealed Q Cooler (Y/N) Samples irtect (Y/N)

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed acr

Resolut	e		EQUIPM	ENT CALIBRA	TION LOG					
Field Technician. Rober	+ Mill			Date 9/22/	てし	Time (Ca	08 hibration)	24	Time (Mid-day	Check):
Adjustroll SN: 78930	٥١ <u> </u>			Turbidity Meter Type	La Motte Z	ozot		SN:	2880	- 2068-032
Propert McMan	· Surface	しゃん		Turbidity Meter Type Weather Conditions	Suna.	ZS	F	_		
				Calibration Log			-			
	Standard Lot #/ Date of Expiration	Temp of Standard (°C)	Value of Standard	nstrument Reading at Calibration			•	Comments	·	
DO (%) (1pt, 100% water saturated air cal)	AMARI		94.3	100.71			•			
Specific Canductance (µS/cm)	21070193 8/22	Z5.91,	4490	4561.5						
pH (4)	21070193 8/22	25.92	4	4.02	O. S.					
pit (7)	21010066 8/22	do.2x	7	7-04					_	
рн (10)	21080189 6/22	26-54	10	9.97						
ORP (mY)	21140141 8/22	2663	228	230.4						
	•		<u> </u>	'						
			Value of Standard	Instrument Reading	Acceptable Range	Pa	ss?		Comments	
Turbidity 0 NTU	10 mm	STO!	0	0.05	-/-0.5 NTU	Yes	No			
Turbidhy I NTU	100		1.	1.11	-/- 0.5 NTU	Y⇔	No			
Turbidity 10 NTV			10	10.08	÷/- 0.5 NTU	Yes	No			
			· ·							
		Temp of Stondard (°C)	Value of Standard	Post Calibration Reading	Acceptable Range	7.	317		Comment	
Mid-Day pH (4) check	MEAN		- 4		-/- 0.1 SU	Yes	No			1
ôild-Day pH (7) check			7		+/- 0.1 S U	Yes	Νo			
Mid-Day pH (10) ebeck			10		+/- 0.1 SU	Yes	- No			

Calibration Report

Instrument Aqua TROLL 400

Serial Number 789301 Created 9/22/2021

Sensor RDO

Serial Number 789986 Last Calibrated 9/22/2021

Calibration Details

Slope 0.9757509 Offset 0.00 mg/L

Calibration point 100%

Concentration 8.29 mg/L
Temperature 26.06 °C
Barometric Pressure 1,017.5 mbar

Sensor Conductivity

Serial Number 789301 Last Calibrated 9/22/2021

Calibration Details

Cell Constant 0.999
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Sensor **Level**Serial Number 787061

Last Calibrated Factory Defaults

Sensor	pH/ORP
Social Number	21177

Serial Number 21177 Last Calibrated 9/22/2021

Calibration Details

Total Calibration Points 3

Calibration Point 1

pH of Buffer 4.00 pH pH mV 116.4 mV Temperature 25.92 °C

Calibration Point 2

pH of Buffer 7.00 pH pH mV -58.2 mV Temperature 26.30 °C

Calibration Point 3

pH of Buffer 10.00 pH pH mV -222.1 mV Temperature 26.56 °C

Slope and Offset 1

Slope -58.19 mV/pH Offset -58.2 mV

Slope and Offset 2

Slope -54.64 mV/pH Offset -58.2 mV

ORP

ORP Solution ORP Standard
Offset 65.5 mV
Temperature 26.64 °C

Resolut	2		EQUIPM	ENT CALIBRAT	ION LOG				
Tield Technician William Laaker				Date 9/23/7	21	Time (Cali	bration)	10 19	Tune (Mid-day Check)
				Turbido Meter Type La Note 2020t SN 2068-0320					
- Sept 2021 S	Turface Wa	ter		Weather Conditions	رو اها ° اها/° ع	กกง			
				Calibration Log		,			
·	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Instrument Rending at Calibration				Comments	
DO (%) (Ipt, 100% water saturated air cult	10 m	PAR.		99.43					
Specific Conductance (µS/cm)	21070193 8/22	22.02	4490	4578.8					
pH (4)	21070193 8/22	11.04	14	407					
рН (7)	21010066 8/22	21.97	7	7.08					
pl1 (10)	21080189 6/22	2197	10	10 17					
ORP (mY)	21140141 8/22	21 43	228	234.8					
	<u>. </u>			·					
			Value of Standard	Instrument Reading	Acceptable Range	Par	nt T		Comments
Turbidity 9 NTU		19.0	0	0.05	+/40 5 NTU	Yes	Na		
Turbidity 1 NTU			1	1.11	*/- Q \$ NTU	Yes	No		
Turbiday 10 NTU			10	10.08	+4 0 5 NTU	Yes	No		
		-16							
		Temp of Standard (°C)	Value of Standard	Post Calibration Reading	Acceptable Range	Pa	53.7		Comments
Mid-Day pH (4) check	N. T.		4		+/- 0 1 SU	Yes	No		
Mid-Day pH (7) check			7		+/+ Q SŲ	Yes	No		
Mid-Day pH (10) check			10		-/- 0 1 SU	Yes	No		

Calibration Report

Instrument Aqua TROLL 400

Serial Number 789301 Created 9/23/2021

Sensor RDO

Serial Number 789986 Last Calibrated 9/23/2021

Calibration Details

Slope 0.9833372 Offset 0.00 mg/L

Calibration point 100%

Concentration 8.90 mg/L
Temperature 22.13 °C
Barometric Pressure 1,016.8 mbar

Sensor Conductivity

Serial Number 789301 Last Calibrated 9/23/2021

Calibration Details

Cell Constant 0.98
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Sensor Level

Serial Number 787061

Last Calibrated Factory Defaults

Sensor	pH/ORP
Serial Number	21177
Last Calibrated	9/23/2021

Calibration Details

Total Calibration Points

Calibration Point 1

pH of Buffer	4.00 pH
pH mV	111 0 mV
Temperature	22.04 °C

Calibration Point 2

pH of Buffer	7.02 pH
pH mV	-61.9 mV
Temperature	21.97 °C

Calibration Point 3

pH of Buffer	10.04 pH						
pH mV	-228.3 mV						
Temperature	21.97 °C						

Slope and Offset 1

Slope	-57.24 mV/pH
Offset	-60.8 mV

Slope and Offset 2

Slope	-55.1 mV/pH
Offset	-60.8 mV

ORP Solution	ORP Standard						
Offset	58.6 mV						
Temperature	21.93 °C						

RESOLUTION DE L'ANGELLE C	E SOLVIERS		EQUIPM	IENT CALIBRA	TION LOG				
ield Technique W 11 arm Laaker				Date 4/30/2	4/30/21 Time (Calibration)			6:50	Time (Mid-day Check)
				Turbidity Meter Type	Heter Type La Motre ZOZOt V 2068 - 0320				
					Westher Conditions 889/650 partly 5000 cloudy				
				Calibration Log					- 2000 1
	Standard Lot #/ Date a Expiration	Temp of Standard (°C)	Value of Standard	Instrument Reading of Calibration				Comments	
DO (%) lpt. 100% water saturated air cal)	19 (1-1)	VIEW.		49.28					
Specific Conductance (µS/cm)	21070193 8/22	25.78	4490	4325.9					
pH (4)	21070193 8/22	23.70	4	3.48		_			
pH (7)	21010066 8/22	23.35	7	6.99					
pH (38)	21080189 6/22	22 80	10	9.96					<u> </u>
ORP (mV)	21140141 8/22	23.84	228	222.5			_		
				_					
		Ì	Value of Standard	Instrument Reading	Acceptable Range	P	m,		Comments
Turbidky 0 NTU	AL TERN		0	0.01	-√-0.5 N T U	10	Ni.		
Turbidity 1 NTU			1	1.13	-/- 05 NTU	Y 64	N		
Turbidity 10 NTU			10	497	-/- 0.5 NTU	You	No		
		Temp of Standard (*C)	Value of Standard	Post Calibration Reading	Acceptable Range	Pa	51?		Womments
Mid-Day pif (4) check	100 (100)		4		-/-0 I SU	a ¥	No		
Mid-Day pH (7) check			7		-/- 0.1 SU	Υb	No		
Mid-Day pH (10) check			10		-/-01 SU	Yes	Ne		

Calibration Report

Instrument Aqua TROLL 400

Serial Number 789301 Created 9/30/2021

Sensor RDO

Serial Number 789986 Last Calibrated 9/30/2021

Calibration Details

Slope 0.9910781 Offset 0.00 mg/L

Calibration point 100%

Concentration 8.55 mg/L
Temperature 24.05 °C
Barometric Pressure 1,020.4 mbar

Sensor Conductivity

Serial Number 789301 Last Calibrated 9/30/2021

Calibration Details

Cell Constant 1.015
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Sensor **Level**Serial Number 787061

Last Calibrated Factory Defaults

Sensor	pH/ORP				
Serial Number	21177				

Serial Number 21177 Last Calibrated 9/30/2021

Calibration Details

Total Calibration Points 3

Calibration Point 1

pH of Buffer 4.00 pH pH mV 112.5 mV Temperature 23.70 °C

Calibration Point 2

pH of Buffer 7.00 pH pH mV -60.8 mV Temperature 23.35 °C

Calibration Point 3

pH of Buffer 10.00 pH pH mV -225.2 mV Temperature 22.89 °C

Slope and Offset 1

Slope -57.79 mV/pH Offset -60.8 mV

Slope and Offset 2

Slope -54.8 mV/pH Offset -60.8 mV

ORP

ORP Solution ORP Standard Offset 64.0 mV Temperature 23.84 °C

T4-1HS

Report Properties Start Time = 2021-09-22 12:52:01 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 4.444385 65.36024 102.0149 26838.94 31.71767 23786.9 14.64469 15.46148 37.2593 1.005987 -0.1118 0.378596 7.264474 -73.9429 113.8138 1016.17 33.78 ######## 4.444385 65.36024 102.0149 26838.94 31.71767 23786.9 14.64469 15.46148 37.2593 1.005987 33.78 ######## 4.298727 63.17741 98.61517 26820.07 31.67583 23787.03 14.64478 15.46157 37.28551 1.006001 -0.11261 0.376737 7.247595 -72.9971 119.5897 1016.131 33.79959 ######## 4.289797 63.04359 98.40675 26818.91 31.67327 23787.03 14.64479 15.46157 37.28712 1.006002 -0.11266 0.376623 7.24656 -72.9391 119.9437 1016.128 33.80079 ######## 4.280868 62.90978 98.19834 26817.75 31.6707 23787.04 14.64479 15.46158 37.28873 1.006003 -0.11271 0.376509 7.245525 -72.8812 120.2978 1016.126 33.80199 ####### 4.223534 62.0218 96.82749 26812.43 31.65084 23790.32 14.64701 15.46371 37.29614 1.006011 -0.10311 0.398635 7.235951 -72.3441 121.0145 1016.165 33.83354 ####### 4.217433 61.92908 96.68363 26811.73 31.64894 23790.47 14.64711 15.46381 37.29711 1.006012 -0.1027 0.399582 7.235113 -72.2971 121.1866 1016.166 33.83543 ####### 4.211332 61.83637 96.53978 26811.04 31.64703 23790.62 14.64721 15.4639 37.29808 1.006012 -0.10229 0.40053 7.234274 -72.2501 121.3587 1016.167 33.83732 ####### 4.205232 61.74366 96.39592 26810.34 31.64513 23790.77 14.64731 15.464 37.29904 1.006013 -0.10188 0.401477 7.233436 -72.203 121.5308 1016.167 33.83921 ####### 4.153194 60.96124 95.1799 26852.79 31.58724 23851.85 14.68854 15.5037 37.24009 1.006063 ####### 4.149272 60.90181 95.08768 26854.49 31.58415 23854.61 14.6904 15.5055 37.23772 1.006065 -0.08794 0.433632 7.222746 -71.5919 122.1868 1016.133 33.85757

T4-1HB

Report Properties Start Time = 2021-09-22 12:55:10 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 2.289848 32.98264 51.67804 27544.64 30.20447 25054.14 15.50152 16.28519 36.30471 1.007117 -0.0886 0.432114 7.074696 -63.071 109.1977 1015.941 34.32718 ######## 2.28737 32.94488 51.61935 27546.05 30.20145 25056.73 15.50327 16.28688 36.30285 1.007119 -0.08821 0.433009 7.074266 -63.0467 109.184 1015.938 34.32782 ####### 2.284892 32.90712 51.56067 27547.46 30.19843 25059.32 15.50503 16.28856 36.301 1.007121 -0.08782 0.433904 7.073835 -63.0224 109.1704 1015.936 34.32847 ######## 2.282414 32.86937 51.50198 27548.86 30.19541 25061.91 15.50678 16.29024 36.29914 1.007124 -0.08744 0.434799 7.073405 -62.9981 109.1568 1015.934 34.32912 ######## 2.258865 32.49474 50.92729 27545.85 30.0818 25108.75 15.53842 16.32069 36.30311 1.007184 -0.08978 0.429402 7.066729 -62.6067 108.9678 1015.993 34.3557 ####### 2.257228 32.46886 50.88746 27546.1 30.07572 25111.63 15.54036 16.32256 36.30278 1.007187 -0.08971 0.429548 7.066306 -62.5822 108.9545 1015.995 34.35711 ####### 2.255591 32.44298 50.84763 27546.35 30.06965 25114.51 15.54231 16.32443 36.30245 1.00719 -0.08965 0.429695 7.065884 -62.5576 108.9413 1015.997 34.35852 ######## 2.253954 32.4171 50.8078 27546.6 30.06357 25117.39 15.54425 16.3263 36.30212 1.007194 -0.08959 0.429841 7.065461 -62.533 108.928 1015.999 34.35993 ####### 2.242536 32.23869 50.53313 27566.7 30.03154 25149.76 15.56618 16.34734 36.27565 1.00722 -0.08707 0.435646 7.060338 -62.2409 108.736 1016.015 34.37639 ######## 2.241566 32.22337 50.50961 27567.48 30.02773 25152.13 15.56779 16.34889 36.27463 1.007223 -0.08702 0.435764 7.059978 -62.2202 108.7238 1016.017 34.37767 ####### 2.240596 32.20806 50.48608 27568.26 30.02393 25154.51 15.5694 16.35043 36.2736 1.007225 -0.08697 0.435882 7.059619 -62.1995 108.7116 1016.019 34.37894

T4-2HS

Report Properties Start Time = 2021-09-22 13:04:26 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 4.646955 68.23161 106.4935 26873.93 31.57677 23874.86 14.70408 15.51866 37.21078 1.006078 -0.09589 0.415288 7.164677 -68.3699 103.6756 1015.77 34.61 ####### 4.646955 68.23161 106.4935 26873.93 31.57677 23874.86 14.70408 15.51866 37.21078 1.006078 -0.09589 0.415288 7.164677 -68.3699 103.6756 1015.77 34.61 ####### 4.441735 65.21997 101.8021 26912.35 31.57586 23909.36 14.72736 15.54108 37.15767 1.006095 ######## 4.428623 65.02754 101.5024 26914.8 31.5758 23911.56 14.72885 15.54251 37.15428 1.006096 -0.08994 0.429031 7.150767 -67.5904 107.1371 1015.859 34.61995 ####### 4.415511 64.83511 101.2026 26917.25 31.57574 23913.76 14.73034 15.54395 37.15089 1.006098 -0.08958 0.429856 7.149932 -67.5436 107.345 1015.865 34.62055 ####### 4.402398 64.64268 100.9029 26919.71 31.57569 23915.97 14.73182 15.54538 37.14749 1.006099 -0.08922 0.430681 7.149096 -67.4968 107.5529 1015.87 34.62115 ####### 4.317328 63.33993 98.87846 26911.13 31.55195 23917.98 14.73318 15.54669 37.15935 1.006108 -0.08273 0.445663 7.142263 -67.1107 107.9058 1015.815 34.62838 ####### 4.308308 63.20517 98.66876 26911.74 31.55088 23918.96 14.73384 15.54732 37.15851 1.006108 108.005 1015.814 34.62893 ####### 4.299288 63.07041 98.45905 26912.35 31.54982 23919.93 14.7345 15.54795 37.15767 1.006109 -0.08187 0.447646 7.14099 -67.0391 108.1042 1015.814 34.62949 ####### 4.290268 62.93565 98.24935 26912.96 31.54875 23920.9 14.73516 15.54859 37.15682 1.00611 -0.08144 0.448638 7.140353 -67.0032 108.2033 1015.814 34.63005 ####### 4.218062 61.85281 96.56467 26899.02 31.48916 23932.73 14.74315 15.55627 37.17608 1.006136 -0.10169 0.401925 7.133023 -66.585 108.5274 1015.802 34.64749

T4-2HB

Report Properties Start Time = 2021-09-22 13:07:34 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 2.413416 35.03063 54.82521 28296.35 30.76854 25488.12 15.79703 16.56728 35.3404 1.007154 -0.09757 0.411431 7.054513 -62.0272 103.8512 1015.717 34.88879 ####### 2.410995 34.99006 54.76317 28303.13 30.76612 25495.28 15.8019 16.57193 35.33188 1.007158 -0.09784 0.410792 7.054222 -62.0089 103.8497 1015.715 34.88913 ######## 2.408574 34.94949 54.70113 28309.91 30.76369 25502.44 15.80677 16.57659 35.32336 1.007163 -0.09812 0.410153 7.05393 -61.9907 103.8483 1015.713 34.88947 ######## 2.386639 34.5809 54.14225 28338.2 30.38648 25694.89 15.93733 16.70168 35.28811 1.007382 -0.10674 0.390265 7.050556 -61.7516 103.7657 1015.712 34.89846 ######## 2.385219 34.55589 54.10446 28341.61 30.36954 25705.46 15.9445 16.70855 35.28384 1.007393 -0.10726 0.38906 7.050342 -61.7366 103.7611 1015.711 ######## 2.383799 34.53087 54.06666 28345.01 30.3526 25716.02 15.95167 16.71541 35.27958 1.007404 -0.10779 0.387855 7.050127 -61.7216 103.7565 1015.71 34.89953 ####### 2.375076 34.34868 53.79785 28409.97 30.22662 25831.41 16.03009 16.79042 35.19895 1.007503 -0.08281 0.445464 7.047345 -61.5655 103.7091 1015.701 34.89114 ####### 2.374294 34.33399 53.7759 28413.33 30.21403 25840.07 16.03597 16.79605 35.19477 1.007511 -0.08184 0.447699 7.04716 -61.5543 103.7054 1015.701 34.89093 ####### 2.373512 34.3193 53.75394 28416.69 30.20143 25848.72 16.04185 16.80167 35.1906 1.007519 -0.08087 0.449934 7.046975 -61.543 103.7018 1015.7 34.89071 ####### 2.37273 34.3046 53.73199 28420.06 30.18883 25857.38 16.04772 16.8073 35.18642 1.007528 -0.07991 0.452169 7.04679 -61.5318 103.6982 1015.7 34.8905 ####### 2.360999 34.13511 53.4674 28424.14 30.18795 25861.54 16.05056 16.81 35.18137 1.00753 -0.09516 0.416978 7.044178 -61.3892 103.6023 1015.717 34.89029

T4-3HS

Report Properties Start Time = 2021-09-22 13:16:35 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties

Device Model = Aqua TROLL 400

Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.670783 97.10411 151.781 27081.64 30.93816 24322.96 15.00674 15.80992 36.92538 1.006512 -0.10616 0.391608 7.193274 -69.811 98.11588 1015.55 34.42 ######## 6.691919 97.40909 152.2622 27123.8 30.92701 24365.49 15.03551 15.83757 36.86799 1.006537 -0.0995 0.406966 7.179985 -69.0713 100.7019 1015.55 34.42992 ####### 6.693222 97.42789 152.2919 27126.4 30.92632 24368.11 15.03728 15.83927 36.86445 1.006539 -0.09909 0.407913 7.179166 -69.0257 100.8613 1015.55 34.43053 27129 30.92563 24370.73 15.03905 15.84097 36.86091 1.00654 ####### 6.694524 97.44669 152.3215 -0.09868 0.408859 7.178347 -68.9801 101.0207 1015.55 34.43114 ####### 6.730474 97.94141 153.1009 27113.18 30.91833 24359.57 15.0315 15.83372 36.88243 1.006537 -0.10751 0.388505 7.171573 -68.6029 101.3813 1015.55 34.42973 ####### 6.732557 97.97043 153.1467 27113.54 30.91773 24360.14 15.03189 15.83409 36.88195 1.006537 -0.10772 0.388 7.170951 -68.5682 101.4608 1015.55 34.42991 ####### 6.734641 97.99944 153.1924 27113.89 30.91714 24360.71 15.03227 15.83446 36.88147 1.006538 -0.10794 0.387495 7.170329 -68.5336 101.5403 1015.55 34.4301 ####### 6.736724 98.02847 153.2381 27114.24 30.91655 24361.27 15.03265 15.83483 36.88098 1.006538 -0.10816 0.38699 7.169706 -68.4989 101.6199 1015.55 34.43028 ######## 6.750787 98.23856 153.5644 27116.01 30.91045 24365.41 15.03545 15.83752 36.87858 1.006542 -0.11064 0.38127 7.162035 -68.077 102.0501 1015.541 34.43874 ####### 6.752145 98.25804 153.5949 27115.97 30.91 24365.56 15.03555 15.83762 36.87864 1.006543 -0.11089 0.380706 7.161517 -68.0484 102.0858 1015.54 34.43913 ####### 6.753502 98.27753 153.6254 27115.93 30.90955 24365.71 15.03565 15.83771 36.87869 1.006543 -0.11113 0.380143 7.160999 -68.0198 102.1215 1015.54 34.43953

T4-3HB

Report Properties Start Time = 2021-09-22 13:22:19 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 2.468574 35.26333 55.3159 27860.66 29.51032 25650.9 15.90588 16.67309 35.89295 1.007639 -0.10474 0.394877 7.045309 -61.3091 100.9124 1015.489 34.77914 ####### 2.465341 35.19946 55.21819 27822.65 29.48943 25625.32 15.88843 16.65646 35.94198 1.007632 -0.10602 0.391927 7.042973 -61.1787 100.9371 1015.473 34.77129 ######## 2.465278 35.19762 55.21545 27820.07 29.48769 25623.73 15.88734 16.65543 35.9453 1.007632 -0.10616 0.391604 7.04284 -61.1713 100.9388 1015.472 34.77109 ####### 2.465215 35.19578 55.2127 27817.5 29.48595 25622.15 15.88626 16.6544 35.94862 1.007632 -0.1063 0.391282 7.042708 -61.1639 100.9406 1015.472 34.77088 ######## 2.465153 35.19394 55.20996 27814.92 29.48421 25620.56 15.88518 16.65336 35.95193 1.007632 -0.10644 0.390959 7.042576 -61.1564 100.9423 1015.471 34.77067 ######## 2,454856 35,04445 54,97521 27784,08 29,47948 25594,28 15,86729 16,63628 35,99185 1.00762 -0.1025 0.400041 7.040411 -61.0317 101.002 1015.47 34.77037 ####### 2.45429 35.03598 54.96195 27782.04 29.47898 25592.63 15.86617 16.63521 35.99448 1.007619 -0.10233 0.400449 7.04027 -61.0236 101.0053 1015.47 34.77022 ######## 2.453723 35.02752 54.94869 27780.02 29.47848 25590.99 15.86505 16.63414 35.9971 1.007618 -0.10215 0.400858 7.040128 -61.0155 101.0086 1015.47 34.77007 ######## 2.453157 35.01905 54.93543 27777.99 29.47798 25589.35 15.86393 16.63308 35.99973 1.007618 -0.10197 0.401267 7.039987 -61.0074 101.0118 1015.469 34.76992 ######## 2.448393 34.94046 54.81583 27811.56 29.45038 25632.73 15.89338 16.66127 35.95627 1.007648 -0.11098 0.380494 7.037624 -60.875 101.0767 1015.47 34.77 ####### 2.447957 34.93373 54.80543 27812.36 29.44911 25634.03 15.89427 16.66212 35.95525 1.007649 -0.11128 0.379807 7.037476 -60.8666 101.0808 1015.47 34.77

T4-4HS

Report Properties Start Time = 2021-09-22 13:36:04 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.560426 96.96524 151.249 28451.49 31.64622 25246.61 15.63323 16.4103 35.14755 1.006744 -0.09961 0.406711 7.22538 -71.7454 98.6732 1015.37 34.75 ####### 6.593752 97.38777 151.9357 28534.26 31.57929 25348.82 15.70271 16.47673 35.0456 1.006817 -0.10902 0.385011 7.204915 -70.5807 101.764 1015.37 34.75 ######## 6.595748 97.41307 151.9768 28539.22 31.57528 25354.95 15.70687 16.48071 35.03949 1.006822 -0.10958 0.383711 7.203689 -70.511 101.9491 1015.37 34.75 ######## 6.597744 97.43838 152.0179 28544.18 31.57128 25361.07 15.71103 16.48469 35.03339 1.006826 -0.11015 0.382412 7.202464 -70.4412 102.1342 1015.37 34.75 ######## 6.648561 97.9515 152.8873 28566.61 31.47628 25422.02 15.75248 16.52431 35.00592 1.006888 -0.09765 0.411231 7.189685 -69.7192 102.7417 1015.387 34.75855 ######## 6.651653 97.98471 152.9429 28569.56 31.47039 25427.17 15.75598 16.52766 35.00231 1.006893 -0.0973 0.412043 7.188627 -69.6593 102.841 1015.388 34.75895 ####### 6.654745 98.01792 152.9985 28572.5 31.46451 25432.33 15.75948 16.53101 34.99869 1.006897 -0.09695 0.412855 7.18757 -69.5994 102.9404 1015.388 34.75933 ######## 6.657836 98.05113 153.0541 28575.44 31.45862 25437.48 15.76298 16.53436 34.99508 1.006902 -0.0966 0.413667 7.186512 -69.5394 103.0398 1015.389 34.75972 ####### 6.698403 98.5369 153.8441 28558.08 31.31229 25485.46 15.79558 16.56555 35.01637 1.006975 -0.09594 0.415187 7.174029 -68.8168 103.5102 1015.38 34.75974 ####### 6.701327 98.57012 153.8988 28558 31.30363 25489.14 15.79807 16.56794 35.01646 1.006979 -0.0957 0.415747 7.173152 -68.7665 103.5531 1015.38 34.75991 ######## 6.70425 98.60335 153.9535 28557.92 31.29498 25492.82 15.80057 16.57033 35.01656 1.006984 -0.09545 0.416307 7.172276 -68.7161 103.596 1015.38 34.76007

T4-4HB

Report Properties Start Time = 2021-09-22 13:38:42 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 3.298031 48.12013 75.23423 28520.55 30.83429 25661.02 15.91475 16.67966 35.06244 1.00722 -0.09714 0.412409 7.096114 -64.386 99.17928 1015.359 34.90942 ####### 3.286356 47.9456 74.96239 28519.64 30.83229 25661.08 15.91479 16.6797 35.06356 1.007221 -0.09737 0.41189 7.095593 -64.3564 99.19048 1015.359 34.90982 ####### 3.177827 46.29325 72.39676 28451.5 30.67712 25668.22 15.9195 16.68434 35.14757 1.007275 -0.1167 0.367306 7.091019 -64.0765 99.38011 1015.368 34.901 ######## 3.169626 46.16908 72.20379 28448.13 30.66977 25668.44 15.91964 16.68448 35.15171 1.007277 -0.11765 0.365098 7.090678 -64.0562 99.39148 1015.369 34.90078 ######## 3.161424 46.04491 72.01081 28444.77 30.66242 25668.65 15.91979 16.68463 35.15585 1.00728 -0.11861 0.36289 7.090336 -64.0358 99.40285 1015.369 34.90056 ####### 3.083583 44.89988 70.22551 28502.31 30.63057 25734.71 15.96474 16.72756 35.0849 1.007323 -0.10799 0.38739 7.084518 -63.6962 99.59015 1015.369 34.90879 ####### 3.077934 44.8157 70.09447 28503.59 30.62624 25737.79 15.96683 16.72956 35.08332 1.007326 -0.10788 0.387645 7.084167 -63.6754 99.60217 1015.369 ######## 3.072284 44.73152 69.96342 28504.87 30.62191 25740.86 15.96891 16.73156 35.08174 1.007329 -0.10777 0.387899 7.083816 -63.6547 99.61418 1015.37 34.90921 ####### 3.066635 44.64734 69.83237 28506.15 30.61759 25743.93 15.971 16.73355 35.08016 1.007332 -0.10766 0.388154 7.083465 -63.634 99.6262 1015.37 34.90942 ######## 3.035427 44.08033 68.97383 28509.29 30.53587 25783.12 15.9976 16.75903 35.0763 1.007379 -0.08208 0.447155 7.077357 -63.2788 99.78486 1015.361 34.91833 ####### 3.032493 44.03225 68.90002 28510.45 30.53151 25786.11 15.99963 16.76097 35.07486 1.007381 -0.08074 0.450243 7.07697 -63.2563 99.79559 1015.361 34.91888

T4-4L

Report Properties Start Time = 2021-09-22 18:18:02 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.710764 82.6538 128.9862 27441.58 30.25023 24940.56 15.42451 16.21136 36.44106 1.007045 -0.07423 0.465264 7.348273 -78.2451 127.2653 1012.26 35.09069 ####### 5.696252 82.44466 128.6598 27446.38 30.24974 24945.13 15.4276 16.21433 36.43467 1.007047 -0.07405 0.465669 7.347235 -78.1881 127.0589 1012.259 35.08953 ####### 5.681741 82.23551 128.3334 27451.18 30.24926 24949.69 15.4307 16.2173 36.42828 1.00705 -0.07388 0.466073 7.346196 -78.1311 126.8525 1012.258 35.08838 ####### 5.584392 80.86086 126.1817 27445.95 30.28011 24931.59 15.41846 16.20554 36.43526 1.007031 -0.07416 0.465411 7.337295 -77.6374 124.8435 1012.286 35.08204 ####### 5.574307 80.71681 125.9566 27447.57 30.28133 24932.54 15.4191 16.20615 36.43311 1.007031 -0.07411 0.465538 7.336485 -77.5927 124.6715 1012.287 ####### 5.564223 80.57278 125.7316 27449.19 30.28255 24933.48 15.41975 16.20676 36.43095 1.007031 -0.07405 0.465664 7.335675 -77.548 124.4995 1012.288 35.08055 ####### 5.554139 80.42873 125.5065 27450.81 30.28378 24934.43 15.42039 16.20738 36.42878 1.007031 ####### 5.524741 80.03948 124.8816 27406.28 30.32197 24877.5 15.38182 16.17038 36.488 1.00699 ####### 5.520734 79.98381 124.7939 27404.47 30.32424 24874.88 15.38005 16.16867 36.4904 1.006988 -0.06809 0.479427 7.325958 -77.0209 122.4118 1012.244 35.06201 -76.9882 122.2822 1012.243 35.06108 ####### 5.516727 79.92815 124.7061 27402.67 30.32651 24872.26 15.37827 16.16697 36.49281 1.006986 -0.06783 0.480013 7.325359 ######## 5.51272 79.87247 124.6183 27400.86 30.32877 24869.64 15.3765 16.16527 36.49521 1.006984 -0.06758 0.480598 7.32476 -76.9555 122.1525 1012.241 35.06014

T4-3L

Report Properties Start Time = 2021-09-22 19:05:35 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.433889 77.28403 120.942 27371.78 29.10726 25380.7 15.72121 16.49746 36.53397 1.007628 -0.06866 0.478111 7.418358 -81.818 97.11602 1012.22 31.01 ####### 5.419385 77.08278 120.6263 27377.4 29.11009 25384.64 15.7239 16.50002 36.52644 1.007629 -0.06897 0.477399 7.417186 -81.7539 97.22993 1012.22 31.01 ####### 5.294097 75.34816 117.9036 27374.21 29.13981 25368.32 15.71288 16.48941 36.53075 1.007612 -0.07572 0.461818 7.405624 -81.1187 97.39538 1012.254 31.01 ####### 5.282727 75.19057 117.6563 27376.24 29.14227 25369.1 15.71342 16.48992 36.52803 1.007611 -0.07615 0.460828 7.404639 -81.0648 97.44717 1012.256 31.01 ####### 5.271357 75.03298 117.409 27378.28 29.14473 25369.89 15.71396 16.49043 36.5253 1.007611 -0.07658 0.459837 7.403654 -81.0108 97.49898 1012.258 31.01 ####### 5.259987 74.87539 117.1617 27380.32 29.14719 25370.67 15.71449 16.49094 36.52258 1.00761 -0.07701 0.458847 7.402669 -80.9569 97.55078 1012.259 31.01 ####### 5.146904 73.28579 114.6599 27319.45 29.19186 25294.28 15.66271 16.44128 36.60399 1.007558 -0.07713 0.458564 7.390799 -80.3165 97.60213 1012.206 31.0012 ####### 5.138569 73.16932 114.4767 27316.99 29.19459 25290.79 15.66034 16.43901 36.60727 1.007555 -0.07729 0.4582 7.389976 -80.2718 97.61409 1012.204 31.0008 ####### 5.130235 73.05284 114.2936 27314.54 29.19733 25287.29 15.65797 16.43674 36.61054 1.007553 -0.07745 0.457836 7.389152 -80.2271 97.62605 1012.203 31.00041 ####### 5.040935 71.81901 112.3572 27369.41 29.21992 25327.96 15.68565 16.46317 36.53717 1.007566 -0.07741 0.457921 7.378756 -79.658 97.5813 1012.202 31.00035 ####### 5.034643 71.73157 112.2198 27370.74 29.22181 25328.35 15.68592 16.46343 36.53538 1.007566 -0.07742 0.4579 7.378054 -79.6198 97.58142 1012.201 31.00019

T4-2L

Report Properties Start Time = 2021-09-22 19:11:51 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.710643 81.59027 127.6033 27301.09 29.43537 25168.89 15.5781 16.35978 36.62857 1.007419 -0.00801 0.618007 7.34551 -77.8737 95.54601 30.72 ####### 5.257196 75.16092 117.5504 27499.19 29.43493 25351.72 15.70228 16.47861 36.36485 1.007511 -0.05912 0.500119 7.3308 -77.0609 96.01699 1012.418 30.72 ####### 5.228316 74.75143 116.9102 27511.81 29.4349 25363.36 15.71019 16.48618 36.34805 1.007517 -0.06237 0.492611 7.329863 -77.0091 96.04698 1012.419 30.72 ####### 5.199436 74.34195 116.2699 27524.42 29.43488 25375.01 15.7181 16.49375 36.33125 1.007523 -0.06563 0.485102 7.328926 -76.9573 96.07698 1012.421 30.72 ####### 5.170557 73.93247 115.6296 27537.04 29.43485 25386.65 15.72601 16.50132 36.31446 1.007529 -0.06888 0.477594 7.327989 -76.9056 96.10698 1012.422 30.72 ####### 5.010431 71.64133 112.0452 27533.63 29.43268 25384.47 15.72453 16.49991 36.31929 1.007528 -0.07285 0.46844 7.320364 -76.485 95.97649 1012.411 30.71139 ######## 4.991792 71.37613 111.6304 27538.53 29.43258 25389.04 15.72763 16.50287 36.31278 1.007531 -0.07433 0.465031 7.319652 -76.4457 95.98272 1012.41 30.71101 ######## 4.973154 71.11093 111.2157 27543.42 29.43247 25393.6 15.73073 16.50584 36.30628 1.007533 -0.07581 0.461622 7.31894 -76.4064 95.98895 1012.41 30.71063 ####### 4.954515 70.84574 110.8009 27548.32 29.43236 25398.16 15.73383 16.5088 36.29977 1.007535 -0.07728 0.458214 7.318228 -76.3671 95.99518 1012.41 30.71025 ####### 4.826149 69.01805 107.935 27459.21 29.46203 25302.79 15.66909 16.44681 36.4177 1.007478 -0.06703 0.481875 7.310025 -75.9245 95.80195 1012.41 30.71024 ####### 4.815575 68.8674 107.6991 27456 29.4633 25299.27 15.6667 16.44452 36.42194 1.007476 -0.06686 0.482268 7.309457 -75.8936 95.79284 1012.41 30.71008

T4-1L

Report Properties Start Time = 2021-09-22 19:25:08 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.716438 81.27164 127.2183 27338.65 29.10889 25349.24 15.69984 16.47701 36.57825 1.007612 -0.03907 0.546353 7.399565 -80.777 95.28262 1012.5 30.25 ####### 5.340703 75.96295 118.9008 27364.66 29.13105 25363.41 15.70952 16.48622 36.54348 1.007612 -0.05147 0.517766 7.380719 -79.7426 95.9487 1012.49 30.25 ####### 5.317578 75.63622 118.3889 27366.26 29.13241 25364.29 15.71012 16.48679 36.54134 1.007612 -0.05223 0.516007 7.379559 -79.6789 95.98969 1012.489 30.25 ####### 5.294453 75.30949 117.877 27367.87 29.13378 25365.16 15.71072 16.48735 36.5392 1.007612 -0.05299 0.514248 7.378399 -79.6152 96.03069 1012.489 30.25 5.1472 73.23721 114.6256 27351.45 29.14709 25343.96 15.69635 16.47358 36.56114 1.007597 -0.04722 0.527566 7.369259 -79.1127 95.89009 1012.473 30.24152 ####### 5.131504 73.01582 114.2786 27351.36 29.14822 25343.38 15.69595 16.47319 36.56126 1.007596 -0.04727 0.527455 7.368394 -79.0652 95.90016 1012.472 30.24114 ####### 5.115809 72.79443 113.9315 27351.27 29.14935 25342.78 15.69555 16.47281 36.56138 1.007596 -0.04731 0.527345 7.367529 -79.0177 95.91024 1012.471 30.24077 ####### 5.100114 72.57304 113.5844 27351.18 29.15048 25342.19 15.69516 16.47243 36.5615 1.007595 -0.04736 0.527235 7.366664 -78.9701 95.92031 1012.47 30.24039 ####### 4.964965 70.66378 110.5882 27293.25 29.18643 25272.46 15.64787 16.4271 36.63912 1.007549 -0.08981 0.429321 7.356264 -78.4047 95.74393 1012.462 30.249 ####### 4.954799 70.52031 110.3631 27290.45 29.18836 25268.99 15.64552 16.42484 36.64288 1.007546 -0.09165 0.425071 7.355559 -78.3663 95.7359 1012.461 30.24923 ######## 4.944633 70.37683 110.138 27287.64 29.1903 25265.52 15.64317 16.42259 36.64663 1.007544

T3-1HT

Report Properties Start Time = 2021-09-23 11:17:40 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.931833 75.63413 118.9382 12800.85 25.82735 12601.71 7.333736 8.191112 78.11982 1.002335 -0.08595 0.438217 7.161674 -70.631 179.4586 1017.53 22.84 ####### 5.814015 74.19511 116.6636 12841.54 25.86792 12632.13 7.352934 8.210885 77.87234 1.002338 -0.05261 0.515125 7.147182 -69.8245 191.3808 1017.511 22.84 ####### 5.806494 74.10325 116.5184 12844.14 25.87051 12634.07 7.35416 8.212148 77.85654 1.002338 -0.05048 0.520034 7.146257 -69.773 192.1419 1017.51 22.84 -0.04836 0.524944 7.145331 -69.7215 192.903 1017.509 ####### 5.798973 74.01138 116.3732 12846.74 25.8731 12636.01 7.355386 8.213409 77.84074 1.002339 22.84 ####### 5.791451 73.91952 116.228 12849.33 25.87569 12637.96 7.356611 8.214672 77.82494 1.002339 -0.04623 0.529854 7.144406 -69.6701 193.6642 1017.508 22.84 ####### 5.729869 73.18272 115.0592 12868.86 25.88074 12655.95 7.367942 8.22637 77.70708 1.002346 -0.05299 0.51425 7.135231 -69.1639 192.6118 1017.484 22.84 ####### 5.724079 73.11269 114.9483 12870.78 25.88201 12657.54 7.368944 8.227404 77.69543 1.002346 -0.05245 0.5155 7.134447 -69.1204 192.8676 1017.483 22.84 ####### 5.718288 73.04266 114.8374 12872.7 25.88327 12659.13 7.369946 8.228437 77.68379 1.002347 -0.05191 0.516751 7.133662 -69.0769 193.1234 1017.481 22.84 ####### 5.712497 72.97263 114.7265 12874.62 25.88453 12660.72 7.370949 8.229471 77.67215 1.002347 -0.05137 0.518001 7.132877 -69.0334 193.3792 1017.479 22.84 ####### 5.651922 72.20242 113.5209 12834.7 25.93045 12610.59 7.339483 8.196885 77.91388 1.002311 -0.00151 0.633009 7.121686 -68.4174 192.5028 1017.56 22.8488 ####### 5.647555 72.14806 113.4354 12833.5 25.93274 12608.88 7.338408 8.195771 77.92111 1.00231 0.000684 0.638061 7.120952 -68.377 192.493 1017.562 22.84918

T3-2HT

Report Properties Start Time = 2021-09-23 11:24:27 Time Offset = -04:00:00 Duration = 00:00:22 Readings = 12

Instrument Properties

Device Model = Aqua TROLL 400

Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked 3.7762 49.99272 78.52581 20634.52 26.41065 20093.09 12.16983 13.06051 48.46382 1.005787 -0.08717 0.435408 6.779156 -49.3774 128.1546 1017.573 23.03858 ####### 3.755198 49.72105 78.09834 20649.73 26.41541 20106.15 12.17846 13.069 48.42741 1.005792 -0.08706 0.43566 6.779244 -49.3833 128.0443 1017.572 23.0393 ######## 3.734195 49.44939 77.67088 20664.94 26.42017 20119.21 12.18709 13.07748 48.39101 1.005797 -0.08695 0.435913 6.779332 -49.3893 127.934 1017.57 23.04002 ####### 3.571622 47.35198 74.36294 20645 26.49621 20071.41 12.15579 13.04642 48.438 1.005752 -0.07752 0.457661 6.782211 -49.556 126.3295 1017.545 23.04834 ####### 3.558238 47.17879 74.09009 20648.57 26.50125 20073.01 12.15686 13.04745 48.42954 1.005751 -0.07703 0.45879 6.782373 -49.5657 126.2225 1017.543 23.04889 ####### 3.544854 47.00561 73.81725 20652.14 26.50629 20074.6 12.15793 13.04849 48.42108 1.005751 -0.07655 0.459919 6.782535 -49.5755 126.1155 1017.541 23.04945 ####### 3.53147 46.83242 73.5444 20655.71 26.51133 20076.2 12.159 13.04953 48.41261 1.00575 -0.07606 0.461048 6.782697 -49.5852 126.0085 1017.539 ######## 3.401081 45.18248 70.94123 20698.66 26.54607 20104.96 12.17812 13.06822 48.31233 1.005754 -0.07763 0.457406 6.785412 -49.7466 124.2732 1017.567 23.05851 ####### 3.391757 45.06357 70.75368 20700.59 26.54916 20105.68 12.1786 13.06869 48.30783 1.005754 -0.07752 0.457663 6.785588 -49.757 124.1639 1017.567 23.05905 ####### 3.382434 44.94466 70.56613 20702.51 26.55225 20106.4 12.17909 13.06916 48.30333 1.005753 -0.07741 0.457921 6.785764 -49.7674 124.0545 1017.568 23.0596 ####### 3.28894 43.76119 68.6956 20791.03 26.67689 20145.77 12.20551 13.09475 48.09787 1.005737 -0.09962 0.406697 6.78757 -49.8918 122.564 1017.526 23.05965 ######## 3.282139 43.67505 68.55956 20795.91 26.68319 20148.15 12.2071 13.0963 48.08652 1.005736 -0.10064 0.404343 6.787703 -49.9005 122.4639 1017.525 23.05981

T3-2HTS

Report Properties Start Time = 2021-09-23 11:31:44 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 7.423526 96.85529 151.8479 12339.84 27.27474 11826.01 6.848828 7.686909 81.03786 1.001567 -0.0813 0.448958 7.071095 -65.8722 124.7898 1017.507 23.71097 ####### 7.496119 97.69604 153.188 12349.18 27.24441 11841.56 6.858536 7.697015 80.97726 1.001583 -0.06818 0.479212 7.061724 -65.3404 124.9093 1017.51 23.71824 ####### 7.501833 97.76452 153.2966 12351.73 27.24174 11844.58 6.860425 7.69898 80.9604 1.001585 -0.06734 0.481163 7.060912 -65.2943 125.072 1017.51 23.71879 ####### 7.507549 97.833 153.4053 12354.29 27.23907 11847.61 6.862313 7.700945 80.94355 1.001587 -0.06649 0.483113 7.060101 -65.2483 125.2347 1017.509 23.71934 ####### 7.513264 97.90148 153.5139 12356.84 27.2364 11850.63 6.864202 7.70291 80.92669 1.00159 -0.06564 0.485064 7.059289 -65.2023 125.3975 1017.509 23.7199 ####### 7.556967 98.39216 154.2899 12282.18 27.1653 11794.39 6.828988 7.666353 81.4191 1.001583 -0.08505 0.440292 7.048178 -64.5699 125.3819 1017.474 23.72853 ####### 7.560667 98.43464 154.3573 12279.29 27.16132 11792.48 6.827789 7.665109 81.43819 1.001584 -0.08565 0.438917 7.047442 -64.528 125.4067 1017.473 23.72909 ####### 7.564366 98.47713 154.4247 12276.4 27.15734 11790.56 6.82659 7.663866 81.45727 1.001584 ####### 7.604712 99.01512 155.2719 12351.19 27.15015 11863.96 6.872486 7.711577 80.96433 1.00162 ####### 7.60739 99.049 155.3253 12353.09 27.14844 11866.17 6.873862 7.713009 80.95179 1.001622 -0.07493 0.463648 7.036072 -63.8871 125.1157 1017.479 23.76477 ####### 7.610069 99.08289 155.3787 12355 27.14672 11868.37 6.875238 7.71444 80.93924 1.001623

T2-1HT

Report Properties Start Time = 2021-09-23 11:42:49 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 7.324113 97.97456 153.4478 17521.34 27.71869 16656.42 9.925191 10.82667 57.07327 1.003733 -0.07836 0.455728 6.892673 -55.956 91.47803 1017.472 25.41667 ####### 7.325107 97.99038 153.4721 17521.58 27.72034 16656.15 9.925017 10.8265 57.07249 1.003732 -0.07782 0.456986 6.89249 -55.9459 91.54534 1017.471 25.41782 ######## 7.326101 98.0062 153.4963 17521.82 27.72199 16655.88 9.924845 10.82632 57.07171 1.003731 -0.07727 0.458244 6.892306 -55.9357 91.61266 1017.471 25.41897 ######## 7.327095 98.02203 153.5205 17522.06 27.72364 16655.61 9.924671 10.82614 57.07093 1.003731 -0.07673 0.459502 6.892122 -55.9255 91.67999 1017.471 25.42012 ######## 7.348434 98.31386 153.9725 17537.51 27.72231 16670.7 9.934443 10.83596 57.02064 1.003739 -0.08762 0.434371 6.890022 -55.8058 92.33421 1017.436 25.41944 ####### 7.349629 98.33064 153.9985 17538.28 27.72264 16671.32 9.934848 10.83636 57.01816 1.003739 -0.08789 0.433747 6.889873 -55.7974 92.38263 1017.434 25.41978 ####### 7.350823 98.34743 154.0244 17539.04 27.72297 16671.95 9.935252 10.83677 57.01568 1.003739 -0.08816 0.433122 6.889724 -55.789 92.43105 1017.432 25.42011 ######## 7.374124 98.63805 154.4875 17541.52 27.71407 16677.01 9.938515 10.84005 57.00761 1.003744 -0.09992 0.406006 6.887483 -55.6624 93.0274 1017.457 25.43691 ######## 7.375587 98.65681 154.5172 17541.9 27.71367 16677.49 9.938829 10.84037 57.00636 1.003744 -0.10064 0.404332 6.887341 -55.6544 93.06734 1017.457 25.4377 ####### 7.377051 98.67558 154.5468 17542.29 27.71326 16677.98 9.939144 10.84069 57.00511 1.003745 -0.10137 0.402659 6.887198 -55.6463 93.10728 1017.458 25.43848 ####### 7.378514 98.69434 154.5765 17542.67 27.71286 16678.46 9.939458 10.841 57.00386 1.003745 -0.10209 0.400985 6.887055 -55.6382 93.14721 1017.458 25.43926

T2-2HT

Report Properties Start Time = 2021-09-23 11:48:12 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 3.895005 52.92105 82.96081 23862.23 27.29978 22858.17 14.01299 14.85781 41.90723 1.006905 -0.08802 0.433446 6.855854 -53.8182 103.2992 1017.47 25.79054 ######## 3.790184 51.5147 80.75431 23851.03 27.32695 22836.09 13.99828 14.84346 41.92692 1.006886 -0.07907 0.454106 6.85924 -54.0087 103.1955 1017.505 25.81608 ####### 3.782301 51.40891 80.5883 23852.22 27.32908 22836.34 13.99846 14.84362 41.92482 1.006885 -0.07877 0.454791 6.859461 -54.0213 103.1906 1017.506 ####### 3.774419 51.30313 80.4223 23853.41 27.33122 22836.58 13.99863 14.84378 41.92272 1.006885 -0.07847 0.455476 6.859683 -54.0339 103.1858 1017.507 25.81792 ######## 3.693991 50.21174 78.70658 23825.61 27.3359 22808.01 13.9795 14.82521 41.97166 1.006869 -0.06159 0.494411 6.863397 -54.2423 103.0876 1017.457 25.81885 ####### 3.688288 50.13466 78.58548 23824.2 27.33662 22806.37 13.97839 14.82414 41.97413 1.006868 -0.06066 0.496569 6.863631 -54.2554 103.0813 1017.455 25.81931 ####### 3.682585 50.05758 78.46439 23822.8 27.33734 22804.72 13.97729 14.82307 41.97661 1.006867 -0.05972 0.498727 6.863865 -54.2685 103.075 1017.453 25.81978 ####### 3.676882 49.9805 78.34328 23821.39 27.33806 22803.07 13.97619 14.822 41.97908 1.006866 -0.05879 0.500885 6.864099 -54.2817 103.0686 1017.451 25.82025 ####### 3.617677 49.20719 77.12933 23922.41 27.35718 22891.77 14.03572 14.87965 41.80193 1.006905 25.82 ######## 3.613437 49.15097 77.04102 23926.29 27.35811 22895.09 14.03796 14.88181 41.79512 1.006906 25.82 ####### 3.609197 49.09476 76.95273 23930.17 27.35905 22898.41 14.04019 14.88397 41.78832 1.006907 -0.08289 0.445283 6.867671 -54.4879 102.9415 1017.468 25.82

T2-2HTS

Report Properties Start Time = 2021-09-23 11:54:57 Time Offset = -04:00:00 Duration = 00:00:22 Readings = 12

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.855206 78.07014 122.2692 16526.15 27.72746 15708.03 9.330382 10.21022 268.084 1.003286 -0.1017 0.401899 7.090173 -67.0574 96.3744 1017.478 26.10978 ####### 5.816904 77.63265 121.584 16769.32 27.7314 15937.9 9.467083 10.35964 130.8317 1.003387 -0.10187 0.401512 7.089164 -67.0014 96.40661 1017.479 26.10992 ####### 5.489761 73.33749 114.8479 16906.04 27.74616 16063.48 9.542063 10.44127 59.15047 1.003439 -0.0908 0.427049 7.074453 -66.1781 96.63353 1017.453 26.11867 ####### 5.464664 73.00477 114.3262 16906.92 27.74959 16063.32 9.541964 10.44116 59.14737 1.003438 -0.09039 0.427978 7.073509 -66.1252 96.64931 1017.452 26.11909 ####### 5.439565 72.67204 113.8045 16907.81 27.75302 16063.16 9.541864 10.44106 59.14427 1.003437 -0.08999 0.428908 7.072564 -66.0723 96.66511 1017.451 26.1195 ####### 5.414467 72.33932 113.2828 16908.69 27.75645 16063 9.541765 10.44095 59.14117 1.003436 -0.08959 0.429837 7.071619 -66.0194 96.68089 1017.45 26.11992 ####### 5.251748 70.14572 109.8539 16903.31 27.75423 16058.54 9.538879 10.43805 59.16002 1.003434 -0.08458 0.441396 7.060447 -65.3843 96.7589 1017.476 26.1284 ####### 5.237828 69.95968 109.5626 16903.29 27.75447 16058.45 9.538823 10.43799 59.16008 1.003434 -0.08412 0.44244 7.059649 -65.3393 96.76693 1017.477 26.12895 ####### 5.223907 69.77364 109.2713 16903.27 27.75472 16058.36 9.538767 10.43793 59.16014 1.003434 -0.08367 0.443485 7.058852 -65.2942 96.77496 1017.477 26.12951 ####### 5.111368 68.25274 106.8928 16925.44 27.73369 16085.56 9.556287 10.45561 59.08268 1.003453 -0.09624 0.414485 7.047908 -64.6749 96.88902 1017.462 26.12961 ####### 5.102827 68.13752 106.7126 16926.4 27.73272 16086.75 9.557055 10.45639 59.07933 1.003454 -0.09673 0.413354 7.047184 -64.6339 96.896 1017.461 26.12978 ####### 5.094285 68.0223 106.5325 16927.35 27.73175 16087.94 9.557821 10.45716 59.076 1.003455 -0.09722 0.412224 7.04646 -64.5929 96.90297 1017.461 26.12994

T1-1HT

Report Properties Start Time = 2021-09-23 12:09:03 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.838647 79.78851 124.654 18812.6 28.72744 17561.6 10.51012 11.41504 0 1.003867 -0.06694 0.482077 7.068193 -66.0436 97.53876 1017.35 27.96008 ####### 5.670804 77.49244 121.0667 18756.14 28.77173 17495.74 10.47127 11.37223 53.3159 1.003825 -0.10166 0.401978 7.061475 -65.6698 97.27528 1017.385 27.97758 ####### 5.655813 77.28931 120.7493 18757.82 28.7735 17496.76 10.47193 11.37289 53.31111 1.003825 -0.10277 0.399438 7.061017 -65.6443 97.25468 1017.387 27.97855 ####### 5.640821 77.08617 120.4318 18759.5 28.77528 17497.77 10.47259 11.37355 53.30632 1.003825 -0.10387 0.396899 7.060558 -65.6188 97.23407 1017.389 27.97952 ####### 5.561273 76.01006 118.7445 18758.87 28.78295 17494.8 10.47066 11.37162 53.30811 1.003821 -0.10922 0.384555 7.054611 -65.2844 97.06839 1017.354 27.9963 ####### 5.554057 75.91237 118.5916 18759.36 28.78409 17494.9 10.47073 11.37168 53.30673 1.003821 -0.11009 0.382551 7.054211 -65.262 97.05552 1017.354 27.99738 ####### 5.546842 75.81467 118.4387 18759.84 28.78522 17495 10.47079 11.37175 53.30535 1.00382 -0.11095 0.380548 7.053812 -65.2396 97.04264 1017.353 27.99846 17495.1 10.47086 11.37181 53.30396 1.00382 -0.11182 0.378544 7.053412 -65.2172 97.02977 1017.352 27.99954 ####### 5.539626 75.71699 118.2859 18760.33 28.78635 ####### 5.486488 74.99167 117.1541 18775.24 28.79004 17507.85 10.47917 11.3801 53.26164 1.003825 -0.11108 0.380261 7.048205 -64.9223 96.89188 1017.36 28.0167 53.2597 1.003825 -0.11117 ####### 5.482383 74.93583 117.0668 18775.92 28.79037 17508.38 10.47951 11.38045 0.38006 7.047856 -64.9026 96.88232 1017.359 28.01779 ####### 5.478277 74.88 116.9795 18776.61 28.79071 17508.91 10.47986 11.38079 53.25776 1.003825 -0.11125 0.37986 7.047507 -64.8829 96.87278 1017.359 28.01888

T1-2HT

Report Properties Start Time = 2021-09-23 12:12:21 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 3.994991 55.49566 86.82417 26538.1 28.09427 25057.2 15.4986 16.28718 37.68178 1.007774 -0.1244 0.349525 6.96341 -60.0062 98.56883 1017.242 28.16 ######## 3.982878 55.33055 86.56527 26544.19 28.09669 25061.86 15.50177 16.29021 37.67308 1.007776 -0.12511 0.347887 6.96355 -60.0144 98.57111 1017.241 28.16 ####### 3.970766 55.16544 86.30637 26550.28 28.0991 25066.53 15.50494 16.29324 37.66439 1.007778 -0.12582 0.346248 6.96369 -60.0226 98.57337 1017.239 28.16 ####### 3.866437 53.73497 84.07175 26575.09 28.1043 25087.59 15.51925 16.30694 37.62926 1.007787 -0.10292 0.399074 6.965407 -60.1221 98.471 1017.325 28.17708 ######## 3.85867 53.62865 83.90546 26578.08 28.10494 25090.13 15.52096 16.30858 37.62502 1.007788 -0.10209 0.400992 6.965524 -60.1288 98.46662 1017.329 28.17784 ####### 3.850902 53.52232 83.73917 26581.06 28.10558 25092.65 15.52268 16.31022 37.62077 1.007789 -0.10126 0.40291 6.965641 -60.1355 98.46223 1017.333 28.1786 ####### 3.843134 53.416 83.57288 26584.05 28.10622 25095.18 15.5244 16.31187 37.61652 1.00779 -0.10043 0.404829 6.965757 -60.1423 98.45786 1017.336 28.17936 ####### 3.766789 52.36255 81.91947 26612.03 28.12328 25113.87 15.53714 16.32402 37.577 1.007794 -0.11887 0.362299 6.967349 -60.2318 98.27569 1017.276 28.17943 ####### 3.761304 52.28707 81.8012 26613.8 28.12416 25115.14 15.538 16.32484 37.57449 1.007795 -0.11925 0.361404 6.967453 -60.2377 98.2658 1017.275 28.17975 ####### 3.755819 52.21158 81.68292 26615.57 28.12505 25116.42 15.53887 16.32567 37.57199 1.007795 -0.11964 0.36051 6.967556 -60.2436 98.25591 1017.274 28.18008 ####### 3.709024 51.56861 80.67712 26661.77 28.12422 25160.39 15.56869 16.35425 37.50692 1.007818 -0.10669 0.390393 6.969787 -60.3682 98.0331 1017.272 28.18

T1-2HTS

Report Properties Start Time = 2021-09-23 12:18:05 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.796251 79.49783 124.1036 18604.97 29.02141 17277.88 10.32969 11.23062 53.74908 1.003643 -0.09539 0.416441 7.168039 -71.7414 92.67604 1017.202 28.25 ####### 5.793082 79.4575 124.0398 18605.46 29.02488 17277.27 10.32929 11.23023 53.74766 1.003642 -0.09531 0.416632 7.167372 -71.7045 92.69043 1017.201 28.25 ####### 5.789914 79.41718 123.9761 18605.95 29.02836 17276.66 10.32889 11.22983 53.74624 1.003641 -0.09523 0.416822 7.166705 -71.6676 92.70482 1017.201 28.25 ####### 5.786745 79.37685 123.9124 18606.44 29.03184 17276.05 10.3285 11.22943 53.74482 1.003639 -0.09515 0.417013 7.166039 -71.6307 92.71922 1017.2 28.25 ####### 5.733936 78.73655 122.8986 18621 29.05622 17282.09 10.33244 11.23336 53.7028 1.003635 -0.09685 0.413076 7.156839 -71.1205 92.85203 1017.234 28.25 ####### 5.730779 78.69762 122.8371 18621.58 29.05779 17282.15 10.33248 11.2334 53.70114 1.003634 -0.09684 0.413117 7.156229 -71.0866 92.86184 1017.236 28.25 ####### 5.727622 78.65869 122.7755 18622.15 29.05936 17282.2 10.33251 11.23343 53.69948 1.003634 28.25 ####### 5.724465 78.61976 122.7139 18622.73 29.06093 17282.25 10.33255 11.23347 53.69782 1.003633 -0.0968 0.413199 7.155012 -71.0189 92.88147 1017.239 28.25 ####### 5.693918 78.25729 122.137 18672.01 29.13831 17304.25 10.3469 11.24776 53.55616 1.00362 -0.1 0.405818 7.146275 -70.5433 93.0041 1017.239 28.26745 18674.5 29.14228 17305.35 10.34761 11.24847 53.54899 1.00362 ####### 5.691488 78.22816 122.0908 -0.10018 0.405408 7.1457 -70.5117 93.01231 1017.239 28.26823 ####### 5.689057 78.19904 122.0445 18677 29.14624 17306.44 10.34833 11.24919 53.54182 1.003619 -0.10035 0.404999 7.145123 -70.4802 93.02051 1017.24 28.26901

T1-3HTS

Report Properties Start Time = 2021-09-23 12:24:04 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.291531 72.67603 113.5021 19838.54 28.85249 18478.82 11.11332 12.01123 50.40694 1.004278 -0.09268 0.422708 7.102408 -67.9877 93.70167 1017.22 28.11 ####### 5.291531 72.67603 113.5021 19838.54 28.85249 18478.82 11.11332 12.01123 50.40694 1.004278 -0.09268 0.422708 7.102408 -67.9877 93.70167 1017.22 28.11 ####### 5.218292 71.63276 111.8797 19792.3 28.83006 18443.11 11.08991 11.98802 50.52472 1.004267 -0.09304 0.42187 7.092558 -67.43 96.03951 1017.229 28.10086 ####### 5.213605 71.566 111.7759 19789.34 28.82862 18440.82 11.08841 11.98654 50.53226 1.004267 ####### 5.208919 71.49924 111.6721 19786.38 28.82719 18438.54 11.08691 11.98505 50.53979 1.004266 -0.09309 0.421763 7.091298 -67.3586 96.33871 1017.23 28.09969 ####### 5.204233 71.43249 111.5683 19783.43 28.82576 18436.25 11.08542 11.98357 50.54733 1.004265 -0.09311 0.421709 7.090668 -67.3229 96.4883 1017.231 28.09911 ####### 5.17398 70.97128 110.8612 19800.06 28.81855 18454.13 11.09711 11.99518 50.50489 1.004276 -0.10234 0.400425 7.084993 -66.9959 96.89986 1017.255 28.10028 ####### 5.170763 70.92406 110.7882 19799.67 28.81766 18454.05 11.09706 11.99513 50.50591 1.004276 -0.10277 0.399431 7.084487 -66.967 96.97726 1017.257 28.10011 ####### 5.167544 70.87683 110.7152 19799.27 28.81677 18453.97 11.09701 11.99508 50.50692 1.004277 -0.1032 0.398437 7.083981 -66.9381 97.05466 1017.258 28.09993 ####### 5.164327 70.82961 110.6423 19798.87 28.81588 18453.89 11.09696 11.99503 50.50793 1.004277 -0.10363 0.397443 7.083475 -66.9092 97.13205 1017.259 28.09976 ####### 5.174507 70.96078 110.8527 19866.8 28.757 18536.65 11.15111 12.04883 50.33531 1.004335 -0.10241 0.400257 7.077138 -66.5428 97.45112 1017.25 28.1

T1-3HT

Report Properties Start Time = 2021-09-23 12:27:40 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 4.265737 59.28408 92.68353 25275.54 28.41235 23728.98 14.60178 15.42384 39.56398 1.007009 -0.0861 0.437873 6.99484 -61.838 99.60942 1017.239 28.03 ####### 4.246345 59.01635 92.2647 25278.98 28.41319 23731.85 14.60371 15.4257 39.55859 1.00701 -0.08596 0.438201 6.994718 -61.8312 99.66918 1017.239 28.03 ######## 4.226953 58.74862 91.84588 25282.41 28.41403 23734.71 14.60564 15.42757 39.55319 1.007012 -0.08582 0.438529 6.994596 -61.8244 99.72895 1017.239 28.03 ######## 4.207561 58.48088 91.42706 25285.84 28.41487 23737.58 14.60758 15.42943 39.54779 1.007013 -0.08568 0.438856 6.994474 -61.8176 99.78872 1017.238 28.03 ####### 4.027894 56.0001 87.5499 25279.55 28.44224 23720.04 14.59583 15.41803 39.55766 1.006996 -0.08621 0.437636 6.994959 -61.8509 99.898 1017.31 28.03 ####### 4.014437 55.81416 87.25922 25279.97 28.44365 23719.82 14.59569 15.41789 39.55701 1.006995 -0.08611 0.437848 6.994949 -61.8506 99.91349 1017.313 28.03 ####### 4.000979 55.62822 86.96855 25280.38 28.44506 23719.61 14.59555 15.41775 39.55637 1.006995 -0.08602 0.43806 6.994939 -61.8503 99.92899 1017.316 28.03 6.99428 ####### 3.893501 54.14851 84.65174 25334.63 28.44823 23769.16 14.62895 15.44996 39.4717 1.007018 -0.10024 0.405255 -61.8091 100.0138 1017.283 28.02154 ####### 3.884996 54.03129 84.46833 25337.02 28.4489 23771.12 14.63027 15.45123 39.46797 1.007019 -0.1009 0.40374 6.994258 -61.8078 100.0208 1017.283 28.02116 ####### 3.876491 53.91406 84.28492 25339.41 28.44958 23773.08 14.63159 15.4525 39.46424 1.00702 -0.10156 0.402225 6.994236 -61.8065 100.0279 1017.283 28.02078 ####### 3.867986 53.79683 84.10151 25341.8 28.45025 23775.03 14.63291 15.45377 39.4605 1.007021 -0.10221 0.40071 6.994214 -61.8052 100.0349 1017.283 28.02039

T2-3HTS

Report Properties Start Time = 2021-09-23 12:45:04 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 7.187123 98.40781 153.487 16518.38 29.33989 15253.95 9.022161 9.915067 60.53863 1.002573 -0.11487 0.371515 7.240378 -75.8957 105.6453 1017.07 ####### 7.19746 98.54955 153.7079 16516.92 29.34033 15252.49 9.021221 9.914116 60.54397 1.002573 -0.11514 0.3709 7.219871 -74.7369 110.4534 1017.07 28.24931 ####### 7.198118 98.55856 153.722 16516.83 29.34036 15252.39 9.021162 9.914056 60.54431 1.002573 -0.11515 0.370861 7.218566 -74.6632 110.7593 1017.07 28.2499 ####### 7.198775 98.56758 153.736 16516.74 29.34039 15252.3 9.021102 9.913995 60.54465 1.002573 -0.11517 0.370822 7.217261 -74.5894 111.0653 1017.07 28.25049 ######## 7.199433 98.5766 153.7501 16516.64 29.34041 15252.21 9.021042 9.913935 60.54499 1.002572 -0.11519 0.370783 7.215956 -74.5157 111.3712 1017.07 28.25108 ####### 7.215475 98.76149 154.0392 16517.58 29.33852 15253.58 9.021923 9.914826 60.54156 1.002574 -0.08405 0.442618 7.202657 -73.7592 111.7347 1017.018 28.24976 ####### 7.216454 98.77334 154.0577 16517.58 29.33845 15253.6 9.021938 9.914842 60.54155 1.002574 -0.08266 0.445806 7.201542 -73.696 111.8732 1017.016 28.24994 ####### 7.217432 98.78519 154.0762 16517.59 29.33838 15253.63 9.021954 9.914857 60.54153 1.002574 ####### 7.21841 98.79705 154.0948 16517.59 29.3383 15253.65 9.021969 9.914873 60.54151 1.002574 -0.0799 0.452183 7.199312 -73.5696 112.1504 1017.011 28.25029 ####### 7.231945 98.95422 154.3459 16503.17 29.2998 15250.69 9.020066 9.912949 60.59442 1.002584 -0.0315 0.563831 7.185744 -72.7906 112.2421 1017.011 28.25876 ####### 7.232888 98.96524 154.3633 16502.55 29.29809 15250.58 9.019997 9.912878 60.59668 1.002585 -0.02878 0.570091 7.18481 -72.7372 112.273 1017.01 28.25915

T2-3HT

Report Properties Start Time = 2021-09-23 12:51:42 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 3.348327 46.47563 72.63766 24867.96 28.40424 23349.74 14.34647 15.17733 40.21238 1.006821 -0.142 0.308941 6.953232 -59.4835 100.8967 1016.93 ######## 3.353142 46.51165 72.70465 24897.54 28.35744 23397.15 14.37823 15.20815 40.16461 1.006859 -0.03001 0.567259 6.953897 -59.5169 104.773 1016.969 28.18024 ####### 3.353435 46.51384 72.70872 24899.34 28.3546 23400.03 14.38016 15.21002 40.16171 1.006862 -0.02321 0.582939 6.953937 -59.5189 105.0083 1016.971 28.17965 ####### 3.353727 46.51603 72.71278 24901.13 28.35176 23402.9 14.38209 15.21189 40.15881 1.006864 -0.01641 0.59862 6.953977 -59.5209 105.2436 1016.973 28.17906 ######## 3.351501 46.48018 72.65611 24856.08 28.34002 23365.49 14.3569 15.18757 40.23162 1.006849 -0.11393 0.373691 6.955357 -59.6017 105.655 1016.968 28.18882 ######## 3.351516 46.47943 72.65517 24854.77 28.33837 23364.95 14.35652 15.18722 40.23375 1.006849 -0.11563 0.369772 6.955434 -59.6061 105.766 1016.969 28.18902 ####### 3.351531 46.47868 72.65424 24853.45 28.33673 23364.4 14.35615 15.18686 40.23587 1.006849 -0.11733 0.365853 6.955512 -59.6106 105.877 1016.97 28.18923 ####### 3.351546 46.47794 72.65329 24852.14 28.33508 23363.86 14.35578 15.18651 40.238 1.006849 -0.11902 0.361934 6.95559 -59.615 105.988 1016.971 28.18943 ####### 3.351846 46.44824 72.61208 24820.57 28.30908 23345.08 14.34308 15.1743 40.28918 1.006848 -0.10829 0.386686 6.957056 -59.6872 106.3612 1016.952 28.19854 ####### 3.351834 46.44634 72.60938 24818.38 28.30751 23343.68 14.34214 15.17339 40.29272 1.006848 -0.10925 0.384474 6.95715 -59.6921 106.3996 1016.951 28.19911 ####### 3.351823 46.44444 72.60667 24816.2 28.30594 23342.29 14.3412 15.17249 40.29626 1.006848 -0.11021 0.382261 6.957246 -59.697 106.438 1016.951 28.19967

T3-3HTS

Report Properties Start Time = 2021-09-23 13:07:28 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties

Device Model = Aqua TROLL 400

Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 6.856956 92.16605 143.8281 12206.13 29.04962 11329.79 6.539394 7.364366 81.92593 1.000815 -0.08054 0.450701 7.311881 -79.8472 107.1915 1016.909 28.90057 ######## 6.86134 92.22894 143.9256 12211.63 29.05115 11334.59 6.542384 7.367486 81.88873 1.000817 -0.08499 0.440441 7.309908 -79.7353 107.443 1016.909 28.90177 ######## 6.951144 93.31645 145.6471 12216.68 29.01734 11346.08 6.549553 7.374954 81.85551 1.000832 -0.09606 0.414897 7.291573 -78.6907 107.4827 1016.893 28.89938 ######## 6.956911 93.39011 145.763 12219.05 29.01641 11348.48 6.551044 7.37651 81.83949 1.000834 -0.0983 0.409738 7.289974 -78.5999 107.5827 1016.892 28.89973 ######## 6.962677 93.46377 145.8788 12221.43 29.01548 11350.87 6.552535 7.378065 81.82346 1.000835 -0.10054 0.404579 7.288376 -78.509 107.6828 1016.891 28.90009 ######## 6.968444 93.53743 145.9946 12223.81 29.01455 11353.26 6.554025 7.379621 81.80744 1.000836 -0.10277 0.39942 7.286778 -78.4182 107.7828 1016.89 28.90045 ####### 7.062456 94.6593 147.7809 12141.82 28.89923 11300.22 6.521003 7.34514 82.36047 1.000846 -0.09492 0.417545 7.265038 -77.1617 107.7113 1016.96 28.92618 ####### 7.068686 94.73454 147.9004 12138.47 28.8934 11298.27 6.519794 7.343877 82.38307 1.000847 -0.09501 0.417328 7.263591 -77.0785 107.7226 1016.963 28.92738 ####### 7.074917 94.80976 148.0199 12135.12 28.88758 11296.33 6.518584 7.342613 82.40567 1.000848 -0.0951 0.41711 7.262143 -76.9952 107.7339 1016.966 28.92857 ####### 7.081148 94.88499 148.1393 12131.77 28.88176 11294.38 6.517374 7.34135 82.42828 1.000849 -0.0952 0.416893 7.260695 -76.9119 107.7453 1016.969 28.92977 ####### 7.151625 95.78435 149.5542 12210.76 28.83576 11377.24 6.569005 7.395208 81.89542 1.000901 -0.09043 0.427896 7.241765 -75.8344 107.4554 1016.933 28.92931

T3-3HT

Report Properties Start Time = 2021-09-23 13:12:50 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 2.965115 40.63742 63.58846 23533.62 27.89412 22300.88 13.64172 14.49557 42.49235 1.006451 -0.09095 0.426688 6.919739 -57.5067 102.3763 1016.959 29.36956 ####### 2.948996 40.39551 63.21395 23452.37 27.88131 22229.04 13.59366 14.44888 42.6397 1.006419 -0.08479 0.440912 6.919915 -57.5162 102.1043 1016.994 29.378 ####### 2.947748 40.37797 63.1867 23452.2 27.88046 22229.22 13.59377 14.44899 42.63998 1.006419 2.9465 40.36044 63.15944 23452.03 27.87961 22229.4 13.59389 14.44911 42.64027 1.006419 ####### 2.945252 40.3429 63.13218 23451.86 27.87876 22229.58 13.594 14.44922 42.64056 1.00642 -0.08449 0.441594 6.919855 -57.5127 102.0557 1016.999 29.38013 ######## 2.926247 40.08321 62.72472 23486.35 27.8768 22263.06 13.61639 14.47099 42.57794 1.006437 -0.08981 0.429322 6.920191 -57.5304 101.8265 1016.963 29.38857 ####### 2.92507 40.06675 62.69898 23486.6 27.87646 22263.44 13.61664 14.47124 42.57748 1.006437 -0.08994 0.429032 6.920207 -57.5313 101.811 1016.963 29.38912 ####### 2.923892 40.05028 62.67324 23486.86 27.87611 22263.82 13.61689 14.47148 42.57701 1.006438 -0.09006 0.428742 6.920223 -57.5321 101.7954 1016.962 29.38968 ####### 2.914926 39.91953 62.4716 23509.16 27.85248 22294.5 13.63734 14.49143 42.53663 1.00646 -0.09078 0.42709 6.920869 -57.5659 101.5828 1016.969 29.39821 ######## 2.91415 39.90855 62.45454 23510.86 27.85137 22296.56 13.63871 14.49277 42.53355 1.006461 -0.09091 0.426781 6.920904 -57.5678 101.5688 1016.969 29.39876 ####### 2.913373 39.89758 62.43748 23512.56 27.85026 22298.62 13.64009 14.49411 42.53046 1.006463 -0.09105 0.426471 6.920939 -57.5696 101.5548 1016.969 29.39931

T3-4HTS

Report Properties Start Time = 2021-09-23 13:25:11 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.178733 70.59386 110.1473 16239.75 29.10959 15057.82 8.896345 9.787581 61.5773 1.00255 -0.09101 0.426542 7.134466 -69.8649 100.8159 1016.902 30.2098 ####### 5.172832 70.51466 110.0235 16240.68 29.11102 15058.3 8.896652 9.787892 61.57379 1.00255 -0.09007 0.428714 7.133276 -69.7981 100.8191 1016.902 30.20997 ####### 5.166932 70.43546 109.8997 16241.61 29.11246 15058.77 8.896958 9.788202 61.57027 1.00255 -0.08913 0.430885 7.132085 -69.7313 100.8223 1016.902 30.21014 ####### 5.085879 69.37122 108.2258 16255.22 29.12965 15066.8 8.902107 9.793424 61.51873 1.002549 -0.10975 0.383328 7.115817 -68.8157 100.6877 1016.85 30.227 ####### 5.080669 69.30228 108.1175 16256.27 29.13054 15067.54 8.902578 9.793901 61.51474 1.002549 -0.11011 0.382506 7.114758 -68.7561 100.6814 1016.847 30.22776 ####### 5.075459 69.23332 108.0093 16257.32 29.13144 15068.28 8.90305 9.794379 61.51076 1.002549 -0.11046 0.381685 7.113698 -68.6965 100.6751 1016.844 30.22852 ####### 5.07025 69.16438 107.901 16258.37 29.13233 15069.01 8.903522 9.794857 61.50678 1.002549 -0.11082 0.380863 7.112638 -68.6369 100.6688 1016.842 30.22928 ####### 5.001972 68.22436 106.4394 16240.01 29.14381 15048.93 8.890656 9.781807 61.57633 1.002536 -0.08414 0.442394 7.097838 -67.8029 100.5034 1016.885 30.25543 ####### 4.997354 68.16177 106.3417 16239.44 29.14467 15048.18 8.890175 9.781319 61.57847 1.002535 -0.08335 0.444231 7.096862 -67.7479 100.4936 1016.886 30.25692 ####### 4.992735 68.09917 106.244 16238.88 29.14553 15047.43 8.889693 9.78083 61.58061 1.002534 -0.08255 0.446068 7.095887 -67.693 100.4837 1016.887 30.25841 ####### 4.988117 68.03658 106.1463 16238.32 29.14639 15046.68 8.889212 9.780342 61.58274 1.002534 -0.08175 0.447905 7.094912 -67.638 100.4738 1016.888 30.25989

T3-4HT

Report Properties Start Time = 2021-09-23 13:28:37 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 3.374007 46.52682 72.71429 23062.36 28.38609 21661.42 13.21597 14.07992 43.36071 1.005985 -0.08747 0.434726 6.940132 -58.7542 101.1238 1016.837 30.58565 ######## 3.37244 46.50464 72.67982 23062.65 28.38462 21662.27 13.21653 14.08048 43.36015 1.005986 -0.08805 0.43339 6.940251 -58.761 101.1354 1016.838 30.58698 ######## 3.370873 46.48247 72.64536 23062.95 28.38314 21663.13 13.2171 14.08103 43.35958 1.005987 -0.08863 0.432053 6.94037 -58.7678 101.1471 1016.839 30.5883 ####### 3.369307 46.4603 72.6109 23063.25 28.38167 21663.98 13.21766 14.08159 43.35902 1.005988 -0.08921 0.430717 6.940489 -58.7746 101.1588 1016.839 30.58963 ######## 3.355607 46.26004 72.29243 22902.48 28.39907 21506.25 13.1126 13.97906 43.66372 1.005904 -0.09988 0.4061 6.942059 -58.8553 101.151 1016.804 30.59796 ####### 3.354529 46.24468 72.2682 22895.29 28.3994 21499.38 13.10802 13.97459 43.67734 1.005901 -0.10098 0.403559 6.942163 -58.8609 101.1525 1016.803 30.59883 ####### 3.353451 46.22932 72.24399 22888.11 28.39973 21492.5 13.10344 13.97012 43.69096 1.005897 -0.10208 0.401019 6.942268 -58.8665 101.1541 1016.802 ######## 3.354994 46.17242 72.17078 22823.6 28.36097 21446.83 13.07294 13.94044 43.81452 1.005886 -0.11124 0.379902 6.941137 -58.7931 101.1563 1016.818 30.60816 ####### 3.354801 46.16599 72.16135 22817.86 28.35948 21442 13.06973 13.9373 43.82547 1.005884 -0.11184 0.378507 6.941115 -58.7913 101.1565 1016.818 30.60871 ######## 3.354608 46.15955 72.15192 22812.11 28.35799 21437.18 13.06651 13.93417 43.83641 1.005882 -0.11244 0.377112 6.941092 -58.7894 101.1566 1016.818 30.60926 ######## 3.354415 46.15312 72.14249 22806.37 28.35651 21432.35 13.06329 13.93103 43.84736 1.00588 -0.11305 0.375717 6.94107 -58.7876 101.1568 1016.819 30.60981

T2-4HTS

Report Properties Start Time = 2021-09-23 13:41:34 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.324621 75.11339 116.707 18654.4 30.76559 16803.91 10.02189 10.92254 53.60666 1.00287 -0.09071 0.427244 7.141996 -70.68 100.5156 1016.82 31.84 ####### 5.092172 71.88145 111.6711 18663.61 30.80385 16801.15 10.02008 10.92075 53.5802 1.002856 -0.09152 0.425368 7.122987 -69.5958 104.4675 1016.792 31.84 ####### 5.077387 71.67587 111.3508 18664.2 30.80628 16800.97 10.01996 10.92063 53.57851 1.002855 -0.09158 0.425249 7.121778 -69.5268 104.7189 1016.79 31.84 ####### 5.062602 71.4703 111.0305 18664.79 30.80871 16800.8 10.01985 10.92052 53.57683 1.002854 -0.09163 0.425129 7.120569 -69.4578 104.9703 1016.788 31.84 ####### 5.047816 71.26472 110.7102 18665.37 30.81115 16800.62 10.01973 10.9204 53.57515 1.002853 -0.09168 0.42501 7.119359 -69.3889 105.2216 1016.786 31.84 ####### 4.960103 69.96722 108.7092 18686.72 30.78385 16827.73 10.03733 10.93803 53.51397 1.002875 -0.09801 0.410413 7.107656 -68.7188 105.3967 1016.773 31.84861 ######## 4.95031 69.82761 108.4925 18687.89 30.78362 16828.86 10.03807 10.93876 53.51059 1.002876 -0.09831 0.409719 7.106655 -68.6616 105.505 1016.772 31.84899 69.688 108.2759 18689.07 30.78338 16829.99 10.0388 10.93949 53.50721 1.002877 -0.09861 0.409026 7.105654 ####### 4.940517 -68.6044 105.6133 1016.771 31.84937 ####### 4.930724 69.54839 108.0593 18690.25 30.78315 16831.12 10.03953 10.94023 53.50383 1.002877 -0.09891 0.408332 7.104653 -68.5472 105.7215 1016.769 31.84975 ####### 4.854417 68.45404 106.3661 18751.8 30.72033 16904.82 10.08739 10.98814 53.32829 1.002933 -0.09202 0.42423 7.091814 -67.8028 105.7757 1016.753 31.84976 ######## 4.848412 68.36758 106.2323 18754.99 30.71717 16908.61 10.08984 10.9906 53.31921 1.002936 -0.09183 0.424654 7.090943 -67.7526 105.7975 1016.751 31.84993

T2-4HT

Report Properties Start Time = 2021-09-23 13:46:08 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 3.513196 48.85102 76.20287 21847.91 29.17868 20233.04 12.26853 13.15148 45.77109 1.005037 -0.06964 0.475855 6.963655 -60.2201 99.09628 1016.816 31.95898 ####### 3.511131 48.81941 76.15433 21845.61 29.17429 20232.48 12.26816 13.15112 45.77587 1.005038 -0.0693 0.476629 6.963409 -60.2054 99.09802 1016.818 31.95969 ####### 3.499028 48.54799 75.75044 21864.47 29.11456 20271.39 12.29383 13.1764 45.73634 1.005076 -0.08891 0.431388 6.961026 -60.0556 99.07262 1016.75 31.95112 ####### 3.497986 48.5276 75.7198 21863.52 29.11066 20271.9 12.29416 13.17674 45.73832 1.005077 -0.0896 0.429808 6.960842 -60.0442 99.07188 1016.748 31.9509 ####### 3.496943 48.50723 75.68916 21862.56 29.10676 20272.41 12.2945 13.17707 45.74031 1.005079 -0.09028 0.428229 6.960657 -60.0329 99.07113 1016.745 31.95067 ####### 3.495901 48.48685 75.65852 21861.6 29.10286 20272.93 12.29484 13.1774 45.74229 1.00508 -0.09097 0.42665 6.960473 -60.0216 99.07037 1016.743 31.95045 ####### 3.49218 48.42082 75.56688 21951.46 28.98331 20399.5 12.37849 13.25967 45.55518 1.005179 -0.08435 0.441923 6.95807 -59.8654 99.05208 1016.794 31.96764 ####### 3.491765 48.41244 75.55468 21955.84 28.9768 20405.91 12.38272 13.26384 45.54607 1.005184 -0.08443 0.441743 6.957915 -59.8555 99.0508 1016.795 31.96825 ######## 3.491351 48.40405 75.54248 21960.21 28.97028 20412.32 12.38696 13.26801 45.53695 1.005189 -0.0845 0.441562 6.95776 -59.8456 99.04951 1016.796 31.96885 ######## 3.494457 48.38867 75.52811 21880.09 28.90767 20360.46 12.35254 13.2343 45.70375 1.005183 -0.1011 0.403283 6.955229 -59.691 99.00802 1016.781 31.96922 ####### 3.494523 48.38662 75.52557 21878.05 28.90261 20360.39 12.35248 13.23425 45.70799 1.005184 -0.10173 0.401816 6.955068 -59.681 99.00579 1016.781 31.96955

T1-4HTS

Report Properties Start Time = 2021-09-23 14:02:55 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.538544 77.51719 120.7158 20714.13 29.83006 18964.57 11.43259 12.32697 48.27622 1.004213 -0.08554 0.439167 7.192565 -73.3202 103.6207 1016.72 31.9 ####### 5.207351 72.9052 113.5238 20678.95 29.85666 18923.56 11.40566 12.30031 48.35835 1.004185 -0.09215 0.423917 7.169672 -72.0255 108.4054 1016.7 31.9 ####### 5.187133 72.62366 113.0848 20676.8 29.85829 18921.06 11.40401 12.29869 48.36337 1.004183 -0.09256 0.422986 7.168274 -71.9465 108.6974 1016.699 31.9 ####### 5.166915 72.34212 112.6458 20674.66 29.85991 18918.55 11.40237 12.29706 48.36838 1.004181 -0.09296 0.422056 7.166876 -71.8674 108.9895 1016.698 31.9 ####### 5.061043 70.86195 110.3398 20686.56 29.85825 18930 11.40989 12.3045 48.34057 1.004187 -0.08121 0.449151 7.154853 -71.1872 109.225 1016.683 31.90847 ####### 5.048366 70.68517 110.0642 20686.22 29.85882 18929.5 11.40956 12.30417 48.34136 1.004187 -0.08086 0.449962 7.153772 -71.126 109.3517 1016.682 31.90884 ####### 5.035689 70.50838 109.7887 20685.88 29.85939 18929 11.40923 12.30385 48.34214 1.004186 -0.08051 0.450773 7.15269 -71.0649 109.4784 1016.681 31.90921 ####### 5.023013 70.3316 109.5131 20685.55 29.85997 18928.5 11.40891 12.30353 48.34293 1.004186 -0.08016 0.451584 7.151609 -71.0037 109.605 1016.68 31.90958 ####### 4.928477 69.01772 107.4684 20763.34 29.85269 19002.11 11.45727 12.35137 48.16191 1.004224 -0.09197 0.424337 7.138858 -70.2726 109.6958 1016.672 31.91841 20766.9 29.85243 19005.45 11.45947 12.35354 48.15361 1.004226 -0.09231 0.423552 7.137986 -70.2228 109.7218 1016.671 31.91895 ####### 4.921112 68.91517 107.3087 ####### 4.913747 68.81261 107.149 20770.47 29.85217 19008.8 11.46167 12.35572 48.14532 1.004228 -0.09265 0.422767 7.137114 -70.173 109.7478 1016.67 31.9195

T1-4HT

Report Properties Start Time = 2021-09-23 14:08:20 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 3.472642 47.87261 74.78374 22524.41 28.4672 21125.35 12.85934 13.73148 44.40028 1.005695 -0.07806 0.456422 6.987962 -61.4592 100.8495 1016.582 32.23849 ####### 3.473874 47.884 74.80183 22499.09 28.46511 21102.41 12.84407 13.71657 44.44901 1.005684 -0.07757 0.457546 6.987785 -61.4489 100.8318 1016.582 32.23888 ######## 3.475106 47.89539 74.81993 22473.77 28.46302 21079.48 12.8288 13.70166 44.49773 1.005673 -0.07709 0.458671 6.987607 -61.4385 100.8141 1016.581 32.23927 ####### 3.476337 47.90678 74.83803 22448.46 28.46094 21056.54 12.81353 13.68675 44.54646 1.005662 -0.0766 0.459795 6.98743 -61.4282 100.7965 1016.581 32.23965 ######## 3.496489 48.10932 75.16166 22054.34 28.45312 20689.73 12.57008 13.44832 45.3466 1.005484 -0.07992 0.452127 6.982853 -61.169 100.6467 1016.658 32.25686 ######## 3.497801 48.12236 75.18243 22028.87 28.45212 20666.21 12.55446 13.43304 45.39762 1.005472 -0.07992 0.452136 6.982586 -61.1537 100.6356 1016.661 32.25778 ####### 3.499113 48.13541 75.20319 22003.39 28.45112 20642.69 12.53884 13.41775 45.44864 1.005461 -0.07992 0.452145 6.98232 -61.1385 100.6245 1016.664 32.25871 ######## 3.500426 48.14845 75.22396 21977.91 28.45013 20619.17 12.52322 13.40246 45.49966 1.00545 -0.07991 0.452154 6.982053 -61.1233 100.6135 1016.667 32.25963 ####### 3.505829 48.19582 75.2984 21891.97 28.44345 20540.99 12.47141 13.35164 45.67965 1.005413 -0.08496 0.440513 6.978232 -60.906 100.4507 1016.632 32.25949 ######## 3.506472 48.20196 75.30816 21880.24 28.44296 20530.17 12.46423 13.34461 45.70366 1.005408 -0.08524 0.439871 6.977972 -60.8913 100.4403 1016.632 32.25982 ####### 3.507116 48.2081 75.31792 21868.52 28.44248 20519.34 12.45705 13.33757 45.72766 1.005403 -0.08552 0.439229 6.977712 -60.8765 100.4299 1016.632 32.26015

BG-1LT

Report Properties Start Time = 2021-09-30 10:25:40 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 3.407098 45.67834 71.40068 21714.51 27.2494 20820 12.65359 13.533 46.05217 1.005905 -0.10351 0.397725 6.890922 -55.5836 128.7168 1022.24 29.46 ####### 3.407098 45.67834 71.40068 21714.51 27.2494 20820 12.65359 13.533 46.05217 1.005905 -0.10351 0.397725 6.890922 -55.5836 128.7168 1022.24 29.46 ####### 3.31658 44.46582 69.50278 21714.88 27.24828 20820.8 12.65412 13.53352 46.05136 1.005906 -0.10378 0.397095 6.893027 -55.7007 142.0105 1022.2 29.46 ####### 3.311051 44.39175 69.38685 21714.91 27.24821 20820.85 12.65415 13.53355 46.05131 1.005906 29.46 ####### 3.305521 44.31768 69.27091 21714.93 27.24814 20820.9 12.65418 13.53358 46.05126 1.005906 -0.10381 0.397018 6.893285 -55.715 143.6346 1022.196 29.46 ####### 3.258607 43.69351 68.29523 21733.56 27.24907 20838.4 12.6658 13.54496 46.01179 1.005914 -0.09663 0.413586 6.895086 -55.8153 145.3801 1022.201 29.4685 ####### 3.254337 43.6365 68.20605 21734.4 27.24908 20839.2 12.66633 13.54548 46.01002 1.005915 -0.09632 0.414306 6.895216 -55.8226 145.7789 1022.2 29.46888 ####### 3.250067 43.57949 68.11688 21735.23 27.2491 20840 12.66685 13.546 46.00825 1.005915 -0.09601 0.415026 6.895347 -55.8299 146.1777 1022.199 29.46925 ######## 3.245798 43.52249 68.02771 21736.07 27.24911 20840.79 12.66738 13.54652 46.00647 1.005916 -0.0957 0.415746 6.895478 -55.8372 146.5764 1022.199 29.46963 ######## 3.207192 42.99927 67.21184 21695.14 27.25456 20799.47 12.63999 13.51966 46.09329 1.005893 -0.08321 0.44455 6.897486 -55.9508 147.863 1022.234 29.48713 ####### 3.204265 42.95986 67.15031 21693.66 27.25482 20797.95 12.63898 13.51867 46.09644 1.005893 -0.08252 0.446145 6.897616 -55.9582 148.001 1022.236 29.48807

T1-4LT

Report Properties Start Time = 2021-09-30 10:54:01 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 7.141962 96.04711 149.5859 15019.42 28.85538 13989.28 8.214035 9.093033 66.58051 1.00212 -0.08099 0.449656 7.138058 -69.6695 138.3076 1022.191 32.05769 ####### 7.151413 96.17335 149.7825 15018.29 28.855 13988.32 8.213421 9.092406 66.58553 1.002119 -0.08066 0.450434 7.136895 -69.6042 138.1396 1022.19 32.05866 ######## 7.160865 96.29958 149.9791 15017.15 28.85463 13987.35 8.212808 9.091779 66.59056 1.002119 -0.08032 0.451212 7.135732 -69.5389 137.9716 1022.189 32.05962 ####### 7.226924 97.15903 151.3305 15059.33 28.8296 14032.89 8.241774 9.121377 66.40411 1.002148 -0.08051 0.450768 7.121087 -68.7128 136.2518 1022.215 32.07633 ####### 7.232374 97.23045 151.4424 15060.46 28.82825 14034.28 8.242661 9.122283 66.3991 1.002149 -0.08056 0.450663 7.120093 -68.6568 136.1283 1022.216 32.0774 ####### 7.237823 97.30187 151.5542 15061.59 28.8269 14035.68 8.243546 9.123189 66.39409 1.00215 -0.0806 0.450558 7.119099 -68.6008 136.0049 1022.217 32.07847 ######## 7.243273 97.3733 151.6661 15062.73 28.82555 14037.07 8.244433 9.124095 66.38908 1.002151 -0.08065 0.450453 7.118106 -68.5448 135.8815 1022.218 32.07954 ######## 7.31874 98.28226 153.1047 15076.75 28.78596 14060.05 8.259047 9.13903 66.32733 1.002174 -0.08793 0.433657 7.103264 -67.7104 134.3561 1022.21 32.08818 ####### 7.323531 98.34138 153.1981 15078.12 28.78372 14061.88 8.260212 9.140222 66.32131 1.002176 -0.08825 0.432917 7.102309 -67.6566 134.253 1022.21 32.08889 ####### 7.328321 98.40051 153.2914 15079.48 28.78149 14063.71 8.261376 9.141412 66.31528 1.002177 -0.08857 0.432177 7.101354 -67.6029 134.1498 1022.21 32.0896 ####### 7.367832 98.88641 154.0549 15040.91 28.73316 14039.82 8.246167 9.125886 66.4854 1.00218 -0.10144 0.402498 7.089324 -66.9195 132.8363 1022.202 32.10642

T2-4LT

Report Properties Start Time = 2021-09-30 11:10:22 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties

Device Model = Aqua TROLL 400

Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 4.688448 62.17469 96.90263 12517.81 28.49298 11734.9 6.792253 7.63353 79.88802 1.001187 -0.08689 0.436052 7.004452 -62.1342 111.1738 1022.15 33.45 ####### 4.688448 62.17469 96.90263 12517.81 28.49298 11734.9 6.792253 7.63353 79.88802 1.001187 -0.08689 0.436052 7.004452 -62.1342 111.1738 1022.15 33.45 ######## 4.688448 62.17469 96.90263 12517.81 28.49298 11734.9 6.792253 7.63353 79.88802 1.001187 -0.08689 0.436052 7.004452 -62.1342 111.1738 1022.15 33.45 ####### 4.62878 61.30049 95.5584 12519.12 28.41366 11752.82 6.803452 7.639524 79.87791 1.001202 -0.08095 0.449751 6.993217 -61.4954 110.9194 1022.092 33.45 ######## 4.624629 61.23967 95.46489 12519.21 28.40814 11754.07 6.804231 7.639942 79.8772 1.001203 -0.08054 0.450704 6.992435 -61.4509 110.9017 1022.088 33.45 ####### 4.620479 61.17886 95.37138 12519.3 28.40262 11755.32 6.80501 7.640358 79.8765 1.001204 -0.08013 0.451657 6.991653 -61.4065 110.884 1022.084 33.45 ####### 4.616328 61.11805 95.27787 12519.39 28.3971 11756.56 6.805789 7.640776 79.87579 1.001205 -0.07971 0.45261 6.990872 -61.3621 110.8662 1022.08 33.45 ######## 4.587892 60.6198 94.50685 12516.31 28.38919 11755.34 6.805025 7.641027 79.89578 1.00121 -0.09516 0.416988 6.981519 -60.8381 110.815 1022.134 33.46762 ######## 4.584845 60.57143 94.43224 12516.21 28.38651 11755.81 6.805318 7.641214 79.8964 1.001211 -0.09569 0.415763 6.980763 -60.7955 110.8052 1022.135 33.46842 -60.7528 110.7954 1022.136 33.46923 ####### 4.581797 60.52305 94.35764 12516.1 28.38382 11756.28 6.805612 7.641401 79.89702 1.001211 -0.09622 0.414537 6.980006 ####### 4.550121 60.18985 93.84149 12521.58 28.36268 11765.9 6.81162 7.647833 79.86209 1.001223 -0.11622 0.368403 6.971376 -60.2719 110.6086 1022.121 33.47767

T3-4LT

Report Properties Start Time = 2021-09-30 11:26:20 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.682456 77.14165 119.9068 14115.27 29.67681 12965.98 7.582951 8.427887 517.4885 1.001399 -0.09542 0.416386 6.923414 -57.8163 110.5689 1022.077 35.40694 ####### 5.63814 76.54024 118.9858 14321.72 29.63763 13160.74 7.697341 8.554482 292.7635 1.001497 ####### 5.175958 70.14607 109.0852 14535.37 29.41085 13406.33 7.84399 8.714111 68.79794 1.001676 -0.09016 0.428509 6.917401 -57.4387 108.5945 1022.053 35.41784 ####### 5.142302 69.66149 108.3385 14537.61 29.38699 13413.9 7.848795 8.719038 68.78728 1.001686 -0.09014 0.428571 6.916795 -57.4027 108.518 1022.052 35.41857 ####### 5.108645 69.1769 107.5918 14539.84 29.36312 13421.48 7.8536 8.723964 68.77663 1.001697 -0.09011 0.428633 6.916189 -57.3668 108.4415 1022.051 35.4193 ####### 5.074988 68.69232 106.8451 14542.07 29.33926 13429.06 7.858405 8.728889 68.76597 1.001708 -0.09008 0.428696 6.915582 -57.3309 108.365 1022.05 35.42003 ####### 4.868656 65.81896 102.3957 14555.85 29.26233 13460.08 7.878071 8.749054 68.7009 1.001746 -0.07139 0.471808 6.907448 -56.8646 107.7519 1022.059 35.42828 ######## 4.850456 65.56642 102.0043 14556.6 29.25499 13462.51 7.879608 8.750629 68.69737 1.00175 -0.07045 0.47397 6.906892 -56.8322 107.7033 1022.059 35.42883 ####### 4.832256 65.31387 101.613 14557.34 29.24765 13464.93 7.881145 8.752206 68.69386 1.001753 -0.06952 0.476132 6.906336 -56.7998 107.6547 1022.059 35.42939 ######## 4.814056 65.06133 101.2216 14558.09 29.24031 13467.36 7.882683 8.753781 68.69034 1.001757 -0.06858 0.478294 6.905781 -56.7674 107.6061 1022.058 35.42995 ####### 4.705593 63.43214 98.72245 14563.47 29.17618 13487.64 7.895544 8.766967 68.66494 1.001786 -0.08558 0.439079 6.897846 -56.3086 107.1564 1022.051 35.43848

T3-3LT

Report Properties Start Time = 2021-09-30 12:20:01 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 4.798573 70.30615 107.9664 16162.89 34.02525 13786.36 8.079852 8.961135 61.87014 1.000352 -0.08516 0.440058 6.895512 -57.0438 94.84888 1022.01 ####### 4.700458 68.56713 105.3868 16180.51 33.73791 13866.31 8.131212 9.013101 61.80276 1.000488 -0.08378 0.443228 6.891493 -56.7697 97.31843 1022 39.14966 ####### 4.694384 68.45948 105.2271 16181.6 33.72012 13871.26 8.134392 9.016318 61.79859 1.000496 ####### 4.68831 68.35184 105.0674 16182.69 33.70234 13876.21 8.137571 9.019535 61.79442 1.000505 -0.08361 0.443621 6.890996 -56.7358 97.62417 1021.999 ####### 4.693197 68.10805 104.7845 16213.5 33.52744 13942.69 8.18017 9.062749 61.67706 1.000596 -0.07651 0.459994 6.889181 -56.6164 97.733 1021.992 39.15785 ####### 4.691001 68.05463 104.7087 16215.28 33.5127 13947.57 8.183302 9.065923 61.67025 1.000603 -0.07617 0.460791 6.889002 -56.6044 97.79843 1021.991 39.15858 ####### 4.688807 68.00122 104.6329 16217.07 33.49797 13952.46 8.186434 9.069097 61.66345 1.00061 -0.07582 0.461588 6.888824 -56.5924 97.86386 1021.99 39.15932 ######## 4.686611 67.94781 104.5571 16218.86 33.48323 13957.34 8.189566 9.07227 61.65664 1.000618 -0.07548 0.462385 6.888646 -56.5804 97.92929 1021.99 39.16005 ####### 4.673241 67.61037 104.0784 16189.89 33.21749 13993.6 8.213098 9.095837 61.76697 1.000725 -0.07494 0.463622 6.886838 -56.4355 98.16616 1021.972 39.17726 ####### 4.672356 67.58412 104.0419 16189.17 33.20107 13996.75 8.215133 9.097887 61.76969 1.000732 -0.07478 0.463984 6.886708 -56.4257 98.188 1021.971 39.17823 ######## 4.671471 67.55788 104.0054 16188.46 33.18465 13999.9 8.217169 9.099937 61.77242 1.000739 -0.07463 0.464347 6.886577 -56.4159 98.20985 1021.97 39.17919

T3-2LT

Report Properties Start Time = 2021-09-30 12:55:02 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties

Device Model = Aqua TROLL 400

Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.873027 85.63022 131.6928 17452.8 33.4481 15027.93 8.873325 9.768153 57.29741 1.001135 -0.07905 0.454148 7.136284 -70.6198 97.90482 1021.75 38.86839 ####### 5.869266 85.56454 131.5951 17454.85 33.43959 15031.79 8.875816 9.770663 57.29066 1.00114 -0.07861 0.455166 7.13588 -70.5961 98.06066 1021.75 38.86958 ####### 5.865504 85.49887 131.4975 17456.9 33.43107 15035.65 8.878307 9.773174 57.28392 1.001145 -0.07817 0.456183 7.135474 -70.5724 98.21651 1021.75 38.87077 ####### 5.861743 85.43319 131.3999 17458.96 33.42256 15039.51 8.880798 9.775684 57.27718 1.001149 -0.07772 0.4572 7.135069 -70.5486 98.37237 1021.75 38.87196 ####### 5.851213 85.12274 130.9677 17459.01 33.39148 15047.28 8.885834 9.780733 57.27703 1.001163 -0.07633 0.460424 7.131821 -70.3471 98.48208 1021.758 38.87809 ####### 5.849247 85.08265 130.9094 17459.82 33.3867 15049.16 8.887048 9.781956 57.27435 1.001166 -0.07609 0.460973 7.131513 -70.3286 98.54868 1021.759 38.87884 ####### 5.847281 85.04255 130.8512 17460.63 33.38192 15051.04 8.888261 9.783178 57.27168 1.001168 -0.07585 0.461522 7.131205 -70.31 98.6153 1021.759 38.87959 9.7844 57.26901 1.001171 -0.07561 0.462071 7.130897 -70.2915 ####### 5.845314 85.00246 130.7929 17461.45 33.37714 15052.92 8.889475 98.6819 1021.76 38.88034 ####### 5.839057 84.80733 130.5262 17452.96 33.21049 15087.03 8.911634 9.806567 57.29688 1.001244 -0.08156 0.448359 7.127133 -70.0485 98.82771 1021.777 38.89735 ######## 5.83834 84.78848 130.4998 17452.71 33.2019 15088.94 8.912877 9.807811 57.2977 1.001248 -0.08177 0.447872 7.126876 -70.0322 98.84597 1021.778 38.89831 ####### 5.837622 84.76962 130.4733 17452.46 33.19332 15090.85 8.914119 9.809055 57.29853 1.001251 -0.08198 0.447385 7.126619 -70.0159 98.86423 1021.779 38.89926

T2-3LT

Report Properties Start Time = 2021-09-30 13:34:29 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.70093 81.5027 125.8261 18750.33 32.63993 16361.56 9.805519 10.63501 643.8376 1.002095 -0.08775 0.434063 7.193872 -73.5339 103.8798 1021.31 39.42816 ####### 5.660858 81.08542 125.1973 19578.54 32.63358 17084.24 10.23936 11.10476 303.1438 1.002419 -0.08699 0.43582 7.193173 -73.4883 103.7592 1021.31 39.42913 ####### 5.620785 80.66814 124.5685 20406.75 32.62724 17806.93 10.6732 11.5745 0 1.002743 -0.08623 0.437576 7.192474 -73.4427 103.6386 1021.31 39.4301 ####### 5.138184 73.72113 113.8367 20097.34 31.95417 17743.17 10.65093 11.53306 157.8369 1.002949 ####### 5.102993 73.29848 113.1867 20455.41 31.93199 18064.39 10.84452 11.74185 64.30594 1.003101 -0.07643 0.460189 7.175185 -72.4434 103.5611 1021.301 ####### 5.067801 72.87582 112.5367 20813.47 31.9098 18385.61 11.03812 11.95065 0 1.003251 -0.07579 0.461655 7.174139 -72.3803 103.541 1021.3 39.43972 ####### 4.855428 69.66741 107.6028 20464.38 31.81627 18107.18 10.86987 11.76966 48.86546 1.003157 -0.08397 0.4428 7.16046 -71.5912 103.5058 1021.308 39.45641 ######## 4.83677 69.39632 107.1853 20463.56 31.80054 18111.21 10.87252 11.77228 48.86739 1.003165 -0.08415 0.44237 7.159554 -71.5388 103.5014 1021.309 39.45731 ####### 4.81811 69.12523 106.7677 20462.75 31.7848 18115.24 10.87518 11.77491 48.86933 1.003172 -0.08434 0.44194 7.158649 -71.4865 103.4969 1021.309 39.45821 ####### 4.799452 68.85413 106.3502 20461.94 31.76907 18119.27 10.87783 11.77753 48.87126 1.003179 -0.08453 0.44151 7.157744 -71.4341 103.4924 1021.309 39.45912 ######## 4.685668 67.0183 103.5647 20464.84 31.68394 18148.02 10.89671 11.79621 48.8643 1.003221 -0.08648 0.437006 7.145723 -70.7332 103.4422 1021.275 39.46801

T2-2LT

Report Properties Start Time = 2021-09-30 13:46:17 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties

Device Model = Aqua TROLL 400

Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 4.911281 69.58338 107.6266 19234.29 31.21136 17194.4 10.27519 11.17636 51.99048 1.002914 -0.07863 0.455121 7.198843 -73.6342 99.56694 1021.192 39.93111 ######## 4.828892 68.3793 105.7757 19245.46 31.19808 17208.29 10.28423 11.18539 51.9603 1.002925 -0.08949 0.430053 7.186415 -72.9306 99.6791 1021.21 39.9298 ######## 4.819013 68.23777 105.5572 19246.22 31.19742 17209.16 10.2848 11.18596 51.95825 1.002926 -0.08968 0.429624 7.185386 -72.8724 99.74517 1021.209 39.92998 ######## 4.809134 68.09624 105.3386 19246.98 31.19675 17210.04 10.28537 11.18652 51.9562 1.002926 -0.08987 0.429194 7.184356 -72.8142 99.81123 1021.208 39.93015 ######## 4.799255 67.95471 105.1201 19247.74 31.19609 17210.91 10.28593 11.18709 51.95415 1.002927 -0.09005 0.428765 7.183327 -72.756 99.8773 1021.207 39.93033 ####### 4.745484 67.12786 103.8593 19258.32 31.10847 17246.19 10.30894 11.21002 51.9256 1.002972 -0.10573 0.39261 7.171181 -72.0474 99.96848 1021.209 39.93882 ######## 4.740409 67.05244 103.7436 19259.05 31.10442 17248.03 10.31014 11.21122 51.92364 1.002975 -0.10657 0.390665 7.170323 -71.9979 99.98531 1021.21 ####### 4.735335 66.97701 103.6279 19259.78 31.10038 17249.88 10.31134 11.21242 51.92167 1.002977 -0.10741 0.388719 7.169464 -71.9484 100.0021 1021.21 39.93958 ####### 4.686952 66.24962 102.5149 19253.71 31.0602 17256.3 10.31555 11.21659 51.93805 1.002993 ####### 4.683602 66.19914 102.4377 19253.66 31.05688 17257.24 10.31616 11.21721 51.93817 1.002994 ######## 4.680252 66.14866 102.3604 19253.62 31.05355 17258.18 10.31677 11.21782 51.93829 1.002996

T1-3LT

Report Properties Start Time = 2021-09-30 14:01:10 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties

Device Model = Aqua TROLL 400

Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.172728 73.95926 114.2345 19801.84 31.67278 17563.38 10.515 11.4162 50.50036 1.002942 -0.08795 0.433613 7.184824 -72.9481 96.27061 1021.03 ######## 4.93352 70.4888 108.8921 19817.03 31.62593 17590.82 10.53293 11.43403 50.46166 1.00297 -0.09238 0.423383 7.168053 -71.9935 98.48795 1021.067 39.90062 ######## 4.918347 70.26868 108.5533 19817.99 31.62295 17592.56 10.53406 11.43516 50.45921 1.002972 -0.09267 0.422734 7.16699 -71.9329 98.62859 1021.07 39.90003 ######## 4.903175 70.04856 108.2144 19818.95 31.61998 17594.3 10.5352 11.43629 50.45675 1.002974 -0.09295 0.422085 7.165926 -71.8723 98.76922 1021.072 39.89943 ######## 4.888003 69.82845 107.8755 19819.92 31.61701 17596.04 10.53634 11.43743 50.4543 1.002976 -0.09323 0.421437 7.164862 -71.8118 98.90986 1021.074 39.89884 ####### 4.809348 68.57379 105.964 19792.9 31.58411 17581.87 10.52713 11.42822 50.52317 1.00298 -0.1195 0.360833 7.154457 -71.2077 99.00108 1021.016 39.90897 ####### 4.799672 68.42829 105.7409 19792.07 31.58142 17581.93 10.52717 11.42826 50.52529 1.002981 -0.1208 0.357836 7.153558 -71.156 99.06198 1021.015 39.90918 ####### 4.789996 68.28279 105.5179 19791.24 31.57874 17581.99 10.52722 11.4283 50.52741 1.002982 ####### 4.713038 67.10975 103.7315 19821.67 31.41616 17657.79 10.57677 11.47756 50.44984 1.003071 -0.06268 0.491894 7.142463 -70.4932 99.26088 1021.045 39.91804 ####### 4.707268 67.02135 103.5967 19822.58 31.40809 17661 10.57887 11.47965 50.44754 1.003075 -0.06054 0.496846 7.141751 -70.4511 99.27653 1021.046 39.91859 ####### 4.701499 66.93297 103.4618 19823.48 31.40003 17664.22 10.58098 11.48175 50.44524 1.00308 -0.05839 0.501798 7.141039 -70.4089 99.29217 1021.046 39.91913

T1-2LT

Report Properties Start Time = 2021-09-30 14:08:47 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 4.847707 68.26707 105.8037 21511.77 30.3333 19523.03 11.80025 12.68997 46.48619 1.004327 -0.09067 0.427348 7.014511 -63.0729 101.375 1020.94 39.92 ####### 4.847707 68.26707 105.8037 21511.77 30.3333 19523.03 11.80025 12.68997 46.48619 1.004327 -0.09067 0.427348 7.014511 -63.0729 101.375 1020.94 39.92 ######## 4.591126 64.56591 100.083 21385.86 30.27186 19429.45 11.73856 12.62914 46.75999 1.004301 -0.09263 0.422822 7.008328 -62.7133 103.9418 1020.94 39.92 ####### 4.574709 64.32909 99.71692 21377.8 30.26793 19423.46 11.73462 12.62525 46.77751 1.004299 -0.09275 0.422533 7.007933 -62.6903 104.106 1020.94 39.92 ####### 4.558291 64.09227 99.35087 21369.74 30.264 19417.47 11.73067 12.62136 46.79503 1.004297 -0.09288 0.422243 7.007537 -62.6673 104.2703 1020.94 39.92 ######## 4.541874 63.85545 98.98483 21361.69 30.26007 19411.48 11.72672 12.61746 46.81255 1.004296 -0.093 0.421954 7.007142 -62.6443 104.4345 1020.94 39.92 ######## 4.443325 62.35197 96.68066 21353.82 30.21061 19420.98 11.73298 12.62364 46.8301 1.004316 -0.06726 0.481343 7.003967 -62.4542 104.2294 1020.922 39.92871 ####### 4.432272 62.18884 96.42938 21350.22 30.20679 19419.01 11.73167 12.62235 46.83794 1.004316 -0.06614 0.483909 7.003665 -62.4364 104.2862 1020.921 39.92911 ####### 4.421219 62.02569 96.17812 21346.63 30.20298 19417.03 11.73037 12.62107 46.84577 1.004316 -0.06503 0.486476 7.003362 -62.4185 104.3429 1020.921 39.9295 ######## 4.410166 61.86255 95.92684 21343.03 30.19916 19415.05 11.72906 12.61978 46.85361 1.004317 -0.06392 0.489043 7.00306 -62.4007 104.3997 1020.92 39.9299 ####### 4.327993 60.65734 94.07576 21440.14 30.04588 19555.51 11.8216 12.71108 46.64158 1.004434 -0.08647 0.437034 6.999901 -62.1933 104.2993 1020.902 39.9298

T1-1LT

Report Properties Start Time = 2021-09-30 14:11:37 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 4.618147 63.83192 99.21838 21451.02 29.15134 19875.11 12.03191 12.91882 46.61783 1.004869 -0.06412 0.488588 7.001626 -62.1213 99.94706 1020.95 39.98 ####### 4.618147 63.83192 99.21838 21451.02 29.15134 19875.11 12.03191 12.91882 46.61783 1.004869 -0.06412 0.488588 7.001626 -62.1213 99.94706 1020.95 39.98 ######## 4.395014 60.74245 94.4132 21411.07 29.15246 19837.71 12.00721 12.89451 46.70481 1.004851 -0.07866 0.455043 6.997941 -61.9152 101.9742 1020.921 39.98 ######## 4.380414 60.54029 94.09879 21408.46 29.15253 19835.26 12.00559 12.89292 46.7105 1.004849 -0.07961 0.452848 6.9977 -61.9017 102.1069 1020.919 39.98 ####### 4.365814 60.33815 93.78438 21405.85 29.15261 19832.81 12.00398 12.89133 46.71619 1.004848 -0.08056 0.450653 6.997459 -61.8882 102.2395 1020.918 39.98 ####### 4.351214 60.136 93.46997 21403.23 29.15268 19830.37 12.00236 12.88974 46.72189 1.004847 -0.08151 0.448458 6.997218 -61.8747 102.3721 1020.916 39.98 ####### 4.259874 58.86754 91.50182 21394.19 29.15169 19822.33 11.99706 12.88452 46.74168 1.004843 -0.09546 0.416298 6.995835 -61.7972 102.2364 1020.946 39.99725 91.287 21392.72 29.15167 19820.98 11.99617 12.88364 46.74487 1.004843 -0.09646 0.413985 6.995676 -61.7883 102.2844 1020.947 39.99801 ####### 4.249901 58.72929 ######## 4.239928 58.59105 91.07219 21391.26 29.15166 19819.63 11.99528 12.88276 46.74805 1.004842 -0.09746 0.411672 6.995517 -61.7794 102.3323 1020.947 39.99877 ######## 4.229955 58.45279 90.85738 21389.8 29.15164 19818.28 11.99439 12.88188 46.75124 1.004841 -0.09846 0.409358 6.995358 -61.7704 102.3802 1020.948 39.99953 ####### 4.15623 57.42876 89.27219 21488.33 29.12331 19919.57 12.06124 12.94772 46.537 1.0049 -0.0951 0.417118 6.993349 -61.6501 102.3487 1020.958 39.99954

BG-2HT

Report Properties Start Time = 2021-09-22 10:20:16 Time Offset = -04:00:00 Duration = 00:00:20 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789301

Instrument Properties
Device Model = PowerPack
Device SN = 793927

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 3.731902 54.55735 85.82183 36277.93 29.19809 33584.97 21.40185 21.83023 27.56499 1.01183 -0.09673 0.413362 7.133463 -66.1144 95.77642 1017.499 29.50966 ######## 3.730672 54.54322 85.79946 36292.02 29.19957 33597.14 21.41043 21.83814 27.55422 1.011836 -0.09518 0.416934 7.133426 -66.1123 95.9445 1017.501 29.51086 ######## 3.729441 54.52909 85.77708 36306.11 29.20105 33609.3 21.41901 21.84605 27.54345 1.011842 -0.09363 0.420505 7.133389 -66.1102 96.11259 1017.503 29.51206 ####### 3.725478 54.48133 85.69855 36300.68 29.19704 33606.66 21.41713 21.84433 27.54773 1.011842 -0.1014 0.402585 7.133374 -66.1128 97.17669 1017.49 29.51801 ######## 3.724812 54.47359 85.68616 36306.03 29.19745 33611.37 21.42045 21.84739 27.54365 1.011845 -0.10113 0.403201 7.133359 -66.1121 97.29099 1017.49 29.51875 ####### 3.724147 54.46585 85.67377 36311.38 29.19786 33616.08 21.42378 21.85045 27.53956 1.011847 -0.10087 0.403818 7.133343 -66.1114 97.40528 1017.491 29.51949 ####### 3.723481 54.4581 85.66138 36316.73 29.19827 33620.79 21.4271 21.85351 27.53548 1.011849 -0.1006 0.404434 7.133328 -66.1107 97.51958 1017.491 29.52024 33563.9 21.38721 21.81654 27.56403 1.011807 -0.08594 0.438242 7.133457 -66.1236 ####### 3.727218 54.52085 85.75478 36279.17 29.23553 98.8939 1017.481 29.53731 ####### 3.727236 54.5219 85.75612 36278.24 29.23722 33562.04 21.3859 21.81532 27.56474 1.011806 -0.08534 0.439643 7.13346 -66.1242 98.98621 1017.481 29.53826 ######## 3.727253 54.52296 85.75747 36277.31 29.23891 33560.17 21.38459 21.81411 27.56544 1.011804 -0.08473 0.441044 7.133463 -66.1247 99.07852 1017.48 29.53922 ####### 3.729106 54.56068 85.81589 36313.59 29.24355 33590.98 21.40633 21.83414 27.53791 1.011819 -0.07806 0.456422 7.134017 -66.1555 100.3591 1017.48 29.5477

Resolu	<u>te</u>		EQUIPV	IENT CALIBRA	HON LOG				
Field Technology CALVEN LAYMAN			12/15/	121	Time (Co	dibration)	6101	(6:35	
1943Troll Sv 784 310			Turbidity Meter Type		•		5N 942	29-4417	
Project MCMANUS		uarer	DEC 2021	Weather Conditions	720/56*				
	-			Calibration Log					
	Steadard I of # / Pule of Expiration	lemp of hundard (°C	Value of Standard	Instrument Rending at Calibration				Comments	
DG (%) (1pt 100% water saturated air cal)	MIN-			101.33		-			
Specific Conductance (p.S.cm)	20440203 2/22	13.84	4490	4381.4					
pH (4)	20440203 2/22	13 .93	4	3.96					
p11 (7)	19450117 2/22	14.16	7	7.02					
p21 (10)	21010067 2/22	14.38	10	10.04					
ORP (mV)	19460167 2/22	14.45	228	242.9					31
			Value of Standard	Instrument Reading	Acceptable Range	Pe	us?		Comments
Turbality 0 NTU	Market .		0	0.00	+/-0 \$ NTU	Yes	No		
Turbidity 1 NTU			1	1.38	+/- Q 5 NTU	Yes	Na		
Turbidity 10 NTU			10	9.71	≥/- 0 5 NTU	Yes	No		
		Temp of Standard (*C)	Value of Standard	Past Calibration Reading	Acceptable Range	Pa	331		Comments
NDd-Day pH (4) check		21.15	4	4.22	*/- 0 I SU	Ya	Na		
Mid-Day pH (7) check		20.42	7	7.32	4/-01SU	Yas	No		
Mid-Day #H (10) check		21.73	10	10.27	+/- 0 1 SU	V a	No		

Calibration Report

Instrument Aqua TROLL 400

Serial Number 789310 Created 12/15/2021

Sensor RDO

Serial Number 878616 Last Calibrated 12/15/2021

Calibration Details

Slope 1.024078 Offset 0.00 mg/L

Calibration point 100%

Concentration 10.14 mg/L
Temperature 13.75 °C
Barometric Pressure 1,030.7 mbar

Sensor Conductivity

Serial Number 789310 Last Calibrated 12/15/2021

Calibration Details

Cell Constant 0.991
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Sensor **Level**Serial Number 787063

Last Calibrated Factory Defaults

Sensor pH/ORP
Serial Number 21174
Last Calibrated 12/15/2021

Calibration Details

Total Calibration Points 3

Calibration Point 1

pH of Buffer	4.00 pH
pH mV	158.0 mV
Temperature	13.94 °C

Calibration Point 2

pH of Buffer	7.06 pH
pH mV	-11.4 mV
Temperature	14.16 °C

Calibration Point 3

pH of Buffer	10.08 pH
pH mV	-179.5 mV
Temperature	14.38 °C

Slope and Offset 1

Slope	-55.35 mV/pH
Offset	-8 1 mV

Slope and Offset 2

Slope	-55.66 mV/pH
Offset	-8.1 mV

ORP

ORP Solution	ZoBell's
Offset	11.9 mV
Temperature	14.45 °C

Location Properties
Location Name = T4-1HB

Report Properties Start Time = 2021-12-15 07:02:21 Time Offset = -05:00:00 Duration = 00:00:24 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.387952 60.59576 94.17616 27720.61 15.64288 33752.98 21.24063 21.93943 36.07424 1.015268 -0.17696 0.228299 7.356972 -28.0873 141.3088 1030.84 14.09 ####### 5.387952 60.59576 94.17616 27720.61 15.64288 33752.98 21.24063 21.93943 36.07424 1.015268 -0.17696 0.228299 7.356972 -28.0873 141.3088 1030.84 14.09 ####### 5.387952 60.59576 94.17616 27720.61 15.64288 33752.98 21.24063 21.93943 36.07424 1.015268 -0.17696 0.228299 7.356972 -28.0873 141.3088 1030.84 14.09 ####### 5.387952 60.59576 94.17616 27720.61 15.64288 33752.98 21.24063 21.93943 36.07424 1.015268 -0.17696 0.228299 7.356972 -28.0873 141.3088 1030.84 14.09 ####### 5.357088 60.2983 93.71021 27739.83 15.68564 33742.82 21.23541 21.93284 36.04924 1.015255 -0.18989 0.198483 7.356194 -28.0477 150.6724 1030.849 14.09 ####### 5.355116 60.2793 93.68045 27741.06 15.68837 33742.18 21.23508 21.93242 36.04765 1.015255 -0.19071 0.196578 7.356144 -28.0452 151.2706 1030.849 14.09 ####### 5.353144 60.2603 93.65069 27742.29 15.69111 33741.53 21.23474 21.93199 36.04605 1.015254 -0.19154 0.194673 7.356095 -28.0426 151.8687 1030.85 14.09 ####### 5.351172 60.24129 93.62092 27743.52 15.69384 33740.88 21.23441 21.93157 36.04446 1.015253 -0.19236 0.192768 7.356045 -28.0401 152.4669 1030.851 14.09 ####### 5.327957 60.05579 93.3276 27740.69 15.72647 33711.89 21.21572 21.91273 36.04813 1.015232 -0.16705 0.251159 7.358016 -28.1535 153.8346 1030.875 14.10725 ####### 5.326123 60.03987 93.30253 27741.04 15.72903 33710.31 21.21474 21.9117 36.04767 1.015231 -0.16622 0.253078 7.358087 -28.1576 154.1318 1030.877 14.10804

Location Properties
Location Name = T4-1HS

Report Properties Start Time = 2021-12-15 07:12:50 Time Offset = -05:00:00 Duration = 00:00:18 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 6.41439 72.67506 112.8912 27633.86 16.09839 33294.64 20.94222 21.64151 36.18749 1.014947 -0.18372 0.212697 7.399719 -30.5226 172.3491 1030.843 14.4793 ####### 6.411372 72.64101 112.8382 27633.42 16.09853 33294 20.94179 21.6411 36.18806 1.014947 -0.18116 0.218604 7.39973 -30.5232 172.7174 1030.841 14.47912 ####### 6.408355 72.60696 112.7851 27632.98 16.09867 33293.38 20.94136 21.64069 36.18863 1.014947 ######## 6.405337 72.57292 112.732 27632.55 16.0988 33292.74 20.94093 21.64028 36.18921 1.014946 -0.17604 0.230416 7.399753 -30.5245 173.4539 1030.839 14.47876 ####### 6.369405 72.16419 112.0989 27624.17 16.10152 33280.57 20.93262 21.63237 36.20018 1.014939 -0.15335 0.282765 7.40038 -30.5601 174.0732 1030.857 14.49699 ####### 6.366923 72.13606 112.0553 27623.73 16.10169 33279.91 20.93217 21.63194 36.20076 1.014939 -0.15165 0.286675 7.400419 -30.5623 174.162 1030.858 14.49793 ####### 6.364442 72.10794 112.0116 27623.29 16.10186 33279.25 20.93172 21.63152 36.20133 1.014939 -0.14996 0.290584 7.400459 -30.5646 174.2509 1030.859 14.49887 ######## 6.36196 72.07981 111.968 27622.86 16.10203 33278.6 20.93127 21.63109 36.2019 1.014938 -0.14826 0.294494 7.400498 -30.5668 174.3397 1030.859 14.4998 ######## 6.324841 71.67007 111.3322 27647.76 16.10391 33307.16 20.9511 21.64965 36.1693 1.014953 -0.1743 0.234431 7.401121 -30.6018 174.5701 1030.868 14.49952 ######## 6.322477 71.64372 111.2913 27648.66 16.10405 33308.14 20.95179 21.65029 36.16812 1.014954 -0.17494 0.232963 7.40116 -30.604 174.6007 1030.869 14.49985

Location Properties
Location Name = T4-2HB

Report Properties Start Time = 2021-12-15 07:22:53 Time Offset = -05:00:00 Duration = 00:00:25 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.615914 74.62859 115.9946 28231.09 15.67007 34352.83 21.65736 22.32934 35.42194 1.015582 -0.18365 0.212858 7.443605 -32.9402 148.0983 1030.95 14.47 ####### 6.615914 74.62859 115.9946 28231.09 15.67007 34352.83 21.65736 22.32934 35.42194 1.015582 -0.18365 0.212858 7.443605 -32.9402 148.0983 1030.95 14.47 ######## 6.615914 74.62859 115.9946 28231.09 15.67007 34352.83 21.65736 22.32934 35.42194 1.015582 -0.18365 0.212858 7.443605 -32.9402 148.0983 1030.95 14.47 ####### 6.615914 74.62859 115.9946 28231.09 15.67007 34352.83 21.65736 22.32934 35.42194 1.015582 -0.18365 0.212858 7.443605 -32.9402 148.0983 1030.95 14.47 ####### 6.455869 72.91128 113.3158 28264.95 15.72941 34346.64 21.65563 22.32532 35.37952 1.015568 -0.1848 0.210218 7.445369 -33.0441 160.0766 1030.931 14.46063 ######## 6.445427 72.79922 113.141 28267.15 15.73328 34346.24 21.65551 22.32506 35.37675 1.015567 -0.18487 0.210046 7.445484 -33.0509 160.8582 1030.93 14.46002 ####### 6.434985 72.68718 112.9662 28269.36 15.73716 34345.84 21.6554 22.32479 35.37398 1.015566 -0.18495 0.209873 7.4456 -33.0577 161.6397 1030.928 14.45941 ######## 6.424542 72.57513 112.7914 28271.57 15.74103 34345.43 21.65529 22.32453 35.37122 1.015566 -0.18502 0.209701 7.445714 -33.0644 162.4213 1030.927 14.4588 ####### 6.334795 71.65774 111.3581 28281.52 15.77323 34331.86 21.64725 22.31571 35.35879 1.015553 -0.18723 0.204616 7.447772 -33.1832 162.1744 1030.939 14.46024 ####### 6.326637 71.5722 111.2246 28282.85 15.77621 34331.11 21.64685 22.31522 35.35712 1.015552 -0.18735 0.204323 7.447909 -33.1911 162.479 1030.939 14.46005

Location Properties
Location Name = T4-2HT

Report Properties Start Time = 2021-12-15 07:33:11 Time Offset = -05:00:00 Duration = 00:00:24 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.862652 78.31073 121.6181 27890.21 16.45085 33333.14 20.98256 21.66654 35.85487 1.014906 -0.13643 0.321779 7.464406 -34.1895 137.4624 1031.03 14.6 ####### 6.862652 78.31073 121.6181 27890.21 16.45085 33333.14 20.98256 21.66654 35.85487 1.014906 -0.13643 0.321779 7.464406 -34.1895 137.4624 1031.03 14.6 ######## 6.862652 78.31073 121.6181 27890.21 16.45085 33333.14 20.98256 21.66654 35.85487 1.014906 -0.13643 0.321779 7.464406 -34.1895 137.4624 1031.03 14.6 ####### 6.862652 78.31073 121.6181 27890.21 16.45085 33333.14 20.98256 21.66654 35.85487 1.014906 -0.13643 0.321779 7.464406 -34.1895 137.4624 1031.03 14.6 ######## 6.862652 78.31073 121.6181 27890.21 16.45085 33333.14 20.98256 21.66654 35.85487 1.014906 -0.13643 0.321779 7.464406 -34.1895 137.4624 1031.03 14.6 ######## 6.648658 75.89248 117.853 27926.11 16.45411 33373.56 21.01067 21.69281 35.80878 1.014926 -0.19282 0.191707 7.460742 -33.9886 146.6542 1030.952 14.58061 ####### 6.635469 75.74344 117.6209 27928.32 16.45432 33376.05 21.01241 21.69444 35.80594 1.014928 -0.1963 0.18369 7.460515 -33.9763 147.2207 1030.947 14.57942 ####### 6.62228 75.5944 117.3889 27930.54 16.45452 33378.54 21.01414 21.69605 35.8031 1.014929 -0.19977 0.175673 7.46029 -33.9639 147.7872 1030.943 14.57822 ######## 6.461797 73.82727 114.6397 27919.11 16.48952 33338.25 20.98758 21.66986 35.81776 1.014901 -0.17678 0.228713 7.45835 -33.8566 147.9142 1030.961 14.58909 ####### 6.449419 73.68949 114.4253 27919.46 16.49118 33337.41 20.98706 21.66932 35.81731 1.014901 -0.1771 0.22797 7.458175 -33.8469 148.1412 1030.959 14.58911

Location Properties
Location Name = T4-3HB

Report Properties Start Time = 2021-12-15 07:41:09 Time Offset = -05:00:00 Duration = 00:00:24 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.065628 69.04128 107.256 28322.5 16.17443 34064.74 21.47865 22.14208 35.30762 1.015342 -0.17311 0.23717 7.495185 -35.8843 129.331 1031.02 14.8 ####### 6.065628 69.04128 107.256 28322.5 16.17443 34064.74 21.47865 22.14208 35.30762 1.015342 -0.17311 0.23717 7.495185 -35.8843 129.331 1031.02 14.8 ####### 6.065628 69.04128 107.256 28322.5 16.17443 34064.74 21.47865 22.14208 35.30762 1.015342 -0.17311 0.23717 7.495185 -35.8843 129.331 1031.02 14.8 ####### 6.065628 69.04128 107.256 28322.5 16.17443 34064.74 21.47865 22.14208 35.30762 1.015342 -0.17311 0.23717 7.495185 -35.8843 129.331 1031.02 14.8 ######## 6.060027 69.02079 107.2217 28380.57 16.19394 34119.28 21.51729 22.17753 35.23539 1.015368 -0.16614 0.25325 7.494011 -35.824 136.9484 1031.02 14.79074 ####### 6.059664 69.01945 107.2195 28384.33 16.1952 34122.82 21.51979 22.17983 35.23071 1.015369 -0.16569 0.254292 7.493936 -35.8201 137.4424 1031.02 14.79014 6.0593 69.01813 107.2173 28388.1 16.19647 34126.36 21.5223 22.18213 35.22602 1.015371 -0.16524 0.255335 7.493859 -35.8162 137.9364 1031.02 14.78954 107.215 28391.86 16.19773 34129.89 21.5248 22.18443 35.22134 1.015373 -0.16479 0.256378 7.493783 ####### 6.058937 69.0168 -35.8123 138.4304 1031.02 14.78894 ####### 6.040041 68.89072 107.0098 28399.75 16.2361 34109.32 21.51208 22.17106 35.21159 1.015355 -0.16782 0.249389 7.494551 -35.8582 138.5875 1031.011 14.80742 ####### 6.039051 68.88455 106.9998 28401.6 16.23833 34109.81 21.51251 22.17138 35.20929 1.015355 -0.16777 0.249491 7.494555 -35.8587 138.7912 1031.011 14.80801

Location Properties
Location Name = T4-3HS

Report Properties Start Time = 2021-12-15 07:51:01 Time Offset = -05:00:00 Duration = 00:00:24 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 8.007293 91.41475 141.9775 27972.97 16.45779 33426.76 21.04765 21.7274 35.74879 1.014954 -0.18115 0.218626 7.591008 -41.3025 124.7794 1031.1 15.05 ####### 8.007293 91.41475 141.9775 27972.97 16.45779 33426.76 21.04765 21.7274 35.74879 1.014954 -0.18115 0.218626 7.591008 -41.3025 124.7794 1031.1 15.05 ####### 8.007293 91.41475 141.9775 27972.97 16.45779 33426.76 21.04765 21.7274 35.74879 1.014954 -0.18115 0.218626 7.591008 -41.3025 124.7794 1031.1 15.05 ####### 8.007293 91.41475 141.9775 27972.97 16.45779 33426.76 21.04765 21.7274 35.74879 1.014954 -0.18115 0.218626 7.591008 -41.3025 124.7794 1031.1 15.05 ######## 8.007293 91.41475 141.9775 27972.97 16.45779 33426.76 21.04765 21.7274 35.74879 1.014954 -0.18115 0.218626 7.591008 -41.3025 124.7794 1031.1 15.05 ####### 7.430084 84.9128 131.859 27945.54 16.52191 33345.18 20.99361 21.67437 35.78388 1.014899 -0.17782 0.226304 7.567799 -40.0028 132.0547 1031.021 15.04012 ######## 7.394029 84.50665 131.2269 27943.83 16.52592 33340.08 20.99023 21.67105 35.78608 1.014896 -0.17762 0.226783 7.56635 -39.9216 132.5091 1031.016 15.0395 ######## 7.357974 84.10051 130.5949 27942.12 16.52992 33334.98 20.98685 21.66774 35.78827 1.014892 -0.17741 0.227263 7.564899 -39.8404 132.9636 1031.011 15.03889 ####### 7.040707 80.49648 125.003 27931.42 16.53768 33316.36 20.97425 21.65563 35.80198 1.014881 -0.16012 0.267141 7.556065 -39.346 133.0968 1031.073 15.04872 ####### 7.012395 80.17625 124.5054 27930.27 16.53962 33313.5 20.97235 21.65378 35.80346 1.014879 -0.15928 0.269082 7.555099 -39.2919 133.2841 1031.073 15.0489 ####### 6.984083 79.856 124.0078 27929.11 16.54156 33310.65 20.97045 21.65193 35.80494 1.014877 -0.15844 0.271023 7.554132 -39.2378 133.4713 1031.074 15.04909

Location Properties
Location Name = T4-4HB

Report Properties Start Time = 2021-12-15 08:05:14 Time Offset = -05:00:00 Duration = 00:00:21 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.976108 68.64707 106.582 28296.68 16.72385 33609.48 21.18435 21.84616 35.33984 1.015002 -0.18155 0.217709 7.524747 -37.61 120.7816 1031.09 15.51 ####### 5.976108 68.64707 106.582 28296.68 16.72385 33609.48 21.18435 21.84616 35.33984 1.015002 -0.18155 0.217709 7.524747 -37.61 120.7816 1031.09 15.51 ####### 5.976108 68.64707 106.582 28296.68 16.72385 33609.48 21.18435 21.84616 35.33984 1.015002 -0.18155 0.217709 7.524747 -37.61 120.7816 1031.09 15.51 106.582 28296.68 16.72385 33609.48 21.18435 21.84616 35.33984 1.015002 -0.18155 0.217709 7.524747 ####### 5.976108 68.64707 -37.61 120.7816 1031.09 15.51 ####### 5.976108 68.64707 106.582 28296.68 16.72385 33609.48 21.18435 21.84616 35.33984 1.015002 -0.18155 0.217709 7.524747 -37.61 120.7816 1031.09 15.51 ####### 5.950242 68.35976 106.1309 28317.31 16.72341 33634.32 21.20156 21.86231 35.31409 1.015016 -0.17673 0.228829 7.52121 -37.411 127.1187 1031.041 15.51 ####### 5.948653 68.34211 106.1032 28318.58 16.72338 33635.85 21.20262 21.8633 35.3125 1.015017 -0.17643 0.229512 7.520993 -37.3987 127.5079 1031.038 15.51 ####### 5.947064 68.32446 106.0755 28319.85 16.72336 33637.38 21.20367 21.86429 35.31092 1.015017 -0.17614 0.230195 7.520775 -37.3865 127.8972 1031.035 15.51 ####### 5.925859 68.07572 105.6892 28307.12 16.72073 33624.25 21.19448 21.85576 35.32681 1.015011 -0.17486 0.233134 7.519622 -37.322 128.0714 1031.033 15.51 ####### 5.924269 68.05745 105.6607 28307.03 16.7206 33624.25 21.19447 21.85576 35.32692 1.015011 -0.17469 0.233535 7.519485 -37.3142 128.2314 1031.031 15.51

Location Properties
Location Name = T4-4HS

Report Properties Start Time = 2021-12-15 08:13:33 Time Offset = -05:00:00 Duration = 00:00:23 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 7.430409 85.35516 132.5163 28156.2 16.76701 33409.91 21.04763 21.71644 35.51615 1.014889 -0.18954 0.199279 7.508512 -36.7036 117.7759 1031.09 16.04 ####### 7.430409 85.35516 132.5163 28156.2 16.76701 33409.91 21.04763 21.71644 35.51615 1.014889 -0.18954 0.199279 7.508512 -36.7036 117.7759 1031.09 16.04 ####### 7.430409 85.35516 132.5163 28156.2 16.76701 33409.91 21.04763 21.71644 35.51615 1.014889 -0.18954 0.199279 7.508512 -36.7036 117.7759 1031.09 16.04 ####### 7.430409 85.35516 132.5163 28156.2 16.76701 33409.91 21.04763 21.71644 35.51615 1.014889 -0.18954 0.199279 7.508512 -36.7036 117.7759 1031.09 16.04 ####### 7.430409 85.35516 132.5163 28156.2 16.76701 33409.91 21.04763 21.71644 35.51615 1.014889 -0.18954 0.199279 7.508512 -36.7036 117.7759 1031.09 16.04 ####### 7.072737 81.24565 126.1314 28148.24 16.76636 33400.96 21.0414 21.71063 35.5262 1.014884 -0.18245 0.21563 7.503948 -36.4474 123.5994 1031.051 16.04978 ####### 7.050487 80.99 125.7342 28147.75 16.76632 33400.41 21.04101 21.71026 35.52682 1.014884 -0.18201 0.216647 7.503664 -36.4315 123.9617 1031.048 16.05039 ####### 7.028235 80.73434 125.337 28147.25 16.76628 33399.85 21.04062 21.7099 35.52745 1.014884 -0.18157 0.217664 7.50338 -36.4155 124.324 1031.046 16.051 ######## 6.775294 77.83846 120.8418 28170.65 16.76711 33426.98 21.05946 21.72754 35.49794 1.014898 -0.18162 0.217546 7.50176 -36.3245 124.3455 1031.051 16.0497 ######## 6.755305 77.60925 120.4858 28171.49 16.76714 33427.96 21.06014 21.72818 35.49688 1.014899 -0.18145 0.217942 7.501575 -36.3142 124.4894 1031.05 16.04988

Location Properties
Location Name = HT BACKGROUND

Report Properties Start Time = 2021-12-15 08:41:21 Time Offset = -05:00:00 Duration = 00:00:24 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.949773 81.94556 127.0838 30234.46 17.71986 35117.59 22.27082 22.82643 33.07484 1.015615 -0.17638 0.22963 7.625024 -43.3876 113.8648 1031.17 17.22 ####### 6.949773 81.94556 127.0838 30234.46 17.71986 35117.59 22.27082 22.82643 33.07484 1.015615 -0.17638 0.22963 7.625024 -43.3876 113.8648 1031.17 17.22 ######## 6.949773 81.94556 127.0838 30234.46 17.71986 35117.59 22.27082 22.82643 33.07484 1.015615 -0.17638 17.22 0.22963 7.625024 -43.3876 113.8648 1031.17 ######## 6.949773 81.94556 127.0838 30234.46 17.71986 35117.59 22.27082 22.82643 33.07484 1.015615 -0.17638 0.22963 7.625024 -43.3876 113.8648 1031.17 17.22 ######## 6.94167 81.82223 126.8973 30220.89 17.70429 35113.95 22.26772 22.82407 33.08969 1.015616 -0.1774 0.22728 7.623336 -43.2927 118.7099 1031.188 17.22919 6.94114 81.81417 126.8851 30220.01 17.70328 35113.72 22.26752 22.82392 33.09066 1.015617 -0.17747 0.227126 7.623226 -43.2865 119.0266 1031.189 17.22978 ######## 6.940611 81.80611 126.8729 30219.12 17.70226 35113.48 22.26732 22.82376 33.09163 1.015617 -0.17753 0.226973 7.623115 -43.2803 119.3432 1031.19 17.23038 ######## 6.940081 81.79805 126.8607 30218.23 17.70124 35113.24 22.26711 22.82361 33.0926 1.015617 -0.1776 0.226819 7.623005 -43.2741 119.6599 1031.192 17.23099 ####### 6.936832 81.777 126.8311 30271.69 17.70489 35172.51 22.30867 22.86213 33.03418 1.015648 -0.19062 0.19677 7.623908 -43.3243 119.6611 1031.215 17.23828 ####### 6.936476 81.77287 126.825 30273.76 17.70465 35175.1 22.31047 22.86382 33.03192 1.015649 -0.19124 0.195357 7.623905 -43.3241 119.7862 1031.216 17.23885

Location Properties
Location Name = T2-1HTS

Report Properties Start Time = 2021-12-15 09:05:32 Time Offset = -05:00:00 Duration = 00:00:25 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 7.268449 83.65679 129.8173 26271.19 17.44276 30702.95 19.20322 19.95692 38.06451 1.013338 -0.00359 0.628212 7.620588 -43.0875 109.0513 1031.44 17.67 ####### 7.268449 83.65679 129.8173 26271.19 17.44276 30702.95 19.20322 19.95692 38.06451 1.013338 -0.00359 0.628212 7.620588 -43.0875 109.0513 1031.44 17.67 17.67 ####### 7.268449 83.65679 129.8173 26271.19 17.44276 30702.95 19.20322 19.95692 38.06451 1.013338 -0.00359 0.628212 7.620588 -43.0875 109.0513 1031.44 ####### 7.268449 83.65679 129.8173 26271.19 17.44276 30702.95 19.20322 19.95692 38.06451 1.013338 -0.00359 0.628212 7.620588 -43.0875 109.0513 1031.44 17.67 ######## 6.875275 79.04569 122.6727 26299.97 17.37107 30785.87 19.25796 20.01082 38.02286 1.013396 -0.01671 0.597936 7.596581 -41.7303 112.9341 1031.44 17.67 ####### 6.850264 78.75237 122.2183 26301.8 17.36651 30791.14 19.26144 20.01424 38.02021 1.013399 -0.01755 0.59601 7.595053 -41.644 113.1811 1031.44 17.67 ####### 6.825253 78.45905 121.7638 26303.63 17.36195 30796.42 19.26492 20.01767 38.01756 1.013403 -0.01838 0.594085 7.593526 -41.5576 113.4281 17.67 ####### 6.800243 78.16573 121.3093 26305.46 17.35739 30801.69 19.2684 20.0211 38.01491 1.013406 -0.01922 0.592159 7.591999 -41.4713 113.6751 1031.44 17.67 ####### 6.606348 75.87004 117.752 26289.34 17.32816 30802.97 19.26837 20.02193 38.03823 1.013413 -0.01983 0.590739 7.583187 -40.9739 113.6722 1031.431 17.67 ######## 6.587758 75.65105 117.4127 26289.34 17.32505 30805.12 19.26975 20.02333 38.03823 1.013414 -0.02019 0.589913 7.582188 -40.9174 113.7699 1031.431 17.67

Location Properties
Location Name = T2-2HT

Report Properties Start Time = 2021-12-15 09:20:13 Time Offset = -05:00:00 Duration = 00:00:24 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.055233 69.84554 108.3954 26470.45 17.52578 30878.61 19.3264 20.07109 37.77797 1.013414 -0.18431 0.21134 7.48786 -35.6309 104.7337 1031.64 18.41 ####### 6.055233 69.84554 108.3954 26470.45 17.52578 30878.61 19.3264 20.07109 37.77797 1.013414 -0.18431 0.21134 7.48786 -35.6309 104.7337 1031.64 18.41 ######## 6.055233 69.84554 108.3954 26470.45 17.52578 30878.61 19.3264 20.07109 37.77797 1.013414 -0.18431 0.21134 7.48786 -35.6309 104.7337 1031.64 18.41 ######## 6.055233 69.84554 108.3954 26470.45 17.52578 30878.61 19.3264 20.07109 37.77797 1.013414 -0.18431 0.21134 7.48786 -35.6309 104.7337 1031.64 18.41 ######## 6.046276 69.68872 108.1541 26461.55 17.48114 30898.95 19.33902 20.08432 37.79068 1.013434 -0.19111 0.195646 7.483654 -35.392 108.3685 1031.602 18.39139 ######## 6.045684 69.67837 108.1381 26460.96 17.4782 30900.29 19.33985 20.08519 37.79152 1.013435 -0.19156 0.19461 7.483377 -35.3762 108.6083 1031.6 18.39017 ######## 6.045094 69.66802 108.1222 26460.37 17.47525 30901.64 19.34068 20.08607 37.79236 1.013436 -0.19201 0.193574 7.483099 -35.3605 108.8482 1031.598 18.38894 ####### 6.044502 69.65767 108.1063 26459.79 17.47231 30902.98 19.34152 20.08694 37.7932 1.013437 -0.19246 0.192538 7.482821 -35.3447 109.0881 1031.595 18.38771 ####### 6.02795 69.43135 107.7658 26477.48 17.4632 30929.93 19.35975 20.10445 37.76795 1.013453 -0.20403 0.165859 7.480963 -35.2381 109.0769 1031.661 18.41628 ####### 6.026968 69.41701 107.7441 26478.04 17.46161 30931.68 19.36091 20.10559 37.76715 1.013455 -0.20473 0.164242 7.480767 -35.2269 109.1727 1031.663 18.41707

Location Properties
Location Name = T2-2HTS

Report Properties Start Time = 2021-12-15 09:24:51 Time Offset = -05:00:00 Duration = 00:00:22 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.701995 76.83915 119.3046 26236.22 17.24543 30797.74 19.26221 20.01853 38.11525 1.013426 -0.20307 0.168079 7.462844 -34.1829 103.7879 1031.76 18.77 ####### 6.701995 76.83915 119.3046 26236.22 17.24543 30797.74 19.26221 20.01853 38.11525 1.013426 -0.20307 0.168079 7.462844 -34.1829 103.7879 1031.76 18.77 ######## 6.701995 76.83915 119.3046 26236.22 17.24543 30797.74 19.26221 20.01853 38.11525 1.013426 -0.20307 0.168079 7.462844 -34.1829 103.7879 1031.76 18.77 ####### 6.701995 76.83915 119.3046 26236.22 17.24543 30797.74 19.26221 20.01853 38.11525 1.013426 -0.20307 0.168079 7.462844 -34.1829 103.7879 1031.76 18.77 ######## 6.701995 76.83915 119.3046 26236.22 17.24543 30797.74 19.26221 20.01853 38.11525 1.013426 -0.20307 0.168079 7.462844 -34.1829 103.7879 1031.76 18.77 ######## 6.461981 73.97429 114.8485 26238.13 17.14478 30869.65 19.30841 20.06528 38.11247 1.013482 -0.20547 0.162539 7.458583 -33.9393 107.2666 1031.564 18.77 ####### 6.446902 73.7943 114.5685 26238.25 17.13846 30874.17 19.31131 20.06821 38.11229 1.013486 -0.20562 0.162191 7.458315 -33.924 107.4851 1031.552 18.77 ######## 6.431823 73.61432 114.2886 26238.38 17.13214 30878.69 19.31421 20.07115 38.11212 1.013489 -0.20577 0.161843 7.458047 -33.9087 107.7037 1031.54 18.77 ####### 6.301094 72.05296 111.8932 26247.88 17.11663 30900.68 19.32881 20.08544 38.09832 1.013504 -0.20811 0.156452 7.457013 -33.8482 107.543 1031.751 18.78684 ######## 6.28932 71.91239 111.676 26248.35 17.11345 30903.44 19.3306 20.08724 38.09764 1.013506 -0.20827 0.156074 7.456861 -33.8394 107.6222 1031.755 18.78759

Location Properties
Location Name = T2-3HT

Report Properties Start Time = 2021-12-15 09:33:32 Time Offset = -05:00:00 Duration = 00:00:34 Readings = 18

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.732779 65.83234 102.2104 26547.39 17.24832 31160.99 19.51186 20.25465 37.66849 1.013615 -0.23188 0.101625 7.454039 -33.6976 79.41988 1031.72 18.97 ####### 5.732779 65.83234 102.2104 26547.39 17.24832 31160.99 19.51186 20.25465 37.66849 1.013615 -0.23188 0.101625 7.454039 -33.6976 79.41988 1031.72 18.97 ####### 5.732779 65.83234 102.2104 26547.39 17.24832 31160.99 19.51186 20.25465 37.66849 1.013615 -0.23188 0.101625 7.454039 -33.6976 79.41988 1031.72 18.97 ####### 5.731486 65.79432 102.1528 26540.08 17.22934 31165.68 19.51448 20.25769 37.67886 1.013621 -0.20544 0.162611 7.452206 -33.5929 81.82133 1031.71 18.96065 ####### 5.731402 65.79185 102.1491 26539.61 17.22811 31165.98 19.51465 20.25789 37.67953 1.013622 -0.20372 0.166562 7.452087 -33.5861 81.97693 1031.71 18.96004 ####### 5.731319 65.78939 102.1454 26539.13 17.22688 31166.29 19.51482 20.25809 37.68021 1.013622 -0.20201 0.170514 7.451968 -33.5793 82.13252 1031.709 18.95944 ####### 5.731235 65.78693 102.1416 26538.66 17.22565 31166.59 19.51499 20.25828 37.68088 1.013622 -0.2003 0.174465 7.451849 -33.5725 82.28812 1031.708 18.95883 ####### 5.723104 65.69051 101.99 26562.27 17.2156 31201.35 19.53857 20.28088 37.64739 1.013643 -0.19056 0.196933 7.451827 -33.5714 82.5349 1031.675 18.96021 ####### 5.722701 65.68514 101.9816 26563.15 17.21464 31203.05 19.5397 20.28198 37.64614 1.013644 -0.18942 0.199546 7.451778 -33.5686 82.60883 1031.673 18.96003 ####### 5.722298 65.67977 101.9732 26564.03 17.21369 31204.75 19.54084 20.28309 37.64489 1.013645 -0.18829 0.202159 7.451729 -33.5658 82.68276 1031.672 18.95985 ####### 5.721895 65.6744 101.9648 26564.91 17.21274 31206.45 19.54198 20.28419 37.64365 1.013646 -0.18716 0.204772 7.451681 -33.563 82.7567 1031.67 18.95967 ####### 5.726099 65.69581 102.0056 -33.526 83.13662 1031.732 18.96883 26526.8 17.20193 31169.25 19.51606 20.26001 37.69773 1.013628 -0.2076 0.157626 7.451057 ####### 5.726115 65.69465 102.0041 26525.57 17.20117 31168.33 19.5154 20.25941 37.69948 1.013628 -0.20818 0.156281 7.451022 -33.5239 83.16902 1031.734 18.96922 ####### 5.726131 65.6935 102.0026 26524.34 17.20041 31167.41 19.51475 20.25882 37.70123 1.013628 -0.20876 0.154936 7.450985 -33.5218 83.20143 1031.736 ####### 5.722672 65.64952 101.9369 26537.4 17.19398 31187.27 19.52819 20.27172 37.68267 1.013639 -0.20266 0.169022 7.450681 -33.5028 83.55057 1031.754 18.9865 ####### 5,722592 65,6479 101,9346 26537,28 17,19347 31187,47 19,52832 20,27186 37,68284 1.01364 -0.20274 0.168827 7.450655 -33.5012 83.57494 1031.756 18.9874 ####### 5.722511 65.64626 101.9323 26537.15 17.19297 31187.68 19.52844 20.27199 37.68302 1.01364 -0.20283 0.168632 7.450628 -33.4996 83.5993 1031.758 18.98829 ####### 5.722431 65.64463 101.93 26537.03 17.19246 31187.89 19.52857 20.27213 37.6832 1.01364 -0.20291 0.168436 7.450602 -33.498 83.62366 1031.76 18.98919

Location Properties
Location Name = T1-4HT

Report Properties Start Time = 2021-12-15 09:54:25 Time Offset = -05:00:00 Duration = 00:00:18 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.159812 72.22734 112.0044 27228.1 18.291 31229.96 19.59067 20.29947 36.72679 1.013448 -0.21692 0.136126 7.469309 -34.6723 81.94846 1031.839 20.03939 ####### 6.158809 72.20988 111.9778 27224.9 18.28593 31229.76 19.59039 20.29935 36.73109 1.013449 -0.21697 0.136016 7.469244 -34.6679 81.94208 1031.838 20.03995 ######## 6.148142 71.96943 111.6231 27329.86 18.20819 31403.7 19.70807 20.41241 36.59008 1.013555 -0.21974 0.129622 7.466978 -34.5357 82.00364 1031.848 20.05714 ####### 6.147304 71.95238 111.5976 27332.95 18.20339 31410.54 19.71265 20.41685 36.58594 1.01356 -0.21964 0.129857 7.466861 -34.5288 82.00432 1031.849 20.05807 ######## 6.146465 71.93534 111.5722 27336.04 18.1986 31417.39 19.71723 20.4213 36.58179 1.013564 -0.21953 0.130091 7.466744 -34.5218 82.005 1031.849 ####### 6.144482 71.83544 111.4291 27339.75 18.09221 31495.26 19.76783 20.47192 36.5768 1.013627 -0.2178 0.134092 7.466554 -34.4975 81.81265 1031.866 20.07625 ######## 6.144187 71.82635 111.4159 27341.78 18.08587 31501.96 19.77227 20.47628 36.57407 1.013631 -0.21778 0.134144 7.466504 -34.4939 81.80487 1031.867 20.07735 ######## 6.143894 71.81726 111.4026 27343.81 18.07953 31508.67 19.77671 20.48064 36.57135 1.013636 -0.21775 0.134197 7.466453 -34.4904 81.7971 1031.868 20.07846 ######## 6.1436 71.80817 111.3894 27345.84 18.07319 31515.38 19.78115 20.485 36.56862 1.013641 -0.21773 0.134249 7.466403 -34.4868 81.78931 1031.869 20.07956 ####### 6.129238 71.58115 111.041 27329.09 18.02661 31528.43 19.78877 20.49348 36.59105 1.013657 -0.22943 0.107263 7.465333 -34.4217 81.49076 1031.843 20.08798

Location Properties
Location Name = T1-4HTS

Report Properties Start Time = 2021-12-15 10:01:12 Time Offset = -05:00:00 Duration = 00:00:23 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ######## 6.91451 80.53747 124.9272 26665.86 18.05293 30745.44 19.25039 19.98453 37.50114 1.013242 -0.24586 0.069372 7.432143 -32.5386 75.21432 1031.82 20.29 ######## 6.91451 80.53747 124.9272 26665.86 18.05293 30745.44 19.25039 19.98453 37.50114 1.013242 -0.24586 0.069372 7.432143 -32.5386 75.21432 1031.82 20.29 20.29 ######## 6.91451 80.53747 124.9272 26665.86 18.05293 30745.44 19.25039 19.98453 37.50114 1.013242 -0.24586 0.069372 7.432143 -32.5386 75.21432 1031.82 ######## 6.91451 80.53747 124.9272 26665.86 18.05293 30745.44 19.25039 19.98453 37.50114 1.013242 -0.24586 0.069372 7.432143 -32.5386 75.21432 1031.82 20.29 ######## 6.574099 76.34604 118.4484 26602.69 17.8949 30779.74 19.26942 20.00683 37.5902 1.013291 -0.22635 0.114368 7.435857 -32.737 75.36377 1031.811 20.29911 ######## 6.552544 76.08064 118.0382 26598.69 17.88489 30781.91 19.27063 20.00824 37.59584 1.013294 -0.22512 0.117217 7.436092 -32.7496 75.37323 1031.81 20.29969 ######## 6.530988 75.81522 117.6279 26594.69 17.87488 30784.09 19.27183 20.00965 37.60148 1.013297 -0.22388 0.120066 7.436327 -32.7622 75.3827 1031.809 20.30027 ####### 6.509433 75.54982 117.2177 26590.69 17.86487 30786.26 19.27304 20.01107 37.60712 1.0133 -0.22265 0.122915 7.436563 -32.7747 75.39216 1031.809 20.30084 ####### 6.341879 73.42889 113.9555 26600.71 17.79118 30848.18 19.31343 20.05132 37.59298 1.013347 -0.22223 0.123869 7.438654 -32.8873 75.49796 1031.897 20.31706 ####### 6.325733 73.22742 113.6448 26599.62 17.78387 30851.89 19.31577 20.05373 37.59453 1.01335 -0.22173 0.125024 7.438843 -32.8974 75.50653 1031.901 20.31803

Location Properties
Location Name = T2-4HT

Report Properties Start Time = 2021-12-15 10:21:25 Time Offset = -05:00:00 Duration = 00:00:26 Readings = 11

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.481465 67.13309 103.6745 26508.15 21.09016 28647.48 17.87954 18.62086 37.72425 1.011493 -0.19653 0.183146 7.50376 -36.9559 76.3664 1031.65 22.17 ####### 5.481465 67.13309 103.6745 26508.15 21.09016 28647.48 17.87954 18.62086 37.72425 1.011493 -0.19653 0.183146 7.50376 -36.9559 76.3664 1031.65 22.17 ####### 5.481465 67.13309 103.6745 26508.15 21.09016 28647.48 17.87954 18.62086 37.72425 1.011493 -0.19653 0.183146 7.50376 -36.9559 76.3664 1031.65 22.17 ####### 5.481465 67.13309 103.6745 26508.15 21.09016 28647.48 17.87954 18.62086 37.72425 1.011493 -0.19653 0.183146 7.50376 -36.9559 76.3664 1031.65 22.17 ####### 5.491169 67.06168 103.5866 26520.53 20.91161 28766.92 17.95817 18.6985 37.70664 1.011596 -0.20687 0.159315 7.498535 -36.642 77.76691 1031.594 22.17 ####### 5.491786 67.05714 103.581 26521.31 20.90027 28774.5 17.96316 18.70343 37.70552 1.011603 -0.20752 0.157801 7.498203 -36.622 77.85588 1031.591 22.17 ####### 5.492403 67.05261 103.5754 26522.1 20.88893 28782.09 17.96815 18.70836 37.7044 1.011609 -0.20818 0.156287 7.497871 -36.6021 77.94485 1031.587 22.17 ####### 5.493019 67.04807 103.5698 26522.89 20.87759 28789.68 17.97315 18.71329 37.70329 1.011616 -0.20883 0.154773 7.497539 -36.5822 78.03381 1031.584 22.17 ####### 5.51299 67.05471 103.6189 26538.59 20.77771 28866.62 18.02402 18.7633 37.68098 1.011679 -0.22006 0.128881 7.494538 -36.4012 78.05656 1031.661 22.18755 ####### 5.514159 67.05322 103.619 26539.63 20.76859 28873.19 18.02835 18.76757 37.6795 1.011684 -0.22084 0.127082 7.494267 -36.3849 78.09295 1031.663 22.18836 ####### 5.515327 67.05172 103.619 26540.67 20.75946 28879.76 18.03269 18.77184 37.67802 1.01169 -0.22162 0.125283 7.493997 -36.3686 78.12934 1031.666 22.18917

Location Properties
Location Name = T2-4HTS

Report Properties Start Time = 2021-12-15 10:26:48 Time Offset = -05:00:00 Duration = 00:00:24 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 7.864553 91.59842 142.0217 26083.69 18.19688 29979.17 18.72833 19.48646 38.33813 1.012813 -0.24339 0.075074 7.524765 -37.795 78.63027 1031.56 22.6 ####### 7.864553 91.59842 142.0217 26083.69 18.19688 29979.17 18.72833 19.48646 38.33813 1.012813 -0.24339 0.075074 7.524765 -37.795 78.63027 1031.56 22.6 ####### 7.864553 91.59842 142.0217 26083.69 18.19688 29979.17 18.72833 19.48646 38.33813 1.012813 -0.24339 0.075074 7.524765 -37.795 78.63027 1031.56 22.6 ####### 7.864553 91.59842 142.0217 26083.69 18.19688 29979.17 18.72833 19.48646 38.33813 1.012813 -0.24339 0.075074 7.524765 -37.795 78.63027 1031.56 22.6 ####### 7.864553 91.59842 142.0217 26083.69 18.19688 29979.17 18.72833 19.48646 38.33813 1.012813 -0.24339 0.075074 7.524765 -37.795 78.63027 1031.56 22.6 ####### 7.222996 84.06419 130.349 26119.25 18.14353 30055.24 18.77904 19.53591 38.28594 1.012863 -0.24049 0.081765 7.511118 -37.0148 79.95148 1031.56 22.6 ####### 7.183052 83.5951 129.6222 26121.46 18.14021 30059.98 18.78219 19.53899 38.28269 1.012866 -0.2403 0.082182 7.510269 -36.9662 80.03374 1031.56 22.6 -0.24012 0.082598 7.509419 ####### 7.143108 83.12601 128.8955 26123.68 18.13689 30064.72 18.78535 19.54207 38.27944 1.012869 -36.9176 80.116 1031.56 22.6 ######## 6.879769 79.92744 123.9454 26109.74 18.07479 30089.78 18.80083 19.55836 38.29988 1.012895 -0.23716 0.089438 7.503918 -36.6046 80.03446 1031.518 22.59159 ######## 6.852363 79.60087 123.4397 26109.99 18.07072 30092.76 18.80276 19.56029 38.29951 1.012897 -0.23696 0.089906 7.503339 -36.5716 80.06311 1031.516 22.59121

Location Properties
Location Name = T3-4HT

Report Properties Start Time = 2021-12-15 10:45:55 Time Offset = -05:00:00 Duration = 00:00:25 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.763672 68.84091 106.5455 27131.45 19.3914 30386.59 19.03855 19.75128 36.8576 1.012777 -0.23379 0.097199 7.453434 -33.9153 78.39117 1031.37 23.58 ####### 5.763672 68.84091 106.5455 27131.45 19.3914 30386.59 19.03855 19.75128 36.8576 1.012777 -0.23379 0.097199 7.453434 -33.9153 78.39117 1031.37 23.58 ####### 5.763672 68.84091 106.5455 27131.45 19.3914 30386.59 19.03855 19.75128 36.8576 1.012777 -0.23379 0.097199 7.453434 -33.9153 78.39117 1031.37 23.58 36.8576 1.012777 -0.23379 0.097199 7.453434 -33.9153 78.39117 1031.37 ####### 5.763672 68.84091 106.5455 27131.45 19.3914 30386.59 19.03855 19.75128 23.58 ####### 5.759974 68.82048 106.5108 27175.04 19.39911 30430.4 19.06889 19.77976 36.79848 1.012799 -0.21507 0.140399 7.451771 -33.8236 79.54946 1031.351 23.60807 ####### 5.759734 68.81916 106.5085 27177.87 19.3996 30433.23 19.07085 19.7816 36.79465 1.0128 -0.21385 0.143195 7.451663 -33.8177 79.62442 1031.35 23.60989 ####### 5.759495 68.81783 106.5063 27180.69 19.4001 30436.07 19.07281 19.78345 36.79082 1.012801 -0.21264 0.145991 7.451556 -33.8118 79.69939 1031.349 23.61171 ####### 5.759255 68.81651 106.504 27183.51 19.4006 30438.9 19.07478 19.78529 36.78699 1.012803 ####### 5.759563 68.81376 106.5042 27196.12 19.41967 30440.61 19.0764 19.7864 36.76996 1.012799 -0.23563 0.092968 7.451599 -33.8114 79.69724 1031.385 23.61785 ####### 5.759481 68.8131 106.5033 27197.81 19.42071 30441.83 19.07727 19.78719 36.76767 1.0128 -0.2362 0.091642 7.451562 -33.8092 79.72404 1031.386 23.61877

Location Properties
Location Name = T3-4HTS

Report Properties Start Time = 2021-12-15 10:51:32 Time Offset = -05:00:00 Duration = 00:00:25 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.016187 71.27209 110.3277 25978.72 19.21402 29206.38 18.22433 18.98415 38.49304 1.012201 -0.24081 0.081006 7.461897 -34.355 79.41399 1031.3 24.65 ######## 6.016187 71.27209 110.3277 25978.72 19.21402 29206.38 18.22433 18.98415 38.49304 1.012201 -0.24081 0.081006 7.461897 -34.355 79.41399 1031.3 24.65 ######## 6.016187 71.27209 110.3277 25978.72 19.21402 29206.38 18.22433 18.98415 38.49304 1.012201 -0.24081 0.081006 7.461897 -34.355 79.41399 1031.3 24.65 ######## 6.016187 71.27209 110.3277 25978.72 19.21402 29206.38 18.22433 18.98415 38.49304 1.012201 -0.24081 0.081006 7.461897 -34.355 79.41399 1031.3 24.65 ######## 5.929185 70.36323 108.9454 26895.05 19.06858 30331.51 18.9929 19.71548 37.18433 1.012817 -0.24941 0.061189 7.457528 -34.1011 80.37194 1031.328 24.66883 ####### 5.923536 70.30421 108.8557 26954.56 19.05914 30404.57 19.04281 19.76297 37.09934 1.012857 -0.24996 0.059903 7.457244 -34.0846 80.43415 1031.33 24.67005 ####### 5.917886 70.24519 108.7659 27014.06 19.04969 30477.63 19.09272 19.81046 37.01436 1.012897 -0.25052 0.058616 7.45696 -34.0681 80.49635 1031.332 24.67128 ####### 5.912237 70.18617 108.6762 27073.56 19.04025 30550.69 19.14263 19.85795 36.92937 1.012937 -0.25108 0.057329 7.456676 -34.0516 80.55856 1031.333 24.6725 ####### 5.888365 69.76219 108.0337 26915.49 19.0115 30391.82 19.0329 19.75468 37.15442 1.012861 -0.25858 0.040017 7.456984 -34.0654 80.39141 1031.372 24.68671 ####### 5.885032 69.71974 107.9693 26932.71 19.00641 30414.51 19.04834 19.76943 37.12978 1.012874 -0.25914 0.038739 7.456882 -34.0593 80.40934 1031.374 24.68782

Location Properties
Location Name = LT BACKGROUND

Report Properties Start Time = 2021-12-15 12:57:08 Time Offset = -05:00:00 Duration = 00:00:22 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 5.538951 69.064 106.3129 27395.59 21.82686 29163.07 18.24573 18.956 36.50223 1.011585 -0.20857 0.155391 7.504241 -37.0763 36.46436 1029.56 30.21 ####### 5.538951 69.064 106.3129 27395.59 21.82686 29163.07 18.24573 18.956 36.50223 1.011585 -0.20857 0.155391 7.504241 -37.0763 36.46436 1029.56 30.21 ####### 5.538951 69.064 106.3129 27395.59 21.82686 29163.07 18.24573 18.956 36.50223 1.011585 -0.20857 0.155391 7.504241 -37.0763 36.46436 1029.56 30.21 ####### 5.538951 69.064 106.3129 27395.59 21.82686 29163.07 18.24573 18.956 36.50223 1.011585 -0.20857 0.155391 7.504241 -37.0763 36.46436 1029.56 30.21 ####### 5.538951 69.064 106.3129 27395.59 21.82686 29163.07 18.24573 18.956 36.50223 1.011585 -0.20857 0.155391 7.504241 -37.0763 36.46436 1029.56 30.21 ####### 5.574921 69.29337 106.6994 27366.57 21.64129 29242.52 18.29725 19.00764 36.54094 1.01167 -0.22873 0.108872 7.501811 -36.9147 36.67051 1029.579 30.21 ####### 5.577117 69.30737 106.723 27364.79 21.62997 29247.37 18.30039 19.01079 36.5433 1.011676 -0.22996 0.106033 7.501663 -36.9048 36.68309 30.21 ####### 5.579312 69.32137 106.7466 27363.02 21.61864 29252.22 18.30353 19.01394 36.54567 1.011681 -0.2312 0.103193 7.501514 -36.8949 36.69567 1029.581 30.21 ####### 5.634331 69.71544 107.3894 27348.18 21.48329 29317.47 18.34605 19.05635 36.56552 1.011747 -0.21236 0.14663 7.49971 -36.7821 36.7814 1029.545 30.21 ####### 5.637652 69.73855 107.4274 27346.82 21.4728 29322.29 18.34918 19.05949 36.56733 1.011752 -0.21201 0.147455 7.499571 -36.7732 36.79018 1029.544 30.21

Location Properties
Location Name = T4-4L

Report Properties Start Time = 2021-12-15 13:53:27 Time Offset = -05:00:00 Duration = 00:00:25 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.332381 81.98575 125.7449 29647.52 23.54926 30492.44 19.18851 19.82009 33.72963 1.011843 -0.18702 0.205091 7.640213 -45.0931 71.71249 1028.79 24.03 ####### 6.332381 81.98575 125.7449 29647.52 23.54926 30492.44 19.18851 19.82009 33.72963 1.011843 -0.18702 0.205091 7.640213 -45.0931 71.71249 1028.79 24.03 ######## 6.332381 81.98575 125.7449 29647.52 23.54926 30492.44 19.18851 19.82009 33.72963 1.011843 -0.18702 0.205091 7.640213 -45.0931 71.71249 1028.79 24.03 ######## 6.332381 81.98575 125.7449 29647.52 23.54926 30492.44 19.18851 19.82009 33.72963 1.011843 -0.18702 0.205091 7.640213 -45.0931 71.71249 1028.79 24.03 ######## 6.332381 81.98575 125.7449 29647.52 23.54926 30492.44 19.18851 19.82009 33.72963 1.011843 -0.18702 0.205091 7.640213 -45.0931 71.71249 1028.79 24.03 ####### 6.175674 79.59072 122.124 29496.06 23.29599 30488.35 19.18215 19.81743 33.90287 1.011907 -0.1799 0.221504 7.612327 -43.4494 72.13621 1028.78 24.03 ####### 6.166048 79.4436 121.9016 29486.75 23.28043 30488.1 19.18176 19.81726 33.91351 1.011911 -0.17947 0.222512 7.610613 -43.3484 72.16224 1028.779 24.03 ######## 6.156422 79.29647 121.6792 29477.45 23.26487 30487.85 19.18137 19.8171 33.92415 1.011914 -0.17903 0.223521 7.608901 -43.2475 72.18827 1028.779 24.03 ####### 6.174029 78.88564 121.1463 29453.54 23.04656 30595.18 19.25248 19.88687 33.95184 1.012026 -0.20273 0.168855 7.594635 -42.399 72.26727 1028.797 24.03 ######## 6.17106 78.80991 121.0358 29448.84 23.03074 30599.87 19.2555 19.88992 33.95722 1.012033 -0.20362 0.166808 7.59333 -42.3217 72.28096 1028.797 24.03

Location Properties
Location Name = T1-4LT

Report Properties Start Time = 2021-12-15 14:49:28 Time Offset = -05:00:00 Duration = 00:00:23 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 6.360045 81.34225 124.769 27182.81 23.40079 28039.27 17.49697 18.22552 36.78796 1.010611 -0.17056 0.243064 7.759721 -51.8068 69.44081 1028.62 22.39 ####### 6.360045 81.34225 124.769 27182.81 23.40079 28039.27 17.49697 18.22552 36.78796 1.010611 -0.17056 0.243064 7.759721 -51.8068 69.44081 1028.62 22.39 ####### 6.360045 81.34225 124.769 27182.81 23.40079 28039.27 17.49697 18.22552 36.78796 1.010611 -0.17056 0.243064 7.759721 -51.8068 69.44081 1028.62 22.39 ####### 6.360045 81.34225 124.769 27182.81 23.40079 28039.27 17.49697 18.22552 36.78796 1.010611 -0.17056 0.243064 7.759721 -51.8068 69.44081 1028.62 22.39 ######## 6.360045 81.34225 124.769 27182.81 23.40079 28039.27 17.49697 18.22552 36.78796 1.010611 -0.17056 0.243064 7.759721 -51.8068 69.44081 1028.62 22.39 ######## 6.216711 78.28915 120.2723 27109.56 22.45396 28495.46 17.79708 18.52205 36.88736 1.011086 -0.19244 0.192596 7.702606 -48.4551 69.77504 1028.571 22.39 ####### 6.207961 78.10278 119.9978 27105.09 22.39616 28523.3 17.8154 18.54015 36.89342 1.011115 -0.19377 0.189515 7.69912 -48.2505 69.79544 1028.568 22.39 ####### 6.199211 77.9164 119.7233 27100.62 22.33837 28551.15 17.83372 18.55825 36.89949 1.011144 -0.19511 0.186435 7.695633 -48.0459 69.81584 1028.565 22.39 ####### 6.148678 76.64988 117.867 27063.87 22.03401 28689.92 17.9241 18.64845 36.94967 1.011289 -0.19667 0.182829 7.674843 -46.8415 69.88289 1028.58 22.39 ####### 6.142983 76.52014 117.6764 27060.48 21.9977 28707.06 17.93534 18.65959 36.95428 1.011307 -0.19727 0.181454 7.672545 -46.7073 69.89391 1028.579 22.39

Location Properties
Location Name = T2-4LT

Report Properties Start Time = 2021-12-15 15:01:58 Time Offset = -05:00:00 Duration = 00:00:18 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 8.111484 94.67448 145.1045 226.6598 23.85026 231.7206 0.110744 0.150618 4267.992 0.99742 -0.19039 0.197308 6.998269 -8.23372 117.6737 1028.62 22.2889 ####### 8.227412 95.2765 146.1285 148.9055 23.71192 152.637 0.072311 0.099214 6845.117 0.997425 -0.17005 0.244231 7.690642 -48.0057 77.44965 1028.597 22.29889 ####### 8.221458 95.1679 145.9672 147.4926 23.70247 151.2188 0.071622 0.098292 6887.221 0.997427 -0.16965 0.245166 7.709708 -49.0995 76.25878 1028.594 22.2991 ######## 8.215506 95.0593 145.8059 146.0797 23.69302 149.8007 0.070933 0.09737 6929.326 0.997429 -0.16924 0.246102 7.728773 -50.1933 75.06791 1028.591 22.2993 ######## 8.209552 94.95069 145.6445 144.6667 23.68357 148.3825 0.070243 0.096449 6971.43 0.99743 -0.16884 0.247037 7.747838 -51.2871 73.87704 1028.588 22.29951 ####### 7.165391 87.6195 134.7971 23361.6 21.6011 25149.75 15.71458 16.34734 916.71 1.009735 -0.15304 0.283465 7.69711 -48.0078 73.04539 1028.625 22.29975 ####### 7.120954 87.29398 134.317 24358.57 21.50832 26223.43 16.38659 17.04523 694.9859 1.010265 ######## 7.076517 86.96847 133.8369 25355.55 21.41554 27297.11 17.05861 17.74312 473.2619 1.010794 -0.15105 0.288058 7.716014 -49.0618 71.59505 1028.627 22.30008 ######## 6.8258 83.40179 128.431 25649.7 20.98611 27848.07 17.40096 18.10125 337.5923 1.011158 -0.14591 0.299915 7.670299 -46.4157 71.9586 1028.636 22.31661 ####### 6.796278 83.11425 127.9998 26071.25 20.93058 28312.22 17.69129 18.40294 224.6499 1.01139 -0.14541 0.301069 7.667491 -46.2471 71.95323 1028.637 22.31733

Location Properties
Location Name = T3-4LT

Report Properties Start Time = 2021-12-15 15:12:21 Time Offset = -05:00:00 Duration = 00:00:18 Readings = 10

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 789310

Instrument Properties
Device Model = PowerPack
Device SN = 784034

Date Time RDO Conci RDO Satur Oxygen Pa Actual Cor Temperati Specific Cc Salinity (PSTotal Dissc Resistivity Density (g, Pressure (; Depth (ft) pH (pH) (2 pH mV (m\ORP (mV) | Barometri Temperati Marked ####### 8.459426 95.7757 147.1882 88.651 22.26212 93.54204 0.043662 0.060802 11281.78 0.997747 -0.20239 0.169635 6.803296 2.960281 152.6633 1028.606 22.61831 ####### 8.458356 95.7494 147.1498 88.55612 22.25125 93.46249 0.043623 0.060751 11293.46 0.997749 -0.20358 0.166902 6.802186 3.023733 152.6538 1028.607 22.61906 ####### 8.420677 94.98178 146.0074 118.7508 22.12125 125.6754 0.059242 0.081689 8524.777 0.997791 -0.17824 0.225336 7.551212 -39.811 84.19871 1028.547 22.61935 ######## 8.417695 94.92892 145.9285 120.0645 22.11336 127.0815 0.059924 0.082603 8406.178 0.997793 -0.17757 0.226886 7.584985 -41.7425 81.20049 1028.546 22.61967 ####### 8.414713 94.87606 145.8495 121.3783 22.10546 128.4876 0.060606 0.083517 8287.577 0.997795 -0.1769 0.228435 7.618759 -43.6739 78.20228 1028.544 22.61999 ####### 8.411731 94.8232 145.7706 122.692 22.09757 129.8936 0.061288 0.084431 8168.978 0.997798 -0.17623 0.229984 7.652532 -45.6053 75.20406 1028.542 22.62031 ######## 7.372268 88.67873 136.636 23675.85 20.5216 26012.96 16.27516 16.90843 1109.788 1.010421 -0.19338 0.190427 7.623383 -43.6831 75.50183 1028.524 22.62876 ######## 7.325753 88.39275 136.2109 24713.31 20.44952 27153.04 16.98924 17.64947 744.2661 1.010978 -0.19364 0.189815 7.636934 -44.4468 74.15761 1028.522 22.62915 ####### 7.279237 88.10678 135.7857 25750.78 20.37744 28293.11 17.70333 18.39052 378.7437 1.011534 -0.19391 0.189202 7.650485 -45.2105 72.81339 1028.52 22.62953 ######## 6.979312 84.26578 129.9014 25854.76 20.20852 28504.51 17.83102 18.52794 348.8524 1.011671 -0.19005 0.198113 7.619761 -43.432 73.76653 1028.554 22.63796

APPENDIX E

Statistical Analyses

GROUNDWATER STATS CONSULTING

February 28, 2022

Resolute Environmental & Water Resources Consulting Attn: Mr. Stephen Wilson 1003 Weatherstone Parkway, Ste. 320 Woodstock, GA 30188

Re: Plant McManus Ash Pond (AP) Statistical Analysis - September 2021 Sampling Event

Dear Mr. Wilson,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the for the September 2021 sample event for Georgia Power Company's Plant McManus Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (CCR Rule, 2015), the Georgia Environmental Protection Division Rules (EPD) for Solid Waste Management Chapter 391-3-4-.10, and follows the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

The groundwater monitoring well network consists of the following:

- Upgradient Wells: MCM-01, MCM-02, MCM-11, MCM-15, MCM-16, MCM-18, MCM-19, and MCM-20
- **Downgradient Wells:** MCM-04, MCM-05, MCM-06, MCM-07, MCM-12, MCM-14, and MCM-17
- **Delineation Well:** DPZ-2

Note that upgradient wells MCM-18, MCM-19, and MCM-20 were installed late in 2019. Delineation well DPZ-2 is evaluated with confidence intervals for Appendix IV constituents with four or more samples. A minimum of 8 samples have been collected at each well and data from these wells are included in this analysis. For some constituents in these

upgradient wells such as arsenic, calcium, lead, and lithium, the concentrations are higher in comparison to other upgradient wells.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Kristina Rayner, Founder and Groundwater Statistician for Groundwater Stats Consulting.

The statistical analysis provided in this report was performed according to the background screening conducted by MacStat Consulting in April 2019. Interwell prediction limits, combined with a 1-of-2 resample plan, for Appendix III parameters were recommended as the primary statistical method.

The CCR program monitors the constituents listed below. The terms "parameters" and "constituents" are used interchangeably.

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A list of Appendix IV downgradient and delineation well/constituent pairs with 100% non-detects follow this letter.

For all constituents, a substitution of the most recent reporting limit is used for non-detect data. However, during this analysis, higher reporting limits resulted from laboratory dilution factors for antimony, cadmium, chromium, lead, molybdenum, and thallium. Therefore, the previous lower historical reporting limits were substituted for these constituents to maintain more conservative limits.

When concentrations exist higher in downgradient wells relative to observations reported upgradient of the facility, as seen in the majority of the Appendix III parameters, this may be reflective of natural variation or a result of practices at the facility. A separate study and hydrogeological investigation would be required to fully understand the geochemical conditions and expected groundwater quality for the region. That study and assessment is beyond the scope of services provided by Groundwater Stats Consulting.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Additionally, a separate section of

box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. As a result of the previous background screening, the following non-detect values were flagged due to elevated reporting limits: <0.025 mg/L for lead in upgradient well MCM-19; and <0.1 mg/L, <0.15 mg/L and <0.3 mg/L for lithium in upgradient well MCM-18. Additionally, a high value for combined radium 226 + 228 in upgradient well MCM-20 was flagged as an outlier as well as a high value for fluoride in downgradient well MCM-06. This step results in construction of background limits that are conservative from a regulatory perspective. A summary of flagged outliers follows this report (Figure C).

Based on the 2019 screening, data at all wells for constituents detected in downgradient wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods were recommended. Power curves were provided with the 2019 screening to demonstrate that the selected statistical methods for the parameters listed above comply with the USEPA Unified Guidance and the Georgia Environmental Protection Division Rules for Solid Waste Management Chapter 391-3-4-.10. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations.

Summary of Statistical Methods:

Based on the evaluation for state and federal regulatory requirements, the following methods were selected for Appendix III and IV constituents:

- Appendix III: Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Appendix IV: Confidence intervals on downgradient well data compared against Groundwater Protection Standards (GWPS) for each detected Appendix IV constituent

The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. Parametric prediction limits (or tolerance limits or confidence intervals as applicable) are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the

parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The following approaches are used for handling non-detects (USEPA, 2009):

- No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. While this was not required for this report, in some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Statistical Analysis of Appendix III Parameters – September 2021

All Appendix III parameters were analyzed using interwell prediction limits. Background (upgradient) well data were re-assessed for potential outliers during this analysis. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. No new values were flagged for Appendix III parameters in upgradient wells and a summary of flagged outliers follows this report (Figure C).

Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical upgradient well data through September 2021 (Figure D). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The September 2021 sample from each downgradient well is compared to the background limit to determine whether initial exceedances are present.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When a resample confirms the initial exceedance, a statistically significant increase is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no exceedance is noted and no further action is necessary. If no resample is collected, the original result is considered a confirmed exceedance. A summary table of the interwell prediction limits follows this letter and includes a list of exceedances. Exceedances were identified for the following well/constituent pairs:

Boron: MCM-07, MCM-12, and MCM-17
Calcium: MCM-06, MCM-07, and MCM-17

pH: MCM-05, MCM-06, MCM-07, MCM-12, MCM-14, and MCM-17

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure E), Upgradient well data are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. Upgradient trends are an indication of natural variability in groundwater quality unrelated to practices at the site. A summary of trend test results follows this letter including a list of statistically significant trends. Statistically significant trends were identified for the following well/constituent pairs:

Increasing:

Boron: MCM-07Calcium: MCM-07

Decreasing:

Calcium: MCM-18 (upgradient) and MCM-20 (upgradient)
 pH: MCM-05, MCM-06, MCM-07, MCM-12, and MCM-14

Statistical Analysis of Appendix IV Parameters – September 2021

For Appendix IV parameters, confidence intervals for each downgradient well/constituent pair were compared against corresponding Groundwater Protection Standards (GWPS). GWPS were developed as described below. Downgradient and delineation well/constituent pairs containing 100% non-detects do not require analysis. Data from upgradient wells for Appendix IV parameters are reassessed for outliers during each analysis. No new values were flagged as outliers. A summary of all previously flagged outliers follows this report (Figure C).

Interwell Upper Tolerance Limits

First, interwell tolerance limits were used to calculate site-specific background limits from all available pooled upgradient well data through September 2021 for Appendix IV constituents (Figure F). Parametric tolerance limits are used when data follow a normal or transformed-normal distribution. When data contained greater than 50% non-detects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were used.

Groundwater Protection Standards

The background limits were then used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and Georgia EPD Rule 391-3-4-.10(6)(a).

As described in 40 CFR §257.95(h) (1-3), the Federal GWPS is:

- The maximum contaminant level (MCL) established under §141.62 and §141.66 of this title
- Where an MCL has not been established for a constituent, CCR-rule specified level have been specified for cobalt (0.006 mg/L), lead (0.015 mg/L), lithium (0.040 mg/L), and molybdenum (0.100 mg/L)
- The respective background level for a constituent when the background level is higher than the MCL or Federal CCR Rule identified GWPS

On July 30, 2018, USEPA revised the Federal CCR rule updating GWPS for cobalt, lead, lithium, and molybdenum as described above in 40 CFR §257.95(h)(2). Georgia EPD has not incorporated the updated GWPS into the current Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6)(a); therefore, for sites regulated under Georgia EPD Rules, the State GWPS is:

- The MCL or
- The background concentration when an MCL is not established or when the background concentration is higher than the MCL.

Following Georgia EPD Rule requirements and the Federal CCR requirements, Federal and State GWPS were established for statistical comparison of Appendix IV constituents for the September 2021 sample event (Figure G).

Confidence Intervals

To complete the statistical comparison of downgradient well data to GWPS, confidence intervals were constructed for the Appendix IV constituents in each downgradient and delineation well using all available data through September 2021. Note that confidence intervals require a minimum of 4 samples and, in many cases, delineation well DPZ-2 had insufficient samples at this time. The Sanitas software was used to calculate both the tolerance limits and the confidence intervals. For Federal requirements, confidence intervals were compared to the GWPS prepared according to the CCR Rule (Figure H). For the State requirements, confidence intervals were compared to the GWPS established using the Georgia EPD Rules 391-3-4-.10(6)(a) (Figure I). The background limit for combined radium 226 + 228 is considerably higher than the MCL due to high concentrations in upgradient wells, such as those observed in upgradient well MCM-20. These concentrations are assumed to represent natural groundwater quality since the reported measurements are in upgradient wells; however, this determination is beyond the scope of this analysis.

Only when the entire confidence interval is above a GWPS is the downgradient well/constituent pair considered to exceed its respective standard. If there is an exceedance of the GWPS, a statistically significant level (SSL) exceedance is identified. Summaries of both the Federal and State confidence intervals follow this letter and exceedances were identified for the following well/constituent pairs:

Federal:

Arsenic: MCM-06

Lithium: DPZ-2 and MCM-06

State:

• Arsenic: MCM-06

• Lithium: DPZ-2, MCM-06, and MCM-14

<u>Trend Test Evaluation – Appendix IV</u>

The Sen's Slope/Mann Kendall trend test was conducted to determine whether concentrations are statistically increasing, decreasing, or stable (Figure J). Upgradient wells are included in the trend analyses to identify whether similar patterns exist upgradient of the site for the same constituents. When trends are present in upgradient trends, it is an indication of natural variability in groundwater quality unrelated to practices at the site. Note delineation well DPZ-2 has insufficient samples at this time for meaningful results using the Sen's Slope/Mann Kendall trend test with 99% confidence. A summary of the Appendix IV trend test results follows this letter and no statistically significant trends were identified.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Plant McManus Ash Pond. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Andrew Collins

Project Manager

Kristina L. Rayner

Groundwater Statistician

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

100% Non-Detects: Appendix IV Downgradient & Delineation

Analysis Run 12/29/2021 3:18 PM View: Appendix IV - Confidence Intervals Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Antimony (mg/L)
DPZ-2, MCM-04, MCM-05, MCM-07, MCM-12

Beryllium (mg/L) DPZ-2, MCM-06

Cadmium (mg/L)

DPZ-2, MCM-04, MCM-05, MCM-06, MCM-07, MCM-12, MCM-14

Chromium (mg/L) DPZ-2

Cobalt (mg/L)

DPZ-2

Lead (mg/L) DPZ-2, MCM-04

Mercury (mg/L) DPZ-2, MCM-12

Molybdenum (mg/L) DPZ-2, MCM-04, MCM-07, MCM-12, MCM-14

Selenium (mg/L) DPZ-2

Thallium (mg/L)

DPZ-2, MCM-04, MCM-05, MCM-07, MCM-12, MCM-14

Appendix III Interwell Prediction Limits - Significant Results

	F	Plant McManus	Client: Southern Company		Data: McManus	Ash F					
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	<u> %NDs</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	MCM-07	1.3	n/a	9/14/2021	1.5	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Boron (mg/L)	MCM-12	1.3	n/a	9/13/2021	1.4	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Boron (mg/L)	MCM-17	1.3	n/a	9/14/2021	2.1	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-06	169	n/a	9/14/2021	299	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-07	169	n/a	9/14/2021	225	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-17	169	n/a	9/14/2021	190	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-05	5.81	3.36	9/14/2021	6.67	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-06	5.81	3.36	9/14/2021	6.94	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-07	5.81	3.36	9/14/2021	6.28	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-12	5.81	3.36	9/13/2021	6.24	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-14	5.81	3.36	9/13/2021	6.3	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-17	5.81	3.36	9/14/2021	6.77	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2

Appendix III Interwell Prediction Limits - All Results

		Plant McManus	Client: Southern Company		Data: McManu	ıs Ash F	ond [Data P	rinted 11/1/202	21, 11:29 AM		
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	serv. Sig. Bg N %NDs Transfor		Transform	<u>Alpha</u>	Method		
Boron (mg/L)	MCM-04	1.3	n/a	9/14/2021	0.07J	No	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Boron (mg/L)	MCM-05	1.3	n/a	9/14/2021	0.95J	No	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Boron (mg/L)	MCM-06	1.3	n/a	9/14/2021	1.1	No	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Boron (mg/L)	MCM-07	1.3	n/a	9/14/2021	1.5	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Boron (mg/L)	MCM-12	1.3	n/a	9/13/2021	1.4	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Boron (mg/L)	MCM-14	1.3	n/a	9/13/2021	1.2	No	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Boron (mg/L)	MCM-17	1.3	n/a	9/14/2021	2.1	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Calcium (mg/L)	MCM-04	169	n/a	9/14/2021	12.5	No	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2	
Calcium (mg/L)	MCM-05	169	n/a	9/14/2021	13.9	No	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2	
Calcium (mg/L)	MCM-06	169	n/a	9/14/2021	299	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2	
Calcium (mg/L)	MCM-07	169	n/a	9/14/2021	225	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2	
Calcium (mg/L)	MCM-12	169	n/a	9/13/2021	6	No	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2	
Calcium (mg/L)	MCM-14	169	n/a	9/13/2021	165	No	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2	
Calcium (mg/L)	MCM-17	169	n/a	9/14/2021	190	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2	
Chloride (mg/L)	MCM-04	8130	n/a	9/14/2021	28.5	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Chloride (mg/L)	MCM-05	8130	n/a	9/14/2021	3940	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Chloride (mg/L)	MCM-06	8130	n/a	9/14/2021	5360	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Chloride (mg/L)	MCM-07	8130	n/a	9/14/2021	6300	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Chloride (mg/L)	MCM-12	8130	n/a	9/13/2021	433	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Chloride (mg/L)	MCM-14	8130	n/a	9/13/2021	5010	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Chloride (mg/L)	MCM-17	8130	n/a	9/14/2021	4090	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Fluoride (mg/L)	MCM-04	1.5	n/a	9/14/2021	0.05	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2	
Fluoride (mg/L)	MCM-05	1.5	n/a	9/14/2021	0.1ND	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2	
Fluoride (mg/L)	MCM-06	1.5	n/a	9/14/2021	0.1ND	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2	
Fluoride (mg/L)	MCM-07	1.5	n/a	9/14/2021	0.1ND	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2	
Fluoride (mg/L)	MCM-12	1.5	n/a	9/13/2021	1.4	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2	
Fluoride (mg/L)	MCM-14	1.5	n/a	9/13/2021	0.1ND	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2	
Fluoride (mg/L)	MCM-17	1.5	n/a	9/14/2021	0.1ND	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2	
pH, field (Std. Units)	MCM-04	5.81	3.36	9/14/2021	5.09	No	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2	
pH, field (Std. Units)	MCM-05	5.81	3.36	9/14/2021	6.67	Yes	110			0.0003284	NP Inter (normality) 1 of 2	
pH, field (Std. Units)	MCM-06	5.81	3.36	9/14/2021	6.94	Yes	110			0.0003284	NP Inter (normality) 1 of 2	
pH, field (Std. Units)	MCM-07	5.81	3.36	9/14/2021	6.28	Yes			0.0003284	NP Inter (normality) 1 of 2		
pH, field (Std. Units)	MCM-12	5.81	3.36	9/13/2021	6.24	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2	
pH, field (Std. Units)	MCM-14	5.81	3.36	9/13/2021	6.3	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2	
pH, field (Std. Units)	MCM-17	5.81	3.36	9/14/2021	6.77	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2	
Sulfate (mg/L)	MCM-04	1140	n/a	9/14/2021	96.2	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2	
Sulfate (mg/L)	MCM-05	1140	n/a	9/14/2021	459	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2	
Sulfate (mg/L)	MCM-06	1140	n/a	9/14/2021	490	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2	
Sulfate (mg/L)	MCM-07	1140	n/a	9/14/2021	819	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2	
Sulfate (mg/L)	MCM-12	1140	n/a	9/13/2021	0.5ND	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2	
Sulfate (mg/L)	MCM-14	1140	n/a	9/13/2021	680	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2	
Sulfate (mg/L)	MCM-17	1140	n/a	9/14/2021	460	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2	
Total Dissolved Solids (mg/L)	MCM-04	14600	n/a	9/14/2021	193	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Total Dissolved Solids (mg/L)	MCM-05	14600	n/a	9/14/2021	8020	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Total Dissolved Solids (mg/L)	MCM-06	14600	n/a	9/14/2021	11800	No	106		n/a	0.0001759	NP Inter (normality) 1 of 2	
Total Dissolved Solids (mg/L)	MCM-07	14600	n/a	9/14/2021	13400	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Total Dissolved Solids (mg/L)	MCM-12	14600	n/a	9/13/2021	1450	No	106		n/a	0.0001759	NP Inter (normality) 1 of 2	
Total Dissolved Solids (mg/L)	MCM-14	14600	n/a	9/13/2021	11400	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
Total Dissolved Solids (mg/L)	MCM-17	14600	n/a	9/14/2021	8820	No		0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2	
,											• • • • • • • • • • • • • • • • • • • •	

Appendix III Trend Tests - Significant Results

	Plant McManus	ant McManus Client: Southern Company Da			Data: McManus Ash Pond Data			2021, 10	:06 AM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MCM-07		0.1515	64	53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-07		35.39	70	53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-18 (bg	a)	-19.45	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-20 (bg	a)	-47.21	-46	-38	Yes	12	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-05		-0.06323	-73	-63	Yes	17	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-06		-0.07919	-57	-53	Yes	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-07		-0.07594	-64	-58	Yes	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-12		-0.05115	-56	-53	Yes	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-14		-0.1384	-101	-58	Yes	16	0	n/a	n/a	0.01	NP

Appendix III Trend Tests - All Results

	Plant McManus	Client: Southern Company	Data: McManu	ıs Ash Por	nd Data F	Printed	11/30/2	021, 10	:06 AM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MCM-01 (bg	j)	0.005268	29	48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-02 (bg	a)	-0.01422	-18	-48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-07		0.1515	64	53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-11 (bg	g)	0.004391	25	48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-12		0.0235	20	48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-15 (bo	a)	0.007968	39	48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-16 (bo	a)	-0.005194	-22	-48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-17		-0.04304	-18	-53	No	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-18 (bo	a)	-0.02454	-24	-38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-19 (bo	a)	0.1284	14	38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-20 (bo	3)	0	-1	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-01 (bg	g)	0.2793	5	53	No	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-02 (bg	3)	-0.2586	-42	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-06		44.92	51	53	No	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-07		35.39	70	53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-11 (bo	3)	-1.659	-41	-48	No	14	7.143	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-15 (bo	3)	0.1417	10	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-16 (bo	3)	0.2144	23	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-17		16.77	53	58	No	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-18 (b	g)	-19.45	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-19 (bg	3)	-30.87	-37	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-20 (b	g)	-47.21	-46	-38	Yes	12	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-01 (bg	3)	0.03493	24	58	No	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-02 (bg	3)	0.01474	34	58	No	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-05		-0.06323	-73	-63	Yes	17	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-06		-0.07919	-57	-53	Yes	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-07		-0.07594	-64	-58	Yes	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-11 (bo	g)	-0.05853	-45	-53	No	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-12		-0.05115	-56	-53	Yes	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-14		-0.1384	-101	-58	Yes	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-15 (bg	g)	-0.07157	-27	-53	No	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-16 (bg	g)	0.01093	5	53	No	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-17		-0.09795	-47	-58	No	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-18 (bo	g)	0.1318	32	34	No	11	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-19 (bg	a)	-0.04282	-8	-34	No	11	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-20 (bg	3)	-0.1177	-30	-34	No	11	0	n/a	n/a	0.01	NP

Upper Tolerance Limits Summary Table

		Plant McMar	nus Client:	Southern	Company	Data: McMan	us Ash Pond Dat	a Pri	nted 12/2/2021, 2	2:15 PM		
Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.003	n/a	n/a	n/a 91	n/a	n/a	94.51	n/a	n/a	0.009394	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.031	n/a	n/a	n/a 110	n/a	n/a	14.55	n/a	n/a	0.003545	NP Inter(normality)
Barium (mg/L)	n/a	0.22	n/a	n/a	n/a 107	n/a	n/a	0	n/a	n/a	0.004135	NP Inter(normality)
Beryllium (mg/L)	n/a	0.021	n/a	n/a	n/a 106	n/a	n/a	26.42	n/a	n/a	0.004352	NP Inter(normality)
Cadmium (mg/L)	n/a	0.0025	n/a	n/a	n/a 85	n/a	n/a	92.94	n/a	n/a	0.01278	NP Inter(NDs)
Chromium (mg/L)	n/a	0.011	n/a	n/a	n/a 91	n/a	n/a	49.45	n/a	n/a	0.009394	NP Inter(normality)
Cobalt (mg/L)	n/a	0.036	n/a	n/a	n/a 106	n/a	n/a	76.42	n/a	n/a	0.004352	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	n/a	55.8	n/a	n/a	n/a 105	n/a	n/a	0	n/a	n/a	0.004581	NP Inter(normality)
Fluoride (mg/L)	n/a	1.5	n/a	n/a	n/a 111	n/a	n/a	45.95	n/a	n/a	0.003368	NP Inter(normality)
Lead (mg/L)	n/a	0.005	n/a	n/a	n/a 106	n/a	n/a	82.08	n/a	n/a	0.004352	NP Inter(NDs)
Lithium (mg/L)	n/a	0.026	n/a	n/a	n/a 103	n/a	n/a	55.34	n/a	n/a	0.005076	NP Inter(NDs)
Mercury (mg/L)	n/a	0.0007	n/a	n/a	n/a 85	n/a	n/a	94.12	n/a	n/a	0.01278	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.01	n/a	n/a	n/a 90	n/a	n/a	92.22	n/a	n/a	0.009888	NP Inter(NDs)
Selenium (mg/L)	n/a	0.15	n/a	n/a	n/a 107	n/a	n/a	60.75	n/a	n/a	0.004135	NP Inter(NDs)
Thallium (mg/L)	n/a	0.002	n/a	n/a	n/a 90	n/a	n/a	92.22	n/a	n/a	0.009888	NP Inter(NDs)

MC	MANUS ASH	I POND GWF	PS										
CCR-Rule Background Federal State													
Constituent Name	MCL	Specified	Limit	GWPS	GWPS								
Antimony, Total (mg/L)	0.006		0.003	0.006	0.006								
Arsenic, Total (mg/L)	0.01		0.031	0.031	0.031								
Barium, Total (mg/L)	2		0.22	2	2								
Beryllium, Total (mg/L)	0.004		0.021	0.021	0.021								
Cadmium, Total (mg/L)	0.005		0.0025	0.005	0.005								
Chromium, Total (mg/L)	0.1		0.011	0.1	0.1								
Cobalt, Total (mg/L)		0.006	0.036	0.036	0.036								
Combined Radium, Total (pCi/L)	5		55.8	55.8	55.8								
Fluoride, Total (mg/L)	4		1.5	4	4								
Lead, Total (mg/L)		0.015	0.005	0.015	0.005								
Lithium, Total (mg/L)		0.04	0.026	0.04	0.026								
Mercury, Total (mg/L)	0.002		0.0007	0.002	0.002								
Molybdenum, Total (mg/L)		0.1	0.01	0.1	0.01								
Selenium, Total (mg/L)	0.05		0.15	0.15	0.15								
Thallium, Total (mg/L)	0.002		0.001	0.002	0.002								

^{*}Grey cell indicates Background Limit is higher than MCL or CCR-Rule Specified Level

^{*}MCL = Maximum Contaminant Level

^{*}CCR = Coal Combustion Residual

^{*}GWPS = Groundwater Protection Standard

Federal Confidence Intervals - Significant Results

Plant McManus Client: Southern Company Data: McManus Ash Pond Data Printed 12/29/2021, 3:26 PM Constituent <u>Well</u> $\underline{\text{Upper Lim.}} \quad \underline{\text{Lower Lim.}} \quad \underline{\text{Compliance Sig. N}} \quad \underline{\text{Mean}}$ Std. Dev. %NDs ND Adj. <u>Transform</u> <u>Alpha</u> <u>Method</u> MCM-06 0.4383 0.2741 0.031 0 Arsenic (mg/L) Yes 18 0.3562 0.1357 None No 0.01 Param. 0.01 Param. Lithium (mg/L) DPZ-2 0.0996 0.07843 0.04 Yes 5 0.0906 0.007197 None x^5 0.04 Yes 15 0.07843 Lithium (mg/L) MCM-06 0.1012 0.05569 0.03355 None No 0.01 Param.

Federal Confidence Intervals - All Results

Data: McManus Ash Pond Data Client: Southern Company Constituent <u>Well</u> Std. Dev. %NDs ND Adj. Transform <u>Alpha</u> Method Upper Lim. Lower Lim. N Mean MCM-06 0.003 0.00098 0.006 0.0007709 No 0.01 NP (NDs) Antimony (mg/L) No 13 0.002675 76.92 None Antimony (mg/L) MCM-14 0.003 0.0004 0.006 12 0.002783 0.0007506 91.67 None No 0.01 NP (NDs) Antimony (mg/L) MCM-17 0.003 0.00078 0.006 No 12 0.002815 0.0006409 91.67 None No 0.01 NP (NDs) 0.0249 0.0151 0.031 0.0225 0.005447 Arsenic (ma/L) DPZ-2 4 25 0.01 Param. No Kaplan-Meier No Arsenic (mg/L) MCM-04 0.008019 0.002934 0.031 No 15 0.0058 0.004243 0 None sqrt(x) 0.01 Param. Arsenic (mg/L) MCM-05 0.0335 0.002 0.031 No 17 0.01725 0.01344 17.65 None No 0.01 NP (normality) Arsenic (mg/L) MCM-06 0.4383 0.2741 0.031 Yes 18 0.3562 0.1357 0 None No 0.01 Param. MCM-07 0.0214 0.01122 0.031 No 17 0.01631 0.008125 0 None 0.01 Param. Arsenic (mg/L) No Arsenic (ma/L) MCM-12 0.03 0.001 0.031 14 0.0159 0.01468 50 0.01 NP (normality) Arsenic (mg/L) MCM-14 0.03 0.0014 0.031 Nο 14 0.01651 0.0141 50 None Nο 0.01 NP (normality) 0.031 MCM-17 0.03 0.0017 15 0.01376 0.0138 40 0.01 NP (normality) Arsenic (ma/L) No No None Barium (mg/L) MCM-04 0.09086 0.03286 2 No 0.0749 0 None In(x) 0.01 Param. Barium (mg/L) MCM-05 0.04502 0.009496 2 No 15 0.05122 0.1122 0 None In(x) 0.01 Param 0.16 0.0528 2 15 0.1079 0.01 NP (normality) Barium (mg/L) MCM-06 Nο 0.05641 0 None Nο Barium (mg/L) MCM-07 0.2056 0.1016 2 No 14 0.09816 0 0.01 Param. None In(x) Barium (mg/L) MCM-12 0.1285 0.1062 2 No 14 0.1174 0.01579 0 None No 0.01 Param. Barium (mg/L) 2 MCM-14 0.1285 0.05361 No 14 0.09108 0.0529 0 None No 0.01 Param. Barium (mg/L) MCM-17 0.1388 0.06144 2 No 14 0.1001 0.05463 0 0.01 Param. None No Beryllium (mg/L) MCM-04 0.003 0.00021 0.021 No 14 0.001272 0.001345 35.71 None No 0.01 NP (normality) 0.003 0.000054 15 0.002804 0.0007607 NP (NDs) Beryllium (mg/L) MCM-05 0.021 Nο 93.33 None No 0.01 MCM-07 0.003 0.00012 0.021 14 0.002377 0.001239 0.01 NP (NDs) Bervllium (ma/L) No 78.57 None No MCM-12 0.001236 0.0004659 0.021 14 0.0009843 0.0008851 0.01 Beryllium (mg/L) No 14.29 None ln(x) 0.003 0.000097 14 0.001968 Beryllium (mg/L) MCM-14 0.021 No 0.001438 64 29 None No 0.01 NP (NDs) Beryllium (mg/L) MCM-17 0.003 0.00018 0.021 No 0.001231 0.001369 0.01 NP (normality) 14 35.71 None No 0.0025 0.0025 0.005 0.002281 0.0007257 Cadmium (mg/L) MCM-17 No 90.91 None No 0.006 NP (NDs) Chromium (mg/L) MCM-04 0.01 0.0012 0.1 No 12 0.005667 0.004533 50 None Nο 0.01 NP (normality) MCM-05 0.00057 0.005453 0.004755 0.01 Chromium (ma/L) 0.01 0.1 No 12 50 NP (normality) None No Chromium (mg/L) MCM-06 0.01 0.00085 0.1 No 13 0.00655 0.004546 61.54 None No 0.01 NP (NDs) Chromium (mg/L) MCM-07 0.01 0.002 0.1 No 12 0.00485 0.00381 33.33 None No 0.01 NP (normality) NP (normality) Chromium (mg/L) MCM-12 0.01 0.0047 0.1 Nο 12 0.00695 0.002356 0.01 33.33 None No Chromium (mg/L) MCM-14 0.01 0.00076 0.1 No 12 0.005106 0.004349 41.67 None 0.01 NP (normality) No Chromium (mg/L) MCM-17 0.01305 0.007718 0.1 No 12 0.01104 0.003034 25 Kaplan-Meier 0.01 Param. 0.0054 0.01746 NP (normality) Cobalt (mg/L) MCM-04 0.03 0.036 No 15 0.01221 46.67 None No 0.01 0.03 0.0019 15 0.02813 0.007255 NP (NDs) Cobalt (mg/L) MCM-05 0.036 No 93.33 0.01 None No Cobalt (mg/L) MCM-06 0.0009 0.036 No 15 0.02608 0.01035 86.67 None No 0.01 NP (NDs) Cobalt (mg/L) MCM-07 0.03 0.0011 0.036 Nο 14 0.02794 0.007724 92.86 None No 0.01 NP (NDs) Cobalt (mg/L) MCM-12 0.03 0.00053 0.036 14 0.01948 0.01464 64.29 0.01 NP (NDs) No None No 0.007857 Cobalt (mg/L) MCM-14 0.0006 0.036 14 0.0279 92.86 None 0.01 NP (NDs) No Cobalt (mg/L) MCM-17 0.03 0.0007 0.036 No 14 0.02369 0.01254 78.57 None No 0.01 NP (NDs) 5.96 14 Combined Radium 226 + 228 (pCi/L) MCM-04 3.112 55.8 No 4.634 2.256 0 0.01 Param. None sart(x) Combined Radium 226 + 228 (pCi/L) MCM-05 3.042 1.387 55.8 No 15 2.441 1.741 0 None ln(x) 0.01 Param. Combined Radium 226 + 228 (pCi/L) MCM-06 8.58 1.94 55.8 No 14 5.409 3.319 0 None No 0.01 NP (normality) Combined Radium 226 + 228 (pCi/L) 9.615 15 7.618 2.946 0 0.01 Param. MCM-07 5.621 55.8 Nο None No Combined Radium 226 + 228 (pCi/L) MCM-12 3.092 2.128 55.8 14 2.61 0.6799 0 0.01 No None Param. No 5.283 Combined Radium 226 + 228 (pCi/L) MCM-14 7.458 3.108 55.8 No 15 3.21 0 None No 0.01 Param Combined Radium 226 + 228 (pCi/L) 8 82 55.8 15 5 015 n MCM-17 2 01 Nο 3 04 None Nο 0.01 NP (normality) Fluoride (mg/L) MCM-04 0.18 0.055 4 No 15 0.1375 46.67 0.01 NP (normality) 0.1296 None No MCM-05 0.5406 0.4194 0.2322 Fluoride (mg/L) 0.2639 4 17 11.76 None sqrt(x) 0.01 Fluoride (mg/L) MCM-06 0.3 0.068 4 Nο 15 0.1965 0.1497 46.67 None Nο 0.01 NP (normality) MCM-07 4 16 0.2916 0.2926 0.01 NP (normality) Fluoride (ma/L) 0.54 0.1 No 43.75 None No Fluoride (mg/L) MCM-12 1.296 0.9687 4 No 15 0.3249 6.667 None x^2 0.01 Param. Fluoride (mg/L) MCM-14 0.5 0.084 4 No 16 0.2315 0.2003 56.25 None No 0.01 NP (NDs) Fluoride (ma/L) MCM-17 1.2 0.1 4 Nο 16 0.5396 0.5124 37.5 None Nο 0.01 NP (normality)

Federal Confidence Intervals - All Results

	Plan	t McManus (Client: Southern	Company	Data: M	IcManus A	sh Pond Data Printe	ed 12/29/20	21. 3:26 PM			
Constituent	Well	Upper Lim.	Lower Lim.	Complian			Std. Dev.	%NDs		Transform	Alpha	Method
Lead (mg/L)	MCM-05	0.005	0.0002	0.015	No 1			93.33	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-06	0.005	0.00012	0.015		5 0.0046		93.33	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-07	0.005	0.0002	0.015	No 14			78.57	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-12	0.005	0.0001	0.015	No 14			71.43	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-14	0.005	0.00008	0.015		4 0.0046		92.86	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-17	0.005	0.00027	0.015	No 14			71.43	None	No	0.01	NP (NDs)
Lithium (mg/L)	DPZ-2	0.0996	0.07843	0.04	Yes 5		0.007197	0	None	x^5	0.01	Param.
Lithium (mg/L)	MCM-04	0.006	0.0015	0.04	No 14	4 0.0039	36 0.002174	50	None	No	0.01	NP (normality)
Lithium (mg/L)	MCM-05	0.042	0.021	0.04	No 1	5 0.0648	7 0.14	0	None	No	0.01	NP (normality)
Lithium (mg/L)	MCM-06	0.1012	0.05569	0.04	Yes 1	5 0.0784	3 0.03355	0	None	No	0.01	Param.
Lithium (mg/L)	MCM-07	0.05517	0.02018	0.04	No 1	5 0.0438	3 0.03675	0	None	ln(x)	0.01	Param.
Lithium (mg/L)	MCM-12	0.01198	0.009702	0.04	No 1	4 0.0106	1 0.002124	14.29	None	x^3	0.01	Param.
Lithium (mg/L)	MCM-14	0.05038	0.03288	0.04	No 1	5 0.0361	0.01935	6.667	None	x^3	0.01	Param.
Lithium (mg/L)	MCM-17	0.02576	0.01317	0.04	No 1	4 0.0194	0.008888	7.143	None	No	0.01	Param.
Mercury (mg/L)	MCM-04	0.0002	0.0002	0.002	No 1	1 0.0002	164 0.0001538	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-05	0.0002	0.0002	0.002	No 1	1 0.0001	0.00004764	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-06	0.0002	0.00016	0.002	No 12	2 0.0001	0.00001155	91.67	None	No	0.01	NP (NDs)
Mercury (mg/L)	MCM-07	0.0002	0.0002	0.002	No 1	1 0.0002	0.0001417	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-14	0.0002	0.0002	0.002	No 1	1 0.0002	118 0.0001387	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-17	0.0002	0.0002	0.002	No 1	1 0.0002	251 0.0001461	81.82	None	No	0.006	NP (NDs)
Molybdenum (mg/L)	MCM-05	0.01	0.0099	0.1	No 12	2 0.0092	58 0.002538	83.33	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	MCM-06	0.01	0.0024	0.1	No 13	3 0.0075	0.003813	69.23	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	MCM-17	0.01	0.0019	0.1	No 12	2 0.0093	25 0.002338	91.67	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-04	0.01	0.0025	0.15	No 14	4 0.0087	77 0.003136	85.71	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-05	0.01	0.0023	0.15	No 1	5 0.0079	4 0.00354	73.33	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-06	0.01	0.002	0.15	No 1	5 0.0066	0.003726	46.67	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-07	0.01	0.0023	0.15	No 1	4 0.0065	0.003675	50	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-12	0.01	0.0019	0.15	No 1	4 0.0059	13 0.004219	50	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-14	0.01	0.0019	0.15	No 1	4 0.0068	79 0.003864	57.14	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-17	0.01	0.0018	0.15	No 1	4 0.0063	0.003859	42.86	None	No	0.01	NP (normality)
Thallium (mg/L)	MCM-06	0.002	0.000076	0.002	No 13	3 0.0018	0.0005336	92.31	None	No	0.01	NP (NDs)
Thallium (mg/L)	MCM-17	0.002	0.00014	0.002	No 12	2 0.0018	45 0.0005369	91.67	None	No	0.01	NP (NDs)

State Confidence Intervals - Significant Results

Plant McManus Client: Southern Company Data: McManus Ash Pond Data Printed 12/29/2021, 3:22 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Compliance Sig. N Mean Std. Dev. %NDs ND Adj. <u>Transform</u> <u>Alpha</u> <u>Method</u> 0.031 Arsenic (mg/L) MCM-06 0.4383 0.2741 Yes 18 0.3562 0.1357 0 None No 0.01 Param. x^5 Param. Lithium (mg/L) DPZ-2 0.0996 0.07843 0.026 Yes 5 0.0906 0.007197 0 None 0.01 Lithium (mg/L) MCM-06 0.1012 0.05569 0.026 Yes 15 0.07843 0.03355 None No 0.01 Param. Lithium (mg/L) MCM-14 0.05038 0.03288 0.026 Yes 15 0.03619 0.01935 6.667 None x^3 0.01 Param.

State Confidence Intervals - All Results

Data: McManus Ash Pond Data Client: Southern Company Constituent <u>Well</u> Std. Dev. %NDs ND Adj. Transform <u>Alpha</u> Method Lower Lim. Compliance Sig. N Mean MCM-06 0.003 0.00098 0.006 0.0007709 No 0.01 NP (NDs) Antimony (mg/L) No 13 0.002675 76.92 None Antimony (mg/L) MCM-14 0.003 0.0004 0.006 12 0.002783 0.0007506 91.67 None No 0.01 NP (NDs) Antimony (mg/L) MCM-17 0.003 0.00078 0.006 No 12 0.002815 0.0006409 91.67 None No 0.01 NP (NDs) 0.0249 0.0151 0.031 0.0225 0.005447 Arsenic (ma/L) DPZ-2 4 25 0.01 Param. No Kaplan-Meier No Arsenic (mg/L) MCM-04 0.008019 0.002934 0.031 No 15 0.0058 0.004243 0 None sqrt(x) 0.01 Param. Arsenic (mg/L) MCM-05 0.0335 0.002 0.031 No 17 0.01725 0.01344 17.65 None No 0.01 NP (normality) Arsenic (mg/L) MCM-06 0.4383 0.2741 0.031 Yes 18 0.3562 0.1357 0 None No 0.01 Param. MCM-07 0.0214 0.01122 0.031 No 17 0.01631 0.008125 0 None 0.01 Param. Arsenic (mg/L) No Arsenic (ma/L) MCM-12 0.03 0.001 0.031 14 0.0159 0.01468 50 0.01 NP (normality) Arsenic (mg/L) MCM-14 0.03 0.0014 0.031 Nο 14 0.01651 0.0141 50 None Nο 0.01 NP (normality) 0.031 MCM-17 0.03 0.0017 15 0.01376 0.0138 40 0.01 NP (normality) Arsenic (ma/L) No No None Barium (mg/L) MCM-04 0.09086 0.03286 2 No 0.0749 0 None In(x) 0.01 Param. Barium (mg/L) MCM-05 0.04502 0.009496 2 No 15 0.05122 0.1122 0 None In(x) 0.01 Param Barium (mg/L) 0.16 0.0528 2 0.1079 0.01 NP (normality) MCM-06 Nο 15 0.05641 0 None Nο Barium (mg/L) MCM-07 0.2056 0.1016 2 No 14 0.09816 0 0.01 Param. None In(x) Barium (mg/L) MCM-12 0.1285 0.1062 2 No 14 0.1174 0.01579 0 None No 0.01 Param. Barium (mg/L) 2 MCM-14 0.1285 0.05361 No 14 0.09108 0.0529 0 None No 0.01 Param. Barium (mg/L) MCM-17 0.1388 0.06144 2 No 14 0.1001 0.05463 0 0.01 Param. None No Beryllium (mg/L) MCM-04 0.003 0.00021 0.021 No 14 0.001272 0.001345 35.71 None No 0.01 NP (normality) 0.003 0.000054 15 0.002804 0.0007607 NP (NDs) Beryllium (mg/L) MCM-05 0.021 Nο 93.33 None No 0.01 MCM-07 0.003 0.00012 0.021 14 0.002377 0.001239 0.01 NP (NDs) Bervllium (ma/L) No 78.57 None No MCM-12 0.001236 0.0004659 0.021 14 0.0009843 0.0008851 0.01 Beryllium (mg/L) No 14.29 None ln(x) Param 0.003 0.000097 14 0.001968 Beryllium (mg/L) MCM-14 0.021 No 0.001438 64 29 None No 0.01 NP (NDs) Beryllium (mg/L) MCM-17 0.003 0.00018 0.021 No 0.001231 0.001369 0.01 NP (normality) 14 35.71 None No 0.0025 0.0025 0.005 0.002281 0.0007257 Cadmium (mg/L) MCM-17 No 90.91 None No 0.006 NP (NDs) Chromium (mg/L) MCM-04 0.01 0.0012 0.1 No 12 0.005667 0.004533 50 None Nο 0.01 NP (normality) MCM-05 0.00057 0.005453 0.004755 0.01 Chromium (ma/L) 0.01 0.1 No 12 50 NP (normality) None No Chromium (mg/L) MCM-06 0.01 0.00085 0.1 No 13 0.00655 0.004546 61.54 None No 0.01 NP (NDs) Chromium (mg/L) MCM-07 0.01 0.002 0.1 No 12 0.00485 0.00381 33.33 None No 0.01 NP (normality) NP (normality) Chromium (mg/L) MCM-12 0.01 0.0047 0.1 Nο 12 0.00695 0.002356 0.01 33.33 None No Chromium (mg/L) MCM-14 0.01 0.00076 0.1 No 12 0.005106 0.004349 41.67 None 0.01 NP (normality) No Chromium (mg/L) MCM-17 0.01305 0.007718 0.1 No 12 0.01104 0.003034 25 Kaplan-Meier 0.01 Param. 0.0054 0.01746 NP (normality) Cobalt (mg/L) MCM-04 0.03 0.036 No 15 0.01221 46.67 None No 0.01 0.03 0.0019 15 0.02813 0.007255 NP (NDs) Cobalt (mg/L) MCM-05 0.036 No 93.33 0.01 None No Cobalt (mg/L) MCM-06 0.0009 0.036 No 15 0.02608 0.01035 86.67 None No 0.01 NP (NDs) Cobalt (mg/L) MCM-07 0.03 0.0011 0.036 No 14 0.02794 0.007724 92.86 None No 0.01 NP (NDs) Cobalt (mg/L) MCM-12 0.03 0.00053 0.036 14 0.01948 0.01464 64.29 0.01 NP (NDs) No None No 0.007857 Cobalt (mg/L) MCM-14 0.0006 0.036 14 0.0279 92.86 None 0.01 NP (NDs) No Cobalt (mg/L) MCM-17 0.03 0.0007 0.036 No 14 0.02369 0.01254 78.57 None No 0.01 NP (NDs) 5.96 14 Combined Radium 226 + 228 (pCi/L) MCM-04 3.112 55.8 No 4.634 2.256 0 0.01 Param. None sart(x) Combined Radium 226 + 228 (pCi/L) MCM-05 3.042 1.387 55.8 No 15 2.441 1.741 0 None ln(x) 0.01 Param. Combined Radium 226 + 228 (pCi/L) MCM-06 8.58 1.94 55.8 No 14 5.409 3.319 0 None No 0.01 NP (normality) Combined Radium 226 + 228 (pCi/L) 9.615 15 7.618 2.946 0 0.01 Param. MCM-07 5.621 55.8 Nο None No Combined Radium 226 + 228 (pCi/L) MCM-12 3.092 2.128 55.8 14 2.61 0.6799 0 0.01 No None Param. No 5.283 Combined Radium 226 + 228 (pCi/L) MCM-14 7.458 3.108 55.8 No 15 3.21 0 None No 0.01 Param Combined Radium 226 + 228 (pCi/L) 8 82 55.8 15 5 015 n MCM-17 2 01 Nο 3 04 None Nο 0.01 NP (normality) Fluoride (mg/L) MCM-04 0.18 0.055 4 No 15 0.1375 46.67 0.01 NP (normality) 0.1296 None No MCM-05 0.5406 0.4194 0.2322 Fluoride (mg/L) 0.2639 4 17 11.76 None sqrt(x) 0.01 Fluoride (mg/L) MCM-06 0.3 0.068 4 Nο 15 0.1965 0.1497 46.67 None Nο 0.01 NP (normality) MCM-07 4 16 0.2916 0.2926 0.01 NP (normality) Fluoride (ma/L) 0.54 0.1 No 43.75 None No Fluoride (mg/L) MCM-12 1.296 0.9687 4 No 15 0.3249 6.667 None x^2 0.01 Param. Fluoride (mg/L) MCM-14 0.5 0.084 4 No 16 0.2315 0.2003 56.25 None No 0.01 NP (NDs) Fluoride (ma/L) MCM-17 1.2 0.1 4 Nο 16 0.5396 0.5124 37.5 None Nο 0.01 NP (normality)

State Confidence Intervals - All Results

	Pla	nt McManus (Client: Southern	Company	Da	ata: M	Manus Ash Po	nd Data Printed	12/29/20	21, 3:22 PM			
Constituent	Well	Upper Lim.	Lower Lim.	Complian	ce S	<u>ig. N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Lead (mg/L)	MCM-05	0.005	0.0002	0.005	N	o 15	0.00468	0.001239	93.33	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-06	0.005	0.00012	0.005	N	o 15	0.004675	0.00126	93.33	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-07	0.005	0.0002	0.005	N	o 14	0.003956	0.002075	78.57	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-12	0.005	0.0001	0.005	N	o 14	0.003605	0.00229	71.43	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-14	0.005	0.00008	0.005	N	o 14	0.004649	0.001315	92.86	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-17	0.005	0.00027	0.005	N	o 14	0.003639	0.002233	71.43	None	No	0.01	NP (NDs)
Lithium (mg/L)	DPZ-2	0.0996	0.07843	0.026	Υ	es 5	0.0906	0.007197	0	None	x^5	0.01	Param.
Lithium (mg/L)	MCM-04	0.006	0.0015	0.026	N	o 14	0.003986	0.002174	50	None	No	0.01	NP (normality)
Lithium (mg/L)	MCM-05	0.042	0.021	0.026	N	o 15	0.06487	0.14	0	None	No	0.01	NP (normality)
Lithium (mg/L)	MCM-06	0.1012	0.05569	0.026	Υ	es 15	0.07843	0.03355	0	None	No	0.01	Param.
Lithium (mg/L)	MCM-07	0.05517	0.02018	0.026	N	o 15	0.04383	0.03675	0	None	ln(x)	0.01	Param.
Lithium (mg/L)	MCM-12	0.01198	0.009702	0.026	N	o 14	0.01061	0.002124	14.29	None	x^3	0.01	Param.
Lithium (mg/L)	MCM-14	0.05038	0.03288	0.026	Υ	es 15	0.03619	0.01935	6.667	None	x^3	0.01	Param.
Lithium (mg/L)	MCM-17	0.02576	0.01317	0.026	N	o 14	0.01946	0.008888	7.143	None	No	0.01	Param.
Mercury (mg/L)	MCM-04	0.0002	0.0002	0.002	N	o 11	0.0002464	0.0001538	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-05	0.0002	0.0002	0.002	N	o 11	0.0001856	0.00004764	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-06	0.0002	0.00016	0.002	N	o 12	0.0001967	0.00001155	91.67	None	No	0.01	NP (NDs)
Mercury (mg/L)	MCM-07	0.0002	0.0002	0.002	N	o 11	0.0002427	0.0001417	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-14	0.0002	0.0002	0.002	N	o 11	0.0002418	0.0001387	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-17	0.0002	0.0002	0.002	N	o 11	0.0002251	0.0001461	81.82	None	No	0.006	NP (NDs)
Molybdenum (mg/L)	MCM-05	0.01	0.0099	0.01	N	o 12	0.009258	0.002538	83.33	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	MCM-06	0.01	0.0024	0.01	N	o 13	0.007562	0.003813	69.23	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	MCM-17	0.01	0.0019	0.01	N	o 12	0.009325	0.002338	91.67	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-04	0.01	0.0025	0.15	N	o 14	0.008777	0.003136	85.71	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-05	0.01	0.0023	0.15	N	o 15	0.00794	0.00354	73.33	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-06	0.01	0.002	0.15	N	o 15	0.0066	0.003726	46.67	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-07	0.01	0.0023	0.15	N	o 14	0.006557	0.003675	50	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-12	0.01	0.0019	0.15	N	o 14	0.005943	0.004219	50	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-14	0.01	0.0019	0.15	N	o 14	0.006879	0.003864	57.14	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-17	0.01	0.0018	0.15	N	o 14	0.0063	0.003859	42.86	None	No	0.01	NP (normality)
Thallium (mg/L)	MCM-06	0.002	0.000076	0.002	N	o 13	0.001852	0.0005336	92.31	None	No	0.01	NP (NDs)
Thallium (mg/L)	MCM-17	0.002	0.00014	0.002	N	o 12	0.001845	0.0005369	91.67	None	No	0.01	NP (NDs)

Appendix IV Trend Tests - All Results (No Significant)

	Plant McManus	Client: Southern Company	Data: McMan	us Ash Po	nd Data	Printed	12/2/2	021, 2:2	7 PM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	MCM-01 (bg)		0.001171	42	53	No	15	6.667	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-02 (bg)		0	0	53	No	15	40	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-06		0.04091	53	68	No	18	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-11 (bg)		-0.00367	-56	-58	No	16	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-15 (bg)		0.0002099	14	48	No	14	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-16 (bg)		0	-1	-48	No	14	50	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-18 (bg)		-0.002162	-28	-38	No	12	16.67	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-19 (bg)		-0.0005531	-7	-38	No	12	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-20 (bg)		-0.005196	-12	-38	No	12	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-01 (bg)		0	1	48	No	14	92.86	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-02 (bg)		0	1	48	No	14	92.86	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-06		0.01364	49	53	No	15	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-11 (bg)		0	12	48	No	14	42.86	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-14		0.007102	40	53	No	15	6.667	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-15 (bg)		0	16	48	No	14	57.14	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-16 (bg)		0	1	48	No	14	92.86	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-18 (bg)		0.01173	12	25	No	9	44.44	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-19 (bg)		0	6	38	No	12	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-20 (bg)		-0.0009363	-8	-38	No	12	0	n/a	n/a	0.01	NP

FIGURE A.

Constituent: Antimony Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Arsenic Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Time Series

Constituent: Antimony Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Arsenic Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Barium Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Beryllium Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Barium Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Beryllium Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Boron Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Cadmium Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Time Series

Constituent: Boron Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Cadmium Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

8/30/16

9/2/17

8/30/16

9/2/17

Time Series

Constituent: Calcium Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

9/5/18

9/8/19

9/10/20

9/14/21

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Time Series

Constituent: Calcium Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

9/8/19

9/10/20

9/5/18

Constituent: Chloride Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Chromium Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Cobalt Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Time Series

Constituent: Chromium Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Cobalt Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Combined Radium 226 + 228 Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Fluoride Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Combined Radium 226 + 228 Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Fluoride Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Lead Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Lithium Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Time Series

Constituent: Lead Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Lithium Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Mercury Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Molybdenum Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Time Series

Constituent: Mercury Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Molybdenum Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Selenium Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Selenium Analysis Run 12/29/2021 3:07 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Sulfate Analysis Run 12/29/2021 3:07 PM Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values

Constituent: Thallium Analysis Run 12/29/2021 3:07 PM Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Time Series

Constituent: Sulfate Analysis Run 12/29/2021 3:07 PM Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Thallium Analysis Run 12/29/2021 3:07 PM Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Total Dissolved Solids Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Total Dissolved Solids Analysis Run 12/29/2021 3:07 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Antimony (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.003						
8/31/2016					<0.003	<0.003	<0.003	
11/30/2016		<0.003			<0.003	<0.003	<0.003	
2/15/2017		<0.003						
2/16/2017					<0.003	<0.003	<0.003	
5/31/2017			<0.003					<0.003
6/1/2017		<0.003		<0.003				
6/2/2017					<0.003	<0.003	<0.003	
8/2/2017			<0.003	<0.003				<0.003
8/15/2017								<0.003
8/16/2017		<0.003	<0.003					
8/17/2017				<0.003	<0.003	<0.003	<0.003	
4/4/2018				<0.003				<0.003
4/5/2018			<0.003					
5/8/2018				<0.003				<0.003
5/9/2018			<0.003					
6/19/2018		<0.003	<0.003					<0.003
6/20/2018				<0.003	<0.003	<0.003		
6/21/2018							<0.003	
9/25/2018								<0.003
9/26/2018		0.00078	0.00078					
9/27/2018				<0.003	<0.003	<0.003	<0.003	
11/6/2018				<0.003			<0.003	<0.003
11/7/2018		<0.003	<0.003		<0.003	<0.003		
3/6/2019						<0.003		
3/25/2019								<0.003
8/27/2019		<0.003		<0.003				
8/28/2019			<0.003		<0.003	0.00098 (J)	<0.003	<0.003
10/15/2019				<0.003				
10/16/2019		<0.003	<0.003		<0.003			<0.003
10/17/2019						0.0009 (J)	<0.003	
3/26/2020		<0.003						
3/27/2020			<0.003					<0.003
3/28/2020				<0.003	<0.003	0.0029 (J)	<0.003	
9/14/2021	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

Constituent: Antimony (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	<0.003	< 0.003		<0.003				
10/25/2016					< 0.003			
11/30/2016	<0.003	< 0.003		<0.003	<0.003			
2/15/2017	<0.003	< 0.003		<0.003	<0.003			
5/31/2017	<0.003	< 0.003			<0.003			
6/1/2017				<0.003				
6/2/2017			<0.003					
8/2/2017			<0.003					
8/15/2017	< 0.003				< 0.003			
8/16/2017		<0.003						
8/17/2017			<0.003	<0.003				
4/4/2018			<0.003					
5/8/2018			<0.003					
6/19/2018	<0.003	<0.003	<0.003		<0.003			
6/20/2018				<0.003				
9/25/2018	<0.003	<0.003						
9/26/2018			0.00078	0.00078	0.00078			
11/6/2018		<0.003			<0.003			
11/7/2018	<0.003		<0.003	<0.003				
8/26/2019		0.0004 (J)						
8/27/2019	<0.003		<0.003	<0.003	<0.003			
10/15/2019	<0.003	<0.003	<0.003					
10/16/2019				<0.003	<0.003			
11/7/2019						<0.003	<0.003	<0.003
11/18/2019						<0.003		
11/19/2019							<0.003	<0.003
12/4/2019							0.00041 (J)	<0.003
12/5/2019						<0.003		
12/17/2019							<0.003	
12/18/2019						<0.003		<0.003
1/8/2020							<0.003	<0.003
1/9/2020						<0.003		
1/21/2020						<0.003	<0.003	<0.003
2/4/2020						<0.003	<0.003	<0.003
2/13/2020						<0.003	<0.003	<0.003
3/27/2020	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
9/13/2021	<0.003	<0.003						
9/14/2021			<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

Constituent: Arsenic (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.03						
8/31/2016					<0.03	0.212	0.0066	
11/30/2016		0.0018 (J)			0.0132	0.129	0.0281	
2/15/2017		0.0022 (J)						
2/16/2017					0.0372	0.257	0.0295	
5/31/2017			<0.03					0.0259
6/1/2017		0.0036 (J)		0.004 (J)				
6/2/2017					0.0335	0.0559	0.0286	
8/2/2017			0.0011 (J)	0.0028 (J)				0.0188
8/15/2017								0.0117
8/16/2017		0.0038 (J)	<0.03					
8/17/2017				0.0021 (J)	0.0336	0.458	0.0211	
4/4/2018				0.0023 (J)				0.017
4/5/2018			0.00098 (J)					
5/8/2018				0.0048 (J)				0.016
5/9/2018			0.0014 (J)					
6/19/2018		0.0069	0.0011 (J)					0.011
6/20/2018				0.0099	0.019	0.44		
6/21/2018							0.022 (J)	
9/25/2018								0.011
9/26/2018		0.0081	0.00057					
9/27/2018				0.01	0.0035 (J)	0.27	0.015	
11/6/2018				0.013			0.012	0.0043 (J)
11/7/2018		0.0069	0.00059 (J)		0.002 (J)	0.5		
11/27/2018					0.0016 (J)	0.5	0.011	
3/6/2019						0.49		
3/25/2019								0.0029 (J)
3/26/2019					0.0018 (J)	0.3	0.0078	
7/2/2019				0.015 (J)		0.37	0.027	0.0024 (J)
8/27/2019		0.0079		0.0072				
8/28/2019			<0.03		0.0019 (J)	0.5	0.011	0.005 (J)
10/15/2019				0.0038 (J)				
10/16/2019		0.01	0.003 (J)		0.0047 (J)			0.0054
10/17/2019						0.34	0.0046 (J)	
11/19/2019			0.00057 (J)					
11/20/2019		0.0064						
3/26/2020		0.0069						
3/27/2020			<0.03					0.0034 (J)
3/28/2020	<0.03			0.0034 (J)	<0.03	0.3	0.012	
10/12/2020								0.0047 (J)
10/13/2020		0.0061	<0.03	0.0022 (J)				
10/14/2020						0.43	0.013	
10/15/2020	0.021				0.024			
1/4/2021					0.0072			
3/3/2021		0.016 (J)	<0.03					0.011 (J)
3/4/2021	0.017 (J)			0.0018 (J)	<0.03	0.35	0.015 (J)	
9/14/2021	0.022	0.0055	0.00067 (J)	0.0047 (J)	0.02 (J)	0.51	0.013 (J)	0.011

Constituent: Arsenic (mg/L) Analysis Run 12/29/2021 3:10 PM

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	<0.03	<0.03		0.0018 (J)				
10/25/2016					<0.03			
11/30/2016	<0.03	<0.03		<0.03	0.0072			
2/15/2017	<0.03	<0.03		<0.03	0.0017 (J)			
5/31/2017	0.0007 (J)	0.0008 (J)			0.0018 (J)			
6/1/2017				<0.03				
6/2/2017			0.0026 (J)					
8/2/2017			0.0047 (J)					
8/15/2017	0.0006 (J)				0.0015 (J)			
8/16/2017		0.0007 (J)						
8/17/2017			0.0028 (J)	<0.03				
4/4/2018			0.0029 (J)					
5/8/2018			0.0048 (J)					
6/19/2018	0.001 (J)	0.0062 (J)	0.0019 (J)		0.0029 (J)			
6/20/2018				0.00058 (J)				
9/25/2018	0.0011 (J)	0.0031 (J)						
9/26/2018			0.0023 (J)	0.00057	0.0015 (J)			
11/6/2018		0.0014 (J)			<0.03			
11/7/2018	0.0057		0.0028	0.00057				
8/26/2019		0.0022 (J)						
8/27/2019	0.0011 (J)		0.0041 (J)	0.0019 (J)	0.0024 (J)			
10/15/2019	0.0024 (J)	0.0067	0.0038 (J)					
10/16/2019				0.001 (J)	0.0043 (J)			
11/7/2019						0.0067	0.0094 (J)	0.026
11/18/2019						0.012 (J)		
11/19/2019							0.019 (J)	0.031 (J)
11/21/2019					0.0031 (J)			
12/4/2019							0.016	0.026
12/5/2019						0.0055		
12/17/2019							0.011 (J)	
12/18/2019						0.0031 (J)		0.019 (J)
1/8/2020							0.015 (J)	0.022 (J)
1/9/2020						0.0034 (J)		
1/21/2020						0.0031 (J)	0.015 (J)	0.024 (J)
2/4/2020						<0.03	0.0092 (J)	0.022 (J)
2/13/2020						0.0066	0.021 (J)	0.029
3/27/2020	<0.03	<0.03	0.0018 (J)	<0.03	<0.03	0.0043 (J)	0.017	0.027
10/12/2020	<0.03					<0.03		
10/13/2020		<0.03	0.0042 (J)	<0.03	<0.03		0.0089	0.018
3/2/2021	<0.03	<0.03	0.021 (J)					
3/3/2021				0.0012 (J)	<0.03	0.0014 (J)	0.0086 (J)	0.016 (J)
9/13/2021	<0.03	<0.03						
9/14/2021			0.0035 (J)	<0.03	<0.03	0.0029 (J)	0.018 (J)	0.028

Constituent: Barium (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016	DFZ-Z	0.0443	WCW-02 (bg)	WCW-04	WCW-03	WCW-00	WCW-07	WCW-11 (bg)
8/31/2016		0.0443			0.0289	0.0498	0.0771	
11/30/2016		0.0524			0.0168	0.0528	0.101	
2/15/2017		0.124			0.0108	0.0328	0.101	
2/16/2017		0.124			0.016	0.0555	0.0865	
5/31/2017			0.127		0.010	0.0555	0.0803	0.0646
6/1/2017		0.0757	0.127	0.0195				0.0040
6/2/2017		0.0737		0.0193	0.0393 (J)	0.0508	0.123	
8/2/2017			0.121	0.053	0.0393 (3)	0.0508	0.123	0.0533
8/15/2017			0.121	0.055				0.0247
8/16/2017		0.0522	0.116					0.0247
8/17/2017		0.0322	0.110	0.0475	0.0188	0.0596	0.124	
4/4/2018				0.0475	0.0100	0.0590	0.124	0.057
4/5/2018			0.12	0.033				0.037
5/8/2018			0.12	0.027				0.062
			0.11	0.027				0.002
5/9/2018 6/19/2018		0.083	0.11 0.1					0.031
		0.063	0.1	0.027	0.014	0.06		0.031
6/20/2018				0.027	0.014	0.06	0.1	
6/21/2018 9/25/2018							0.1	0.041
9/26/2018		0.073	0.11					0.041
		0.073	0.11	0.14	0.0007 / 1)	0.06	0.12	
9/27/2018				0.14	0.0097 (J)	0.06	0.12 0.12	0.004
11/6/2018 11/7/2018		0.071	0.097	0.31	0.0085 (1)	0.10	0.12	0.031
		0.071	0.097		0.0085 (J)	0.19		
3/6/2019						0.16		0.026
3/25/2019 8/27/2019		0.077		0.083				0.036
8/28/2019		0.077	0.1	0.063	0.011	0.13	0.4	0.035
10/15/2019			0.1	0.082	0.011	0.13	0.4	0.035
10/15/2019		0.074	0.1	0.062	0.012			0.026
10/16/2019		0.074	0.1		0.012	0.12	0.35	0.036
3/26/2020		0.07				0.13	0.33	
3/27/2020		0.07	0.095					0.039
3/28/2020			0.095	0.039	0.0041 (J)	0.12	0.11	0.039
10/12/2020				0.039	0.0041 (3)	0.12	0.11	0.039
10/12/2020		0.06	0.086	0.055				0.039
10/13/2020		0.00	0.000	0.033		0.14	0.19	
10/14/2020	0.071				0.45	0.14	0.19	
1/4/2021	0.071				0.45			
3/3/2021		0.14	0.21		0.001			0.09
3/4/2021	0.006	0.14	0.21	0.062	0.0083 (1)	0.14	0.2	0.00
9/14/2021	0.096 0.082	0.065	0.082	0.062	0.0082 (J) 0.08	0.14 0.22	0.2	0.07
3/ 14/2UZ I	0.002	0.000	0.002	0.043	0.00	0.22	U.Z	0.07

Constituent: Barium (mg/L) Analysis Run 12/29/2021 3:10 PM

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	0.108	0.0131		0.0973				
10/25/2016					0.063			
11/30/2016	0.121	0.0105		0.11	0.0628			
2/15/2017	0.111	0.0786		0.0945	0.0102			
5/31/2017	0.131	0.0199			0.061			
6/1/2017				0.121				
6/2/2017			0.0368 (J)					
8/2/2017			0.0355					
8/15/2017	0.126				0.0579			
8/16/2017		0.033						
8/17/2017			0.037	0.121				
4/4/2018			0.039					
5/8/2018			0.037					
6/19/2018	0.13	0.092	0.038		0.076			
6/20/2018				0.13				
9/25/2018	0.12	0.098						
9/26/2018	02	0.000	0.049	0.13	0.099			
11/6/2018		0.1			0.052			
11/7/2018	0.11	0	0.05	0.12	0.002			
8/26/2019	0	0.12	0.00	02				
8/27/2019	0.14		0.048	0.13	0.11			
10/15/2019	0.14	0.12	0.041					
10/16/2019				0.13	0.14			
11/7/2019				00		0.12	0.22	0.16
11/18/2019						0.11		
11/19/2019							0.13	0.14
12/4/2019							0.14	0.14
12/5/2019						0.12		
12/17/2019							0.14	
12/18/2019						0.11		0.15
1/8/2020							0.14	0.14
1/9/2020						0.096		
1/21/2020						0.098	0.14	0.14
2/4/2020						0.091	0.13	0.12
2/13/2020						0.098	0.13	0.12
3/27/2020	0.12	0.13	0.041	0.13	0.16	0.076	0.12	0.12
10/12/2020	0.1					0.091		
10/13/2020		0.14	0.024	0.11	0.14		0.12	0.12
3/2/2021	0.1	0.16	0.067					
3/3/2021		-	•	0.059	0.17	0.099	0.14	0.12
9/13/2021	0.086	0.16		-				
9/14/2021		- -	0.05	0.16	0.2 (M1)	0.098	0.13	0.11
				-	` '		-	

Constituent: Beryllium (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.003						
8/31/2016					<0.003	<0.003	<0.003	
11/30/2016		<0.003			<0.003	<0.003	<0.003	
2/15/2017		<0.003						
2/16/2017					<0.003	<0.003	<0.003	
5/31/2017			0.0002 (J)					7E-05 (J)
6/1/2017		9E-05 (J)		0.0001 (J)				
6/2/2017					<0.003	<0.003	<0.003	
8/2/2017			0.0002 (J)	0.0003 (J)				0.0001 (J)
8/15/2017								9E-05 (J)
8/16/2017		<0.003	0.0002 (J)					
8/17/2017				0.0002 (J)	<0.003	<0.003	<0.003	
4/4/2018				<0.003				<0.003
4/5/2018			<0.003					
5/8/2018				0.00025 (J)				0.0001 (J)
5/9/2018			0.00017 (J)					
6/19/2018		0.00011 (J)	0.00017 (J)					0.00011 (J)
6/20/2018				0.00021 (J)	<0.003	<0.003		
6/21/2018							<0.003	
9/25/2018								0.0001 (J)
9/26/2018		9.2E-05 (J)	0.00017 (J)					
9/27/2018				0.00031 (J)	<0.003	<0.003	7.4E-05 (J)	
11/6/2018				0.00077 (J)			0.00012 (J)	0.00012 (J)
11/7/2018		0.0001 (J)	0.00015 (J)		5.4E-05 (J)	<0.003		
3/6/2019						<0.003		
8/27/2019		9E-05 (J)		0.00032 (J)				
8/28/2019			0.00011 (J)		<0.003	<0.003	<0.003	8.4E-05 (J)
10/15/2019				0.00035 (J)				
10/16/2019		<0.003	0.00013 (J)		<0.003			9E-05 (J)
10/17/2019						<0.003	7.8E-05 (J)	
3/26/2020		<0.003						
3/27/2020			<0.003					<0.003
3/28/2020				<0.003	<0.003	<0.003	<0.003	
10/12/2020								<0.003
10/13/2020		<0.003	<0.003	<0.003				
10/14/2020						<0.003	<0.003	
10/15/2020	<0.003				<0.003			
1/4/2021					<0.003			
3/3/2021		<0.003	<0.003					<0.003
3/4/2021	<0.003			<0.003	<0.003	<0.003	<0.003	
9/14/2021	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

Constituent: Beryllium (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	0.0003 (J)	<0.003		0.0001 (J)				
10/25/2016					0.0004 (J)			
11/30/2016	0.0004 (J)	<0.003		0.0002 (J)	0.0003 (J)			
2/15/2017	0.0004 (J)	< 0.003		<0.003	<0.003			
5/31/2017	0.0005 (J)	0.0001 (J)			0.0002 (J)			
6/1/2017				0.0002 (J)				
6/2/2017			0.0001 (J)					
8/2/2017			<0.003					
8/15/2017	0.0005 (J)				0.0002 (J)			
8/16/2017		0.0002 (J)						
8/17/2017			0.0001 (J)	0.0002 (J)				
4/4/2018			<0.003					
5/8/2018			0.00031 (J)					
6/19/2018	0.00065 (J)	<0.003	0.00034 (J)		0.00032 (J)			
6/20/2018				0.00024 (J)				
9/25/2018	0.00066 (J)	5E-05 (J)						
9/26/2018			0.00039 (J)	0.00019 (J)	0.00024 (J)			
11/6/2018		9.7E-05 (J)			0.00026 (J)			
11/7/2018	0.00058 (J)		0.00041 (J)	0.00019 (J)				
8/26/2019		0.0001 (J)						
8/27/2019	0.0009 (J)		0.00042 (J)	0.00021 (J)	0.00018 (J)			
10/15/2019	0.00079 (J)	<0.003	0.00034 (J)					
10/16/2019				0.00014 (J)	0.00014 (J)			
11/7/2019						0.007	0.0068 (J)	0.021
11/18/2019						0.0063 (J)		
11/19/2019							0.014 (J)	0.015 (J)
12/4/2019							0.01	0.011
12/5/2019						0.0045		
12/17/2019							0.012	
12/18/2019						0.0048		0.012
1/8/2020							0.015 (J)	0.017
1/9/2020						0.0043		
1/21/2020						0.0041 (J)	0.012 (J)	0.015
2/4/2020						0.0049 (J)	0.015 (J)	0.017 (J)
2/13/2020						0.0043	0.013 (J)	0.015 (J)
3/27/2020	<0.003	<0.003	<0.003	<0.003	<0.003	0.004	0.011	0.018
10/12/2020	0.001 (J)					0.0041		
10/13/2020		<0.003	<0.003	<0.003	<0.003		0.015	0.017
3/2/2021	<0.003	<0.003	<0.003					
3/3/2021				<0.003	<0.003	0.003	0.015	0.014
9/13/2021	0.0011	<0.003						
9/14/2021			0.00034 (J)	0.00062	<0.003	0.0031	0.0062	0.016

Constituent: Boron (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

DPZ-2 MCM-01 (bg) MCM-02 (bg) MCM-04 MCM-05 MCM-06 MCM-07 MCM-11 (bg) 0.0325 (J) 8/30/2016 8/31/2016 0.56 0.632 0.863 11/30/2016 0.0334 (J) 0.529 0.637 0.804 2/15/2017 0.254 2/16/2017 0.539 0.698 0.815 5/31/2017 0.161 0.0521 6/1/2017 0.0564 0.0608 6/2/2017 0.555 0.674 0.891 8/2/2017 0.137 0.0392 (J) 0.158 0.0448 8/15/2017 8/16/2017 0.0435 0.148 0.922 8/17/2017 0.128 0.516 0.7 0.1 4/4/2018 0.046 4/5/2018 0.13 5/8/2018 0.074 0.048 5/9/2018 0.12 6/19/2018 0.04 (J) 0.13 0.04 0.045 0.51 0.69 6/20/2018 6/21/2018 0.99 9/25/2018 0.043 9/26/2018 0.038 (J) 0.1 9/27/2018 0.06 0.47 0.62 0.88 0.06 11/6/2018 1.1 0.046 11/7/2018 0.86 0.037 (J) 0.1 0.51 3/6/2019 1.5 3/24/2019 0.44 1.1 1.2 0.058 3/25/2019 0.038 (J) 0.091 0.03 (J) 10/15/2019 0.068 10/16/2019 0.036 (J) 0.085 0.032 (J) 0.49 10/17/2019 1.3 1.1 11/20/2019 0.53 1.3 3/26/2020 0.064 (J) 3/27/2020 0.17 (J) 0.058 (J) 3/28/2020 0.067 (J) 0.28 (J) 0.95 0.79 6/16/2020 2.1 10/12/2020 <0.5 10/13/2020 <0.5 <0.5 <0.5 10/14/2020 1.5 1.8 10/15/2020 2.1 0.61 0.98 1/4/2021 3/3/2021 <0.5 <0.5 <0.5

0.11 (J)

0.07 (J)

0.093 (J)

0.4 (J)

0.95 (J)

1.4 (J)

1.1

1.6 (J)

1.5

0.06 (J)

3/4/2021

9/14/2021

2.2 (J)

0.079 (J)

2

Constituent: Boron (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	1.18	0.726		0.0972 (J)				
10/25/2016					1.73			
11/30/2016	1.3	0.565		0.0964	2.12			
2/15/2017	1.33	0.647		0.398	2.14			
5/31/2017	1.38	0.503			2.24			
6/1/2017				0.0776				
6/2/2017			0.0495					
8/2/2017			0.0333 (J)					
8/15/2017	1.14				2.1			
8/16/2017		0.539						
8/17/2017			0.0593	0.0853				
4/4/2018			0.065					
5/8/2018			0.062					
6/19/2018	1.2	0.76	0.064		1.7			
6/20/2018				0.079				
9/25/2018	1	0.61						
9/26/2018			0.06	0.072	1.3			
11/6/2018		0.75			1.8			
11/7/2018	1.4		0.062 (J)	0.074				
3/24/2019	1	0.95			1.4			
3/25/2019			0.057	0.067				
10/15/2019	1.1	1	0.046					
10/16/2019				0.051	1.6			
11/7/2019						0.27	0.84	1.1
11/18/2019						0.29 (J)		
11/19/2019						, ,	0.83	1.3
11/21/2019		1			1.5			
12/4/2019							0.68	0.81
12/5/2019						0.23		
12/17/2019							0.57	
12/18/2019						0.23		0.77
1/8/2020							0.73	0.9
1/9/2020						0.2		
1/21/2020						0.24 (J)	0.75	0.94
2/4/2020						0.24 (J)	0.79 (J)	0.96 (J)
2/13/2020						0.22	0.74	0.88
3/27/2020	1.5	1.3	0.076 (J)	0.088 (J)	1.8	0.24 (J)	0.96	0.94
10/12/2020	1.3			(0)		0.24 (J)		
10/13/2020		1.1	<0.5	<0.5	1.8	(-)	0.73	1.1
3/2/2021	1.4 (J)	1.4 (J)	<0.5					
3/3/2021	(0)	(0)	5.5	<0.5	1.7 (J)	0.21 (J)	0.79 (J)	0.91 (J)
9/13/2021	1.4 (M1)	1.2		5.0	(0)	5.21(0)	3.75 (0)	(0)
9/14/2021	(/	· ·-	0.068 (J)	0.071 (J)	2.1 (M1)	0.2 (J)	1.2	0.91 (J)
J, 17/2021			0.000 (0)	0.071(0)	2. 1 (IVI I <i>)</i>	0.2 (0)	1.4	3.31 (0)

Constituent: Cadmium (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.0025						
8/31/2016					<0.0025	<0.0025	<0.0025	
11/30/2016		<0.0025			<0.0025	<0.0025	<0.0025	
2/15/2017		<0.0025						
2/16/2017					<0.0025	<0.0025	<0.0025	
5/31/2017			<0.0025					<0.0025
6/1/2017		<0.0025		<0.0025				
6/2/2017					<0.0025	<0.0025	<0.0025	
8/2/2017			<0.0025	<0.0025				<0.0025
8/15/2017								<0.0025
8/16/2017		<0.0025	<0.0025					
8/17/2017				<0.0025	<0.0025	<0.0025	<0.0025	
4/4/2018				<0.0025				<0.0025
4/5/2018			<0.0025					
5/8/2018				<0.0025				<0.0025
5/9/2018			<0.0025					
6/19/2018		<0.0025	<0.0025					<0.0025
6/20/2018				<0.0025	<0.0025	<0.0025		
6/21/2018							<0.0025	
9/25/2018								0.0002 (J)
9/26/2018		9.3E-05	9.3E-05					
9/27/2018				<0.0025	<0.0025	<0.0025	<0.0025	
11/6/2018				<0.0025			<0.0025	<0.0025
11/7/2018		<0.0025	<0.0025		<0.0025	<0.0025		
3/6/2019						<0.0025		
8/27/2019		<0.0025		<0.0025				
8/28/2019			<0.0025		<0.0025	<0.0025	<0.0025	<0.0025
3/26/2020		<0.0025						
3/27/2020			<0.0025					<0.0025
3/28/2020				<0.0025	<0.0025	<0.0025	<0.0025	
9/14/2021	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025

Constituent: Cadmium (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	<0.0025	<0.0025		<0.0025				
10/25/2016					<0.0025			
11/30/2016	<0.0025	<0.0025		<0.0025	<0.0025			
2/15/2017	<0.0025	<0.0025		<0.0025	<0.0025			
5/31/2017	<0.0025	<0.0025			<0.0025			
6/1/2017				<0.0025				
6/2/2017			<0.0025					
8/2/2017			<0.0025					
8/15/2017	<0.0025				<0.0025			
8/16/2017		<0.0025						
8/17/2017			<0.0025	<0.0025				
4/4/2018			<0.0025					
5/8/2018			<0.0025					
6/19/2018	<0.0025	<0.0025	<0.0025		<0.0025			
6/20/2018				<0.0025				
9/25/2018	<0.0025	<0.0025						
9/26/2018			9.3E-05	9.3E-05	9.3E-05			
11/6/2018		<0.0025			<0.0025			
11/7/2018	<0.0025		<0.0025	<0.0025				
8/26/2019		<0.0025						
8/27/2019	<0.0025		<0.0025	<0.0025	<0.0025			
11/7/2019						<0.0025	<0.0025	0.00034 (J)
11/18/2019						<0.0025		
11/19/2019							<0.0025	<0.0025
12/4/2019							<0.0025	<0.0025
12/5/2019						<0.0025		
12/17/2019							<0.0025	
12/18/2019						<0.0025		<0.0025
1/8/2020							<0.0025	<0.0025
1/9/2020						<0.0025		
1/21/2020						<0.0025	<0.0025	<0.0025
2/4/2020						<0.0025	<0.0025	<0.0025
2/13/2020						<0.0025	<0.0025	<0.0025
3/27/2020	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
9/13/2021	<0.0025	<0.0025						
9/14/2021			<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025

Constituent: Calcium (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		7.3	, 5,					
8/31/2016					65	82.8	119	
11/30/2016		10.8			71.7	68.7	103	
2/15/2017		14.3						
2/16/2017					74	94.8	114	
5/31/2017			5.9					18.6
6/1/2017		12.7 (J)		3.65				
6/2/2017		()			120	92.5	179	
8/2/2017			4.69	12.4				18.5
8/15/2017								4.09
8/16/2017		8.7	5.25					
8/17/2017				8.17	100	126	186	
4/4/2018				6.8				<25
4/5/2018			5					
5/8/2018				5.7				18.4 (J)
5/9/2018			4.7					· ,
6/19/2018		11.6 (J)	4.8					4.3
6/20/2018				4.3	72.8	121		
6/21/2018							179	
6/28/2018		13						
9/25/2018								6.2 (D)
9/26/2018		12.8 (J)	4.6					
9/27/2018				16.4 (J)	46.6	95.1	193	
11/6/2018				39.5			219	1.8
11/7/2018		11.9	4.6		41.8	387.5 (D)		
3/6/2019						341		
3/24/2019					20.9 (J)	277	243	
3/25/2019		12.6 (J)	4.7	20.8 (J)				2.5 (D)
10/15/2019				15.5				
10/16/2019		13.6	4.9		55.2			2.2
10/17/2019						309	260	
11/20/2019					55.8		308	
3/26/2020		10.1						
3/27/2020			4.9					3.3
3/28/2020				15.5	25.8	286	286	
4/23/2020	266							
6/16/2020	245							
10/12/2020								2.8
10/13/2020		9.8	3.8	12.5				
10/14/2020						245	207	
10/15/2020	194				69.1			
1/4/2021					104			
3/3/2021		14	4					
3/4/2021	257			15.1	23.4	233	244	2.1
9/14/2021	273	9.6	4.2	12.5	13.9	299	225	14

Constituent: Calcium (mg/L) Analysis Run 12/29/2021 3:10 PM

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	7.05	42.8		4.02				
10/25/2016					69.4			
11/30/2016	8.69	33.2		4.87	83.9			
2/15/2017	8.34	56.1		6.61	96.3			
5/31/2017	8.85	73.6			122			
6/1/2017				6.42				
6/2/2017			2.77					
8/2/2017			1.27					
8/15/2017	8.05				117			
8/16/2017		99.6						
8/17/2017			5.53	5.62				
4/4/2018			6.5					
5/8/2018			6.7					
6/19/2018	8.3	285	7.4		136			
6/20/2018				5.7				
6/28/2018	8.9	294			138			
9/25/2018	6.8	283						
9/26/2018			8.5 (J)	5.3	148			
11/6/2018		297			24.7			
11/7/2018	8.5		9.8	5.3				
3/24/2019	7.4	338			136			
3/25/2019			7.8	5.7				
10/15/2019	7.9	321	6.7					
10/16/2019				4.8	118			
11/7/2019						46.2	158	163
11/18/2019						41.8		
11/19/2019							152	169
11/21/2019		305			125			
12/4/2019							142	140
12/5/2019						40.5		
12/17/2019							136	
12/18/2019						42		145
1/8/2020							147	157
1/9/2020						37.1		
1/21/2020						40.1	167	152
2/4/2020						36.2	142	139
2/13/2020						38.9	148	146
3/27/2020	8.3	286	5.9	5.4	222	23.2	122	113
10/12/2020	6.1					19.1		
10/13/2020		40.9	0.83	5.7	86.4		125	128
3/4/2021	6.5	205	1.4	11.2	143	26	123	110
9/13/2021	6	165						
9/14/2021			6.7	6.5	190	18.8	93.6	61.1

Constituent: Chloride (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		9.7						
8/31/2016					1800	2200	2600	
11/30/2016		19			1100	2100	2800	
2/15/2017		21						
2/16/2017					2100	2500	3100	
5/31/2017			39					98
6/1/2017		12		22				
6/2/2017					3100	2500	4600	
8/2/2017			42	230				57
8/15/2017								15
8/16/2017		14	41					
8/17/2017				210	2600	2700	4600	
4/4/2018				156				69
4/5/2018			40.2					
5/8/2018				140				72.3
5/9/2018			40.6					
6/19/2018		24.4	37.7					17.3
6/20/2018				27.5	1800	3100		
6/21/2018							3920	
9/25/2018								31.3
9/26/2018		23.4	33.4					
9/27/2018				101	1300	2510 (D)	5660 (D)	
11/6/2018				107			6520	9.8
11/7/2018		21.8	30.7		1180	8860		
3/6/2019						11700		
3/24/2019					717	6470	8720	
3/25/2019		19.4	33.5	78.5				12.9
10/15/2019				46				
10/16/2019		21.4	33.1		941 (D)			12.2
10/17/2019						9930	8210	
11/20/2019					1480		9810	
3/26/2020		23						
3/27/2020			32.9					14.5
3/28/2020				71.4	693	9190	9070	
4/23/2020	7500							
6/16/2020	7780							
10/12/2020								13.9
10/13/2020		13.5	25.7	54.4				
10/14/2020						6630	7910	
10/15/2020	<1				1660			
1/4/2021					2460			
3/3/2021		13.6	20.5					9.4
3/4/2021	8280			69.6	652	6310	7540	
9/14/2021	7610	16.7	21.8	28.5	3940	5360	6300	62.8

Constituent: Chloride (mg/L) Analysis Run 12/29/2021 3:10 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	800	450		26				
10/25/2016					1300			
11/30/2016	760	310		27	400			
2/15/2017	740	490		30	2000			
5/31/2017	740	820			2500			
6/1/2017				27				
6/2/2017			11					
8/2/2017			3.2					
8/15/2017	750				2500			
8/16/2017		1500						
8/17/2017			12	32				
4/4/2018			13.4					
5/8/2018			13.2					
6/19/2018	760	5180	13.7		3050			
6/20/2018				30				
9/25/2018	752 (D)	7220						
9/26/2018			18.5	28.4	3965 (D)			
11/6/2018		6020			2230			
11/7/2018	665		20.2	25.1				
3/24/2019	744	7400			3960			
3/25/2019			19.7	21.8				
10/15/2019	744	9050	17.1					
10/16/2019				20	2181.5 (D)			
11/7/2019						2360	6170	7880
11/18/2019						6970		
11/19/2019							5650	8130
11/21/2019		8330			3890			
12/4/2019							6100	7410
12/5/2019						2130		
12/17/2019							5660	
12/18/2019						2090		7170
1/8/2020							5070	6480
1/9/2020						1750		
1/21/2020						1630	5010	6000
2/4/2020						1760	5030	5700
2/13/2020						1850	6140	7060
3/27/2020	675	7680	14.1	23.6	4770	1450	6870	7110
10/12/2020	552					1340		
10/13/2020		6230	3.8	23.3	3980		5260	5980
3/2/2021	459	<1	4.2					
3/3/2021				27.6	<1	1230	5170	<1
9/13/2021	433	5010						
9/14/2021			13.6	30	4090	1020	7250	5100

Constituent: Chromium (mg/L) Analysis Run 12/29/2021 3:10 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.01						
8/31/2016					0.0013 (J)	0.001 (J)	0.0022 (J)	
11/30/2016		<0.01			0.0012 (J)	<0.01	<0.01	
2/15/2017		<0.01						
2/16/2017					0.0012 (J)	0.0011 (J)	0.0028 (J)	
5/31/2017			<0.01					<0.01
6/1/2017		<0.01		0.0008 (J)				
6/2/2017					<0.01	<0.01	0.0023 (J)	
8/2/2017			<0.01	0.0012 (J)				<0.01
8/15/2017								0.0006 (J)
8/16/2017		<0.01	<0.01					
8/17/2017				0.0013 (J)	0.0007 (J)	0.0007 (J)	0.0022 (J)	
4/4/2018				<0.01				<0.01
4/5/2018			<0.01					
5/8/2018				<0.01				<0.01
5/9/2018			<0.01					
6/19/2018		<0.01	<0.01					<0.01
6/20/2018				<0.01	<0.01	<0.01		
6/21/2018							<0.01	
9/25/2018								<0.01
9/26/2018		0.0016	0.0016					
9/27/2018				<0.01	<0.01	<0.01	0.0024 (J)	
11/6/2018				0.0017 (J)			0.002 (J)	<0.01
11/7/2018		<0.01	<0.01		<0.01	<0.01		
3/6/2019						<0.01		
3/25/2019								<0.01
8/27/2019		0.00079 (J)		0.0018 (J)				
8/28/2019			0.0035 (J)		0.00047 (J)	0.00085 (J)	0.0024 (J)	0.00053 (J)
10/15/2019				0.0012 (J)				
10/16/2019		<0.01	<0.01		0.00057 (J)			0.00072 (J)
10/17/2019						0.0015 (J)	0.0019 (J)	
3/26/2020		<0.01						
3/27/2020			<0.01					<0.01
3/28/2020				<0.01	<0.01	<0.01	<0.01	
9/14/2021	<0.01	<0.01	0.0056	<0.01	<0.01	<0.01	<0.01	<0.01

Constituent: Chromium (mg/L) Analysis Run 12/29/2021 3:10 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	0.0054 (J)	0.0026 (J)		<0.01				
10/25/2016					0.016			
11/30/2016	0.0073 (J)	0.0016 (J)		0.001 (J)	0.0151 (J)			
2/15/2017	0.0045 (J)	0.0018 (J)		<0.01	0.0137			
5/31/2017	0.0052 (J)	0.0019 (J)			0.0109			
6/1/2017				0.0004 (J)				
6/2/2017			0.0019 (J)					
8/2/2017			0.0017 (J)					
8/15/2017	0.005 (J)				0.0117			
8/16/2017		0.0019 (J)						
8/17/2017			0.0027 (J)	0.0005 (J)				
4/4/2018			<0.01					
5/8/2018			0.0029 (J)					
6/19/2018	0.0047 (J)	<0.01	0.002 (J)		0.013 (J)			
6/20/2018				<0.01				
9/25/2018	<0.01	<0.01						
9/26/2018			0.003 (J)	0.0016	0.0092 (J)			
11/6/2018		<0.01			<0.01			
11/7/2018	<0.01		<0.01	<0.01				
8/26/2019		0.00071 (J)						
8/27/2019	0.0056 (J)		0.0026 (J)	0.00043 (J)	0.0066 (J)			
10/15/2019	0.0057 (J)	0.00076 (J)	0.0026 (J)					
10/16/2019				<0.01	0.0063 (J)			
11/7/2019						0.0038 (J)	0.005 (J)	0.0083 (J)
11/18/2019						0.0046 (J)		
11/19/2019							0.0059 (J)	0.0096 (J)
12/4/2019							0.0073 (J)	0.0099 (J)
12/5/2019						0.0046 (J)		
12/17/2019							0.009 (J)	
12/18/2019						0.0045 (J)		0.011 (J)
1/8/2020							0.0077 (J)	0.0092 (J)
1/9/2020						0.004 (J)		
1/21/2020						0.0036 (J)	0.007 (J)	0.009 (J)
2/4/2020						<0.01	0.0057 (J)	0.0078 (J)
2/13/2020						0.0036 (J)	0.0063 (J)	0.0091 (J)
3/27/2020	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.0095 (J)
9/13/2021	<0.01	<0.01						
9/14/2021			0.0027 (J)	<0.01	<0.01	<0.01	<0.01	<0.01

Constituent: Cobalt (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.02						
8/31/2016					<0.02	<0.02	<0.02	
11/30/2016		<0.02			<0.02	0.0009 (J)	0.0011 (J)	
2/15/2017		<0.02						
2/16/2017					<0.02	<0.02	<0.02	
5/31/2017			0.0005 (J)					<0.02
6/1/2017		<0.02		<0.02				
6/2/2017					<0.02	<0.02	<0.02	
8/2/2017			0.0005 (J)	<0.02				0.0006 (J)
8/15/2017								0.0004 (J)
8/16/2017		<0.02	0.0005 (J)					
8/17/2017				<0.02	<0.02	0.0003 (J)	<0.02	
4/4/2018				<0.02				<0.02
4/5/2018			<0.02					
5/8/2018				<0.02				<0.02
5/9/2018			<0.02					
6/19/2018		<0.02	<0.02					<0.02
6/20/2018				<0.02	<0.02	<0.02		
6/21/2018							<0.02	
9/25/2018								<0.02
9/26/2018		0.00052	0.00052					
9/27/2018				<0.02	<0.02	<0.02	<0.02	
11/6/2018				0.0048 (J)			<0.02	<0.02
11/7/2018		<0.02	<0.02		<0.02	<0.02		
3/6/2019						<0.02		
8/27/2019		<0.02		0.0078				
8/28/2019			0.00042 (J)		<0.02	<0.02	<0.02	<0.02
10/15/2019				0.0085				
10/16/2019		<0.02	0.00037 (J)		<0.02			<0.02
10/17/2019						<0.02	<0.02	
11/20/2019				0.009				
3/26/2020		<0.02						
3/27/2020			<0.02					<0.02
3/28/2020				0.0041 (J)	<0.02	<0.02	<0.02	
10/12/2020								<0.02
10/13/2020		<0.02	<0.02	0.0063				
10/14/2020						<0.02	<0.02	
10/15/2020	<0.02				0.0019 (J)			
1/4/2021					<0.02			
3/3/2021		<0.02	<0.02					<0.02
3/4/2021	<0.02			0.006	<0.02	<0.02	<0.02	
9/14/2021	<0.02	<0.02	<0.02	0.0054	<0.02	<0.02	<0.02	<0.02

Constituent: Cobalt (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	<0.02	0.0006 (J)		<0.02				
10/25/2016					<0.02			
11/30/2016	<0.02	<0.02		<0.02	0.0007 (J)			
2/15/2017	<0.02	<0.02		<0.02	<0.02			
5/31/2017	0.0005 (J)	<0.02			<0.02			
6/1/2017				<0.02				
6/2/2017			<0.02					
8/2/2017			<0.02					
8/15/2017	0.0005 (J)				0.0004 (J)			
8/16/2017		<0.02						
8/17/2017			<0.02	0.0004 (J)				
4/4/2018			<0.02					
5/8/2018			<0.02					
6/19/2018	0.00053 (J)	<0.02	<0.02		<0.02			
6/20/2018				<0.02				
9/25/2018	<0.02	<0.02						
9/26/2018			0.00052	0.00052	0.00052			
11/6/2018		<0.02			<0.02			
11/7/2018	<0.02		<0.02	<0.02				
8/26/2019		<0.02						
8/27/2019	0.0007 (J)		<0.02	0.0003 (J)	<0.02			
10/15/2019	0.00054 (J)	<0.02	<0.02					
10/16/2019				<0.02	<0.02			
11/7/2019						<0.02	<0.02	0.026
11/18/2019						<0.02		
11/19/2019							<0.02	0.022 (J)
12/4/2019							<0.02	0.022
12/5/2019						<0.02		
12/17/2019							<0.02	
12/18/2019						<0.02		0.031
1/8/2020							<0.02	0.035
1/9/2020						<0.02		
1/21/2020						<0.02	<0.02	0.031
2/4/2020						<0.02	<0.02	0.031 (J)
2/13/2020						<0.02	<0.02	0.031
3/27/2020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.036
10/12/2020	<0.02					<0.02		
10/13/2020		<0.02	<0.02	<0.02	<0.02		<0.02	0.032
3/2/2021	<0.02	<0.02	<0.02					
3/3/2021				<0.02	<0.02	<0.02	<0.02	0.033
9/13/2021	<0.02	<0.02						
9/14/2021			<0.02	<0.02	<0.02	<0.02	<0.02	0.03

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 12/29/2021 3:10 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		0.929						
8/31/2016					2.39 (D)	2.47 (D)	5.4 (D)	
11/30/2016		5.64			1.66	1.6	3.13	
2/15/2017		1.41						
2/16/2017					2.71	1.83	3.09	
5/31/2017			1.17 (U)					1.2
6/1/2017		1.51		1.9				
6/2/2017					1.99	2.45	7.56	
8/2/2017			0.704 (U)	5.01				1.26
8/15/2017								0.511 (U)
8/16/2017		1.01 (U)	1.11 (U)					
8/17/2017				5.35	1.87	3.33	6.38	
4/4/2018				5.05				1.04
4/5/2018			0.868 (U)					
5/8/2018				3.25				1.95
5/9/2018			0.888					
6/19/2018		1.23	0.483 (U)					0.785 (U)
6/20/2018				3.53	1.95	2.84		
6/21/2018							5.24	
9/25/2018								1.15 (U)
9/26/2018		0.72 (U)	0.73 (U)					
9/27/2018				7.07	0.629 (U)	1.94	6.11	
11/6/2018				11			6.1	1.1
11/7/2018		0.616 (U)	0.429 (U)		1.41 (U)	8.58		
8/27/2019		1.2 (U)		4.4				
8/28/2019			0.679 (U)		1.67	6.86	8.73	0.434 (U)
10/15/2019				4.92				
10/16/2019		1.4 (U)	0.422 (U)		1.92			0.923 (U)
10/17/2019						7.85	7.97	
11/20/2019							9.8	
3/26/2020		1.15 (U)						
3/27/2020			0.838 (U)					0.609 (U)
3/28/2020				4.16	1.44 (U)	11 (U)	11.7	
10/12/2020								2.7
10/13/2020		0.855 (U)	0.56 (U)	3.71				
10/14/2020						8.97	13.1	
10/15/2020					2.56			
1/4/2021					5.84			
4/6/2021	7.33	1.01 (U)	0.474 (U)	2.83	1.43 (U)	7.89	9.66	1.88
9/14/2021	6.97	1.06 (U)	0.878 (U)	2.69	7.15	8.11	10.3	1.37 (U)

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 12/29/2021 3:10 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

MCM-12 MCM-14 MCM-15 (bg) MCM-16 (bg) MCM-17 MCM-18 (bg) MCM-19 (bg) MCM-20 (bg) 8/30/2016 1.4 1.31 0.977 (U) 10/25/2016 2.22 11/30/2016 4.37 0.438 (U) 0.994 2.01 2/15/2017 2.21 0.3 (U) 1.65 1.56 5/31/2017 2.62 1.77 1.22 6/2/2017 1.47 8/2/2017 1.99	
11/30/2016 4.37 0.438 (U) 0.994 2.01 2/15/2017 2.21 0.3 (U) 1.65 1.56 5/31/2017 2.62 1.77 1.92 6/1/2017 1.22 6/2/2017 1.47 8/2/2017 1.99	
2/15/2017 2.21 0.3 (U) 1.65 1.56 5/31/2017 2.62 1.77 1.92 6/1/2017 1.22 6/2/2017 1.47 8/2/2017 1.99	
5/31/2017 2.62 1.77 1.92 6/1/2017 1.22 6/2/2017 1.47 8/2/2017 1.99	
6/1/2017 1.22 6/2/2017 1.47 8/2/2017 1.99	
6/2/2017 1.47 8/2/2017 1.99	
8/2/2017 1.99	
0/45/0047 0.00	
8/15/2017 2.69 2.47	
8/16/2017 2.26	
8/17/2017 2.03 1.71	
4/4/2018 1.96	
5/8/2018 1.69	
6/19/2018 2.96 5.39 1.83 2.82	
6/20/2018 1.78	
9/25/2018 2.23 6.22	
9/26/2018 0.637 (U) 1.56 3.15 (D)	
11/6/2018 5.38 2.95	
11/7/2018 2.14 0.894 (U) 0.651 (U)	
8/26/2019 7.68	
8/27/2019 2.91 2.33 1.03 (U) 5.82	
10/15/2019 3.28 8.7 0.979 (U)	
10/16/2019 1.86 7.5	
11/7/2019 14.8 17.7 38.2	
11/18/2019 13.9	
11/19/2019 18.9 43.1	
11/21/2019 7.34 8.89	
12/4/2019 18.6 45.1	
12/5/2019 14.2	
12/17/2019 21.8	
12/18/2019 17 55.8	
1/8/2020 16.9 46.5	
1/9/2020 12.3	
1/21/2020 11.7 15.6 37.7	
2/4/2020 12.7 22.38 47.9	
2/13/2020 18.2 31.1 76.3 (o)	
3/27/2020 2.33 9.63 1.84 1.51 9.54 10.2 22.8 47.2	
10/12/2020 2.66 8.83	
10/13/2020 7.43 3.32 1.71 7.75 14.1 30.3	
4/6/2021 2.2 7.02 1.74 1.81 7.8 9.57 20.4 31.5	
9/13/2021 2.54 8.38	
9/14/2021 1.15 (U) 2.02 8.82 8.31 26.2 34.9	

Constituent: Fluoride (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

			. idik moman		company bata.	momando / torri ond		
	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		0.03 (J)						
8/31/2016					0.93	0.41	0.92	
11/30/2016		0.04 (J)			0.93	0.61	0.99	
2/15/2017		0.007 (J)						
2/16/2017					0.6	0.3 (J)	0.54	
5/31/2017			0.01 (J)					0.85
6/1/2017		<0.1		<0.1				
6/2/2017					0.34	0.19 (J)	0.42	
8/2/2017			0.14 (J)	0.27 (J)				0.69
8/15/2017								0.29 (J)
8/16/2017		0.03 (J)	0.13 (J)					
8/17/2017				0.18 (J)	0.52	0.26 (J)	0.27 (J)	
4/4/2018				<0.1				0.32
4/5/2018			<0.1					
5/8/2018				0.56				0.63
5/9/2018			<0.1					
6/19/2018		<0.1	0.065 (J)					0.17 (J)
6/20/2018				0.033 (J)	0.5	0.22 (J)		
6/21/2018							0.28 (J)	
9/25/2018								0.15 (J)
9/26/2018		0.12 (J)	0.029					
9/27/2018				0.12 (J)	0.32	0.068 (J)	0.32 (D)	
11/6/2018				<0.1			0.086 (J)	<0.1
11/7/2018		<0.1	<0.1		0.35	10.3 (o)		
3/6/2019						<0.1		
3/24/2019					0.32	0.19 (J)	0.14 (J)	
3/25/2019		0.038 (J)	0.039 (J)	0.055 (J)				0.12 (J)
8/27/2019		<0.1		<0.1				
8/28/2019			<0.1		0.36	<0.1	<0.1	0.068 (J)
10/15/2019				0.095 (J)				
10/16/2019		0.046 (JD)	0.044 (JD)		0.41			0.1 (J)
10/17/2019						<0.1	<0.1	
11/20/2019					0.34		<0.1	
3/26/2020		<0.1						
3/27/2020			<0.1					0.066 (J)
3/28/2020				<0.1	0.34	<0.1	<0.1	
10/12/2020								<0.1
10/13/2020		<0.1	<0.1	<0.1				
10/14/2020						<0.1	<0.1	
10/15/2020	0.11				0.22			
1/4/2021					<0.1			
3/3/2021		<0.1	<0.1					0.082 (J)
3/4/2021	<0.1			<0.1	0.45	<0.1	<0.1	

9/14/2021

<0.1

<0.1

<0.1

0.05

<0.1

<0.1

<0.1

0.18

Constituent: Fluoride (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	1.5	0.5		0.04 (J)				
10/25/2016					1.1			
11/30/2016	1.4	0.49		0.18 (J)	1.3			
2/15/2017	1.3	0.58		0.02 (J)	1.3			
5/31/2017	1.2	0.56			1.3			
6/1/2017				0.005 (J)				
6/2/2017			<0.1					
8/2/2017			0.05 (J)					
8/15/2017	1.2				1.2			
8/16/2017		0.45						
8/17/2017			<0.1	0.04 (J)				
4/4/2018			<0.1					
5/8/2018			<0.1					
6/19/2018	0.91	<0.1	0.057 (J)		0.6			
6/20/2018				0.038 (J)				
9/25/2018	1.1	<0.1						
9/26/2018			0.029	0.029	0.44 (D)			
11/6/2018		0.084 (J)			0.4			
11/7/2018	<0.1		<0.1	<0.1				
3/24/2019	0.99	0.14 (J)			0.31			
3/25/2019			0.036 (J)	0.041 (J)				
8/26/2019		<0.1						
8/27/2019	1.1		<0.1	<0.1	<0.1			
10/15/2019	1	<0.1	0.14 (J)					
10/16/2019				0.044 (J)	0.083 (J)			
11/7/2019						0.49	<0.1	1.4
11/18/2019						0.52		
11/19/2019							0.033 (J)	1.2
11/21/2019		<0.1			<0.1			
12/4/2019							0.22 (J)	1.4
12/5/2019						0.5		
12/17/2019							<0.1	
12/18/2019						0.33		1.5
1/8/2020							<0.1	<0.1
1/9/2020						0.12 (J)		
1/21/2020						0.13 (J)	0.11 (J)	0.53
2/4/2020						0.18 (J)	<0.1	<0.1
2/13/2020						0.077 (J)	<0.1	<0.1
3/27/2020	1.1	<0.1	<0.1	<0.1	<0.1	0.06 (J)	<0.1	<0.1
10/12/2020	1.2					0.34		
10/13/2020	1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1
3/2/2021	1	<0.1	<0.1	-0.1	-0.1	0.22	-0.1	-0.1
3/3/2021	1.4	-0.1		<0.1	<0.1	0.32	<0.1	<0.1
9/13/2021 9/14/2021	1.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
311412021			50.1	50.1	50.1	5U. I	~U. I	-0.1

Constituent: Lead (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.005						
8/31/2016					<0.005	<0.005	<0.005	
11/30/2016		<0.005			0.0002 (J)	<0.005	<0.005	
2/15/2017		<0.005						
2/16/2017					<0.005	<0.005	0.0002 (J)	
5/31/2017			<0.005					<0.005
6/1/2017		<0.005		<0.005				
6/2/2017					<0.005	<0.005	<0.005	
8/2/2017			0.0001 (J)	<0.005				<0.005
8/15/2017								<0.005
8/16/2017		<0.005	<0.005					
8/17/2017				<0.005	<0.005	<0.005	8E-05 (J)	
4/4/2018				<0.005				<0.005
4/5/2018			<0.005					
5/8/2018				<0.005				<0.005
5/9/2018			<0.005					
6/19/2018		<0.005	<0.005					<0.005
6/20/2018				<0.005	<0.005	<0.005		
6/21/2018							<0.005	
9/25/2018								<0.005
9/26/2018		0.00027	0.00027					
9/27/2018				<0.005	<0.005	<0.005	<0.005	
11/6/2018				<0.005			<0.005	<0.005
11/7/2018		<0.005	<0.005		<0.005	<0.005		
3/6/2019						<0.005		
3/25/2019								<0.005
8/27/2019		<0.005		<0.005				
8/28/2019			<0.005		<0.005	<0.005	0.0001 (J)	<0.005
10/15/2019				<0.005				
10/16/2019		<0.005	<0.005		<0.005			<0.005
10/17/2019						0.00012 (J)	<0.005	
3/26/2020		<0.005						
3/27/2020			<0.005					<0.005
3/28/2020				<0.005	<0.005	<0.005	<0.005	
10/12/2020								<0.005
10/13/2020		<0.005	<0.005	<0.005				
10/14/2020						<0.005	<0.005	
10/15/2020	<0.005				<0.005			
1/4/2021					<0.005			
3/3/2021		<0.005	<0.005					<0.005
3/4/2021	<0.005			<0.005	<0.005	<0.005	<0.005	
9/14/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Lead (mg/L) Analysis Run 12/29/2021 3:10 PM

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	0.0001 (J)	<0.005		<0.005				
10/25/2016					<0.005			
11/30/2016	<0.005	<0.005		0.0002 (J)	<0.005			
2/15/2017	<0.005	<0.005		<0.005	<0.005			
5/31/2017	9E-05 (J)	<0.005			<0.005			
6/1/2017				<0.005				
6/2/2017			<0.005					
8/2/2017			0.0001 (J)					
8/15/2017	<0.005				0.0002 (J)			
8/16/2017		8E-05 (J)						
8/17/2017			0.0001 (J)	<0.005				
4/4/2018			<0.005					
5/8/2018			<0.005					
6/19/2018	<0.005	<0.005	<0.005		<0.005			
6/20/2018				<0.005				
9/25/2018	<0.005	<0.005						
9/26/2018			0.00027	0.00027	0.00027			
11/6/2018		<0.005			<0.005			
11/7/2018	<0.005		<0.005	<0.005				
8/26/2019		<0.005						
8/27/2019	0.00022 (J)		0.00011 (J)	<0.005	0.00014 (J)			
10/15/2019	5.6E-05 (J)	<0.005	0.00038 (J)					
10/16/2019				<0.005	0.00034 (J)			
11/7/2019						<0.005	0.00063 (J)	0.0019 (J)
11/18/2019						<0.005		
11/19/2019							<0.005	0.0013 (J)
12/4/2019							5.3E-05 (J)	0.00045 (J)
12/5/2019						<0.005		
12/17/2019							<0.005	
12/18/2019						<0.005		0.00023 (J)
1/8/2020							<0.005	0.00029 (J)
1/9/2020						<0.005		
1/21/2020						<0.005	<0.005	0.00033 (J)
2/4/2020						<0.005	<0.005	<0.005
2/13/2020						<0.005	<0.025 (o)	0.00023 (J)
3/27/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
10/12/2020	<0.005					<0.005		
10/13/2020		<0.005	<0.005	<0.005	<0.005		<0.005	<0.005
3/2/2021	<0.005	<0.005	<0.005					
3/3/2021				<0.005	<0.005	<0.005	<0.005	<0.005
9/13/2021	<0.005	<0.005						
9/14/2021			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Lithium (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.025						
8/31/2016					0.0219 (J)	0.0389 (J)	0.0122 (J)	
11/30/2016		<0.025			0.0333 (J)	0.0303 (J)	0.011 (J)	
2/15/2017		<0.025						
2/16/2017					0.0376 (J)	0.05 (J)	0.0142 (J)	
5/31/2017			<0.025					0.0047 (J)
6/1/2017		<0.025		<0.025				
6/2/2017					0.0346 (J)	0.0477 (J)	0.0229 (J)	
8/2/2017			<0.025	<0.025				0.0036 (J)
8/15/2017								<0.025
8/16/2017		<0.025	<0.025					
8/17/2017				<0.025	0.0367 (J)	0.0645	0.0241 (J)	
4/4/2018				0.0013 (J)				0.0041 (J)
4/5/2018			<0.025					
5/8/2018				0.0012 (J)				0.0052 (J)
5/9/2018			<0.025					
6/19/2018		<0.025	<0.025					0.0017 (J)
6/20/2018				0.0015 (J)	0.034 (J)	0.066 (J)		
6/21/2018							0.03 (J)	
9/25/2018								0.0018 (J)
9/26/2018		0.00097	0.00097					
9/27/2018				0.0021 (J)	0.023 (J)	0.045 (J)	0.034 (J)	
11/6/2018				0.0038 (J)			0.037 (J)	<0.025
11/7/2018		<0.025	<0.025		0.022 (J)	0.11		
3/6/2019						0.12		
8/27/2019		<0.025		0.002 (J)				
8/28/2019			<0.025		0.023 (J)	0.13	0.12	0.00082 (J)
10/15/2019				0.0019 (J)				
10/16/2019		<0.025	<0.025		0.021 (J)			<0.025
10/17/2019						0.12	0.096	
11/20/2019							0.12	
3/26/2020		<0.025						
3/27/2020			<0.025					<0.025
3/28/2020	0.078 (J)			<0.025	0.014 (J)	0.064	0.027 (J)	
6/16/2020	0.096 (J)							
10/12/2020								<0.025
10/13/2020		<0.025	<0.025	<0.025				
10/14/2020						0.11	0.039 (J)	
10/15/2020	0.093				0.57			
1/4/2021					0.043 (J)			
3/3/2021	0.00478	<0.025	<0.025	0.005	0.047 (1)	0.000 (1)	0.005 (1)	<0.025
3/4/2021	0.094 (J)	.0.005	.0.005	<0.025	0.017 (J)	0.096 (J)	0.035 (J)	0.0000 (1)
9/14/2021	0.092	<0.025	<0.025	<0.025	0.042 (J)	0.084	0.035 (J)	0.0033 (J)

Constituent: Lithium (mg/L) Analysis Run 12/29/2021 3:10 PM

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	0.0102 (J)	0.0112 (J)		<0.025				
10/25/2016					0.007 (J)			
11/30/2016	0.0106 (J)	<0.025		<0.025	0.0086 (J)			
2/15/2017	0.0115 (J)	0.0105 (J)		<0.025	0.0149 (J)			
5/31/2017	0.011 (J)	0.0106 (J)			0.019 (J)			
6/1/2017				<0.025				
6/2/2017			<0.025					
8/2/2017			<0.025					
8/15/2017	0.0123 (J)				0.016 (J)			
8/16/2017		0.0145 (J)						
8/17/2017			<0.025	<0.025				
4/4/2018			0.0015 (J)					
5/8/2018			0.0014 (J)					
6/19/2018	0.012 (J)	0.044 (J)	0.0016 (J)		0.021 (J)			
6/20/2018				<0.025				
9/25/2018	0.011 (J)	0.041 (J)						
9/26/2018			0.0018 (J)	0.00097	0.02 (J)			
11/6/2018		0.047 (J)			0.017 (J)			
11/7/2018	0.013 (J)		<0.025	<0.025				
8/26/2019		0.059						
8/27/2019	0.012 (J)		0.002 (J)	<0.025	0.023 (J)			
10/15/2019	0.012 (J)	0.056 (J)	0.0016 (J)					
10/16/2019				<0.025	0.024 (J)			
11/7/2019						0.0055 (J)	0.015 (J)	0.026 (J)
11/18/2019						<0.1 (o)		
11/19/2019							0.02 (J)	0.023 (J)
11/21/2019		0.052						
12/4/2019							0.016 (J)	0.019 (J)
12/5/2019						0.0042 (J)		
12/17/2019							0.018 (J)	
12/18/2019						0.0045 (J)		0.02 (J)
1/8/2020							0.022 (J)	0.024 (J)
1/9/2020						0.0041 (J)		
1/21/2020						<0.15 (o)	0.018 (J)	0.022 (J)
2/4/2020						<0.3 (o)	0.02 (J)	0.024 (J)
2/13/2020						0.004 (J)	0.018 (J)	0.021 (J)
3/27/2020	<0.025	0.052	<0.025	<0.025	0.033 (J)	<0.025	0.018 (J)	0.024 (J)
10/12/2020	0.011 (J)					<0.025		
10/13/2020		0.046 (J)	<0.025	<0.025	0.028 (J)		0.022 (J)	0.025 (J)
3/2/2021	<0.025	0.046 (J)	<0.025					
3/3/2021				<0.025	<0.025	<0.025	0.019 (J)	0.018 (J)
9/13/2021	0.01 (J)	0.047						
9/14/2021			<0.025	<0.025	0.035 (J)	<0.025	0.011 (J)	0.02 (J)

Constituent: Mercury (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.0002						
8/31/2016					<0.0002	<0.0002	<0.0002	
11/30/2016		<0.0002			<0.0002	<0.0002	<0.0002	
2/15/2017		<0.0002						
2/16/2017					<0.0002	<0.0002	<0.0002	
5/31/2017			<0.0002					<0.0002
6/1/2017		<0.0002		<0.0002				
6/2/2017					4.2E-05 (J)	<0.0002	<0.0002	
8/2/2017			<0.0002	<0.0002				<0.0002
8/15/2017								<0.0002
8/16/2017		<0.0002	<0.0002					
8/17/2017				<0.0002	<0.0002	<0.0002	<0.0002	
4/4/2018				<0.0002				<0.0002
4/5/2018			<0.0002					
5/8/2018				<0.0002				<0.0002
5/9/2018			<0.0002					
6/19/2018		<0.0002	<0.0002					<0.0002
6/20/2018				<0.0002	<0.0002	<0.0002		
6/21/2018							<0.0002	
9/25/2018								<0.0002
9/26/2018		3.6E-05	3.6E-05					
9/27/2018				<0.0002	<0.0002	<0.0002	<0.0002	
11/6/2018				0.00071			0.00067	0.0007
11/7/2018		<0.0002	<0.0002		<0.0002	<0.0002		
3/6/2019						<0.0002		
8/27/2019		<0.0002		<0.0002				
8/28/2019			<0.0002		<0.0002	<0.0002	<0.0002	<0.0002
3/26/2020		<0.0002						
3/27/2020			<0.0002					<0.0002
3/28/2020				<0.0002	<0.0002	<0.0002	<0.0002	
9/14/2021	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00016 (J)	<0.0002	<0.0002

Constituent: Mercury (mg/L) Analysis Run 12/29/2021 3:10 PM

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	<0.0002	<0.0002		<0.0002				
10/25/2016					<0.0002			
11/30/2016	<0.0002	<0.0002		<0.0002	<0.0002			
2/15/2017	<0.0002	<0.0002		<0.0002	<0.0002			
5/31/2017	<0.0002	<0.0002			<0.0002			
6/1/2017				<0.0002				
6/2/2017			<0.0002					
8/2/2017			<0.0002					
8/15/2017	<0.0002				<0.0002			
8/16/2017		<0.0002						
8/17/2017			<0.0002	<0.0002				
4/4/2018			<0.0002					
5/8/2018			<0.0002					
6/19/2018	<0.0002	<0.0002	<0.0002		<0.0002			
6/20/2018				<0.0002				
9/25/2018	<0.0002	<0.0002						
9/26/2018			3.6E-05	3.6E-05	3.6E-05			
11/6/2018		0.00066			0.00064			
11/7/2018	<0.0002		<0.0002	<0.0002				
8/26/2019		<0.0002						
8/27/2019	<0.0002		<0.0002	<0.0002	<0.0002			
11/7/2019						<0.0002	<0.0002	<0.0002
11/18/2019						<0.0002		
11/19/2019							<0.0002	<0.0002
12/4/2019							<0.0002	<0.0002
12/5/2019						<0.0002		
12/17/2019							<0.0002	
12/18/2019						<0.0002		<0.0002
1/8/2020							<0.0002	<0.0002
1/9/2020						<0.0002		
1/21/2020						<0.0002	<0.0002	<0.0002
2/4/2020						<0.0002	<0.0002	<0.0002
2/13/2020						<0.0002	<0.0002	<0.0002
3/27/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
9/13/2021	<0.0002	<0.0002						
9/14/2021			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002

Constituent: Molybdenum (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.01						
8/31/2016					<0.01	<0.01	<0.01	
11/30/2016		<0.01			<0.01	<0.01	<0.01	
2/15/2017		<0.01						
2/16/2017					<0.01	<0.01	<0.01	
5/31/2017			<0.01					<0.01
6/1/2017		<0.01		<0.01				
6/2/2017					<0.01	<0.01	<0.01	
8/2/2017			<0.01	<0.01				<0.01
8/15/2017								<0.01
8/16/2017		<0.01	<0.01					
8/17/2017				<0.01	0.0012 (J)	0.0025 (J)	<0.01	
4/4/2018				<0.01				<0.01
4/5/2018			<0.01					
5/8/2018				<0.01				<0.01
5/9/2018			<0.01					
6/19/2018		<0.01	<0.01					<0.01
6/20/2018				<0.01	<0.01	<0.01		
6/21/2018							<0.01	
9/25/2018								<0.01
9/26/2018		0.0019	0.0019					
9/27/2018				<0.01	<0.01	<0.01	<0.01	
11/6/2018				<0.01			<0.01	<0.01
11/7/2018		<0.01	<0.01		<0.01	0.0024 (J)		
3/6/2019						<0.01		
8/27/2019		<0.01		<0.01				
8/28/2019			<0.01		<0.01	0.0017 (J)	<0.01	<0.01
10/15/2019				<0.01				
10/16/2019		<0.01	<0.01		<0.01			<0.01
10/17/2019						0.0017 (J)	<0.01	
3/26/2020		<0.01						
3/27/2020			<0.01					<0.01
3/28/2020				<0.01	<0.01	<0.01	<0.01	
9/14/2021	<0.01	<0.01	0.0008 (J)	<0.01	0.0099 (J)	<0.01	<0.01	<0.01

Constituent: Molybdenum (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	<0.01	<0.01		<0.01				
10/25/2016					<0.01			
11/30/2016	<0.01	<0.01		<0.01	<0.01			
2/15/2017	<0.01	<0.01		<0.01	<0.01			
5/31/2017	<0.01	<0.01			<0.01			
6/1/2017				<0.01				
6/2/2017			<0.01					
8/2/2017			<0.01					
8/15/2017	<0.01				<0.01			
8/16/2017		<0.01						
8/17/2017			<0.01	<0.01				
4/4/2018			<0.01					
5/8/2018			0.002 (J)					
6/19/2018	<0.01	<0.01	<0.01		<0.01			
6/20/2018				<0.01				
9/25/2018	<0.01	<0.01						
9/26/2018			0.0019	0.0019	0.0019			
11/6/2018		<0.01			<0.01			
11/7/2018	<0.01 (D)		<0.01 (D)	<0.01				
8/26/2019		<0.01						
8/27/2019	<0.01		<0.01	<0.01	<0.01			
10/15/2019	<0.01	<0.01	<0.01					
10/16/2019				<0.01	<0.01			
11/7/2019						<0.01	<0.01	<0.01
11/18/2019						<0.01		
11/19/2019							<0.01	<0.01
12/4/2019							<0.01	<0.01
12/5/2019						<0.01		
12/17/2019							<0.01	
12/18/2019						<0.01		<0.01
1/8/2020							<0.01	<0.01
1/9/2020						<0.01		
1/21/2020						<0.01	<0.01	<0.01
2/4/2020						<0.01	<0.01	<0.01
2/13/2020						<0.01	<0.01	<0.01
3/27/2020	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
9/13/2021	<0.01	<0.01						
9/14/2021			0.0009 (J)	<0.01	<0.01	<0.01	<0.01	<0.01

Constituent: pH, field (Std. Units) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		5.66						
8/31/2016					6.93	7.21	6.66	
11/30/2016		5.36			6.77	7.23	6.69	
2/15/2017		5.25						
2/16/2017					6.89	7.27	6.72	
5/31/2017			5.06					5.29
6/1/2017		5.59		5.68				
6/2/2017					6.83	7.18	6.53	
8/2/2017			5	5.2				5.19
8/15/2017								5.19
8/16/2017		5.58	4.98					
8/17/2017				5.31	6.76	7.15	6.28	
4/4/2018				4.74				5.19
4/5/2018			5.02					
5/8/2018				4.78				5.3
5/9/2018			4.96					
6/19/2018		5.51	5.02					5.15
6/20/2018				4.79	6.83	7.19		
6/21/2018							6.45	
9/25/2018								5.13
9/26/2018		5.32	5.06					
9/27/2018				5.14	6.64	7.21	6.48	
11/6/2018				4.9			6.18	5.08
11/7/2018		5.72	5.03		6.6	6.91		
3/24/2019					6.1	6.98	6.38	
3/25/2019		5.75	5.08	4.93				5.05
8/27/2019		5.58		5.05				
8/28/2019			4.99		6.69	6.87	6.35	4.87
10/15/2019				4.89				
10/16/2019		5.72	4.98		6.64			5.05
10/17/2019						6.86	6.4	
11/19/2019			5.11					
11/20/2019		5.77		5.03	6.58		6.27	
3/26/2020		5.45						
3/27/2020			5.12					5.09
3/28/2020	7.11			5.27	6.6	6.8	6.35	
6/16/2020	7.22							
10/12/2020								5
10/13/2020		5.69	5.03	5.25				
10/14/2020						6.93	6.32	
10/15/2020	7.08				6.53			
1/4/2021					6.66			
3/3/2021		5.81	5.06					5.07
3/4/2021	7.21			5.31	6.52	6.94	6.33	
9/14/2021	7.11	5.13	5.04	5.09	6.67	6.94	6.28	5.5

Constituent: pH, field (Std. Units) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	6.49	7.04		5.18				
10/25/2016					6.95			
11/30/2016	6.5	7.13		4.96	6.95			
2/15/2017	6.51	7.02		5.13	6.85			
5/31/2017	6.45	7			6.96			
6/1/2017				4.99				
6/2/2017			5.31					
8/2/2017			5.05					
8/15/2017	6.41				6.99			
8/16/2017		6.88						
8/17/2017			5.52	4.68				
4/4/2018			5.45					
5/8/2018			5.54					
6/19/2018	6.32	6.78	5.6		6.91			
6/20/2018				4.77				
9/25/2018	6.31	6.75						
9/26/2018			5.17	4.65	6.81			
11/6/2018		6.92			5.99			
11/7/2018	6.3		5.47	4.99				
3/24/2019	6.4	6.59	5.4		6.62			
3/25/2019				5.13				
8/26/2019		6.62						
8/27/2019	6.24		5.35	4.88	6.23			
10/15/2019	6.19	6.58	5.32					
10/16/2019				4.89	6.54			
11/7/2019						4.25	5.21	3.79
11/18/2019						4.12	0.2.	5.75
11/19/2019							5.15	3.78
11/21/2019		6.67			6.44			
12/4/2019		0.07			0		5.28 (D)	3.87 (D)
12/5/2019						4.17 (D)	0.20 (D)	0.07 (2)
1/8/2020						, (5)	5.04	3.77
1/9/2020						4.19	0.01	
1/21/2020						4.28	5.1	3.73
2/4/2020						4.26	5.15	3.72
2/13/2020						4.2	5.07	3.75
3/27/2020	6.33	6.59	5.3	5.12	6.93	4.34	5.14	3.81
10/12/2020	6.35	0.00	0.0	0.12	0.50	4.29	0.14	0.01
10/13/2020	0.00	6.56	5.02	5.17	6.34	20	5.04	3.72
3/2/2021	6.34	6.55	5.16	J	0.01		5.5 1	2
3/3/2021	3.01	0.00	5.10	5.71	6.58	4.37	5.1	3.36
9/13/2021	6.24	6.3		0.71	0.50	7.07	0.1	0.00
9/14/2021	V.27	0.0	5.39	4.69	6.77	4.28	5.31	3.72
J, 17/2021			0.00	4.00	0.77	7.20	0.01	0.72

Constituent: Selenium (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

			Plant McManu	s Client: Southern	Company Data:	McManus Ash Pond	Data	
	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.02						
8/31/2016					0.002 (J)	0.0015 (J)	0.0021 (J)	
11/30/2016		0.0011 (J)			0.0023 (J)	0.0054 (J)	<0.02	
2/15/2017		<0.02						
2/16/2017					0.002 (J)	0.0022 (J)	0.0025 (J)	
5/31/2017			<0.02					<0.02
6/1/2017		<0.02		<0.02				
6/2/2017					<0.02	<0.02	<0.02	
8/2/2017			<0.02	<0.02				<0.02
8/15/2017								<0.02
8/16/2017		<0.02	<0.02					
8/17/2017				<0.02	<0.02	0.002 (J)	0.0033 (J)	
4/4/2018				<0.02				<0.02
4/5/2018			<0.02					
5/8/2018				<0.02				<0.02
5/9/2018			<0.02					
6/19/2018		<0.02	<0.02					<0.02
6/20/2018				<0.02	<0.02	<0.02		
6/21/2018							<0.02	
9/25/2018								<0.02
9/26/2018		0.0014	0.0014					
9/27/2018				<0.02	<0.02	<0.02	0.0023 (J)	
11/6/2018				0.0025 (J)			0.0048 (J)	<0.02
11/7/2018		<0.02	<0.02		<0.02	0.0075 (J)		
3/6/2019						0.0024 (J)		
3/25/2019								<0.02
8/27/2019		<0.02		<0.02				
8/28/2019			<0.02		<0.02	0.0014 (J)	0.0019 (J)	<0.02
10/15/2019				<0.02				
10/16/2019		<0.02	<0.02		<0.02			<0.02
10/17/2019						0.0066 (J)	0.0049 (J)	
3/26/2020		<0.02						
3/27/2020			<0.02					<0.02
3/28/2020				<0.02	<0.02	<0.02	<0.02	
10/12/2020								<0.02
10/13/2020		<0.02	<0.02	<0.02				
10/14/2020						<0.02	<0.02	
10/15/2020	<0.02				0.0028 (J)			
1/4/2021					<0.02			
3/3/2021		<0.02	<0.02					<0.02

0.00038 (J)

<0.02

<0.02

<0.02

<0.02

<0.02

<0.02

<0.02

<0.02

3/4/2021

9/14/2021

<0.02

<0.02

< 0.02

<0.02

Constituent: Selenium (mg/L) Analysis Run 12/29/2021 3:10 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	0.0011 (J)	<0.02		<0.02				
10/25/2016					0.003 (J)			
11/30/2016	0.0023 (J)	<0.02		0.0011 (J)	0.0087 (J)			
2/15/2017	0.0021 (J)	0.0014 (J)		<0.02	0.0067 (J)			
5/31/2017	<0.02	<0.02			0.0018 (J)			
6/1/2017				<0.02				
6/2/2017			<0.02					
8/2/2017			<0.02					
8/15/2017	0.0021 (J)				0.0025 (J)			
8/16/2017		0.0018 (J)						
8/17/2017			<0.02	<0.02				
4/4/2018			<0.02					
5/8/2018			0.0016 (J)					
6/19/2018	0.0017 (J)	<0.02	0.0022 (J)		<0.02			
6/20/2018				<0.02				
9/25/2018	0.002 (J)	0.0019 (J)						
9/26/2018			0.0015 (J)	0.0014	0.0016 (J)			
11/6/2018		0.0057 (J)			<0.02			
11/7/2018	<0.02		<0.02	<0.02				
8/26/2019		0.0025 (J)						
8/27/2019	0.0019 (J)		0.0018 (J)	<0.02	0.0018 (J)			
10/15/2019	<0.02	0.003 (J)	<0.02					
10/16/2019				<0.02	<0.02			
11/7/2019						0.036	0.063	0.12
11/18/2019						<0.02		
11/19/2019							0.039 (J)	0.047 (J)
12/4/2019							0.12	0.11
12/5/2019						0.032		
12/17/2019							0.031 (J)	
12/18/2019						0.01		0.032 (J)
1/8/2020							0.066	0.044 (J)
1/9/2020						0.01		
1/21/2020						0.023 (J)	0.13	0.089
2/4/2020						0.017 (J)	0.065 (J)	0.049 (J)
2/13/2020						0.015	0.15	0.11
3/27/2020	<0.02	<0.02	<0.02	<0.02	<0.02	0.0034 (J)	0.013	0.012
10/12/2020	<0.02					<0.02		
10/13/2020		<0.02	<0.02	<0.02	<0.02		0.0076 (J)	0.0056 (J)
3/2/2021	<0.02	<0.02	<0.02					
3/3/2021				<0.02	<0.02	0.0012 (J)	0.013 (J)	0.0094 (J)
9/13/2021	<0.02	<0.02						
9/14/2021			<0.02	<0.02	0.0021	<0.02	0.0022 (J)	0.0018 (J)

Constituent: Sulfate (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		17						
8/31/2016					37	21	290	
11/30/2016		33			63	19	240	
2/15/2017		83						
2/16/2017					90	22	220	
5/31/2017			46					40
6/1/2017		51		42				
6/2/2017					210	28	500	
8/2/2017			43	120				34
8/15/2017								24
8/16/2017		36	41					
8/17/2017				110	80	69	510	
4/4/2018				70.6				33.9
4/5/2018			33.4					
5/8/2018				61.4				35.7
5/9/2018			36					
6/19/2018		50.3	35.5					23.7
6/20/2018				25.3	46 (J)	33		
6/21/2018							481	
9/25/2018								25.6
9/26/2018		54.1	39.6					
9/27/2018				63.4	58.5 (J)	29.4 (D)	777 (D)	
11/6/2018				136			926	25.2
11/7/2018		45.6	35.8		41.3 (J)	734		
3/6/2019						1220 (J)		
3/24/2019					131	413	1070	
3/25/2019		43	34.2	137				24.9
10/15/2019				105				
10/16/2019		31.9	24.4		122.5 (D)			17.4
10/17/2019						507	1230	
11/20/2019					132		1550	
3/26/2020		36.2						
3/27/2020			28.6					23.4
3/28/2020				86.6	63.8	701	1090	
4/23/2020	936							
6/16/2020	970							
10/12/2020								19.3
10/13/2020		32.3	27.6	92.3				
10/14/2020						510	904	
10/15/2020	1060				147			
1/4/2021					262			
3/3/2021		33.8	27.6					19.9
3/4/2021	1060			99.1	82.2	596	982	
9/14/2021	971	34.2	30.4	96.2 (M1)	459	490	819	33.1

Constituent: Sulfate (mg/L) Analysis Run 12/29/2021 3:10 PM

		MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/3(0/2016	4.3	6.4	WCW-13 (bg)	24	WOW-17	WOW-10 (bg)	WCW-13 (bg)	WCW-20 (bg)
	25/2016	4.5	0.4		24	84			
	30/2016	7.6	4.5		26	52			
	5/2017	3	37		30	190			
	1/2017	2.5	61		30	260			
		2.5	61		0.4	260			
	/2017			10	24				
	/2017			13					
	/2017			14					
	5/2017	3.2				210			
	6/2017		130						
	7/2017			14	26				
	/2018			13.4					
	/2018			14.8					
	9/2018	1.6	498	15.5		218			
	0/2018				31.2				
	5/2018	1	790						
9/26	6/2018			23	36.8	333 (D)			
11/6	6/2018		875			182			
11/7	7/2018	0.41 (J)		22.2	35				
3/24	4/2019	1.5	1170			413			
3/25	5/2019			22.4	40.1				
10/	15/2019	0.54 (J)	<1	17.9					
10/	16/2019				28.5	312.5 (D)			
11/2	7/2019						379	832	1010
11/	18/2019						737		
11/	19/2019							795	1140
11/2	21/2019		1070			428			
12/4	4/2019							810	1020
12/5	5/2019						351		
12/	17/2019							535	
12/	18/2019								8.1
1/8/	/2020							603	747
1/9/	/2020						254		
	1/2020						254	611	798
	/2020						432	599	1120
	3/2020						300	761	833
	7/2020	<1	899	14.6	31.2	504	219	836	700
	12/2020	<1					191		
	13/2020		695	7.6	26.8	378		609	638
	/2021	1.2	97.5	8	-	- -		-	
	/2021		· · · ·	Ŭ	30.5	420	171	<1	743
	3/2021	<1	680		00.0	720	171		730
	4/2021	-1	000	16.7	24.4	460	134	995	659
3/14	7/2021			10.7	<u>4</u> 7.4	700	134	333	000

Constituent: Thallium (mg/L) Analysis Run 12/29/2021 3:10 PM

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		<0.002						
8/31/2016					<0.002	<0.002	<0.002	
11/30/2016		<0.002			<0.002	<0.002	<0.002	
2/15/2017		<0.002						
2/16/2017					<0.002	<0.002	<0.002	
5/31/2017			<0.002					<0.002
6/1/2017		<0.002		<0.002				
6/2/2017					<0.002	<0.002	<0.002	
8/2/2017			<0.002	<0.002				<0.002
8/15/2017								<0.002
8/16/2017		<0.002	<0.002					
8/17/2017				<0.002	<0.002	<0.002	<0.002	
4/4/2018				<0.002				<0.002
4/5/2018			<0.002					
5/8/2018				<0.002				<0.002
5/9/2018			<0.002					
6/19/2018		<0.002	<0.002					<0.002
6/20/2018				<0.002	<0.002	<0.002		
6/21/2018							<0.002	
9/25/2018								<0.002
9/26/2018		0.00014	0.00014					
9/27/2018				<0.002	<0.002	<0.002	<0.002	
11/6/2018				<0.002			<0.002	<0.002
11/7/2018		<0.002	<0.002		<0.002	<0.002		
3/6/2019						<0.002		
8/27/2019		<0.002		<0.002				
8/28/2019			<0.002		<0.002	<0.002	<0.002	<0.002
10/15/2019				<0.002				
10/16/2019		<0.002	<0.002		<0.002			<0.002
10/17/2019						7.6E-05 (J)	<0.002	
3/26/2020		<0.002						
3/27/2020			<0.002					<0.002
3/28/2020				<0.002	<0.002	<0.002	<0.002	
9/14/2021	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002

Constituent: Thallium (mg/L) Analysis Run 12/29/2021 3:10 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

		MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2	2016	<0.002	<0.002		<0.002				
10/25/	/2016					<0.002			
11/30/	/2016	<0.002	<0.002		<0.002	<0.002			
2/15/2	2017	<0.002	<0.002		<0.002	<0.002			
5/31/2	2017	<0.002	<0.002			<0.002			
6/1/20	017				6E-05 (J)				
6/2/20	017			<0.002					
8/2/20	017			<0.002					
8/15/2	2017	<0.002				<0.002			
8/16/2	2017		<0.002						
8/17/2	2017			<0.002	7E-05 (J)				
4/4/20	018			<0.002					
5/8/20	018			<0.002					
6/19/2	2018	<0.002	<0.002	<0.002		<0.002			
6/20/2	2018				<0.002				
9/25/2	2018	<0.002	<0.002						
9/26/2	2018			0.00014	0.00014	0.00014			
11/6/2	2018		<0.002			<0.002			
11/7/2	2018	<0.002		<0.002	<0.002				
8/26/2	2019		<0.002						
8/27/2	2019	<0.002		<0.002	6.6E-05 (J)	<0.002			
10/15/	/2019	<0.002	<0.002	<0.002					
10/16/	/2019				<0.002	<0.002			
11/7/2	2019						<0.002	<0.002	<0.002
11/18/	/2019						<0.002		
11/19/	/2019							<0.002	<0.002
12/4/2	2019							<0.002	<0.002
12/5/2	2019						<0.002		
12/17/	/2019							<0.002	
12/18/	/2019						<0.002		<0.002
1/8/20	020							<0.002	<0.002
1/9/20	020						<0.002		
1/21/2	2020						<0.002	<0.002	<0.002
2/4/20	020						<0.002	<0.002	<0.002
2/13/2	2020						<0.002	<0.002	<0.002
3/27/2	2020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9/13/2	2021	<0.002	<0.002						
9/14/2	2021			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/29/2021 3:10 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	DPZ-2	MCM-01 (bg)	MCM-02 (bg)	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11 (bg)
8/30/2016		86						
8/31/2016					3620	4160	5100	
11/30/2016		131			4030	3950	4680	
2/15/2017		212						
2/16/2017					4080	4600	5080	
5/31/2017			123					257
6/1/2017		103		97				
6/2/2017					5560	4470	8000	
8/2/2017			136	538				183
8/15/2017								90
8/16/2017		65	124					
8/17/2017				445	4620	5450	8320	
4/4/2018				365				197
4/5/2018			128					
5/8/2018				304				225
5/9/2018			127					
6/19/2018		142	143					112
6/20/2018				114	3370	4940		
6/21/2018							7500	
9/25/2018								137
9/26/2018		133	132					
9/27/2018				255	2360	4480	10200	
11/6/2018				388			11000	89
11/7/2018		121	134		2230	15100		
3/6/2019						19000		
3/24/2019					1450	13700	13700	
3/25/2019		116	111	327				74
10/15/2019				237				
10/16/2019		104	96		2860			82
10/17/2019						16100	13200	
11/20/2019					2640		16700	
3/26/2020		114						
3/27/2020			119					87
3/28/2020				284	1470	18800	18300	
6/16/2020	20100							
10/12/2020								94
10/13/2020		113	118	<25				
10/14/2020						15200	18400	
10/15/2020	19300				5100			
1/4/2021					7750			
3/3/2021		99	84					66
3/4/2021	19000			285	1700	14200	17100	
9/14/2021	16400	66	76	193	8020	11800	13400	191

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/29/2021 3:10 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-12	MCM-14	MCM-15 (bg)	MCM-16 (bg)	MCM-17	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016	1910	1310		99				
10/25/2016					2900			
11/30/2016	1910	1050		111	3970			
2/15/2017	1870	1440		170	3820			
5/31/2017	1920	1740			5050			
6/1/2017				98				
6/2/2017			69					
8/2/2017			35					
8/15/2017	1840				4820			
8/16/2017		3010						
8/17/2017			51	84				
4/4/2018			90					
5/8/2018			89					
6/19/2018	1820	8630	110		5640			
6/20/2018				123				
9/25/2018	1760	10700						
9/26/2018			124	117	6920			
11/6/2018		11100			4160			
11/7/2018	1800		125	120				
3/24/2019	1770	14200	.20	.20	6840			
3/25/2019	.,,,	200	98	101	55.5			
10/15/2019	1730	15400	107					
10/16/2019	1700	10400	107	95	7740			
11/7/2019				50	7740	4140	10900	13500
11/18/2019						4030	10000	10000
11/19/2019						4000	10000	13300
11/21/2019		15800			7720		10000	10000
12/4/2019		.0000			7.25		11000	13200
12/5/2019						3840	11000	10200
12/17/2019						0040	9860	
12/18/2019						3880	3000	12500
1/8/2020						0000	9760	12300
1/9/2020						3520	3700	12000
1/21/2020						3280	10100	12000
2/4/2020						3220	10600	12300
2/13/2020						3580	10900	12400
3/27/2020	1970	16400	110	110	10200	3090	14300	14600
10/12/2020	1560	10400	110	110	10200	2920	14300	14000
10/13/2020	1300	15600	63	115	8750	2320	6600	13900
3/2/2021	1430	12000	40		5,50		0000	10000
3/3/2021	1400	12000	70	122	8830	2620	11000	11400
9/13/2021	1450	11400		144	5550	2020	. 1000	11700
9/13/2021	1-50	11700	96	<25	8820	2190	14600	10300
J/ 17/2021			50	-20	5520	2100	14000	

FIGURE B.

Constituent: Antimony Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Arsenic Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Antimony Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Arsenic Analysis Run 12/29/2021 3:11 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Barium Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Beryllium Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Barium Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Box & Whiskers Plot

Constituent: Boron Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Cadmium Analysis Run 12/29/2021 3:11 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Boron Analysis Run 12/29/2021 3:11 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Cadmium Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Calcium Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Chloride Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Calcium Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Chloride Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Chromium Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Chromium Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 12/29/2021 3:11 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 12/29/2021 3:11 PM

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Lead Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Lithium Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Lead Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Box & Whiskers Plot

Constituent: Mercury Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Molybdenum Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Mercury Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Molybdenum Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: pH, field Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Selenium Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: pH, field Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Selenium Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Thallium Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Thallium Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 12/29/2021 3:12 PM
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

FIGURE C.

Outlier Summary

Plant McManus Client: Southern Company Data: McManus Ash Pond Data Printed 11/10/2021, 5:00 PM

	MCM-20 Combined Radium 226 + 228 (pCi/L.) MCM-20 Combined Radium 226 + 228 (pCi/L.) MCM-06 Fluoride (mg/L.) MCM-19 Lead (mg/L.) MCM-18 Lithium (mg/L.)									
	MCM-20 Co	MCM-06 Flu	MCM-19 Le	ad (mg/L) MCM-18 Lithium (mg/L)						
11/7/2018		10.3 (o)								
11/18/2019				<0.1 (o)						
1/21/2020				<0.15 (o)						
2/4/2020				<0.3 (o)						
2/13/2020	76.3 (o)		<0.025 (o)							

FIGURE D.

Appendix III Interwell Prediction Limits - Significant Results

	F	Plant McManus	Client: South	ern Company	Data: McManus	Ash F	Pond [Data P	rinted 11/1/202	1, 11:29 AM	
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	MCM-07	1.3	n/a	9/14/2021	1.5	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Boron (mg/L)	MCM-12	1.3	n/a	9/13/2021	1.4	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Boron (mg/L)	MCM-17	1.3	n/a	9/14/2021	2.1	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-06	169	n/a	9/14/2021	299	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-07	169	n/a	9/14/2021	225	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-17	169	n/a	9/14/2021	190	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-05	5.81	3.36	9/14/2021	6.67	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-06	5.81	3.36	9/14/2021	6.94	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-07	5.81	3.36	9/14/2021	6.28	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-12	5.81	3.36	9/13/2021	6.24	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-14	5.81	3.36	9/13/2021	6.3	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-17	5.81	3.36	9/14/2021	6.77	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2

Appendix III Interwell Prediction Limits - All Results

		Plant McManus	Client: Southern Company		Data: McManus Ash Pond Data Printed 11/1/2021, 11:29 AM			21, 11:29 AM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	<u> %NDs</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	MCM-04	1.3	n/a	9/14/2021	0.07J	No	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Boron (mg/L)	MCM-05	1.3	n/a	9/14/2021	0.95J	No	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Boron (mg/L)	MCM-06	1.3	n/a	9/14/2021	1.1	No	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Boron (mg/L)	MCM-07	1.3	n/a	9/14/2021	1.5	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Boron (mg/L)	MCM-12	1.3	n/a	9/13/2021	1.4	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Boron (mg/L)	MCM-14	1.3	n/a	9/13/2021	1.2	No	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Boron (mg/L)	MCM-17	1.3	n/a	9/14/2021	2.1	Yes	106	9.434	n/a	0.0001759	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-04	169	n/a	9/14/2021	12.5	No	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-05	169	n/a	9/14/2021	13.9	No	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-06	169	n/a	9/14/2021	299	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-07	169	n/a	9/14/2021	225	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-12	169	n/a	9/13/2021	6	No	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-14	169	n/a	9/13/2021	165	No	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Calcium (mg/L)	MCM-17	169	n/a	9/14/2021	190	Yes	107	0.9346	n/a	0.000173	NP Inter (normality) 1 of 2
Chloride (mg/L)	MCM-04	8130	n/a	9/14/2021	28.5	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Chloride (mg/L)	MCM-05	8130	n/a	9/14/2021	3940	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Chloride (mg/L)	MCM-06	8130	n/a	9/14/2021	5360	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Chloride (mg/L)	MCM-07	8130	n/a	9/14/2021	6300	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Chloride (mg/L)	MCM-12	8130	n/a	9/13/2021	433	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Chloride (mg/L)	MCM-14	8130	n/a	9/13/2021	5010	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Chloride (mg/L)	MCM-17	8130	n/a	9/14/2021	4090	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Fluoride (mg/L)	MCM-04	1.5	n/a	9/14/2021	0.05	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2
Fluoride (mg/L)	MCM-05	1.5	n/a	9/14/2021	0.1ND	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2
Fluoride (mg/L)	MCM-06	1.5	n/a	9/14/2021	0.1ND	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2
Fluoride (mg/L)	MCM-07	1.5	n/a	9/14/2021	0.1ND	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2
Fluoride (mg/L)	MCM-12	1.5	n/a	9/13/2021	1.4	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2
Fluoride (mg/L)	MCM-14	1.5	n/a	9/13/2021	0.1ND	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2
Fluoride (mg/L)	MCM-17	1.5	n/a	9/14/2021	0.1ND	No	111	45.95	n/a	0.0001613	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-04	5.81	3.36	9/14/2021	5.09	No	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-05	5.81	3.36	9/14/2021	6.67	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-06	5.81	3.36	9/14/2021	6.94	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-07	5.81	3.36	9/14/2021	6.28	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-12	5.81	3.36	9/13/2021	6.24	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-14	5.81	3.36	9/13/2021	6.3	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
pH, field (Std. Units)	MCM-17	5.81	3.36	9/14/2021	6.77	Yes	110	0	n/a	0.0003284	NP Inter (normality) 1 of 2
Sulfate (mg/L)	MCM-04	1140	n/a	9/14/2021	96.2	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2
Sulfate (mg/L)	MCM-05	1140	n/a	9/14/2021	459	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2
Sulfate (mg/L)	MCM-06	1140	n/a	9/14/2021	490	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2
Sulfate (mg/L)	MCM-07	1140	n/a	9/14/2021	819	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2
Sulfate (mg/L)	MCM-12	1140	n/a	9/13/2021	0.5ND	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2
Sulfate (mg/L)	MCM-14	1140	n/a	9/13/2021	680	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2
Sulfate (mg/L)	MCM-17	1140	n/a	9/14/2021	460	No	105	0.9524	n/a	0.0001788	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	MCM-04	14600	n/a	9/14/2021	193	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	MCM-05	14600	n/a	9/14/2021	8020	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	MCM-06	14600	n/a	9/14/2021	11800	No	106		n/a	0.0001759	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	MCM-07	14600	n/a	9/14/2021	13400	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	MCM-12	14600	n/a	9/13/2021	1450	No	106		n/a	0.0001759	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	MCM-14	14600	n/a	9/13/2021	11400	No	106	0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	MCM-17	14600	n/a	9/14/2021	8820	No		0.9434	n/a	0.0001759	NP Inter (normality) 1 of 2
,											• • • • • • • • • • • • • • • • • • • •

Hollow symbols indicate censored values

Exceeds Limit: MCM-07, MCM-12, MCM-17

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 106 background values. 9.434% NDs. Annual perconstituent alpha = 0.001757. Individual comparison alpha = 0.0001759 (1 of 2). Comparing 7 points to limit.

> Constituent: Boron Analysis Run 11/1/2021 11:26 AM View: Appendix III Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 106 background values. 0.9434% NDs. Annual perconstituent alpha = 0.001757. Individual comparison alpha = 0.0001759 (1 of 2). Comparing 7 points to limit.

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Exceeds Limit: MCM-06, MCM-07, MCM-17

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 107 background values. 0.9346% NDs. Annual perconstituent alpha = 0.001728. Individual comparison alpha = 0.000173 (1 of 2). Comparing 7 points to limit.

> Constituent: Calcium Analysis Run 11/1/2021 11:26 AM View: Appendix III Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 111 background values. 45.95% NDs. Annual perconstituent alpha = 0.001612. Individual comparison alpha = 0.0001613 (1 of 2). Comparing 7 points to limit.

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Exceeds Limits: MCM-05, MCM-06, MCM-07, MCM-12, MCM-14, MCM-17

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 110 background values. Annual perconstituent alpha = 0.003282. Individual comparison alpha = 0.0003284 (1 of 2). Comparing 7 points to limit.

Constituent: pH, field Analysis Run 11/1/2021 11:26 AM View: Appendix III
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 106 background values. 0.9434% NDs. Annual perconstituent alpha = 0.001757. Individual comparison alpha = 0.0001759 (1 of 2). Comparing 7 points to limit.

Constituent: Total Dissolved Solids Analysis Run 11/1/2021 11:26 AM View: Appendix III
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 105 background values. 0.9524% NDs. Annual perconstituent alpha = 0.001787. Individual comparison alpha = 0.0001788 (1 of 2). Comparing 7 points to limit.

	MCM-01 (bg)	MCM-12	MCM-14	MCM-16 (bg)	MCM-06	MCM-07	MCM-05	MCM-17	MCM-11 (bg)
8/30/2016	0.0325 (J)	1.18	0.726	0.0972 (J)					
8/31/2016					0.632	0.863	0.56		
10/25/2016								1.73	
11/30/2016	0.0334 (J)	1.3	0.565	0.0964	0.637	0.804	0.529	2.12	
2/15/2017	0.254	1.33	0.647	0.398				2.14	
2/16/2017					0.698	0.815	0.539		
5/31/2017		1.38	0.503					2.24	0.0521
6/1/2017	0.0564			0.0776					
6/2/2017					0.674	0.891	0.555		
8/2/2017									0.0392 (J)
8/15/2017		1.14						2.1	0.0448
8/16/2017	0.0435		0.539						
8/17/2017				0.0853	0.7	0.922	0.516		
4/4/2018									0.046
4/5/2018									
5/8/2018									0.048
5/9/2018									
6/19/2018	0.04 (J)	1.2	0.76					1.7	0.04
6/20/2018	. ,			0.079	0.69		0.51		
6/21/2018						0.99			
9/25/2018		1	0.61						0.043
9/26/2018	0.038 (J)			0.072				1.3	
9/27/2018	0.000 (0)			0.072	0.62	0.88	0.47		
11/6/2018			0.75		0.02	1.1	0.47	1.8	0.046
11/7/2018	0.037 (J)	1.4	0.70	0.074	0.86		0.51	1.0	0.040
3/6/2019	0.037 (3)	1.4		0.074	1.5		0.51		
3/24/2019		1	0.95		1.1	1.2	0.44	1.4	
3/25/2019	0.039 (1)		0.93	0.067	1.1	1.2	0.44	1.4	0.03 (J)
	0.038 (J)	1.1	1	0.007					0.03 (3)
10/15/2019	0.000 (1)	1.1	1	0.051			0.40	1.0	0.000 (1)
10/16/2019	0.036 (J)			0.051	1.2	1.1	0.49	1.6	0.032 (J)
10/17/2019					1.3	1.1			
11/7/2019									
11/18/2019									
11/19/2019									
11/20/2019						1.3	0.53		
11/21/2019			1					1.5	
12/4/2019									
12/5/2019									
12/17/2019									
12/18/2019									
1/8/2020									
1/9/2020									
1/21/2020									
2/4/2020									
2/13/2020									
3/26/2020	0.064 (J)								
3/27/2020		1.5	1.3	0.088 (J)				1.8	0.058 (J)
3/28/2020					0.95	0.79	0.28 (J)		
10/12/2020		1.3							<0.5
10/13/2020	<0.5		1.1	<0.5				1.8	
10/14/2020					1.5	1.8			
10/15/2020							0.61		

	MCM-01 (bg)	MCM-12	MCM-14	MCM-16 (bg)	MCM-06	MCM-07	MCM-05	MCM-17	MCM-11 (bg)
1/4/2021							0.98		
3/2/2021		1.4 (J)	1.4 (J)						
3/3/2021	<0.5			<0.5				1.7 (J)	<0.5
3/4/2021					1.4 (J)	1.6 (J)	0.4 (J)		
9/13/2021		1.4 (M1)	1.2						
9/14/2021	0.079 (J)			0.071 (J)	1.1	1.5	0.95 (J)	2.1 (M1)	0.06 (J)

	MCM-02 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-19 (bg)	MCM-18 (bg)
8/30/2016	. 37		. 5/	. 5/	, 3/	· •
8/31/2016						
10/25/2016						
11/30/2016						
2/15/2017						
2/16/2017						
5/31/2017	0.161					
6/1/2017	0.101	0.0608				
		0.0008	0.0405			
6/2/2017	0.159	0.127	0.0495 0.0333 (J)			
8/2/2017	0.158	0.137	0.0333 (3)			
8/15/2017						
8/16/2017	0.148					
8/17/2017		0.128	0.0593			
4/4/2018		0.1	0.065			
4/5/2018	0.13					
5/8/2018		0.074	0.062			
5/9/2018	0.12					
6/19/2018	0.13		0.064			
6/20/2018		0.045				
6/21/2018						
9/25/2018						
9/26/2018	0.1		0.06			
9/27/2018		0.06				
11/6/2018		0.06				
11/7/2018	0.1		0.062 (J)			
3/6/2019						
3/24/2019						
3/25/2019	0.091	0.058	0.057			
10/15/2019		0.068	0.046			
10/16/2019	0.085					
10/17/2019						
11/7/2019				1.1	0.84	0.27
11/18/2019						0.29 (J)
11/19/2019				1.3	0.83	0.25 (0)
11/20/2019				1.5	0.03	
11/21/2019						
				0.91	0.69	
12/4/2019 12/5/2019				0.81	0.68	0.23
					0.57	0.23
12/17/2019				0.77	0.57	0.22
12/18/2019				0.77		0.23
1/8/2020				0.9	0.73	
1/9/2020						0.2
1/21/2020				0.94	0.75	0.24 (J)
2/4/2020				0.96 (J)	0.79 (J)	0.24 (J)
2/13/2020				0.88	0.74	0.22
3/26/2020						
3/27/2020	0.17 (J)		0.076 (J)	0.94	0.96	0.24 (J)
3/28/2020		0.067 (J)				
10/12/2020						0.24 (J)
10/13/2020	<0.5	<0.5	<0.5	1.1	0.73	
10/14/2020						
10/15/2020						

	MCM-02 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-19 (bg)	MCM-18 (bg)
1/4/2021						
3/2/2021			<0.5			
3/3/2021	<0.5			0.91 (J)	0.79 (J)	0.21 (J)
3/4/2021		0.11 (J)				
9/13/2021						
9/14/2021	0.093 (J)	0.07 (J)	0.068 (J)	0.91 (J)	1.2	0.2 (J)

		MCM-01 (bg)	MCM-12	MCM-16 (bg)	MCM-14	MCM-05	MCM-06	MCM-07	MCM-17	MCM-11 (bg)
	0/2016	7.3	7.05	4.02	42.8					
	1/2016					65	82.8	119		
	25/2016								69.4	
11/	30/2016	10.8	8.69	4.87	33.2	71.7	68.7	103	83.9	
2/1	5/2017	14.3	8.34	6.61	56.1				96.3	
2/1	6/2017					74	94.8	114		
5/3	1/2017		8.85		73.6				122	18.6
6/1	/2017	12.7 (J)		6.42						
6/2	/2017					120	92.5	179		
8/2	/2017									18.5
8/1	5/2017		8.05						117	4.09
8/1	6/2017	8.7			99.6					
8/1	7/2017			5.62		100	126	186		
4/4	/2018									<25
4/5	/2018									
5/8	/2018									18.4 (J)
	/2018									
	9/2018	11.6 (J)	8.3		285				136	4.3
	0/2018	- (-)		5.7		72.8	121			
	1/2018							179		
	8/2018	13	8.9		294				138	
	5/2018	.0	6.8		283					6.2 (D)
	6/2018	12.8 (J)	0.0	5.3	200				148	0.2 (D)
	7/2018	12.0 (3)		3.3		46.6	95.1	193	140	
	6/2018				297	40.0	95.1	219	24.7	1.8
		11.0	9.5	F 2	297	41.0	207 F (D)	219	24.7	1.0
	7/2018 /2019	11.9	8.5	5.3		41.8	387.5 (D)			
			7.4		220	20.0 (1)	341	040	100	
	4/2019	10.0 (1)	7.4		338	20.9 (J)	277	243	136	0.5 (5)
	5/2019	12.6 (J)		5.7						2.5 (D)
	15/2019		7.9		321					
	16/2019	13.6		4.8		55.2			118	2.2
	17/2019						309	260		
	7/2019									
	18/2019									
	19/2019									
	20/2019					55.8		308		
	21/2019				305				125	
	4/2019									
	5/2019									
12/	17/2019									
12/	18/2019									
1/8	/2020									
1/9	/2020									
1/2	1/2020									
2/4	/2020									
2/1	3/2020									
3/2	6/2020	10.1								
3/2	7/2020		8.3	5.4	286				222	3.3
3/2	8/2020					25.8	286	286		
10/	12/2020		6.1							2.8
	13/2020	9.8		5.7	40.9				86.4	
	14/2020						245	207		

	MCM-01 (bg)	MCM-12	MCM-16 (bg)	MCM-14	MCM-05	MCM-06	MCM-07	MCM-17	MCM-11 (bg)
10/15/2020					69.1				
1/4/2021					104				
3/3/2021	14								
3/4/2021		6.5	11.2	205	23.4	233	244	143	2.1
9/13/2021		6		165					
9/14/2021	9.6		6.5		13.9	299	225	190	14

	MCM-02 (bg)	MCM-04	MCM-15 (bg)	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
8/30/2016						
8/31/2016						
10/25/2016						
11/30/2016						
2/15/2017						
2/16/2017						
5/31/2017	5.9					
6/1/2017	0.0	3.65				
6/2/2017		5.05	2.77			
8/2/2017	4.69	12.4	1.27			
8/15/2017	4.00	12.4	1.27			
8/16/2017	5.25					
	5.25	0.17	E E2			
8/17/2017		8.17	5.53			
4/4/2018	-	6.8	6.5			
4/5/2018	5		0.7			
5/8/2018		5.7	6.7			
5/9/2018	4.7					
6/19/2018	4.8		7.4			
6/20/2018		4.3				
6/21/2018						
6/28/2018						
9/25/2018						
9/26/2018	4.6		8.5 (J)			
9/27/2018		16.4 (J)				
11/6/2018		39.5				
11/7/2018	4.6		9.8			
3/6/2019						
3/24/2019						
3/25/2019	4.7	20.8 (J)	7.8			
10/15/2019		15.5	6.7			
10/16/2019	4.9					
10/17/2019						
11/7/2019				46.2	158	163
11/18/2019				41.8		
11/19/2019					152	169
11/20/2019						
11/21/2019						
					1/12	140
12/4/2019				40 E	142	140
12/5/2019				40.5	126	
12/17/2019				40	136	445
12/18/2019				42	447	145
1/8/2020					147	157
1/9/2020				37.1		
1/21/2020				40.1	167	152
2/4/2020				36.2	142	139
2/13/2020				38.9	148	146
3/26/2020						
3/27/2020	4.9		5.9	23.2	122	113
3/28/2020		15.5				
10/12/2020				19.1		
10/13/2020	3.8	12.5	0.83		125	128
10/14/2020						

	MCM-02 (bg)	MCM-04	MCM-15 (bg)	MCM-18 (bg)	MCM-19 (bg)	MCM-20 (bg)
10/15/2020						
1/4/2021						
3/3/2021	4					
3/4/2021		15.1	1.4	26	123	110
9/13/2021						
9/14/2021	4.2	12.5	6.7	18.8	93.6	61.1

	MCM-01 (bg)	MCM-12	MCM-14	MCM-16 (bg)	MCM-06	MCM-07	MCM-05	MCM-17	MCM-11 (bg)
8/30/2016	9.7	800	450	26					
8/31/2016					2200	2600	1800		
10/25/2016								1300	
11/30/2016	19	760	310	27	2100	2800	1100	400	
2/15/2017	21	740		30				2000	
2/16/2017					2500	3100	2100		
5/31/2017		740	820					2500	98
6/1/2017	12			27					
6/2/2017					2500	4600	3100		
8/2/2017									57
8/15/2017		750						2500	15
8/16/2017	14		1500						
8/17/2017				32	2700	4600	2600		
4/4/2018									69
4/5/2018									
5/8/2018									72.3
5/9/2018									
6/19/2018	24.4	760	5180					3050	17.3
6/20/2018				30	3100		1800		
6/21/2018					0.00	3920	.000		
9/25/2018		752 (D)	7220						31.3
9/26/2018	23.4	702 (3)		28.4				3965 (D)	00
9/27/2018	20.4			20.4	2510 (D)	5660 (D)	1300	0000 (2)	
11/6/2018			6020		2310 (D)	6520	1300	2230	9.8
11/7/2018	21.8	665		25.1	8860	0020	1180	2200	0.0
3/6/2019	21.0	000		20.1	11700		1100		
3/24/2019		744	7400		6470	8720	717	3960	
3/25/2019	19.4	7-1-1		21.8	0470	0720	, , ,		12.9
10/15/2019	10.4	744	9050	21.0					12.0
10/16/2019	21.4	7-1-1		20			941 (D)	2181.5 (D)	12.2
10/17/2019	21.4			20	9930	8210	541 (<i>b</i>)	2101.0 (B)	12.2
11/7/2019						02.0			
11/18/2019									
11/19/2019									
11/20/2019						9810	1480		
11/21/2019			8330			00.0		3890	
12/4/2019			0000					0000	
12/5/2019									
12/17/2019									
12/18/2019									
1/8/2020									
1/9/2020									
1/21/2020									
2/4/2020									
2/13/2020									
3/26/2020	23								
3/27/2020	=	675	7680	23.6				4770	14.5
3/28/2020			. 500	_5.0	9190	9070	693		
10/12/2020		552			5.00	5576			13.9
10/12/2020	13.5	JUL	6230	23.3				3980	
10/13/2020	.5.0		5200	20.0	6630	7910		2000	
10/14/2020						.010	1660		

	MCM-01 (bg)	MCM-12	MCM-14	MCM-16 (bg)	MCM-06	MCM-07	MCM-05	MCM-17	MCM-11 (bg)
1/4/2021							2460		
3/2/2021		459	<1						
3/3/2021	13.6			27.6				<1	9.4
3/4/2021					6310	7540	652		
9/13/2021		433	5010						
9/14/2021	16.7			30	5360	6300	3940	4090	62.8

	MCM-02 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-19 (bg)	MCM-18 (bg)
8/30/2016	(0)		(0,	(0/	(0,	
8/31/2016						
10/25/2016						
11/30/2016						
2/15/2017						
2/16/2017						
5/31/2017	39					
6/1/2017	00	22				
6/2/2017		22	11			
8/2/2017	42	230	3.2			
8/15/2017	72	230	5.2			
8/16/2017	41					
	41	210	10			
8/17/2017		210	12			
4/4/2018		156	13.4			
4/5/2018	40.2					
5/8/2018	10.6	140	13.2			
5/9/2018	40.6					
6/19/2018	37.7		13.7			
6/20/2018		27.5				
6/21/2018						
9/25/2018						
9/26/2018	33.4		18.5			
9/27/2018		101				
11/6/2018		107				
11/7/2018	30.7		20.2			
3/6/2019						
3/24/2019						
3/25/2019	33.5	78.5	19.7			
10/15/2019		46	17.1			
10/16/2019	33.1					
10/17/2019						
11/7/2019				7880	6170	2360
11/18/2019						6970
11/19/2019				8130	5650	
11/20/2019						
11/21/2019						
12/4/2019				7410	6100	
12/5/2019						2130
12/17/2019					5660	
12/18/2019				7170		2090
1/8/2020				6480	5070	
1/9/2020						1750
1/21/2020				6000	5010	1630
2/4/2020				5700	5030	1760
2/13/2020				7060	6140	1850
3/26/2020				, 000	0140	
3/27/2020	32.9		14.1	7110	6870	1450
3/28/2020	32.3	71.4	14.1	7110	00/0	IHJU
		71.4				1240
10/12/2020	25.7	E4.4	2.0	F090	F260	1340
10/13/2020	25.7	54.4	3.8	5980	5260	
10/14/2020						
10/15/2020						

	MCM-02 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-19 (bg)	MCM-18 (bg)
1/4/2021						
3/2/2021			4.2			
3/3/2021	20.5			<1	5170	1230
3/4/2021		69.6				
9/13/2021						
9/14/2021	21.8	28.5	13.6	5100	7250	1020

		MCM-01 (bg)	MCM-12	MCM-14	MCM-16 (bg)	MCM-06	MCM-07	MCM-05	MCM-17	MCM-02 (bg)
8/30/2	2016	0.03 (J)	1.5	0.5	0.04 (J)					
8/31/2	2016					0.41	0.92	0.93		
10/25	5/2016								1.1	
	0/2016	0.04 (J)	1.4	0.49	0.18 (J)	0.61	0.99	0.93	1.3	
2/15/2		0.007 (J)	1.3	0.58	0.02 (J)				1.3	
2/16/2		(-)			(-)	0.3 (J)	0.54	0.6		
5/31/2			1.2	0.56		(-)			1.3	0.01 (J)
6/1/2		<0.1			0.005 (J)					(-)
6/2/2					(-)	0.19 (J)	0.42	0.34		
8/2/2						0.10 (0)	02	0.01		0.14 (J)
8/15/2			1.2						1.2	(5)
8/16/2		0.03 (J)		0.45						0.13 (J)
8/17/2		0.00 (0)		0.10	0.04 (J)	0.26 (J)	0.27 (J)	0.52		3.13 (8)
4/4/2					0.0 1 (0)	0.20 (0)	0.27 (0)	0.02		
4/5/2										<0.1
5/8/2										
5/9/20										<0.1
6/19/2		<0.1	0.91	<0.1					0.6	0.065 (J)
6/20/2		40.1	0.51	-0.1	0.038 (J)	0.22 (J)		0.5	0.0	0.003 (0)
6/21/2					0.038 (3)	0.22 (3)	0.28 (J)	0.5		
9/25/2			1.1	<0.1			0.28 (3)			
9/26/2		0.12 (1)	1.1	~ 0.1	0.029				0.44 (D)	0.029
		0.12 (J)			0.029	0.068 (1)	0.22 (D)	0.22	0.44 (D)	0.029
9/27/2				0.09471)		0.068 (J)	0.32 (D)	0.32	0.4	
11/6/2		-0.1	-0.1	0.084 (J)	-0.1	10.2 (a)	0.086 (J)	0.25	0.4	-0.1
11/7/		<0.1	<0.1		<0.1	10.3 (o) <0.1		0.35		<0.1
3/6/20			0.00	0.1471)			0.14 (1)	0.22	0.21	
3/24/2 3/25/2		0.038 (1)	0.99	0.14 (J)	0.041 (1)	0.19 (J)	0.14 (J)	0.32	0.31	0.020 (1)
		0.038 (J)		-0.4	0.041 (J)					0.039 (J)
8/26/2		-0.1	4.4	<0.1	-0.4				<0.1	
8/27/2		<0.1	1.1		<0.1	-0.1	<0.1	0.26	<0.1	-0.1
8/28/2			1	<0.1		<0.1	<0.1	0.36		<0.1
	5/2019	0.046 (ID)	1	<0.1	0.04471)			0.41	0.092 (1)	0.044 (ID)
	5/2019 7/2019	0.046 (JD)			0.044 (J)	-0.1	-0.4	0.41	0.083 (J)	0.044 (JD)
						<0.1	<0.1			
11/7/										
	3/2019 9/2019									
	0/2019						<0.1	0.34		
	1/2019			<0.1			<0.1	0.34	<0.1	
12/4/2				~ 0.1					~ 0.1	
12/5/	7/2019									
	3/2019									
1/8/20 1/9/20										
1/9/20										
2/4/20										
2/13/2 3/26/2		<0.1								
3/27/2		5U. I	1.1	<0.1	<0.1				<0.1	<0.1
3/28/2			1.1	~U. I	~U. I	<0.1	<0.1	0.34	-U. I	~V. I
	2020 2/2020		1.2			~0.1	~U. I	0.34		
10/12	UZU		1.4							

10/10/0000	MCM-01 (bg)	MCM-12	MCM-14	MCM-16 (bg)	MCM-06	MCM-07	MCM-05	MCM-17	MCM-02 (bg)
10/13/2020	<0.1		<0.1	<0.1				<0.1	<0.1
10/14/2020					<0.1	<0.1			
10/15/2020							0.22		
1/4/2021							<0.1		
3/2/2021		1	<0.1						
3/3/2021	<0.1			<0.1				<0.1	<0.1
3/4/2021					<0.1	<0.1	0.45		
9/13/2021		1.4	<0.1						
9/14/2021	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

	MCM-11 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-18 (bg)	MCM-19 (bg)
8/30/2016	(-3)		(19)	(13)	(3)	(3)
8/31/2016						
10/25/2016						
11/30/2016						
2/15/2017						
2/16/2017						
5/31/2017	0.85					
6/1/2017	0.83	<0.1				
6/2/2017		~ 0.1	<0.1			
8/2/2017	0.69	0.27 (1)				
8/2/2017		0.27 (J)	0.05 (J)			
	0.29 (J)					
8/16/2017		0.10 (1)	-0.1			
8/17/2017	0.00	0.18 (J)	<0.1			
4/4/2018	0.32	<0.1	<0.1			
4/5/2018						
5/8/2018	0.63	0.56	<0.1			
5/9/2018						
6/19/2018	0.17 (J)		0.057 (J)			
6/20/2018		0.033 (J)				
6/21/2018						
9/25/2018	0.15 (J)					
9/26/2018			0.029			
9/27/2018		0.12 (J)				
11/6/2018	<0.1	<0.1				
11/7/2018			<0.1			
3/6/2019						
3/24/2019						
3/25/2019	0.12 (J)	0.055 (J)	0.036 (J)			
8/26/2019						
8/27/2019		<0.1	<0.1			
8/28/2019	0.068 (J)					
10/15/2019		0.095 (J)	0.14 (J)			
10/16/2019	0.1 (J)					
10/17/2019						
11/7/2019				1.4	0.49	<0.1
11/18/2019					0.52	
11/19/2019				1.2		0.033 (J)
11/20/2019						
11/21/2019						
12/4/2019				1.4		0.22 (J)
12/5/2019					0.5	
12/17/2019						<0.1
12/18/2019				1.5	0.33	
1/8/2020				<0.1		<0.1
1/9/2020					0.12 (J)	
1/21/2020				0.53	0.13 (J)	0.11 (J)
2/4/2020				<0.1	0.18 (J)	<0.1
2/13/2020				<0.1	0.077 (J)	<0.1
3/26/2020					. ,	
3/27/2020	0.066 (J)		<0.1	<0.1	0.06 (J)	<0.1
3/28/2020	.,	<0.1			• •	
10/12/2020	<0.1				0.34	
	-					

	MCM-11 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-18 (bg)	MCM-19 (bg)
10/13/2020		<0.1	<0.1	<0.1		<0.1
10/14/2020						
10/15/2020						
1/4/2021						
3/2/2021			<0.1			
3/3/2021	0.082 (J)			<0.1	0.32	<0.1
3/4/2021		<0.1				
9/13/2021						
9/14/2021	0.18	0.05	<0.1	<0.1	<0.1	<0.1

	MCM-01 (bg)	MCM-16 (bg)	MCM-12	MCM-14	MCM-05	MCM-06	MCM-07	MCM-17	MCM-02 (bg)
8/30/2016	5.66	5.18	6.49	7.04					
8/31/2016					6.93	7.21	6.66		
10/25/2016								6.95	
11/30/2016	5.36	4.96	6.5	7.13	6.77	7.23	6.69	6.95	
2/15/2017	5.25	5.13	6.51	7.02				6.85	
2/16/2017					6.89	7.27	6.72		
5/31/2017			6.45	7				6.96	5.06
6/1/2017	5.59	4.99							
6/2/2017					6.83	7.18	6.53		
8/2/2017									5
8/15/2017			6.41					6.99	
8/16/2017	5.58			6.88					4.98
8/17/2017		4.68			6.76	7.15	6.28		
4/4/2018									
4/5/2018									5.02
5/8/2018									
5/9/2018									4.96
6/19/2018	5.51		6.32	6.78				6.91	5.02
6/20/2018		4.77			6.83	7.19			
6/21/2018		,			0.00	7.10	6.45		
9/25/2018			6.31	6.75					
9/26/2018	5.32	4.65	0.01	0.70				6.81	5.06
9/27/2018	0.02	4.00			6.64	7.21	6.48	0.01	0.00
11/6/2018				6.92	0.04	7.21	6.18	5.99	
11/7/2018	5.72	4.99	6.3	0.02	6.6	6.91	0.10	0.00	5.03
3/24/2019	5.72	4.55	6.4	6.59	6.1	6.98	6.38	6.62	3.00
3/25/2019	5.75	5.13	0.4	0.55	0.1	0.96	0.36	0.02	5.08
8/26/2019	3.73	5.15		6.62					3.00
8/27/2019	5.58	4.88	6.24	0.02				6.23	
8/28/2019	3.36	4.00	0.24		6.69	6.87	6.35	0.23	4.99
10/15/2019			6.19	6.58	0.03	0.07	0.33		4.55
10/16/2019	5.72	4.89	0.15	0.00	6.64			6.54	4.98
10/17/2019	5.72	4.05			0.04	6.86	6.4	0.54	4.30
11/7/2019						0.80	0.4		
11/18/2019									
11/19/2019									5.11
11/20/2019	5.77				6.58		6.27		5.11
11/21/2019	5.77			6.67	0.36		0.27	6.44	
12/4/2019				0.07				0.44	
12/5/2019									
1/8/2020									
1/9/2020									
1/21/2020									
2/4/2020									
2/13/2020									
3/26/2020	5.45								
3/27/2020	5.10	5.12	6.33	6.59				6.93	5.12
3/28/2020		U. 12	0.00	0.00	6.6	6.8	6.35	0.00	V.12
10/12/2020			6.35		0.0	0.0	0.33		
10/12/2020	5.69	5.17	0.00	6.56				6.34	5.03
10/13/2020	5.05	3.17		0.00		6.93	6.32	0.04	5.05
10/14/2020					6.53	0.30	0.32		
13/13/2020					0.00				

	MCM-01 (bg)	MCM-16 (bg)	MCM-12	MCM-14	MCM-05	MCM-06	MCM-07	MCM-17	MCM-02 (bg)
1/4/2021					6.66				
3/2/2021			6.34	6.55					
3/3/2021	5.81	5.71						6.58	5.06
3/4/2021					6.52	6.94	6.33		
9/13/2021			6.24	6.3					
9/14/2021	5.13	4.69			6.67	6.94	6.28	6.77	5.04

	MCM-11 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-19 (bg)	MCM-18 (bg)
8/30/2016						
8/31/2016						
10/25/2016						
11/30/2016						
2/15/2017						
2/16/2017						
5/31/2017	5.29					
6/1/2017	-: - -	5.68				
6/2/2017		0.00	5.31			
8/2/2017	5 10	5.2	5.05			
	5.19	J.Z	5.05			
8/15/2017	5.19					
8/16/2017		F.C.				
8/17/2017		5.31	5.52			
4/4/2018	5.19	4.74	5.45			
4/5/2018						
5/8/2018	5.3	4.78	5.54			
5/9/2018						
6/19/2018	5.15		5.6			
6/20/2018		4.79				
6/21/2018						
9/25/2018	5.13					
9/26/2018			5.17			
9/27/2018		5.14				
11/6/2018	5.08	4.9				
11/7/2018			5.47			
3/24/2019			5.4			
3/25/2019	5.05	4.93				
8/26/2019						
8/27/2019		5.05	5.35			
	4 97	5.05	3.33			
8/28/2019	4.87	4 80	5 32			
10/15/2019	F 0.F	4.89	5.32			
10/16/2019	5.05					
10/17/2019						
11/7/2019				3.79	5.21	4.25
11/18/2019						4.12
11/19/2019				3.78	5.15	
11/20/2019		5.03				
11/21/2019						
12/4/2019				3.87 (D)	5.28 (D)	
12/5/2019						4.17 (D)
1/8/2020				3.77	5.04	
1/9/2020						4.19
1/21/2020				3.73	5.1	4.28
2/4/2020				3.72	5.15	4.26
2/13/2020				3.75	5.07	4.2
3/26/2020						
3/27/2020	5.09		5.3	3.81	5.14	4.34
3/28/2020		5.27			-	-
10/12/2020	5					4.29
10/13/2020	-	5.25	5.02	3.72	5.04	·- -
10/13/2020		0.20	0.02	0.72	0.04	
10/14/2020						
10/13/2020						

	MCM-11 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-19 (bg)	MCM-18 (bg)
1/4/2021						
3/2/2021			5.16			
3/3/2021	5.07			3.36	5.1	4.37
3/4/2021		5.31				
9/13/2021						
9/14/2021	5.5	5.09	5.39	3.72	5.31	4.28

MUMBER MUMBER MEMALE MEMALE<										
1005 1005		MCM-01 (bg)	MCM-12	MCM-14	MCM-16 (bg)	MCM-06	MCM-07	MCM-05	MCM-17	MCM-02 (bg)
10002016	8/30/2016	17	4.3	6.4	24					
1000016 33	8/31/2016					21	290	37		
1400017	10/25/2016								84	
Part	11/30/2016	33	7.6	4.5	26	19	240	63	52	
510007	2/15/2017	83	3	37	30				190	
602017	2/16/2017					22	220	90		
Page Page	5/31/2017		2.5	61					260	46
8/16/2017	6/1/2017	51			24					
8162017 36	6/2/2017					28	500	210		
Minimary Minimary	8/2/2017									43
Afficial	8/15/2017		3.2						210	
Afficial	8/16/2017	36		130						41
Mathematical Math	8/17/2017				26	69	510	80		
58/2018 SAPICIT SAPICITY SAPICITY </td <td>4/4/2018</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4/4/2018									
10 10 10 10 10 10 10 10	4/5/2018									33.4
6192018	5/8/2018									
\$\overline{1}{\cup 1}{\cup 1	5/9/2018									36
9212018 1 790	6/19/2018	50.3	1.6	498					218	35.5
9252018	6/20/2018				31.2	33		46 (J)		
9262018	6/21/2018						481			
927/2018	9/25/2018		1	790						
11/62018	9/26/2018	54.1			36.8				333 (D)	39.6
11/7/2018	9/27/2018					29.4 (D)	777 (D)	58.5 (J)		
36/2019	11/6/2018			875			926		182	
3/24/2019	11/7/2018	45.6	0.41 (J)		35	734		41.3 (J)		35.8
3/25/2019	3/6/2019					1220 (J)				
10/15/2019	3/24/2019		1.5	1170		413	1070	131	413	
10/16/2019 31.9 28.5 122.5 (D) 312.5 (D) 24.4 10/17/2019	3/25/2019	43			40.1					34.2
10/17/2019	10/15/2019		0.54 (J)	<1						
111/12/2019 111/19/2019 111/19/2019 111/20/2019 111/20/2019 111/20/2019 111/20/2019 11/21/2019 11/21/2019 12/19/2019 12/19/2019 12/19/2019 12/19/2019 13/20/20/20 13/20/20/20 13/20/20/20 13/20/20/20 13/20/20/20 13/20/20/20 13/20/20/20 13/20/20/20/20 13/20/20/20/20 13/20/20/20/20/20/20/20/20/20/20/20/20/20/	10/16/2019	31.9			28.5			122.5 (D)	312.5 (D)	24.4
11/18/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2019 11/19/2020	10/17/2019					507	1230			
11/19/2019 11/20/2019 11/20/2019 11/21/2019 11/21/2019 12/4/2019 12/4/2019 12/17/2019 12/17/2019 12/17/2019 12/17/2019 12/17/2019 12/17/2019 12/17/2019 12/17/2019 12/17/2019 12/18/2020 13/2020 13/2020 24/2020 24/2020 24/2020 24/2020 37/2020 36.2 3/27/2020 36.2 3/27/2020 31.2 31.2 31.2 31.2 31.2 31.2 31.2 31.2	11/7/2019									
11/20/2019	11/18/2019									
11/21/2019 12/5/2019 12/5/2019 12/17/2019 12/17/2019 12/18/2019 18/2020 18/2020 18/2020 18/2020 24/2020 24/2020 24/2020 24/2020 24/2020 24/2020 24/2020 24/2020 24/2020 24/2020 24/2020 24/2020 24/2020 24/2020 36.2 3/26/2020 36.2 3/27/2020 36.2 3/27/2020 36.2 3/27/2020 36.2 3/27/2020 36.2 3/27/2020 36.2 3/27/2020 36.2 3/27/2020 36.2 3/27/2020 36.2 3/27/2020 36.2 3/27/2020 36.2 3/27/2020 37.2 3/27/2020 38.2 3/27/2020 38.3 38.2 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8	11/19/2019									
12/4/2019 12/17/2019 12/18/2019 12/18/2019 18/2020 1/9/2020 1/21/2020 2/4/2020 2/4/2020 2/13/2020 3/26/2020 3/26/2020 3/26/2020 3/26/2020 3/27/2020 <	11/20/2019						1550	132		
12/5/2019 12/17/2019 12/18/2019 18/2020 11/9/2020 11/9/2020 11/21/2020 21/3/2020 21/3/2020 3/26/2020 3/26/2020 3/27/2020 41 899 31.2 701 10/10/2020 41 10/13/2020 32.3 695 26.8 510 904	11/21/2019			1070					428	
12/17/2019 12/18/2019 1/8/2020 1/9/2020 1/9/2020 1/21/2020 2/4/2020 2/13/2020 3/26/2020 3/26/2020 3/27/2020 3/27/2020 3/28/202										
12/18/2019 1/8/2020 1/9/2020 1/21/2020 2/4/2020 2/4/2020 2/13/2020 3/26/2020 3/26/2020 3/27/2020 3/27/2020 3/27/2020 3/28/2020 3/28/2020 3/28/2020 3/28/2020 3/28/2020 3/28/2020 3/28/2020 3/28/2020 3/28/2020 5/1 3/28/2020 5/1 3/28/2020 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1	12/5/2019									
1/8/2020 1/9/2020 1/21/2020 2/4/2020 2/13/2020 3/26/2020 36.2 3/27/2020 <1	12/17/2019									
1/9/2020 1/21/2020 2/4/2020 2/13/2020 3/26/2020 3/26/2020 3/27/2020 3/27/2020 41 899 31.2 701 1090 63.8 10/12/2020 32.3 695 26.8 510 904	12/18/2019									
1/21/2020 2/4/2020 2/13/2020 3/26/2020 3/26/2020 3/27/2020 3/27/2020 <pre></pre>										
2/4/2020 2/13/2020 3/26/2020 36.2 3/27/2020 <1	1/9/2020									
2/13/2020 36.2 3/27/2020 <1	1/21/2020									
3/26/2020 36.2 3/27/2020 <1 899 31.2 504 28.6 3/28/2020 701 1090 63.8 10/12/2020 <1 10/13/2020 32.3 695 26.8 378 27.6 10/14/2020 510 904	2/4/2020									
3/27/2020 <1										
3/28/2020 701 1090 63.8 10/12/2020 <1 10/13/2020 32.3 695 26.8 378 27.6 10/14/2020 510 904	3/26/2020	36.2								
10/12/2020 <1	3/27/2020		<1	899	31.2				504	28.6
10/13/2020 32.3 695 26.8 378 27.6 10/14/2020 510 904						701	1090	63.8		
10/14/2020 510 904			<1							
		32.3		695	26.8				378	27.6
10/15/2020 147						510	904			
	10/15/2020							147		

	MCM-01 (bg)	MCM-12	MCM-14	MCM-16 (bg)	MCM-06	MCM-07	MCM-05	MCM-17	MCM-02 (bg)
1/4/2021							262		
3/2/2021		1.2	97.5						
3/3/2021	33.8			30.5				420	27.6
3/4/2021					596	982	82.2		
9/13/2021		<1	680						
9/14/2021	34.2			24.4	490	819	459	460	30.4

	MCM-11 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-18 (bg)	MCM-19 (bg)
8/30/2016						
8/31/2016						
10/25/2016						
11/30/2016						
2/15/2017						
2/16/2017						
5/31/2017	40					
6/1/2017		42				
6/2/2017			13			
8/2/2017	34	120	14			
8/15/2017	24					
8/16/2017	4-7					
8/17/2017		110	14			
	22.0					
4/4/2018	33.9	70.6	13.4			
4/5/2018	05 -		44.5			
5/8/2018	35.7	61.4	14.8			
5/9/2018						
6/19/2018	23.7		15.5			
6/20/2018		25.3				
6/21/2018						
9/25/2018	25.6					
9/26/2018			23			
9/27/2018		63.4				
11/6/2018	25.2	136				
11/7/2018			22.2			
3/6/2019						
3/24/2019						
3/25/2019	24.9	137	22.4			
10/15/2019		105	17.9			
10/16/2019	17.4					
10/17/2019						
11/7/2019				1010	379	832
11/18/2019					737	
11/19/2019				1140	-	795
11/20/2019						, 55
11/21/2019						
12/4/2019				1020		810
12/4/2019				1020	351	310
					551	E2E
12/17/2019				0.1		535
12/18/2019				8.1		000
1/8/2020				747		603
1/9/2020					254	
1/21/2020				798	254	611
2/4/2020				1120	432	599
2/13/2020				833	300	761
3/26/2020						
3/27/2020	23.4		14.6	700	219	836
3/28/2020		86.6				
10/12/2020	19.3				191	
		00.0	7.0	000		609
10/13/2020		92.3	7.6	638		009
10/13/2020 10/14/2020		92.3	7.6	638		009

		MCM-11 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-18 (bg)	MCM-19 (bg)
1/4/20)21						
3/2/20)21			8			
3/3/20)21	19.9			743	171	<1
3/4/20)21		99.1				
9/13/2	2021						
9/14/2	2021	33.1	96.2 (M1)	16.7	659	134	995

	MCM-01 (bg)	MCM-12	MCM-14	MCM-16 (bg)	MCM-06	MCM-07	MCM-05	MCM-17	MCM-11 (bg)
8/30/2016	86	1910	1310	99					
8/31/2016					4160	5100	3620		
10/25/2016								2900	
11/30/2016	131	1910	1050	111	3950	4680	4030	3970	
2/15/2017	212	1870	1440	170				3820	
2/16/2017					4600	5080	4080		
5/31/2017		1920	1740					5050	257
6/1/2017	103			98					
6/2/2017					4470	8000	5560		
8/2/2017									183
8/15/2017		1840						4820	90
8/16/2017	65		3010						
8/17/2017				84	5450	8320	4620		
4/4/2018									197
4/5/2018									
5/8/2018									225
5/9/2018									
6/19/2018	142	1820	8630					5640	112
6/20/2018				123	4940		3370		
6/21/2018		.===				7500			
9/25/2018		1760	10700						137
9/26/2018	133			117				6920	
9/27/2018					4480	10200	2360		
11/6/2018			11100			11000		4160	89
11/7/2018	121	1800		120	15100		2230		
3/6/2019					19000				
3/24/2019		1770	14200		13700	13700	1450	6840	
3/25/2019	116			101					74
10/15/2019		1730	15400						••
10/16/2019	104			95	10100	12200	2860	7740	82
10/17/2019					16100	13200			
11/7/2019									
11/18/2019									
11/19/2019 11/20/2019						16700	2640		
11/21/2019			15800			10700	2040	7720	
12/4/2019			13800					7720	
12/5/2019 12/17/2019									
12/17/2019									
1/8/2020									
1/9/2020									
1/21/2020									
2/4/2020									
2/13/2020									
3/26/2020	114								
3/27/2020	. 1 -	1970	16400	110				10200	87
3/28/2020		.570	.0-100	. 10	18800	18300	1470	.3200	··
10/12/2020		1560			13000	13300	1470		94
10/12/2020	113	.500	15600	115				8750	•.
10/14/2020			.5000		15200	18400		5.00	
10/15/2020					.5200	.5400	5100		
. 5. 15. 2520									

Prediction Limit

Constituent: Total Dissolved Solids (mg/L) Analysis Run 11/1/2021 11:29 AM View: Appendix III
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-01 (bg)	MCM-12	MCM-14	MCM-16 (bg)	MCM-06	MCM-07	MCM-05	MCM-17	MCM-11 (bg)
1/4/2021							7750		
3/2/2021		1430	12000						
3/3/2021	99			122				8830	66
3/4/2021					14200	17100	1700		
9/13/2021		1450	11400						
9/14/2021	66			<25	11800	13400	8020	8820	191

Prediction Limit

Constituent: Total Dissolved Solids (mg/L) Analysis Run 11/1/2021 11:29 AM View: Appendix III
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-02 (bg)	MCM-04	MCM-15 (bg)	MCM-20 (bg)	MCM-19 (bg)	MCM-18 (bg)
8/30/2016	(0,		(0/	(0,	(0,	. 3,
8/31/2016						
10/25/2016						
11/30/2016						
2/15/2017						
2/16/2017						
5/31/2017	123					
6/1/2017	.20	97				
6/2/2017		07	69			
8/2/2017	136	538	35			
8/15/2017	100	000	00			
8/16/2017	124					
8/17/2017	124	445	51			
4/4/2018		365	90			
4/5/2018	128	303	90			
	120	204	90			
5/8/2018	127	304	89			
5/9/2018 6/19/2018	127		110			
	143	114	110			
6/20/2018		114				
6/21/2018						
9/25/2018	100		404			
9/26/2018	132		124			
9/27/2018		255				
11/6/2018		388				
11/7/2018	134		125			
3/6/2019						
3/24/2019						
3/25/2019	111	327	98			
10/15/2019		237	107			
10/16/2019	96					
10/17/2019						
11/7/2019				13500	10900	4140
11/18/2019						4030
11/19/2019				13300	10000	
11/20/2019						
11/21/2019						
12/4/2019				13200	11000	
12/5/2019						3840
12/17/2019					9860	
12/18/2019				12500		3880
1/8/2020				12300	9760	
1/9/2020						3520
1/21/2020				12000	10100	3280
2/4/2020				12300	10600	3220
2/13/2020				12400	10900	3580
3/26/2020						
3/27/2020	119		110	14600	14300	3090
3/28/2020		284				
10/12/2020						2920
10/13/2020	118	<25	63	13900	6600	
10/14/2020						

Prediction Limit

Constituent: Total Dissolved Solids (mg/L) Analysis Run 11/1/2021 11:29 AM View: Appendix III
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-02 (bg	g) MCM-04	MCM-15 (bg	g) MCM-20 (bg)	MCM-19 (bg)	MCM-18 (bg)
1/4/2021						
3/2/2021			40			
3/3/2021	84			11400	11000	2620
3/4/2021		285				
9/13/2021						
9/14/2021	76	193	96	10300	14600	2190

FIGURE E.

Appendix III Trend Tests - Significant Results

	Plant McManus	Client: Southern Company	Data: McManus Ash Pond Data		Printed 11/30/2021, 10:06 AM							
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MCM-07		0.1515	64	53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-07		35.39	70	53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-18 (bg	g)	-19.45	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-20 (bg	g)	-47.21	-46	-38	Yes	12	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-05		-0.06323	-73	-63	Yes	17	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-06		-0.07919	-57	-53	Yes	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-07		-0.07594	-64	-58	Yes	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-12		-0.05115	-56	-53	Yes	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-14		-0.1384	-101	-58	Yes	16	0	n/a	n/a	0.01	NP

Appendix III Trend Tests - All Results

	Plant McManus	Client: Southern Company	Data: McManu	ıs Ash Por	nd Data F	Printed	11/30/2	021, 10	:06 AM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MCM-01 (bg	a)	0.005268	29	48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-02 (bg	a)	-0.01422	-18	-48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-07		0.1515	64	53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-11 (bg	g)	0.004391	25	48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-12		0.0235	20	48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-15 (bo	a)	0.007968	39	48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-16 (bo	a)	-0.005194	-22	-48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-17		-0.04304	-18	-53	No	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-18 (bo	a)	-0.02454	-24	-38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-19 (bo	a)	0.1284	14	38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	MCM-20 (bo	3)	0	-1	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-01 (bg	g)	0.2793	5	53	No	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-02 (bg	3)	-0.2586	-42	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-06		44.92	51	53	No	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-07		35.39	70	53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-11 (bo	3)	-1.659	-41	-48	No	14	7.143	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-15 (bo	3)	0.1417	10	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-16 (bg	3)	0.2144	23	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-17		16.77	53	58	No	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-18 (b	g)	-19.45	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-19 (bg	3)	-30.87	-37	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MCM-20 (b	g)	-47.21	-46	-38	Yes	12	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-01 (bg	3)	0.03493	24	58	No	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-02 (bg	3)	0.01474	34	58	No	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-05		-0.06323	-73	-63	Yes	17	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-06		-0.07919	-57	-53	Yes	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-07		-0.07594	-64	-58	Yes	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-11 (bo	g)	-0.05853	-45	-53	No	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-12		-0.05115	-56	-53	Yes	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-14		-0.1384	-101	-58	Yes	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-15 (bg	g)	-0.07157	-27	-53	No	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-16 (bg	g)	0.01093	5	53	No	15	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-17		-0.09795	-47	-58	No	16	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-18 (bg	g)	0.1318	32	34	No	11	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-19 (bg	a)	-0.04282	-8	-34	No	11	0	n/a	n/a	0.01	NP
pH, field (Std. Units)	MCM-20 (bg	3)	-0.1177	-30	-34	No	11	0	n/a	n/a	0.01	NP

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

12/27/19

11/4/20

2/16/19

9/14/21

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

5/31/17

4/9/18

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Boron Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Calcium Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sen's Slope Estimator

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests Plant McManus Client: Southern Company Data: McManus Ash Pond Data

9/8/19

9/5/18

9/10/20

9/13/21

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

1.6

8/30/16

9/2/17

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: pH, field Analysis Run 11/30/2021 10:04 AM View: Appendix III - Trend Tests

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

FIGURE F.

Upper Tolerance Limits Summary Table

		Plant McMar	nus Client:	Southern	Company	Data: McMan	us Ash Pond Dat	a Pri	nted 12/2/2021, 2	2:15 PM		
Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.003	n/a	n/a	n/a 91	n/a	n/a	94.51	n/a	n/a	0.009394	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.031	n/a	n/a	n/a 110	n/a	n/a	14.55	n/a	n/a	0.003545	NP Inter(normality)
Barium (mg/L)	n/a	0.22	n/a	n/a	n/a 107	n/a	n/a	0	n/a	n/a	0.004135	NP Inter(normality)
Beryllium (mg/L)	n/a	0.021	n/a	n/a	n/a 106	n/a	n/a	26.42	n/a	n/a	0.004352	NP Inter(normality)
Cadmium (mg/L)	n/a	0.0025	n/a	n/a	n/a 85	n/a	n/a	92.94	n/a	n/a	0.01278	NP Inter(NDs)
Chromium (mg/L)	n/a	0.011	n/a	n/a	n/a 91	n/a	n/a	49.45	n/a	n/a	0.009394	NP Inter(normality)
Cobalt (mg/L)	n/a	0.036	n/a	n/a	n/a 106	n/a	n/a	76.42	n/a	n/a	0.004352	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	n/a	55.8	n/a	n/a	n/a 105	n/a	n/a	0	n/a	n/a	0.004581	NP Inter(normality)
Fluoride (mg/L)	n/a	1.5	n/a	n/a	n/a 111	n/a	n/a	45.95	n/a	n/a	0.003368	NP Inter(normality)
Lead (mg/L)	n/a	0.005	n/a	n/a	n/a 106	n/a	n/a	82.08	n/a	n/a	0.004352	NP Inter(NDs)
Lithium (mg/L)	n/a	0.026	n/a	n/a	n/a 103	n/a	n/a	55.34	n/a	n/a	0.005076	NP Inter(NDs)
Mercury (mg/L)	n/a	0.0007	n/a	n/a	n/a 85	n/a	n/a	94.12	n/a	n/a	0.01278	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.01	n/a	n/a	n/a 90	n/a	n/a	92.22	n/a	n/a	0.009888	NP Inter(NDs)
Selenium (mg/L)	n/a	0.15	n/a	n/a	n/a 107	n/a	n/a	60.75	n/a	n/a	0.004135	NP Inter(NDs)
Thallium (mg/L)	n/a	0.002	n/a	n/a	n/a 90	n/a	n/a	92.22	n/a	n/a	0.009888	NP Inter(NDs)

FIGURE G.

MCMANUS ASH POND GWPS											
		CCR-Rule	Background	Federal	State						
Constituent Name	MCL	Specified	Limit	GWPS	GWPS						
Antimony, Total (mg/L)	0.006		0.003	0.006	0.006						
Arsenic, Total (mg/L)	0.01		0.031	0.031	0.031						
Barium, Total (mg/L)	2		0.22	2	2						
Beryllium, Total (mg/L)	0.004		0.021	0.021	0.021						
Cadmium, Total (mg/L)	0.005		0.0025	0.005	0.005						
Chromium, Total (mg/L)	0.1		0.011	0.1	0.1						
Cobalt, Total (mg/L)		0.006	0.036	0.036	0.036						
Combined Radium, Total (pCi/L)	5		55.8	55.8	55.8						
Fluoride, Total (mg/L)	4		1.5	4	4						
Lead, Total (mg/L)		0.015	0.005	0.015	0.005						
Lithium, Total (mg/L)		0.04	0.026	0.04	0.026						
Mercury, Total (mg/L)	0.002		0.0007	0.002	0.002						
Molybdenum, Total (mg/L)		0.1	0.01	0.1	0.01						
Selenium, Total (mg/L)	0.05		0.15	0.15	0.15						
Thallium, Total (mg/L)	0.002		0.001	0.002	0.002						

^{*}Grey cell indicates Background Limit is higher than MCL or CCR-Rule Specified Level

^{*}MCL = Maximum Contaminant Level

^{*}CCR = Coal Combustion Residual

^{*}GWPS = Groundwater Protection Standard

FIGURE H.

Federal Confidence Intervals - Significant Results

Plant McManus Client: Southern Company Data: McManus Ash Pond Data Printed 12/29/2021, 3:26 PM Constituent <u>Well</u> $\underline{\text{Upper Lim.}} \quad \underline{\text{Lower Lim.}} \quad \underline{\text{Compliance Sig. N}} \quad \underline{\text{Mean}}$ Std. Dev. %NDs ND Adj. <u>Transform</u> <u>Alpha</u> <u>Method</u> MCM-06 0.4383 0.2741 0.031 0 Arsenic (mg/L) Yes 18 0.3562 0.1357 None No 0.01 Param. 0.01 Param. Lithium (mg/L) DPZ-2 0.0996 0.07843 0.04 Yes 5 0.0906 0.007197 None x^5 0.04 Yes 15 0.07843 Lithium (mg/L) MCM-06 0.1012 0.05569 0.03355 None No 0.01 Param.

Federal Confidence Intervals - All Results

Data: McManus Ash Pond Data Client: Southern Company Constituent <u>Well</u> Std. Dev. %NDs ND Adj. Transform <u>Alpha</u> Method Upper Lim. Lower Lim. N Mean MCM-06 0.003 0.00098 0.006 0.0007709 No 0.01 NP (NDs) Antimony (mg/L) No 13 0.002675 76.92 None Antimony (mg/L) MCM-14 0.003 0.0004 0.006 12 0.002783 0.0007506 91.67 None No 0.01 NP (NDs) Antimony (mg/L) MCM-17 0.003 0.00078 0.006 No 12 0.002815 0.0006409 91.67 None No 0.01 NP (NDs) 0.0249 0.0151 0.031 0.0225 0.005447 Arsenic (ma/L) DPZ-2 4 25 0.01 Param. No Kaplan-Meier No Arsenic (mg/L) MCM-04 0.008019 0.002934 0.031 No 15 0.0058 0.004243 0 None sqrt(x) 0.01 Param. Arsenic (mg/L) MCM-05 0.0335 0.002 0.031 No 17 0.01725 0.01344 17.65 None No 0.01 NP (normality) Arsenic (mg/L) MCM-06 0.4383 0.2741 0.031 Yes 18 0.3562 0.1357 0 None No 0.01 Param. MCM-07 0.0214 0.01122 0.031 No 17 0.01631 0.008125 0 None 0.01 Param. Arsenic (mg/L) No Arsenic (ma/L) MCM-12 0.03 0.001 0.031 14 0.0159 0.01468 50 0.01 NP (normality) Arsenic (mg/L) MCM-14 0.03 0.0014 0.031 Nο 14 0.01651 0.0141 50 None Nο 0.01 NP (normality) 0.031 MCM-17 0.03 0.0017 15 0.01376 0.0138 40 0.01 NP (normality) Arsenic (ma/L) No No None Barium (mg/L) MCM-04 0.09086 0.03286 2 No 0.0749 0 None In(x) 0.01 Param. Barium (mg/L) MCM-05 0.04502 0.009496 2 No 15 0.05122 0.1122 0 None In(x) 0.01 Param 0.16 0.0528 2 15 0.1079 0.01 NP (normality) Barium (mg/L) MCM-06 Nο 0.05641 0 None Nο Barium (mg/L) MCM-07 0.2056 0.1016 2 No 14 0.09816 0 0.01 Param. None In(x) Barium (mg/L) MCM-12 0.1285 0.1062 2 No 14 0.1174 0.01579 0 None No 0.01 Param. Barium (mg/L) 2 MCM-14 0.1285 0.05361 No 14 0.09108 0.0529 0 None No 0.01 Param. Barium (mg/L) MCM-17 0.1388 0.06144 2 No 14 0.1001 0.05463 0 0.01 Param. None No Beryllium (mg/L) MCM-04 0.003 0.00021 0.021 No 14 0.001272 0.001345 35.71 None No 0.01 NP (normality) 0.003 0.000054 15 0.002804 0.0007607 NP (NDs) Beryllium (mg/L) MCM-05 0.021 Nο 93.33 None No 0.01 MCM-07 0.003 0.00012 0.021 14 0.002377 0.001239 0.01 NP (NDs) Bervllium (ma/L) No 78.57 None No MCM-12 0.001236 0.0004659 0.021 14 0.0009843 0.0008851 0.01 Beryllium (mg/L) No 14.29 None ln(x) 0.003 0.000097 14 0.001968 Beryllium (mg/L) MCM-14 0.021 No 0.001438 64 29 None No 0.01 NP (NDs) Beryllium (mg/L) MCM-17 0.003 0.00018 0.021 No 0.001231 0.001369 0.01 NP (normality) 14 35.71 None No 0.0025 0.0025 0.005 0.002281 0.0007257 Cadmium (mg/L) MCM-17 No 90.91 None No 0.006 NP (NDs) Chromium (mg/L) MCM-04 0.01 0.0012 0.1 No 12 0.005667 0.004533 50 None Nο 0.01 NP (normality) MCM-05 0.00057 0.005453 0.004755 0.01 Chromium (ma/L) 0.01 0.1 No 12 50 NP (normality) None No Chromium (mg/L) MCM-06 0.01 0.00085 0.1 No 13 0.00655 0.004546 61.54 None No 0.01 NP (NDs) Chromium (mg/L) MCM-07 0.01 0.002 0.1 No 12 0.00485 0.00381 33.33 None No 0.01 NP (normality) NP (normality) Chromium (mg/L) MCM-12 0.01 0.0047 0.1 Nο 12 0.00695 0.002356 0.01 33.33 None No Chromium (mg/L) MCM-14 0.01 0.00076 0.1 No 12 0.005106 0.004349 41.67 None 0.01 NP (normality) No Chromium (mg/L) MCM-17 0.01305 0.007718 0.1 No 12 0.01104 0.003034 25 Kaplan-Meier 0.01 Param. 0.0054 0.01746 NP (normality) Cobalt (mg/L) MCM-04 0.03 0.036 No 15 0.01221 46.67 None No 0.01 0.03 0.0019 15 0.02813 0.007255 NP (NDs) Cobalt (mg/L) MCM-05 0.036 No 93.33 0.01 None No Cobalt (mg/L) MCM-06 0.0009 0.036 No 15 0.02608 0.01035 86.67 None No 0.01 NP (NDs) Cobalt (mg/L) MCM-07 0.03 0.0011 0.036 Nο 14 0.02794 0.007724 92.86 None No 0.01 NP (NDs) Cobalt (mg/L) MCM-12 0.03 0.00053 0.036 14 0.01948 0.01464 64.29 0.01 NP (NDs) No None No 0.007857 Cobalt (mg/L) MCM-14 0.0006 0.036 14 0.0279 92.86 None 0.01 NP (NDs) No Cobalt (mg/L) MCM-17 0.03 0.0007 0.036 No 14 0.02369 0.01254 78.57 None No 0.01 NP (NDs) 5.96 14 Combined Radium 226 + 228 (pCi/L) MCM-04 3.112 55.8 No 4.634 2.256 0 0.01 Param. None sart(x) Combined Radium 226 + 228 (pCi/L) MCM-05 3.042 1.387 55.8 No 15 2.441 1.741 0 None ln(x) 0.01 Param. Combined Radium 226 + 228 (pCi/L) MCM-06 8.58 1.94 55.8 No 14 5.409 3.319 0 None No 0.01 NP (normality) Combined Radium 226 + 228 (pCi/L) 9.615 15 7.618 2.946 0 0.01 Param. MCM-07 5.621 55.8 Nο None No Combined Radium 226 + 228 (pCi/L) MCM-12 3.092 2.128 55.8 14 2.61 0.6799 0 0.01 No None Param. No 5.283 Combined Radium 226 + 228 (pCi/L) MCM-14 7.458 3.108 55.8 No 15 3.21 0 None No 0.01 Param Combined Radium 226 + 228 (pCi/L) 8 82 55.8 15 5 015 n MCM-17 2 01 Nο 3 04 None Nο 0.01 NP (normality) Fluoride (mg/L) MCM-04 0.18 0.055 4 No 15 0.1375 46.67 0.01 NP (normality) 0.1296 None No MCM-05 0.5406 0.4194 0.2322 Fluoride (mg/L) 0.2639 4 17 11.76 None sqrt(x) 0.01 Fluoride (mg/L) MCM-06 0.3 0.068 4 Nο 15 0.1965 0.1497 46.67 None Nο 0.01 NP (normality) MCM-07 4 16 0.2916 0.2926 0.01 NP (normality) Fluoride (ma/L) 0.54 0.1 No 43.75 None No Fluoride (mg/L) MCM-12 1.296 0.9687 4 No 15 0.3249 6.667 None x^2 0.01 Param. Fluoride (mg/L) MCM-14 0.5 0.084 4 No 16 0.2315 0.2003 56.25 None No 0.01 NP (NDs) Fluoride (ma/L) MCM-17 1.2 0.1 4 Nο 16 0.5396 0.5124 37.5 None Nο 0.01 NP (normality)

Federal Confidence Intervals - All Results

	PI	lant McManus C	lient: Southern	Company	Data: Mc	Manus Ash Pon	d Data Printed	12/29/202	21, 3:26 PM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliand	ce Sig. N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Lead (mg/L)	MCM-05	0.005	0.0002	0.015	No 15	0.00468	0.001239	93.33	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-06	0.005	0.00012	0.015	No 15	0.004675	0.00126	93.33	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-07	0.005	0.0002	0.015	No 14	0.003956	0.002075	78.57	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-12	0.005	0.0001	0.015	No 14	0.003605	0.00229	71.43	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-14	0.005	0.00008	0.015	No 14	0.004649	0.001315	92.86	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-17	0.005	0.00027	0.015	No 14	0.003639	0.002233	71.43	None	No	0.01	NP (NDs)
Lithium (mg/L)	DPZ-2	0.0996	0.07843	0.04	Yes 5	0.0906	0.007197	0	None	x^5	0.01	Param.
Lithium (mg/L)	MCM-04	0.006	0.0015	0.04	No 14	0.003986	0.002174	50	None	No	0.01	NP (normality)
Lithium (mg/L)	MCM-05	0.042	0.021	0.04	No 15	0.06487	0.14	0	None	No	0.01	NP (normality)
Lithium (mg/L)	MCM-06	0.1012	0.05569	0.04	Yes 15	0.07843	0.03355	0	None	No	0.01	Param.
Lithium (mg/L)	MCM-07	0.05517	0.02018	0.04	No 15	0.04383	0.03675	0	None	ln(x)	0.01	Param.
Lithium (mg/L)	MCM-12	0.01198	0.009702	0.04	No 14	0.01061	0.002124	14.29	None	x^3	0.01	Param.
Lithium (mg/L)	MCM-14	0.05038	0.03288	0.04	No 15	0.03619	0.01935	6.667	None	x^3	0.01	Param.
Lithium (mg/L)	MCM-17	0.02576	0.01317	0.04	No 14	0.01946	0.008888	7.143	None	No	0.01	Param.
Mercury (mg/L)	MCM-04	0.0002	0.0002	0.002	No 11	0.0002464	0.0001538	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-05	0.0002	0.0002	0.002	No 11	0.0001856	0.00004764	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-06	0.0002	0.00016	0.002	No 12	0.0001967	0.00001155	91.67	None	No	0.01	NP (NDs)
Mercury (mg/L)	MCM-07	0.0002	0.0002	0.002	No 11	0.0002427	0.0001417	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-14	0.0002	0.0002	0.002	No 11	0.0002418	0.0001387	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-17	0.0002	0.0002	0.002	No 11	0.0002251	0.0001461	81.82	None	No	0.006	NP (NDs)
Molybdenum (mg/L)	MCM-05	0.01	0.0099	0.1	No 12	0.009258	0.002538	83.33	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	MCM-06	0.01	0.0024	0.1	No 13	0.007562	0.003813	69.23	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	MCM-17	0.01	0.0019	0.1	No 12	0.009325	0.002338	91.67	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-04	0.01	0.0025	0.15	No 14	0.008777	0.003136	85.71	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-05	0.01	0.0023	0.15	No 15	0.00794	0.00354	73.33	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-06	0.01	0.002	0.15	No 15	0.0066	0.003726	46.67	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-07	0.01	0.0023	0.15	No 14	0.006557	0.003675	50	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-12	0.01	0.0019	0.15	No 14	0.005943	0.004219	50	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-14	0.01	0.0019	0.15	No 14	0.006879	0.003864	57.14	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-17	0.01	0.0018	0.15	No 14	0.0063	0.003859	42.86	None	No	0.01	NP (normality)
Thallium (mg/L)	MCM-06	0.002	0.000076	0.002	No 13	0.001852	0.0005336	92.31	None	No	0.01	NP (NDs)
Thallium (mg/L)	MCM-17	0.002	0.00014	0.002	No 12	0.001845	0.0005369	91.67	None	No	0.01	NP (NDs)

Non-Parametric Confidence Interval

Constituent: Antimony Analysis Run 12/29/2021 3:23 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 12/29/2021 3:23 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval

Constituent: Cadmium Analysis Run 12/29/2021 3:23 PM View: Appendix IV - Confidence Intervals Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Constituent: Chromium Analysis Run 12/29/2021 3:23 PM View: Appendix IV - Confidence Intervals Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride Analysis Run 12/29/2021 3:23 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Lead Analysis Run 12/29/2021 3:23 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Non-Parametric Confidence Interval

Constituent: Molybdenum Analysis Run 12/29/2021 3:23 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Constituent: Thallium Analysis Run 12/29/2021 3:23 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Selenium Analysis Run 12/29/2021 3:23 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

 $Constituent: Antimony (mg/L) \quad Analysis \ Run \ 12/29/2021 \ 3:26 \ PM \quad View: Appendix \ IV - Confidence \ Intervals$

·	MCM-06	MCM-14	MCM-17
8/30/2016		<0.003	
8/31/2016	<0.003		
10/25/2016			<0.003
11/30/2016	<0.003	<0.003	<0.003
2/15/2017		<0.003	<0.003
2/16/2017	<0.003		
5/31/2017		<0.003	<0.003
6/2/2017	<0.003		
8/15/2017			<0.003
8/16/2017		<0.003	
8/17/2017	<0.003		
6/19/2018		<0.003	<0.003
6/20/2018	<0.003		
9/25/2018		<0.003	
9/26/2018			0.00078
9/27/2018	<0.003		
11/6/2018		<0.003	<0.003
11/7/2018	<0.003		
3/6/2019	<0.003		
8/26/2019		0.0004 (J)	
8/27/2019			<0.003
8/28/2019	0.00098 (J)		
10/15/2019		<0.003	
10/16/2019			<0.003
10/17/2019	0.0009 (J)		
3/27/2020		<0.003	<0.003
3/28/2020	0.0029 (J)		
9/13/2021		<0.003	
9/14/2021	<0.003		<0.003
Mean	0.002675	0.002783	0.002815
Std. Dev.	0.0007709	0.0007506	0.0006409
Upper Lim.	0.003	0.003	0.003
Lower Lim.	0.00098	0.0004	0.00078

Constituent: Arsenic (mg/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals

	DPZ-2	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016	DFZ-Z	WCW-04	WCW-03	WCW-00	WCW-07	<0.03	<0.03	IVICIVI-17
8/31/2016			<0.03	0.212	0.0066	<0.03	<0.03	
			<0.03	0.212	0.0000			<0.03
10/25/2016			0.0100	0.100	0.0001	-0.00	10.00	
11/30/2016			0.0132	0.129	0.0281	<0.03	<0.03	0.0072
2/15/2017			0.0070	0.057	0.0005	<0.03	<0.03	0.0017 (J)
2/16/2017			0.0372	0.257	0.0295			
5/31/2017						0.0007 (J)	0.0008 (J)	0.0018 (J)
6/1/2017		0.004 (J)						
6/2/2017			0.0335	0.0559	0.0286			
8/2/2017		0.0028 (J)						
8/15/2017						0.0006 (J)		0.0015 (J)
8/16/2017							0.0007 (J)	
8/17/2017		0.0021 (J)	0.0336	0.458	0.0211			
4/4/2018		0.0023 (J)						
5/8/2018		0.0048 (J)						
6/19/2018						0.001 (J)	0.0062 (J)	0.0029 (J)
6/20/2018		0.0099	0.019	0.44				
6/21/2018					0.022 (J)			
9/25/2018						0.0011 (J)	0.0031 (J)	
9/26/2018								0.0015 (J)
9/27/2018		0.01	0.0035 (J)	0.27	0.015			
11/6/2018		0.013			0.012		0.0014 (J)	<0.03
11/7/2018			0.002 (J)	0.5		0.0057		
11/27/2018			0.0016 (J)	0.5	0.011			
3/6/2019				0.49				
3/26/2019			0.0018 (J)	0.3	0.0078			
7/2/2019		0.015 (J)		0.37	0.027			
8/26/2019							0.0022 (J)	
8/27/2019		0.0072				0.0011 (J)		0.0024 (J)
8/28/2019			0.0019 (J)	0.5	0.011			
10/15/2019		0.0038 (J)	. ,			0.0024 (J)	0.0067	
10/16/2019		. ,	0.0047 (J)			. ,		0.0043 (J)
10/17/2019			.,	0.34	0.0046 (J)			,
11/21/2019					. ,			0.0031 (J)
3/27/2020						<0.03	<0.03	<0.03
3/28/2020	<0.03	0.0034 (J)	<0.03	0.3	0.012			
10/12/2020						<0.03		
10/13/2020		0.0022 (J)				0.00	<0.03	<0.03
10/14/2020		0.0022 (0)		0.43	0.013		0.00	0.00
10/15/2020	0.021		0.024	0.40	0.010			
1/4/2021	0.021		0.0072					
3/2/2021			0.0072			<0.03	<0.03	
						~0.03	~0.03	<0.03
3/3/2021	0.017 (1)	0.0018 / 1	<0.03	0.35	0.015 (1)			~0.03
3/4/2021	0.017 (J)	0.0018 (J)	<0.03	0.35	0.015 (J)	<0.03	<0.03	
9/13/2021	0.022	0.0047 / 13	0.02 (1)	0.51	0.012 (1)	<0.03	<0.03	-0.02
9/14/2021	0.022	0.0047 (J)	0.02 (J)	0.51	0.013 (J)	0.0150	0.01051	<0.03
Mean	0.0225	0.0058	0.01725	0.3562	0.01631	0.0159	0.01651	0.01376
Std. Dev.	0.005447	0.004243	0.01344	0.1357	0.008125	0.01468	0.0141	0.0138
Upper Lim.	0.0249	0.008019	0.0335	0.4383	0.0214	0.03	0.03	0.03
Lower Lim.	0.0151	0.002934	0.002	0.2741	0.01122	0.001	0.0014	0.0017

Constituent: Barium (mg/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals

	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016					0.108	0.0131	
8/31/2016		0.0289	0.0498	0.0771			
10/25/2016							0.063
11/30/2016		0.0168	0.0528	0.101	0.121	0.0105	0.0628
2/15/2017					0.111	0.0786	0.0102
2/16/2017		0.016	0.0555	0.0865			
5/31/2017					0.131	0.0199	0.061
6/1/2017	0.0195						
6/2/2017		0.0393 (J)	0.0508	0.123			
8/2/2017	0.053						
8/15/2017					0.126		0.0579
8/16/2017						0.033	
8/17/2017	0.0475	0.0188	0.0596	0.124			
4/4/2018	0.035						
5/8/2018	0.027						
6/19/2018					0.13	0.092	0.076
6/20/2018	0.027	0.014	0.06				
6/21/2018				0.1			
9/25/2018					0.12	0.098	
9/26/2018							0.099
9/27/2018	0.14	0.0097 (J)	0.06	0.12			
11/6/2018	0.31	(-,		0.12		0.1	0.052
11/7/2018		0.0085 (J)	0.19		0.11		
3/6/2019			0.16		2		
8/26/2019						0.12	
8/27/2019	0.083				0.14		0.11
8/28/2019	0.000	0.011	0.13	0.4	0		
10/15/2019	0.082				0.14	0.12	
10/16/2019		0.012			2		0.14
10/17/2019		0.012	0.13	0.35			
3/27/2020			0.10	0.00	0.12	0.13	0.16
3/28/2020	0.039	0.0041 (J)	0.12	0.11	0.12	0.10	0.10
10/12/2020	0.000	0.0041 (0)	0.12	0.11	0.1		
10/13/2020	0.055				0.1	0.14	0.14
10/13/2020	0.033		0.14	0.19		0.14	0.14
10/15/2020		0.45	0.14	0.13			
1/4/2021		0.051					
3/2/2021		0.031			0.1	0.16	
3/3/2021					0.1	0.10	0.17
3/4/2021	0.062	0.0082 (J)	0.14	0.2			0.17
9/13/2021	0.002	0.0002 (3)	0.14	0.2	0.086	0.16	
9/14/2021	0.043	0.08	0.22	0.2	0.080	0.16	0.2 (M1)
	0.043		0.22 0.1079	0.2	0.1174	0.09108	0.2 (M1) 0.1001
Mean Std. Dov		0.05122					
Std. Dev.	0.0749	0.1122	0.05641	0.09816	0.01579	0.0529	0.05463
Upper Lim.	0.09086	0.04502	0.16	0.2056	0.1285	0.1285	0.1388
Lower Lim.	0.03286	0.009496	0.0528	0.1016	0.1062	0.05361	0.06144

 $Constituent: Beryllium \, (mg/L) \quad Analysis \, Run \, 12/29/2021 \, 3:26 \, PM \quad View: \, Appendix \, IV - Confidence \, Intervals \, IV - Confidence \, Intervals \, IV - Confidence \, INTERVAL \, IV - Confidence \, IV - Confid$

	MCM-04	MCM-05	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016				0.0003 (J)	<0.003	
8/31/2016		<0.003	<0.003			
10/25/2016						0.0004 (J)
11/30/2016		<0.003	<0.003	0.0004 (J)	<0.003	0.0003 (J)
2/15/2017				0.0004 (J)	<0.003	<0.003
2/16/2017		<0.003	<0.003			
5/31/2017				0.0005 (J)	0.0001 (J)	0.0002 (J)
6/1/2017	0.0001 (J)					
6/2/2017		<0.003	<0.003			
8/2/2017	0.0003 (J)					
8/15/2017				0.0005 (J)		0.0002 (J)
8/16/2017					0.0002 (J)	
8/17/2017	0.0002 (J)	<0.003	<0.003			
4/4/2018	<0.003					
5/8/2018	0.00025 (J)					
6/19/2018				0.00065 (J)	<0.003	0.00032 (J)
6/20/2018	0.00021 (J)	<0.003				
6/21/2018			<0.003			
9/25/2018				0.00066 (J)	5E-05 (J)	
9/26/2018						0.00024 (J)
9/27/2018	0.00031 (J)	<0.003	7.4E-05 (J)			
11/6/2018	0.00077 (J)		0.00012 (J)		9.7E-05 (J)	0.00026 (J)
11/7/2018		5.4E-05 (J)		0.00058 (J)		
8/26/2019					0.0001 (J)	
8/27/2019	0.00032 (J)			0.0009 (J)		0.00018 (J)
8/28/2019		<0.003	<0.003			
10/15/2019	0.00035 (J)			0.00079 (J)	<0.003	
10/16/2019		<0.003				0.00014 (J)
10/17/2019			7.8E-05 (J)			
3/27/2020				<0.003	<0.003	<0.003
3/28/2020	<0.003	<0.003	<0.003			
10/12/2020				0.001 (J)		
10/13/2020	<0.003				<0.003	<0.003
10/14/2020			<0.003			
10/15/2020		<0.003				
1/4/2021		<0.003				
3/2/2021				<0.003	<0.003	10.000
3/3/2021 3/4/2021	-0.000	-0.000	-0.000			<0.003
9/13/2021	<0.003	<0.003	<0.003	0.0011	<0.003	
9/13/2021	<0.003	<0.003	<0.003	0.0011	-0.003	<0.003
9/14/2021 Mean	0.001272	0.002804	0.002377	0.0009843	0.001968	0.001231
Std. Dev.	0.001272	0.002804	0.002377	0.0003843	0.001908	0.001369
Upper Lim.	0.003	0.003	0.003	0.001236	0.003	0.003
Lower Lim.	0.00021	5.4E-05	0.00012	0.0004659	9.7E-05	0.00018

 $Constituent: Cadmium \ (mg/L) \quad Analysis \ Run \ 12/29/2021 \ 3:26 \ PM \quad View: Appendix \ IV - Confidence \ Intervals \ Analysis \ Run \ 12/29/2021 \ 3:26 \ PM \ View: Appendix \ IV - Confidence \ Intervals \ Analysis \ Run \ Run \ Analysis \ Run$

	MCM-17
10/25/2016	<0.0025
11/30/2016	<0.0025
2/15/2017	<0.0025
5/31/2017	<0.0025
8/15/2017	<0.0025
6/19/2018	<0.0025
9/26/2018	9.3E-05
11/6/2018	<0.0025
8/27/2019	<0.0025
3/27/2020	<0.0025
9/14/2021	<0.0025
Mean	0.002281
Std. Dev.	0.0007257
Upper Lim.	0.0025
Lower Lim.	0.0025

 $Constituent: Chromium \, (mg/L) \quad Analysis \, Run \, 12/29/2021 \, 3:26 \, PM \quad View: Appendix \, IV - Confidence \, Intervals \, IV - Confidence \, IV - Confidenc$

	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016					0.0054 (J)	0.0026 (J)	
8/31/2016		0.0013 (J)	0.001 (J)	0.0022 (J)			
10/25/2016							0.016
11/30/2016		0.0012 (J)	<0.01	<0.01	0.0073 (J)	0.0016 (J)	0.0151 (J)
2/15/2017					0.0045 (J)	0.0018 (J)	0.0137
2/16/2017		0.0012 (J)	0.0011 (J)	0.0028 (J)			
5/31/2017					0.0052 (J)	0.0019 (J)	0.0109
6/1/2017	0.0008 (J)						
6/2/2017		<0.01	<0.01	0.0023 (J)			
8/2/2017	0.0012 (J)						
8/15/2017					0.005 (J)		0.0117
8/16/2017						0.0019 (J)	
8/17/2017	0.0013 (J)	0.0007 (J)	0.0007 (J)	0.0022 (J)			
4/4/2018	<0.01						
5/8/2018	<0.01						
6/19/2018					0.0047 (J)	<0.01	0.013 (J)
6/20/2018	<0.01	<0.01	<0.01				
6/21/2018				<0.01			
9/25/2018					<0.01	<0.01	
9/26/2018							0.0092 (J)
9/27/2018	<0.01	<0.01	<0.01	0.0024 (J)			
11/6/2018	0.0017 (J)			0.002 (J)		<0.01	<0.01
11/7/2018		<0.01	<0.01		<0.01		
3/6/2019			<0.01				
8/26/2019						0.00071 (J)	
8/27/2019	0.0018 (J)				0.0056 (J)		0.0066 (J)
8/28/2019		0.00047 (J)	0.00085 (J)	0.0024 (J)			
10/15/2019	0.0012 (J)				0.0057 (J)	0.00076 (J)	
10/16/2019		0.00057 (J)					0.0063 (J)
10/17/2019			0.0015 (J)	0.0019 (J)			
3/27/2020					<0.01	<0.01	<0.01
3/28/2020	<0.01	<0.01	<0.01	<0.01			
9/13/2021					<0.01	<0.01	
9/14/2021	<0.01	<0.01	<0.01	<0.01			<0.01
Mean	0.005667	0.005453	0.00655	0.00485	0.00695	0.005106	0.01104
Std. Dev.	0.004533	0.004755	0.004546	0.00381	0.002356	0.004349	0.003034
Upper Lim.	0.01	0.01	0.01	0.01	0.01	0.01	0.01305
Lower Lim.	0.0012	0.00057	0.00085	0.002	0.0047	0.00076	0.007718

Constituent: Cobalt (mg/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016					<0.03	0.0006 (J)	
8/31/2016		<0.03	<0.03	<0.03			
10/25/2016							<0.03
11/30/2016		<0.03	0.0009 (J)	0.0011 (J)	<0.03	<0.03	0.0007 (J)
2/15/2017					<0.03	<0.03	<0.03
2/16/2017		<0.03	<0.03	<0.03			
5/31/2017					0.0005 (J)	<0.03	<0.03
6/1/2017	<0.03						
6/2/2017		<0.03	<0.03	<0.03			
8/2/2017	<0.03						
8/15/2017					0.0005 (J)		0.0004 (J)
8/16/2017						<0.03	
8/17/2017	<0.03	<0.03	0.0003 (J)	<0.03			
4/4/2018	<0.03						
5/8/2018	<0.03						
6/19/2018					0.00053 (J)	<0.03	<0.03
6/20/2018	<0.03	<0.03	<0.03				
6/21/2018				<0.03			
9/25/2018					<0.03	<0.03	
9/26/2018							0.00052
9/27/2018	<0.03	<0.03	<0.03	<0.03			
11/6/2018	0.0048 (J)			<0.03		<0.03	<0.03
11/7/2018		<0.03	<0.03		<0.03		
3/6/2019			<0.03				
8/26/2019						<0.03	
8/27/2019	0.0078				0.0007 (J)		<0.03
8/28/2019		<0.03	<0.03	<0.03			
10/15/2019	0.0085				0.00054 (J)	<0.03	
10/16/2019		<0.03					<0.03
10/17/2019			<0.03	<0.03			
11/20/2019	0.009						
3/27/2020					<0.03	<0.03	<0.03
3/28/2020	0.0041 (J)	<0.03	<0.03	<0.03			
10/12/2020					<0.03		
10/13/2020	0.0063					<0.03	<0.03
10/14/2020			<0.03	<0.03			
10/15/2020		0.0019 (J)					
1/4/2021		<0.03					
3/2/2021					<0.03	<0.03	
3/3/2021	0.000	.0.00	.0.00	0.00			<0.03
3/4/2021	0.006	<0.03	<0.03	<0.03	-0.02	-0.02	
9/13/2021	0.0054	-0.03	-0.02	-0.03	<0.03	<0.03	-0.02
9/14/2021	0.0054	<0.03	<0.03	<0.03	0.01049	0.0270	<0.03
Mean Std. Dov	0.01746	0.02813	0.02608	0.02794	0.01948	0.0279	0.02369
Std. Dev.	0.01221	0.007255	0.01035	0.007724	0.01464	0.007857	0.01254
Upper Lim.	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Lower Lim.	0.0054	0.0019	0.0009	0.0011	0.00053	0.0006	0.0007

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

			Plant McManu	s Client: Southern	Company Data: I	vicivianus Asn Pond	Data
	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016					1.4	1.31	
8/31/2016		2.39 (D)	2.47 (D)	5.4 (D)			
10/25/2016							2.22
11/30/2016		1.66	1.6	3.13	4.37	0.438 (U)	2.01
2/15/2017					2.21	0.3 (U)	1.56
2/16/2017		2.71	1.83	3.09			
5/31/2017					2.62	1.77	1.92
6/1/2017	1.9						
6/2/2017		1.99	2.45	7.56			
8/2/2017	5.01						
8/15/2017					2.69		2.47
8/16/2017						2.26	
8/17/2017	5.35	1.87	3.33	6.38			
4/4/2018	5.05						
5/8/2018	3.25						
6/19/2018					2.96	5.39	2.82
6/20/2018	3.53	1.95	2.84				
6/21/2018				5.24			
9/25/2018					2.23	6.22	
9/26/2018							3.15 (D)
9/27/2018	7.07	0.629 (U)	1.94	6.11			
11/6/2018	11			6.1		5.38	2.95
11/7/2018		1.41 (U)	8.58		2.14		
8/26/2019						7.68	
8/27/2019	4.4				2.91		5.82
8/28/2019		1.67	6.86	8.73			
10/15/2019	4.92				3.28	8.7	
10/16/2019		1.92					7.5
10/17/2019			7.85	7.97			
11/20/2019				9.8			
11/21/2019						7.34	8.89
3/27/2020					2.33	9.63	9.54
3/28/2020	4.16	1.44 (U)	11 (U)	11.7			
10/12/2020					2.66		
10/13/2020	3.71					7.43	7.75
10/14/2020			8.97	13.1			
10/15/2020		2.56					
1/4/2021		5.84					
4/6/2021	2.83	1.43 (U)	7.89	9.66	2.2	7.02	7.8
9/13/2021					2.54	8.38	
9/14/2021	2.69	7.15	8.11	10.3			8.82
Mean	4.634	2.441	5.409	7.618	2.61	5.283	5.015
Std. Dev.	2.256	1.741	3.319	2.946	0.6799	3.21	3.04
Upper Lim.	5.96	3.042	8.58	9.615	3.092	7.458	8.82
Lower Lim.	3.112	1.387	1.94	5.621	2.128	3.108	2.01

Constituent: Fluoride (mg/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016					1.5	0.5	
8/31/2016		0.93	0.41	0.92			
10/25/2016							1.1
11/30/2016		0.93	0.61	0.99	1.4	0.49	1.3
2/15/2017					1.3	0.58	1.3
2/16/2017		0.6	0.3 (J)	0.54			
5/31/2017					1.2	0.56	1.3
6/1/2017	<0.1						
6/2/2017		0.34	0.19 (J)	0.42			
8/2/2017	0.27 (J)						
8/15/2017					1.2		1.2
8/16/2017						0.45	
8/17/2017	0.18 (J)	0.52	0.26 (J)	0.27 (J)			
4/4/2018	<0.1						
5/8/2018	0.56						
6/19/2018					0.91	<0.1	0.6
6/20/2018	0.033 (J)	0.5	0.22 (J)				
6/21/2018			(3)	0.28 (J)			
9/25/2018				0.20 (0)	1.1	<0.1	
9/26/2018						-0.1	0.44 (D)
9/27/2018	0.12 (J)	0.32	0.068 (J)	0.32 (D)			V.44 (D)
11/6/2018	<0.12 (3)	0.32	0.008 (3)	0.086 (J)		0.084 (J)	0.4
	<0.1	0.25	10.2 (-)	0.080 (3)	-0.4	0.064 (3)	0.4
11/7/2018		0.35	10.3 (o)		<0.1		
3/6/2019		0.00	<0.1	0.4470	0.00	0.4470	0.04
3/24/2019		0.32	0.19 (J)	0.14 (J)	0.99	0.14 (J)	0.31
3/25/2019	0.055 (J)						
8/26/2019						<0.1	
8/27/2019	<0.1				1.1		<0.1
8/28/2019		0.36	<0.1	<0.1			
10/15/2019	0.095 (J)				1	<0.1	
10/16/2019		0.41					0.083 (J)
10/17/2019			<0.1	<0.1			
11/20/2019		0.34		<0.1			
11/21/2019						<0.1	<0.1
3/27/2020					1.1	<0.1	<0.1
3/28/2020	<0.1	0.34	<0.1	<0.1			
10/12/2020					1.2		
10/13/2020	<0.1					<0.1	<0.1
10/14/2020			<0.1	<0.1			
10/15/2020		0.22					
1/4/2021		<0.1					
3/2/2021					1	<0.1	
3/3/2021							<0.1
3/4/2021	<0.1	0.45	<0.1	<0.1			
9/13/2021					1.4	<0.1	
9/14/2021	0.05	<0.1	<0.1	<0.1			<0.1
Mean	0.1375	0.4194	0.1965	0.2916	1.1	0.2315	0.5396
Std. Dev.	0.1296	0.2322	0.1497	0.2926	0.3249	0.2003	0.5124
Upper Lim.	0.18	0.5406	0.3	0.54	1.296	0.5	1.2
Lower Lim.	0.055	0.2639	0.068	0.1	0.9687	0.084	0.1
	2.230	1.2300	2.230		2.230,		

Constituent: Lead (mg/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals Plant McManus Client: Southern Company Data: McManus Ash Pond Data

					,	
	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016				0.0001 (J)	<0.005	
8/31/2016	<0.005	<0.005	<0.005			
10/25/2016						<0.005
11/30/2016	0.0002 (J)	<0.005	<0.005	<0.005	<0.005	<0.005
2/15/2017				<0.005	<0.005	<0.005
2/16/2017	<0.005	<0.005	0.0002 (J)			
5/31/2017				9E-05 (J)	<0.005	<0.005
6/2/2017	<0.005	<0.005	<0.005			
8/15/2017				<0.005		0.0002 (J)
8/16/2017					8E-05 (J)	
8/17/2017	<0.005	<0.005	8E-05 (J)			
6/19/2018				<0.005	<0.005	<0.005
6/20/2018	<0.005	<0.005				
6/21/2018			<0.005			
9/25/2018				<0.005	<0.005	
9/26/2018						0.00027
9/27/2018	<0.005	<0.005	<0.005			
11/6/2018			<0.005		<0.005	<0.005
11/7/2018	<0.005	<0.005		<0.005		
3/6/2019		<0.005				
8/26/2019					<0.005	
8/27/2019				0.00022 (J)		0.00014 (J)
8/28/2019	<0.005	<0.005	0.0001 (J)			
10/15/2019				5.6E-05 (J)	<0.005	
10/16/2019	<0.005					0.00034 (J)
10/17/2019		0.00012 (J)	<0.005			
3/27/2020				<0.005	<0.005	<0.005
3/28/2020	<0.005	<0.005	<0.005			
10/12/2020				<0.005		
10/13/2020					<0.005	<0.005
10/14/2020		<0.005	<0.005			
10/15/2020	<0.005					
1/4/2021	<0.005					
3/2/2021				<0.005	<0.005	
3/3/2021						<0.005
3/4/2021	<0.005	<0.005	<0.005			
9/13/2021				<0.005	<0.005	
9/14/2021	<0.005	<0.005	<0.005			<0.005
Mean	0.00468	0.004675	0.003956	0.003605	0.004649	0.003639
Std. Dev.	0.001239	0.00126	0.002075	0.00229	0.001315	0.002233
Upper Lim.	0.005	0.005	0.005	0.005	0.005	0.005
Lower Lim.	0.0002	0.00012	0.0002	0.0001	8E-05	0.00027

Constituent: Lithium (mg/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals

	DPZ-2	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016						0.0102 (J)	0.0112 (J)	
8/31/2016			0.0219 (J)	0.0389 (J)	0.0122 (J)			
10/25/2016								0.007 (J)
11/30/2016			0.0333 (J)	0.0303 (J)	0.011 (J)	0.0106 (J)	<0.012	0.0086 (J)
2/15/2017						0.0115 (J)	0.0105 (J)	0.0149 (J)
2/16/2017			0.0376 (J)	0.05 (J)	0.0142 (J)			
5/31/2017						0.011 (J)	0.0106 (J)	0.019 (J)
6/1/2017		<0.012						
6/2/2017			0.0346 (J)	0.0477 (J)	0.0229 (J)			
8/2/2017		<0.012						
8/15/2017						0.0123 (J)		0.016 (J)
8/16/2017							0.0145 (J)	
8/17/2017		<0.012	0.0367 (J)	0.0645	0.0241 (J)			
4/4/2018		0.0013 (J)						
5/8/2018		0.0012 (J)						
6/19/2018						0.012 (J)	0.044 (J)	0.021 (J)
6/20/2018		0.0015 (J)	0.034 (J)	0.066 (J)				
6/21/2018					0.03 (J)			
9/25/2018						0.011 (J)	0.041 (J)	
9/26/2018								0.02 (J)
9/27/2018		0.0021 (J)	0.023 (J)	0.045 (J)	0.034 (J)			
11/6/2018		0.0038 (J)			0.037 (J)		0.047 (J)	0.017 (J)
11/7/2018			0.022 (J)	0.11		0.013 (J)		
3/6/2019				0.12				
8/26/2019							0.059	
8/27/2019		0.002 (J)				0.012 (J)		0.023 (J)
8/28/2019		. ,	0.023 (J)	0.13	0.12	, ,		, ,
10/15/2019		0.0019 (J)				0.012 (J)	0.056 (J)	
10/16/2019		.,	0.021 (J)			, ,	. ,	0.024 (J)
10/17/2019			. ,	0.12	0.096			, ,
11/20/2019					0.12			
11/21/2019							0.052	
3/27/2020						<0.012	0.052	0.033 (J)
3/28/2020	0.078 (J)	<0.012	0.014 (J)	0.064	0.027 (J)			. ,
6/16/2020	0.096 (J)		(-)		(,,			
10/12/2020	. ,					0.011 (J)		
10/13/2020		<0.012				` ,	0.046 (J)	0.028 (J)
10/14/2020				0.11	0.039 (J)		(-)	(-)
10/15/2020	0.093		0.57		. ,			
1/4/2021			0.043 (J)					
3/2/2021			(4)			<0.012	0.046 (J)	
3/3/2021						0.012	0.0.10 (0)	<0.012
3/4/2021	0.094 (J)	<0.012	0.017 (J)	0.096 (J)	0.035 (J)			0.012
9/13/2021	-:	5.0.2	(0)		1.000 (0)	0.01 (J)	0.047	
9/14/2021	0.092	<0.012	0.042 (J)	0.084	0.035 (J)	0.(0)		0.035 (J)
Mean	0.0906	0.003986	0.06487	0.07843	0.04383	0.01061	0.03619	0.01946
Std. Dev.	0.007197	0.003300	0.14	0.03355	0.03675	0.002124	0.01935	0.008888
Upper Lim.	0.0996	0.002174	0.042	0.1012	0.05517	0.002124	0.05038	0.02576
Lower Lim.	0.07843	0.000	0.042	0.05569	0.02018	0.009702	0.03288	0.02370
LOWGI LIIII.	3.070-10	3.0010	5.0 <u>2</u> i	3.00000	0.02010	5.00070Z	5.00200	5.01017

Constituent: Mercury (mg/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals

			T latte Wiciviana	o olioni. oodiilom	Company Data: 1	Widwards 7511 Folia Bala
	MCM-04	MCM-05	MCM-06	MCM-07	MCM-14	MCM-17
8/30/2016					<0.0002	
8/31/2016		<0.0002	<0.0002	<0.0002		
10/25/2016						<0.0002
11/30/2016		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
2/15/2017					<0.0002	<0.0002
2/16/2017		<0.0002	<0.0002	<0.0002		
5/31/2017					<0.0002	<0.0002
6/1/2017	<0.0002					
6/2/2017		4.2E-05 (J)	<0.0002	<0.0002		
8/2/2017	<0.0002					
8/15/2017						<0.0002
8/16/2017					<0.0002	
8/17/2017	<0.0002	<0.0002	<0.0002	<0.0002		
4/4/2018	<0.0002					
5/8/2018	<0.0002					
6/19/2018					<0.0002	<0.0002
6/20/2018	<0.0002	<0.0002	<0.0002			
6/21/2018				<0.0002		
9/25/2018					<0.0002	
9/26/2018						3.6E-05
9/27/2018	<0.0002	<0.0002	<0.0002	<0.0002		
11/6/2018	0.00071			0.00067	0.00066	0.00064
11/7/2018		<0.0002	<0.0002			
3/6/2019			<0.0002			
8/26/2019					<0.0002	
8/27/2019	<0.0002	-0.0000	10.0000	10.0000		<0.0002
8/28/2019 3/27/2020		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
3/28/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
9/13/2021	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
9/14/2021	<0.0002	<0.0002	0.00016 (J)	<0.0002	~0.0002	<0.0002
Mean	0.0002464	0.0001856	0.0001967	0.0002427	0.0002418	0.0002251
Std. Dev.	0.0001538	4.764E-05	1.155E-05	0.0001417	0.0001387	0.0001461
Upper Lim.	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Lower Lim.	0.0002	0.0002	0.00016	0.0002	0.0002	0.0002

Constituent: Molybdenum (mg/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals

	MCM-05	MCM-06	MCM-17
8/31/2016	<0.01	<0.01	
10/25/2016			<0.01
11/30/2016	<0.01	<0.01	<0.01
2/15/2017			<0.01
2/16/2017	<0.01	<0.01	
5/31/2017			<0.01
6/2/2017	<0.01	<0.01	
8/15/2017			<0.01
8/17/2017	0.0012 (J)	0.0025 (J)	
6/19/2018			<0.01
6/20/2018	<0.01	<0.01	
9/26/2018			0.0019
9/27/2018	<0.01	<0.01	
11/6/2018			<0.01
11/7/2018	<0.01	0.0024 (J)	
3/6/2019		<0.01	
8/27/2019			<0.01
8/28/2019	<0.01	0.0017 (J)	
10/16/2019	<0.01		<0.01
10/17/2019		0.0017 (J)	
3/27/2020			<0.01
3/28/2020	<0.01	<0.01	
9/14/2021	0.0099 (J)	<0.01	<0.01
Mean	0.009258	0.007562	0.009325
Std. Dev.	0.002538	0.003813	0.002338
Upper Lim.	0.01	0.01	0.01
Lower Lim.	0.0099	0.0024	0.0019

Constituent: Selenium (mg/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals

	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016					0.0011 (J)	<0.01	
8/31/2016		0.002 (J)	0.0015 (J)	0.0021 (J)			
10/25/2016							0.003 (J)
11/30/2016		0.0023 (J)	0.0054 (J)	<0.01	0.0023 (J)	<0.01	0.0087 (J)
2/15/2017					0.0021 (J)	0.0014 (J)	0.0067 (J)
2/16/2017		0.002 (J)	0.0022 (J)	0.0025 (J)	. ,	. ,	· /
5/31/2017		()	. ,	. ,	<0.01	<0.01	0.0018 (J)
6/1/2017	<0.01						(-,
6/2/2017		<0.01	<0.01	<0.01			
8/2/2017	<0.01	0.01	0.01	0.01			
8/15/2017	0.01				0.0021 (J)		0.0025 (J)
8/16/2017					0.0021(0)	0.0018 (J)	0.0020 (0)
8/17/2017	<0.01	<0.01	0.002 (J)	0.0033 (J)		0.0010 (0)	
4/4/2018	<0.01	-0.01	0.002 (0)	0.0000 (0)			
5/8/2018	<0.01						
	<0.01				0.0017 (1)	-0.01	-0.01
6/19/2018	-0.01	-0.01	-0.01		0.0017 (J)	<0.01	<0.01
6/20/2018	<0.01	<0.01	<0.01	-0.01			
6/21/2018				<0.01	0.000 (1)	0.0040 (1)	
9/25/2018					0.002 (J)	0.0019 (J)	0.0040 (1)
9/26/2018							0.0016 (J)
9/27/2018	<0.01	<0.01	<0.01	0.0023 (J)			
11/6/2018	0.0025 (J)			0.0048 (J)		0.0057 (J)	<0.01
11/7/2018		<0.01	0.0075 (J)		<0.01		
3/6/2019			0.0024 (J)				
8/26/2019						0.0025 (J)	
8/27/2019	<0.01				0.0019 (J)		0.0018 (J)
8/28/2019		<0.01	0.0014 (J)	0.0019 (J)			
10/15/2019	<0.01				<0.01	0.003 (J)	
10/16/2019		<0.01					<0.01
10/17/2019			0.0066 (J)	0.0049 (J)			
3/27/2020					<0.01	<0.01	<0.01
3/28/2020	<0.01	<0.01	<0.01	<0.01			
10/12/2020					<0.01		
10/13/2020	<0.01					<0.01	<0.01
10/14/2020			<0.01	<0.01			
10/15/2020		0.0028 (J)					
1/4/2021		<0.01					
3/2/2021					<0.01	<0.01	
3/3/2021							<0.01
3/4/2021	0.00038 (J)	<0.01	<0.01	<0.01			
9/13/2021					<0.01	<0.01	
9/14/2021	<0.01	<0.01	<0.01	<0.01			0.0021
Mean	0.008777	0.00794	0.0066	0.006557	0.005943	0.006879	0.0063
Std. Dev.	0.003136	0.00354	0.003726	0.003675	0.004219	0.003864	0.003859
Upper Lim.	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Lower Lim.	0.0025	0.0023	0.002	0.0023	0.0019	0.0019	0.0018

Constituent: Thallium (mg/L) Analysis Run 12/29/2021 3:26 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-06	MCM-17
8/31/2016	<0.002	
10/25/2016		<0.002
11/30/2016	<0.002	<0.002
2/15/2017		<0.002
2/16/2017	<0.002	
5/31/2017		<0.002
6/2/2017	<0.002	
8/15/2017		<0.002
8/17/2017	<0.002	
6/19/2018		<0.002
6/20/2018	<0.002	
9/26/2018		0.00014
9/27/2018	<0.002	
11/6/2018		<0.002
11/7/2018	<0.002	
3/6/2019	<0.002	
8/27/2019		<0.002
8/28/2019	<0.002	
10/16/2019		<0.002
10/17/2019	7.6E-05 (J)	
3/27/2020		<0.002
3/28/2020	<0.002	
9/14/2021	<0.002	<0.002
Mean	0.001852	0.001845
Std. Dev.	0.0005336	0.0005369
Upper Lim.	0.002	0.002
Lower Lim.	7.6E-05	0.00014

FIGURE I.

State Confidence Intervals - Significant Results

Plant McManus Client: Southern Company Data: McManus Ash Pond Data Printed 12/29/2021, 3:22 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Compliance Sig. N Mean Std. Dev. %NDs ND Adj. <u>Transform</u> <u>Alpha</u> <u>Method</u> 0.031 Arsenic (mg/L) MCM-06 0.4383 0.2741 Yes 18 0.3562 0.1357 0 None No 0.01 Param. x^5 Param. Lithium (mg/L) DPZ-2 0.0996 0.07843 0.026 Yes 5 0.0906 0.007197 0 None 0.01 Lithium (mg/L) MCM-06 0.1012 0.05569 0.026 Yes 15 0.07843 0.03355 None No 0.01 Param. Lithium (mg/L) MCM-14 0.05038 0.03288 0.026 Yes 15 0.03619 0.01935 6.667 None x^3 0.01 Param.

State Confidence Intervals - All Results

Data: McManus Ash Pond Data Client: Southern Company Constituent <u>Well</u> Std. Dev. %NDs ND Adj. Transform <u>Alpha</u> Method Lower Lim. Compliance Sig. N Mean MCM-06 0.003 0.00098 0.006 0.0007709 No 0.01 NP (NDs) Antimony (mg/L) No 13 0.002675 76.92 None Antimony (mg/L) MCM-14 0.003 0.0004 0.006 12 0.002783 0.0007506 91.67 None No 0.01 NP (NDs) Antimony (mg/L) MCM-17 0.003 0.00078 0.006 No 12 0.002815 0.0006409 91.67 None No 0.01 NP (NDs) 0.0249 0.0151 0.031 0.0225 0.005447 Arsenic (ma/L) DPZ-2 4 25 0.01 Param. No Kaplan-Meier No Arsenic (mg/L) MCM-04 0.008019 0.002934 0.031 No 15 0.0058 0.004243 0 None sqrt(x) 0.01 Param. Arsenic (mg/L) MCM-05 0.0335 0.002 0.031 No 17 0.01725 0.01344 17.65 None No 0.01 NP (normality) Arsenic (mg/L) MCM-06 0.4383 0.2741 0.031 Yes 18 0.3562 0.1357 0 None No 0.01 Param. MCM-07 0.0214 0.01122 0.031 No 17 0.01631 0.008125 0 None 0.01 Param. Arsenic (mg/L) No Arsenic (ma/L) MCM-12 0.03 0.001 0.031 14 0.0159 0.01468 50 0.01 NP (normality) Arsenic (mg/L) MCM-14 0.03 0.0014 0.031 Nο 14 0.01651 0.0141 50 None Nο 0.01 NP (normality) 0.031 MCM-17 0.03 0.0017 15 0.01376 0.0138 40 0.01 NP (normality) Arsenic (ma/L) No No None Barium (mg/L) MCM-04 0.09086 0.03286 2 No 0.0749 0 None In(x) 0.01 Param. Barium (mg/L) MCM-05 0.04502 0.009496 2 No 15 0.05122 0.1122 0 None In(x) 0.01 Param Barium (mg/L) 0.16 0.0528 2 0.1079 0.01 NP (normality) MCM-06 Nο 15 0.05641 0 None Nο Barium (mg/L) MCM-07 0.2056 0.1016 2 No 14 0.09816 0 0.01 Param. None In(x) Barium (mg/L) MCM-12 0.1285 0.1062 2 No 14 0.1174 0.01579 0 None No 0.01 Param. Barium (mg/L) 2 MCM-14 0.1285 0.05361 No 14 0.09108 0.0529 0 None No 0.01 Param. Barium (mg/L) MCM-17 0.1388 0.06144 2 No 14 0.1001 0.05463 0 0.01 Param. None No Beryllium (mg/L) MCM-04 0.003 0.00021 0.021 No 14 0.001272 0.001345 35.71 None No 0.01 NP (normality) 0.003 0.000054 15 0.002804 0.0007607 NP (NDs) Beryllium (mg/L) MCM-05 0.021 Nο 93.33 None No 0.01 MCM-07 0.003 0.00012 0.021 14 0.002377 0.001239 0.01 NP (NDs) Bervllium (ma/L) No 78.57 None No MCM-12 0.001236 0.0004659 0.021 14 0.0009843 0.0008851 0.01 Beryllium (mg/L) No 14.29 None ln(x) Param 0.003 0.000097 14 0.001968 Beryllium (mg/L) MCM-14 0.021 No 0.001438 64 29 None No 0.01 NP (NDs) Beryllium (mg/L) MCM-17 0.003 0.00018 0.021 No 0.001231 0.001369 0.01 NP (normality) 14 35.71 None No 0.0025 0.0025 0.005 0.002281 0.0007257 Cadmium (mg/L) MCM-17 No 90.91 None No 0.006 NP (NDs) Chromium (mg/L) MCM-04 0.01 0.0012 0.1 No 12 0.005667 0.004533 50 None Nο 0.01 NP (normality) MCM-05 0.00057 0.005453 0.004755 0.01 Chromium (ma/L) 0.01 0.1 No 12 50 NP (normality) None No Chromium (mg/L) MCM-06 0.01 0.00085 0.1 No 13 0.00655 0.004546 61.54 None No 0.01 NP (NDs) Chromium (mg/L) MCM-07 0.01 0.002 0.1 No 12 0.00485 0.00381 33.33 None No 0.01 NP (normality) NP (normality) Chromium (mg/L) MCM-12 0.01 0.0047 0.1 Nο 12 0.00695 0.002356 0.01 33.33 None No Chromium (mg/L) MCM-14 0.01 0.00076 0.1 No 12 0.005106 0.004349 41.67 None 0.01 NP (normality) No Chromium (mg/L) MCM-17 0.01305 0.007718 0.1 No 12 0.01104 0.003034 25 Kaplan-Meier 0.01 Param. 0.0054 0.01746 NP (normality) Cobalt (mg/L) MCM-04 0.03 0.036 No 15 0.01221 46.67 None No 0.01 0.03 0.0019 15 0.02813 0.007255 NP (NDs) Cobalt (mg/L) MCM-05 0.036 No 93.33 0.01 None No Cobalt (mg/L) MCM-06 0.0009 0.036 No 15 0.02608 0.01035 86.67 None No 0.01 NP (NDs) Cobalt (mg/L) MCM-07 0.03 0.0011 0.036 No 14 0.02794 0.007724 92.86 None No 0.01 NP (NDs) Cobalt (mg/L) MCM-12 0.03 0.00053 0.036 14 0.01948 0.01464 64.29 0.01 NP (NDs) No None No 0.007857 Cobalt (mg/L) MCM-14 0.0006 0.036 14 0.0279 92.86 None 0.01 NP (NDs) No Cobalt (mg/L) MCM-17 0.03 0.0007 0.036 No 14 0.02369 0.01254 78.57 None No 0.01 NP (NDs) 5.96 14 Combined Radium 226 + 228 (pCi/L) MCM-04 3.112 55.8 No 4.634 2.256 0 0.01 Param. None sart(x) Combined Radium 226 + 228 (pCi/L) MCM-05 3.042 1.387 55.8 No 15 2.441 1.741 0 None ln(x) 0.01 Param. Combined Radium 226 + 228 (pCi/L) MCM-06 8.58 1.94 55.8 No 14 5.409 3.319 0 None No 0.01 NP (normality) Combined Radium 226 + 228 (pCi/L) 9.615 15 7.618 2.946 0 0.01 Param. MCM-07 5.621 55.8 Nο None No Combined Radium 226 + 228 (pCi/L) MCM-12 3.092 2.128 55.8 14 2.61 0.6799 0 0.01 No None Param. No 5.283 Combined Radium 226 + 228 (pCi/L) MCM-14 7.458 3.108 55.8 No 15 3.21 0 None No 0.01 Param Combined Radium 226 + 228 (pCi/L) 8 82 55.8 15 5 015 n MCM-17 2 01 Nο 3 04 None Nο 0.01 NP (normality) Fluoride (mg/L) MCM-04 0.18 0.055 4 No 15 0.1375 46.67 0.01 NP (normality) 0.1296 None No MCM-05 0.5406 0.4194 0.2322 Fluoride (mg/L) 0.2639 4 17 11.76 None sqrt(x) 0.01 Fluoride (mg/L) MCM-06 0.3 0.068 4 Nο 15 0.1965 0.1497 46.67 None Nο 0.01 NP (normality) MCM-07 4 16 0.2916 0.2926 0.01 NP (normality) Fluoride (ma/L) 0.54 0.1 No 43.75 None No Fluoride (mg/L) MCM-12 1.296 0.9687 4 No 15 0.3249 6.667 None x^2 0.01 Param. Fluoride (mg/L) MCM-14 0.5 0.084 4 No 16 0.2315 0.2003 56.25 None No 0.01 NP (NDs) Fluoride (ma/L) MCM-17 1.2 0.1 4 Nο 16 0.5396 0.5124 37.5 None Nο 0.01 NP (normality)

State Confidence Intervals - All Results

	Pla	nt McManus (Client: Southern	Company	Da	ata: M	Manus Ash Po	nd Data Printed	12/29/20	21, 3:22 PM			
Constituent	Well	Upper Lim.	Lower Lim.	Complian	ce S	<u>ig. N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Lead (mg/L)	MCM-05	0.005	0.0002	0.005	N	o 15	0.00468	0.001239	93.33	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-06	0.005	0.00012	0.005	N	o 15	0.004675	0.00126	93.33	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-07	0.005	0.0002	0.005	N	o 14	0.003956	0.002075	78.57	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-12	0.005	0.0001	0.005	N	o 14	0.003605	0.00229	71.43	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-14	0.005	0.00008	0.005	N	o 14	0.004649	0.001315	92.86	None	No	0.01	NP (NDs)
Lead (mg/L)	MCM-17	0.005	0.00027	0.005	N	o 14	0.003639	0.002233	71.43	None	No	0.01	NP (NDs)
Lithium (mg/L)	DPZ-2	0.0996	0.07843	0.026	Υ	es 5	0.0906	0.007197	0	None	x^5	0.01	Param.
Lithium (mg/L)	MCM-04	0.006	0.0015	0.026	N	o 14	0.003986	0.002174	50	None	No	0.01	NP (normality)
Lithium (mg/L)	MCM-05	0.042	0.021	0.026	N	o 15	0.06487	0.14	0	None	No	0.01	NP (normality)
Lithium (mg/L)	MCM-06	0.1012	0.05569	0.026	Υ	es 15	0.07843	0.03355	0	None	No	0.01	Param.
Lithium (mg/L)	MCM-07	0.05517	0.02018	0.026	N	o 15	0.04383	0.03675	0	None	ln(x)	0.01	Param.
Lithium (mg/L)	MCM-12	0.01198	0.009702	0.026	N	o 14	0.01061	0.002124	14.29	None	x^3	0.01	Param.
Lithium (mg/L)	MCM-14	0.05038	0.03288	0.026	Υ	es 15	0.03619	0.01935	6.667	None	x^3	0.01	Param.
Lithium (mg/L)	MCM-17	0.02576	0.01317	0.026	N	o 14	0.01946	0.008888	7.143	None	No	0.01	Param.
Mercury (mg/L)	MCM-04	0.0002	0.0002	0.002	N	o 11	0.0002464	0.0001538	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-05	0.0002	0.0002	0.002	N	o 11	0.0001856	0.00004764	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-06	0.0002	0.00016	0.002	N	o 12	0.0001967	0.00001155	91.67	None	No	0.01	NP (NDs)
Mercury (mg/L)	MCM-07	0.0002	0.0002	0.002	N	o 11	0.0002427	0.0001417	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-14	0.0002	0.0002	0.002	N	o 11	0.0002418	0.0001387	90.91	None	No	0.006	NP (NDs)
Mercury (mg/L)	MCM-17	0.0002	0.0002	0.002	N	o 11	0.0002251	0.0001461	81.82	None	No	0.006	NP (NDs)
Molybdenum (mg/L)	MCM-05	0.01	0.0099	0.01	N	o 12	0.009258	0.002538	83.33	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	MCM-06	0.01	0.0024	0.01	N	o 13	0.007562	0.003813	69.23	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	MCM-17	0.01	0.0019	0.01	N	o 12	0.009325	0.002338	91.67	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-04	0.01	0.0025	0.15	N	o 14	0.008777	0.003136	85.71	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-05	0.01	0.0023	0.15	N	o 15	0.00794	0.00354	73.33	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-06	0.01	0.002	0.15	N	o 15	0.0066	0.003726	46.67	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-07	0.01	0.0023	0.15	N	o 14	0.006557	0.003675	50	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-12	0.01	0.0019	0.15	N	o 14	0.005943	0.004219	50	None	No	0.01	NP (normality)
Selenium (mg/L)	MCM-14	0.01	0.0019	0.15	N	o 14	0.006879	0.003864	57.14	None	No	0.01	NP (NDs)
Selenium (mg/L)	MCM-17	0.01	0.0018	0.15	N	o 14	0.0063	0.003859	42.86	None	No	0.01	NP (normality)
Thallium (mg/L)	MCM-06	0.002	0.000076	0.002	N	o 13	0.001852	0.0005336	92.31	None	No	0.01	NP (NDs)
Thallium (mg/L)	MCM-17	0.002	0.00014	0.002	N	o 12	0.001845	0.0005369	91.67	None	No	0.01	NP (NDs)

Non-Parametric Confidence Interval

Constituent: Antimony Analysis Run 12/29/2021 3:21 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Constituent: Arsenic Analysis Run 12/29/2021 3:21 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval

Constituent: Cadmium Analysis Run 12/29/2021 3:21 PM View: Appendix IV - Confidence Intervals Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium Analysis Run 12/29/2021 3:21 PM View: Appendix IV - Confidence Intervals Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 12/29/2021 3:21 PM View: Appendix IV - Confidence Intervals

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride Analysis Run 12/29/2021 3:21 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Lead Analysis Run 12/29/2021 3:21 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Constituent: Molybdenum Analysis Run 12/29/2021 3:21 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Constituent: Thallium Analysis Run 12/29/2021 3:21 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Selenium Analysis Run 12/29/2021 3:21 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Antimony (mg/L) Analysis Run 12/29/2021 3:22 PM View: Appendix IV - Confidence Intervals

			, ,
<u> </u>	MCM-06	MCM-14	MCM-17
8/30/2016		<0.003	
8/31/2016	<0.003		
10/25/2016			<0.003
11/30/2016	<0.003	<0.003	<0.003
2/15/2017		<0.003	<0.003
2/16/2017	<0.003		
5/31/2017		<0.003	<0.003
6/2/2017	<0.003		
8/15/2017			<0.003
8/16/2017		<0.003	
8/17/2017	<0.003		
6/19/2018		<0.003	<0.003
6/20/2018	<0.003		
9/25/2018		<0.003	
9/26/2018			0.00078
9/27/2018	<0.003		
11/6/2018		<0.003	<0.003
11/7/2018	<0.003		
3/6/2019	<0.003		
8/26/2019		0.0004 (J)	
8/27/2019			<0.003
8/28/2019	0.00098 (J)		
10/15/2019		<0.003	
10/16/2019			<0.003
10/17/2019	0.0009 (J)		
3/27/2020		<0.003	<0.003
3/28/2020	0.0029 (J)		
9/13/2021		<0.003	
9/14/2021	<0.003		<0.003
Mean	0.002675	0.002783	0.002815
Std. Dev.	0.0007709	0.0007506	0.0006409
Upper Lim.	0.003	0.003	0.003
Lower Lim.	0.00098	0.0004	0.00078

Constituent: Arsenic (mg/L) Analysis Run 12/29/2021 3:22 PM View: Appendix IV - Confidence Intervals

	DPZ-2	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016						<0.03	<0.03	
8/31/2016			<0.03	0.212	0.0066			
10/25/2016								<0.03
11/30/2016			0.0132	0.129	0.0281	<0.03	<0.03	0.0072
2/15/2017						<0.03	<0.03	0.0017 (J)
2/16/2017			0.0372	0.257	0.0295			
5/31/2017						0.0007 (J)	0.0008 (J)	0.0018 (J)
6/1/2017		0.004 (J)						
6/2/2017			0.0335	0.0559	0.0286			
8/2/2017		0.0028 (J)						
8/15/2017						0.0006 (J)		0.0015 (J)
8/16/2017							0.0007 (J)	
8/17/2017		0.0021 (J)	0.0336	0.458	0.0211			
4/4/2018		0.0023 (J)						
5/8/2018		0.0048 (J)						
6/19/2018						0.001 (J)	0.0062 (J)	0.0029 (J)
6/20/2018		0.0099	0.019	0.44				
6/21/2018					0.022 (J)			
9/25/2018						0.0011 (J)	0.0031 (J)	
9/26/2018								0.0015 (J)
9/27/2018		0.01	0.0035 (J)	0.27	0.015			
11/6/2018		0.013	. ,		0.012		0.0014 (J)	<0.03
11/7/2018			0.002 (J)	0.5		0.0057	.,	
11/27/2018			0.0016 (J)	0.5	0.011			
3/6/2019			. ,	0.49				
3/26/2019			0.0018 (J)	0.3	0.0078			
7/2/2019		0.015 (J)	(-,	0.37	0.027			
8/26/2019		,					0.0022 (J)	
8/27/2019		0.0072				0.0011 (J)	(-)	0.0024 (J)
8/28/2019			0.0019 (J)	0.5	0.011	(-)		
10/15/2019		0.0038 (J)	(0)			0.0024 (J)	0.0067	
10/16/2019			0.0047 (J)					0.0043 (J)
10/17/2019			0.00 .7 (0)	0.34	0.0046 (J)			0.00.0 (0)
11/21/2019				0.0 .	0.00.10 (0)			0.0031 (J)
3/27/2020						<0.03	<0.03	<0.03
3/28/2020	<0.03	0.0034 (J)	<0.03	0.3	0.012	0.00	0.00	0.00
10/12/2020	10.00	0.0004 (0)	-0.00	0.0	0.012	<0.03		
10/13/2020		0.0022 (J)				-0.00	<0.03	<0.03
10/14/2020		0.0022 (0)		0.43	0.013		-0.00	-0.00
10/15/2020	0.021		0.024	0.45	0.013			
1/4/2021	0.021		0.0072					
3/2/2021			0.0072			<0.03	<0.03	
3/3/2021						~0.03	~0.03	<0.03
3/4/2021	0.017 (J)	0.0018 (J)	<0.03	0.35	0.015 (J)			<0.03
9/13/2021	0.017 (3)	0.0018 (3)	<0.03	0.33	0.015 (3)	<0.03	<0.03	
	0.022	0.0047 (1)	0.02 (1)	0.51	0.012 (1)	<0.03	<0.03	-0.02
9/14/2021 Maan	0.022	0.0047 (J)	0.02 (J)	0.51	0.013 (J)	0.0150	0.01651	<0.03
Mean Ctd. Day	0.0225	0.0058	0.01725	0.3562	0.01631	0.0159	0.01651	0.01376
Std. Dev.	0.005447	0.004243	0.01344	0.1357	0.008125	0.01468	0.0141	0.0138
Upper Lim.	0.0249	0.008019	0.0335	0.4383	0.0214	0.03	0.03	0.03
Lower Lim.	0.0151	0.002934	0.002	0.2741	0.01122	0.001	0.0014	0.0017

Constituent: Barium (mg/L) Analysis Run 12/29/2021 3:22 PM View: Appendix IV - Confidence Intervals

	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016					0.108	0.0131	
8/31/2016		0.0289	0.0498	0.0771			
10/25/2016							0.063
11/30/2016		0.0168	0.0528	0.101	0.121	0.0105	0.0628
2/15/2017					0.111	0.0786	0.0102
2/16/2017		0.016	0.0555	0.0865			
5/31/2017					0.131	0.0199	0.061
6/1/2017	0.0195						
6/2/2017		0.0393 (J)	0.0508	0.123			
8/2/2017	0.053						
8/15/2017					0.126		0.0579
8/16/2017						0.033	
8/17/2017	0.0475	0.0188	0.0596	0.124			
4/4/2018	0.035						
5/8/2018	0.027						
6/19/2018					0.13	0.092	0.076
6/20/2018	0.027	0.014	0.06				
6/21/2018				0.1			
9/25/2018					0.12	0.098	
9/26/2018							0.099
9/27/2018	0.14	0.0097 (J)	0.06	0.12			
11/6/2018	0.31			0.12		0.1	0.052
11/7/2018		0.0085 (J)	0.19		0.11		
3/6/2019			0.16				
8/26/2019						0.12	
8/27/2019	0.083				0.14		0.11
8/28/2019		0.011	0.13	0.4			
10/15/2019	0.082				0.14	0.12	
10/16/2019		0.012					0.14
10/17/2019			0.13	0.35			
3/27/2020					0.12	0.13	0.16
3/28/2020	0.039	0.0041 (J)	0.12	0.11			
10/12/2020					0.1		
10/13/2020	0.055		0.14	0.10		0.14	0.14
10/14/2020		0.45	0.14	0.19			
10/15/2020		0.45					
1/4/2021		0.051			0.1	0.10	
3/2/2021					0.1	0.16	0.17
3/3/2021	0.000	0.0000 (1)	0.44	0.0			0.17
3/4/2021	0.062	0.0082 (J)	0.14	0.2	0.000	0.10	
9/13/2021	0.040	0.00	0.00	0.0	0.086	0.16	0.0 (144)
9/14/2021 Maan	0.043	0.08	0.22	0.2	0 1174	0.00108	0.2 (M1)
Mean	0.07307	0.05122	0.1079	0.1644	0.1174	0.09108	0.1001
Std. Dev.	0.0749	0.1122 0.04502	0.05641	0.09816	0.01579	0.0529	0.05463
Upper Lim.	0.09086	0.04502	0.16	0.2056	0.1285	0.1285	0.1388
Lower Lim.	0.03286	0.003430	0.0528	0.1016	0.1062	0.05361	0.06144

 $Constituent: Beryllium \, (mg/L) \quad Analysis \, Run \, 12/29/2021 \, 3:22 \, PM \quad View: \, Appendix \, IV - Confidence \, Intervals \, IV - Confidence \, Intervals \, IV - Confidence \, INTERVAL \, IV - Confidence \, IV - Confid$

	MCM-04	MCM-05	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016				0.0003 (J)	<0.003	
8/31/2016		<0.003	<0.003			
10/25/2016						0.0004 (J)
11/30/2016		<0.003	<0.003	0.0004 (J)	<0.003	0.0003 (J)
2/15/2017				0.0004 (J)	<0.003	<0.003
2/16/2017		<0.003	<0.003			
5/31/2017				0.0005 (J)	0.0001 (J)	0.0002 (J)
6/1/2017	0.0001 (J)					
6/2/2017		<0.003	<0.003			
8/2/2017	0.0003 (J)					
8/15/2017				0.0005 (J)		0.0002 (J)
8/16/2017					0.0002 (J)	
8/17/2017	0.0002 (J)	<0.003	<0.003			
4/4/2018	<0.003					
5/8/2018	0.00025 (J)					
6/19/2018				0.00065 (J)	<0.003	0.00032 (J)
6/20/2018	0.00021 (J)	<0.003				
6/21/2018			<0.003			
9/25/2018				0.00066 (J)	5E-05 (J)	
9/26/2018						0.00024 (J)
9/27/2018	0.00031 (J)	<0.003	7.4E-05 (J)			
11/6/2018	0.00077 (J)		0.00012 (J)		9.7E-05 (J)	0.00026 (J)
11/7/2018		5.4E-05 (J)		0.00058 (J)		
8/26/2019					0.0001 (J)	
8/27/2019	0.00032 (J)			0.0009 (J)		0.00018 (J)
8/28/2019		<0.003	<0.003			
10/15/2019	0.00035 (J)			0.00079 (J)	<0.003	
10/16/2019		<0.003				0.00014 (J)
10/17/2019			7.8E-05 (J)			
3/27/2020				<0.003	<0.003	<0.003
3/28/2020	<0.003	<0.003	<0.003			
10/12/2020				0.001 (J)		
10/13/2020	<0.003				<0.003	<0.003
10/14/2020			<0.003			
10/15/2020		<0.003				
1/4/2021		<0.003		.0.000	.0.000	
3/2/2021				<0.003	<0.003	-0.00 2
3/3/2021	<0.003	<0.003	<0.002			<0.003
3/4/2021 9/13/2021	<0.003	<0.003	<0.003	0.0011	<0.003	
	<0.003	<0.003	<0.003	0.0011	<0.003	<0.003
9/14/2021 Mean	<0.003 0.001272	0.002804	<0.003 0.002377	0.0009843	0.001968	<0.003 0.001231
Std. Dev.	0.001272	0.002804	0.002377	0.0009843	0.001968	0.001369
Upper Lim.	0.001343	0.003	0.001239	0.0008851	0.001438	0.003
Lower Lim.	0.0003	5.4E-05	0.00012	0.001230	9.7E-05	0.00018
_5			2.000.2	2.300.000	- 5 5	

 $Constituent: Cadmium \ (mg/L) \quad Analysis \ Run \ 12/29/2021 \ 3:22 \ PM \quad View: Appendix \ IV - Confidence \ Intervals$

7

 $Constituent: Chromium \, (mg/L) \quad Analysis \, Run \, 12/29/2021 \, 3:22 \, PM \quad View: Appendix \, IV - Confidence \, Intervals \, IV - Confidence \, Intervals \, IV - Confidence \, IV$

	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016					0.0054 (J)	0.0026 (J)	
8/31/2016		0.0013 (J)	0.001 (J)	0.0022 (J)			
10/25/2016							0.016
11/30/2016		0.0012 (J)	<0.01	<0.01	0.0073 (J)	0.0016 (J)	0.0151 (J)
2/15/2017					0.0045 (J)	0.0018 (J)	0.0137
2/16/2017		0.0012 (J)	0.0011 (J)	0.0028 (J)			
5/31/2017					0.0052 (J)	0.0019 (J)	0.0109
6/1/2017	0.0008 (J)						
6/2/2017		<0.01	<0.01	0.0023 (J)			
8/2/2017	0.0012 (J)						
8/15/2017					0.005 (J)		0.0117
8/16/2017						0.0019 (J)	
8/17/2017	0.0013 (J)	0.0007 (J)	0.0007 (J)	0.0022 (J)			
4/4/2018	<0.01						
5/8/2018	<0.01						
6/19/2018					0.0047 (J)	<0.01	0.013 (J)
6/20/2018	<0.01	<0.01	<0.01				
6/21/2018				<0.01			
9/25/2018					<0.01	<0.01	
9/26/2018							0.0092 (J)
9/27/2018	<0.01	<0.01	<0.01	0.0024 (J)			
11/6/2018	0.0017 (J)			0.002 (J)		<0.01	<0.01
11/7/2018		<0.01	<0.01		<0.01		
3/6/2019			<0.01				
8/26/2019						0.00071 (J)	
8/27/2019	0.0018 (J)				0.0056 (J)		0.0066 (J)
8/28/2019		0.00047 (J)	0.00085 (J)	0.0024 (J)			
10/15/2019	0.0012 (J)				0.0057 (J)	0.00076 (J)	
10/16/2019		0.00057 (J)					0.0063 (J)
10/17/2019			0.0015 (J)	0.0019 (J)			
3/27/2020					<0.01	<0.01	<0.01
3/28/2020	<0.01	<0.01	<0.01	<0.01			
9/13/2021					<0.01	<0.01	
9/14/2021	<0.01	<0.01	<0.01	<0.01			<0.01
Mean	0.005667	0.005453	0.00655	0.00485	0.00695	0.005106	0.01104
Std. Dev.	0.004533	0.004755	0.004546	0.00381	0.002356	0.004349	0.003034
Upper Lim.	0.01	0.01	0.01	0.01	0.01	0.01	0.01305
Lower Lim.	0.0012	0.00057	0.00085	0.002	0.0047	0.00076	0.007718

Constituent: Cobalt (mg/L) Analysis Run 12/29/2021 3:22 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016					<0.03	0.0006 (J)	
8/31/2016		<0.03	<0.03	<0.03			
10/25/2016							<0.03
11/30/2016		<0.03	0.0009 (J)	0.0011 (J)	<0.03	<0.03	0.0007 (J)
2/15/2017					<0.03	<0.03	<0.03
2/16/2017		<0.03	<0.03	<0.03			
5/31/2017					0.0005 (J)	<0.03	<0.03
6/1/2017	<0.03						
6/2/2017		<0.03	<0.03	<0.03			
8/2/2017	<0.03						
8/15/2017					0.0005 (J)		0.0004 (J)
8/16/2017						<0.03	
8/17/2017	<0.03	<0.03	0.0003 (J)	<0.03			
4/4/2018	<0.03						
5/8/2018	<0.03						
6/19/2018					0.00053 (J)	<0.03	<0.03
6/20/2018	<0.03	<0.03	<0.03				
6/21/2018				<0.03			
9/25/2018					<0.03	<0.03	
9/26/2018							0.00052
9/27/2018	<0.03	<0.03	<0.03	<0.03			
11/6/2018	0.0048 (J)			<0.03		<0.03	<0.03
11/7/2018		<0.03	<0.03		<0.03		
3/6/2019			<0.03				
8/26/2019						<0.03	
8/27/2019	0.0078				0.0007 (J)		<0.03
8/28/2019		<0.03	<0.03	<0.03			
10/15/2019	0.0085				0.00054 (J)	<0.03	
10/16/2019		<0.03					<0.03
10/17/2019			<0.03	<0.03			
11/20/2019	0.009						
3/27/2020					<0.03	<0.03	<0.03
3/28/2020	0.0041 (J)	<0.03	<0.03	<0.03			
10/12/2020					<0.03		
10/13/2020	0.0063					<0.03	<0.03
10/14/2020			<0.03	<0.03			
10/15/2020		0.0019 (J)					
1/4/2021		<0.03					
3/2/2021					<0.03	<0.03	
3/3/2021							<0.03
3/4/2021	0.006	<0.03	<0.03	<0.03			
9/13/2021					<0.03	<0.03	
9/14/2021	0.0054	<0.03	<0.03	<0.03			<0.03
Mean	0.01746	0.02813	0.02608	0.02794	0.01948	0.0279	0.02369
Std. Dev.	0.01221	0.007255	0.01035	0.007724	0.01464	0.007857	0.01254
Upper Lim.	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Lower Lim.	0.0054	0.0019	0.0009	0.0011	0.00053	0.0006	0.0007

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 12/29/2021 3:22 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

			i idili ivio	Marias Chert. Coc	alom company D	rata. Incinarias / torri	Sila Bata	
	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17	
8/30/2016					1.4	1.31		
8/31/2016		2.39 (D)	2.47 (D)	5.4 (D)				
10/25/2016							2.22	
11/30/2016		1.66	1.6	3.13	4.37	0.438 (U)	2.01	
2/15/2017					2.21	0.3 (U)	1.56	
2/16/2017		2.71	1.83	3.09				
5/31/2017					2.62	1.77	1.92	
6/1/2017	1.9							
6/2/2017		1.99	2.45	7.56				
8/2/2017	5.01							
8/15/2017					2.69		2.47	
8/16/2017						2.26		
8/17/2017	5.35	1.87	3.33	6.38				
4/4/2018	5.05							
5/8/2018	3.25							
6/19/2018					2.96	5.39	2.82	
6/20/2018	3.53	1.95	2.84					
6/21/2018				5.24				
9/25/2018					2.23	6.22		
9/26/2018							3.15 (D)	
9/27/2018	7.07	0.629 (U)	1.94	6.11			(= /	
11/6/2018	11	3.525 (3)		6.1		5.38	2.95	
11/7/2018		1.41 (U)	8.58	· · ·	2.14	0.00	2.00	
8/26/2019		(5)	0.00		2	7.68		
8/27/2019	4.4				2.91		5.82	
8/28/2019		1.67	6.86	8.73	2.0.		0.02	
10/15/2019	4.92		0.00	0.70	3.28	8.7		
10/16/2019		1.92					7.5	
10/17/2019			7.85	7.97				
11/20/2019				9.8				
11/21/2019				0.0		7.34	8.89	
3/27/2020					2.33	9.63	9.54	
3/28/2020	4.16	1.44 (U)	11 (U)	11.7				
10/12/2020		(-)	(=)		2.66			
10/13/2020	3.71				2.00	7.43	7.75	
10/14/2020			8.97	13.1				
10/15/2020		2.56						
1/4/2021		5.84						
4/6/2021	2.83	1.43 (U)	7.89	9.66	2.2	7.02	7.8	
9/13/2021		- (-)		-	2.54	8.38		
9/14/2021	2.69	7.15	8.11	10.3			8.82	
Mean	4.634	2.441	5.409	7.618	2.61	5.283	5.015	
Std. Dev.	2.256	1.741	3.319	2.946	0.6799	3.21	3.04	
Upper Lim.	5.96	3.042	8.58	9.615	3.092	7.458	8.82	
Lower Lim.	3.112	1.387	1.94	5.621	2.128	3.108	2.01	
- 								

Constituent: Fluoride (mg/L) Analysis Run 12/29/2021 3:22 PM View: Appendix IV - Confidence Intervals

Plant McManus Client: Southern Company Data: McManus Ash Pond Data

					unem company D	ata. Wicivianus Asir i		
	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17	
8/30/2016					1.5	0.5		
8/31/2016		0.93	0.41	0.92				
10/25/2016							1.1	
11/30/2016		0.93	0.61	0.99	1.4	0.49	1.3	
2/15/2017					1.3	0.58	1.3	
2/16/2017		0.6	0.3 (J)	0.54				
5/31/2017					1.2	0.56	1.3	
6/1/2017	<0.1							
6/2/2017		0.34	0.19 (J)	0.42				
8/2/2017	0.27 (J)		()					
8/15/2017	(4)				1.2		1.2	
8/16/2017						0.45	· -	
8/17/2017	0.18 (J)	0.52	0.26 (J)	0.27 (J)		0.40		
4/4/2018	<0.1	0.02	0.20 (0)	0.27 (0)				
5/8/2018	0.56				0.01	-0 1	0.6	
6/19/2018	0.022 (1)	0.5	0.2271		0.91	<0.1	0.6	
6/20/2018	0.033 (J)	0.5	0.22 (J)	0.00 / "				
6/21/2018				0.28 (J)				
9/25/2018					1.1	<0.1		
9/26/2018							0.44 (D)	
9/27/2018	0.12 (J)	0.32	0.068 (J)	0.32 (D)				
11/6/2018	<0.1			0.086 (J)		0.084 (J)	0.4	
11/7/2018		0.35	10.3 (o)		<0.1			
3/6/2019			<0.1					
3/24/2019		0.32	0.19 (J)	0.14 (J)	0.99	0.14 (J)	0.31	
3/25/2019	0.055 (J)							
8/26/2019						<0.1		
8/27/2019	<0.1				1.1		<0.1	
8/28/2019		0.36	<0.1	<0.1				
10/15/2019	0.095 (J)				1	<0.1		
10/16/2019		0.41					0.083 (J)	
10/17/2019			<0.1	<0.1				
11/20/2019		0.34		<0.1				
11/21/2019						<0.1	<0.1	
3/27/2020					1.1	<0.1	<0.1	
3/28/2020	<0.1	0.34	<0.1	<0.1				
10/12/2020				-	1.2			
10/13/2020	<0.1					<0.1	<0.1	
10/14/2020	·		<0.1	<0.1				
10/15/2020		0.22	-0.1	-0.1				
1/4/2021		<0.1						
3/2/2021		~ U. I			1	<0.1		
					1	<0.1	. 0.1	
3/3/2021	-0.1	0.45	.0.4	-0.1			<0.1	
3/4/2021	<0.1	0.45	<0.1	<0.1		.0.4		
9/13/2021					1.4	<0.1		
9/14/2021	0.05	<0.1	<0.1	<0.1			<0.1	
Mean	0.1375	0.4194	0.1965	0.2916	1.1	0.2315	0.5396	
Std. Dev.	0.1296	0.2322	0.1497	0.2926	0.3249	0.2003	0.5124	
Upper Lim.	0.18	0.5406	0.3	0.54	1.296	0.5	1.2	
		0.2639	0.068					

Constituent: Lead (mg/L) Analysis Run 12/29/2021 3:22 PM View: Appendix IV - Confidence Intervals Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016				0.0001 (J)	<0.005	
8/31/2016	<0.005	<0.005	<0.005			
10/25/2016						<0.005
11/30/2016	0.0002 (J)	<0.005	<0.005	<0.005	<0.005	<0.005
2/15/2017				<0.005	<0.005	<0.005
2/16/2017	<0.005	<0.005	0.0002 (J)			
5/31/2017				9E-05 (J)	<0.005	<0.005
6/2/2017	<0.005	<0.005	<0.005			
8/15/2017				<0.005		0.0002 (J)
8/16/2017					8E-05 (J)	
8/17/2017	<0.005	<0.005	8E-05 (J)			
6/19/2018				<0.005	<0.005	<0.005
6/20/2018	<0.005	<0.005				
6/21/2018			<0.005			
9/25/2018				<0.005	<0.005	
9/26/2018						0.00027
9/27/2018	<0.005	<0.005	<0.005			
11/6/2018			<0.005		<0.005	<0.005
11/7/2018	<0.005	<0.005		<0.005		
3/6/2019		<0.005				
8/26/2019					<0.005	
8/27/2019				0.00022 (J)		0.00014 (J)
8/28/2019	<0.005	<0.005	0.0001 (J)			
10/15/2019				5.6E-05 (J)	<0.005	
10/16/2019	<0.005					0.00034 (J)
10/17/2019		0.00012 (J)	<0.005			
3/27/2020				<0.005	<0.005	<0.005
3/28/2020	<0.005	<0.005	<0.005			
10/12/2020				<0.005		
10/13/2020					<0.005	<0.005
10/14/2020		<0.005	<0.005			
10/15/2020	<0.005					
1/4/2021	<0.005					
3/2/2021				<0.005	<0.005	
3/3/2021						<0.005
3/4/2021	<0.005	<0.005	<0.005			
9/13/2021				<0.005	<0.005	
9/14/2021	<0.005	<0.005	<0.005			<0.005
Mean	0.00468	0.004675	0.003956	0.003605	0.004649	0.003639
Std. Dev.	0.001239	0.00126	0.002075	0.00229	0.001315	0.002233
Upper Lim.	0.005	0.005	0.005	0.005	0.005	0.005
Lower Lim.	0.0002	0.00012	0.0002	0.0001	8E-05	0.00027

 $\label{lem:constituent: Lithium (mg/L)} Constituent: Lithium (mg/L) \quad Analysis \ Run \ 12/29/2021 \ 3:22 \ PM \quad View: Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ Intervals \ Appendix \ IV - Confidence \ IV - Co$

9/20/2016	DPZ-2	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016 8/31/2016			0.0210 (1)	0.0380 (1)	0.0122 (1)	0.0102 (J)	0.0112 (J)	
			0.0219 (J)	0.0389 (J)	0.0122 (J)			0.007 (1)
10/25/2016			0.0222 (1)	0.0202 (1)	0.011 (1)	0.0106 (1)	-0.010	0.007 (J)
11/30/2016			0.0333 (J)	0.0303 (J)	0.011 (J)	0.0106 (J)	<0.012	0.0086 (J)
2/15/2017 2/16/2017			0.0276 (1)	0.05 (1)	0.014271)	0.0115 (J)	0.0105 (J)	0.0149 (J)
5/31/2017			0.0376 (J)	0.05 (J)	0.0142 (J)	0.011 (J)	0.0106 (J)	0.019 (J)
6/1/2017		<0.012				0.011 (3)	0.0100 (3)	0.019 (3)
6/2/2017		<0.012	0.0346 (1)	0.0477 (1)	0.0229 (J)			
8/2/2017		<0.012	0.0346 (J)	0.0477 (J)	0.0229 (3)			
8/15/2017		~0.012				0.0123 (J)		0.016 (J)
8/16/2017						0.0123 (3)	0.0145 (J)	0.010 (3)
8/17/2017		<0.012	0.0367 (J)	0.0645	0.0241 (J)		0.0143 (3)	
4/4/2018		0.0012 0.0013 (J)	0.0307 (0)	0.0043	0.0241 (0)			
5/8/2018		0.0013 (J)						
6/19/2018		0.0012 (3)				0.012 (J)	0.044 (J)	0.021 (J)
6/20/2018		0.0015 (J)	0.034 (J)	0.066 (J)		0.012 (3)	0.044 (3)	0.021 (3)
6/21/2018		0.0013 (3)	0.034 (3)	0.000 (3)	0.03 (J)			
9/25/2018					0.03 (3)	0.011 (J)	0.041 (J)	
9/26/2018						0.011 (3)	0.041 (3)	0.02 (J)
9/27/2018		0.0021 (J)	0.023 (J)	0.045 (J)	0.034 (J)			0.02 (0)
11/6/2018		0.0021 (J)	0.023 (3)	0.043 (3)	0.037 (J)		0.047 (J)	0.017 (J)
11/7/2018		0.0030 (0)	0.022 (J)	0.11	0.037 (0)	0.013 (J)	0.047 (0)	0.017 (0)
3/6/2019			0.022 (3)	0.12		0.013 (0)		
8/26/2019				52			0.059	
8/27/2019		0.002 (J)				0.012 (J)	0.000	0.023 (J)
8/28/2019		0.002 (0)	0.023 (J)	0.13	0.12	0.0.12 (0)		0.020 (0)
10/15/2019		0.0019 (J)				0.012 (J)	0.056 (J)	
10/16/2019		(0)	0.021 (J)			(5)		0.024 (J)
10/17/2019			(-)	0.12	0.096			(-)
11/20/2019					0.12			
11/21/2019							0.052	
3/27/2020						<0.012	0.052	0.033 (J)
3/28/2020	0.078 (J)	<0.012	0.014 (J)	0.064	0.027 (J)			(-)
6/16/2020	0.096 (J)		. ,		()			
10/12/2020	, ,					0.011 (J)		
10/13/2020		<0.012				. ,	0.046 (J)	0.028 (J)
10/14/2020				0.11	0.039 (J)			
10/15/2020	0.093		0.57					
1/4/2021			0.043 (J)					
3/2/2021						<0.012	0.046 (J)	
3/3/2021								<0.012
3/4/2021	0.094 (J)	<0.012	0.017 (J)	0.096 (J)	0.035 (J)			
9/13/2021						0.01 (J)	0.047	
9/14/2021	0.092	<0.012	0.042 (J)	0.084	0.035 (J)			0.035 (J)
Mean	0.0906	0.003986	0.06487	0.07843	0.04383	0.01061	0.03619	0.01946
Std. Dev.	0.007197	0.002174	0.14	0.03355	0.03675	0.002124	0.01935	0.008888
Upper Lim.	0.0996	0.006	0.042	0.1012	0.05517	0.01198	0.05038	0.02576
Lower Lim.	0.07843	0.0015	0.021	0.05569	0.02018	0.009702	0.03288	0.01317

Constituent: Mercury (mg/L) Analysis Run 12/29/2021 3:22 PM View: Appendix IV - Confidence Intervals

					. ,	
	MCM-04	MCM-05	MCM-06	MCM-07	MCM-14	MCM-17
8/30/2016					<0.0002	
8/31/2016		<0.0002	<0.0002	<0.0002		
10/25/2016						<0.0002
11/30/2016		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
2/15/2017					<0.0002	<0.0002
2/16/2017		<0.0002	<0.0002	<0.0002		
5/31/2017					<0.0002	<0.0002
6/1/2017	<0.0002					
6/2/2017		4.2E-05 (J)	<0.0002	<0.0002		
8/2/2017	<0.0002					
8/15/2017						<0.0002
8/16/2017					<0.0002	
8/17/2017	<0.0002	<0.0002	<0.0002	<0.0002		
4/4/2018	<0.0002					
5/8/2018	<0.0002					
6/19/2018					<0.0002	<0.0002
6/20/2018	<0.0002	<0.0002	<0.0002			
6/21/2018				<0.0002		
9/25/2018					<0.0002	
9/26/2018						3.6E-05
9/27/2018	<0.0002	<0.0002	<0.0002	<0.0002		
11/6/2018	0.00071			0.00067	0.00066	0.00064
11/7/2018		<0.0002	<0.0002			
3/6/2019			<0.0002			
8/26/2019					<0.0002	
8/27/2019	<0.0002					<0.0002
8/28/2019		<0.0002	<0.0002	<0.0002		
3/27/2020					<0.0002	<0.0002
3/28/2020	<0.0002	<0.0002	<0.0002	<0.0002		
9/13/2021					<0.0002	
9/14/2021	<0.0002	<0.0002	0.00016 (J)	<0.0002		<0.0002
Mean	0.0002464	0.0001856	0.0001967	0.0002427	0.0002418	0.0002251
Std. Dev.	0.0001538	4.764E-05	1.155E-05	0.0001417	0.0001387	0.0001461
Upper Lim.	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Lower Lim.	0.0002	0.0002	0.00016	0.0002	0.0002	0.0002

Constituent: Molybdenum (mg/L) Analysis Run 12/29/2021 3:22 PM View: Appendix IV - Confidence Intervals

	MCM-05	MCM-06	MCM-17
8/31/2016	<0.01	<0.01	
10/25/2016			<0.01
11/30/2016	<0.01	<0.01	<0.01
2/15/2017			<0.01
2/16/2017	<0.01	<0.01	
5/31/2017			<0.01
6/2/2017	<0.01	<0.01	
8/15/2017			<0.01
8/17/2017	0.0012 (J)	0.0025 (J)	
6/19/2018			<0.01
6/20/2018	<0.01	<0.01	
9/26/2018			0.0019
9/27/2018	<0.01	<0.01	
11/6/2018			<0.01
11/7/2018	<0.01	0.0024 (J)	
3/6/2019		<0.01	
8/27/2019			<0.01
8/28/2019	<0.01	0.0017 (J)	
10/16/2019	<0.01		<0.01
10/17/2019		0.0017 (J)	
3/27/2020			<0.01
3/28/2020	<0.01	<0.01	
9/14/2021	0.0099 (J)	<0.01	<0.01
Mean	0.009258	0.007562	0.009325
Std. Dev.	0.002538	0.003813	0.002338
Upper Lim.	0.01	0.01	0.01
Lower Lim.	0.0099	0.0024	0.0019

 $Constituent: Selenium \, (mg/L) \quad Analysis \, Run \, 12/29/2021 \, 3:22 \, PM \quad View: \, Appendix \, IV - Confidence \, Intervals \, IV - Confidence \, Intervals \, IV - Confidence \,$

	MCM-04	MCM-05	MCM-06	MCM-07	MCM-12	MCM-14	MCM-17
8/30/2016					0.0011 (J)	<0.01	
8/31/2016		0.002 (J)	0.0015 (J)	0.0021 (J)			
10/25/2016							0.003 (J)
11/30/2016		0.0023 (J)	0.0054 (J)	<0.01	0.0023 (J)	<0.01	0.0087 (J)
2/15/2017					0.0021 (J)	0.0014 (J)	0.0067 (J)
2/16/2017		0.002 (J)	0.0022 (J)	0.0025 (J)			
5/31/2017					<0.01	<0.01	0.0018 (J)
6/1/2017	<0.01						
6/2/2017		<0.01	<0.01	<0.01			
8/2/2017	<0.01						
8/15/2017					0.0021 (J)		0.0025 (J)
8/16/2017					(-,	0.0018 (J)	(-)
8/17/2017	<0.01	<0.01	0.002 (J)	0.0033 (J)		0.00.0	
4/4/2018	<0.01	0.01	0.002 (0)	0.0000 (0)			
5/8/2018	<0.01						
6/19/2018	<0.01				0.0017 (1)	-0.01	<0.01
	-0.01	-0.01	-0.01		0.0017 (J)	<0.01	<0.01
6/20/2018	<0.01	<0.01	<0.01	.0.04			
6/21/2018				<0.01			
9/25/2018					0.002 (J)	0.0019 (J)	
9/26/2018							0.0016 (J)
9/27/2018	<0.01	<0.01	<0.01	0.0023 (J)			
11/6/2018	0.0025 (J)			0.0048 (J)		0.0057 (J)	<0.01
11/7/2018		<0.01	0.0075 (J)		<0.01		
3/6/2019			0.0024 (J)				
8/26/2019						0.0025 (J)	
8/27/2019	<0.01				0.0019 (J)		0.0018 (J)
8/28/2019		<0.01	0.0014 (J)	0.0019 (J)			
10/15/2019	<0.01				<0.01	0.003 (J)	
10/16/2019		<0.01					<0.01
10/17/2019			0.0066 (J)	0.0049 (J)			
3/27/2020					<0.01	<0.01	<0.01
3/28/2020	<0.01	<0.01	<0.01	<0.01			
10/12/2020					<0.01		
10/13/2020	<0.01					<0.01	<0.01
10/14/2020			<0.01	<0.01			
10/15/2020		0.0028 (J)					
1/4/2021		<0.01					
3/2/2021					<0.01	<0.01	
3/3/2021							<0.01
3/4/2021	0.00038 (J)	<0.01	<0.01	<0.01			
9/13/2021	2.00000 (0)	3.0.	3.0 .	5.0 .	<0.01	<0.01	
9/14/2021	<0.01	<0.01	<0.01	<0.01	5.01	5.01	0.0021
Mean	0.008777	0.00794	0.0066	0.006557	0.005943	0.006879	0.0021
	0.008777		0.0066				
Std. Dev.		0.00354	0.003726	0.003675	0.004219	0.003864	0.003859 0.01
Upper Lim.	0.01	0.01		0.01	0.01	0.01	
Lower Lim.	0.0025	0.0023	0.002	0.0023	0.0019	0.0019	0.0018

Constituent: Thallium (mg/L) Analysis Run 12/29/2021 3:22 PM View: Appendix IV - Confidence Intervals
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

	MCM-06	MCM-17
8/31/2016	<0.002	
10/25/2016		<0.002
11/30/2016	<0.002	<0.002
2/15/2017		<0.002
2/16/2017	<0.002	
5/31/2017		<0.002
6/2/2017	<0.002	
8/15/2017		<0.002
8/17/2017	<0.002	
6/19/2018		<0.002
6/20/2018	<0.002	
9/26/2018		0.00014
9/27/2018	<0.002	
11/6/2018		<0.002
11/7/2018	<0.002	
3/6/2019	<0.002	
8/27/2019		<0.002
8/28/2019	<0.002	
10/16/2019		<0.002
10/17/2019	7.6E-05 (J)	
3/27/2020		<0.002
3/28/2020	<0.002	
9/14/2021	<0.002	<0.002
Mean	0.001852	0.001845
Std. Dev.	0.0005336	0.0005369
Upper Lim.	0.002	0.002
Lower Lim.	7.6E-05	0.00014

FIGURE J.

Appendix IV Trend Tests - All Results (No Significant)

	Plant McManus	Client: Southern Company	Data: McMan	us Ash Po	nd Data	Printed	12/2/2	021, 2:2	7 PM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	MCM-01 (bg)		0.001171	42	53	No	15	6.667	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-02 (bg)		0	0	53	No	15	40	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-06		0.04091	53	68	No	18	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-11 (bg)		-0.00367	-56	-58	No	16	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-15 (bg)		0.0002099	14	48	No	14	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-16 (bg)		0	-1	-48	No	14	50	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-18 (bg)		-0.002162	-28	-38	No	12	16.67	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-19 (bg)		-0.0005531	-7	-38	No	12	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	MCM-20 (bg)		-0.005196	-12	-38	No	12	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-01 (bg)		0	1	48	No	14	92.86	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-02 (bg)		0	1	48	No	14	92.86	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-06		0.01364	49	53	No	15	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-11 (bg)		0	12	48	No	14	42.86	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-14		0.007102	40	53	No	15	6.667	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-15 (bg)		0	16	48	No	14	57.14	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-16 (bg)		0	1	48	No	14	92.86	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-18 (bg)		0.01173	12	25	No	9	44.44	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-19 (bg)		0	6	38	No	12	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MCM-20 (bg)		-0.0009363	-8	-38	No	12	0	n/a	n/a	0.01	NP

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Arsenic Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Constituent: Arsenic Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Arsenic Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

12/27/19

11/4/20

2/16/19

9/14/21

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

5/31/17

4/9/18

Constituent: Arsenic Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Arsenic Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Arsenic Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Arsenic Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Constituent: Arsenic Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Arsenic Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Lithium Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Lithium Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Constituent: Lithium Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Constituent: Lithium Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

9/8/19

9/5/18

9/10/20

9/13/21

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

8/30/16

9/2/17

Constituent: Lithium Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Constituent: Lithium Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Constituent: Lithium Analysis Run 12/2/2021 2:26 PM View: Appendix IV - Trend Tests
Plant McManus Client: Southern Company Data: McManus Ash Pond Data

APPENDIX F

Lithium Alternative Source Demonstration Report

2021 LITHIUM ALTERNATIVE SOURCE DEMONSTRATION

Plant McManus Former Ash Pond 1, Brunswick, Georgia

October 25, 2021

Cuffry Ca

2021 LITHIUM ALTERNATIVE SOURCE DEMONSTRATION

Plant McManus Former Ash Pond 1, Brunswick, Georgia

Prepared for:

Georgia Power Company

Prepared by:

Arcadis U.S., Inc.

2839 Paces Ferry Road

Suite 900

Atlanta

Georgia 30339

Tel 770 431 8666

Fax 770 435 2666

Date:

October 25, 2021

Geoffrey Gay, PE Project Manager

Margaret Contile PhD

Maryenit Gentles

Margaret Gentile, PhD Technical Expert

Kathryn Farris, M. Sc.

Environmental Engineer

2021 LITHIUM ALTERNATIVE SOURCE DEMONSTRATION PLANT MCMANUS FORMER ASH POND 1

CONTENTS

Р	rofessi	ona	ll Certification	ii
1	Intr	odu	iction	1
2	Site	e Ba	ackground	1
	2.1	Sit	e Geology	2
	2.2	Sit	e Hydrogeology	2
	2.3		pal Ash Removal	
	2.3.	1	Coal Ash Removal Timeline	3
	2.3.	2	Dewatering	3
3	Alte	erna	ative Source Demonstration	3
	3.1.	1	Lithium in Surface Water	⊿
	3.1.	2	Groundwater and Surface Water Geochemistry Markers	4
	3.1.	3	Hydrogeologic Conditions	6
	3.1. Rer		Shifts in Hydraulic Conditions and Associated Water Quality Changes during Coal Ash	<i>€</i>
4	Co	nclu	sion and Recommendation	7
5	Ref	fere	nces	8

TABLES

- Table 1. Monitoring Well Network and Piezometers
- Table 2. Lithium in Surface Water
- Table 3. March 2021 and July 2021 Result Summary of Select Wells and Background Surface Water
- Table 4. Single Well Hydraulic Conductivity Test Results

2021 LITHIUM ALTERNATIVE SOURCE DEMONSTRATION PLANT MCMANUS FORMER ASH POND 1

FIGURES

Figure 1.	Site Location and Well Location Map
igure 2.	Dewatering Progression Aerials
Figure 3.	Schematic: Dewatering Hydrologic Influence
igure 4.	ASD Surface Water Sample Locations (March 2021)
Figure 5.	Surface and Groundwater Geochemistry
igure 6.	Sodium to Chloride Versus Total Dissolved Solids
igure 7.	Ion Composition Comparison
igure 8.	Tidal Influence on Monitoring Wells
igure 9.	Concentration Trends in MCM-14

APPENDICES

- A Resolute Potentiometric Maps
- B Sampling Log and Analytical Reports

PROFESSIONAL CERTIFICATION

This 2021 Lithium Alternative Source Demonstration for the Georgia Power Company Plant McManus Former Ash Pond 1 has been prepared in compliance with applicable United States Environmental Protection Agency Coal Combustion Residuals Rule and Georgia Environmental Protection Division Solid Waste Rules (Chapter 391-3-4) under the direction of a Georgia licensed professional engineer.

J. Geoffrey Gay, P.E. Principal Environmental Engineer Georgia Registration No. PE 27801 10.25.21

Date

1 INTRODUCTION

Arcadis U.S., Inc. (Arcadis) has prepared this alternate source demonstration (ASD) in accordance with the United States Environmental Protection Agency Coal Combustion Residuals (CCR) Rule (40 Code of Federal Regulations [CFR] Part 257 Subpart D) and the Georgia Environmental Protection Division (GAEPD) Rules for Solid Waste Management 391-3-4-.10(6)(a). This report presents an ASD for the statistically significant levels (SSLs) of lithium, an Appendix IV groundwater monitoring constituent, observed in groundwater at monitoring well MCM-14 at Georgia Power Company's Plant McManus former Ash Pond 1 (AP-1) (the site; **Figure 1**). The site and CCR monitoring well network are shown on **Figure 1** and well construction details are presented in **Table 1**.

Based on an evaluation of groundwater trends and surface water quality, the lithium SSL observed at MCM-14 is likely caused by the natural mixing of brackish surface water with the groundwater and variability in the chemistry resulting from dewatering activities in the ash pond during the removal of CCR in the ash pond during closure activities. Lithium is a naturally-occurring element in seawater, typically ranging from 0.1 - 0.2 milligrams per liter (mg/L) and is present in the brackish water that is a mix of seawater and freshwater surrounding the site (Riley and Tongudai 1964; Segar 1998).

To support this ASD, the following analyses are presented in Section 3.0:

- Evaluation of lithium concentrations in surface waters. This evaluation demonstrates that the range of lithium concentrations observed in surface water is greater than the range of lithium concentrations observed at MCM-14.
- Comparison of geochemistry markers in surface waters and groundwater. This comparison
 demonstrates that the monitoring wells where lithium is present in groundwater yield similar
 geochemistry to each other and the surface water, while being distinct from groundwater in monitoring
 wells with low estimated or non-detect lithium.
- 3. Evaluation of variation in hydraulic conductivity across the site and variable groundwater level response to tidal fluctuations which demonstrates the presence of variable mixing of brackish water with groundwater, resulting in spatial and temporal variability of groundwater lithium concentrations at the site.
- 4. Evaluation of groundwater flow conditions and concentration trends during CCR removal. Dewatering associated with CCR removal resulted in a consistent cone of depression and inward lateral gradient during high and low tides. The dewatered inward flow conditions correlate with a shift in groundwater quality at several monitoring wells, including MCM-14, toward the geochemistry of the surface water.

Combined, these lines of evidence demonstrate that the former CCR unit is not the source of lithium SSLs observed in well MCM-14.

2 SITE BACKGROUND

Plant McManus is an electrical power generation plant located on Crispen Island, near Brunswick, Georgia. Crispen Island originally consisted of several smaller islands that were joined to construct Plant McManus. The island was separated from the mainland to the northeast by tidal marsh and is bounded to the west and southwest by the Turtle River. The Turtle River is a tidally influenced brackish estuary that can vary in height by more than 8 feet during a tidal cycle (Resolute Environmental & Water Resources Consulting [Resolute] 2020).

The plant was originally constructed in 1952. Use of coal for power production ceased in 1972, and Georgia Power Company retired all coal power generating assets at Plant McManus prior to April 16, 2015. During operation of the coal-fired units from 1959 until 1972, CCR was disposed in an approximately 80-acre surface impoundment (AP-1) on the Plant McManus site northeast of the plant (**Figure 1**).

2.1 Site Geology

Plant McManus is located within the Coastal Plain Province of Georgia. The soils that make up the surficial aquifer are comprised of very fine sands with discontinuous clay layers, from land surface (or beneath a shallow fill layer) to depths ranging from 33 to 43 feet below ground surface (bgs) (Resolute 2020). These very fine sands and discontinuous clay layers are interpreted to be the Upper Satilla Formation, which fines downward to a silty fine sand of either the Lower Satilla Formation (ATC Associates, Inc. 1997) or the Cypresshead Formation (Huddleston 1988).

Gamma logs performed in on-site borings indicate a lower permeability layer starting between 40 and 52 feet bgs (Resolute 2020). This is consistent with the depths of the upper confining unit of the Ebenezer Formation, described by Weems and Edwards (2001) as two pairs of alternating confining units and water-bearing zones, extending down to approximately 185 feet bgs.

The surface of the tidal marsh is covered by silt and vegetation, except where scoured by tidal creeks with fine sands in their channels. The surficial aquifer formed in a similar depositional environment, with paleo tidal channels likely present throughout, and discontinuous layers/channels of fine sand or clay. The surficial aquifer is generally unconfined, but there may be localized layers of lower permeability soils, resulting in semi-confined conditions in some locations.

2.2 Site Hydrogeology

There are two components of groundwater flow at the site. The first is along a northeast to southwest axis and originates from the mainland to the northeast and Crispen Island to the southwest. The groundwater elevations in the monitoring wells and piezometers on the mainland (MCM-01, -02, -15, and -16) and Crispen Island (MCM-08 and -11) are consistently higher than the surface water elevation in former AP-1 and the monitoring wells along both dikes, despite tidal fluctuations. This indicates that groundwater flow is consistently towards former AP-1 from the northeast and southwest. Potentiometric maps are provided in **Appendix A – Figures A1 and A2**.

The second component of groundwater flow is along the northwest to southeast axis between former AP-1 and the tidal marsh. Under the present ambient conditions, without the influence of dewatering, the gradient changes direction with the tides. Based on the March 2021 high and low tide potentiometric surface maps presented in **Appendix A**, at low tide the gradient is from former AP-1 and at high tide the gradient is inwards towards former AP-1.

2.3 Coal Ash Removal

2.3.1 Coal Ash Removal Timeline

In 2016, Georgia Power initiated CCR removal activities at former AP-1. Parts of former AP-1 were subcategorized during excavation activities to facilitate removal (Areas A, B, and C [Figure 2]). In general, the progression of CCR material removal was conducted in the following sequence:

- 1. March 2016 Began removal of bulk CCR material from Areas A, B, and C.
- 2. February 2017 Began saturated CCR material removal from Area C.
- 3. March 2018 Began saturated CCR material removal from Area B.
- 4. April 2018 Began saturated CCR material removal from Area A.
- 5. October 2019 Completed excavation activities.

2.3.2 Dewatering

Dewatering of AP-1 was required for CCR for removal and pond closure. Dewatering wells (RW-1 through RW-10) were installed along the northern dike and dewatering activities progressed with excavation activities. After Hurricane Irma interrupted excavation activities in fall 2017, dewatering occurred in a stepwise process according to which pond was excavated. During excavation of Area C, water was pumped using a submersible pump from Area C to Areas A and B, which were within the influence of the dewatering wells. Water from Areas A and B was captured by the dewatering system, treated, and discharged. Once Area C was cleared of CCR, dewatering and CCR removal began at Area B followed by Area A. **Appendix A** provides a series of groundwater potentiometric maps during and after dewatering and excavation (**Figures A3 and A4** and **Figures A1 and A2**, respectively). An illustration of the hydrologic impacts of dewatering is provided as **Figure 3**. Dewatering activities began in February 2017 and operated nearly continuously for a period of over 2 years until April 2019. After CCR removal and until April 2021, water was pumped from the pond in order to maintain pond water elevation. In April 2021 pumping at the pond stopped.

The prolonged pumping created a temporary shift in the hydrologic characteristics of the site. Further description of this hydraulic shift and its effect on lithium concentrations at monitoring well MCM-14 is discussed in Section 3.1.4.

3 ALTERNATIVE SOURCE DEMONSTRATION

To evaluate alternative sources, the site conceptual model was revisited and site geochemistry, hydrogeology, historical data, and CCR removal activities were reviewed. Based on the data evaluation, the SSLs for lithium have been attributed to influxes of brackish surface water from the estuary during excavation dewatering and tidal influence in wells along the dike.

3.1.1 Lithium in Surface Water

A comparison of surface water quality to groundwater quality demonstrates that the range of lithium concentrations observed in surface water at the site is comparable to those observed in groundwater and that surface water is a viable source for lithium observed in well MCM-14. As part of routine monitoring, surface water samples are collected semi-annually. The most recent surface water sampling was conducted concurrent with March 2021 groundwater sampling and is reported in the 2021 Annual Groundwater Monitoring and Corrective Action Report (Resolute 2021) and summarized in **Table 2**.

In March 2021, surface water samples were collected from four transects (T1 through T4), as shown on **Figures 4A and 4B**. Water at four sample locations was collected in each transect. Samples were also collected from two background locations (**Figure 5**). One background surface water location sampled was the low tide background location, BG-1, in Cowpen Creek, north of its confluence with Burnett Creek. The other surface water sample was collected at high tide from background location 2 (BG-2), located in the Turtle River, north of its confluence with Gibson Creek.

The lithium results from surface water sampling are presented in **Table 2**. Surface water sampling locations in the T4 transect are closest to MCM-14. The lithium concentrations in the samples collected from the T4 transect range from 0.066 to 0.083 mg/L (**Table 2**), while groundwater concentrations in MCM-14 ranged from 0.046 to 0.059 mg/L between 2019 and March 2021 when the SSL was identified. Greater surface water than groundwater concentrations indicate that surface water may be mixing with groundwater and represent a viable source for lithium in groundwater. An additional groundwater sample was collected at MCM-14 in July 2021, when water was no longer being removed from the pond. The lithium concentration in that sample is reported as non-detect below the reporting limit of 0.010 mg/L. Results from future sampling will be used to evaluate whether the analytical result for lithium observed in July 2021 is sustained and representative.

Based on review of surface water quality data collected near MCM-14, surface water is a viable source of lithium to groundwater. Lithium concentrations in surface water are greater than those observed in groundwater.

3.1.2 Groundwater and Surface Water Geochemistry Markers

Groundwater and surface water data from the site were evaluated for variability in chemical composition, ionic ratios, and CCR indicator parameters as markers to support this ASD. Comparison of geochemistry markers in surface water and groundwater demonstrate that the monitoring wells where lithium is present in groundwater yield similar geochemistry to each other and the surface water and are distinct from groundwater in monitoring wells with low or non-detect lithium. During the March 2021 sampling event, surface water from two background locations (BG-1 and BG-2) and groundwater from background, mainland, and southern dike wells (MCM-01, -02, -11, -12, -14, -15, -16, -17, -18, -19, and MCM-20) were analyzed for select cations, anions, metals, alkalinity, and total dissolved solids to evaluate geochemical markers (**Figure 5, Table 3**). The background surface water samples were collected from the two locations within Turtle River (BG-1 and BG-2), consistent with previous sampling events. Notes regarding field activities completed by Resolute and analytical reports for the March 2021 sampling event are provided in the 2021 Annual Groundwater Monitoring and Corrective Action Report (Resolute 2021).

2021 LITHIUM ALTERNATIVE SOURCE DEMONSTRATION PLANT MCMANUS FORMER ASH POND 1

Analytical reports and purge log for the July 2021 sample collected at MCM-14 are included as Appendix B of this report.

A comparison of surface water and monitoring well geochemical data provide support that the source of lithium is brackish surface water. Piper plots were developed from the March data from surface water and groundwater monitoring wells (**Figure 5**). Piper plots assess relative abundance of major cations and anions in groundwater and are a useful tool in differentiating water sources (Chu et al. 2017). Overall, the chemical compositions of groundwater and surface water reflect a sodium-chloride-type water source. However, Figure 5 shows a tight cluster of southern dike wells (MCM-14 & MCM-17) with background surface water and groundwater. This tight cluster of sample points indicate similar major ion chemical compositions of groundwater in the dike wells and background groundwater and surface water.

Figure 6 shows a plot of sodium and chloride ratios versus total dissolved solids (TDS) for the same wells shown on the Piper diagram (MCM-01, -02, -11, -12, -14, -15, -16, -17, -18, -19, and MCM-20) as well as background surface water locations BG-1, BG-2 and the nearest surface water transect T4. The surface water samples from the background locations and T4 transect are high in TDS, plotting in two clusters along the right of the x-axis. The sodium-to-chloride ratios in these samples are clustered around one area of the plot. Monitoring wells with water quality clustered tightly to surface water on the Piper plot also showed sodium-to-chloride ratios near one over a range of TDS concentrations. MCM-14 plots close to the surface water samples with a sodium-to-chloride ratio of 0.9 and TDS concentration of 12,000 mg/L. This ratio is close to the sodium-to-chloride (molar) ratio of approximately 0.86 reported for average seawater composition (e.g., Hem 1989) and for brackish water in coastal regions (Klassen, et al. 2014; Shin et al. 2020). In contrast, mainland groundwater wells plotted with TDS less than 2,000 mg/L and sodium-to-chloride ratios equal or greater than 1. This higher proportion of sodium observed at mainland wells can be seen from continental (feldspar) weathering sources or exchange of sodium for calcium during the mixing process (Anders 2013; Shin et al. 2020). Thus, the sodium-to-chloride ratios reflect distinct sources and processes, with the ratio at MCM-14 showing a mixing signature of brackish with surface water.

To analyze several CCR indicator ions in conjunction with lithium simultaneously, concentrations for the ions are displayed on a star plot on **Figures 5 and 7** and provided in **Table 3**. This method uses ion composition to differentiate sources and assumes that select ions in groundwater from a CCR source, such as boron, sulfate, calcium, chloride, and lithium, are conservative in groundwater and not retarded due to processes such as sorption or precipitation. The star plots visualize the relative amounts of ions present at varying orders of magnitude. A similarity in shape represents similar ratios of ions, indicating a similar source. On each plot, the surface water chemistry collected from location BG-2 in March 2021 is shown as a black dashed line, while groundwater chemistry from the monitoring well is shown as a colorful solid line. Similar groundwater signatures are grouped by color. The star plots show that concentrations of boron, calcium, sulfate, lithium, and chloride in groundwater collected in March 2021 from MCM-14 are present in a composition that is similar to surface water and to each other. In contrast, groundwater collected from the island and mainland have compositions dissimilar to the surface water samples. Lithium concentrations at MCM-14 are similar to the range of surface water, as discussed in Section 3.1.1, and higher than at wells located on the mainland and island.

The July 2021 analytical results for groundwater collected at MCM-14 present different a composition than that observed in March 2021 (**Figure 7**). As discussed in Section 3.1.4, this sample was collected

after water was no longer being removed from the pond. No lithium was detected in this sample above the detection limit of 0.010 mg/L. The ion composition in this sample is more similar to those found in background wells MCM-19, and -20.

The comparison of geochemistry markers in surface waters and groundwater demonstrates that the groundwater chemistry at MCM-14 location yields a similar geochemistry to surface water. This supports the understanding that surface water influences the groundwater chemistry at MCM-14 location.

3.1.3 Hydrogeologic Conditions

Variation in hydraulic conductivity across the site and variable groundwater level response to tidal fluctuations show that locations such as MCM-14 are in closer hydraulic communication with the tidal marsh than other wells. Site data collected to date, including slug tests and tidal studies, demonstrate heterogenous hydrogeologic conditions, with more groundwater flow in monitoring wells MCM-05, MCM-06, MCM-07, and MCM-14, located along the dikes (**Figure 1**).

Single well slug tests conducted in November 2019 identified a wide distribution of hydraulic conductivities across the site, from 8.67 x 10⁻⁵ centimeter per second (cm/sec) to 2.90 x 10⁻³ cm/sec (Resolute 2020). The highest hydraulic conductivities were found primarily within monitoring wells along the northern and southern dikes at monitoring wells MCM-05, MCM-06, MCM-14, and MCM-17 (**Table 4**), although wells exhibiting high conductivities are also present within the mainland.

A tidal study was conducted to evaluate sensitivities of groundwater to changes in tides (Resolute 2020). Transducers were deployed over a period of several months. Along the southern dike, MCM-14 was found to be more sensitive to tidal fluctuations during the study based on the magnitude of the tidal fluctuations (**Figure 8**). Together, the hydraulic conductivity and tidal data show MCM-14 is in hydraulic communication with the tidal marsh and surface water. As discussed previously, lithium has been shown to be naturally present in surface water near well MCM-14 at concentrations greater than groundwater. The demonstrated communication between MCM-14 and surface water, combined with the lithium concentrations in surface water, establish that surface water is a viable alternate source for lithium at this location.

3.1.4 Shifts in Hydraulic Conditions and Associated Water Quality Changes during Coal Ash Removal

Dewatering associated with CCR removal resulted in a consistent cone of depression and inward gradient during high and low tides. The dewatered conditions correlate with a shift in groundwater quality at several monitoring wells, including MCM-14, toward the chemical composition of the surface water.

During the dewatering and excavation process, the water level in AP-1 was depressed below the water level in the tidal marsh (see March 2019 high and low tide potentiometric surface maps in **Appendix A**). As a result, regardless of the tidal stage, there was a consistent cone of depression and gradient towards AP-1 during dewatering activities, favoring movement of surface water and groundwater flow into the cone of depression towards AP-1 and the dewatering wells (**Figure 3**).

The trend of lithium concentrations over time at MCM-14 aligns with dewatering activities. Lithium concentrations at MCM-14 increased in conjunction with the progression of excavation activities and

dewatering at Area C (**Figure 9**). The increase in lithium and other water quality parameters such as total dissolved solids, sulfate, and boron in MCM-14 likely reflects the point when the pond had been fully dewatered and the dewatering well system began to draw in more surface water as compared to pond water. As presented in the previous section, the shift in geochemistry became like that of surface water; therefore, the lithium is interpreted to be derived from the movement of brackish surface water towards well when pumping was occurring for dewatering.

After excavation and dewatering ceased, AP-1 was allowed to fill with water, however, water continued to be removed from the pond to maintain the pond elevation. In April 2021 pumping of water from the pond stopped, which allowed for an increase in pond water elevation. Following this change in the hydrogeologic conditions, lithium concentration decreased to less than the detection limit of 0.010 mg/L in July 2021. This decrease in lithium is potentially associated with the change in pond water management, but evaluation of future sampling results is needed to confirm.

The observation that shifts in groundwater chemistry and an increase in lithium concentrations at MCM-14 coincided with the establishment of inward gradients during pond dewatering activities, and the subsequent decrease in lithium concentrations after pond water elevation control ended provide further support that surface water influences the groundwater chemistry at MCM-14 location.

4 CONCLUSION AND RECOMMENDATION

This report serves as an ASD prepared in accordance with 40 CFR § 257.95(g)(3)(ii) and demonstrates that the SSL for lithium at Plant McManus former AP-1 monitoring well MCM-14 is attributed to the variability of naturally occurring lithium in the adjacent brackish estuary and not to a release from AP-1. This is demonstrated by:

- Presence of lithium in surface water in sampling transect T4 near MCM-14 at concentrations greater than groundwater in MCM-14;
- The groundwater zone screened by MCM-14 is in hydraulic communication with the tidal marsh and surface water based on tidal fluctuation;
- Similarity of geochemical markers in surface water and groundwater wells with elevated concentrations of lithium indicating that surface water and groundwater are in communication and that surface water chemistry is influencing groundwater chemistry; and
- Shifts in groundwater chemistry and an increase in lithium concentrations at MCM-14 that coincided
 with the establishment of inward gradients during pond dewatering activities and subsequent
 decrease in lithium concentrations after pond water elevation control ended.

The evidence supports the conclusion that the lithium SSL is attributable to the influx of brackish surface water and is not attributable to CCR storage or a release from former AP-1. Therefore, no further action for lithium is warranted.

5 REFERENCES

- Anders, R., Mendez, G., Futa, K., Danskin, W., 2013. A Geochemical Approach to Determine Sources and Movement of Saline Groundwater in a Coastal Aguifer. Groundwater. July.
- Arcadis. 2020. Lithium Alternative Source Demonstration Plant McManus Former Ash Pond 1. Prepared for Georgia Power Company. November.
- ATC Associates, Inc. 1997. Compliance Status Report, McManus Steam Electric Generating Plant, Brunswick, Georgia.
- Chu, J., P. Panzino, and L. Bradley. 2017. An Approach to Using Geochemical Analysis to Evaluate the Potential Presence of Coal Ash Constituents in Drinking Water. 2017 World of Coal Ash Conference. May 9-11.
- GAEPD. 2021. Subject: Georgia Power Company–Conditional Concurrence for Alternate Source Demonstration for Lithium at Plant McManus Ash Pond 1 (AP-1) GEOS Submittal 527116. April 22, 2021.
- Hem, J. 1989. Study and Interpretation of the Chemical Characteristics of Natural Waters. USGS Water Supply Paper 2254.
- Huddleston, P.F. 1988. A Revision of the Lithostratigraphic Units of the Coastal Plain of Georgia, The Miocene Through Holocene. Georgia Geologic Survey Bulletin 104.
- Klassen, J., Allen, D., Kirste, D. 2013. Chemical Indicators of Saltwater Intrusion for the Gulf Islands, British Columbia. Prepared for BC Ministry of Forests, Lands, and Natural Resource Operations and BC Ministry of Environment. June.
- Moller, D. 1990. The Na/Cl Ratio in Rainwater and the Seasalt Chloride Cycle. Tellus. Vol 42B. Pp 254-262.
- Resolute. 2019. Annual Groundwater Monitoring and Corrective Action Monitoring Report Plant McManus Former Ash Pond 1. Prepared for Georgia Power Company. August.
- Resolute. 2020. Hydrogeologic Assessment Report Plant McManus Former Ash Pond 1. Prepared for Georgia Power Company. November 2018, Revised April 2020.
- Resolute. 2021. 2021 Annual Groundwater Monitoring and Corrective Action Report Plant McManus Inactive Ash Pond AP-1. Prepared for Georgia Power Company. June.
- Riley, J., Tongudai, M., 1964. The lithium content of sea water. Deep Sea Research and Oceanographic Abstracts. Vol. 11. 4. Pp 563-568.
- Segar, D. 1998. Introduction to Ocean Sciences. Wadsworth Publishing. Belmont California.
- Shin, K., Koh, D., Jung, H., Lee, J. 2020. The Hydrogeochemical Characteristics of Groundwater Subjected to Seawater Intrusion in the Archipelago, Korea. Water. Vol 12. Pp 1542.
- Weems, R.E., and L.E. Edwards. 2001. Geology of Oligocene, Miocene, and Younger Deposits in the Coastal Area of Georgia, Georgia Geologic Survey Bulletin 131.

TABLES

Table 1
Monitoring Well Network and Piezometers
Georgia Power Company
Plant McManus Former Ash Pond 1
Brunswick, Georgia

Well ID	Hydraulic Location	Installation Date	Resurvey Date	Northing (ft) ¹	Easting (ft) ¹	Top of Casing Elevation ² (ft NAVD 88)	Total Depth (ft BTOC)	Top of Screen Elevation (ft NAVD 88)	Bottom of Screen Elevation (ft NAVD 88)
Monitoring Well Network									
MCM-01	Upgradient	7/7/2016	4/16/2020	443727.31	852732.08	8.63	27.32	-7.93	-17.93
MCM-02	Upgradient	7/6/2016	4/16/2020	444496.53	852663.64	11.25	27.35	-5.22	-15.22
MCM-04	Downgradient	6/30/2016	4/16/2020	444804.73	851695.27	12.39	28.57	-5.18	-15.18
MCM-05	Downgradient	7/9/2016	4/16/2020	444716.63	851309.91	10.04	28.05	-7.25	-17.25
MCM-06	Downgradient	7/8/2016	4/16/2020	444407.22	850782.11	10.15	27.20	-6.27	-16.27
MCM-07	Downgradient	7/8/2016	4/16/2020	444059.38	850195.96	10.20	23.75	-2.76	-12.76
	-								
MCM-08	Upgradient	7/11/2016	4/16/2020	443758.8	849716.96	9.42	28.29	-8.39	-18.39
MCM-11	Upgradient	7/12/2016	4/16/2020	442429.8	851072.91	10.23	24.00	-3.34	-13.34
MCM-12	Downgradient	7/12/2016	4/16/2020	442821.17	851312.45	11.87	29.00	-6.12	-16.12
MCM-14	Downgradient	7/9/2016	4/16/2020	443358.82	852317.59	11.50	28.11	-6.23	-16.23
MCM-15	Upgradient	6/30/2016	4/16/2020	444825.53	851949.02	12.84	26.60	-4.53	-14.53
MCM-16	Upgradient	7/6/2019	4/16/2020	444551.32	852716.6	16.02	28.39	-1.72	-11.72
MCM-17	Downgradient	9/29/2016	4/16/2020	443074.41	851899.68	11.49	27.44	-4.81	-14.81
MCM-18	Upgradient	10/30/2019	4/16/2020	442067.07	851698.41	9.00	27.86	-8.76	-18.76
MCM-19	Upgradient	10/30/2019	4/16/2020	441157.82	852338.86	8.71	28.32	-9.53	-19.53
MCM-20	Upgradient	10/30/2019	4/16/2020	440944.4	852185.15	10.07	23.05	-2.98	-12.98
DPZ-02	Vertical Delineation	3/10/2020	4/16/2020	444391.02	850757.94	9.54	43.46	-28.84	-33.84
Piezometer	Vertical Delineation	0/10/2020	4/10/2020	444001.02	000707.54	0.04	40.40	20.04	00.04
MCM-03	Water Level	7/6/2016	4/16/2020	444414.88	851984.67	9.97	27.70	-7.73	-17.73
MCM-08	Water Level	7/11/2016	4/16/2020	443758.8	849716.96	9.42	28.29	-8.39	-18.39
MCM-09	Water Level	7/10/2019	NA	443252.16	850147.75			Abandoned	
MCM-10	Water Level	7/11/2016	4/16/2020	442791.88	850453.05	11.75	23.96	-1.25	-11.25
MCM-13	Water Level	7/9/2016	4/16/2020	443030.23	851826.19	12.56	27.46	-4.90	-14.90
PZ-09	Water Level	10/31/2019	4/16/2020	444082.13	849471.64	9.41	24.05	-4.56	-14.56
PZ-10	Water Level	11/1/2019	4/16/2020	444949.09	851673.98	12.17	22.91	-0.66	-10.66
PZ-11	Water Level	11/22/2019	4/16/2020	443222.86	849280.51	9.37	19.08	-4.63	-9.63
PZ-12	Water Level	11/22/2019	4/16/2020	443593.34	849396.87	7.90	18.70	-5.72	-10.72
DPZ-01	Water Level	3/10/2020	4/16/2020	444695.71	851277.4	9.71	40.78	-25.99	-30.99
DPZ-03	Water Level	3/11/2020	4/16/2020	444073.16	850218.83	9.46	47.57	-33.03	-38.03
DPZ-04	Water Level	3/12/2020	4/16/2020	443062.6	851881.94	11.45	51.23	-34.70	-39.70
DPZ-05	Water Level	3/11/2020	4/16/2020	443376.32	852342.11	11.00	51.20	-35.12	-40.12
DPZ-06	Water Level	3/12/2020	4/16/2020	444614.79	851846.27	12.04	40.50	-23.38	-28.38

Notes:

1. Georgia State Plane - East Coordinates.

2. NAVD 88 - North American Vertical Datum of 1988

ft BTOC - feet below top of casing Data source: Resolute 2020a

Location	Date	Lithium (mg/L)
Groundwater Protection Standards		
Federal GWPS	July 2021	0.04
State GWPS	July 2021	0.03
Groundwater		
MCM-14	3/2/2021	0.046 J
MCM-14	7/1/2021	< 0.010
Background Surface Water	17172021	V 0.010
BG-1LT	3/2/2021	0.074 J
BG-2HT	3/3/2021	0.084 J
Surface Water Transects	3/3/2021	0.004 3
T1-1HT	3/2/2021	0.074 J
T1-1LT	3/4/2021	0.066 J
T1-2HT	3/2/2021	0.084 J
T1-2HTS	3/2/2021	0.072 J
T1-2LT	3/4/2021	0.063 J
T1-3HT	3/2/2021	0.077 J
T1-3HTS	3/2/2021	0.073 J
T1-3LT	3/4/2021	0.061 J
T1-4HT	3/2/2021	0.079 J
T1-4HTS	3/2/2021	0.072 J
T1-4LT	3/4/2021	0.067 J
T2-1HT	3/2/2021	0.067 J
T2-2HT	3/2/2021	0.000 J
T2-2HTS	3/2/2021	0.063 J
T2-2LT	3/4/2021	0.050 J
T2-3HT	3/2/2021	0.070 J
T2-3HTS	3/2/2021	0.062 J
T2-3LT	3/4/2021	0.055 J
T2-4HT	3/2/2021	0.065 J
T2-4HTS	3/2/2021	0.070 J
T2-4LT	3/4/2021	0.046 J
T3-1HT	3/2/2021	0.068 J
T3-2HT	3/2/2021	0.069 J
T3-2HTS	3/2/2021	0.063 J
T3-2LT	3/4/2021	0.043 J
T3-3HT	3/2/2021	0.069 J
T3-3HTS	3/2/2021	0.069 J
T3-3LT	3/4/2021	0.046 J
T3-4HT	3/2/2021	0.069 J
T3-4HTS	3/2/2021	0.110 J
T3-4LT	3/4/2021	0.055 J
T4-1L T4-2L	3/3/2021	0.076 J
	3/3/2021	0.066 J
T4-3L	3/3/2021	0.079 J

Location	Date	Lithium (mg/L)
T4-4L	3/3/2021	0.075 J
T4-1HS	3/3/2021	0.075 J
T4-2HS	3/3/2021	0.078 J
T4-3HS	3/3/2021	0.083 J
T4-4HS	3/3/2021	0.080 J
T4-1HB	3/3/2021	0.072 J
T4-2HB	3/3/2021	0.067 J
T4-3HB	3/3/2021	0.066 J
T4-4HB	3/3/2021	0.075 J

Abbreviations

GWPS- groundwater protection standards

HT- high tide

LT/L- low tide

HB - high tide bottom

HTS/HS - high tide surface

J- estimated concentation greater than the laboratory's method detection limit, but less than the laboratory's reporting limit.

mg/L- milligrams per liter

				Surface Water		
Analyte	Units	BG-1LT 3/2/2021	BG-2HT 3/3/2021	T4-1HB 3/3/2021	T4-1HS 3/3/2021	T4-1L 3/3/2021
Alkalinity (as calcium carbonate)	mg/L	83.6	92.4	84.5	85.2	82.4
Alkalinity (bicarbonate)	mg/L	83.6	92.4	84.5	85.2	82.4
Alkalinity (carbonate)	mg/L	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Boron	mg/L	2.3 J	2.4 J	1.8 J	2.0 J	1.9 J
Calcium	mg/L	157	178	112	133	104
Chloride	mg/L	6660	8060	7320	6780	6450
Fluoride	mg/L	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Lithium	mg/L	0.074 J	0.084 J	0.072 J	0.075 J	0.076 J
Magnesium	mg/L	470	537	334	394	306
Potassium	mg/L	158	180	111	130	103
Sodium	mg/L	4130	4930	4410	4490	4390
Sulfate	mg/L	929	1150	1020	959	900
Total Dissolved Solids (TDS)	mg/L	16200	15900	13900	14300	13300

Notes:

-- = not sampled

< = analyte not detected in sample. Laboratory reporting limit provided.

mg/L = milligrams per liter

Full analytical data reports and summary tables for March 2021 samples can be found in the 2021 Annual Groundwater Monitoring and Corrective Action Report (Resolute, 2021)

Analytical reports and purge log for the July 2021 sample at MCM-14 is included as Appendix B of this report.

J- estimated concentation greater than the laboratory's method detection limit, but less than the laboratory's reporting limit.

				Surface Water		
Analyte	Units	T4-2HB 3/3/2021	T4-2HS 3/3/2021	T4-2L 3/3/2021	T4-3HB 3/3/2021	T4-3HS 3/3/2021
Alkalinity (as calcium carbonate)	mg/L	84.3	83.9	83.4	83.6	84.2
Alkalinity (bicarbonate)	mg/L	84.3	83.9	83.4	83.6	84.2
Alkalinity (carbonate)	mg/L	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Boron	mg/L	2.0 J	2.0 J	2.0 J	2.0 J	2.1 J
Calcium	mg/L	113	120	110	118	150
Chloride	mg/L	6850	7090	6620	6780	6910
Fluoride	mg/L	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Lithium	mg/L	0.067 J	0.078 J	0.066 J	0.066 J	0.083 J
Magnesium	mg/L	335	360	331	355	446
Potassium	mg/L	112	119	111	118	149
Sodium	mg/L	4430	4170	4420	4010	4150
Sulfate	mg/L	980	988	929	966	990
Total Dissolved Solids (TDS)	mg/L	14900	14600	13900	13900	13600

Notes:

-- = not sampled

< = analyte not detected in sample. Laboratory reporting limit provided.

mg/L = milligrams per liter

Full analytical data reports and summary tables for March 2021 samples can be found in the 2021 Annual Groundwater Monitoring and Corrective Action Report (Resolute, 2021)

Analytical reports and purge log for the July 2021 sample at MCM-14 is included as Appendix B of this report.

J- estimated concentation greater than the laboratory's method detection limit, but less than the laboratory's

reporting limit.

		Surface Water					
Analyte	Units	T4-3L 3/3/2021	T4-4HB 3/3/2021	T4-4HS 3/3/2021	T4-4L 3/3/2021		
Alkalinity (as calcium carbonate)	mg/L	86.0	87.1	75.8	87.9		
Alkalinity (bicarbonate)	mg/L	86.0	87.1	75.8	87.9		
Alkalinity (carbonate)	mg/L	< 5.0	< 5.0	< 5.0	< 5.0		
Boron	mg/L	2.0 J	2.1 J	2.1 J	2.0 J		
Calcium	mg/L	125	114	156	158		
Chloride	mg/L	6880	7070	7040	6860		
Fluoride	mg/L	< 10.0	< 10.0	< 10.0	< 10.0		
Lithium	mg/L	0.079 J	0.075 J	0.08 J	0.075 J		
Magnesium	mg/L	368	343	465	468		
Potassium	mg/L	123	114	156	158		
Sodium	mg/L	4290	4090	4200	4210		
Sulfate	mg/L	991	1020	1020	990		
Total Dissolved Solids (TDS)	mg/L	13700	15500	13900	14400		

Notes:

-- = not sampled

< = analyte not detected in sample. Laboratory reporting limit provided.

mg/L = milligrams per liter

Full analytical data reports and summary tables for March 2021 samples can be found in the 2021 Annual Groundwater Monitoring and Corrective Action Report (Resolute, 2021)

Analytical reports and purge log for the July 2021 sample at MCM-14 is included as Appendix B of this report.

J- estimated concentation greater than the laboratory's

method detection limit, but less than the laboratory's reporting limit.

			Groun	dwater	
Analyte	Units	MCM-01 3/3/2021	MCM-02 3/3/2021	MCM-11 3/3/2021	MCM-12 3/2/2021
Alkalinity (as calcium carbonate)	mg/L	15.8	< 5.0	< 5.0	496 J
Alkalinity (bicarbonate)	mg/L	15.8	< 5.0	< 5.0	496
Alkalinity (carbonate)	mg/L	< 5.0	< 5.0	< 5.0	< 5.0
Boron	mg/L	< 0.42	< 0.42	< 0.42	1.4 J
Calcium	mg/L	14.0	4.0	2.1	6.5
Chloride	mg/L	13.6	20.5	9.4	459
Fluoride	mg/L	< 0.050	< 0.050	0.082 J	1.0
Lithium	mg/L	< 0.025	< 0.025	< 0.025	< 0.025
Magnesium	mg/L	1.7	2.3	1.3	12.5
Potassium	mg/L	< 30.4 J	< 30.4	< 30.4	< 30.4
Sodium	mg/L	14.2 J	18.7 J	11.3 J	497
Sulfate	mg/L	33.8	27.6	19.9	1.2
Total Dissolved Solids (TDS)	mg/L	99	84	66	1430

Notes:

-- = not sampled

< = analyte not detected in sample. Laboratory reporting limit provided.

mg/L = milligrams per liter

Full analytical data reports and summary tables for March 2021 samples can be found in the 2021 Annual Groundwater Monitoring and Corrective Action Report (Resolute, 2021)

Analytical reports and purge log for the July 2021 sample at MCM-14 is included as Appendix B of this report.

J- estimated concentation greater than the laboratory's method detection limit, but less than the laboratory's reporting limit.

				Groundwater		
Analyte	Units	MCM-14 3/2/2021	MCM-14 7/1/2021	MCM-15 3/2/2021	MCM-16 3/3/2021	MCM-17 3/3/2021
Alkalinity (as calcium carbonate)	mg/L	170	263	< 5.0	10.7	407
Alkalinity (bicarbonate)	mg/L	170	263	< 5.0	10.7	407
Alkalinity (carbonate)	mg/L	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Boron	mg/L	1.4 J	0.26 J	< 0.42	< 0.085 J	1.7 J
Calcium	mg/L	205	231	1.4	11.2	143
Chloride	mg/L	5680	5960	4.2	27.6	< 0.60
Fluoride	mg/L	< 0.050	< 5.0	< 0.050	< 0.050	< 0.050
Lithium	mg/L	0.046 J	< 0.010	< 0.025	< 0.0050	< 0.025
Magnesium	mg/L	422	446	1.1	3.0	266
Potassium	mg/L	130	119	< 30.4	< 30.4	107
Sodium	mg/L	3320	3460 J	11.9 J	19.7 J	2650
Sulfate	mg/L	97.5	693.0	8.0	30.5	420
Total Dissolved Solids (TDS)	mg/L	12000	11200	40	122	8830

Notes:

-- = not sampled

reporting limit.

< = analyte not detected in sample. Laboratory reporting limit provided.

mg/L = milligrams per liter

Full analytical data reports and summary tables for March 2021 samples can be found in the 2021 Annual Groundwater Monitoring and Corrective Action Report (Resolute, 2021)

Analytical reports and purge log for the July 2021 sample at MCM-14 is included as Appendix B of this report.

J- estimated concentation greater than the laboratory's method detection limit, but less than the laboratory's

		Background Groundwater			
Analyte	Units	MCM-18 3/3/2021	MCM-19 3/3/2021	MCM-20 3/3/2021	
Alkalinity (as calcium carbonate)	mg/L	< 5.0 J	5.6	< 5.0 J	
Alkalinity (bicarbonate)	mg/L	< 5.0	5.6	< 5.0	
Alkalinity (carbonate)	mg/L	< 5.0	< 5.0	< 5.0	
Boron	mg/L	0.21 J	0.79 J	0.91 J	
Calcium	mg/L	26	123	110	
Chloride	mg/L	1230	5170	< 0.60	
Fluoride	mg/L	0.32	< 0.050	< 0.050	
Lithium	mg/L	< 0.0050	0.019 J	0.018 J	
Magnesium	mg/L	86.5	377	334	
Potassium	mg/L	< 30.4	52.6	68.2	
Sodium	mg/L	792	3150	3360	
Sulfate	mg/L	171	< 0.50	743	
Total Dissolved Solids (TDS)	mg/L	2620	11000	11400	

Notes:

-- = not sampled

< = analyte not detected in sample. Laboratory reporting limit provided.

mg/L = milligrams per liter

Full analytical data reports and summary tables for March 2021 samples can be found in the 2021 Annual Groundwater Monitoring and Corrective Action Report (Resolute, 2021)

Analytical reports and purge log for the July 2021 sample at MCM-14 is included as Appendix B of this report.

J- estimated concentation greater than the laboratory's method detection limit, but less than the laboratory's

reporting limit.

Well ID	Slug In (cm/sec)	Slug Out (cm/sec)	Average K (cm/sec)
MCM-01	not reported	1.82E-03	1.82E-03
MCM-02	9.82E-04	1.08E-03	1.03E-03
MCM-04	4.65E-04	5.89E-04	5.27E-04
MCM-05	2.47E-03	2.92E-03	2.70E-03
MCM-06	not reported	1.86E-03	1.86E-03
MCM-07	not reported	1.85E-04	1.85E-04
MCM-08	2.44E-04	2.55E-04	2.49E-04
MCM-09	9.31E-05	8.04E-05	8.67E-05
MCM-10	1.89E-04	1.51E-04	1.70E-04
MCM-12	9.19E-05	9.89E-05	9.54E-05
MCM-13	not reported	9.59E-04	9.59E-04
MCM-14	not reported	2.88E-03	2.88E-03
MCM-15	1.61E-03	1.81E-03	1.71E-03
MCM-16	2.35E-03	2.56E-03	2.46E-03
MCM-17	2.35E-03	3.45E-03	2.90E-03
MCM-18	1.12E-03	1.07E-03	1.09E-03
MCM-19	9.73E-04	1.07E-03	1.02E-03
MCM-20	4.45E-04	2.81E-04	3.63E-04

Notes:

Hydraulic conductivity (K) is shown in units of centimeter per second (cm/sec).

Slug tests conducted in July and August of 2018.

Source:

Resolute Environmental & Water Resources Consulting. 2020. Hydrogeologic Assessment Report - Plant McManus Former Ash Pond 1. Prepared for Georgia Power. April 2020.

FIGURES

DEWATERING WELLS

1 inch = 600 feet

Florida

Note:

Aerial photos taken during coal ash removal activities by Aerial Innovations Southeast Photo Dates:

I - November 2017; II - January 2018, III - March 2018, IV - May 2018.

GEORGIA POWER
PLANT MCMANUS FORMER ASH POND 1
BRUNSWICK, GEORGIA

DEWATERING PROGRESSION AERIALS

GEORGIA POWER
PLANT MCMANUS FORMER ASH POND 1
BRUNSWICK, GEORGIA

SCHEMATIC: DEWATERING HYDROLOGIC INFLUENCE

FIGURE

3

BACKGROUND SURFACE WATER SAMPLE LOCATION

Notes:

CCR - coal combustion residuals.

ASD - alternative source demonstration.

High tide and low tide samples collected at surface water sample location as shown on Table 2.

Feet

ASD SURFACE WATER SAMPLE LOCATIONS (MARCH 2021)

FIGURE

BG-1 (low tide background Burnett Creek Cowpan Creak MGM-04 MGM-05 MCM+15 DPZ-01 MCM-16 DPZ-06 MCM-06 DPZ-02 MCM-02 MCM-07 DPZ-03 MCM±03 MCM-08 MCM-09* MCM-13 MCM-17 DPZ-04 MCM-10 MGM-12 MCM-11 MGM=18 **Ellimit** IMCMH19 M@M-20 4 BG-2 (high tide background)

CCR PERMITTED BOUNDARY

SURFACE WATER SAMPLE LOCATIONS (JUNE 2020)

ф мо

MONITORING WELLS

DEEP PIEZOMETER WELLS

0 600 1,200

GEORGIA POWER
PLANT MCMANUS FORMER ASH POND 1
BRUNSWICK, GEORGIA

SURFACE AND GROUNDWATER GEOCHEMISTRY

GEORGIA POWER
PLANT MCMANUS FORMER ASH POND 1
BRUNSWICK, GEORGIA

SODIUM TO CHLORIDE RATIOS VERSUS TOTAL DISSOLVED SOLIDS

ARCADIS

Notes mequiv = milliequivalent mg/L = milligrams per liter

GEORGIA POWER
PLANT MCMANUS FORMER ASH POND 1
BRUNSWICK, GEORGIA

TIDAL INFLUENCE ON MONITORING WELLS

Notes:

*Normalized Tidal Change determined by dividing water depth by minimum water depth over duration shown. GW – Groundwater Depths, shown by solid lines

Data collected by Resolute Environmental and Water Resources Consulting June 2020.

MCM-14

GEORGIA POWER PLANT MCMANUS FORMER ASH POND 1 BRUNSWICK, GEORGIA

CONCENTRATION TRENDS AT MCM-14

APPENDIX A

Resolute Potentiometric Maps

APPENDIX B

Sampling Log and Analytical Reports

October 19, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on March 06, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

This revision was issued on 9/8/21 to update the chloride results for samples "MCM-17" (92526099-005) and "MCM-20" (92526099-008).

This revision was issued on 10/19/21 to report all requested metals by 6010 and 6020, per client request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Misole D'oles

Nicole D'Oleo for Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joe Booth, Resolute Environmental & Water Resources Trent Godwin, Resolute Environmental & Water Resources Kristen Jurinko Ms. Lauren Petty, Southern Company Kevin Stephenson, Resolute Environmental & Water Resources Consulting, LLC Stephen Wilson, Resolute Environmental & Water Resources Consulting, LLC

CERTIFICATIONS

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92526099001	MCM-01	Water	03/03/21 15:04	03/06/21 11:15
92526099002	MCM-02	Water	03/03/21 16:10	03/06/21 11:15
92526099003	MCM-11	Water	03/03/21 13:35	03/06/21 11:15
92526099004	MCM-16	Water	03/03/21 12:46	03/06/21 11:15
92526099005	MCM-17	Water	03/03/21 10:48	03/06/21 11:15
92526099006	MCM-18	Water	03/03/21 14:57	03/06/21 11:15
92526099007	MCM-19	Water	03/03/21 10:38	03/06/21 11:15
92526099008	MCM-20	Water	03/03/21 11:24	03/06/21 11:15
92526099009	FB-2	Water	03/03/21 16:42	03/06/21 11:15
92526099010	EB-1	Water	03/03/21 16:41	03/06/21 11:15

SAMPLE ANALYTE COUNT

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92526099001	MCM-01	EPA 6010D	SH1	4	PASI-A
		EPA 6020B	JOR	8	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JLH	3	PASI-A
92526099002	MCM-02	EPA 6010D	SH1	4	PASI-A
		EPA 6020B	JOR	8	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JLH	3	PASI-A
92526099003	MCM-11	EPA 6010D	SH1	4	PASI-A
		EPA 6020B	JOR	8	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JLH	3	PASI-A
92526099004	MCM-16	EPA 6010D	SH1	4	PASI-A
		EPA 6020B	JOR	8	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JLH	3	PASI-A
92526099005	MCM-17	EPA 6010D	SH1	4	PASI-A
		EPA 6020B	JOR	8	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JLH	3	PASI-A
92526099006	MCM-18	EPA 6010D	SH1	4	PASI-A
		EPA 6020B	JOR	8	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JLH	3	PASI-A
92526099007	MCM-19	EPA 6010D	SH1	4	PASI-A
		EPA 6020B	JOR	8	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JLH	3	PASI-A
92526099008	MCM-20	EPA 6010D	SH1	4	PASI-A

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JLH	3	PASI-A
92526099009	FB-2	EPA 6010D	SH1	4	PASI-A
		EPA 6020B	JOR	8	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JLH	3	PASI-A
92526099010	EB-1	EPA 6010D	SH1	4	PASI-A
		EPA 6020B	JOR	8	PASI-A
		SM 2320B-2011	ECH	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	JLH	3	PASI-A

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

SUMMARY OF DETECTION

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2526099001	MCM-01					
	Performed by	CUSTOME			03/11/21 14:01	
	рН	R 5.81	Std. Units		03/11/21 14:01	
EPA 6010D	Calcium	14.0	mg/L	1.0		
EPA 6010D	Magnesium	1.7	mg/L	1.0	03/13/21 01:14	
EPA 6010D	Sodium	14.2J	mg/L	50.0	03/13/21 01:14	
EPA 6020B	Arsenic	0.016J	mg/L	0.050	03/11/21 13:34	
PA 6020B	Barium	0.14	mg/L	0.050	03/11/21 13:34	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	15.8	mg/L	5.0	03/12/21 13:57	
M 2320B-2011	Alkalinity, Total as CaCO3	15.8	mg/L	5.0	03/12/21 13:57	
M 2540C-2011	Total Dissolved Solids	99.0	mg/L	25.0	03/09/21 18:56	
EPA 300.0 Rev 2.1 1993	Chloride	13.6	mg/L	1.0	03/08/21 07:11	
PA 300.0 Rev 2.1 1993	Sulfate	33.8	mg/L	1.0	03/08/21 07:11	
2526099002	MCM-02		0			
.520055002	Performed by	CUSTOME			03/11/21 14:01	
	r chomica by	R			03/11/21 14.01	
	рН	5.06	Std. Units		03/11/21 14:01	
PA 6010D	Calcium	4.0	mg/L	1.0	03/13/21 01:27	
PA 6010D	Magnesium	2.3	mg/L	1.0	03/13/21 01:27	
PA 6010D	Sodium	18.7J	mg/L	50.0	03/13/21 01:27	
PA 6020B	Barium	0.21	mg/L	0.050	03/11/21 13:37	
M 2540C-2011	Total Dissolved Solids	84.0	mg/L	25.0	03/09/21 18:56	
PA 300.0 Rev 2.1 1993	Chloride	20.5	mg/L	1.0	03/08/21 07:26	
PA 300.0 Rev 2.1 1993	Sulfate	27.6	mg/L	1.0	03/08/21 07:26	
2526099003	MCM-11					
	Performed by	CUSTOME			03/11/21 14:01	
	рН	R 5.07	Std. Units		03/11/21 14:01	
PA 6010D	Calcium	2.1	mg/L	1.0	03/13/21 01:30	
PA 6010D	Magnesium	1.3	mg/L	1.0	03/13/21 01:30	
PA 6010D	Sodium	11.3J	mg/L	50.0	03/13/21 01:30	
PA 6020B	Arsenic	0.011J	mg/L	0.050	03/11/21 13:41	
PA 6020B	Barium	0.090	mg/L	0.050	03/11/21 13:41	
M 2540C-2011	Total Dissolved Solids	66.0	mg/L	25.0	03/09/21 18:56	
PA 300.0 Rev 2.1 1993	Chloride	9.4	mg/L	1.0	03/08/21 07:40	
PA 300.0 Rev 2.1 1993	Fluoride	0.082J	mg/L		03/08/21 07:40	
EPA 300.0 Rev 2.1 1993	Sulfate	19.9	mg/L		03/08/21 07:40	
2526099004	MCM-16					
	Performed by	CUSTOME			03/11/21 14:01	
	•	R	0.1.7.			
:D1 0010D	pH	5.71	Std. Units		03/11/21 14:01	
EPA 6010D	Calcium	11.2	mg/L		03/13/21 01:34	
PA 6010D	Magnesium	3.0	mg/L		03/13/21 01:34	
PA 6010D	Sodium	19.7J	mg/L	50.0		
PA 6020B	Arsenic	0.0012J	mg/L		03/22/21 14:36	
PA 6020B	Barium	0.059	mg/L		03/22/21 14:36	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	10.7	mg/L	5.0	03/12/21 14:30	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
2526099004	MCM-16					
SM 2320B-2011	Alkalinity, Total as CaCO3	10.7	mg/L	5.0	03/12/21 14:30	
SM 2540C-2011	Total Dissolved Solids	122	mg/L	25.0	03/09/21 18:56	
EPA 300.0 Rev 2.1 1993	Chloride	27.6	mg/L	1.0	03/08/21 07:55	
EPA 300.0 Rev 2.1 1993	Sulfate	30.5	mg/L	1.0	03/08/21 07:55	
2526099005	MCM-17					
	Performed by	CUSTOME R			03/11/21 14:01	
	рН	6.58	Std. Units		03/11/21 14:01	
EPA 6010D	Calcium	143	mg/L	1.0	03/13/21 01:50	
EPA 6010D	Magnesium	266	mg/L	1.0	03/13/21 01:50	
PA 6010D	Potassium	107	mg/L	50.0	03/13/21 01:50	
PA 6010D	Sodium	2650	mg/L	500	03/13/21 00:15	
PA 6020B	Barium	0.17	mg/L	0.050	03/22/21 14:49	
PA 6020B	Boron	1.7J	mg/L		03/22/21 14:49	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	407	mg/L	5.0	03/12/21 20:02	
SM 2320B-2011	Alkalinity, Total as CaCO3	407	mg/L	5.0	03/12/21 20:02	
SM 2540C-2011	Total Dissolved Solids	8830	mg/L	833	03/09/21 18:56	
EPA 300.0 Rev 2.1 1993	Chloride	3920	mg/L	100	03/08/21 17:46	
EPA 300.0 Rev 2.1 1993	Fluoride	0.58J	mg/L	0.90	03/08/21 14:24	
EPA 300.0 Rev 2.1 1993	Sulfate	420	mg/L	9.0	03/08/21 14:24	
	MCM-18	420	mg/L	5.0	03/00/21 14.24	
2526099006	Performed by	CUSTOME			03/11/21 14:01	
	renormed by	R			03/11/21 14.01	
	рН	4.37	Std. Units		03/11/21 14:01	
EPA 6010D	Calcium	26.0	mg/L	1.0	03/13/21 01:53	
PA 6010D	Magnesium	86.5	mg/L	1.0	03/13/21 01:53	
PA 6010D	Sodium	792	mg/L	50.0	03/13/21 01:53	
PA 6020B	Arsenic	0.0014J	mg/L	0.010	03/22/21 14:53	
PA 6020B	Barium	0.099	mg/L	0.010	03/22/21 14:53	
PA 6020B	Beryllium	0.0030	mg/L	0.0010	03/22/21 14:53	
PA 6020B	Boron	0.21J	mg/L	0.50	03/22/21 14:53	
PA 6020B	Selenium	0.0012J	mg/L	0.020	03/22/21 14:53	
SM 2540C-2011	Total Dissolved Solids	2620	mg/L	417	03/09/21 18:56	
PA 300.0 Rev 2.1 1993	Chloride	1230	mg/L	27.0	03/08/21 14:38	
PA 300.0 Rev 2.1 1993	Fluoride	0.32	mg/L	0.10	03/08/21 08:24	
EPA 300.0 Rev 2.1 1993	Sulfate	171	mg/L	27.0	03/08/21 14:38	
2526099007	MCM-19					
	Performed by	CUSTOME			03/11/21 14:01	
	рН	R 5.10	Std. Units		03/11/21 14:01	
EPA 6010D	Calcium	123	mg/L	1.0	03/13/21 01:57	
EPA 6010D	Magnesium	377	mg/L	1.0		
EPA 6010D	Potassium	52.6	mg/L	50.0	03/13/21 01:57	
PA 6010D	Sodium	3150	mg/L	500	03/13/21 01:37	
	Arsenic	0.0086J	mg/L	0.020	03/22/21 14:56	
PA 6020B						

SUMMARY OF DETECTION

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92526099007	MCM-19					
EPA 6020B	Beryllium	0.015	mg/L	0.0020	03/22/21 14:56	
EPA 6020B	Boron	0.79J	mg/L	1.0	03/22/21 14:56	
EPA 6020B	Lithium	0.019J	mg/L	0.050	03/22/21 14:56	
EPA 6020B	Selenium	0.013J	mg/L	0.040	03/22/21 14:56	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	5.6	mg/L	5.0	03/12/21 15:01	
SM 2320B-2011	Alkalinity, Total as CaCO3	5.6	mg/L	5.0	03/12/21 15:01	
SM 2540C-2011	Total Dissolved Solids	11000	mg/L	1250	03/09/21 18:56	
EPA 300.0 Rev 2.1 1993	Chloride	5170	mg/L	100	03/08/21 18:00	
EPA 300.0 Rev 2.1 1993	Sulfate	708	mg/L	11.0	03/08/21 15:21	
2526099008	MCM-20					
	Performed by	CUSTOME R			03/11/21 14:01	
	рН	3.36	Std. Units		03/11/21 14:01	
EPA 6010D	Calcium	110	mg/L	1.0	03/13/21 02:00	
EPA 6010D	Magnesium	334	mg/L	1.0	03/13/21 02:00	
EPA 6010D	Potassium	68.2	mg/L	50.0	03/13/21 02:00	
EPA 6010D	Sodium	3360	mg/L	500	03/13/21 00:32	
EPA 6020B	Arsenic	0.016J	mg/L	0.020	03/22/21 14:59	
EPA 6020B	Barium	0.12	mg/L	0.020	03/22/21 14:59	
EPA 6020B	Beryllium	0.014	mg/L	0.0020	03/22/21 14:59	
EPA 6020B	Boron	0.91J	mg/L	1.0	03/22/21 14:59	
EPA 6020B	Cobalt	0.033	mg/L	0.020	03/22/21 14:59	
EPA 6020B	Lithium	0.018J	mg/L	0.050	03/22/21 14:59	
EPA 6020B	Selenium	0.0094J	mg/L	0.040	03/22/21 14:59	
SM 2540C-2011	Total Dissolved Solids	11400	mg/L	2500	03/09/21 18:56	
EPA 300.0 Rev 2.1 1993	Chloride	5500	mg/L	100	03/08/21 15:35	
EPA 300.0 Rev 2.1 1993	Sulfate	743	mg/L	100	03/08/21 15:35	

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Sample: MCM-01	Lab ID:	92526099001	Collecte	d: 03/03/21	15:04	Received: 03/	/06/21 11:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	l Method:							
	Pace Ana	alytical Services	- Charlotte						
Performed by	CUSTOME R				1		03/11/21 14:01		
Н	5.81	Std. Units			1		03/11/21 14:01		
6010 MET ICP	Analytica	l Method: EPA 6	010D Prep	aration Met	hod: Ef	PA 3010A			
	Pace Ana	alytical Services	- Asheville						
Calcium	14.0	mg/L	1.0	0.94	10	03/09/21 01:10	03/13/21 01:14	7440-70-2	
Magnesium	1.7	mg/L	1.0	0.68	10	03/09/21 01:10	03/13/21 01:14	7439-95-4	
Potassium	ND	mg/L	50.0	30.4	10	03/09/21 01:10	03/13/21 01:14	7440-09-7	M6
Sodium	14.2J	mg/L	50.0	6.1	10	03/09/21 01:10	03/13/21 01:14	7440-23-5	
6020 MET ICPMS	Analytica	l Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	alytical Services	- Asheville						
Arsenic	0.016J	mg/L	0.050	0.0043	50	03/09/21 01:07	03/11/21 13:34	7440-38-2	
Barium	0.14	mg/L	0.050	0.011	50	03/09/21 01:07	03/11/21 13:34	7440-39-3	
Beryllium	ND	mg/L	0.0050	0.0025	50	03/09/21 01:07	03/11/21 13:34	7440-41-7	
Boron	ND	mg/L	2.5	0.42	50	03/09/21 01:07	03/11/21 13:34	7440-42-8	
Cobalt	ND	mg/L	0.050	0.0025	50	03/09/21 01:07	03/11/21 13:34	7440-48-4	
Lead	ND	mg/L	0.050	0.0038	50	03/09/21 01:07	03/11/21 13:34	7439-92-1	
_ithium	ND	mg/L	0.12	0.025	50	03/09/21 01:07	03/11/21 13:34	7439-93-2	
Selenium	ND	mg/L	0.10	0.0036	50	03/09/21 01:07	03/11/21 13:34	7782-49-2	
2320B Alkalinity	Analytica	Method: SM 23	320B-2011						
	Pace Ana	alytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	15.8	mg/L	5.0	5.0	1		03/12/21 13:57		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 13:57		
Alkalinity, Total as CaCO3	15.8	mg/L	5.0	5.0	1		03/12/21 13:57		
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C-2011						
	Pace Ana	alytical Services	- Asheville						
Total Dissolved Solids	99.0	mg/L	25.0	25.0	1		03/09/21 18:56		
300.0 IC Anions 28 Days	Analytica	Method: EPA 3	300.0 Rev 2	1 1993					
	Pace Ana	alytical Services	- Asheville						
Chloride	13.6	mg/L	1.0	0.60	1		03/08/21 07:11	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		03/08/21 07:11	16984-48-8	
Sulfate	33.8	mg/L	1.0	0.50	1		03/08/21 07:11	14808-79-8	

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Sample: MCM-02	Lab ID:	92526099002	Collected:	03/03/21	16:10	Received: 03/	'06/21 11:15 M	atrix: Water	
5 .	5 . "	11.5	Report		5-	5		04041	•
Parameters	Results -	Units	Limit	MDL -	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytica	Method:							
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		03/11/21 14:01		
Н	5.06	Std. Units			1		03/11/21 14:01		
6010 MET ICP	Analytica	Method: EPA 6	010D Prepa	ration Metl	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	4.0	mg/L	1.0	0.94	10	03/09/21 01:10	03/13/21 01:27	7440-70-2	
Magnesium	2.3	mg/L	1.0	0.68	10		03/13/21 01:27		
Potassium	ND	mg/L	50.0	30.4	10		03/13/21 01:27		
Sodium	18.7J	mg/L	50.0	6.1	10		03/13/21 01:27		
6020 MET ICPMS	Analytica	Method: EPA 6	020B Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	03/09/21 01:07	03/11/21 13:37	7440-38-2	
Barium	0.21	mg/L	0.050	0.011	50	03/09/21 01:07	03/11/21 13:37	7440-39-3	
Beryllium	ND	mg/L	0.0050	0.0025	50	03/09/21 01:07	03/11/21 13:37	7440-41-7	
Boron	ND	mg/L	2.5	0.42	50	03/09/21 01:07	03/11/21 13:37	7440-42-8	
Cobalt	ND	mg/L	0.050	0.0025	50	03/09/21 01:07	03/11/21 13:37	7440-48-4	
₋ead	ND	mg/L	0.050	0.0038	50	03/09/21 01:07	03/11/21 13:37	7439-92-1	
_ithium	ND	mg/L	0.12	0.025	50	03/09/21 01:07	03/11/21 13:37	7439-93-2	
Selenium	ND	mg/L	0.10	0.0036	50	03/09/21 01:07	03/11/21 13:37	7782-49-2	
2320B Alkalinity	Analytica	Method: SM 23	320B-2011						
	Pace Ana	llytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 14:22		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 14:22		
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		03/12/21 14:22		
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C-2011						
	Pace Ana	llytical Services	- Asheville						
Total Dissolved Solids	84.0	mg/L	25.0	25.0	1		03/09/21 18:56	i	
300.0 IC Anions 28 Days	•	Method: EPA 3		1993					
	Pace Ana	llytical Services	- Asheville						
Chloride	20.5	mg/L	1.0	0.60	1		03/08/21 07:26	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		03/08/21 07:26		
Sulfate	27.6	mg/L	1.0	0.50	1		03/08/21 07:26		

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Sample: MCM-11	Lab ID:	92526099003	Collected:	03/03/21	13:35	Received: 03/	06/21 11:15 M	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
i alameters					<u></u>	- Trepared	- Milalyzeu		Quai
Field Data	Analytica	Method:							
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		03/11/21 14:01		
рН	5.07	Std. Units			1		03/11/21 14:01		
6010 MET ICP	Analytica	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	2.1	mg/L	1.0	0.94	10	03/09/21 01:10	03/13/21 01:30	7440-70-2	
Magnesium	1.3	mg/L	1.0	0.68	10	03/09/21 01:10	03/13/21 01:30	7439-95-4	
Potassium	ND	mg/L	50.0	30.4	10	03/09/21 01:10	03/13/21 01:30	7440-09-7	
Sodium	11.3J	mg/L	50.0	6.1	10		03/13/21 01:30		
6020 MET ICPMS	Analytica	Method: EPA 6	6020B Prepa	ration Metl	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.011J	mg/L	0.050	0.0043	50	03/09/21 01:07	03/11/21 13:41	7440-38-2	
Barium	0.090	mg/L	0.050	0.011	50	03/09/21 01:07	03/11/21 13:41	7440-39-3	
Beryllium	ND	mg/L	0.0050	0.0025	50	03/09/21 01:07	03/11/21 13:41	7440-41-7	
Boron	ND	mg/L	2.5	0.42	50	03/09/21 01:07	03/11/21 13:41	7440-42-8	
Cobalt	ND	mg/L	0.050	0.0025	50	03/09/21 01:07	03/11/21 13:41	7440-48-4	
Lead	ND	mg/L	0.050	0.0038	50	03/09/21 01:07	03/11/21 13:41	7439-92-1	
Lithium	ND	mg/L	0.12	0.025	50	03/09/21 01:07	03/11/21 13:41	7439-93-2	
Selenium	ND	mg/L	0.10	0.0036	50	03/09/21 01:07	03/11/21 13:41	7782-49-2	
2320B Alkalinity	Analytica	Method: SM 2	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 14:27	•	
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 14:27	•	
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		03/12/21 14:27	•	
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	66.0	mg/L	25.0	25.0	1		03/09/21 18:56	;	
300.0 IC Anions 28 Days	Analytica	Method: EPA 3	300.0 Rev 2.1	1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	9.4	mg/L	1.0	0.60	1		03/08/21 07:40	16887-00-6	
Fluoride	0.082J	mg/L	0.10	0.050	1		03/08/21 07:40		
Sulfate	19.9	mg/L	1.0	0.50	1		03/08/21 07:40		

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Sample: MCM-16	Lab ID:	92526099004	Collected	03/03/21	12:46	Received: 03/	/06/21 11:15 M	latrix: Water	
	. .		Report					0.0.1	
Parameters	Results	Units	Limit —	MDL -	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytica	Method:							
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		03/11/21 14:01		
Н	5.71	Std. Units			1		03/11/21 14:01		
6010 MET ICP	Analytica	Method: EPA 6	010D Prepa	ration Metl	nod: EF	PA 3010A			
	Pace Ana	llytical Services	- Asheville						
Calcium	11.2	mg/L	1.0	0.94	10	03/09/21 01:10	03/13/21 01:34	7440-70-2	
Magnesium	3.0	mg/L	1.0	0.68	10		03/13/21 01:34		
Potassium	ND	mg/L	50.0	30.4	10		03/13/21 01:34		
Sodium	19.7J	mg/L	50.0	6.1	10		03/13/21 01:34		
6020 MET ICPMS	Analytica	Method: EPA 6	6020B Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Ana	llytical Services	- Asheville						
Arsenic	0.0012J	mg/L	0.010	0.00087	10	03/09/21 01:07	03/22/21 14:36	7440-38-2	
Barium	0.059	mg/L	0.010	0.0021	10	03/09/21 01:07	03/22/21 14:36	7440-39-3	
Beryllium	ND	mg/L	0.0010	0.00050	10	03/09/21 01:07	03/22/21 14:36	7440-41-7	
Boron	ND	mg/L	0.50	0.085	10	03/09/21 01:07	03/22/21 14:36	7440-42-8	M6
Cobalt	ND	mg/L	0.010	0.00050	10	03/09/21 01:07	03/22/21 14:36	7440-48-4	
₋ead	ND	mg/L	0.010	0.00077	10	03/09/21 01:07	03/22/21 14:36	7439-92-1	
_ithium	ND	mg/L	0.025	0.0050	10	03/09/21 01:07	03/22/21 14:36	7439-93-2	
Selenium	ND	mg/L	0.020	0.00072	10	03/09/21 01:07	03/22/21 14:36	7782-49-2	
2320B Alkalinity	Analytica	Method: SM 2	320B-2011						
	Pace Ana	llytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	10.7	mg/L	5.0	5.0	1		03/12/21 14:30)	
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 14:30)	
Alkalinity, Total as CaCO3	10.7	mg/L	5.0	5.0	1		03/12/21 14:30)	
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C-2011						
	Pace Ana	llytical Services	- Asheville						
Total Dissolved Solids	122	mg/L	25.0	25.0	1		03/09/21 18:56	i	
300.0 IC Anions 28 Days	Analytica	Method: EPA 3	300.0 Rev 2.1	1993					
	Pace Ana	llytical Services	- Asheville						
Chloride	27.6	mg/L	1.0	0.60	1		03/08/21 07:55	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		03/08/21 07:55	16984-48-8	
Sulfate	30.5	mg/L	1.0	0.50	1		03/08/21 07:55	14808-79-8	

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Sample: MCM-17	Lab ID:	92526099005	Collected:	03/03/21	10:48	Received: 03/	'06/21 11:15 M	atrix: Water	
			Report						
Parameters	Results -	Units	Limit	MDL -	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytica	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		03/11/21 14:01		
Н	6.58	Std. Units			1		03/11/21 14:01		
010 MET ICP	Analytica	Method: EPA 6	010D Prepa	ration Metl	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	143	mg/L	1.0	0.94	10	03/09/21 01:10	03/13/21 01:50	7440-70-2	
Magnesium	266	mg/L	1.0	0.68	10	03/09/21 01:10	03/13/21 01:50	7439-95-4	
Potassium	107	mg/L	50.0	30.4	10		03/13/21 01:50		
Sodium	2650	mg/L	500	61.1	100		03/13/21 00:15		
6020 MET ICPMS	Analytica	Method: EPA 6	020B Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.050	0.0043	50	03/09/21 01:07	03/22/21 14:49	7440-38-2	
Barium	0.17	mg/L	0.050	0.011	50	03/09/21 01:07	03/22/21 14:49	7440-39-3	
Beryllium	ND	mg/L	0.0050	0.0025	50	03/09/21 01:07	03/22/21 14:49	7440-41-7	
Boron	1.7J	mg/L	2.5	0.42	50	03/09/21 01:07	03/22/21 14:49	7440-42-8	
Cobalt	ND	mg/L	0.050	0.0025	50	03/09/21 01:07	03/22/21 14:49	7440-48-4	
_ead	ND	mg/L	0.050	0.0038	50	03/09/21 01:07	03/22/21 14:49	7439-92-1	
Lithium	ND	mg/L	0.12	0.025	50	03/09/21 01:07	03/22/21 14:49	7439-93-2	
Selenium	ND	mg/L	0.10	0.0036	50	03/09/21 01:07	03/22/21 14:49	7782-49-2	
2320B Alkalinity	Analytica	Method: SM 2	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	407	mg/L	5.0	5.0	1		03/12/21 20:02		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 20:02		
Alkalinity, Total as CaCO3	407	mg/L	5.0	5.0	1		03/12/21 20:02		
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C-2011						
	Pace Ana	llytical Services	- Asheville						
Total Dissolved Solids	8830	mg/L	833	833	1		03/09/21 18:56		
800.0 IC Anions 28 Days	Analytica	Method: EPA 3	300.0 Rev 2.1	1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	3920	mg/L	100	60.0	100		03/08/21 17:46	16887-00-6	
Fluoride	0.58J	mg/L	0.90	0.45	9		03/08/21 14:24		
Sulfate	420	mg/L	9.0	4.5	9		03/08/21 14:24		

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Sample: MCM-18	Lab ID:	92526099006	Collected	03/03/21	14:57	Received: 03/	06/21 11:15 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytica	Method:							
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		03/11/21 14:01		
Н	4.37	Std. Units			1		03/11/21 14:01		
010 MET ICP	Analytica	Method: EPA 6	010D Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Ana	llytical Services	- Asheville						
Calcium	26.0	mg/L	1.0	0.94	10	03/09/21 01:10	03/13/21 01:53	7440-70-2	
/lagnesium	86.5	mg/L	1.0	0.68	10	03/09/21 01:10	03/13/21 01:53	7439-95-4	
Potassium	ND	mg/L	50.0	30.4	10		03/13/21 01:53		
Sodium	792	mg/L	50.0	6.1	10		03/13/21 01:53		
020 MET ICPMS	Analytica	Method: EPA 6	6020B Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
rsenic	0.0014J	mg/L	0.010	0.00087	10	03/09/21 01:07	03/22/21 14:53	7440-38-2	
Sarium	0.099	mg/L	0.010	0.0021	10	03/09/21 01:07	03/22/21 14:53	7440-39-3	
Beryllium	0.0030	mg/L	0.0010	0.00050	10	03/09/21 01:07	03/22/21 14:53	7440-41-7	
Boron	0.21J	mg/L	0.50	0.085	10	03/09/21 01:07	03/22/21 14:53	7440-42-8	
Cobalt	ND	mg/L	0.010	0.00050	10	03/09/21 01:07	03/22/21 14:53	7440-48-4	
.ead	ND	mg/L	0.010	0.00077	10	03/09/21 01:07	03/22/21 14:53	7439-92-1	
ithium	ND	mg/L	0.025	0.0050	10	03/09/21 01:07	03/22/21 14:53	7439-93-2	
Selenium	0.0012J	mg/L	0.020	0.00072	10	03/09/21 01:07	03/22/21 14:53	7782-49-2	
320B Alkalinity	Analytica	Method: SM 2	320B-2011						
	Pace Ana	llytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 14:46		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 14:46		
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		03/12/21 14:46		M1
540C Total Dissolved Solids	Analytica	Method: SM 2	540C-2011						
	Pace Ana	llytical Services	- Asheville						
otal Dissolved Solids	2620	mg/L	417	417	1		03/09/21 18:56		
00.0 IC Anions 28 Days	Analytica	Method: EPA 3	300.0 Rev 2.1	1993					
	Pace Ana	llytical Services	- Asheville						
Chloride	1230	mg/L	27.0	16.2	27		03/08/21 14:38	16887-00-6	
Fluoride	0.32	mg/L	0.10	0.050	1		03/08/21 08:24	16984-48-8	
Sulfate	171	mg/L	27.0	13.5	27		03/08/21 14:38	14808-79-8	

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Sample: MCM-19	Lab ID:	92526099007	Collected	: 03/03/21	10:38	Received: 03/	06/21 11:15 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		03/11/21 14:01		
Н	5.10	Std. Units			1		03/11/21 14:01		
6010 MET ICP	•	Method: EPA 6	•	ration Meth	nod: EF	PA 3010A			
Calcium	123	mg/L	1.0	0.94	10	03/09/21 01:10	03/13/21 01:57	7440-70-2	
Magnesium	377	mg/L	1.0	0.68	10	03/09/21 01:10			
Potassium	52.6	mg/L	50.0	30.4	10	03/09/21 01:10			
Sodium	3150	mg/L	500	61.1	100	03/09/21 01:10			
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	0.0086J	mg/L	0.020	0.0017	20	03/09/21 01:07	03/22/21 14:56	7440-38-2	
Barium	0.14	mg/L	0.020	0.0043	20	03/09/21 01:07	03/22/21 14:56	7440-39-3	
Beryllium	0.015	mg/L	0.0020	0.0010	20	03/09/21 01:07	03/22/21 14:56	7440-41-7	
Boron	0.79J	mg/L	1.0	0.17	20	03/09/21 01:07	03/22/21 14:56	7440-42-8	
Cobalt	ND	mg/L	0.020	0.0010	20	03/09/21 01:07	03/22/21 14:56	7440-48-4	
_ead	ND	mg/L	0.020	0.0015	20	03/09/21 01:07	03/22/21 14:56	7439-92-1	
_ithium	0.019J	mg/L	0.050	0.010	20	03/09/21 01:07	03/22/21 14:56	7439-93-2	
Selenium	0.013J	mg/L	0.040	0.0014	20	03/09/21 01:07	03/22/21 14:56	7782-49-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	5.6	mg/L	5.0	5.0	1		03/12/21 15:01		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 15:01		
Alkalinity, Total as CaCO3	5.6	mg/L	5.0	5.0	1		03/12/21 15:01		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	11000	mg/L	1250	1250	1		03/09/21 18:56	3	
800.0 IC Anions 28 Days	•	Method: EPA 3		1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	5170	mg/L	100	60.0	100		03/08/21 18:00	16887-00-6	
Fluoride	ND	mg/L	1.1	0.55	11		03/08/21 15:21	16984-48-8	
Sulfate	708	mg/L	11.0	5.5	11		03/08/21 15:21	14808-79-8	

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Sample: MCM-20	Lab ID:	92526099008	Collected:	03/03/21	11:24	Received: 03/	/06/21 11:15 M	atrix: Water	
			Report						
Parameters	Results -	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytica	Method:							
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		03/11/21 14:01		
Н	3.36	Std. Units			1		03/11/21 14:01		
010 MET ICP	Analytica	Method: EPA 6	010D Prepa	ration Met	nod: EF	PA 3010A			
	Pace Ana	llytical Services	- Asheville						
Calcium	110	mg/L	1.0	0.94	10	03/09/21 01:10	03/13/21 02:00	7440-70-2	
Magnesium	334	mg/L	1.0	0.68	10	03/09/21 01:10	03/13/21 02:00	7439-95-4	
Potassium	68.2	mg/L	50.0	30.4	10	03/09/21 01:10	03/13/21 02:00	7440-09-7	
Sodium	3360	mg/L	500	61.1	100	03/09/21 01:10	03/13/21 00:32	7440-23-5	
020 MET ICPMS	Analytica	Method: EPA 6	6020B Prepa	ration Metl	nod: EF	PA 3010A			
	Pace Ana	llytical Services	- Asheville						
rsenic	0.016J	mg/L	0.020	0.0017	20	03/09/21 01:07	03/22/21 14:59	7440-38-2	
Barium	0.12	mg/L	0.020	0.0043	20	03/09/21 01:07	03/22/21 14:59	7440-39-3	
Beryllium	0.014	mg/L	0.0020	0.0010	20	03/09/21 01:07	03/22/21 14:59	7440-41-7	
Boron	0.91J	mg/L	1.0	0.17	20	03/09/21 01:07	03/22/21 14:59	7440-42-8	
Cobalt	0.033	mg/L	0.020	0.0010	20	03/09/21 01:07	03/22/21 14:59	7440-48-4	
ead	ND	mg/L	0.020	0.0015	20	03/09/21 01:07	03/22/21 14:59	7439-92-1	
ithium	0.018J	mg/L	0.050	0.010	20	03/09/21 01:07	03/22/21 14:59	7439-93-2	
Selenium	0.0094J	mg/L	0.040	0.0014	20	03/09/21 01:07	03/22/21 14:59	7782-49-2	
320B Alkalinity	Analytica	Method: SM 2	320B-2011						
	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 16:51		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 16:51		
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		03/12/21 16:51		M1
540C Total Dissolved Solids	Analytica	Method: SM 2	540C-2011						
	Pace Ana	llytical Services	- Asheville						
Total Dissolved Solids	11400	mg/L	2500	2500	1		03/09/21 18:56		
300.0 IC Anions 28 Days	•	Method: EPA 3		1993					
	Pace Ana	llytical Services	- Asheville						
Chloride	5500	mg/L	100	60.0	100		03/08/21 15:35	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		03/08/21 09:36	16984-48-8	
Sulfate	743	mg/L	100	50.0	100		03/08/21 15:35	14808-79-8	

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Sample: FB-2	Lab ID:	92526099009	Collecte	d: 03/03/21	16:42	Received: 03/	06/21 11:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	ND	mg/L	0.10	0.094	1	03/09/21 01:10	03/13/21 00:35	7440-70-2	
Magnesium	ND	mg/L	0.10	0.068	1	03/09/21 01:10	03/13/21 00:35	7439-95-4	
Potassium	ND	mg/L	5.0	3.0	1	03/09/21 01:10	03/13/21 00:35	7440-09-7	
Sodium	ND	mg/L	5.0	0.61	1	03/09/21 01:10	03/13/21 00:35	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0010	0.000087	1	03/09/21 01:07	03/16/21 13:29	7440-38-2	
Barium	ND	mg/L	0.0010	0.00021	1	03/09/21 01:07	03/16/21 13:29	7440-39-3	
Beryllium	ND	mg/L	0.00010	0.000050	1	03/09/21 01:07	03/16/21 13:29	7440-41-7	
Boron	ND	mg/L	0.050	0.0085	1	03/09/21 01:07	03/16/21 13:29	7440-42-8	
Cobalt	ND	mg/L	0.0010	0.000050	1	03/09/21 01:07	03/16/21 13:29	7440-48-4	
Lead	ND	mg/L	0.0010	0.000077	1	03/09/21 01:07	03/16/21 13:29	7439-92-1	
Lithium	ND	mg/L	0.0025	0.00050	1	03/09/21 01:07	03/16/21 13:29	7439-93-2	
Selenium	ND	mg/L	0.0020	0.000072	1	03/09/21 01:07	03/16/21 13:29	7782-49-2	
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 16:58		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 16:58		
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		03/12/21 16:58		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		03/09/21 18:56		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		03/08/21 09:50	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		03/08/21 09:50	16984-48-8	M1,R1
Sulfate	ND	mg/L	1.0	0.50	1		03/08/21 09:50	14808-79-8	

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Sample: EB-1	Lab ID:	92526099010	Collecte	d: 03/03/2°	1 16:41	Received: 03/	06/21 11:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	6010D Prep	aration Met	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	ND	mg/L	0.10	0.094	1	03/09/21 01:10	03/13/21 00:38	7440-70-2	
Magnesium	ND	mg/L	0.10	0.068	1	03/09/21 01:10	03/13/21 00:38	7439-95-4	
Potassium	ND	mg/L	5.0	3.0	1	03/09/21 01:10	03/13/21 00:38	7440-09-7	
Sodium	ND	mg/L	5.0	0.61	1	03/09/21 01:10	03/13/21 00:38	7440-23-5	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0010	0.000087	1	03/09/21 01:07	03/16/21 13:32	7440-38-2	
Barium	ND	mg/L	0.0010	0.00021	1	03/09/21 01:07	03/16/21 13:32	7440-39-3	
Beryllium	ND	mg/L	0.00010	0.000050	1	03/09/21 01:07	03/16/21 13:32	7440-41-7	
Boron	ND	mg/L	0.050	0.0085	1	03/09/21 01:07	03/16/21 13:32	7440-42-8	
Cobalt	ND	mg/L	0.0010	0.000050	1	03/09/21 01:07	03/16/21 13:32	7440-48-4	
₋ead	ND	mg/L	0.0010	0.000077	1	03/09/21 01:07	03/16/21 13:32	7439-92-1	
_ithium	ND	mg/L	0.0025	0.00050	1	03/09/21 01:07	03/16/21 13:32	7439-93-2	
Selenium	ND	mg/L	0.0020	0.000072	1	03/09/21 01:07	03/16/21 13:32	7782-49-2	
2320B Alkalinity	Analytical	Method: SM 2	320B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 17:16		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		03/12/21 17:16		
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		03/12/21 17:16		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		03/09/21 18:56		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	.1 1993					
-	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		03/08/21 10:34	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		03/08/21 10:34	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		03/08/21 10:34	14808-79-8	

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

QC Batch: 605089 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92526099001, 92526099002, 92526099003, 92526099004, 92526099005, 92526099006, 92526099007,

 $92526099008,\,92526099009,\,92526099010$

METHOD BLANK: 3187889 Matrix: Water

Associated Lab Samples: 92526099001, 92526099002, 92526099003, 92526099004, 92526099005, 92526099006, 92526099007,

92526099008, 92526099009, 92526099010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND	0.10	0.094	03/12/21 23:46	
Magnesium	mg/L	ND	0.10	0.068	03/12/21 23:46	
Potassium	mg/L	ND	5.0	3.0	03/12/21 23:46	
Sodium	mg/L	ND	5.0	0.61	03/12/21 23:46	

LABORATORY CONTROL SAMPLE:	3187890					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Calcium	mg/L	5	4.9	98	80-120	
Magnesium	mg/L	5	4.9	99	80-120	
Potassium	mg/L	5	4.6J	92	80-120	
Sodium	mg/L	5	5.1	103	80-120	

MATRIX SPIKE & MATRIX SF	PIKE DUPLI	CATE: 3187		3187892								
		92526099001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
			- 1	•	_	_	_	_				
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	14.0	5	5	18.4	18.9	88	98	75-125	3	20	
Magnesium	mg/L	1.7	5	5	7.0	7.0	106	106	75-125	0	20	
Potassium	mg/L	ND	5	5	ND	ND	0	0	75-125		20	M6
Sodium	mg/L	14.2J	5	5	18.7J	19.4J	91	104	75-125		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

QC Batch: 605091 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92526099001, 92526099002, 92526099003

METHOD BLANK: 3187897 Matrix: Water

Associated Lab Samples: 92526099001, 92526099002, 92526099003

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0010	0.000087	03/10/21 17:17	
Barium	mg/L	ND	0.0010	0.00021	03/10/21 17:17	
Beryllium	mg/L	ND	0.00010	0.000050	03/10/21 17:17	
Boron	mg/L	ND	0.050	0.0085	03/10/21 17:17	
Cobalt	mg/L	ND	0.0010	0.000050	03/10/21 17:17	
Lead	mg/L	ND	0.0010	0.000077	03/10/21 17:17	
Lithium	mg/L	ND	0.0025	0.00050	03/10/21 17:17	
Selenium	mg/L	ND	0.0020	0.000072	03/10/21 17:17	

LABORATORY CONTROL CAMPLE	0407000
LABORATORY CONTROL SAMPLE:	3187898

Date: 10/19/2021 01:21 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1 didinotoi						Quamiere
Arsenic	mg/L	0.01	0.0099	99	80-120	
Barium	mg/L	0.05	0.050	100	80-120	
Beryllium	mg/L	0.01	0.0099	99	80-120	
Boron	mg/L	0.05	0.048J	96	80-120	
Cobalt	mg/L	0.01	0.010	102	80-120	
Lead	mg/L	0.05	0.048	97	80-120	
Lithium	mg/L	0.05	0.049	98	80-120	
Selenium	mg/L	0.05	0.051	101	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3187			3187900							
Parameter	Units	92526014042 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/L	ND	0.01	0.01	0.013J	0.013J	94	98	75-125		20	
Barium	mg/L	0.022J	0.05	0.05	0.072	0.077	99	110	75-125	7	20	
Beryllium	mg/L	ND	0.01	0.01	0.0091	0.012	91	120	75-125	28	20	
Boron	mg/L	2.0J	0.05	0.05	2.0J	2.0J	46	79	75-125		20	M6
Lead	mg/L	ND	0.05	0.05	0.056	0.056	113	112	75-125	1	20	
Lithium	mg/L	0.084J	0.05	0.05	0.13	0.12J	86	82	75-125		20	
Selenium	mg/L	ND	0.05	0.05	0.052J	0.053J	102	104	75-125		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

QC Batch: 605092 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92526099004, 92526099005, 92526099006, 92526099007, 92526099008, 92526099009, 92526099010

METHOD BLANK: 3187901 Matrix: Water

Associated Lab Samples: 92526099004, 92526099005, 92526099006, 92526099007, 92526099008, 92526099009, 92526099010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0010	0.000087	03/16/21 13:16	
Barium	mg/L	ND	0.0010	0.00021	03/16/21 13:16	
Beryllium	mg/L	ND	0.00010	0.000050	03/16/21 13:16	
Boron	mg/L	ND	0.050	0.0085	03/16/21 13:16	
Cobalt	mg/L	ND	0.0010	0.000050	03/16/21 13:16	
Lead	mg/L	ND	0.0010	0.000077	03/16/21 13:16	
Lithium	mg/L	ND	0.0025	0.00050	03/16/21 13:16	
Selenium	mg/L	ND	0.0020	0.000072	03/16/21 13:16	

LABORATORY CONTROL SAMPLE:	3187902

Date: 10/19/2021 01:21 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	0.01	0.011	106	80-120	
Barium	mg/L	0.05	0.052	105	80-120	
Beryllium	mg/L	0.01	0.010	104	80-120	
Boron	mg/L	0.05	0.054	108	80-120	
Cobalt	mg/L	0.01	0.011	105	80-120	
Lead	mg/L	0.05	0.053	105	80-120	
Lithium	mg/L	0.05	0.052	105	80-120	
Selenium	mg/L	0.05	0.051	102	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	CATE: 3187	903		3187904							
Parameter	9. Units	2526099004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
Arsenic	mg/L	0.0012J	0.01	0.01	0.011	0.012	100	108	75-125	8		
Barium	mg/L	0.059	0.05	0.05	0.11	0.11	103	102	75-125	1	20	
Beryllium	mg/L	ND	0.01	0.01	0.0085	0.0098	84	97	75-125	14	20	
Boron	mg/L	ND	0.05	0.05	0.11J	0.097J	93	74	75-125		20	M6
Cobalt	mg/L	ND	0.01	0.01	0.011	0.011	106	113	75-125	6	20	
Lead	mg/L	ND	0.05	0.05	0.058	0.058	116	116	75-125	0	20	
Lithium	mg/L	ND	0.05	0.05	0.041	0.048	81	96	75-125	17	20	
Selenium	mg/L	ND	0.05	0.05	0.042	0.048	84	96	75-125	14	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

QC Batch: 606220 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92526099001, 92526099002, 92526099003, 92526099004, 92526099005, 92526099006, 92526099007

METHOD BLANK: 3193657 Matrix: Water

Associated Lab Samples: 92526099001, 92526099002, 92526099003, 92526099004, 92526099005, 92526099006, 92526099007

Parameter	Units	Blank Result	Reporting Limit) MDL		Analyz	red	Qualifiers
Alkalinity, Total as CaCO3	mg/L	NI	<u> </u>	5.0	5.0	03/12/21	12:40	
Alkalinity, Bicarbonate (CaCO3)	mg/L	NI)	5.0	5.0	03/12/21	12:40	
Alkalinity, Carbonate (CaCO3)	mg/L	NI)	5.0	5.0	03/12/21	12:40	
LABORATORY CONTROL SAMPLE:	3193658	Spike	LCS	LCS	9	% Rec		
Parameter	Units	Conc.	Result	% Rec		_imits	Qualifie	rs
Alkalinity, Total as CaCO3	mg/L		51.4	103		80-120		

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 3193	659		3193660							
Parameter	g Units	02526098001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Alkalinity, Total as CaCO3	mg/L	496	50	50	506	510	20	28	80-120	1	25	M1

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 3193	661		3193662							
			MS	MSD								
	9	2526099006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	ND	50	50	25.2	25.5	50	51	80-120	1	25	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Alkalinity, Total as CaCO3

Alkalinity, Total as CaCO3

Date: 10/19/2021 01:21 PM

QC Batch: 606222 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

mg/L

ND

Laboratory: Pace Analytical Services - Asheville

103

ND

80-120

80-120

25 M1

Associated Lab Samples: 92526099008, 92526099009, 92526099010

METHOD BLANK: 3193668 Matrix: Water

Associated Lab Samples: 92526099008, 92526099009, 92526099010

mg/L

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Alkalinity, Total as CaCO3	mg/L	ND	5.0	5.0	03/12/21 16:41	
Alkalinity, Bicarbonate (CaCO3)	mg/L	ND	5.0	5.0	03/12/21 16:41	
Alkalinity, Carbonate (CaCO3)	mg/L	ND	5.0	5.0	03/12/21 16:41	

LABORATORY CONTROL SAMPLE: 3193669

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

50

50

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3193670 3193671 MS MSD 92526099008 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual

50

51.5

ND

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3194100 3194101 MS MSD 92526099009 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result % Rec % Rec Limits **RPD** RPD Qual Result Result Alkalinity, Total as CaCO3 ND 50 50 51.4 51.6 103 25 mg/L 103 80-120 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

QC Batch: 605313 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92526099001, 92526099002, 92526099003, 92526099004, 92526099005, 92526099006, 92526099007,

92526099008, 92526099009, 92526099010

METHOD BLANK: 3189077 Matrix: Water

Associated Lab Samples: 92526099001, 92526099002, 92526099003, 92526099004, 92526099005, 92526099006, 92526099007,

92526099008, 92526099009, 92526099010

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND25.025.003/09/21 18:55

LABORATORY CONTROL SAMPLE: 3189078

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. **Total Dissolved Solids** mg/L 251 254 101 90-110

SAMPLE DUPLICATE: 3189079

92526014031 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 13900 14300 3 25 **Total Dissolved Solids** mg/L

SAMPLE DUPLICATE: 3189080

Date: 10/19/2021 01:21 PM

92526099006 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** mg/L 2620 2670 2 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

I ARODATORY CONTROL SAMPLE.

Date: 10/19/2021 01:21 PM

QC Batch: 604773 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92526099001, 92526099002, 92526099003, 92526099004, 92526099005, 92526099006, 92526099007,

92526099008, 92526099009, 92526099010

METHOD BLANK: 3186355 Matrix: Water

Associated Lab Samples: 92526099001, 92526099002, 92526099003, 92526099004, 92526099005, 92526099006, 92526099007,

92526099008, 92526099009, 92526099010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	03/08/21 05:16	
Fluoride	mg/L	ND	0.10	0.050	03/08/21 05:16	
Sulfate	mg/L	ND	1.0	0.50	03/08/21 05:16	

LABORATORT CONTROL SAMPLE.	3100330	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	49.7	99	90-110	
Fluoride	mg/L	2.5	2.5	101	90-110	
Sulfate	mg/L	50	50.4	101	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3186	357		3186358							
			MS	MSD								
		92526098004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	5520	50	50	5710	5750	381	460	90-110	1	10	M6
Fluoride	mg/L	ND	2.5	2.5	ND	ND	0	0	90-110		10	M1
Sulfate	mg/L	96.5	50	50	724	737	1260	1280	90-110	2	10	M6

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3186	359		3186360							
			MS	MSD								
		92526099009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	49.2	49.2	97	97	90-110	0	10	
Fluoride	mg/L	ND	2.5	2.5	3.2	2.8	129	113	90-110	13	10	M1,R1
Sulfate	mg/L	ND	50	50	50.1	49.8	99	99	90-110	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/19/2021 01:21 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92526099001	MCM-01			_	
2526099002	MCM-02				
2526099003	MCM-11				
2526099004	MCM-16				
2526099005	MCM-17				
2526099006	MCM-18				
2526099007	MCM-19				
2526099008	MCM-20				
2526099001	MCM-01	EPA 3010A	605089	EPA 6010D	605105
2526099002	MCM-02	EPA 3010A	605089	EPA 6010D	605105
2526099003	MCM-11	EPA 3010A	605089	EPA 6010D	605105
2526099004	MCM-16	EPA 3010A	605089	EPA 6010D	605105
2526099005	MCM-17	EPA 3010A	605089	EPA 6010D	605105
2526099006	MCM-18	EPA 3010A	605089	EPA 6010D	605105
2526099007	MCM-19	EPA 3010A	605089	EPA 6010D	605105
2526099008	MCM-20	EPA 3010A	605089	EPA 6010D	605105
2526099009	FB-2	EPA 3010A	605089	EPA 6010D	605105
2526099010	EB-1	EPA 3010A	605089	EPA 6010D	605105
2526099001	MCM-01	EPA 3010A	605091	EPA 6020B	605104
2526099002	MCM-02	EPA 3010A	605091	EPA 6020B	605104
2526099003	MCM-11	EPA 3010A	605091	EPA 6020B	605104
2526099004	MCM-16	EPA 3010A	605092	EPA 6020B	605103
2526099005	MCM-17	EPA 3010A	605092	EPA 6020B	605103
2526099006	MCM-18	EPA 3010A	605092	EPA 6020B	605103
2526099007	MCM-19	EPA 3010A	605092	EPA 6020B	605103
2526099008	MCM-20	EPA 3010A	605092	EPA 6020B	605103
2526099009	FB-2	EPA 3010A	605092	EPA 6020B	605103
2526099010	EB-1	EPA 3010A	605092	EPA 6020B	605103
2526099001	MCM-01	SM 2320B-2011	606220		
2526099002	MCM-02	SM 2320B-2011	606220		
2526099003	MCM-11	SM 2320B-2011	606220		
2526099004	MCM-16	SM 2320B-2011	606220		
2526099005	MCM-17	SM 2320B-2011	606220		
2526099006	MCM-18	SM 2320B-2011	606220		
2526099007	MCM-19	SM 2320B-2011	606220		
2526099008	MCM-20	SM 2320B-2011	606222		
2526099009	FB-2	SM 2320B-2011	606222		
2526099010	EB-1	SM 2320B-2011	606222		
2526099001	MCM-01	SM 2540C-2011	605313		
2526099002	MCM-02	SM 2540C-2011	605313		
2526099003	MCM-11	SM 2540C-2011	605313		
2526099004	MCM-16	SM 2540C-2011	605313		
2526099005	MCM-17	SM 2540C-2011	605313		
2526099006	MCM-18	SM 2540C-2011	605313		
2526099007	MCM-19	SM 2540C-2011	605313		
2526099008	MCM-20	SM 2540C-2011	605313		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: McManus CCR Sampling-Revised Report

Pace Project No.: 92526099

Date: 10/19/2021 01:21 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92526099009	—— FB-2	SM 2540C-2011	605313		
92526099010	EB-1	SM 2540C-2011	605313		
92526099001	MCM-01	EPA 300.0 Rev 2.1 1993	604773		
92526099002	MCM-02	EPA 300.0 Rev 2.1 1993	604773		
92526099003	MCM-11	EPA 300.0 Rev 2.1 1993	604773		
92526099004	MCM-16	EPA 300.0 Rev 2.1 1993	604773		
92526099005	MCM-17	EPA 300.0 Rev 2.1 1993	604773		
92526099006	MCM-18	EPA 300.0 Rev 2.1 1993	604773		
92526099007	MCM-19	EPA 300.0 Rev 2.1 1993	604773		
92526099008	MCM-20	EPA 300.0 Rev 2.1 1993	604773		
92526099009	FB-2	EPA 300.0 Rev 2.1 1993	604773		
92526099010	EB-1	EPA 300.0 Rev 2.1 1993	604773		

Pace Analytical"

Project Manager SRF Review:

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office

Sample Condition Client Name: Upon Receipt CREATE A DUPS	OWER		□сп		W0#:92526099
Commercial Pace	Othe				92526099
stody Seal Present? 《 Yes No Seal:	s Intact?	Yes	□No		Date/Initials Person Examining Contents 3-6-21 FIX
Sking Material: Bubble Wrap Bubble Wrap Permometer: Sin R Gun ID: 93 - 70 1 Correction Factor Add/Subtract (*C): 2 1 DA Regulated Soil (N/A, water sample) samples originate in a quarantine zone within the Unity of the samples of the sample of the sam	7	ce:]Wet □B		Blological Tissue Frozen? Yes No None Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No
Tiez Wino					Comments/Discrepancy:
Chain of Custody Present?	Yes	□No	□N/A	1.	100
Samples Arrived within Hold Time?	Yes	□No	□N/A	2,	The state of the s
Short Hold Time Analysis (<72 hr.)?	□Yes	NO	□N/A	3.	and the same of th
Rush Turn Around Time Requested?	☐Yes	No	□N/A	4.	and of the second secon
Sufficient Volume?	XYes	□No	□N/A	5.	
Correct Containers Used? -Pace Containers Used?	NYes VYes	□No □No	□n/A	6,	
Containers Intact?	'(X)Yes	□No	□N/A	7,	
Dissolved analysis: Samples Field Filtered?	Yes	□No	XIN/A	8.	And the second s
Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix:	NT.	□No	□n/a	9.	
Headspace in VOA Vials (>5-6mm)?	Yes	□No	D)N/A	10.	
Trip Blank Present?	☐Yes	□No	MN/V	11.	
Trip Blank Custody Seals Present? COMMENTS/SAMPLE DISCREPANCY	Yes	[]No	Μ̈́ν/Λ		Field Data Required? ☐ Yes ☐ No
				Le	ot ID of split containers:
IENT NOTIFICATION/RESOLUTION					
					Alternative Control of the Control o

Pace Analytical"

Document Name: Sample Condition Upon Receipt(SCUR) Document No.:

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project W0#: 92526099

PM: KLH1

Due Date: 03/15/21

CLIENT: GA-GA Power

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – iab)	SP2T-250 mL Sterile Plastic (N/A – lab)		8P3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	X	1	1			1		1	1	1									1	1			
2	1	Ī	1		1	X	1	1			1		1	1	1									1	1			
3	1	T	Ī		1	X	1	1			1		1	1	1									1	1			
4	/	1	1		/	1	1	/			/		1	1	1									1	1	-		
5	/		Ī		1	Y	/	1			/		1	1	1									1	1			
6	/	ī	1		1	X	/	/			1		1	1	1									1	1			
7	1	ì	1		/	X	1	1			1		1	1	/									1	1			
8	1	1	T		/	Y	1	1			1		1	1	1									1	1			
9	1	1	1		1	X	1	1			/		1	1	1									1	1			
10	1	1	Ī		1	Y	/	/			1		/	1	1									1	1			
11	1				1	/	1	1			1	Ek	/	1	/									1	1			
12	1				1	1	1	1			1		1	1	1									1	1			

	pH Ac	ljustment Log for Pres	erved Samples		
Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot II
	Type of Preservative				Type of Preservative pH upon receipt Date preservation adjusted Time preservation Amount of Preservative

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	ì	î î	[à		2 =	(6	9	00	7	O	5	4	3	2	-	ITEM#			queste	me:	te 320	fress:	mpany:	puired A
			As, Ba, Be, B, Co, Pb, U, Se	ADDITIONAL COMMENTS		1 -03	F3-2		かしましら	3/3-18	MCM-17	mcm - 16	mc ウー こ	mcm-02	MCM - 01	(AZ, 0-9 /	SAMPLE ID		juested Due Datc:	(404)358-8469 Fax:	te 320, Woodstock, GA 30188 alt: veronica.fay@resoluteenv.com	1003 Weatherstone Parkway	Georgia Power	guired Client information:
			K.													AVID AND ONE TESTER TS	Owners water OWE Waste Water WWO Product PD SolvSolidD OUC	MATRIXC CODEC	Project #:	Project Name:	Purchase Order #:	Copy To:	Report To: Veronles-Eav	Required Project Information:
			65	RELU												MATRIX CODE					der #:	1	Veror	ect I
			8	NOUIS					Œ		C 23	CAT.		(G)		SAMPLE TYPE	(G=GRAB C=	COMP)		мсма		17	Hers-F	nform
, ,			Keri O Stephe	RELINGUISHED BY / AFFILIATION		1391 12/KE	3/3/21 1		3/3/2 "	3/5/5/	8 3/21	3/3/2/1	3/3/2/1	332111	-/	DATE	START			McManus CCR Spring Sampling			av K	lation:
PRINT Name of SAMPLER:	SAMPLER	Ш	0	PELIATION		25	1642	1127	1638	7.5ht	1048	1246	1335	019	504	TIME		COLLECTED		Spring Sam		1541	べくしい シャ	
PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE												-			DATE TIME	8	8		pling	1		生きろうべん	
AMPL	SIGN		TIPIC	DATE												SAMPLE TEMP	AT COLLECTIO	NO.			ı		3	
8	NT N	-	-	1993	_	نن		(A)	- 5	CU	(1)	نت	W	iu.	w	# OF CONTAINE		<i>/</i> /N	Pa	Pa	Pa	8	Atte	inv
5	æ	11	60	TIME		12	2	2	17	2	2	2	17	N	47	Unpreserved			œ Pro	ce Pro	Pace Quote:	mpany	ention	Invoice In
6			0	m -			1									H2SO4			Pace Profile #:	Pace Project Manager.	ote:	Nam	Attention:	invoice information:
VÇ		1	M			-	**		***	-	~~	-		-	~	HNO3		Preservatives	11	lanag		l.		ation
かがた		S	TO SELECTION			-				_	-	_	-	-		HCI NaOH		erva	10768	8.			П	
2		1 3	N.	ğ	-	+	-		-		-	_	-			Na2S2O3		tives		kevin	1		П	
			5	1 E		+										Methanol		1"	Ш		1	1	П	
*		3	2	EB GB												Other				Ting@			П	
1		1 2	3	EPTED BY / AFFILIATION			1		_				_	1	1~	Analyses Metals*	Test	Y/N		herring@pacelabs.com,			П	
7			7			7	75	*	X	8	8	×	X	×	×	CI, F, SO4				abs.o			П	
CA		1	12	₹ _		x	X	X	X	X	8	×	X	X	Υ.	TDS			Requ	om,			Н	
n Stre	40														da.		"		Requested Analysis Filtered (Y/N)					
0		1							_		2.0		-		1112				Analy				П	
phenser		0	2/63	DATE	_	-	1		-	-				-					SIS F					
3		1		Á -	-	+			-										litere		100			
		-	10												117				MALE	MANAGE	400 days			
			2	TIME			/								107)	1	10000		f	-
	146	- 4		0.0				-		-	_		-								New Company			Page :
AP In C	,	1	N.	-					_	_	_			_	_	Residual Chip	ine (Y/N)			State	Pinfia			0
elved o	on		<	- 28%				N	7	r:	7	S	01.07	01	01				ÇΑ	State / Location	Skeguistory Adoles			-
N) stody	_			CO				7	\bar{c}	75	cc si	7	0	00	18.					n.	1			
ledD oler() (1)			<	SAMPLE CONDITIONS				V.					7	V						4.5	on the contract of			Q
mples ct0		-	7	(A)																	1	1		4

Low-Flow Test Report:

Test Date / Time: 7/1/2021 2:28:24 PM **Project:** June 2021 McManus CCR Resample

Operator Name: Kevin Stephenson

Location Name: MCM-14
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 18.11 ft
Total Depth: 28.11 ft

Initial Depth to Water: 9.37 ft

Pump Type: QED Dedicated

Tubing Type: LDPE

Pump Intake From TOC: 23.11 ft Estimated Total Volume Pumped:

3520 ml

Flow Cell Volume: 90 ml Final Flow Rate: 220 ml/min Final Draw Down: 0.34 ft Instrument Used: Aqua TROLL 400

Serial Number: 789301

Test Notes:

Pre-purged 3 liters

Low-Flow Readings:

Date Time	Elapsed	pН	Temperatur	Specific	RDO	Turbidity	ORP	Depth To	Salinity	Flow
Date Time	Time	рп	е	Conductivity	Concentration	Turblaity	OKP	Water	Sallfilly	FIOW
		+/- 0.1	+/- 1000 %	+/- 5 %	+/- 10 %	+/- 5	+/- 1000 %	+/- 0.3	+/- 1000 %	
7/1/2021	00:00	6.62 pH	25.01 °C	18,957	0.18 mg/L	1.23 NTU	-112.1 mV	9.70 ft	11.42 PSU	220.00
2:28 PM	00.00	0.02 pm	25.01 C	μS/cm	0.16 Hig/L	1.23 1110	-112.11110	9.70 11	11.42 F30	ml/min
7/1/2021	04:00	6.64 pH	24.33 °C	18,896	0.12 mg/L	1.34 NTU	-110.0 mV	9.71 ft	11.37 PSU	220.00
2:32 PM	04.00	0.64 μπ	24.33 C	μS/cm	0.12 Hig/L	1.34 NTO	-110.01110	9.7111	11.37 F30	ml/min
7/1/2021	08:00	6.64 pH	24.26 °C	18,873	0.11 mg/L	0.93 NTU	-108.9 mV	9.71 ft	11.36 PSU	220.00
2:36 PM	08.00	0.04 pm	24.20 C	μS/cm	0.11 mg/L	0.93 1110	-100.91110	9.7111	11.30 F30	ml/min
7/1/2021	12:00	6.64 pH	24.37 °C	18,784	0.10 mg/L	0.64 NTU	-106.3 mV	9.71 ft	11.30 PSU	220.00
2:40 PM	12.00	0.04 pm	24.37 C	μS/cm	0.10 mg/L	0.04 1110	-100.31110	9.7111	11.30 F30	ml/min
7/1/2021	16:00	6.64 pH	24.60 °C	18,746	0.10 mg/L	0.90 NTU	-105.8 mV	9.71 ft	11.28 PSU	220.00
2:44 PM	10.00	0.04 μπ	24.00 C	μS/cm	0.10 Hig/L	0.90 NTO	-105.61110	9.71 II	11.20 P30	ml/min

Samples

Sample ID:	Description:
MCM-14	Metals, Inorganics, TDS, Alk, Ions, Sulfide

Created using VuSitu from In-Situ, Inc.

July 21, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: PLANT MCMANUS

Pace Project No.: 92547567

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on July 02, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joe Booth, Resolute Environmental & Water Resources
Trent Godwin, Resolute Environmental & Water Resources
Kristen Jurinko
Ms. Lauren Petty, Southern Company
Kevin Stephenson, Resolute Environmental & Water
Resources Consulting, LLC
Stephen Wilson, Resolute Environmental & Water
Resources Consulting, LLC

CERTIFICATIONS

Project: PLANT MCMANUS

Pace Project No.: 92547567

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: PLANT MCMANUS

Pace Project No.: 92547567

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92547567001	MCM-14	Water	07/01/21 14:48	07/02/21 11:10

SAMPLE ANALYTE COUNT

Project: PLANT MCMANUS

Pace Project No.: 92547567

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92547567001	MCM-14	EPA 6010D	CBV, SH1	4	PASI-A
		EPA 6020B	CRW	2	PASI-A
		SM 2320B-2011	ECH	2	PASI-A
		SM 2540C-2011	ZMC	1	PASI-A
		SM 4500-S2D-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

SUMMARY OF DETECTION

Project: PLANT MCMANUS

Pace Project No.: 92547567

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
- Inctriod			Office	- Troport Limit	Analyzed	- Qualificis
92547567001	MCM-14					
	Performed by	CUSTOME R			07/02/21 13:38	
	рН	6.64	Std. Units		07/02/21 13:38	
EPA 6010D	Calcium	231	mg/L	2.0	07/21/21 01:18	
EPA 6010D	Magnesium	446	mg/L	2.0	07/21/21 01:18	
EPA 6010D	Potassium	119	mg/L	100	07/21/21 01:18	
EPA 6010D	Sodium	3460	mg/L	500	07/21/21 11:22	M1
EPA 6020B	Boron	0.26J	mg/L	1.0	07/09/21 13:55	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	263	mg/L	5.0	07/02/21 18:28	
SM 2540C-2011	Total Dissolved Solids	11200	mg/L	1250	07/06/21 14:30	
SM 4500-S2D-2011	Sulfide	21.0	mg/L	2.5	07/08/21 05:01	
EPA 300.0 Rev 2.1 1993	Chloride	5960	mg/L	100	07/03/21 18:57	
EPA 300.0 Rev 2.1 1993	Sulfate	693	mg/L	100	07/03/21 18:57	

ANALYTICAL RESULTS

Project: PLANT MCMANUS

Pace Project No.: 92547567

Date: 07/21/2021 04:25 PM

Sample: MCM-14	Lab ID:	92547567001	Collected	d: 07/01/2	1 14:48	Received: 07/	/02/21 11:10 Ma	atrix: Water	
			Report						
Parameters —	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	Method:							
	Pace Ana	llytical Services	- Charlotte						
Performed by	CUSTOME R				1		07/02/21 13:38		
рН	6.64	Std. Units			1		07/02/21 13:38		
6010 MET ICP	Analytica	Method: EPA 6	6010D Prep	aration Me	thod: E	PA 3010A			
	Pace Ana	llytical Services	- Asheville						
Calcium	231	mg/L	2.0	1.9	1	07/20/21 15:15	07/21/21 01:18	7440-70-2	
Magnesium	446	mg/L	2.0	1.4	1	07/20/21 15:15	07/21/21 01:18	7439-95-4	
Potassium	119	mg/L	100	60.8	1	07/20/21 15:15	07/21/21 01:18	7440-09-7	
Sodium	3460	mg/L	500	61.1	5	07/20/21 15:15	07/21/21 11:22	7440-23-5	M1
6020 MET ICPMS	Analytica	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3010A			
	Pace Ana	llytical Services	- Asheville						
Boron	0.26J	mg/L	1.0	0.17	1	07/09/21 08:30	07/09/21 13:55	7440-42-8	
Lithium	ND	mg/L	0.050	0.010	1	07/09/21 08:30	07/09/21 13:55	7439-93-2	
2320B Alkalinity	Analytica	Method: SM 2	320B-2011						
	Pace Ana	llytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	263	mg/L	5.0	5.0	1		07/02/21 18:28		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		07/02/21 18:28		
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C-2011						
	Pace Ana	llytical Services	- Asheville						
Total Dissolved Solids	11200	mg/L	1250	1250	1		07/06/21 14:30		
4500S2D Sulfide Water	Analytica	Method: SM 4	500-S2D-20	11					
	Pace Ana	lytical Services	- Asheville						
Sulfide	21.0	mg/L	2.5	1.2	25		07/08/21 05:01	18496-25-8	
300.0 IC Anions 28 Days	Analytica	Method: EPA	300.0 Rev 2.	1 1993					
	•	lytical Services							
Chloride	5960	mg/L	100	60.0	100		07/03/21 18:57	16887-00-6	
Fluoride	ND	mg/L	10.0	5.0	100		07/03/21 18:57		D3
Sulfate	693	mg/L	100	50.0	100		07/03/21 18:57	14808-79-8	

Project: PLANT MCMANUS

Pace Project No.: 92547567

QC Batch: 634582 QC Batch Method: EPA 3010A Analysis Method: EPA 6010D Analysis Description: 6010 MET

Laboratory: Pac

Pace Analytical Services - Asheville

Associated Lab Samples: 92547567001

METHOD BLANK: 3332622

Date: 07/21/2021 04:25 PM

Matrix: Water

Associated Lab Samples: 92547567001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND	0.10	0.094	07/21/21 01:11	
Magnesium	mg/L	ND	0.10	0.068	07/21/21 01:11	
Potassium	mg/L	ND	5.0	3.0	07/21/21 01:11	
Sodium	mg/L	ND	5.0	0.61	07/21/21 01:11	

LABORATORY CONTROL SAMPLE: 3332623 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Calcium 5 5.0 99 80-120 mg/L Magnesium 5 5.3 107 mg/L 80-120 Potassium mg/L 5 5.2 104 80-120 Sodium 5 5.2 mg/L 103 80-120

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 3332		3332625								
			MS	MSD								
		92547567001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	231	100	100	324	325	93	94	75-125	0	20	
Magnesium	mg/L	446	100	100	537	536	91	89	75-125	0	20	
Potassium	mg/L	119	100	100	221	218	101	99	75-125	1	20	
Sodium	mg/L	3460	100	100	3420	3290	-47	-179	75-125	4	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

Analyzed

QUALITY CONTROL DATA

Project: PLANT MCMANUS

Pace Project No.: 92547567

QC Batch: 631990 QC Batch Method: EPA 3010A Analysis Method:
Analysis Description:

EPA 6020B

Analysis Description Laboratory: 6020 MET Pace Analytical Services - Asheville

Associated Lab Samples: 92547567001

METHOD BLANK: 3320023

Date: 07/21/2021 04:25 PM

Matrix: Water

Associated Lab Samples: 92547567001

Parameter Units Blank Reporting
Result Limit MDL

 Boron
 mg/L
 ND
 0.050
 0.0085
 07/09/21 14:05

 Lithium
 mg/L
 ND
 0.0025
 0.00050
 07/09/21 14:05

LABORATORY CONTROL SAMPLE: 3320024

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron mg/L 0.05 0.053 107 80-120 Lithium mg/L 0.05 0.052 104 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3320025 3320026

Parameter	Units	92547567001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Boron	mg/L	0.26J	1	1	1.2	1.2	95	98	75-125	3	20	
Lithium	mg/L	ND	1	1	1.0	1.1	102	105	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

SM 2320B-2011

Project: PLANT MCMANUS

Pace Project No.: 92547567

Date: 07/21/2021 04:25 PM

QC Batch: 631187

QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92547567001

METHOD BLANK: 3316049 Matrix: Water

Associated Lab Samples: 92547567001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Alkalinity,Bicarbonate (CaCO3)	mg/L	ND ND	5.0	5.0	07/02/21 14:20	
Alkalinity, Carbonate (CaCO3)	mg/L	ND	5.0	5.0	07/02/21 14:20	

Analysis Method:

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT MCMANUS

Pace Project No.: 92547567

QC Batch: 631478 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92547567001

METHOD BLANK: 3317514 Matrix: Water

Associated Lab Samples: 92547567001

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 07/06/21 14:29

LABORATORY CONTROL SAMPLE: 3317515

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 250 252 101 90-110

SAMPLE DUPLICATE: 3317516

Date: 07/21/2021 04:25 PM

Parameter Units Result Result RPD RPD Qualifiers

Total Dissolved Solids mg/L 703 781 11 25

SAMPLE DUPLICATE: 3317517

92547567001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 11200 mg/L 10800 5 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

PLANT MCMANUS Project:

Pace Project No.: 92547567

QC Batch: 632020

QC Batch Method: SM 4500-S2D-2011 Analysis Method:

SM 4500-S2D-2011

MDL

96

Analysis Description:

4500S2D Sulfide Water

Laboratory:

Pace Analytical Services - Asheville

92547567001 Associated Lab Samples:

METHOD BLANK:

Matrix: Water

Associated Lab Samples: 92547567001

Blank

Parameter Units Result Reporting Limit

Qualifiers Analyzed

Sulfide ND 0.10 0.050 07/08/21 04:58 mg/L

LABORATORY CONTROL SAMPLE:

Parameter

Sulfide

3320094

Units

mg/L

Spike Conc.

0.5

LCS Result

0.48

LCS % Rec % Rec Limits

91

80-120

MSD

% Rec

Qualifiers

% Rec

Limits

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3320095 MS 3320096

92547552003 Spike Spike MS MSD MS Parameter Units Conc. Conc. Result Result Result % Rec ND Sulfide mg/L 0.5 0.5 0.46 0.51

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Date: 07/21/2021 04:25 PM

3320097 MS

MSD

92547919004 Spike Parameter Units Result Conc. Sulfide ND 0.5 mg/L

MSD MS Spike Conc.

0.5

MSD Result Result 0.49 0.49

3320098

MS % Rec 97

MSD % Rec

98

100

% Rec Max RPD RPD Limits

RPD

10

10 80-120

Max

RPD

10

Qual

Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT MCMANUS

Pace Project No.: 92547567

Date: 07/21/2021 04:25 PM

QC Batch: 631408 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92547567001

METHOD BLANK: 3317347 Matrix: Water

Associated Lab Samples: 92547567001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	07/03/21 13:05	
Fluoride	mg/L	ND	0.10	0.050	07/03/21 13:05	
Sulfate	mg/L	ND	1.0	0.50	07/03/21 13:05	

LABORATORY CONTROL SAMPLE: 3317348 LCS Spike LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 50 102 90-110 mg/L 50.9 Fluoride 2.5 104 90-110 mg/L 2.6 Sulfate mg/L 50.4 90-110 50 101

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3317	349		3317350							
			MS	MSD								
		92547372001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	35.9	50	50	87.8	88.4	104	105	90-110	1	10	
Fluoride	mg/L	3.0	2.5	2.5	4.4	4.4	55	55	90-110	0	10	M1
Sulfate	mg/L	43.0	50	50	96.1	96.5	106	107	90-110	0	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3317	351		3317352							
			MS	MSD								
		92547500001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	53.0	53.6	104	106	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.6	2.6	103	103	90-110	0	10	
Sulfate	mg/L	ND	50	50	52.6	53.0	105	105	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: PLANT MCMANUS

Pace Project No.: 92547567

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/21/2021 04:25 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PLANT MCMANUS

Pace Project No.: 92547567

Date: 07/21/2021 04:25 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92547567001	MCM-14		_		
92547567001	MCM-14	EPA 3010A	634582	EPA 6010D	634701
92547567001	MCM-14	EPA 3010A	631990	EPA 6020B	632455
92547567001	MCM-14	SM 2320B-2011	631187		
92547567001	MCM-14	SM 2540C-2011	631478		
92547567001	MCM-14	SM 4500-S2D-2011	632020		
92547567001	MCM-14	EPA 300.0 Rev 2.1 1993	631408		

Pace Analytical"

Document Name: Sample Condition Upon Receipt(SCUR)

Equiment No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 1 of 2 Issuing Authority:

Page Carolinas Quality Office

Laboratory receiving samples: Kernersville Mechanicsville Atlanta Asheville Eden Greenwood Huntersville ___ Raleigh Project #: WO#: 92547567 Client Name: Sample Condition Upon Receipt e eorgia Client Courler Commercial Other No Date/Initials Person Examining Contents: 7-2-21 44 De Yes No Seals Intact? Custody Seal Present? Biological Tissue Frazen? T Other Nane Packing Material: Bubble Bags Bubble Wrep DYES DNO BNA Thermometer: - Dwar Colue □None I IR Gun ID: 937071 Type of Ice: Correction Factor: Tempshould be above freezing to 6°C. Add/Subtract ('C) Coaler Temp: Samples out of temp criteria. Samples on ice, cooling process 1.4ºC Cooler Temp Carrected (*C): has begun USDA Regulated Soil (N/A, watersample) Old samples originate from a foreign source (Internationally, Did samples originate in a quarantine tone within the United States: CA, MY, or SC (check maps)? including Hewall and Puerto Ricol? [Yes Tyes [No Comments/Discrapancy: DNa □N/A CY41 Chain of Custody Present? □N/A Samples Arrived within Hold Time? Klyes. □na 3. (ANa DN/A Yas . Short Hold Time Analysis (<72 hr.)? Rush Turn Around Time Requested? DONa □N/A Yes □Na UN/A WYES. Sufficient Volume? KIYOS □Na []N/A Correct Containers Used? Ayes □No. IN/A -Pace Containers Used? Salves. OND Cuntainers Intact? Dissolved analysis: Samples Field Filtered? I No PSN/A Ves □N/A Sample Labels Match COC? XXes-UNO. -Includes Date/Time/ID/Analysis Matrix: 10. ONO-ZAV/A Headspace in VOA Vials (>5-6mm)? ☐ Yes □No: MN/A Trip Blank Present? Yes Trip Blank Custody Seals Present? □No. 54N/A Flaid Data Required? Yes No COMMENTS/SAMPLE DISCREPANCY Lot ID of split containers: SIGNATURE SEAL Date/Time: Person contacted: Date: Project Manager SCURF Review: Date: Project Manager SRF Review:

Pace Analytical

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority: Pace Carolina's Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oll and Grease, DRO/8015 (water) DOC, LLHg

** Bottom half of box is to list number of bottles

Project #

WO#: 92547567

PH: KLH1

Due Date: 07/19/21

CLIENT: GA-GA Power

bend	8P4U-125 mL Plastic, Unpreserved (N/A) (Cl.)	8P3U-250 mL Plastic Unbreserved (N/A)	BP2U-500 mt Plastic Unpreserved (N/A)	BP1U-1 Ilter Pisitiq Unbreserved (N/A)	BP45-125 mL Plustic H2504 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	8P4Z-125 mL Plastic ZN Acetate & NaDH (>9)	BP4C-125 mLPlastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	ASIU-1 liter Amber Unpreserved (N/A) (CI-)	AG18-4 (feer Amiser MCI (pH < 2)	AGSU-250 mLAmber Unpreserved (N/A) (CL)	A615-1 (ter-Amber H2504 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	AGSA(DGSA)-250 mL Amber NH4CI (N/A)(CI-I	DG9H-40 mLVOA HCI (N/A)	V691-46 ml, VOA Na2S203 (N/A)	VG9U-40 mL VCla Unp IN/A)	DG9R-48 mL VOA H3PO4 (N/A)	NOAK (6 vials per kit) 5035 kit (N/A)	V/Git (3 white per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 ml. Sterille Plastic (M/A ials)		8P2A-250 mL Plastic (NH2)2SQ4 (5.3-5.7)	AGOU-100-mL Amber Unpreserved vinis [N/A]	VSGLF-20 mL Scintillation vials (N/A)	Disgit 40 mt Amber Unpreserved viale (N/A)
1	1	2	1		/	X	X	1			1		/	1	1									1	1			
2	1				/	1	1	1					1	1	1									1	1			
3	1				1		1	1			1		1	1	1								1	1		lat.		
A.	1			172	1	1	1	1			1		/	/	1									1	1			
5	1				1	7	1	1		0	1		1	1	1									1	1			1
6	1			4	7	1	1	1		1	1		1	1	1									1				
7	1				7	1	1	1			1		1	1	V									/				
8	1				1	V	1	1			1		/	1	V	=								1	1			
9	1				1	1	1	1			1		1	1									Ħ	1	1			
10	1	-	10		1	1	7	1			1		1	1	1	1					0			/	1			Ī
11	1				1	1	7				1		1	1	1									/	1			
12	1				1	1	1	1			1		V	1	1									1	1			

		pH Ac	Justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot II
				-		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina OEHNR Certification Office (i.e. Dut of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	MEER COMMISSION OF THE PERSON	SAMPLER YAME AND SIGNATURE PRINT NAME OF SAMPLER			
Cum				"Major lorse Na, K, Mg	-Major le
DEX	1604	Chilt Conson	KoboStokoso	App. III Metals: B, Ca	'App.
ACCEPTED BY WELL TOWN		de in Mountain de Casterina de la compa	RIGHUSINOMISHE	ADDITIONAL COMMERTS	
				The second secon	12
					100 100
					10
					9
					を記述
					9
					5
					10000000000000000000000000000000000000
,	-				2.2
*	53	Shirts	THE S TW	NCM 14	附原
HOI NaCH NaCH Na28203 Meithanol Other Analyses Test. Analyses Test. Inlum IDS ILF, SO4 Major Jone** Mullide Ukalinily	M SAMPLE TEMP AT COLLEG A OF CONTAINERS Unpreserved H2804 HNO3	START END	교육등등무역기를 하 MATHIX CODE (ese yalld c SAMPLE TYPE (G+GRAR	SAMPLE ID Subsider Per Nox. (A-Z, 0-91, -) Sample Ids must be unique Touce	ITEM #
Preservatives X		соцество	Sign of the left.	UATROX Dirtuos guanos	
And a second percentage in a second s]
TOTAL TOTAL OF THE PROPERTY OF	Page Profile #:		7	Requested Due Dele	Hequeste
Vovia Horizo	Pars Pintert Mans	Manus	Project Name: Plant McMarius	(470) 895-0653 Fax:	Phone:
Regulatory Agency	Address		Purciase Order #:		Email To:
	Company Name:		Copy To:	Woodstock GA 30188	Modresos
	Attention:	Stephen Wilson, Trent Godwin	Report To: Stephen Will	I.	Company
ion	Invoice information:	7	Required Project Information	E	Required

Arcadis U.S., Inc.

2839 Paces Ferry Road Suite 900 Atlanta, Georgia 30339 Tel 770 431 8666 Fax 770 435 2666

www.arcadis.com