PERIODIC SAFETY FACTOR ASSESSMENT 391-3-4-.10(4) and 40 C.F.R. PART 257.73 PLANT BOWEN ASH POND (AP-1) GEORGIA POWER COMPANY

The Federal CCR Rule, and, for Existing Surface Impoundments where applicable, the Georgia CCR Rule (391-3-4-.10) require the owner or operator of a CCR surface impoundment to conduct initial and periodic safety factor assessments. *See* 40 C.F.R. § 257.73(e); Ga. Comp. R. & Regs. r. 391.3-4-.10(4)(b)¹. The owner or operator must conduct an assessment of the CCR unit and document that the minimum safety factors outlined in § 257.73(e)(1)(i) through (iv) for the critical embankment section are achieved. In addition, the Rules require a subsequent assessment be performed within 5 years of the previous assessment. *See* 40 C.F.R. § 257.73(f)(3); Ga. Comp. R. & Regs. r. 391.3-4-.10(4)(b)¹.

The CCR surface impoundment AP-1 is located on Georgia Power Company's Plant Bowen property in southern Bartow County, approximately 7 miles west-southwest of the city of Cartersville. The Notification of Intent to Initiate Closure was placed in the Operating Record on 12/31/2020 and closure has been designed to have no negative impacts on the stability of the perimeter embankments. AP-1 was created by construction of the main dike, which bounds AP-1 on the east, south and west sides, and approximately two-thirds of the north dike. The remaining portions of the impoundment are contained by natural ground. Numerous slope stability analyses have been performed for the facility since 2002. These analyses have been revisited several times since and have shown that due to height of the embankment section and the characteristics of the foundation materials, the critical section of this CCR unit was located on the western side of the embankment on the north side of what is sometimes referred to as a "horseshoe" bend in the embankment. Under current conditions, this portion of the embankment remains the critical section.

The current analyses used to determine the minimum safety factor for the critical section resulted in the following minimum safety factors:

Loading Condition	Minimum Calculated	Minimum Required
	Safety Factor	Safety Factor
Long-term Maximum Storage Pool (Static)	1.6	1.5
Maximum Surcharge Pool (Static)	1.5	1.4
Seismic	1.4	1.0

^[1] In a typographical error, 391.3-4.10(4)(b) references the "structural integrity criteria in 40 CFR 247.73," when the reference to such criteria should be 40 CFR 257.73.

The embankments are constructed of silts and clays that are not susceptible to liquefaction. Therefore, a minimum liquefaction safety factor determination was not required.

This assessment is supported by appropriate engineering calculations which are attached.

I hereby certify that the safety factor assessment was conducted in accordance with 40 C.F.R. § 257.73(e)(1).

James C. Pegus Licensed State

Technical and Project Solutions Calculation

Calculation Number: TV-BN-GPC1112895-001

Project/Plant: Plant Bowen	Unit(s): 1-4	Discipline/Area: Environmental Solutions
Title/Subject: Periodic Factor of Safety Assess	ment for CCR Rule	
Purpose/Objective: Determine the Factor of Sa	fety of the Ash Pond D	ike
System or Equipment Tag Numbers: N/A	Originator: Jacob Jo	rdan, P.E.

Contents

		Attachments	# of
Topic	Page	(Computer Printouts, Tech. Papers, Sketches, Correspondence)	Pages
Purpose of Calculation	2	Attachment A – Site Plan	1
Summary of Conclusions	2	Attachment B – Cross Section	1
Methodology	2	Attachment C – Soil Boring Logs	7
Assumptions	3	Attachment D – Dutch Cone Soundings	1
Criteria	3	Attachment E – Laboratory Test Results	203
Design Inputs/References	4		
Body of Calculation	5-7		
Total # of pages including			•

Total # of pages including cover sheet & attachments:

Revision Record

Rev. No.	Description	Originator Initial / Date	Reviewer Initial / Date	Approver Initial / Date
0	Issued for Information	JAJ/06-02-21		

Notes:

Purpose of Calculation

Georgia Power Company's Plant Bowen is served by a single ash pond. Ash Pond 1 was commissioned in 1968, at the time of plant construction. The main portions of the ash pond dike are the western and southern embankments having a combined length of approximately 5400 feet. The west dike, about 3200 feet, is abruptly broken by a horseshoe-shaped segment containing several sharp bends.

The cross-section of the dike varies. North of the horseshoe, the west dike extends from a foundation elevation of about +672 feet MSL up to a crest elevation of +715 feet, MSL, and a crest width of approximately 15 feet. The downstream slopes are a uniform 2(H):1(V), and broken by a 15 to 20-foot wide bench at about Elevation 693. Proceeding south, the bench transitions away through the horseshoe to yield one long slope, as the foundation or toe elevation increases to about +690 feet. Through the southeast turn the foundation rises to about +700 feet with no bench. For the last 1200 feet and along the recycle pond (southern embankment), the downstream slope extends on a long 2:1 inclination way to a small creek at the toe some 35 feet below the crest elevation.

The ash pond dike is a homogeneous compacted silt/clay embankment founded on silty clay residuum, all overlying a bedrock limestone and dolomite formation. The purpose of this calculation is to check the stability of the dike of Ash Pond 1 at the critical section using current software and material properties.

Summary of Conclusions

The following table lists the factors of safety for various slope stability failure conditions. All conditions are steady state except where noted. Construction cases were not considered. The analyses indicate that in all cases the factors of safety at Ash Pond 1 are above the required minimums.

Load Conditions	Computed Factor of Safety	Required Minimum Factor of Safety
Long-term Maximum Storage (Static)	1.6	1.5
Maximum Surcharge Pool (Static)	1.5	1.4
Seismic	1.4	1.0

Methodology

The calculation was performed using the following methods and software:

GeoStudio 2021 R2, version 11.1.1.22085, Copyright 1991-2021, GEO-SLOPE International, Ltd. The Morgenstern-Price analytical method used for the analyses.

Strata (Version 0.8.0), University of Texas, Austin

.

Assumptions

The modeling and slope stability analyses were performed using the following assumptions and design criteria:

- Seismic site response was determined using a one-dimensional equivalent linear site response analysis. The analysis was performed using Strata and utilizing random vibration theory. The input motion consisted of the USGS published 2014 Uniform Hazard Response Spectrum (UHRS) for Site Class B/C at a 2% Probability of Exceedance in 50 years. The UHRS was converted to a Fourier Amplitude Spectrum, and propagated through a representative one-dimensional soil column using linear wave propagation with strain-dependent dynamic soil properties. The input soil properties and layer thickness were randomized based on defined statistical distributions to perform Monte Carlo simulations for 100 realizations, which were used to generate a median estimate of the surface ground motions.
- The median surface ground motions were then used to calculate a pseudostatic seismic coefficient for utilization in the stability analysis using the approach suggested by Bray and Tavasarou (2009). The procedure calculates the seismic coefficient for an allowable seismic displacement and a probability exceedance of the displacement. For this analysis, an allowable displacement of 0.5 ft, and a probability of exceedance of 16% were conservatively selected, providing a seismic coefficient of 0.050g for use as a horizontal acceleration in the stability analysis.
- The soil properties of unit weight, phi angle, and cohesion were obtained from triaxial shear testing performed on UD samples of the fill and foundation soils obtained during drilling in August 2002. The testing was performed according to ASTM D 2850, ASTM D 3080, and ASTM D 4767.
- Properties for ash were based on laboratory testing performed on undisturbed and remolded samples of ash from various plants and on engineering judgment.
- In September 2002, piezometers were installed in the dam and the foundation. These piezometers, in conjunction with survey data, were used to obtain current water elevations within the dam and the foundation soils.
- The COE EM 1110-2-1902, October 2003, allows the use of the phreatic surface established for the maximum storage condition (normal pool) in the analysis for the maximum surcharge loading condition. This is based on the short-term duration of the surcharge loading relative to the permeability of the embankment and the foundation materials. This method is used in the analysis for the impoundments at this facility with surcharge loading and is considered conservative for the existing conditions.
- The critical section has been determined to be located on the western side of the Ash Pond.
- Maximum storage pool is at EL714.
- Maximum surcharge pool is at EL715, the top of dike elevation.

Criteria

The current required minimum criteria (factors of safety) were taken from the structural integrity criteria for existing CCR surface impoundments from 40 CFR 257.73, published April 17, 2015.

Design Inputs/References

The following soil properties were used in the analyses. This data was generally obtained from laboratory triaxial testing performed in October 2002 by Southern Company Central Laboratory and summarized in a slope stability analysis report by Southern Company Services, dated December 2003. The laboratory testing consisted of classification testing as well as unconsolidated undrained, consolidated undrained, and consolidated drained triaxial tests in order to provide total as well as effective shear strength parameters of the embankment and foundation soils. The effective stress parameters were used in the analyses.

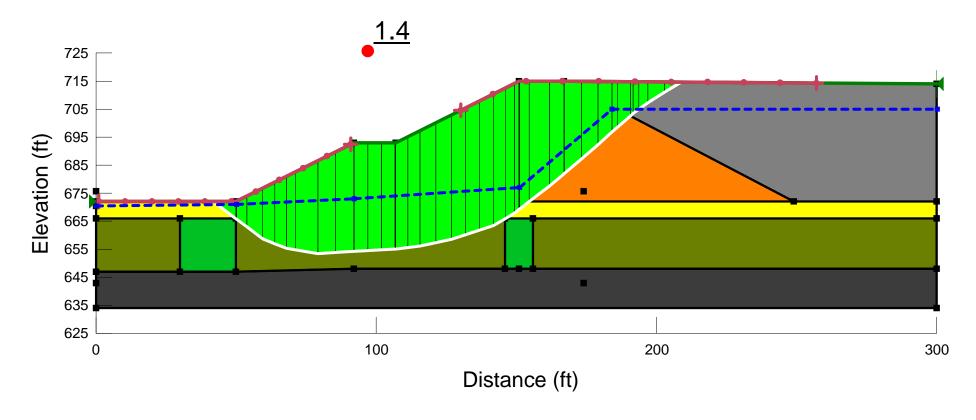
	Moist Unit	Effective Stress Parameters			
Soil Description	Weight, pcf	Cohesion, psf	Phi Angle, degrees		
Embankment Fill	122	350	31		
Residual	124	218	30		
Weak Residual	117	100	20		
Remediated Weak Residual	117	8000	0		
Ash	85	0	15		

Hydrologic Considerations

The following hydraulic information is based on the calculation package Inflow Design Control System Plan: Hydrologic and Hydraulic Calculation Summary for Plant Bowen Ash Pond by Southern Company Services. This calculation package states that the Ash Pond is capable of handling the 1000-year 24-hour storm event with a maximum surcharge pool elevation of 714. The stability calculations conservatively use a maximum surcharge pool elevation of 715.

Load Conditions

The impoundment dike at Plant Bowen Ash Pond was evaluated for the long-term maximum storage, maximum surcharge, and seismic loading conditions.

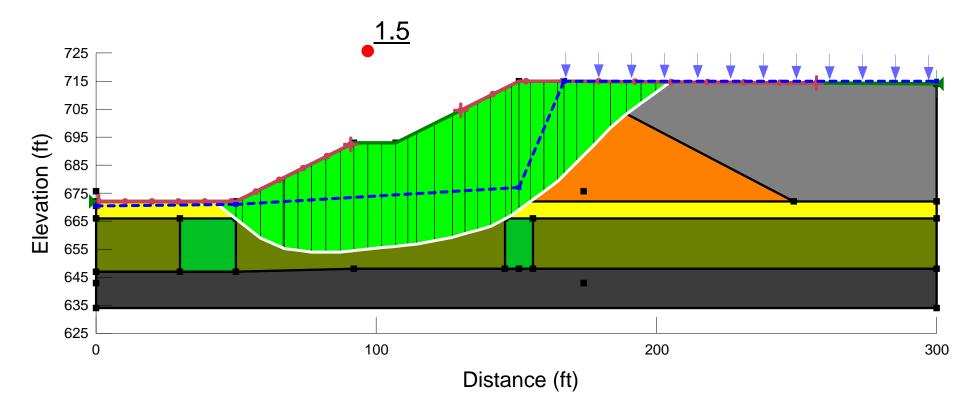

Body of Calculation

Calculations consists of Slope/W modeling and analysis, attached.

Attachments


Bowen Ash Pond Dike Stability Analysis Seismic Loading

Color	Name	Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Ash	Mohr-Coulomb	85	0	15
	Bedrock	Bedrock (Impenetrable)			
	Embankment Fill	Mohr-Coulomb	122	350	31
	Remediated Weak Residual	Mohr-Coulomb	117	8,000	0
	Residual	Mohr-Coulomb	124	218	30
	Weak Residual	Mohr-Coulomb	117	100	20


Bowen Ash Pond Dike Stability Analysis Maximum Surcharge

Color	Name	Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Ash	Mohr-Coulomb	85	0	15
	Bedrock	Bedrock (Impenetrable)			
	Embankment Fill	Mohr-Coulomb	122	350	31
	Remediated Weak Residual	Mohr-Coulomb	117	8,000	0
	Residual	Mohr-Coulomb	124	218	30
	Weak Residual	Mohr-Coulomb	117	100	20

Bowen Ash Pond Dike Stability Analysis Maximum Storage

Color	Name	Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Ash	Mohr-Coulomb	85	0	15
	Bedrock	Bedrock (Impenetrable)			
	Embankment Fill	Mohr-Coulomb	122	350	31
	Remediated Weak Residual	Mohr-Coulomb	117	8,000	0
	Residual	Mohr-Coulomb	124	218	30
	Weak Residual	Mohr-Coulomb	117	100	20

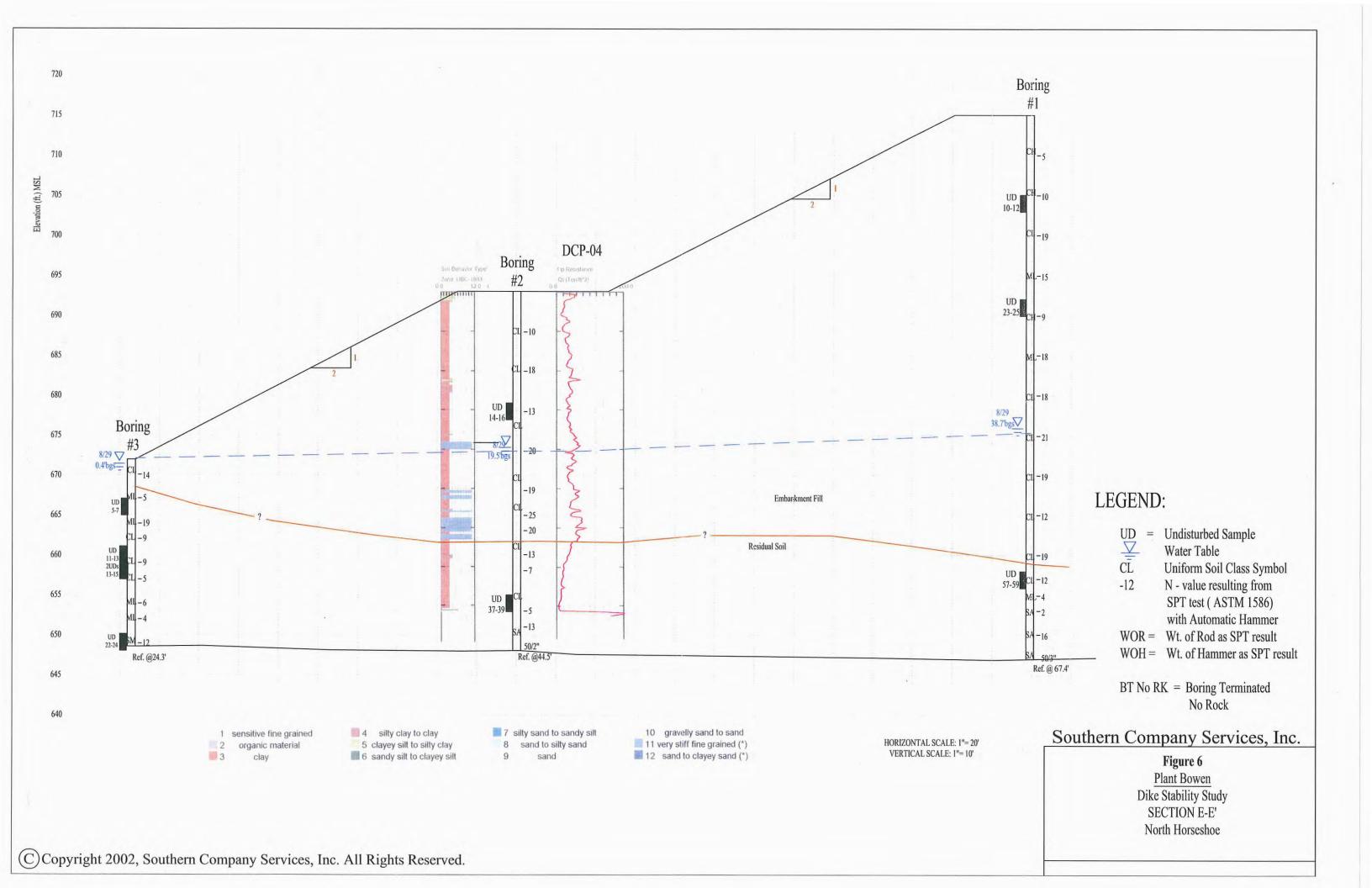

Attachment A

Figure - Site Plan

Attachment B

Figure – Cross Section

Attachment C

Soil Borings

SOUTHERN COMPANY	
Energy so Serve Your World	

DRILLING LOG GEOLOGICAL SERVICES

Hole No. BO-STA-02-1

Energy	so Serve	Your World	GEOLOGICAL SERVICES			SI	neet 1	of	3	
SITE		Plant B	owen	HOLE DEPTH	67.4'	SU	RF.ELEV,		~715'	
LOCAT	ION _	Ash Por	nd Dike COORDINATES N							
ANGLE			BEARING CONTRACTOR	SCS	DR	ILL NO.		СМЕ	550	
Deilling	Mathad		Hollow Stem Auger NO PENT TESTS 16	NO	UD CAMDI	EC	3			
			LENGTH CORE BOXES							
			38.7' ELEV TIME AFTER COMP					29/200		
TYPE G	SROUT	0.0-1-	QUANTITY MIX	DRIL	LING STAR	T DATE _	8/2	20/200	2	
Compression of the Compr	or to the transfer of the total	O.Cole	RECORDER J. Miller APPROVED							
Graphic Log	Depth	Elev.	Material Description, Classification and Remarks	from to	ndard Pen, T Blows	est N		Fluid Chg. %		comment
	0									
	_			1						
	1									
	2									
	3									
	4						<u> </u>			
	5		Red/brown Silty CLAY (CH)	3.5-5.0	1-1-4	5	1			
	6				OF THE PARTY OF TH					
	7			1						
	8									
	9		Yellow/brown Silty CLAY (CL-CH)	8.5-10.0	1-4-6	10	2			
Salai uu ayaayay	10			8.5-10.0	1-4-0					
	11									UD
	12									10' - 12'
	13									
			CAA with allaha assaura of the CANID (CL)							
	14		SAA with slight amount of fine SAND (CL)	13.5-15.0	4-8-11	19	3			
	15									
	16									
	17									
	18									
	19		Red/brown/yellow silty CLAY to Clayey Silt with few small							
	20		rock fragments (CL-ML)	18.5-20.0	3-6-9	15	4			
	21									
	2 2									
	23									UD
1	24		Red/brown silty CLAY with few small rock fragments							23' - 25'

SOUTHERN COMPANY
Energy to Serve Your World

Form GS9902 4/24/2000

DRILLING LOG GEOLOGICAL SERVICES

Hole No.

BO-STA-02-1

Sheet 2 of 3

SITE _		Plant	Bowen	TOTAL DEPTH	67.4'	SUF	RF.ELEV.	_~7	15'	
Graphic Log	Depth	Elev.	Material Description, Classification and Remarks	From to	Standard Blows	Pen. Test	Sample No.	Fluid Chg. 9	Rec.	comment
	25		Red/brown silty CLAY with few small rock fragments (CL/CH)	23.5-25.0	1-4-5	9	5			UD 23' - 25
	26			***************************************						
	27									
	28									
	29		Red/brown/tan Slightly Sandy Clayey Silt (ML) with	****						
	30		very few small fragments	28.5-30.0	4-8-10	18	6			
	31			**************************************			•			
	32									
	33									
	34		Red/brown Silty CLAY (CL,CH)	**************************************						
	35			33.5-35.0	2-5-13	18	7			
	36									
	37									
	38									
	39	·······································	SAA with small rock fragments	Market To Company of the Market Company of the Comp						
	40		(sample moist only)	38.5-40.0	4-9-12	21	8			
	41									
	42									
	43									
	44		Red/brown/tan silty CLAY to Clayey SILT (CL-ML)	**************************************						
	45		(sample still only moist)	43.5-45.0	4-8-11	19	9			
	46									
	47									
	48									
	49		SAA	48.5-50.0	2-5-7	12	10			
	50			46.5-50.0	2-5-7	12	10			
	51	×								
	52		Residual Soil							
	53									
	54		Brown/tan/Lt. Gray , Silty CLAY (CL,CH)	53.5-55.0	4-8-11	19	11			
	55			55.5-55.0	4-0-11	19	' '			
Form GS0	56									

SOUTHERN COMPANY

DRILLING LOG GEOLOGICAL SERVICES

Hole No.

BO-STA-02-1

Sheet 3 of 3

Plant Bowen 67.4 SITE ~715 TOTAL DEPTH SURF.ELEV Standard Pen. Test Depth Log Elev. Classification and Remarks Blows N No. Chg. % 57 Medium brown, Silty CLAY with very few small rock fragments 58 (CL, CH) 57.0-58.5 3-5-7 12 12 UD 57' - 59' 59 Medium brown, Clayey Silt with few small rock fragments (ML,CL) WOH to Silty Clay (Cl,CH) with several 1/16" to 1/4" size rock fragments 58.5-60.0 2-2 4 13 60 61 Medium gray silty/clayey, fine to medium SAND to slightly silty fine WOH 62 to medium sand. Portions show some relic structure of 2 61.0-62.5 1-1 14 Sandstone/Dolomite. Tan to Medium gray to beige probably 63 highly weathered Sandstone lenses. Medium gray / Tan Slightly Clayey to Silty, fine to medium SAND. 64 Probably highly weathered SandStone. Similar to above 63.5-65.0 9-11-5 16 15 65 66 SAA - Medium gray Silty Sand (weathered Sandstone) with Limestone/Dolomite pieces 67 66.0-67.5 50/3* 50/3" 16 67.4 68 Auger Refusal @ 67.4'. Boring terminated 69 <u>7</u>0 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 orm GS9902 4/24/2000

THER	APAN	•				Hole I	No.	BO-S	STA-0	02-2	
to Serve	· Your World	GEOLOGICAL SE					THE PARTY OF THE PROPERTY OF THE PARTY OF TH	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	2		
			но	LE DEPTH	44.5'	SI	URF.ELEV.		~693'	1	
_											
=											
Method		Hollow Stem Auger NO. PENT. TESTS	12	NO	. U.D. SAMP	LES	2		**************************************		
G SIZE		LENGTHCOR	E BOXES		TOTAL	% REC.		-	×		
						_					
ER	O. Cole							See the second s			
	Elev.	Material Description, Classification and Remarks		from to	andard Pen. T Biows					comment	
0											
4			<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	1		1					
2						1			!		
3								!			
4								'	!		
5		Reddich brown eilty CLAV - dry - Ell I						'			
		Theodist blown sitty OLAT - dry - FILE		4.5-6.0	3-4-6	10	1	'			
6								!			
7											
8											
9						ĺ					
			-]			
10		Heddish brown and gray mottled silty CLAY - dry - FILI	L	9.5-11.0	4-8-10	18	2				
11	<u> </u>										
12											
13	<u> </u>					İ					
14						l					
						<u> </u>	,] !		UD 14'-16'	
15		Light brown fat clay (CH)		14.5-16.0	4-6-7	13	$\begin{bmatrix} 3 \end{bmatrix}$			OFFSET 4' TO NORTH	
16										FOR SAMPLE	
17						İ					
18						l					
19						İ					
20		644		10 5 21 0	4 9 10	20		1 1			
21	<u> </u>	SAA		19.5-21.0	4-6-12	20	4				
22						í		1 1		[
						I			, ,		
	Method G SIZE R TABLE GROUT FR	Plant E	Plant Bowen Serve Very World	Plant Bowen Ash Pond Dike BEARING CONTRACTOR BEARING CONTRACTOR BEARING CONTRACTOR BEARING CONTRACTOR BEARING CONTRACTOR CORE BOXES RABBLE DEPTH CORE BOXES RECONDER H. Hill APPROVED BEIEV. Classification and Remarks O. Cole RECORDER Reddish brown silty CLAY - dry - FILL Reddish brown and gray mottled silty CLAY - dry - FILL Reddish brown fat clay (CH) Light brown fat clay (CH) Light brown fat clay (CH) SAA SAA SAA SAA SAA SAA SAA S	Plant Bowen	Plant Boven	SAA Pond Dike SCORDINATES SCORDINATION SC	Sheet 1 Shee	Sheet 1 of	Sheet 0 2 2 3 3 3 3 3 3 3 3	

24 rm GS9901 4/24/2000 SOUTHERN COMPANY
Energy to Serve Your World

DRILLING LOG GEOLOGICAL SERVICES

Hole No.

BO-STA-02-2

Sheet 2 of 2

Plant Bowen 44.5 ~693' TOTAL DEPTH SURF.ELEV. Graphic Standard Pen. Test Sample Material Description, Fluid Log Depth Elev. Classification and Remarks From to N comment Chg. 9 25 SAA - FILL 24.5-26.0 4-9-10 19 5 26 27 28 SAA - with chert and Limestone fragments - Fill 27.5-29.0 5-12-13 25 6 29 30 SAA 29.0-30.5 4-6-14 20 7 31 32 33 33.5 Residual Soil 34 Wet Reddish brown clay with Limestone-residual, with some 33.5-35.0 4-7-6 13 8 35 white/gray clay 36 SAA 3-3-4 7 9 35.5-37.0 37 UD 37'-39' Brown fat clay (CH) 38 OFFSET 4' TO NORTH FOR SAMPLE 10 39 Reddish brown to brown soft clay with weathered Limestone 38.0-39.5 3-3-2 5 pieces - wet 40 41 40.5-42.0 14-6-7 13 11 Gray silty fine SAND 42 43 44 43.0-44.5 29-50/2" 50/2" 12 44.5 SAA with residual chert/Limestone pieces 45 Auger Refusal @44.5'. Boring Terminated 46 47 48 49 50 51 52 53 54 55 56 Form GS9902 4/24/2000

sou	THE		DRILLING LOG			Hole I	— ملا	BO-9	STA-	12-3
Energy		APANT Your Work				B	Sheet 1			
SITE		Plant B	lowen	HOLE DEPTH	24.3'	of routehoused someon		and the second second		Niedorio II VII Anneelas _e e
_			nd Dike COORDINATES N							
ANGLE	·		BEARING CONTRACTOR	SCS	DF			СМЕ	550	
Drilling	Method		Hollow Stem Auger NO. PENT. TESTS 9	NO	. U.D. SAMP	LES	2			
			LENGTHCORE BOXES							
			1.5', 0.40' ELEV TIME AFTER COMP							
			QUANTITY MIX			_				
			RECORDER S. Braswell APPROVED					8/28/		
		Elev.	Material Description,	31	anualu ren.	rest	Sample			
Log	Depth	Elev.	Classification and Remarks	from to	Blows	N	No.	Chg. %	%	comme
	0	· · · · · · · · · · · · · · · · · · ·	Ground Surface and Gravel Gravel and Ash	***						
	1		Graver and Ash							
	2		Groundwater Encountered at 2.0'							
	3		Stiff, Mottled gray, yellowish brown and reddish brown, silty clay (CL), or clayey silt (ML), occasional thin, weathered	0.5.4.0						
	4		chert deposits	2.5-4.0	6-7-7	14	1			
	5		Soft vallowish brown alovey silt (ML) maint accessional real							
			Soft, yellowish brown, clayey silt (ML), moist, occasional rock fragments of fine gravel size, traces of oxidation on few breaking	4.5-6.0	3-2-3	5	2			
	6		soil surfaces (black in color)		Construction of the construction					UD 5'-7'
	7				ļ					5-7
	8		SAA - no oxidation observed, slightly moist							
			on the shadden observed, enginery motor	7.5-9.0	4-8-11	19	3			
	9									
	10		Stiff, yellowish brown, clayey silt (ML) to silty clay (CL)							
	11		slightly moist	9.5-11.0	4-3-6	9	4			
	12									
	13		SAA - occasional very dark brown fine rock fragments	40 = 44 =	0.00	_	_			
	14		of various sizes Residual Soil	12.5-14.0	3-3-6	9	5			UD
	15									13'-18
	15		SAA - numerous oxidized fragments, medium stiff, wet at bottom of spoon	14.5-16.0	4-3-2	5	6			
	16									
	17									
	18		Medium stiff, reddish brown, very moist clayey silt (ML),				4			
	10		Imedian san, reduisir brown, very moist dayey sin (ivit),			I	1			

numerous (20%) oxidized dark brown rock fragments

Light gray and brown sandy silt to silty sand (SM to ML) possibly weathered rock, stiff to medium dense

Yellowish brown very moist soft to medium stiff, clayey silt (ML) few dark gray, limestone fragments, occasional gray silty

of various sizes

intervals

SAA to 23'

17.5-19.0 2-3-3

19.5-21.0 3-2-2

22.5-24.0 2-4-8

8

9

12

Form GS9901 4/24/2000

19

20

21

22

23

SOUTHERN COMPANY Energy to Serve Your World

DRILLING LOG

GEOLOGICAL SERVICES

Hole No. BO-STA-02-3

Sheet 2 of 2

SITE Plant Bowen

TOTAL DEPTH

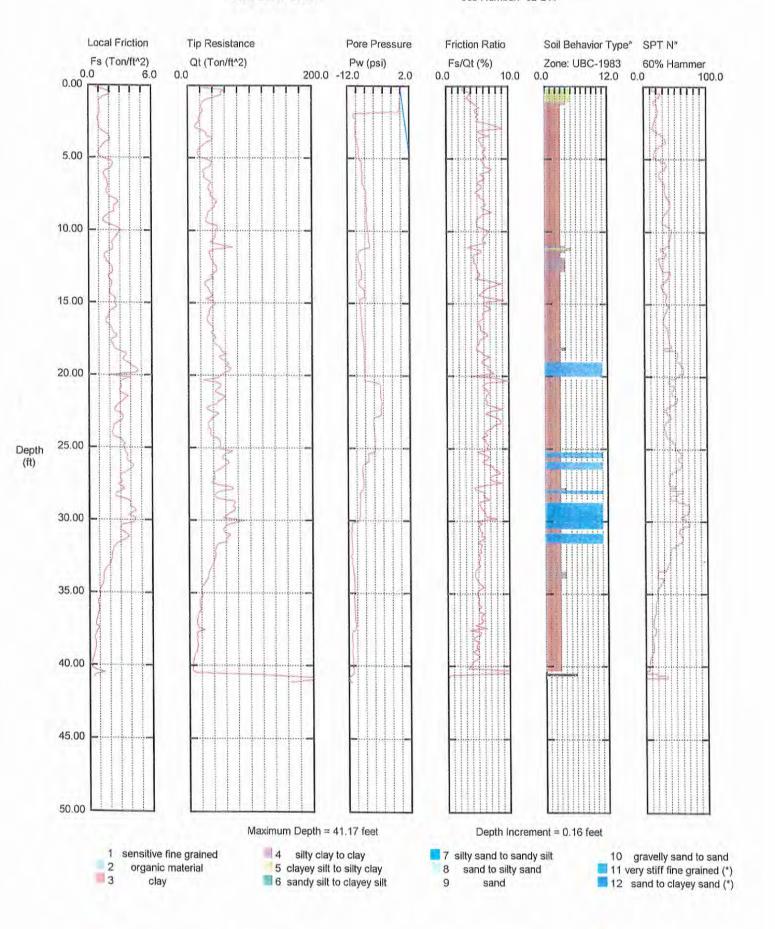
24.3' SURF.ELEV. 671.773

Graphic Log Depth Elev. Classification and Remarks

TOTAL DEPTH

24.3' SURF.ELEV. 671.773

Standard Pen. Test Sample Fluid Rec. From to Blows N No. Chg. % comme


	Graphic			Material Description,			Pen. Test	Sample	Fluid	Rec.	
∠ 4.3	Log	Depth	Elev.	Classification and Remarks Auger Refusal @ 24.3' Boring Terminated	From to	Blows	N	No.	Chg. %	%	comment
		25		Magor Moradar & 24.0 Boring Forminated							
		26									
	***********	27									
		28									
		29									
		30									
		31									
		32									
		33									
		34	-								
	,	35									
		36									
		37	***************************************								
		38	-Juwaanempi Jan								
		39									
		40									
		41									
		42									
		43									
		44									
		45									
		46									
		47									
		48									
			-								
		49									
		50									
		51									
		52									
		53									
		54									•
		55									
	Form GS	56									

Attachment D

Dutch Cone Soundings

*Soil behavior type and SPT based on data from UBC 1983 Southern Earth Sciences Inc

Operator: DH Sounding: 241-04 Cone Used: 5T4CH CPT Date/Time: 09-03-02 13:20 Location: PLANT BOWEN Job Number: 02-241

Attachment E

Laboratory Test Results

Text from prior section deleted for clarity	

D. Selection of Soil Strength Parameters

The primary soil engineering properties and parameters important to slope stability analyses are cohesion, c, angle of internal friction, ϕ , the unit weight of the soil, γ , and the presence of any excess pore water pressures. Soil strength values can vary significantly depending upon the drainage conditions under which the samples are tested in laboratory triaxial tests. Unit weight values vary primarily by water content and whether or not the soil is submerged or beneath the phreatic surface.

As the field test data (boring and CPT findings) were being plotted onto cross sections of the dike, it became apparent that there was significant uniformity of the dike material, and to some lesser extent the foundation soils. Therefore, rather than attempt to construct section-specific soil parameters, we considered it more appropriate to target zones of representative materials for sampling and testing, and then apply selected representative soil parameters from those banks of tests to each section. The paragraphs which follow describe how the data were interpreted and representative parameters chosen to apply to the generalized layer

stratifications.

For the embankment soils, we conducted primarily consolidated undrained (CU or R) and consolidated drained (CD or S) triaxial shear tests, consolidating the soils prior to shearing, and measuring pore water pressures in the CU test. Computer programs are used to graph and calculate parameters from the raw laboratory test data, and the resulting c' and ϕ' values are given on the data sheets. We assembled other graphs of results, however, based on the geotechnical engineer's construction of the strength envelopes taken from the stress paths leading to shear failure. These were determined from p'-q diagrams of effective stress failure points. In this interpretation of the p'-q data, it was our tendency to draw the strength envelopes through the points yielding the lesser effective cohesion and greater effective friction angle. This trend would be expected for parameters of a compacted silty clay soil. The S tests usually exhibit slightly lower strengths at lower confining stresses, with a slightly higher friction angle. Our S-test results displayed the higher friction angle. Some analyses combine the S and R envelopes to form a composite "broken-back" curve as a strength envelope for the embankment soils. However, since the permeability of this soil is relatively low (1.4 x 10⁻⁷ cm/sec) and drainage possibly not complete for true S-test results, we elected to use primarily the R data for analysis, which should be conservative.

The undisturbed samples of the dike material were tested at the moisture contents at which they were sampled. It is often times the practice to backpressure saturate samples prior to triaxial testing to simulate submergence and/or diminish the effects of apparent cohesion in the test results. However, standpipe piezometer measurements to determine the phreatic surface in the dike indicated that the dike is not saturated downstream of the crest to the extent that a conventional flownet construction would indicate. Piezometric levels instead suggest that there is a high mass permeability to the foundation which is allowing the vast majority of seepage to pass under the embankment, such that little of the dike has ever become saturated. For those samples taken in the dike and not naturally saturated, backpressure saturation may yield excess strength indications in the CU test, especially at low confining stresses. We therefore conducted the shear testing at insitu moisture contents, with the assumption that some component of measured strength would be due to matric suction in the non-saturated soils.

The embankment soils appear to be quite uniform in strength and texture or composition, as demonstrated by the consistency in the SPT-N values and CPT data. Using the insitu testing as a guide, we were able to recover and test representative samples with a relatively high degree of confidence that the resulting triaxial test data covers the mid to lower range of soil strength. Then, statistically, the lower portion of that data was chosen to model the soil strength that must be exceeded through the entire embankment to experience failure. We consider this a very conservative approach for the compacted embankment soils.

Figure 14 shows all of the R and S envelopes for the embankment soils based on adjusted effective stress data. From this data, we selected an envelope considered to represent the

lower 1/3 of the strengths. This data is also presented in Table 2 as a summary in numerical form. The result is an effective cohesion of 350 psf and friction angle of about 31°.

Table 2
Summary of Triaxial R and S Tests
Embankment and Foundation Soils

		Parameters*				
Lab Te	Lab Test No.			ф		
		(psf)	(degrees)			
S	3	S	450	34		
Soil	8	R	345	29		
ent	33	S	370	35		
Embankment Soils	34	R	310	28.5		
ıbar	10A	R	560	28		
En	11A	R	375	31		
	12A	R	360	31		
Values u	sed in Analys	es	350	31		
	3A	R	75	34		
Foundation Soils	2A	R	175	24.5		
undati Soils	5A	R	340	32		
l wo	6A	R	121	34		
<u> </u>	7A	R	355	29		
	9A	R	240	29		
Values	used in Analy					
	Firmer Re	218	30			
	Wed	100	20			

^{*} Effective Stress Parameters

Stress path data reduction and construction was also carried out for the R data from testing of the foundation soils, represented on Figure 15. For sake of conservatism, the strength values for analysis for the firmer residuum were taken as the approximate average of the strengths tested for all foundation soils, including those samples considered to be from the weaker zone. As seen in Table 2 and Figure 15, the result was an effective cohesion of 218 psf and

 ϕ =30 degrees for the firm residuum.

Final selection of strength values for the weaker foundation soils involved a different approach from that of the embankment, however. In selecting strength parameters for the weaker foundation soils, it was judged that we could not rely solely on triaxial data from the initial set of undisturbed samples. Inspection of Dutch Cone (CPT) soundings indicated that there were more extensive areas of weaker material near the limestone interface that our first UD sampling may not have adequately sampled. Laboratory testing provided about seven sets of Q test results, but it appeared that more R test data, targeting the weaker zones, were needed for effective stress analysis. Therefore, using CPT data as a guide to locating the weaker zones, another UD sampling event was conducted, yielding six additional R-bar test results for the softer soils.

Even with the additional data, we could not be certain the data set for the foundation soils bracketed the strengths for the weakest soils, therefore we chose to use presumptive values of c'=100 psf and $\phi'=20$ degrees for the weakest of foundation soils, considering this to be very conservative.

For the potential uplift loading, as in a subsequent underwash event, it is necessary to predict and model the excess pore pressures in order to conduct an analysis using effective stress parameters. This was done for the embankment soils, since there is little doubt that those soils are not consolidated, and the effective stress strength envelopes are consistent and well-defined. If, however, there is a chance that the weaker foundation soils have not been fully consolidated, then the effective stress approach would attribute greater strength to that layer in the analyses, by virtue of heavy overburden stress computed by the SLOPE/W program. Therefore, we considered it prudent to conduct additional analyses of the uplift situations using a total stress strength for the weak zone. Obtaining total stress parameters which could be used with confidence for the weaker zone required looking to two sources of information, both laboratory results and insitu testing. There was significant scatter to the results of the initial laboratory Q tests, as seen in Figure 16. Since we could not be assured that all of the samples were from the weakest material, we applied the lower bound values from this data set, which yielded an undrained cohesion of about 700 psf.

For confirmation of these total stress test data, we looked to the undrained shear strength values generated from the Dutch Cone data and other sources. A summary of those findings is as follows:

- In the area of Section 1-2-3, two zones of weakness were depicted by ten cone (CPT) soundings: 1) an upper zone relative thin and discontinuous yielding Su (undrained shear strength) values of about 675 psf, on average, and 2) a lower weak zone about 20 feet beneath the toe, with an average strength on the order of 770 psf.
- Around Section 6-7, nine cone soundings encountered soft conditions about 30 feet beneath the toe. Occasional Su values were as low as 300 or 400 psf, but the average values for a continuous plane through the weak zone was a calculated 740 psf.

- At Section 8-9, thin discontinuous weak zones down near el. 660, some 55 feet below the crest, yielded lower bound Su values at about 600 psf. However, thicker higher-consistency clay interspersed with the weaker soils had values on the order of 1,000 to 1,100 psf. Thus, the average strength across a more continuous weak plane would be about 800 psf.
- For Section 10 the geometry was much like that of Section 8-9, with the weaker material tested by cone soundings having an Su of about 690 psf.
- For Section 11-12-13, two weaker zones were identified by ten cone soundings: 1) a thin upper zone only about 5 feet beneath the toe with strengths in the range of 600 to 900 psf, and 2) a mixed lower layer with some zones having Su = 400 psf and others up in the range of 700 to 900 psf.

One could make the case for a potential weak plane propagating along the weathered rock and weak residuum interface choosing a path of lesser resistance through the very weakest of soils. However, plotting the cone readings according to their spatial distribution shows that a weak plane would have to cut through a significant amount of firm clay to connect with the weakest zones. As a result, we judge that the strength along this mixed interface would have a composite strength on the order of 700 psf, or slightly greater. For these reasons, we elected to use an undrained shear strength of 700 psf for the weak zone material as lower bound for the static loading cases for all sections.

As another check on probable undrained strength of the weaker foundation soils, the grouting engineer for the project, Mr. B.E. Williams, was consulted and shared grout take and distribution information from work already performed at Section 1-2-3. In addition to providing more information on the probable thickness on the weaker zone above the rock foundation, we also discussed the consistency of the material in that zone. Mr. Williams stated that the displacement of that material, along with the pressures used, the amount of overburden, and especially the grout take volume per foot, were very similar to that of another project where the strength of the weaker material had been measured prior to the grouting. In reviewing our records of that project, we found that measured strengths in that weaker material were on the order of 640 psf for undrained cohesion. This tends to confirm our 700 psf value based on many CPT results.

The effective stress parameters were modified for the seismic analysis using information reported by the U.S. Corps of Engineers Waterways Experiment Station (Ref. 2). Those studies showed that proper modification of strength parameters justified the use of a pseudostatic analysis to evaluate safety under seismic loading, in lieu of more extensive modeling which involves transient response analysis and estimated dynamic shear stresses. The key to this methodology is the observation that the soils exhibit essentially elastic behavior, even under many cycles of loading, if stresses do not exceed about 80% of the soils' undrained strength. They therefore recommend the use of 80 percent of the undrained

strength as the dynamic yield strength for soils that exhibit small increases in pore pressure during cyclic loading, such as clayey materials. The resulting suggested procedure was stated as:

- a) Carry out the conventional pseudostatic stability analyses using a seismic coefficient equal to one-third to one-half of predicted peak bedrock acceleration, or PGA
- b) For clays, use a degraded value of strength equal to 80% of the soil's undrained shear strength
- c) Use a minimum factor of safety of 1.0.

This procedure assumes that the materials in the foundation are not subject to liquefaction. We judged that this is the case at this site because: 1) all samples had fines contents greater than about 60 percent, and 2) only 3 samples had liquid limits (LL) of less than 35, and of those, none had liquidity indices greater than, or even approaching, a value of $I_L = 0.9$, which is necessary for liquefaction under the Chinese Criteria (Ref. 2). Therefore, liquefaction is deemed highly unlikely at this site. For the seismic analysis, the R-bar values for the embankment soils were thus degraded by 20%, yielding the following effective stress parameters:

Embankment Soils: c' = 280 psf

 $\phi' = 25^{\circ}$

Firm Residuum Soils c' = 175 psf

 $\phi' = 24^{\circ}$

Effective stress parameters for the weakest foundation soils were <u>not</u> degraded, however, for the following reasons. The parameters of c'=100 psf and ϕ '=20 degrees were assigned as very low initially, below the lower bound of the data set, in an effort to simulate the weaker soils above the limestone. CPT testing indicates this zone as very irregular, to the point that a slip plane of failure propagating primarily through the weakest soils would probably have to pass through some rock pinnacles as well. We therefore considered these parameters already sufficiently conservative. Conversely, if these lower bound values were to be increased by 20 percent, they would still fall below the lowest-measured value which we obtained from UD sampling and triaxial testing for the weaker foundation soil; i.e., Sample 2A with c' = 170 psf and ϕ ' = 24°.

Strength parameters for the ash inside the pond were taken from our experience with testing for the engineering properties of ash at many of our plant sites. Our analyses assumed fly ash with a conservative unit weight of 85 pcf, no cohesive strength, and an internal angle of friction of 15°. In the first trial seismic analyses we used various degraded values of friction angle for the ponded ash above and below the inboard water level, depending on assumptions of either full or partial liquefaction. These trial runs indicated very little or no effect on the downstream stability of the dike section; therefore, strength values for the ash became an

essentially moot point and we defaulted to a zero strength under seismic loading for sake of ease, conservatism, and reduced number of cases to investigate.

Selection of the pseudostatic seismic horizontal thrust coefficient was based on the peak ground acceleration estimated for this site. This information was taken from the United States Geological Service Earthquake Hazards Program website. The nearest grid point of seismic data is Latitude 34.1° south and Longitude 85.0° west (about two miles away from the ash pond). Entering the zip code for Taylorsville, Georgia of 30178, we obtained a peak ground acceleration (PGA) of 0.06g (See Figure 17). This value corresponds to a seismic event having a 10 percent probability of exceedence (PE) in the next 50 years. For a portion of our analyses, we thus used a coefficient of horizontal thrust of 50% of that value, or 0.03g. Information from the Hydro Projects Department also indicated, however, that the Georgia DNR Safe Dams Program administration has a seismic level criterion linked to a 2% PE in 50 years. This yields a PGA of approximately 0.15g. (See Figure 18). Therefore, we conducted analyses using both sets of criteria.

For the post-remediation load cases, the strength improvement within the weaker zone was modeled by increasing the parameters according to the expected strength gain from compaction grouting in that zone. Mr B.E. Williams, project grouting engineer, has recommended that the improved strength value for the grouted zones be set at a cohesion of 8000 psf. This cohesion value appears reasonable and corresponds to a shear strength of 4 tsf, or that of a clay on the borderline of consistency between very stiff and hard.

l ext from subsequent section deleted for clarity						

SOUTHERN A COMPANY Energy is Serve From World

SOUTHERN COMPANY CENTRAL LABORATORY

Southern Company Services Georgia Power Company – Plant Bowen Ash Pond Dike Soil Testing Report October 15, 2002

Ms. Heather Hill

Mr. Ray Halbert Southern Company

Enclosed are the test results for the soil samples delivered to the Southern Company, Central Laboratory on August 29, 2002. Performed test included Gradation with Hydrometer (ASTM D-422), Atterberg Limits (ASTM D-4318), Specific Gravity (ASTM D854), Natural Moisture Content (ASTM D-2216), Density (D-4718), Classification (ASTM D-2487), Unconsolidated-Undrained (Q) Triaxial Test, Consolidated-Undrained (R) Triaxial Test, Consolidated-Drained (S) Triaxial Test, and Falling-Head Permeability Testing (COE)

Laboratory sample #1, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 9 from a depth of 9.0-11.0 feet. This sample was classified as a light brown lean clay with sand material or a CL by the United Soil Classification System or an A-6 (13) by the AASHTO System. Liquid Limit was 38 with a Plasticity Limit was 18 with a Plasticity Index of 21. Specific Gravity was 2.69. For Unconsolidated-Undrained (Q) Triaxial Test, see attached report. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
.75 inch	100.0				
.375 inch	98.5				
#4	98.0				
#8	97.4				
#10	97.2				
#16	96.4				
#30	94.6				
#40	91.6				
#50	88.1				
#100	80.1				
#200	70.5				

Laboratory sample #2, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 9 from a depth of 24.0-26.0 feet. This sample was classified as a light brown sandy lean clay material or a CL by the United Soil Classification System or an A-6 (13) by the AASHTO System. Liquid Limit was 39 with a Plasticity Limit was 18 with a Plasticity Index of 21. Specific Gravity was 2.73. For Unconsolidated-Undrained (Q) Triaxial Test, see attached report. Gradation is as follows:

Sieve Analysis						
Sieve Size:	% Passing					
	J					
.75 inch	100.0					
.375 inch	98.2					
#4	97.9					
#8	97.6					
#10	95.0					
#16	94.3					
#30	92.6					
#40	89.9					
#50	86.7					
#100	79.4					
#200	69.6					

Laboratory sample #3, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 10 from a depth of 13.5-15.5 feet. This sample was classified as a light brown fat clay material or a CH by the United Soil Classification System or an A-7-6 (32) by the AASHTO System. Liquid Limit was 58 with a Plasticity Limit was 26 with a Plasticity Index of 32. Specific Gravity was 2.71. For Consolidated-Drained (S) Triaxial Test, see attached report. Gradation is as follows:

Sieve Analysis						
Sieve Size:	% Passing					
75: 1	1000					
.75 inch	100.0					
.375 inch	99.9					
#4	99.4					
#8	99.0					
#10	99.0					
#16	98.2					
#30	97.5					
#40	96.4					
#50	95.3					
#100	92.5					
#200	88.7					

Laboratory sample #4, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 2 from a depth of 37.0-39.0 feet. This sample was classified as a brown fat clay material or a CH by the United Soil Classification System or an A-7-6 (36) by the AASHTO System. Liquid Limit was 65 with a Plasticity Limit was 29 with a Plasticity Index of 36. Specific Gravity was 2.87. For Unconsolidated-Undrained (Q) Triaxial Test, see attached report. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
.75 inch	100.0				
.375 inch	99.1				
#4	98.6				
#8	97.7				
#10	97.6				
#16	96.1				
#30	94.2				
#40	93.1				
#50	92.0				
#100	89.7				
#200	86.8				

Laboratory sample #5, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 6 from a depth of 45.0-47.0 feet. This sample was classified as a light reddish brown elastic silt with sand material or an MH by the United Soil Classification System or an A-7-6-5 (27) by the AASHTO System. Liquid Limit was 60 with a Plasticity Limit was 33 with a Plasticity Index of 27. Specific Gravity was 2.61. For Unconsolidated-Undrained (Q) Triaxial Test, see attached report. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
1.5 inch	100.0				
.75 inch	99.1				
.375 inch	96.1				
#4	94.7				
#8	94.0				
#10	94.0				
#16	93.0				
#30	91.9				
#40	91.2				
#50	90.5				
#100	88.7				
#200	84.8				
,, 200	0 1.0				

Laboratory sample #6, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 12 from a depth of 8.0-10.0 feet. This sample was classified as a dark reddish brown fat clay with sand material or a CH by the United Soil Classification System or an A-7-6 (20) by the AASHTO System. Liquid Limit was 52 with a Plasticity Limit was 27 with a "lasticity Index of 25. Specific Gravity was 2.73. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
.75 inch	100.0				
.375 inch	100.0				
#4	99.5				
#8	98.7				
#10	98.4				
#16	97.9				
#30	96.5				
#40	92.8				
#50	88.8				
#100	82.7				
#200	76.3				

Laboratory sample #7, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 8 from a depth of 21.0-23.0 feet. This sample was classified as a reddish brown lean clay with sand material or a CL by the United Soil Classification System or an A-6 (12) by the AASHTO System. Liquid Limit was 39 with a Plasticity Limit was 21 with a Plasticity Index of 18. Specific Gravity was 2.62. For Unconsolidated-Undrained (Q) Triaxial Test, see attached report. The Coefficient of Permeability using the Falling-Head Method averaged 1.4 x 10-7 cm. per sec. Wet density was 133.1 pcf, Dry density was 112.0 pcf, with a Moisture content of 18.9%. Gradation is as follows:

Sieve Analysis		
% Passing		
100.0		
99.9		
99.6		
99.3		
99.2		
98.6		
97.0		
93.9		
90.4		
82.2		
73.0		

Laboratory sample #8, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 8 from a depth of 7.0-9.0 feet. This sample was classified as a reddish brown elastic silt with sand material or an MH by the United Soil Classification System or an A-7-5 (24) by the AASHTO System. Liquid Limit was 57 with a Plasticity Limit was 31 with a Plasticity 'ndex of 26. Specific Gravity was 2.67. Natural Moisture content was 24.6% with a Dry density of 100.5 pcf, Saturation was 100%. or Consolidated-Undrained (R) Triaxial Test, see attached report. Gradation is as follows:

Sieve Analysis		
Sieve Size:	% Passing	
.75 inch	100.0	
.375 inch	98.5	
#4	97.8	
#8	96.3	
#10	95.9	
#16	95.4	
#30	94.1	
#40	92.4	
#50	90.8	
#100	87.1	
#200	82.5	

Laboratory sample #9, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 7 from a depth of 21.0-23.0 feet. This sample was classified as a light brown silt with sand material or an ML by the United Soil Classification System or an A-7-6 (14) by the AASHTO System. Liquid Limit was 44 with a Plasticity Limit was 29 with a Plasticity Index of 15. Specific Gravity was 2.67. For Unconsolidated-Undrained (Q) Triaxial Test, see attached report. Gradation is as follows:

Sieve Analysis		
Sieve Size:	% Passing	
.75 inch	100.0	
.375 inch	98.8	
.575 men #4		
	97.6	
#8	96.9	
#10	96.8	
#16	95.0	
#30	92.5	
#40	91.1	
#50	89.8	
#100	86.7	
#200	82.0	

Laboratory sample #10, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 6 from a depth of 28.5-30.0 feet. This sample was classified as a tan fat clay with sand material or a CH by the United Soil Classification System or an A-7-6 (26) by the AASHTO System. Liquid Limit was 56 with a Plasticity Limit was 23 with a Plasticity Index of 33. Specific Gravity was 2.69. For Unconsolidated-Undrained (Q) Triaxial Test, see attached report. Gradation is as follows:

Sieve Analysis		
Sieve Size:	% Passing	
.75 inch	100.0	
.375 inch	99.6	
#4	98.7	
#8	97.4	
#10	97.3	
#16	94.9	
#30	92.3	
#40	89.5	
#50	87.4	
#100	82.6	
#200	77.0	

Laboratory sample #11, represents a jar soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 6, Sample 5, from a depth of 23.5-25.0 feet. This sample was classified as a light reddish brown fat clay material or a CH by the United Soil Classification System or an A-7-5 (40) by the AASHTO System. Liquid Limit was 70 with a Plasticity Limit was 33 with a Plasticity Index of 37. Estimated Specific Gravity was 2.65. Natural Moisture content was 25.9%. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
.75 inch	100.0				
.375 inch	100.0				
#4	99.7				
#8	99.5				
#10	99.3				
#16	98.1				
#30	97.0				
#40	96.1				
#50	95.1				
#100	93.0				
#200	89.5				

Laboratory sample #12, represents a jar soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 6, Sample 10, from a depth of 48.5-50.0 feet. This sample was classified as a light brown elastic silt material or an MH by the United Soil Classification System or an A-7-5 (54) by the AASHTO System. Liquid Limit was 81 with a Plasticity Limit was 37 with a Plasticity Index of 44. Estimated Specific Gravity was 2.65. Natural Moisture content was 71.5%. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
.75 inch	100.0				
.375 inch	100.0				
#4	100.0				
#8	100.0				
#10	100.0				
#16	99.9				
#30	99.6				
#40	99.5				
#50	99.2				
#100	98.7				
#200	97.8				

Laboratory sample #13, represents a jar soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 6, Sample 9, from a depth of 43.5-45.0 feet. Natural Moisture content was 24.7%.

Laboratory sample #14, represents a jar soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 6, Sample 4, from a depth of 18.5-20.0 feet. Natural Moisture content was 32.1%.

Laboratory sample #15, represents a bag soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 7, Sample 1, from a depth of 4.5-6.0 feet. Natural Moisture content was 18.8%.

Laboratory sample #16, represents a bag soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 7, Sample 2, from a depth of 9.5-11.0 feet. Natural Moisture content was 24.4%.

Laboratory sample #17, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 7, from a depth of 9.0-11.0 feet. This sample was classified as a light brown fat clay with sand material or a CH by the United Soil Classification System or an A-7-6 (23) by the AASHTO System. Liquid Limit was 50 with a Plasticity Limit was 24 with a Plasticity Index of 26. Specific Gravity was 2.70. Natural Moisture content was 23.1% with a Dry density of 104.1 pcf, Saturation was 100%. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
.75 inch	100.0				
.375 inch	100.0				
#4	99.2				
#8	97.8				
#10	97.4				
#16	96.1				
#30	94.2				
#40	93.0				
#50	91.8				
#100	88.7				
#200	84.3				

Laboratory sample #18, represents a bag soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 7, Sample 3, from a depth of 14.5-16.0 feet. Natural Moisture content was 32.0%.

Laboratory sample #19, represents a bag soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 7, Cample 8, from a depth of 27.0-28.5 feet. Natural Moisture content was 52.6%.

Laboratory sample #20, represents a jar soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 8, Sample 4, from a depth of 18.5-20.0 feet. This sample was classified as a brown sandy lean clay material or a CL by the United Soil Classification System or an A-6 (4) by the AASHTO System. Liquid Limit was 26 with a Plasticity Limit was 13 with a Plasticity Index of 13. Estimated Specific Gravity was 2.65. Natural Moisture content was 16.0%. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
75 :	100.0				
.75 inch	100.0				
.375 inch	100.0				
#4	100.0				
#8	97.9				
#10	97.6				
#16	97.2				
#30	95.0				
#40	90.8				
#50	86.2				
#100	74.4				
#200	57.2				

Laboratory sample #21, represents a jar soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 8, Sample 7, from a depth of 26.0-27.5 feet. Natural Moisture content was 19.6%.

Laboratory sample #22, represents a bag soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 8, Sample 5, from a depth of 21.0-22.5 feet. Natural Moisture content was 20.4%.

Laboratory sample #23, represents bag soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 9, Sample 1, from a depth of 4.5-6.0 feet. This sample was classified as a brown sandy lean clay material or a CL by the United Soil Classification System or an A-6 (4) by the AASHTO System. Liquid Limit was 25 with a Plasticity Limit was 14 with a Plasticity Index of 11. Specific Gravity was 2.55. Natural Moisture content was 13.4%. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
.75 inch	100.0				
.375 inch	100.0				
#4	99.1				
#8	97.8				
#10	97.3				
#16	96.3				
#30	94.1				
#40	89.9				
#50	85.5				
#100	75.3				
#200	64.9				

Laboratory sample #24, represents a bag soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 9, Sample 2, from a depth of 9.5-11.0 feet. Natural Moisture content was 21.3%.

Laboratory sample #25, represents a bag soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 9, Sample 3, from a depth of 14.5-16.0 feet. Natural Moisture content was 29.5%.

Laboratory sample #26, represents a bag soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 9, Sample 5, from a depth of 24.5-26.0 feet. Natural Moisture content was 29.6%.

Laboratory sample #27, represents a bag soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 9, Sample 6, from a depth of 27.0-28.5 feet. Natural Moisture content was 31.8%.

Laboratory sample #28, represents a jar soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 10, Sample 3, from a depth of 13.5-15.0 feet. Natural Moisture content was 26.3%.

Laboratory sample #29, represents a jar soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 10, Sample 9, from a depth of 36.0-37.5 feet. This sample was classified as a light elastic silt with sand material or an MH by the United Soil Classification System or an A-7-5 (26) by the AASHTO System. Liquid Limit was 69 with a Plasticity Limit was 36 with a Plasticity Index of 33. Estimated Specific Gravity was 2.65. Natural Moisture content was 32.2%. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
.375 inch	100.0				
#4	100.0				
#8	99.0				
#10	98.6				
#16	94.5				
#30	90.3				
#40	87.4				
#50	84.9				
#100	79.5				

Laboratory sample #30, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 10, from a depth of 36.0-38.0 feet. This sample was classified as a light reddish brown elastic silt with sand material or an MH by the United Soil Classification System or an A-7-5 (44) by the AASHTO System. Liquid Limit was 83 with a Plasticity Limit was 38 with a Plasticity Index of 45. Specific Gravity was 2.60. Natural Moisture content was 34.0% with a Dry density of 87.3 pcf, Saturation was 100%. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
75 in ala	100.0				
.75 inch	100.0				
.375 inch	100.0				
#4	98.7				
#8	95.9				
#10	94.6				
#16	92.5				
#30	89.6				
#40	87.9				
#50	86.4				
#100	83.2				
#200	82.8				

Laboratory sample #31, represents a jar soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 10, Sample 11, from a depth of 41.0-42.5 feet. Natural Moisture content was 44.6%.

Laboratory sample #32, represents a jar soil sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 10, Tample 13, from a depth of 46.0-47.5 feet. Natural Moisture content was 44.4%.

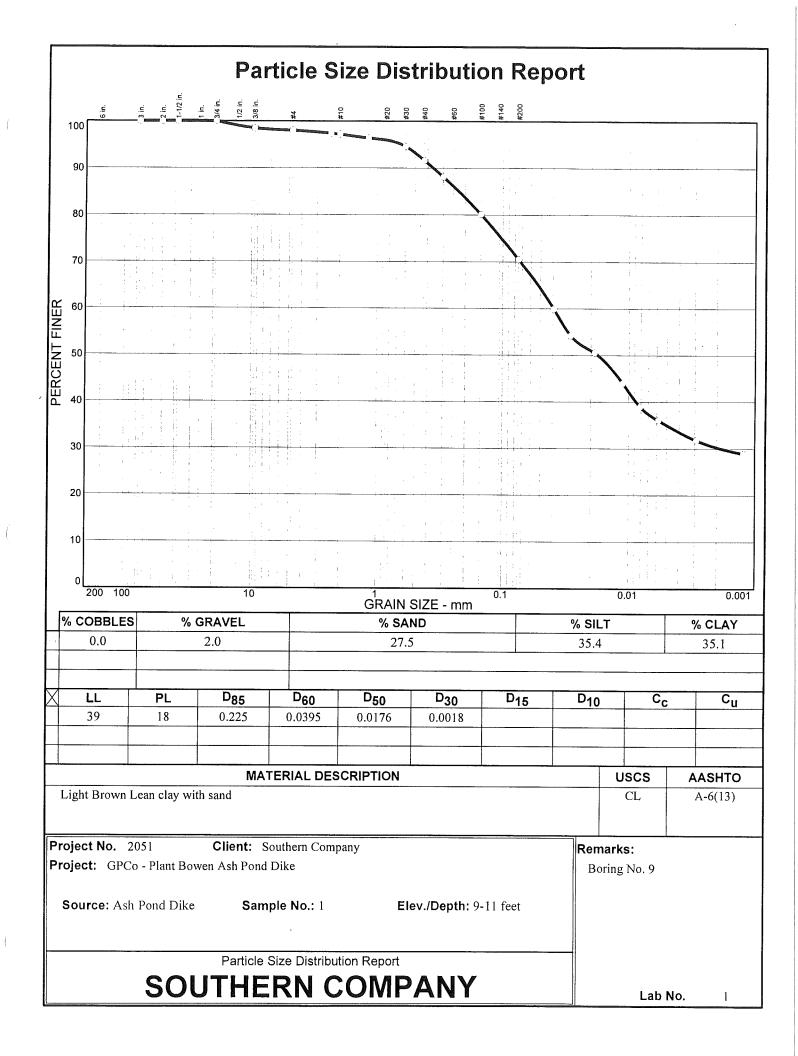
Laboratory sample #33, represents a UD sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 2, from a depth of I4.0-16.0 feet. This sample was classified as a light brown fat clay material or an CH by the United Soil Classification System or an A-7-6 (31) by the AASHTO System. Liquid Limit was 58 with a Plasticity Limit was 26 with a Plasticity Index of 32. Specific Gravity was 2.64. Gradation is as follows:

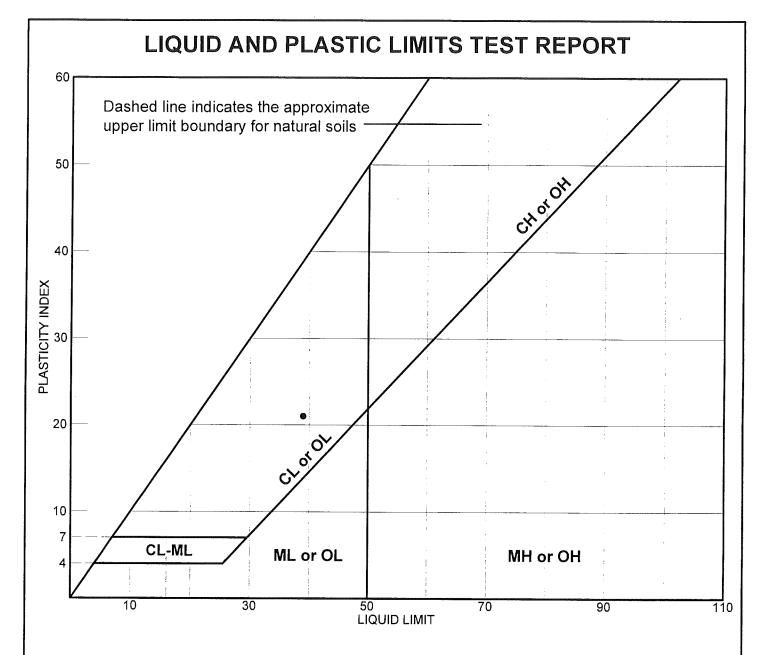
Sieve Analysis					
Sieve Size:	% Passing				
.75 inch	100.0				
.375 inch	99.3				
#4	98.9				
#8	98.7				
#10	98.7				
#16	97.7				
#30	96.4				
#40	95.1				
#50	94.1				
#100	91.7				
#200	88.2				

Laboratory sample #34, represents a UD sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 4, from a depth of 19.0-21.0 feet. This sample was classified as a light brown fat clay material or an CH by the United Soil Classification System or an A-7-6 (39) by the AASHTO System. Liquid Limit was 66 with a Plasticity Limit was 27 with a Plasticity Index of 39. Specific Gravity was 2.67. Gradation is as follows:

Sieve Analysis					
Sieve Size:	% Passing				
.75 inch	100.0				
.375 inch	99.0				
#4	98.3				
#8	97.9				
#10	97.9				
#16	97.0				
#30	96.1				
#40	95.3				
#50	94.3				
#100	92.2				
#200	89.3				

Laboratory sample #35, represents a UD sample material from the GPCo-Plant Bowen Ash Pond Dike Project, Boring 6, from a depth of 10.0-12.0 feet. This sample was classified as a light brown fat clay with sand material or an CH by the United Soil Classification System or an A-7-6 (23) by the AASHTO System. Liquid Limit was 50 with a Plasticity Limit was 22 with a Plasticity and 28. Specific Gravity was 2.76. Gradation is as follows:


Sieve Analysis					
Sieve Size:	% Passing				
1.5 inch	100.0				
.75 inch	98.1				
.375 inch	97.1				
#4	96.7				
#8	96.4				
#10	96.3				
#16	95.0				
#30	93.3				
#40	91.5				
#50	89.9				
#100	85.9				
#200	80.3				


Note: COE stands for the Corp. of Engineers Method.

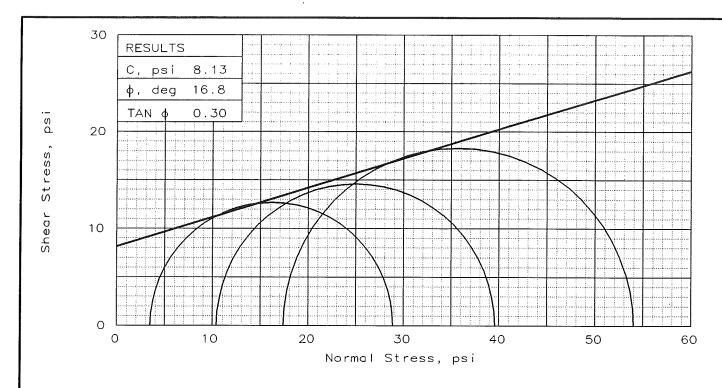
We appreciate the opportunity to assist you on this project. If there are any questions or if we can be of any further assistance, please call at extension (205/664-6266) or 8-255,6266i.

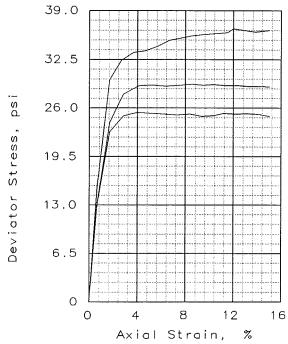
Sincerely,

Ray Halbert, PE, CM
outhern Company

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	Ash Pond Dike	1	9-11 feet		18	39	21	CL

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

Lab No. 1

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: UD

DESCRIPTION: Light brown lean

clay with sand

LL= 39

PL= 18 PI= 21

SPECIFIC GRAVITY= 2.69

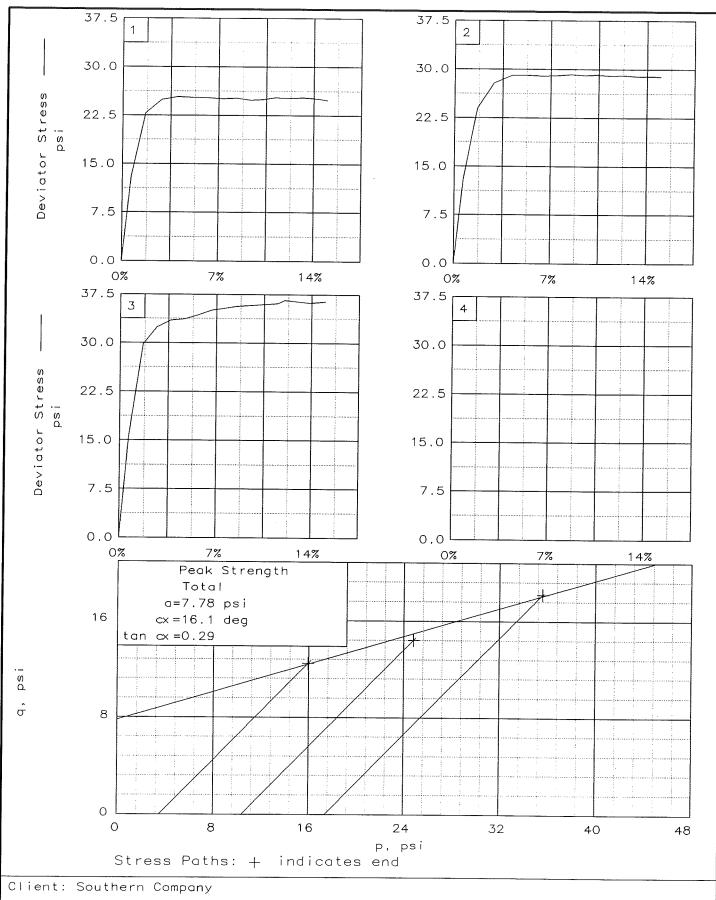
REMARKS:

SA	MPLE NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	105.9 88.6 0.586 1.40	106.0 89.2 0.584 1.40	105.7 91.3 0.589 1.40	
AT TEST		105.9 88.6 0.586 1.40	106.0 89.2 0.584	105.7 91.3 0.589 1.40	
1	, ,	0.0010	0.0010	0.0010	
	•	0.0 3.5			
1	· ·	25.4	29.2	36.6	
	T. STRESS, psi FAILURE, psi	28.9	39.6	54.0	
03	FAILURE, psi	3.5	10.4	17.4	

CLIENT: Southern Company

PROJECT: GPCo - Plant Bowen Ash Pond Dike

SAMPLE LOCATION: Boring #9


Depth: 9-11 feet

PROJ. NO.: 2051 DATE: 10/02/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lob No: 1

Project: GPCo - Plant Bowen Ash Pond Dike

Location: Boring #9 Depth: 9-11 feet
File: GPBAPD01 Project No.: 2051

Lab No: 1

Data file: GPBAPD01

Project and Sample Data

Date: 10/02/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike Sample location: Boring #9 Depth: 9-11 feet

Sample description: Light brown lean clay with sand

Remarks:

Fig no.: 1 2nd page Fig no. (if applicable): 1

Type of sample: UD

Specific gravity= 2.69 LL= 39 PL= 18 PI= 21

Test method: ASTM - Method A

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare:	Initial 155.740 135.400	Saturated	Final 155.740 135.400	
Wt. of tare:	30.070		30.070	
Weight, gms:	153.1			
Diameter, in:	1.400	1.400		
Area, in²:	1.539	1.539		
Height, in:	3.000	3.000		
Net decrease in height, in:		0.000		
% Moisture:	19.3	19.3	19.3	
<pre>V density, pcf:</pre>	126.3	126.3		
Dry density, pcf:	105.9	105.9		
Void ratio:	0.5861	0.5861		
% Saturation:	88.6	88.6		

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure = 3.50 psi
Back pressure = 0.00 psi
Effective confining stress = 3.50 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 25.39 psi at reading no. 4
ULT. STRESS = not selected

Test Readings Data for Specimen No. 1 No. Def. Def. Load Load Strain Deviator Principal Stresses P psi Q psi

N	ο.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
		Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
		Units		Units			psi	psi	psi	Ratio		
(0.0	0.000	4.0	0.0	0.0	0.00	3.50	3.50	1.00	3.50	0.00
	1											
		20.0		69.0			13.04	3.50	16.54		10.02	6.52
	2	50.0	0.050	119.0	35.7	1.7	22.83	3.50	26.33	7.52	14.92	11.42
	3	85.0	0.085	131.0	39.5	2.8	24.91	3.50	28.41	8.12	15.96	12.46
	4	120.0	0.120	135.0	40.7	4.0	25.39	3,50	28.89	8.25	16.20	12.70
	5	155.0	0.155	136.0	41.0	5.2	25.27	3.50	28.77	8.22	16.14	12.64
	6	185.0	0.185	137.0	41.3	6.2	25.20	3.50	28.70	8.20	16.10	12.60
	7	220.0	0.220	138.0	41.6	7.3	25.07	3.50	28.57	8.16	16.04	12.54
	8	250.0	0.250	140.0	42.3	8.3	25.17	3.50	28.67	8.19	16.09	12.59
	9	280.0	0.280	140.0	42.3	9.3	24.90	3.50	28.40	8.11	15.95	12.45
•	10	310.0	0.310	142.0	42.9	10.3	24.98	3.50	28.48	8.14	15.99	12.49
•	11	335.0	0.335	145.0	43.8	11.2	25.29	3.50	28.79	8.23	16.14	12.64
•	12	365.0	0.365	146.0	44.1	12.2	25.18	3.50	28.68	8.19	16.09	12.59
•	13	395.0	0.395	148.0	44.8	13.2	25.25	3.50	28.75	8.21	16.12	12.62
•	14	425.0	0.425	149.0	45.1	14.2	25 .13	3.50	28.63	8.18	16.06	12.56
•	15	450.0	0.450	149.0	45.1	15.0	24.88	3.50	28.38	8.11	15.94	12.44

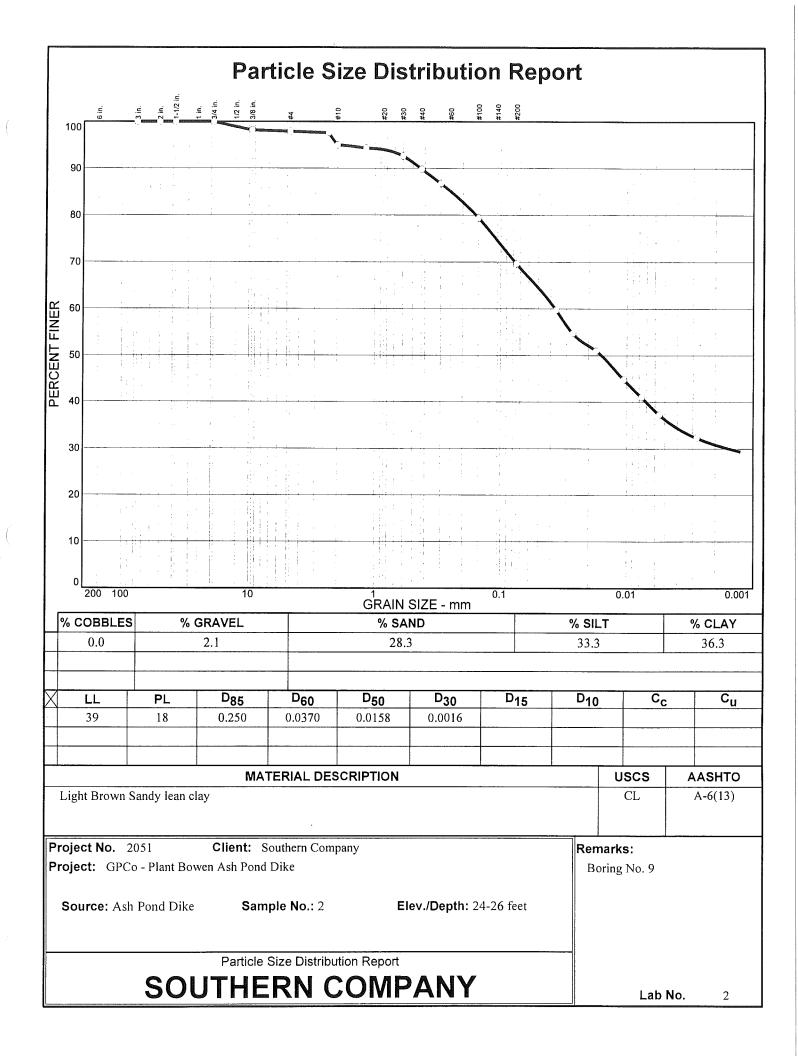
Specimen Parameter	Initial	Saturated	Final
V' moist soil and tare:	127.350		127.350
dry soil and tare:	111.610		111.610
Wt. of tare:	30.390		30.390
Weight, gms:	153.4		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, i	.n:	0.000	
% Moisture:	19.4	19.4	19.4
Wet density, pcf:	126.5	126.5	
Dry density, pcf:	106.0	106.0	
Void ratio:	0.5845	0.5845	
% Saturation:	89.2	89.2	

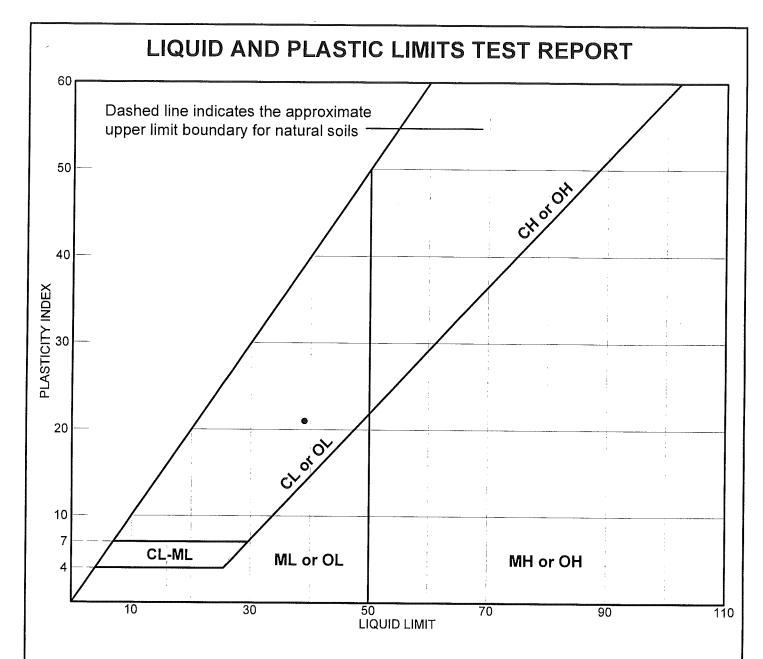
Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure = 10.40 psi
Back pressure = 0.00 psi
Effective confining stress = 10.40 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 29.19 psi at reading no. 8
UIT. STRESS = not selected

No.	υef.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	9.0	0.0	0.0	0.00	10.40	10.40	1.00	10.40	0.00
1	20.0	0.020	75.0	20.5	0.7	13.24	10.40	23.64	2.27	17.02	6.62
2	50.0	0.050	130.0	37.6	1.7	24.02	10.40	34.42	3.31	22.41	12.01
3	85.0	0.085	151.0	44.1	2.8	27.86	10.40	38.26	3.68	24.33	13.93
4	125.0	0.125	159.0	46.6	4.2	29.02	10.40	39.42	3.79	24.91	14.51
5	160.0	0.160	161.0	47.2	5.3	29.05	10.40	39.45	3.79	24.93	14.53
6	190.0	0.190	162.0	47.6	6.3	28.93	10.40	39.33	3.78	24.87	14.47
7	220.0	0.220	164.0	48.2	7.3	29.00	10.40	39.40	3.79	24.90	14.50
8	255.0	0.255	167.0	49.1	8.5	29.19	10.40	39.59	3.81	24.99	14.59
9	285.0	0.285	168.0	49.4	9.5	29.05	10.40	39.45	3.79	24.93	14.53
10	310.0	0.310	170.0	50.0	10.3	29.15	10.40	39.55	3.80	24.97	14.57
11	340.0	0.340	171.0	50 .3	11.3	29.00	10.40	39.40	3.79	24.90	14.50
12	370.0	0.370	173.0	51.0	12.3	29.03	10.40	39.43	3.79	24.91	14.51
13	400.0	0.400	174.0	51.3	13.3	28.87	10.40	39.27	3.78	24.84	14.44
14	430.0	0.430	176.0	51.9	14.3	28.88	10.40	39.28	3.78	24.84	14.44
15	450.0	0.450	177.0	52.2	15.0	28.83	10.40	39.23	3.77	24.82	14.42

Data file: GPBAPD01


Specimen Parameter " moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 129.890 113.280 30.160 153.8	Saturated	Final 129.890 113.280 30.160
Diameter, in: Area, in ² : Height, in: Net decrease in height, in: % Moisture: Wet density, pcf: Dry density, pcf: Void ratio:	1.400 1.539 3.000 20.0 126.8 105.7 0.5886	1.400 1.539 3.000 0.000 20.0 126.8 105.7 0.5886	20.0
% Saturation:	91.3	91.3	


Test Readings Data for Specimen No. 3

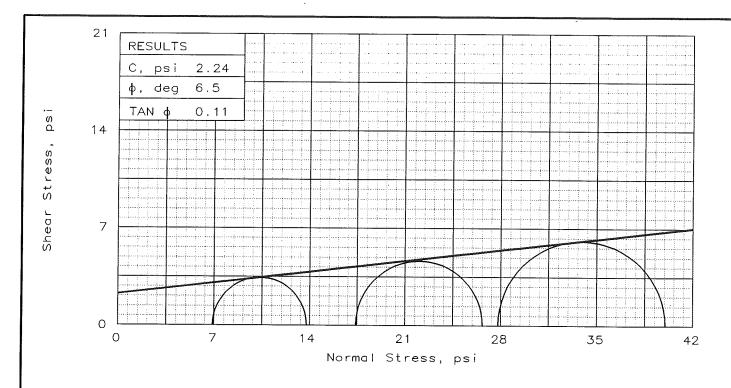
Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure = 17.40 psi
Back pressure = 0.00 psi
Effective confining stress = 17.40 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 36.60 psi at reading no. 13
UTT. STRESS = not selected

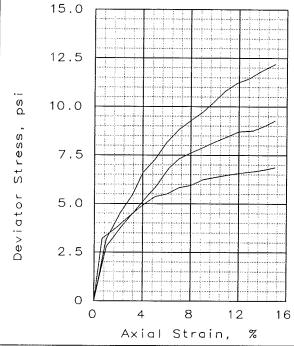
No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	14.0	0.0	0.0	0.00	17.40	17.40	1.00	17.40	0.00
1	20.0	0.020	91.0	23.9	0.7	15.44	17.40	32.84	1.89	25.12	7.72
2	50.0	0.050	164.0	46.6	1.7	29.78	17.40	47.18	2.71	32.29	14.89
3	80.0	0.080	179.0	51.3	2.7	32.43	17.40	49.83	2.86	33.61	16.21
4	110.0	0.110	186.0	53.5	3.7	33.45	17.40	50.85	2.92	34.13	16.73
5	140.0	0.140	189.0	54.4	4.7	33.68	17.40	51.08	2.94	34.24	16.84
6	170.0	0.170	194.0	55.9	5.7	34.28	17.40	51.68	2.97	34.54	17.14
7	200.0	0.200	200.0	57.8	6.7	35.05	17.40	52.45	3.01	34.92	17.52
8	225.0	0.225	203.0	58.7	7.5	35.30	17.40	52.70	3.03	35.05	17.65
9	255.0	0.255	207.0	60.0	8.5	35.65	17.40	53.05	3.05	35.23	17.83
10	285.0	0.285	210.0	60.9	9.5	35.81	17.40	53.21	3.06	35.31	17.91
11	315.0	0.315	213.0	61.8	10.5	35.96	17.40	53.36	3.07	35.38	17.98
12	345.0	0.345	216.0	62.8	11.5	36.09	17.40	53.49	3.07	35.45	18.05
13	360.0	0.360	220.0	64.0	12.0	36.60	17.40	54.00	3.10	35.70	18.30
14	415.0	0.415	222.0	64.6	13.8	36.19	17.40	53.59	3.08	35.49	18.09
15	450.0	0.450	226.0	65.9	15.0	36.38	17.40	53.78	3.09	35.59	18.19

Data file: GPBAPD01

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	Ash Pond Dike	2	24-26 feet		18	39	21	CL			

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

Lab No. 2

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: UD

DESCRIPTION: Light brown sandy

lean clay

LL= 39

PL= 18 PI= 21

SPECIFIC GRAVITY= 2.73

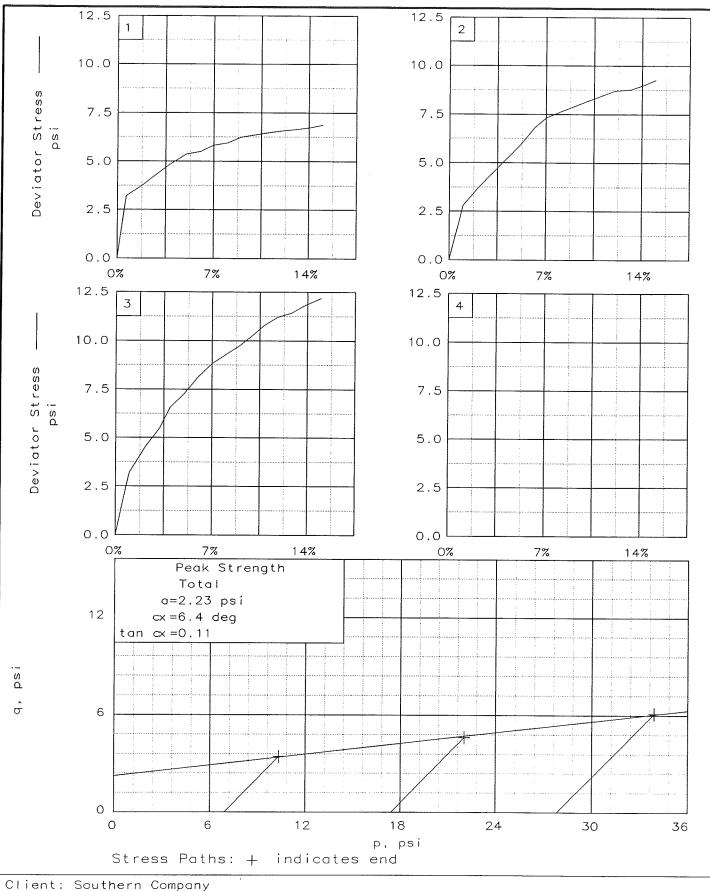
REMARKS:

SA	MPLE NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	88.7 0.692 1.40	104.4 91.3	107.1 93.5 0.591 1.40	
AT TEST	DRY DENSITY, pcf SATURATION, % VOID RATIO	88.7 0.692 1.40	104.4 91.3 0.633	107.1 93.5 0.591 1.40	
St	rain rate, %/min	0.0010			
BA	CK PRESSURE, psi	0.0	0.0	0.0	
CE	LL PRESSURE, psi	6.9	17.4	27.8	
FA:	IL. STRESS, psi	6.9	9.3	12.2	
UL.	T. STRESS, psi				
$ \sigma_1$	FAILURE, psi	13.8	26.7	40.0	
03	FAILURE, psi	6.9	17.4	27.8	

CLIENT: Southern Company

PROJECT: GPCo - Plant Bowen Ash Pond Dike

SAMPLE LOCATION: Boring #9


Depth: 24-26 feet

PROJ. NO.: 2051 DATE: 10/02/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lab No: 2

Project: GPCo - Plant Bowen Ash Pond Dike Location: Boring #9 Depth: 24-26 feet File: GPBAPD02 Project No.: 2051

Lab No: 2

Project and Sample Data

Date: 10/02/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike Sample location: Boring #9 Depth: 24-26 feet Sample description: Light brown sandy lean clay

Remarks:

Fig no.: 2 2nd page Fig no. (if applicable): 2

Type of sample: UD

Specific gravity= 2.73 LL= 39 PL= 18 PI= 21

Test method: ASTM - Method A

Specimen Parameters for Specimen No. 1

Specimen Parameter	Initial	Saturated	Final
Wt. moist soil and tare:	117.930		117.930
Wt. dry soil and tare:	101.840		101.840
Wt. of tare:	30.280		30.280
Weight, gms:	149.6		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	22.5	22.5	22.5
<pre>V density, pcf:</pre>	123.4	123.4	
Dry density, pcf:	100.7	100.7	
Void ratio:	0.6919	0.6919	
% Saturation:	88.7	88.7	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.3108 lbs per input unit Secondary load ring constant= 0.77882 lbs per input unit Crossover reading for secondary load ring= 474 input units

Cell pressure = 6.90 psi Back pressure = 0.00 psi

Effective confining stress = 6.90 psi

Strain rate, %/min = 0.00

FAIL. STRESS = 6.86 psi at reading no. 15

ULT. STRESS = not selected

Test	Readings	Data	for	Specimen	No.	1

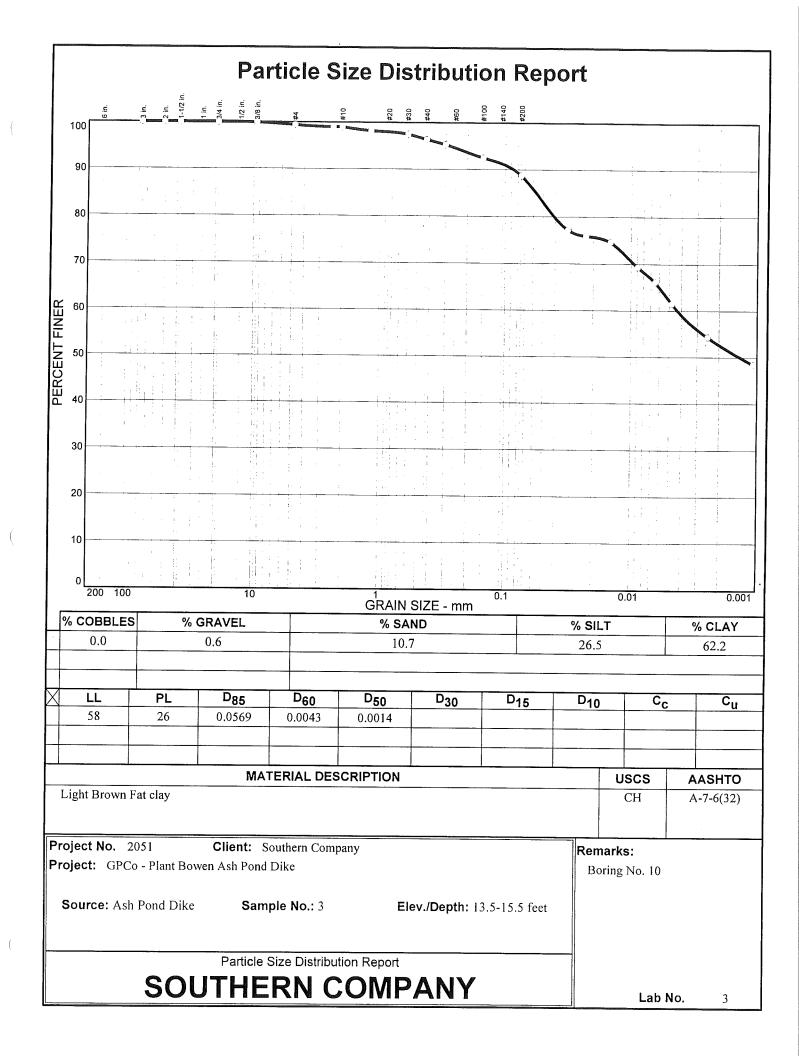
No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
(0.0	0 000	7.0								
	0.0		7.0	0.0	0.0	0.00	6.90	6.90	1.00	6.90	0.00
1	20.0	0.020	23.0	5.0	0.7	3.21	6.90	10.11	1.47	8.50	1.60
2	55.0	0.055	26.0	5.9	1.8	3.77	6.90	10.67	1.55	8.78	1.88
3	85.0	0.085	29.0	6.8	2.8	4.32	6.90	11.22	1.63	9.06	2.16
4	115.0	0.115	32.0	7.8	3.8	4.85	6.90	11.75	1.70	9.33	2.43
5	150.0	0.150	35.0	8.7	5.0	5.37	6.90	12.27	1.78	9.59	2.69
6	180.0	0.180	36.0	9.0	6.0	5.50	6.90	12.40	1.80	9.65	2.75
7	210.0	0.210	38.0	9.6	7.0	5.82	6.90	12.72	1.84	9.81	2.91
8	240.0	0.240	39.0	9.9	8.0	5.94	6.90	12.84	1.86	9.87	2.97
9	270.0	0.270	41.0	10.6	9.0	6.25	6.90	13.15	1.91	10.02	3.12
10	300.0	0.300	42.0	10.9	10.0	6.36	6.90	13.26	1.92	10.08	3.18
11	330.0	0.330	43.0	11.2	11.0	6.47	6.90	13.37	1.94	10.13	3.23
12	360.0	0.360	44.0	11.5	12.0	6.57	6.90	13.47	1.95	10.19	3.29
13	395.0	0.395	45.0	11.8	13.2	6.66	6.90	13.56	1.97	10.23	3.33
14	425.0	0.425	46.0	12.1	14.2	6.76	6.90	13.66	1.98	10.28	3.38
15	450.0	0.450	47.0	12.4	15.0	6.86	6.90	13.76	1.99	10.33	3 43

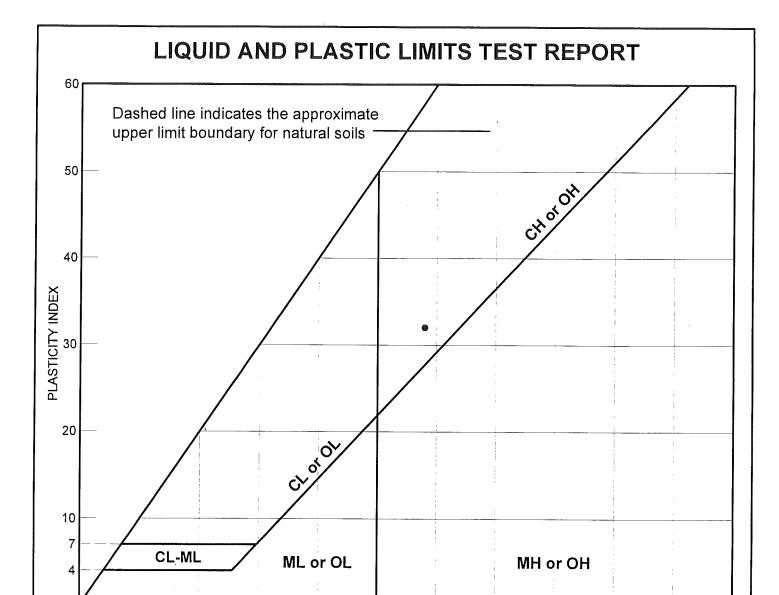
Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare:	Initial 112.720 98.330 30.310	Saturated	Final 112.720 98.330 30.310
Weight, gms:	153.3		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	21.2	21.2	21.2
Wet density, pcf:	126.5	126.5	
Dry density, pcf:	104.4	104.4	
Void ratio:	0.6328	0.6328	
% Saturation:	91.3	91.3	

Test Readings Data for Specimen No. 2

Deformation dial constant = 0.001 in per input unit Primary load ring constant= 0.3108 lbs per input unit Secondary load ring constant= 0.778822 lbs per input unit Crossover reading for secondary load ring= 474 input units Cell pressure = 17.40 psi Back pressure = 0.00 psi Effective confining stress = 17.40 psi Strain rate, %/min = 0.00 FAIL. STRESS = 9.27 psi at reading no. 15 UTT. STRESS = not selected

NO.	Det.	Det.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	u psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	14.0	0.0	0.0	0.00	17.40	17.40	1.00	17.40	0.00
1	30.0	0.030	28.0	4.4	1.0	2.80	17.40	20.20	1.16	18.80	1.40
2	65.0	0.065	33.0	5.9	2.2	3.75	17.40	21.15	1.22	19.28	1.88
3	95.0	0.095	37.0	7.1	3.2	4.50	17.40	21.90	1.26	19.65	2.25
4	125.0	0.125	41.0	8.4	4.2	5.22	17.40	22.62	1.30	20.01	2.61
5	155.0	0.155	45.0	9.6	5.2	5.94	17.40	23.34	1.34	20.37	2.97
6	185.0	0.185	50.0	11.2	6.2	6.82	17.40	24.22	1.39	20.81	3.41
7	210.0	0.210	53.0	12.1	7.0	7.32	17.40	24.72	1.42	21.06	3.66
8	240.0	0.240	55.0	12.7	8.0	7.62	17.40	25.02	1.44	21.21	3.81
9	270.0	0.270	57.0	13.4	9.0	7.90	17.40	25.30	1.45	21.35	3.95
10	300.0	0.300	59.0	14.0	10.0	8.18	17.40	25.58	1.47	21.49	4.09
11	330.0	0.330	61.0	14.6	11.0	8.45	17.40	25.85	1.49	21.62	4.22
12	360.0	0.360	63.0	15.2	12.0	8.71	17.40	26.11	1.50	21.75	4.35
13	395.0	0.395	64.0	15.5	13.2	8.77	17.40	26.17	1.50	21.78	4.38
14	425.0	0.425	66.0	16.2	14.2	9.01	17.40	26.41	1.52	21.91	4.51
15	450.0	0.450	68.0	16.8	15.0	9.27	17.40	26.67	1.53	22.03	4.63


Project no.:2051


Specimen Parameter	Initial	Saturated	Final
W' moist soil and tare:	138.540		138.540
dry soil and tare:	120.330		120.330
Wt. of tare:	30.370		30.370
Weight, gms:	156.2		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	20.2	20.2	20.2
Wet density, pcf:	128.8	128.8	
Dry density, pcf:	107.1	107.1	
Void ratio:	0.5909	0.5909	
% Saturation:	93.5	93.5	

Test Readings Data for Specimen No. 3

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure = 27.80 psi
Back pressure = 0.00 psi
Effective confining stress = 27.80 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 12.18 psi at reading no. 15
ULT. STRESS = not selected

No.	υef.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	18.0	0.0	0.0	0.00	27.80	27.80	1.00	27.80	0.00
1	30.0	0.030	34.0	5.0	1.0	3.20	27.80	31.00	1.12	29.40	1.60
2	65.0	0.065	41.0	7.1	2.2	4.54	27.80	32.34	1.16	30.07	2.27
3	95.0	0.095	46.0	8.7	3.2	5.47	27.80	33.27	1.20	30.54	2.74
4	120.0	0.120	52.0	10.6	4.0	6.59	27.80	34.39	1.24	31.10	3.30
5	150.0	0.150	56.0	11.8	5.0	7.29	27.80	35.09	1.26	31.44	3.64
6	180.0	0.180	61.0	13.4	6.0	8.16	27.80	35.96	1.29	31.88	4.08
7	210.0	0.210	65.0	14.6	7.0	8.83	27.80	36.63	1.32	32.21	4.41
8	240.0	0.240	68.0	15.5	8.0	9.29	27.80	37.09	1.33	32.44	4.64
9	270.0	0.270	71.0	16.5	9.0	9.74	27.80	37.54	1.35	32.67	4.87
10	295.0	0.295	74.0	17.4	9.8	10.19	27.80	37.99	1.37	32.90	5.10
11	325.0	0.325	78.0	18.6	10.8	10.80	27.80	38.60	1.39	33.20	5.40
12	355.0	0.355	81.0	19.6	11.8	11.21	27.80	39.01	1.40	33.41	5.61
13	385.0	0.385	83.0	20.2	12.8	11.44	27.80	39.24	1.41	33.52	5.72
14	415.0	0.415	86.0	21.1	13.8	11.83	27.80	39.63	1.43	33.71	5.91
15	450.0	0.450	89.0	22.1	15.0	12.18	27.80	39.98	1.44	33.89	6.09

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
•	Ash Pond Dike	3	13.5-15.5 feet		26	58	32	СН				

LIQUID LIMIT

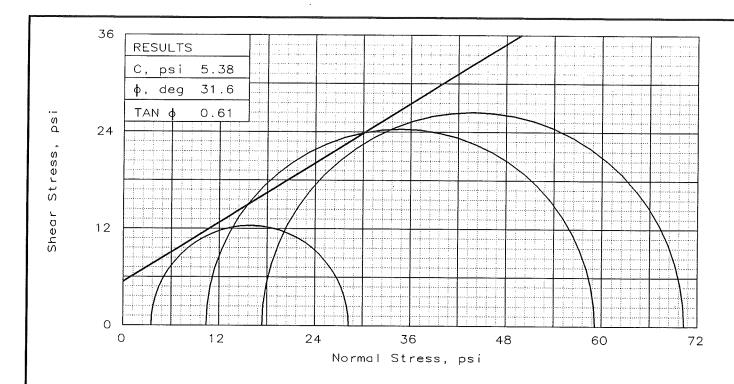
LIQUID AND PLASTIC LIMITS TEST REPORT

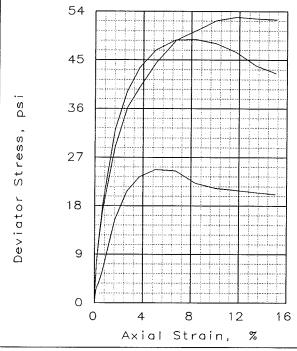
10

30

SOUTHERN COMPANY

Client: Southern Company


Project: GPCo - Plant Bowen Ash Pond Dike


70

Project No.: 2051

Lab No. 3

90

TYPE OF TEST:

Consolidated Drained

SAMPLE TYPE: UD

DESCRIPTION: Light brown fat

clay

LL= 58 PL= 26 PI= 32

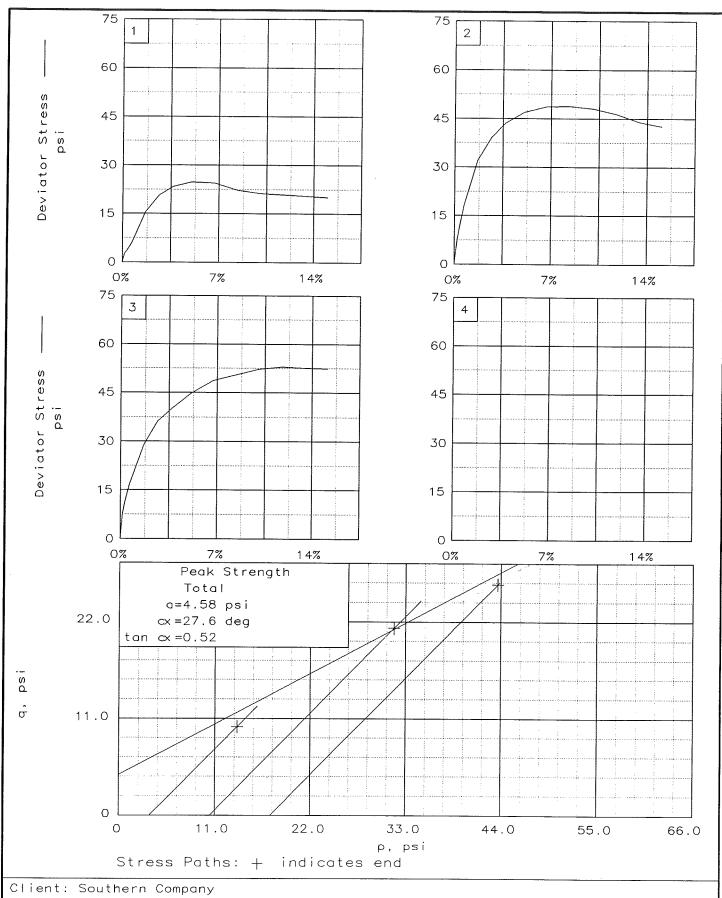
SPECIFIC GRAVITY= 2.71

REMARKS:

SA	MPLE NO.:	1		7	
13/	MPLE NO.;	1	2		
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	92.1 88.8 0.838 1.40	93.2 0.780	101.7 91.6 0.663 1.40	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	92.8 90.3 0.823 1.40	96.2	103.8 96.4 0.630 1.39	
St	rain rate, %/min	0.0010	0.0010	0.0010	
ВА	CK PRESSURE, psi	0.0	0.0	0.0	
CE	LL PRESSURE, psi	3.5	10.4	17.4	
FA	IL. STRESS, psi	24.7	48.7	52.9	
UL	T. STRESS, psi				
$- \sigma_1 $	FAILURE, psi	28.2	59.1	70.3	
σ ₃	FAILURE, psi	3.5	10.4	17.4	

CLIENT: Southern Company

PROJECT: GPCo - Plant Bowen Ash Pond Dike


SAMPLE LOCATION: Boring #10 Depth: 13.5 - 15.5 feet

PROJ. NO.: 2051 DATE: 10/02/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lob No: 3

Project: GPCo - Plant Bowen Ash Pond Dike Locotion: Boring #10 Depth: 13.5 - 15.5 feet

File: GPBAPD03

Project No.: 2051

Lab No: 3

TRIAXIAL COMPRESSION TEST Consolidated Drained

10-10-2002 12:57 pm

Project and Sample Data

Date: 10/02/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Sample location: Boring #10 Depth: 13.5 - 15.5 feet

Sample description: Light brown fat clay

Remarks:

Fig no.: 3 2nd page Fig no. (if applicable): 3

Type of sample: UD

Specific gravity= 2.71 LL= 58 PL= 26 PI= 32

Test method: ASTM - Method A

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 111.230 93.820 30.360 142.2	Saturated	Consolidated	Final 111.230 93.820 30.360
Diameter, in: Area, in ² : Height, in: Net decrease in height, in: Net decrease in water volume % pisture: Wet density, pcf: Dry density, pcf: Void ratio: % Saturation:	1.400 1.539 3.000	1.400 1.539 3.000 0.000 28.0 117.8 92.1 0.8377 90.5	1.396 1.530 2.995 0.005 0.600 27.4 118.3 92.8 0.8231 90.3	27.4

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.30179 lbs per input unit
Secondary load ring constant= 0.72586 lbs per input unit
Crossover reading for secondary load ring= 462 input units
Consolidation cell pressure = 3.50 psi
Consolidation back pressure = 0.00 psi
Consolidation effective confining stress = 3.50 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 24.74 psi at reading no. 7
ULT. STRESS = not selected

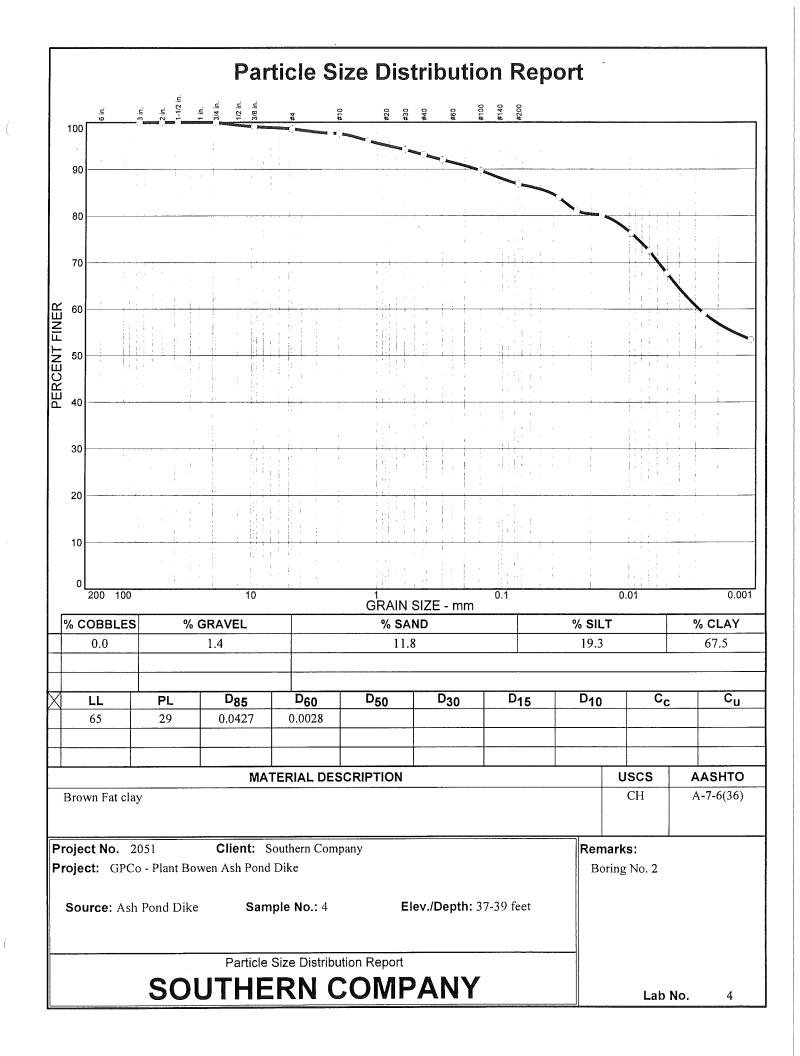
Test Readings Data for Specimen No. 1 Strain Deviator Principal Stresses P psi Q psi

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi	
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3			
	Units		Units	•		psi	psi	psi	Ratio			
i												
	0.0	0.000	6.0	0.0	0.0	0.00	3.50	3.50	1.00	3.50	0.00	
1	5.0	0.005	20.0	4.2	0.2	2.76	3.50	6.26	1.79	4.88	1.38	
2	10.0	0.010	24.0	5.4	0.3	3.54	3.50	7.04	2.01	5.27	1.77	
3	20.0	0.020	36.0	9.1	0.7	5.88	3.50	9.38	2.68	6.44	2.94	
4	50.0	0.050	86.0	24.1	1.7	15.52	3.50	19.02	5.43	11.26	7.76	
5	80.0	0.080	114.0	32.6	2.7	20.74	3.50	24.24	6.93	13.87	10.37	
6	110.0	0.110	129.0	37.1	3.7	23.37	3.50	26.87	7.68	15.19	11.69	
7	150.0	0.150	138.0	39.8	5.0	24.74	3.50	28.24	8.07	15.87	12.37	
8	200.0	0.200	139.0	40.1	6.7	24.49	3.50	27.99	8.00	15.74	12.24	
9	250.0	0.250	129.0	37.1	8.3	22.24	3.50	25.74	7.35	14.62	11.12	
10	300.0	0.300	126.0	36.2	10.0	21.30	3.50	24.80	7.09	14.15	10.65	
11	350.0	0.350	126.0	36.2	11.7	20.91	3.50	24.41	6.97	13.95	10.45	
12	400.0	0.400	126.0	36.2	13.4	20.51	3.50	24.01	6.86	13.76	10.26	
13	450.0	0.450	126.0	36.2	15.0	20.12	3.50	23.62	6.75	13.56	10.06	

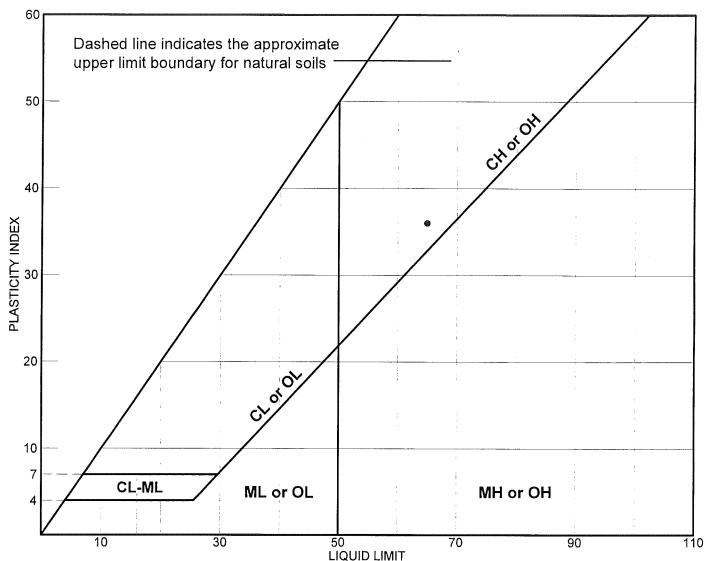
Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 128.020 107.370 30.410 146.1	Saturated	Consolidated	Final 128.020 107.370 30.410
Diameter, in:	1.400	1.400	1.394	
Area, in ² :	1.539	1.539	1.525	
Height, in:	3.000	3.000	2.992	
Net decrease in height, in:		0.000	0.008	
Net decrease in water volum	e, cc:		0.900	
% Moisture:	26.8	27.6	26.8	26.8
Wet density, pcf:	120.5	121.3	122.0	
Dry density, pcf:	95.0	95.0	96.2	
Void ratio:	0.7800	0.7800	0.7589	
% Saturation:	93.2	95.9	95.8	

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit Primary load ring constant = 0.311999 lbs per input unit Secondary load ring constant= 0.728246 lbs per input unit Crossover reading for secondary load ring= 480 input units Consolidation cell pressure = 10.40 psi Consolidation back pressure = 0.00 psi Consolidation effective confining stress = 10.40 psi Strain rate, %/min = 0.00 F^{TL} . STRESS = 48.74 psi at reading no. 9 . STRESS = not selected


No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	9.0	0.0	0.0	0.00	10.40	10.40	1.00	10.40	0.00
1	5.0	0.005	43.0	10.6	0.2	6.94	10.40	17.34	1.67	13.87	3.47
2	10.0	0.010	64.0	17.2	0.3	11.21	10.40	21.61	2.08	16.01	5.61
3	20.0	0.020	98.0	27.8	0.7	18.09	10.40	28.49	2.74	19.44	9.04
4	50.0	0.050	169.0	49.9	1.7	32.18	10.40	42.58	4.09	26.49	16.09
5	80.0	0.080	206.0	61.5	2.7	39.22	10.40	49.62	4.77	30.01	19.61
6	110.0	0.110	230.0	69.0	3.7	43.55	10.40	53.95	5.19	32.17	21.77
7	150.0	0.150	250.0	75.2	5.0	46.83	10.40	57.23	5.50	33.82	23.42
8	200.0	0.200	264.0	79.6	6.7	48.68	10.40	59.08	5.68	34.74	24.34
9	250.0	0.250	269.0	81.1	8.4	48.74	10.40	59.14	5.69	34.77	24.37
10	300.0	0.300	270.0	81.4	10.0	48.04	10.40	58.44	5.62	34.42	24.02
11	350.0	0.350	266.0	80.2	11.7	46.42	10.40	56.82	5.46	33.61	23.21
12	400.0	0.400	257.0	77.4	13.4	43.95	10.40	54.35	5.23	32.38	21.98
13	450.0	0.450	254.0	76.4	15.0	42.58	10.40	52.98	5.09	31.69	21.29

Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 119.800 103.410 30.300 151.0	Saturated	Consolidated	Final 119.800 103.410 30.300
Diameter, in:	1.400	1.400	1.391	
Area, in ² :	1.539	1.539	1.519	
Height, in:	3.000	3.000	2.980	
Net decrease in height, in:		0.000	0.020	
Net decrease in water volum	e, cc:		1.500	
% Moisture:	22.4	23.6	22.4	22.4
Wet density, pcf:	124.5	125.8	127.1	
Dry density, pcf:	101.7	101.7	103.8	
Void ratio:	0.6629	0.6629	0.6299	
% Saturation:	91.6	96.6	96.4	

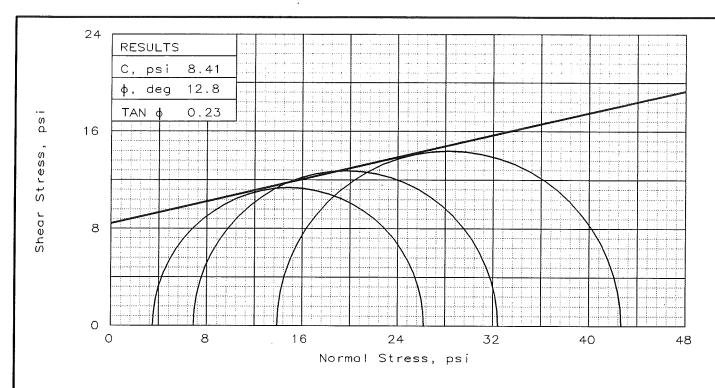

Test Readings Data for Specimen No. 3

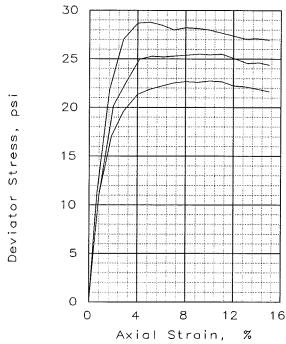
Deformation dial constant= 0.001 in per input unit Primary load ring constant = 0.310809 lbs per input unit Secondary load ring constant= 0.778824 lbs per input unit Crossover reading for secondary load ring= 474 input units Consolidation cell pressure = 17.40 psi Consolidation back pressure = 0.00 psi Consolidation effective confining stress = 17.40 psi Strain rate, %/min = 0.00 F^*IL. STRESS = 52.91 psi at reading no. 11 . STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	20.0	0.0	0.0	0.00	17.40	17.40	1.00	17.40	0.00
1	5.0	0.005	58.0	11.8	0.2	7.76	17.40	25.16	1.45	21.28	3.88
2	10.0	0.010	76.0	17.4	0.3	11.42	17.40	28.82	1.66	23.11	5.71
3	20.0	0.020	104.0	26.1	0.7	17.07	17.40	34.47	1.98	25.94	8.54
4	50.0	0.050	164.0	44.8	1.7	28.97	17.40	46.37	2.66	31.89	14.49
5	80.0	0.080	202.0	56,6	2.7	36.24	17.40	53.64	3.08	35.52	18.12
6	110.0	0.110	223.0	63.1	3.7	40.00	17.40	57.40	3.30	37.40	20.00
7	150.0	0.150	249.0	71.2	5.0	44.50	17.40	61.90	3.56	39.65	22.25
8	200.0	0.200	275.0	79.3	6.7	48.68	17.40	66.08	3.80	41.74	24.34
9	250.0	0.250	289.0	83.6	8.4	50.42	17.40	67.82	3.90	42.61	25.21
10	300.0	0.300	304.0	88.3	10.1	52.26	17.40	69.66	4.00	43.53	26.13
11	350.0	0.350	313.0	91.1	11.7	52.91	17.40	70.31	4.04	43.86	26.46
12	400.0	0.400	317.0	92.3	13.4	52.61	17.40	70.01	4.02	43.71	26.31
13	450.0	0.450	322.0	93.9	15.1	52.46	17.40	69.86	4.02	43.63	26.23

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
•	Ash Pond Dike	4	37-39 feet		29	65	36	СН				

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

Lab No. 4

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: UD

DESCRIPTION: Brown fat clay

LL= 65 PL= 29 PI= 36

SPECIFIC GRAVITY= 2.87

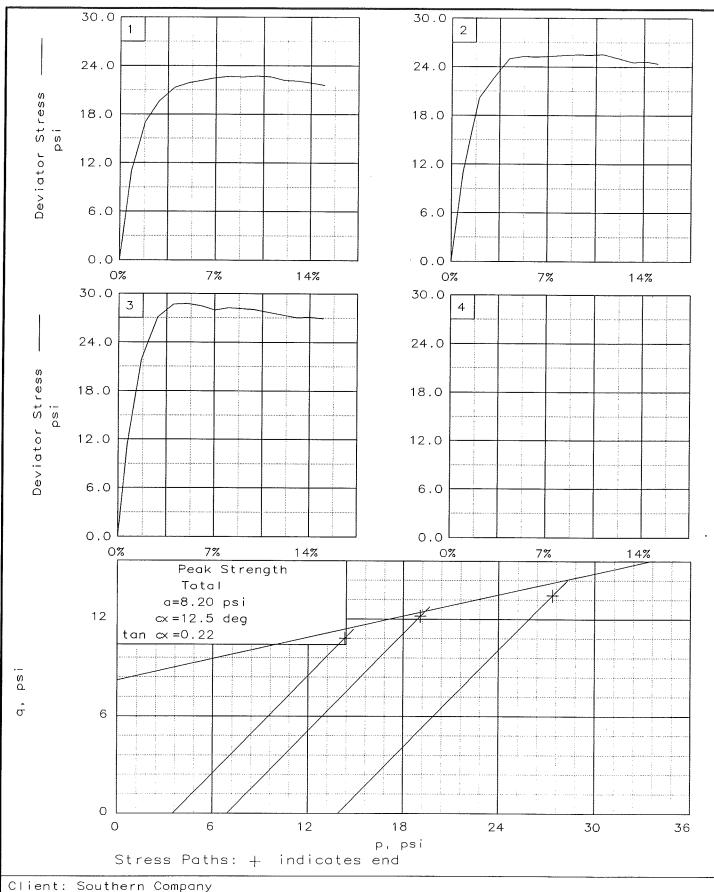
REMARKS:

SA	MPLE NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	84.3 95.2 1.126 1.40	100.0 1.126	85.9 96.6 1.086 1.40	
AT TEST	· '	37.4 84.3 95.2 1.126 1.40 3.00	84.3 100.0 1.126	85.9 96.6 1.086 1.40	
St	rain rate, %/min	0.0010	0.0010	0.0010	
ВА	CK PRESSURE, psi	0.0	0.0	0.0	
CE	LL PRESSURE, psi	3.5	6.9	13.9	
FA	IL. STRESS, psi	22.7	25.5	28.8	
UL	T. STRESS, psi				
$- \sigma_1 $	FAILURE, psi	26.2	32.4	42.7	
σ ₃	FAILURE, psi	3.5	6.9	13.9	

CLIENT: Southern Company

PROJECT: GPCo - Plant Bowen Ash Pond Dike

SAMPLE LOCATION: Boring #2


Depth: 37 - 39 feet

PROJ. NO.: 2051 DATE: 10/02/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lab No: 4

Project: GPCo - Plant Bowen Ash Pond Dike Location: Boring #2 Depth: 37 - 39 feet File: GPBAPD04 Project No.: 2051

Lab No: 4

Project and Sample Data

Date: 10/02/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike Sample location: Boring #2 Depth: 37 - 39 feet

Sample description: Brown fat clay

Remarks:

Fig no.: 4 2nd page Fig no. (if applicable): 4

Type of sample: UD

Specific gravity= 2.87 LL= 65 PL= 29 PI= 36

Test method: ASTM - Method A

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare:	Initial 119.040 94.900	Saturated	Final 119.040 94.900
Wt. of tare:	30.300		30.300
Weight, gms:	140.3		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	37.4	37.4	37.4
<pre>density, pcf:</pre>	115.8	115.8	
Dry density, pcf:	84.3	84.3	
Void ratio:	1.1260	1.1260	
% Saturation:	95.2	95.2	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit Primary load ring constant = 0.3108 lbs per input unit Secondary load ring constant= 0.77882 lbs per input unit Crossover reading for secondary load ring= 474 input units Cell pressure = 3.50 psi Back pressure = 0.00 psi

Effective confining stress = 3.50 psi

Strain rate, $%/\min = 0.00$

FAIL. STRESS = 22.71 psi at reading no. 10

ULT. STRESS = not selected

Test Readings Data for Specimen No. 1

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		,
(
1	0.0	0.000	4.0	0.0	0.0	0.00	3.50	3.50	1.00	3.50	0.00
1	25.0	0.025	59.0	17.1	0.8	11.01	3.50	14.51	4.15	9.01	5.51
2	55.0	0.055	90.0	26.7	1.8	17.05	3.50	20.55	5.87	12.02	8.52
3	85.0	0.085	104.0	31.1	2.8	19.62	3.50	23.12	6.61	13.31	9.81
4	120.0	0.120	114.0	34.2	4.0	21.32	3.50	24.82	7.09	14.16	10.66
5	150.0	0.150	118.0	35.4	5.0	21.87	3.50	25.37	7.25	14.43	10.93
6	180.0	0.180	121.0	36.4	6.0	22.20	3.50	25.70	7.34	14.60	11.10
7	210.0	0.210	124.0	37.3	7.0	22.53	3.50	26.03	7.44	14.77	11.27
8	240.0	0.240	126.0	37.9	8.0	22.66	3.50	26.16	7.47	14.83	11.33
9	270.0	0.270	127.0	38.2	9.0	22.60	3.50	26.10	7.46	14.80	11.30
10	300.0	0.300	129.0	38.9	10.0	22.71	3.50	26.21	7.49	14.86	11.36
11	330.0	0.330	130.0	39.2	11.0	22.64	3.50	26.14	7.47	14.82	11.32
12	360.0	0.360	129.0	38.9	12.0	22.21	3.50	25.71	7.35	14.60	11.10
13	390.0	0.390	130.0	39.2	13.0	22.13	3.50	25.63	7.32	14.57	11.07
14	415.0	0.415	130.0	39.2	13.8	21.92	3.50	25.42	7.26	14.46	10.96
15	450.0	0.450	130.0	39.2	15.0	21.62	3.50	25.12	7.18	14.31	10.81

Specimen Parameter	Initial	Saturated	Final
moist soil and tare:	127.820		127.820
dry soil and tare:	100.300		100.300
Wt. of tare:	30.160		30.160
Weight, gms:	142.2		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	39.2	39.2	39.2
Wet density, pcf:	117.3	117.3	
Dry density, pcf:	84.3	84.3	
Void ratio:	1.1262	1.1262	
% Saturation:	100.0	100.0	

Test Readings Data for Specimen No. 2

```
Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure =
                          6.90 psi
Back pressure =
                          0.00 psi
Effective confining stress =
                                        6.90 psi
Strain rate, %/\min = 0.00
                      25.52 psi at reading no. 11
FAIL. STRESS =
UTT. STRESS = not selected
No. Def.
         Def.
                Load
                      Load
                            Strain Deviator
                                             Principal Stresses
                                                               P psi
                                                                       Q psi
   Dial
          in
                Dial
                      lbs
                            %
                                   Stress
                                           Minor
                                                 Major
                                                       1:3
   Units
                Units
                                   psi
                                           psi
                                                  psi
                                                       Ratio
      0.0 0.000
                  7.0
                        0.0
                                    0.00
                              0.0
                                             6.90
                                                   6.90 1.00
                                                               6.90
                                                                     0.00
     25.0 0.025
 1
                  62.0
                        17.1
                              8.0
                                   11.01
                                            6.90
                                                  17.91 2.60
                                                              12.41
                                                                     5.51
 2
     60.0 0.060
                 109.0
                       31.7
                              2.0
                                   20.18
                                             6.90
                                                  27.08 3.92
                                                              16.99
                                                                     10.09
 3
     90.0 0.090
                 122.0
                       35.7
                              3.0
                                   22.52
                                             6.90
                                                  29.42 4.26
                                                              18.16
                                                                     11.26
    125.0 0.125
                 136.0
                       40.1
                              4.2
                                   24.96
                                             6.90
                                                  31.86 4.62
                                                              19.38
                                                                     12.48
 5
    155.0 0.155
                 139.0
                       41.0
                              5.2
                                   25.27
                                            6.90
                                                  32.17 4.66
                                                              19.54
                                                                    12.64
    185.0 0.185
                 140.0
                       41.3
                              6.2
                                   25.20
                                             6.90
                                                  32.10 4.65
                                                              19.50
                                                                    12.60
 7
    215.0 0.215
                 142.0
                       42.0
                              7.2
                                   25.30
                                            6.90
                                                  32.20 4.67
                                                              19.55
                                                                    12.65
 8
    245.0 0.245
                 144.0
                       42.6
                              8.2
                                   25.40
                                            6.90
                                                  32.30 4.68
                                                              19.60
                                                                    12.70
    275.0 0.275
                 146.0
                       43.2
                              9.2
                                            6.90
                                   25.49
                                                  32.39 4.69
                                                              19.65
                                                                    12.75
    300.0 0.300
                 147.0
10
                       43.5
                            10.0
                                   25.44
                                            6.90
                                                  32.34 4.69
                                                              19.62
                                                                    12.72
    330.0 0.330
                 149.0
                       44.1
11
                             11.0
                                   25.52
                                            6.90
                                                  32.42 4.70
                                                              19.66
                                                                    12.76
12
    365.0 0.365
                 148.0
                       43.8
                             12.2
                                   25.00
                                            6.90
                                                  31.90 4.62
                                                              19.40
                                                                    12.50
    395.0 0.395
                 147.0
13
                       43.5
                             13.2
                                   24.54
                                            6.90
                                                  31.44 4.56
                                                              19.17
                                                                    12.27
```

425.0 0.425

450.0 0.450

149.0

149.0 44.1

44.1

14.2

15.0

24.61

24.37

6.90

6.90

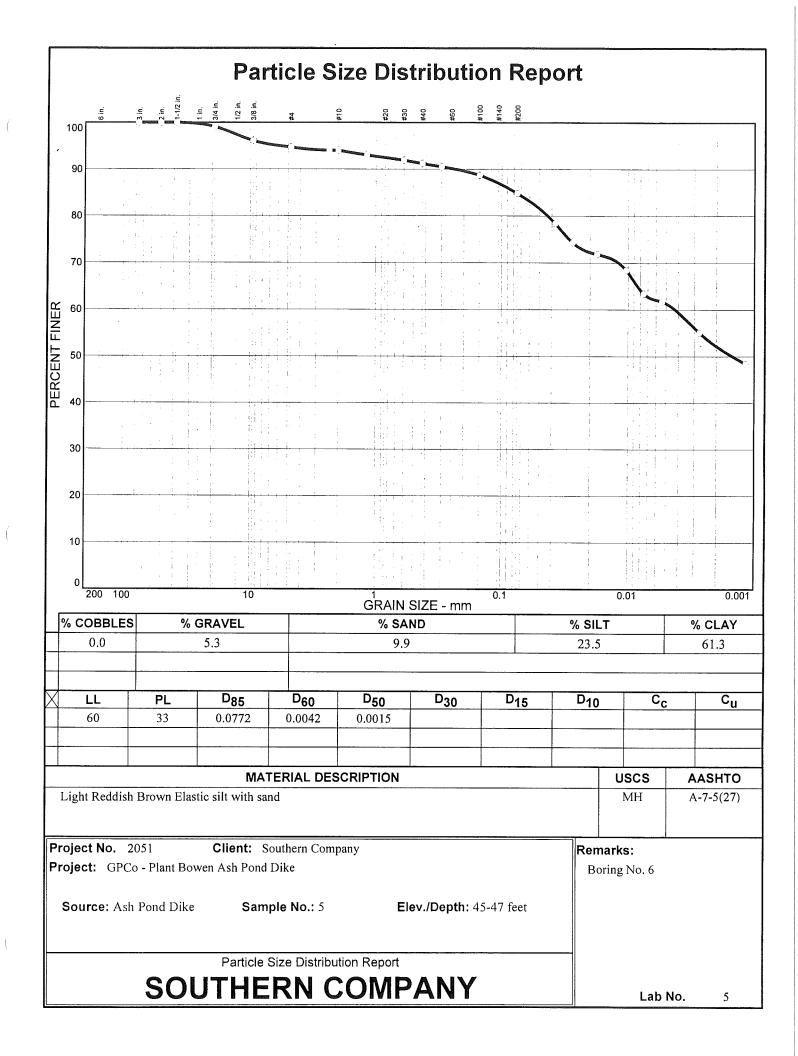
31.51 4.57

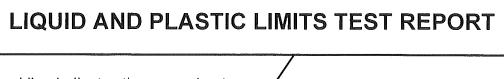
31.27 4.53

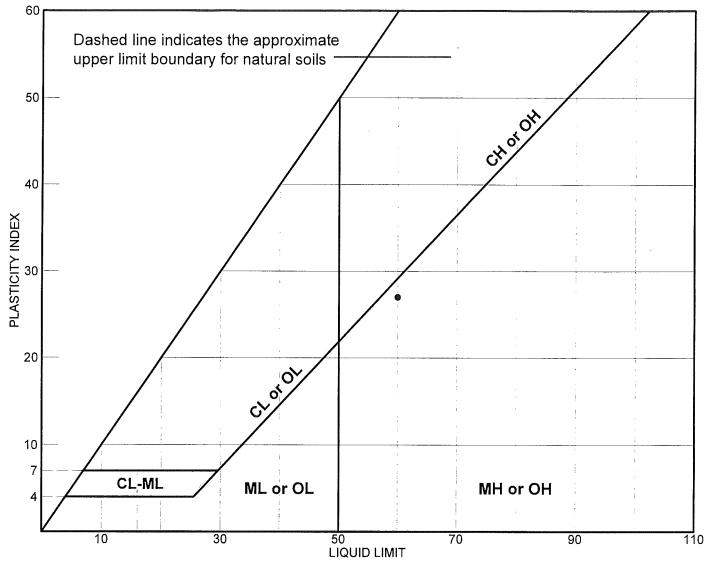
19.20

19.08

12.30


12.18


Initial 131.420 104.380	Saturated	Final 131.420 104.380 30.390
142.2	1.400	30.390
1.539	1.539	
36.5	0.000	36.5
117.3 85.9 1.0856 96.6	117.3 85.9 1.0856 96.6	30.3
	131.420 104.380 30.390 142.2 1.400 1.539 3.000 36.5 117.3 85.9 1.0856	131.420 104.380 30.390 142.2 1.400 1.539 3.000 0.000 36.5 117.3 85.9 1.0856

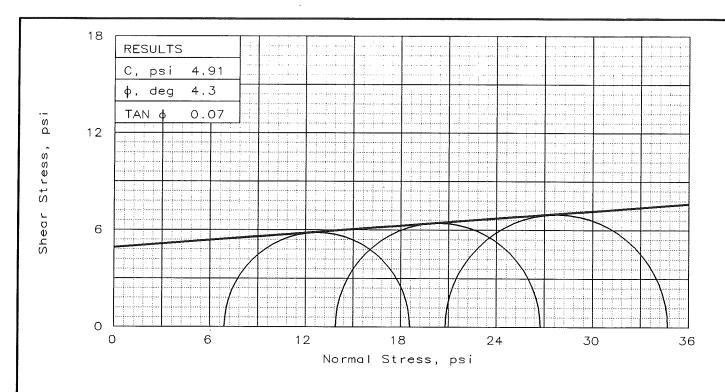

Test Readings Data for Specimen No. 3

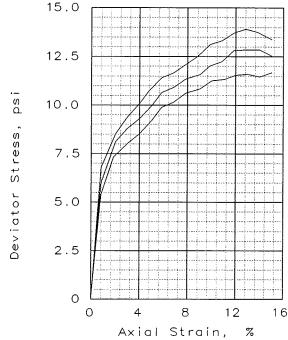
Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure = 13.90 psi
Back pressure = 0.00 psi
Effective confining stress = 13.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 28.77 psi at reading no. 5
U'T. STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	ps i	psi	Ratio		
0	0.0	0.000	11.0	0.0	0.0	0.00	13.90	13.90	1.00	13.90	0.00
1	20.0	0.020	67.0	17.4	0.7	11.23	13.90	25.13	1.81	19.52	5.62
2	50.0	0.050	121.0	34.2	1.7	21.84	13.90	35.74	2.57	24.82	10.92
3	85.0	0.085	149.0	42.9	2.8	27.07	13.90	40.97	2.95	27.44	13.54
4	120.0	0.120	159.0	46.0	4.0	28.69	13.90	42.59	3.06	28.24	14.34
5	150.0	0.150	161.0	46.6	5.0	28.77	13.90	42.67	3.07	28.29	14.39
6	180.0	0.180	161.0	46.6	6.0	28.47	13.90	42.37	3.05	28.13	14.23
7	210.0	0.210	160.0	46.3	7.0	27.98	13.90	41.88	3.01	27.89	13.99
8	240.0	0.240	163.0	47.2	8.0	28.23	13.90	42.13	3.03	28.02	14.12
9	265.0	0.265	164.0	47.6	8.8	28.16	13.90	42.06	3.03	27.98	14.08
10	295.0	0.295	165.0	47.9	9.8	28.04	13.90	41.94	3.02	27.92	14.02
11	325.0	0.325	165.0	47.9	10.8	27.72	13.90	41.62	2.99	27.76	13.86
12	355.0	0.355	165.0	47.9	11.8	27.41	13.90	41.31	2.97	27.61	13.71
13	390.0	0.390	165.0	47.9	13.0	27.05	13.90	40.95	2.95	27.43	13.53
14	420.0	0.420	167.0	48.5	14.0	27.09	13.90	40.99	2.95	27.44	13.54
15	450.0	0.450	168.0	48.8	15.0	26.94	13.90	40.84	2.94	27.37	13.47

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
•	Ash Pond Dike	5	45-47 feet		33	60	27	МН				

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

Lab No. 5

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: UD

DESCRIPTION: Light reddish

brown elastic silt with sand

LL= 60

PL= 33 PI= 27

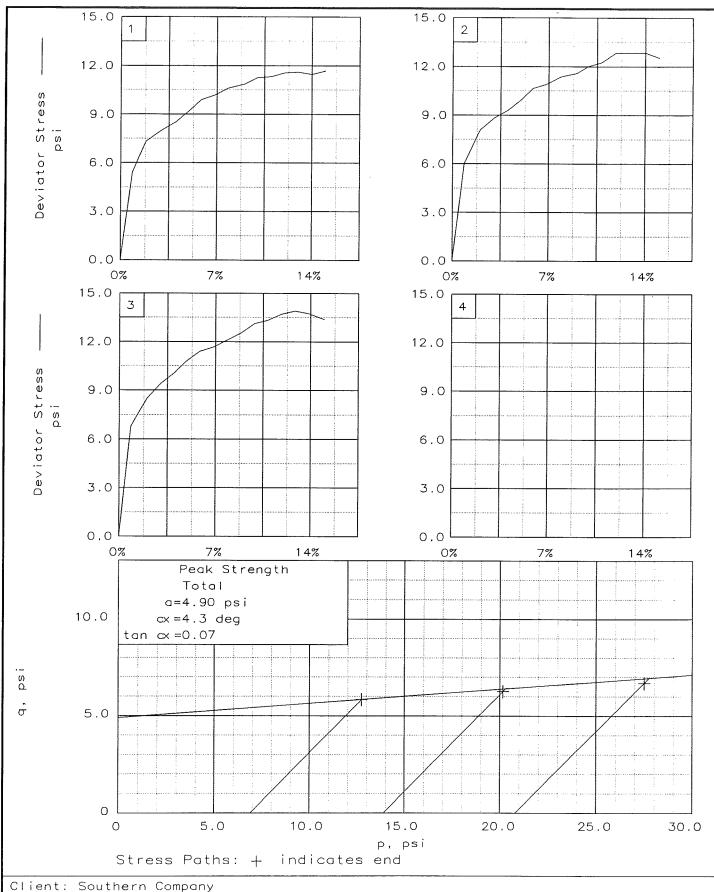
SPECIFIC GRAVITY= 2.61

REMARKS:

SA	MPLE NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	73.6 99.1	98.0 1.185 1.40	75.3 96.9 1.165 1.40	
AT TEST		99.1 1.214 1.40	74.6 98.0 1.185	75.3 96.9 1.165 1.40	
St	rain rate, %/min	0.0010	0.0010	0.0010	
BA	CK PRESSURE, psi	0.0	0.0	0.0	,
CE	LL PRESSURE, psi	6.9	13.9	20.8	
FA	IL. STRESS, psi	11.7	12.8	13.9	
UL	T. STRESS, psi				
σ_1	FAILURE, psi	18.6	26.7	34.7	
σ ₃	FAILURE, psi	6.9	13.9	20.8	

CLIENT: Southern Compony

PROJECT: GPCo - Plant Bowen Ash Pond Dike


SAMPLE LOCATION: Boring #6

Depth: 45 - 47 feet

PROJ. NO.: 2051 DATE: 10/02/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Project: GPCo - Plant Bowen Ash Pond Dike Location: Boring #6 Depth: 45 - 47 feet

File: GPBAPD05

Project No.: 2051

Data file: GPBAPD05

Project and Sample Data

Date: 10/02/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike Sample location: Boring #6 Depth: 45 - 47 feet

Sample description: Light reddish brown elastic silt with sand

Remarks:

Fig no.: 5 2nd page Fig no. (if applicable): 5

Type of sample: UD

Specific gravity= 2.61 LL= 60 PL= 33 PI= 27

Test method: ASTM - Method A

Specimen Parameters for Specimen No. 1

Specimen Parameter	Initial	Saturated	Final
Wt. moist soil and tare:	101.810		101.810
Wt. dry soil and tare:	79.170		79.170
Wt. of tare:	30.070		30.070
Weight, gms:	130.3		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	46.1	46.1	46.1
(density, pcf:	107.5	107.5	
Dry density, pcf:	73.6	73.6	
Void ratio:	1.2143	1.2143	
% Saturation:	99.1	99.1	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure = 6.90 psi
Back pressure = 0.00 psi
Effective confining stress = 6.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 11.67 psi at reading no. 15
ULT. STRESS = not selected

Test Readings Data for Specimen No. 1
No. Def. Def. Load Load Strain Deviator Principal Stresses P psi Q psi

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal Sti	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
1											
1	0.0	0.000	7.0	0.0	0.0	0.00	6.90	6.90	1.00	6.90	0.00
1	25.0	0.025	34.0	8.4	0.8	5.41	6.90	12.31	1.78	9.60	2.70
2	55.0	0.055	44.0	11.5	1.8	7.33	6.90	14.23	2.06	10.57	3.67
3	90.0	0.090	48.0	12.7	3.0	8.03	6.90	14.93	2.16	10.91	4.01
4	120.0	0.120	51.0	13.7	4.0	8.53	6.90	15.43	2.24	11.16	4.26
5	150.0	0.150	55.0	14.9	5.0	9.21	6.90	16.11	2.33	11.50	4.60
6	175.0	0.175	59.0	16.2	5.8	9.89	6.90	16.79	2.43	11.84	4.94
7	205.0	0.205	61.0	16.8	6.8	10.16	6.90	17.06	2.47	11.98	5.08
8	235.0	0.235	64.0	17.7	7.8	10.61	6.90	17.51	2.54	12.20	5.30
9	270.0	0.270	66.0	18.3	9.0	10.84	6.90	17.74	2.57	12.32	5.42
10	300.0	0.300	69.0	19.3	10.0	11.27	6.90	18.17	2.63	12.53	5.63
11	330.0	0.330	70.0	19.6	11.0	11.32	6.90	18.22	2.64	12.56	5.66
12	360.0	0.360	72.0	20.2	12.0	11.55	6.90	18.45	2.67	12.67	5.77
13	390.0	0.390	73.0	20.5	13.0	11.59	6.90	18.49	2.68	12.70	5.80
14	420.0	0.420	73.0	20.5	14.0	11.46	6.90	18.36	2.66	12.63	5.73
15	450.0	0.450	75.0	21.1	15.0	11.67	6.90	18.57	2.69	12.73	5.83

Specimen Parameter We moist soil and tare: Under dry soil and tare: While the second secon	Initial 103.800 81.160 30.280 130.6	Saturated	Final 103.800 81.160 30.280
Diameter, in: Area, in: Height, in: Net decrease in height, in: % Moisture:	1.400 1.539 3.000	1.400 1.539 3.000 0.000	44.5
Wet density, pcf: Dry density, pcf: Void ratio: Saturation:	44.5 107.8 74.6 1.1850 98.0	44.5 107.8 74.6 1.1850 98.0	44.5

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure = 13.90 psi
Back pressure = 0.00 psi
Effective confining stress = 13.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 12.85 psi at reading no. 14
UIT. STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	11.0	0.0	0.0	0.00	13.90	13.90	1.00	13.90	0.00
1	25.0	0.025	41.0	9.3	0.8	6.01	13.90	19.91	1.43	16.90	3.00
2	60.0	0.060	52.0	12.7	2.0	8.11	13.90	22.01	1.58	17.96	4.06
3	90.0	0.090	56.0	14.0	3.0	8.81	13.90	22.71	1.63	18.31	4.41
4	120.0	0.120	59.0	14.9	4.0	9.30	13.90	23.20	1.67	18.55	4.65
5	150.0	0.150	63.0	16.2	5.0	9.97	13.90	23.87	1.72	18.89	4.99
6	175.0	0.175	67.0	17.4	5.8	10.65	13.90	24.55	1.77	19.22	5 .3 2
7	205.0	0.205	69.0	18.0	6.8	10.91	13.90	24.81	1.78	19.36	5.46
8	235.0	0.235	72.0	19.0	7.8	11.35	13.90	25.25	1.82	19.58	5.68
9	270.0	0.270	74.0	19.6	9.0	11.57	13.90	25.47	1.83	19.69	5.79
10	295.0	0.295	77.0	20.5	9.8	12.02	13.90	25.92	1.86	19.91	6.01
11	325.0	0.325	79.0	21.1	10.8	12.24	13.90	26.14	1.88	20.02	6.12
12	3 55.0	0.355	83.0	22.4	11.8	12.82	13.90	26.72	1.92	20.31	6.41
13	385.0	0.385	84.0	22.7	12.8	12.85	13.90	26.75	1.92	20.32	6.42
14	420.0	0.420	85.0	23.0	14.0	12.85	13.90	26.75	1.92	20.32	6.42
15	450.0	0.450	84.0	22.7	15.0	12.53	13.90	26.43	1.90	20.16	6.26

Data file: GPBAPD05

Specimen Parameter	Initial	Saturated	Final
y moist soil and tare:	113.630		113.630
dry soil and tare:	88,480		88.480
Wt. of tare:	30.310		30.310
Weight, gms:	130.7		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	43.2	43.2	43.2
Wet density, pcf:	107.8	107.8	
Dry density, pcf:	75.3	75.3	
Void ratio:	1.1650	1.1650	
% Saturation:	96.9	96.9	

Test Readings Data for Specimen No. 3

```
Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure =
                         20.80 psi
Back pressure =
                          0.00 psi
Effective confining stress = 20.80 psi
Strain rate, %/\min = 0.00
FAIL. STRESS =
                      13.90 psi at reading no. 13
UI.T. STRESS = not selected
No. Def.
         Def.
                Load
                      Load
                            Strain Deviator
                                             Principal Stresses
                                                                P psi
                                                                        Q psi
   Dial
          in
                Dial
                            %
                      lbs
                                   Stress
                                           Minor
                                                  Major
                                                        1:3
   Units
                Units
                                   psi
                                           psi
                                                        Ratio
                                                  ps i
      0.0 0.000
                  14.0
                         0.0
                                     0.00
                                                              20.80
                               0.0
                                            20.80
                                                   20.80 1.00
                                                                      0.00
 1
     25.0 0.025
                  48.0
                        10.6
                               0.8
                                    6.81
                                            20.80
                                                   27.61 1.33
                                                              24.20
                                                                      3.40
 2
     60.0 0.060
                  57.0
                        13.4
                              2.0
                                    8.51
                                            20.80
                                                   29.31 1.41
                                                              25.05
                                                                      4.25
     90.0 0.090
 3
                  62.0
                       14.9
                              3.0
                                    9.40
                                            20.80
                                                   30.20 1.45
                                                              25.50
                                                                      4.70
    120.0 0.120
                  66.0
                        16.2
                              4.0
                                    10.08
                                            20.80
                                                  30.88 1.48
                                                              25.84
                                                                      5.04
 5
    145.0 0.145
                  70.0
                        17.4
                              4.8
                                   10.76
                                            20.80
                                                  31.56 1.52
                                                              26.18
                                                                      5.38
    175.0 0.175
                  74.0
                        18.6
                              5.8
                                   11.41
                                            20.80
                                                  32.21 1.55
                                                              26.50
                                                                      5.70
    205.0 0.205
                        19.3
                  76.0
                              6.8
                                   11.66
                                            20.80
                                                  32.46 1.56
                                                              26.63
                                                                      5.83
    235.0 0.235
                  79.0
                        20.2
                              7.8
                                   12.10
                                            20.80
                                                  32.90 1.58
                                                              26.85
                                                                      6.05
 9
    265.0 0.265
                  82.0
                       21.1
                              8.8
                                   12.52
                                            20.80
                                                  33.32 1.60
                                                              27.06
                                                                      6.26
    295.0 0.295
10
                  86.0
                       22.4
                              9.8
                                   13.11
                                            20.80
                                                  33.91 1.63
                                                              27.35
                                                                      6.55
    325.0 0.325
                  88.0
                       23.0
11
                             10.8
                                   13.32
                                            20.80
                                                  34.12 1.64
                                                              27.46
                                                                      6.66
    355.0 0.355
                  91.0
12
                       23.9
                             11.8
                                   13.71
                                            20.80
                                                  34.51 1.66
                                                              27.65
                                                                      6.85
```

385.0 0.385

415.0 0.415

450.0 0.450

93.0

93.0

92.0

24.6

24.6

24.2

12.8

13.8

15.0

13.90

13.74

13.39

20.80

20.80

20.80

13

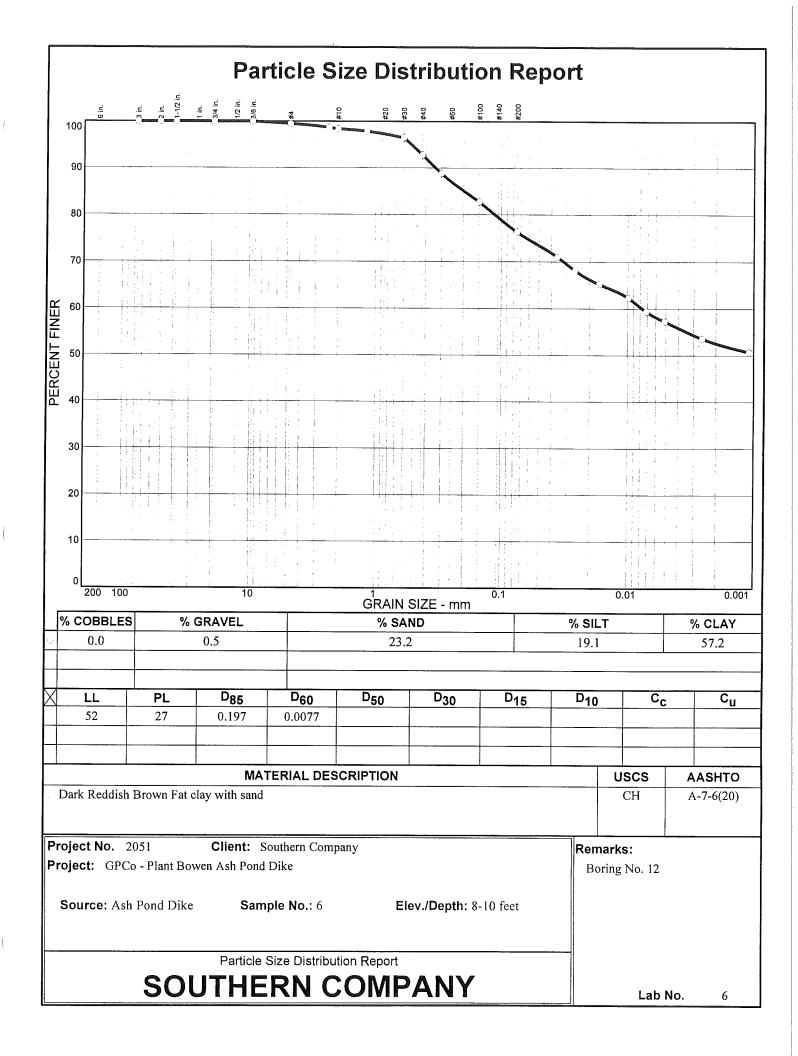
14

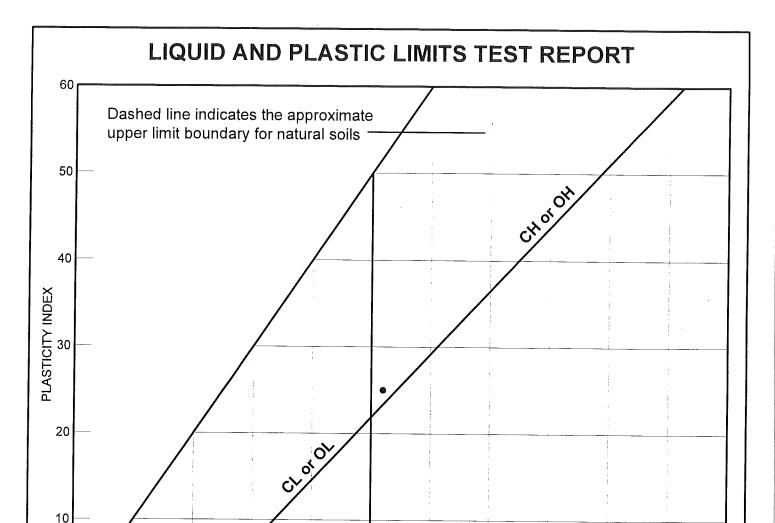
34.70 1.67

34.19 1.64

34.54 1.66

27.75


27.67


27.49

6.95

6.87

6.69

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
•	Ash Pond Dike	6	8-10 feet		27	52	25	СН				

LIQUID LIMIT

ML or OL

30

LIQUID AND PLASTIC LIMITS TEST REPORT

CL-ML

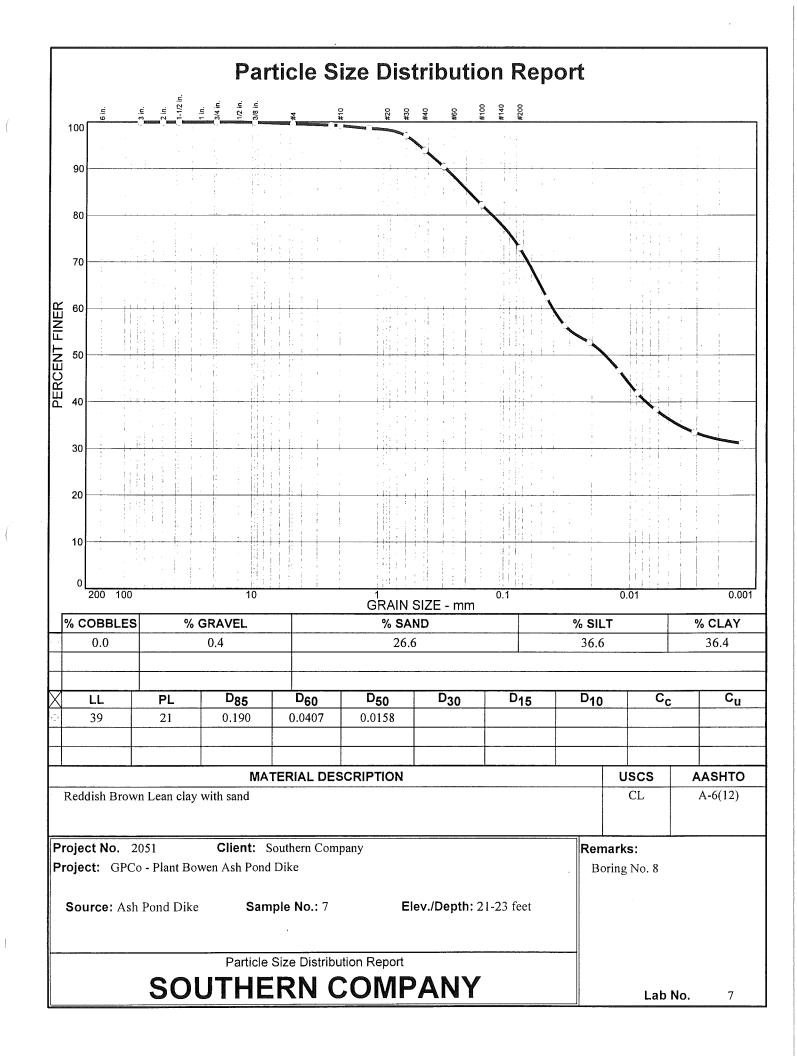
10

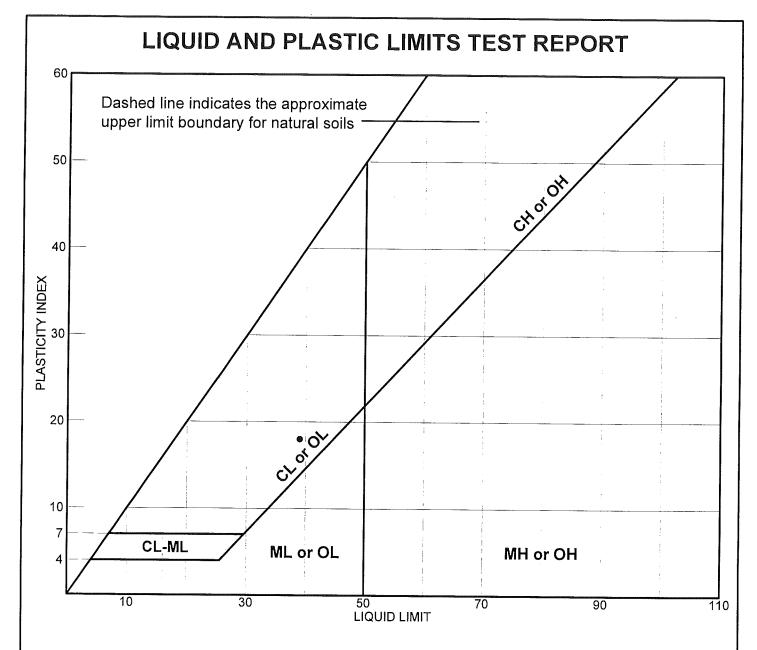
SOUTHERN COMPANY

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051


Lab No. 6


MH or OH

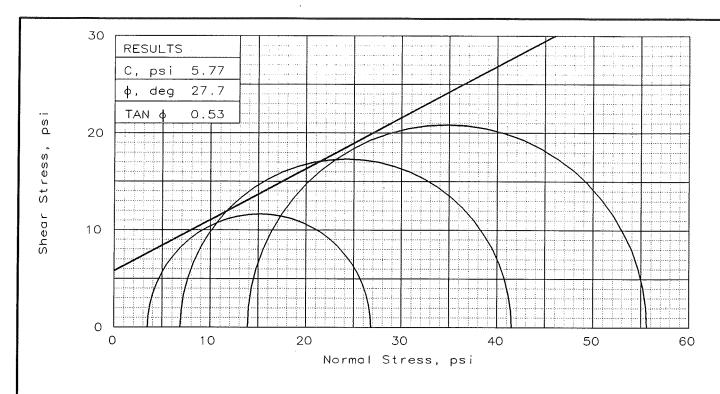
90

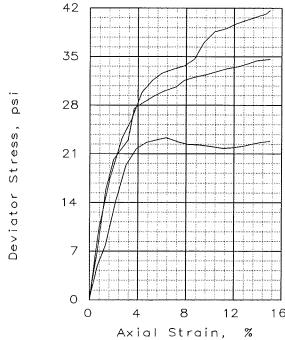
<u>11</u>0

70

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
•	Ash Pond Dike	7	21-23 feet		21	39	18	CL				

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

Lab No. 7

SAMPLE NO.:	1	2	3	
WATER CONTENT, % DRY DENSITY, pcf H SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	109.6	109.1 99.3 0.499 1.40	110.4 95.7 0.481 1.40	
WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	109.6 100.0 0.492 1.40	109.1 100.0 0.499	110.4 100.0 0.481 1.40	
Strain rate, %/min	0.0010	0.0010	0.0010	
BACK PRESSURE, psi	0.0	0.0	0.0	
CELL PRESSURE, psi	3.5	6.9	13.9	
FAIL. STRESS, psi	23.3	34.6	41.7	
ULT. STRESS, psi				
σ ₁ FAILURE, psi	26.8	41.5	55.6	
Ø₃FAILURE, psi	3.5	6.9	13.9	

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: UD

DESCRIPTION: Reddish brown lean

clay with sand

LL= 39

PL= 21 PI= 18

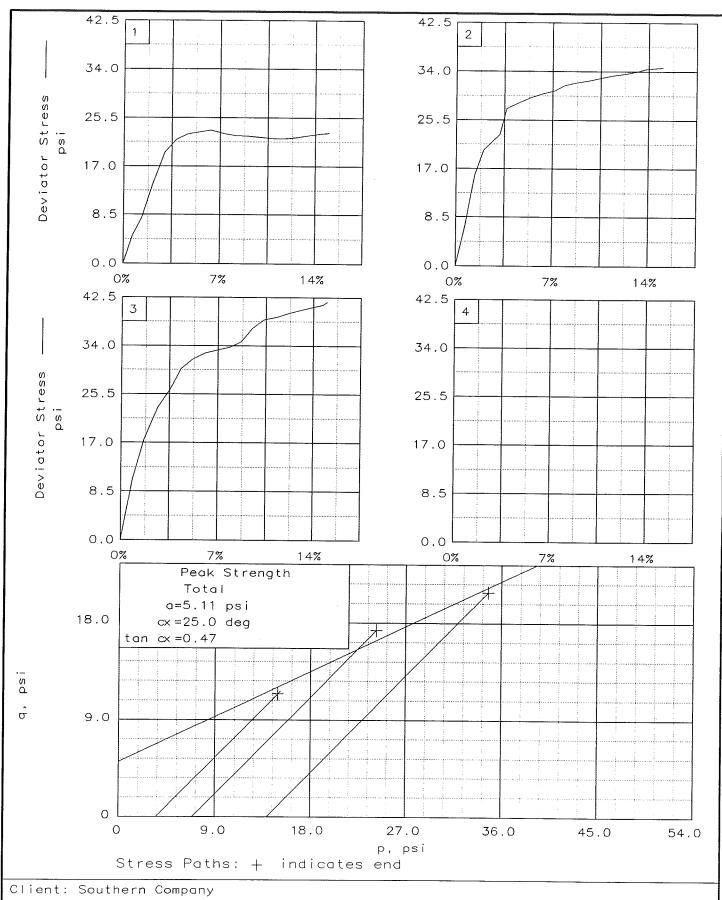
SPECIFIC GRAVITY= 2.62

REMARKS:

CLIENT: Southern Company

PROJECT: GPCo - Plant Bowen Ash Pond Dike

SAMPLE LOCATION: Boring #8


Depth: 21 - 23 feet

PROJ. NO.: 2051

DATE: 10/02/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Project: GPCo - Plant Bowen Ash Pond Dike Location: Boring #8 Depth: 21 - 23 feet File: GPBAPD07 Project No.: 2051

Project and Sample Data

Date: 10/02/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Sample location: Boring #8 Depth: 21 - 23 feet

Sample description: Reddish brown lean clay with sand

Remarks:

Fig no.: 7 2nd page Fig no. (if applicable): 7

Type of sample: UD

Specific gravity= 2.62 LL= 39 PL= 21 PI= 18

Test method: ASTM - Method A

Specimen Parameters for Specimen No. 1

Specimen Parameter	Initial	Saturated	Final
Wt. moist soil and tare:	120.980		160.050
Wt. dry soil and tare:	107.060		134.730
Wt. of tare:	30.430		0.000
Weight, gms:	157.0		
Diameter, in:	1.400	1.400	
Area, in ² :	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	18.2	18.8	18.8
density, pcf:	129.5	130.2	
Ly density, pcf:	109.6	109.6	
Void ratio:	0.4923	0.4923	
% Saturation:	96.7	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.30179 lbs per input unit Secondary load ring constant = 0.72586 lbs per input unit Crossover reading for secondary load ring= 462 input units

Cell pressure = 3.50 psi

Back pressure = 0.00 psi

Effective confining stress = 3.50 psi

Strain rate, %/min = 0.00 FAIL. STRESS = 23.32 psi at reading no.

ULT. STRESS = not selected

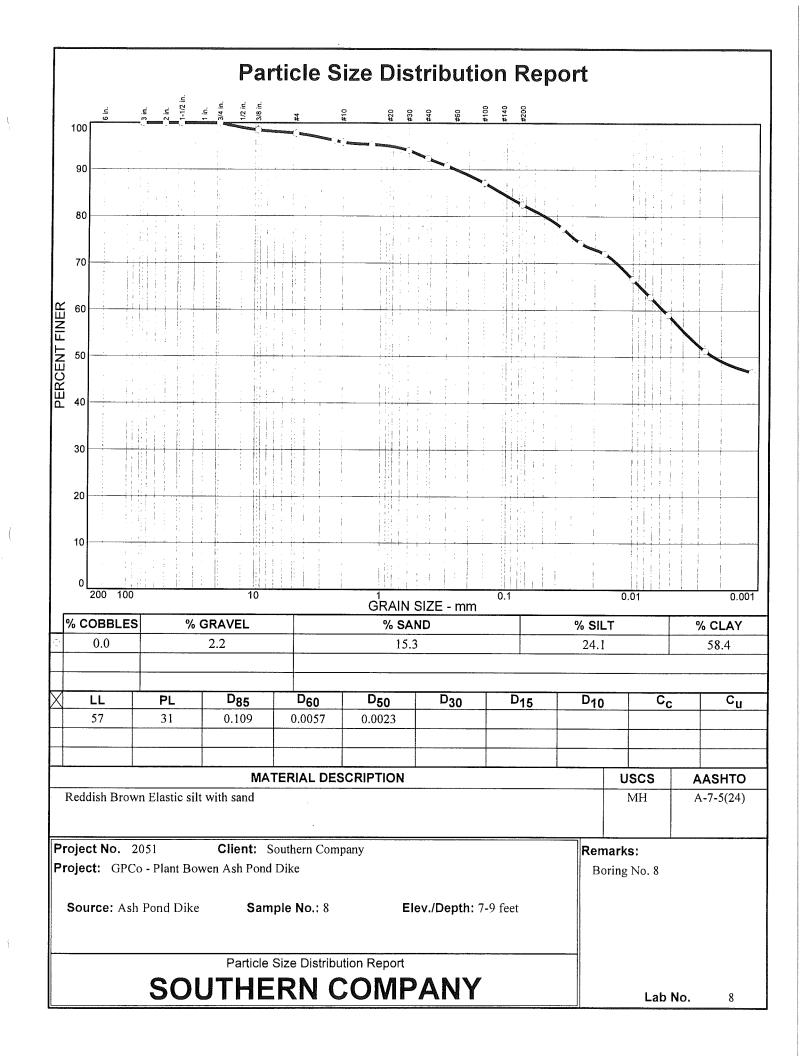
Test Readings Data for Specimen No. 1

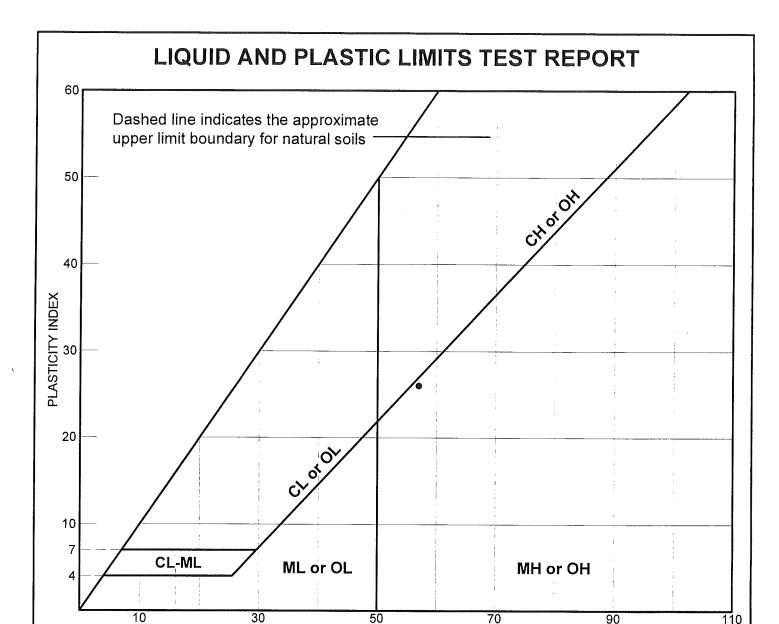
No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	i Qpsi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
į											
-	0.0	0.000	70.0	0.0	0.0	0.00	3.50	3.50	1.00	3.50	0.00
1	20.0	0.020	95.0	7.5	0.7	4.87	3.50	8.37	2.39	5.93	2.43
2	40.0	0.040	111.0	12.4	1.3	7.93	3.50	11.43	3.27	7.47	3.97
3	65.0	0.065	144.0	22.3	2.2	14.19	3.50	17.69	5.06	10.60	7.10
4	90.0	0.090	172.0	30.8	3.0	19.40	3.50	22.90	6.54	13.20	9.70
5	115.0	0.115	185.0	34.7	3.8	21.68	3.50	25.18	7.19	14.34	10.84
6	140.0	0.140	191.0	36.5	4.7	22.61	3.50	26.11	7.46	14.81	11.31
7	165.0	0.165	194.0	37.4	5.5	22.97	3.50	26.47	7.56	14.99	11.49
8	190.0	0.190	197.0	38.3	6.3	23.32	3.50	26.82	7.66	15.16	11.66
9	220.0	0.220	195.0	37.7	7.3	22.71	3.50	26.21	7.49	14.85	11.35
10	245.0	0.245	194.0	37.4	8.2	22.32	3.50	25.82	7.38	14.66	11.16
11	270.0	0.270	195.0	37.7	9.0	22.30	3.50	25.80	7.37	14.65	11.15
12	300.0	0.300	195.0	37.7	10.0	22.06	3.50	25.56	7.30	14.53	11.03
13	330.0	0.330	195.0	37.7	11.0	21.81	3.50	25.31	7.23	14.41	10.91
14	350.0	0.350	196.0	38.0	11.7	21.82	3.50	25.32	7.23	14.41	10.91
15	380.0	0.380	199.0	38.9	12.7	22.09	3.50	25.59	7.31	14.54	11.04
16	405.0	0.405	202.0	39.8	13.5	22.38	3.50	25.88	7.40	14.69	11.19
17	430.0	0.430	205.0	40.7	14.3	22.67	3.50	26.17	7.48	14.84	11.34
18	450.0	0.450	207.0	41.3	15.0	22.83	3.50	26.33	7.52	14.91	11.41

Specimen Parameter	Initial	Saturated	Final
Y moist soil and tare:	134.030		158.550
dry soil and tare:	117.570		133.180
Wt. of tare:	30.510		0.000
Weight, gms:	157.3		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	18.9	19.0	19.0
Wet density, pcf:	129.7	129.9	
Dry density, pcf:	109.1	109.1	
Void ratio:	0.4990	0.4990	
% Saturation:	99.3	100.0	

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.728246 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Cell pressure = 6.90 psi
Back pressure = 0.00 psi
Effective confining stress = 6.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 34.63 psi at reading no. 18
UTT. STRESS = not selected


No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal Str	esses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	68.0	0.0	0.0	0.00	6.90	6.90	1.00	6.90	0.00
1	20.0	0.020	103.0	10.9	0.7	7.05	6.90	13.95	2.02	10.42	3.52
2	40.0	0.040	147.0	24.6	1.3	15.80	6.90	22.70	3.29	14.80	7.90
3	60.0	0.060	170.0	31.8	2.0	20.26	6.90	27.16	3.94	17.03	10.13
4	95.0	0.095	185.0	36.5	3.2	22.96	6.90	29.86	4.33	18.38	11.48
5	110.0	0.110	209.0	44.0	3.7	27.53	6.90	34.43	4.99	20.66	13.76
6	135.0	0.135	215.0	45.9	4.5	28.45	6.90	35.35	5.12	21.13	14.23
7	160.0	0.160	221.0	47.7	5.3	29.36	6.90	36.26	5.25	21.58	14.68
8	185.0	0.185	226.0	49.3	6.2	30.05	6.90	36.95	5.35	21.92	15.02
9	215.0	0.215	231.0	50.9	7.2	30.67	6.90	37.57	5.44	22.23	15.33
10	235.0	0.235	237.0	52.7	7.8	31.57	6.90	38.47	5.58	22.68	15.78
11	260.0	0.260	241.0	54.0	8.7	32.02	6.90	38.92	5.64	22.91	16.01
12	290.0	0.290	245.0	55.2	9.7	32.41	6.90	39.31	5.70	23.10	16.20
13	315.0	0.315	249.0	56.5	10.5	32.83	6.90	39.73	5.76	23.32	16.42
14	340.0	0.340	253.0	57.7	11.3	33.25	6.90	40.15	5.82	23.52	16.62
15	370.0	0.370	257.0	59.0	12.3	33.58	6.90	40.48	5.87	23.69	16.79
16	395.0	0.395	261.0	60.2	13.2	33.97	6.90	40.87	5.92	23.88	16.98
17	415.0	0.415	265.0	61.5	13.8	34.40	6.90	41.30	5.99	24.10	17.20
18	450.0	0.450	269.0	62.7	15.0	34.63	6.90	41.53	6.02	24.21	17.31


Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare:	Initial 118.710 105.500 30.300	Saturated	Final 159.140 134.450 0.000
Weight, gms:	157.4		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	17.6	18.4	18.4
Wet density, pcf:	129.8	130.7	
Dry density, pcf:	110.4	110.4	
Void ratio:	0.4812	0.4812	
% Saturation:	95.7	100.0	

Test Readings Data for Specimen No. 3

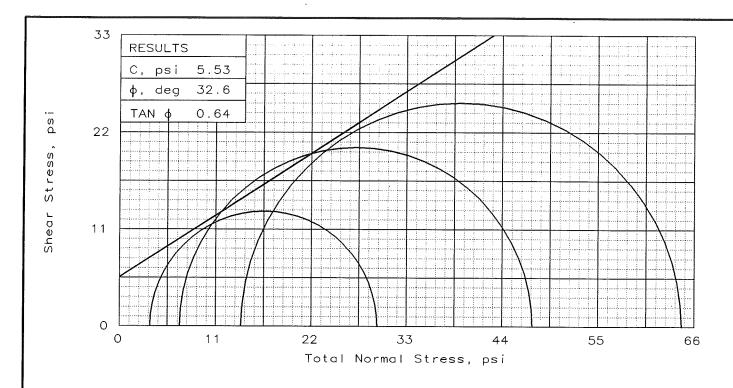
Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.3108 lbs per input unit Secondary load ring constant= 0.77882 lbs per input unit Crossover reading for secondary load ring= 474 input units Cell pressure = 13.90 psi Back pressure = 0.00 psi Effective confining stress = 13.90 psi Strain rate, %/min = 0.00 FAIL. STRESS = 41.70 psi at reading no. 18 UTT. STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal Str	esses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	75.0	0.0	0.0	0.00	13.90	13.90	1.00	13.90	0.00
1	25.0	0.025	128.0	16.5	0.8	10.61	13.90	24.51	1.76	19.21	5.31
2	50.0	0.050	163.0	27.4	1.7	17.47	13.90	31.37	2.26	22.64	8.74
3	80.0	0.080	193.0	36.7	2.7	23.19	13.90	37.09	2.67	25.49	11.59
4	105.0	0.105	209.0	41.6	3.5	26.11	13.90	40.01	2.88	26.95	13.05
5	130.0	0.130	230.0	48.2	4.3	29.94	13.90	43.84	3.15	28.87	14.97
6	155.0	0.155	240.0	51.3	5.2	31.59	13.90	45.49	3.27	29.70	15.80
7	180.0	0.180	247.0	53.5	6.0	32.64	13.90	46.54	3.35	30.22	16.32
8	210.0	0.210	252.0	55.0	7.0	33.23	13.90	47.13	3.39	30.52	16.62
9	235.0	0.235	256.0	56.3	7.8	33.68	13.90	47.58	3.42	30.74	16.84
10	260.0	0.260	263.0	58.4	8.7	34.67	13.90	48.57	3.49	31.23	17.33
11	285.0	0.285	278.0	63.1	9.5	37.09	13.90	50 .99	3.67	32.45	18.55
12	310.0	0.310	288.0	66.2	10.3	38.56	13.90	52.46	3.77	33.18	19.28
13	340.0	0.340	293. 0	67.8	11.3	39.03	13.90	52.93	3.81	33.41	19.51
14	365.0	0.365	299.0	69.6	12.2	39.72	13.90	53.62	3.86	33.76	19.86
15	390.0	0.390	304.0	71.2	13.0	40.22	13.90	54.12	3.89	34.01	20.11
16	415.0	0.415	309.0	72.7	13.8	40.71	13.90	54.61	3.93	34.25	20.35
17	440.0	0.440	314.0	74.3	14.7	41.18	13.90	55.08	3.96	34.49	20.59
18	450.0	0.450	318.0	75.5	15.0	41.70	13.90	55.60	4.00	34.75	20.85

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	Ash Pond Dike	8	7-9 feet		31	57	26	МН			

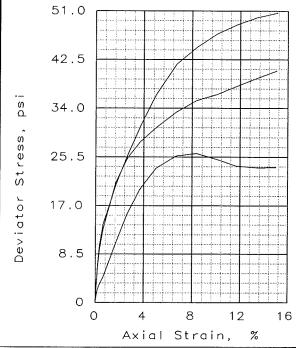
LIQUID LIMIT

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike


Project No.: 2051

Lab No. 8

SAMPLE NO.:

WATER CONTENT, %

DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in	92.1 95.8 0.810 1.40	98.0 94.3 0.701 1.40	98.6 96.9 0.690 1.40	
HEIGHI, in	3,00	3.00	3.00	
DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in	92.4 100.0 0.805 1.40	99.0 100.0 0.684 1.40	101.0 100.0 0.651 1.39	
IL. STRESS, psi	26.1	40.6	50.6	
TOTAL PORE PR., psi	86.7	79.6	81.2	
T. STRESS, psi				
TOTAL PORE PR., psi				
FAILURE, psi	32.9	57.9	73.3	
FAILURE, psi				
	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in rain rate, %/min CK PRESSURE, psi LL PRESSURE, psi IL. STRESS, psi	WATER CONTENT, % 30.1 DRY DENSITY, pcf 92.4 SATURATION, % 100.0 VOID RATIO 0.805 DIAMETER, in 1.40 HEIGHT, in 3.00 rain rate, %/min 0.0010 CK PRESSURE, psi 90.0 LL PRESSURE, psi 93.5 IL. STRESS, psi 26.1 TOTAL PORE PR., psi TOTAL PORE PR., psi	WATER CONTENT, % 30.1 25.6 DRY DENSITY, pcf 92.4 99.0 SATURATION, % 100.0 100.0 VOID RATIO 0.805 0.684 DIAMETER, in 1.40 1.40 HEIGHT, in 3.00 2.99 rain rate, %/min 0.0010 0.0010 CK PRESSURE, psi 90.0 90.0 LL PRESSURE, psi 93.5 96.9 IL. STRESS, psi 26.1 40.6 TOTAL PORE PR., psi TOTAL PORE PR., psi	WATER CONTENT, % 30.1 25.6 24.4 DRY DENSITY, pcf 92.4 99.0 101.0 SATURATION, % 100.0 100.0 100.0 VOID RATIO 0.805 0.684 0.651 DIAMETER, in 1.40 1.40 1.39 HEIGHT, in 3.00 2.99 2.98 rain rate, %/min 0.0010 0.0010 0.0010 CK PRESSURE, psi 90.0 90.0 90.0 LL PRESSURE, psi 93.5 96.9 103.9 IL. STRESS, psi 26.1 40.6 50.6 TOTAL PORE PR., psi 86.7 79.6 81.2 T. STRESS, psi TOTAL PORE PR., psi

TYPE OF TEST:

CU with Pore Pressures

SAMPLE TYPE: UD

DESCRIPTION: Reddish brown

elastic silt with sand

LL= 57 PL= 31 PI= 26

SPECIFIC GRAVITY= 2.67

REMARKS:

CLIENT: Southern Company

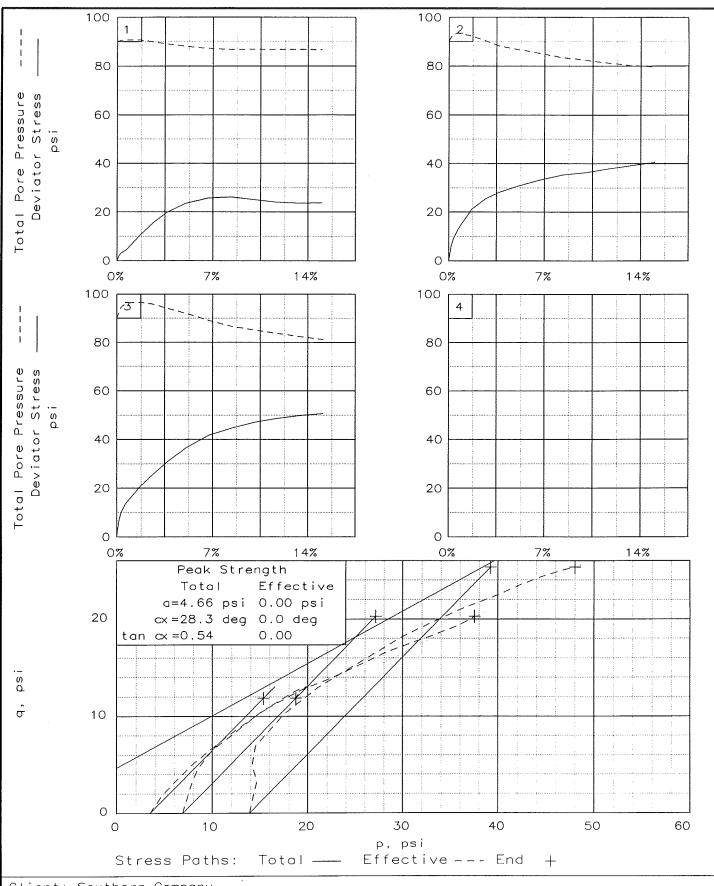
PROJECT: GPCo - Plant Bowen Ash Pond Dike

SAMPLE LOCATION: Boring #8

PROJ. NO.: 2051

DATE: 10/10/2002

2


24.8

25.0

29.1

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Location: Boring #8

File: GPBAPD08 Project No.: 2051

Project and Sample Data

Date: 10/10/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Sample location: Boring #8

Sample description: Reddish brown elastic silt with sand

Remarks:

Fig no.: 8 2nd page Fig no. (if applicable): 8

Type of sample: UD

Specific gravity= 2.67 LL= 57 PL= 31 PI= 26

Test method: Corps of Eng. - uniform strain

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 143.090 117.700 30.370 144.1	Saturated	Consolidated	Final 147.670 110.290 0.000
Diameter, in:	1.400	1.400	1.399	
Area, in ² :	1.539	1.538	1.536	
Height, in:	3.000	2.999	2.997	
Net decrease in height, in:		0.001	0.002	
Net decrease in water volum	e, cc:			
isture:	29.1	30.3	30.1	33.9
Wed density, pcf:	118.9	120.1	120.2	
Dry density, pcf:	92.1	92.2	92.4	
Void ratio:	0.8100	0.8082	0.8046	
% Saturation:	95.8	100.0	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.30179 lbs per input unit
Secondary load ring constant= 0.72586 lbs per input unit
Crossover reading for secondary load ring= 462 input units
Consolidation cell pressure = 93.50 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 3.50 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 26.11 psi at reading no. 9
ULT. STRESS = not selected

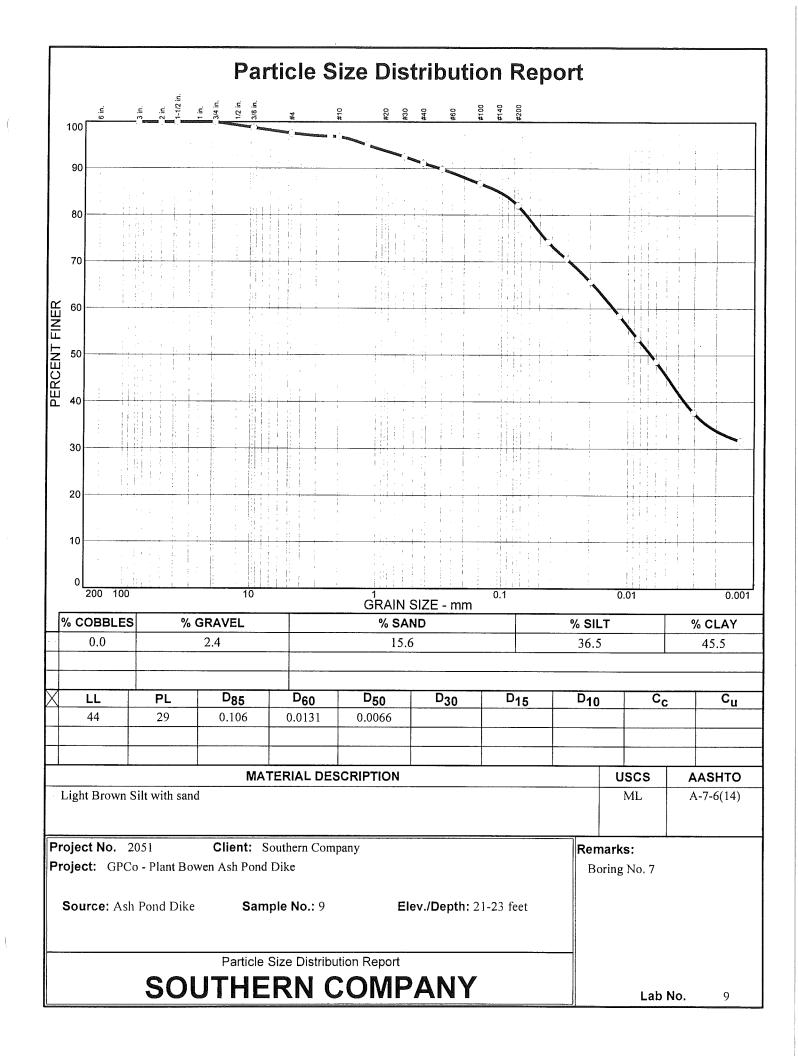
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
1												
	0.0	0.000	69.0	0.0	0.0	0.00	3.50	3.50	1.00	90.00	3.50	0.00
1	5.0	0.005	80.0	3.3	0.2	2.16	3.20	5.36	1.67	90.30	4.28	1.08
2	10.0	0.010	85.3	4.9	0.3	3.19	3.00	6.19	2.06	90.50	4.60	1.60
3	20.0	0.020	92.0	6.9	0.7	4.49	2.90	7.39	2.55	90.60	5.14	2.24
4	50.0	0.050	123.0	16.3	1.7	10.43	2.90	13.33	4.60	90.60	8.12	5.22
5	80.0	0.080	151.0	24.7	2.7	15.68	3.60	19.28	5.36	89.90	11.44	7.84
6	110.0	0.110	174.0	31.7	3.7	19.87	4.50	24.37	5.42	89.00	14.43	9.93
7	150.0	0.150	195.0	38.0	5.0	23.51	5.50	29.01	5.28	88.00	17.26	11.76
8	200.0	0.200	209.0	42.3	6.7	25.67	6.30	31.97	5.07	87.20	19.13	12.83
9	250.0	0.250	214.0	43.8	8.3	26.11	6.80	32.91	4.84	86.70	19.85	13.05
10	300.0	0.300	211.0	42.9	10.0	25.10	6.70	31.80	4.75	86.80	19.25	12.55
11	350.0	0.350	207.0	41.6	11.7	23.94	6.80	30.74	4.52	86.70	18.77	11.97
12	400.0	0.400	208.0	41.9	13.3	23.66	6.80	30.46	4.48	86.70	18.63	11.83
13	450.0	0.450	211.0	42.9	15.0	23.71	6.90	30.61	4.44	86.60	18.75	11.85

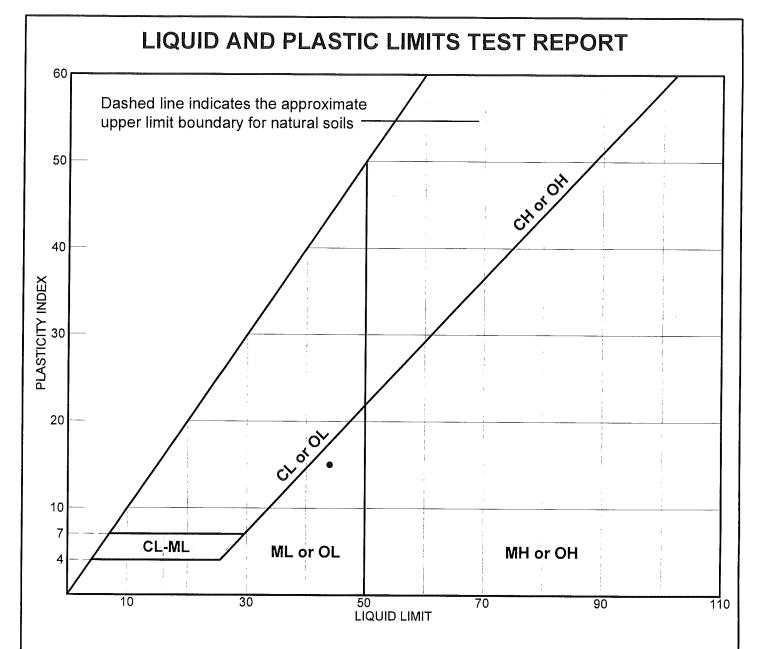
Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare:	Initial 124.750 106.010	Saturated	Consolidated	Final 151.030 117.720
Weight, gms:	30.350 148.2			0.000
Diameter, in:	1.400	1.400	1.395	
Area, in ² :	1.539	1.538	1.529	
Height, in:	3.000	2.999	2.990	
Net decrease in height, in:		0.001	0.009	
Net decrease in water volum	e, cc:			
% Moisture:	24.8	26.2	25.6	28.3
Wet density, pcf:	122.2	123.8	124.3	
Dry density, pcf:	98.0	98.1	99.0	
Void ratio:	0.7015	0.6998	0.6845	
% Saturation:	94.3	100.0	100.0	

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.31199 lbs per input unit Secondary load ring constant= 0.72824 lbs per input unit Crossover reading for secondary load ring= 480 input units Consolidation cell pressure = 96.90 psi Consolidation back pressure = 90.00 psi Consolidation effective confining stress = 6.90 psi Strain rate, %/min = 0.00 F^TL. STRESS = 40.56 psi at reading no. 13 [. STRESS = not selected]

No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	ps i		
0	0.0	0.000	66.0	0.0	0.0	0.00	6.90	6.90	1.00	90.00	6.90	0.00
1	5.0	0.005	96.0	9.4	0.2	6.11	4.80	10.91	2.27	92.10	7.86	3.06
2	10.0	0.010	111.0	14.0	0.3	9.15	3.90	13.05	3.35	93.00	8.48	4.58
3	20.0	0.020	130.0	20.0	0.7	12.97	3.50	16.47	4.71	93.40	9.99	6.49
4	50.0	0.050	171.0	32.8	1.7	21.07	4.70	25.77	5.48	92.20	15.23	10.53
5	80.0	0.080	194.0	39.9	2.7	25.42	6.60	32.02	4.85	90.30	19.31	12.71
6	110.0	0.110	209.0	44.6	3.7	28.10	8.70	36.80	4.23	88.20	22.75	14.05
7	150.0	0.150	224.0	49.3	5.0	30.62	10.20	40.82	4.00	86.70	25.51	15.31
8	200.0	0.200	241.0	54.6	6.7	33.32	11.80	45.12	3.82	85.10	28.46	16.66
9	250.0	0.250	255.0	59.0	8.4	35.34	13.60	48.94	3.60	83.30	31.27	17.67
10	300.0	0.300	264.0	61.8	10.0	36.35	14.60	50.95	3.49	82.30	32.77	18.17
11	350.0	0.350	276.0	65.5	11.7	37.83	15.80	53.63	3.39	81.10	34.72	18.92
12	400.0	0.400	288.0	69.3	13.4	39.24	16.80	56.04	3.34	80.10	36.42	19.62
13	450.0	0.450	300.0	73.0	15.1	40.56	17.30	57.86	3.34	79.60	37.58	20.28


Specimen Parameter The moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 124.020 105.250 30.280 149.5	Saturated	Consolidated	Final 150.960 119.060 0.000
Diameter, in:	1.400	1.400	1.389	
Area, in²:	1.539	1.538	1.516	
Height, in:	3.000	2.999	2.977	
Net decrease in height, in:		0.001	0.022	
Net decrease in water volum	e, cc:			
% Moisture:	25.0	25.8	24.4	26.8
Wet density, pcf:	123.3	124.2	125.6	
Dry density, pcf:	98.6	98.7	101.0	
Void ratio:	0.6897	0.6880	0.6511	
% Saturation:	96.9	100.0	100.0	


Test Readings Data for Specimen No. 3

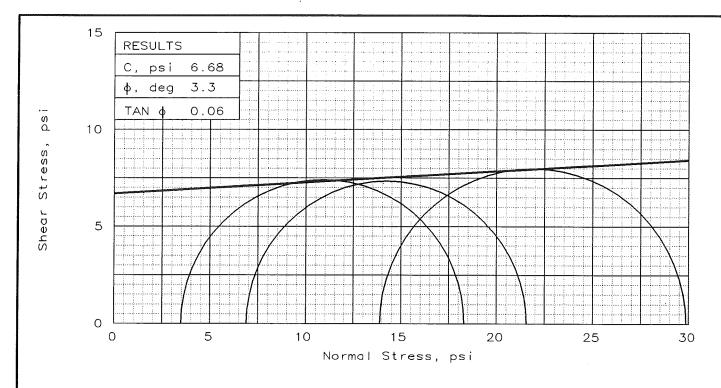
Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 103.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 13.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 50.65 psi at reading no. 13

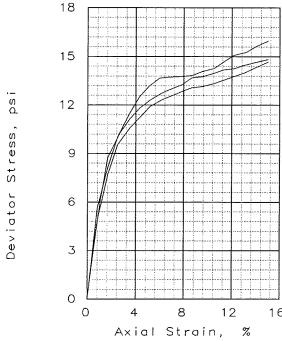
. STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	78.0	0.0	0.0	0.00	13.90	13.90	1.00	90.00	13.90	0.00
1	5.0	0.005	110.0	9.9	0.2	6.55	11.40	17.95	1.57	92.50	14.68	3.28
2	10.0	0.010	127.0	15.2	0.3	10.01	9.20	19.21	2.09	94.70	14.21	5.01
3	20.0	0.020	146.0	21.1	0.7	13.85	7.60	21.45	2.82	96.30	14.52	6.92
4	50.0	0.050	180.0	31.7	1.7	20.56	7.30	27.86	3.82	96.60	17.58	10.28
5	80.0	0.080	208.0	40.4	2.7	25.94	8.10	34.04	4.20	95.80	21.07	12.97
6	110.0	0.110	234.0	48.5	3.7	30.80	9.80	40.60	4.14	94.10	25.20	15.40
7	150.0	0.150	265.0	58.1	5.0	36.41	11.80	48.21	4.09	92.10	30.01	18.21
8	200.0	0.200	296.0	67.8	6.7	41.70	14.80	56.50	3.82	89.10	35.65	20.85
9	250.0	0.250	316.0	74.0	8.4	44.70	17.30	62.00	3.58	86.60	39.65	22.35
10	300.0	0.300	333.0	79.3	10.1	47.02	18.80	65.82	3.50	85.10	42.31	23.51
11	350.0	0.350	347.0	83.6	11.8	48.67	20.20	68.87	3.41	83.70	44.54	24.34
12	400.0	0.400	359.0	87.3	13.4	49.88	21.50	71.38	3.32	82.40	46.44	24.94
13	450.0	0.450	369.0	90.4	15.1	50.65	22.70	73.35	3.23	81.20	48.02	25.32

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
•	Ash Pond Dike	9	21-23 feet		29	44	15	ML				

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

Lab No. 9

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: UD

DESCRIPTION: Light brown silt

with sand

LL= 44 PL= 29 PI= 15

SPECIFIC GRAVITY= 2.67

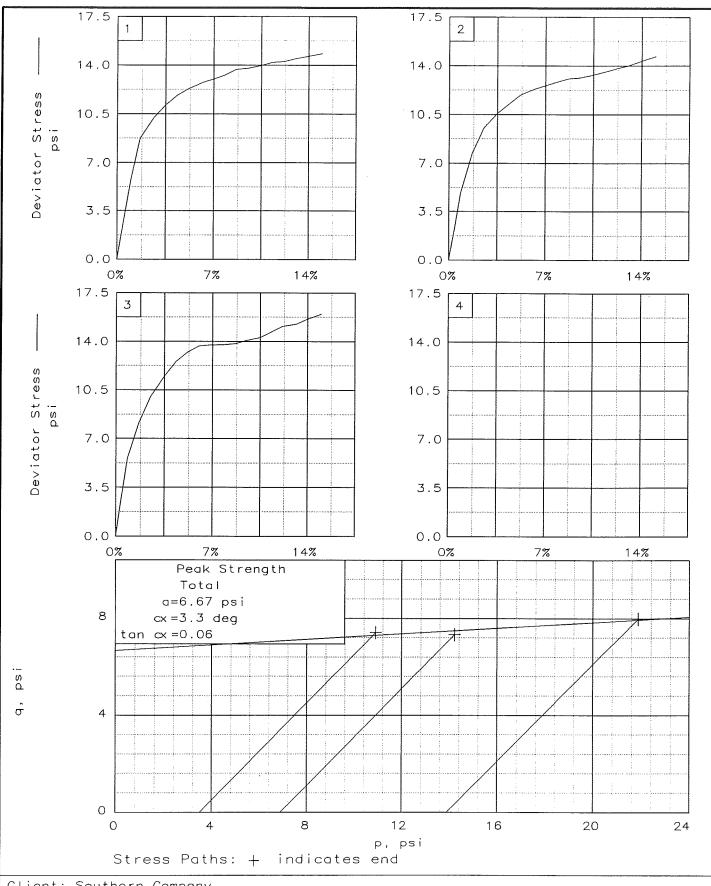
REMARKS:

SA	MPLE NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	76.9 92.0 1.168 1.40	90.4 1.131	80.0 94.4 1.083 1.40	
AT TEST	DRY DENSITY, pcf SATURATION, %	94.0 1.168 1.40	78.2 100.0 1.131	80.0 100.0 1.083 1.40	
St	rain rate, %/min	0.0010	0.0010	0.0010	
ВА	CK PRESSURE, psi	0.0	0.0	0.0	
CE	LL PRESSURE, psi	3.5	6.9	13.9	
FA	IL. STRESS, psi	14.8	14.7	16.0	
UL	T. STRESS, psi				
$-\sigma_1$	FAILURE, psi	18.3	21.6	29.9	
Ø3	FAILURE, psi	3.5	6.9	13.9	

CLIENT: Southern Company

PROJECT: GPCo - Plant Bowen Ash Pond Dike

SAMPLE LOCATION: Boring #7


Depth: 21 - 23 feet

PROJ. NO.: 2051 DATE: 10/02/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lob No: 9

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike Location: Boring #7 Depth: 21 - 23 feet File: GPBAPD09

Project No.: 2051

Data file: GPBAPD09

Project and Sample Data

Date: 10/02/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Sample location: Boring #7 Depth: 21 - 23 feet Sample description: Light brown silt with sand

Remarks:

Fig no.: 9 2nd page Fig no. (if applicable): 9

Type of sample: UD

Specific gravity= 2.67 LL= 44 PL= 29 PI= 15

Test method: ASTM - Method A

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare:	Initial 119.400 93.850 30.360	Saturated	Final 128.270 90.900 0.000
Weight, gms:	130.7		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	40.2	41.1	41.1
density, pcf:	107.8	108.5	
Dry density, pcf:	76.9	76.9	
Void ratio:	1.1681	1.1681	
% Saturation:	92.0	94.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.31199 lbs per input unit Secondary load ring constant= 0.72824 lbs per input unit Crossover reading for secondary load ring= 480 input units

Cell pressure = 3.50 psi Back pressure = 0.00 psi

Effective confining stress = 3.50 psi

Strain rate, %/min = 0.00

FAIL. STRESS = 14.82 psi at reading no. 17

ULT. STRESS = not selected

Test Readings Data for Specimen No. 1

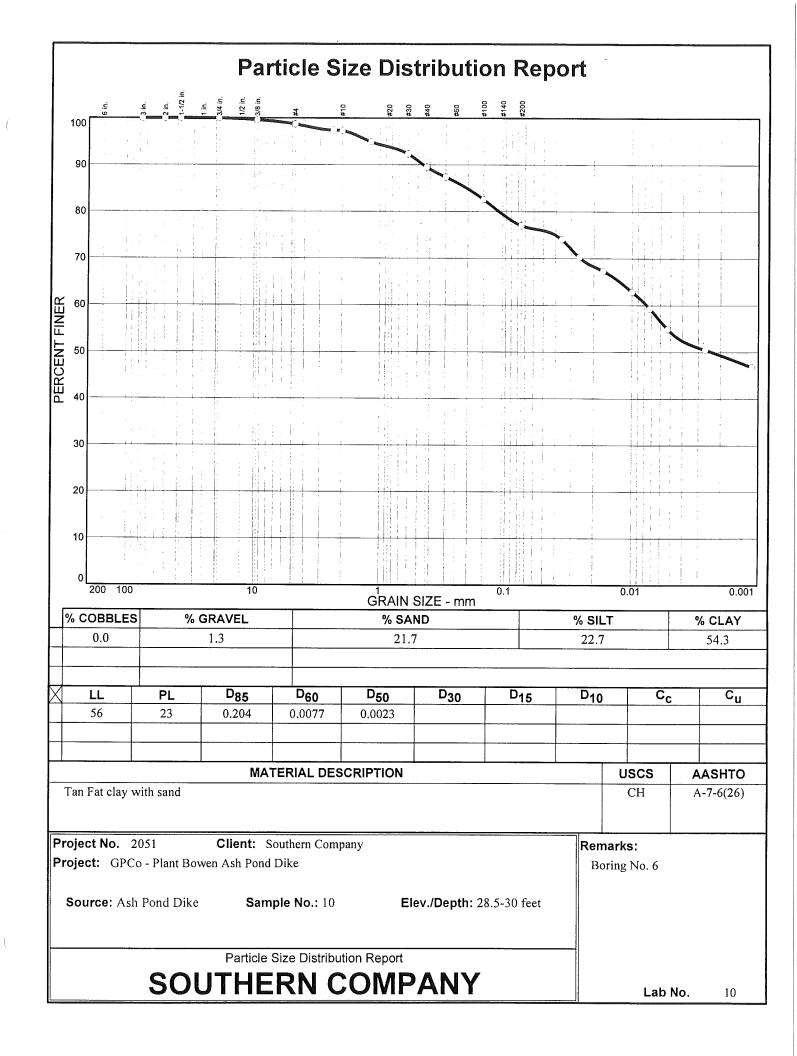
No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
i											
Ĺ	0.0	0.000	66.0	0.0	0.0	0.00	3.50	3.50	1.00	3.50	0.00
1	30.0	0.030	95.0	9.0	1.0	5.82	3.50	9.32	2.66	6.41	2.91
2	50.0	0.050	110.0	13.7	1.7	8.77	3.50	12.27	3.51	7.88	4.38
3	80.0	0.080	118.0	16.2	2.7	10.26	3.50	13.76	3.93	8.63	5.13
4	105.0	0.105	123.0	17.8	3.5	11.15	3.50	14.65	4.19	9.07	5.57
5	130.0	0.130	127.0	19.0	4.3	11.83	3.50	15.33	4.38	9.41	5.91
6	155.0	0.155	130.0	20.0	5.2	12.30	3.50	15.80	4.51	9.65	6.15
7	185.0	0.185	133.0	20.9	6.2	12.74	3.50	16.24	4.64	9.87	6.37
8	210.0	0.210	135.0	21.5	7.0	13.01	3.50	16.51	4.72	10.00	6.50
9	235.0	0.235	137.0	22.2	7.8	13.26	3.50	16.76	4.79	10.13	6.63
10	260.0	0.260	140.0	23.1	8.7	13.70	3.50	17.20	4.91	10.35	6.85
11	285.0	0.285	141.0	23.4	9.5	13.76	3.50	17.26	4.93	10.38	6.88
12	315.0	0.315	143.0	24.0	10.5	13.97	3.50	17.47	4.99	10.48	6.98
13	340.0	0.340	145.0	24.6	11.3	14.20	3.50	17.70	5.06	10.60	7.10
14	365.0	0.365	146.0	25.0	12.2	14.24	3.50	17.74	5.07	10.62	7.12
15	390.0	0.390	148.0	25.6	13.0	14.46	3.50	17.96	5.13	10.73	7.23
16	420.0	0.420	150.0	26.2	14.0	14.64	3.50	18.14	5.18	10.82	7.32
17	450.0	0.450	152.0	26.8	15.0	14.82	3.50	18.32	5.23	10,91	7.41

Specimen Parameter moist soil and tare: dry soil and tare:	Initial 122.510 96.970	Saturated	Final 131.960 92.680
Wt. of tare:	30.300		0.000
Weight, gms:	131.1		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	38.3	42.4	42.4
Wet density, pcf:	108.2	111.4	
Dry density, pcf:	78.2	78.2	
Void ratio:	1.1314	1.1314	
% Saturation:	90.4	100.0	

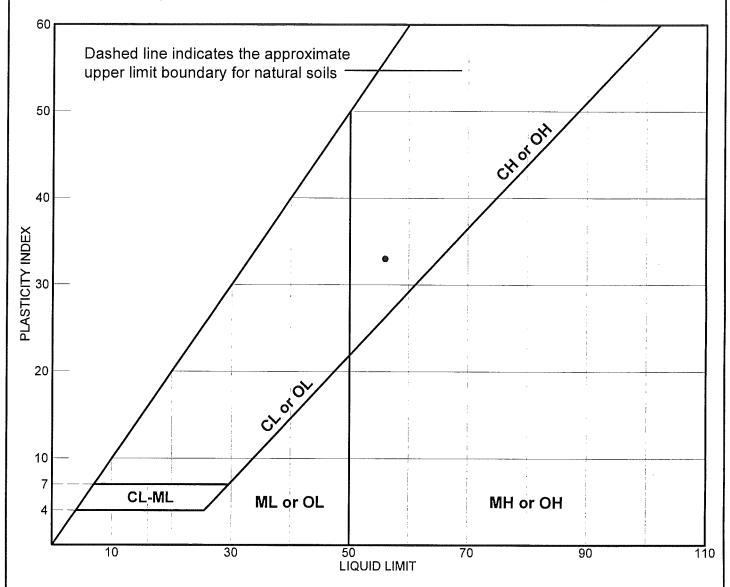
Test Readings Data for Specimen No. 2

Deformation dial constant = 0.001 in per input unit Primary load ring constant= 0.301799 lbs per input unit Secondary load ring constant= 0.725864 lbs per input unit Crossover reading for secondary load ring= 462 input units Cell pressure = 6.90 psi Back pressure = 0.00 psi Effective confining stress = 6.90 psi Strain rate, %/min = 0.00 FAIL. STRESS = 14.66 psi at reading no. 17 UT.T. STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	72.0	0.0	0.0	0.00	6.90	6.90	1.00	6.90	0.00
1	25.0	0.025	97.0	7.5	0.8	4.86	6.90	11.76	1.70	9.33	2.43
2	50.0	0.050	112.0	12.1	1.7	7.71	6.90	14.61	2.12	10.76	3.86
3	75.0	0.075	122.0	15.1	2.5	9.56	6.90	16.46	2.39	11.68	4.78
4	105.0	0.105	128.0	16.9	3.5	10.59	6.90	17.49	2.54	12.20	5.30
5	130.0	0.130	132.0	18.1	4.3	11.25	6.90	18.15	2.63	12.53	5.63
6	155.0	0.155	136.0	19.3	5.2	11.90	6.90	18.80	2.72	12.85	5.95
7	185.0	0.185	139.0	20.2	6.2	12.33	6.90	19.23	2.79	13.06	6.16
8	210.0	0.210	141.0	20.8	7.0	12.58	6.90	19.48	2.82	13.19	6.29
9	235.0	0.235	143.0	21.4	7.8	12.83	6.90	19.73	2.86	13.31	6.41
10	260.0	0.260	145.0	22.0	8.7	13.07	6.90	19.97	2.89	13.44	6.54
11	285.0	0.285	146.0	22.3	9.5	13.13	6.90	20.03	2.90	13.46	6.56
12	315.0	0.315	148.0	22.9	10.5	13.34	6.90	20.24	2.93	13.57	6.67
13	340.0	0.340	150.0	23.5	11.3	13.56	6.90	20.46	2.97	13.68	6.78
14	365.0	0.365	152.0	24.1	12.2	13.78	6.90	20.68	3.00	13.79	6.89
15	390.0	0.390	154.0	24.7	13.0	13.99	6.90	20.89	3.03	13.89	6.99
16	420.0	0.420	157.0	25.7	14.0	14.33	6.90	21.23	3.08	14.07	7.17
17	450.0	0.450	160.0	26.6	15.0	14.66	6.90	21.56	3.13	14.23	7.33

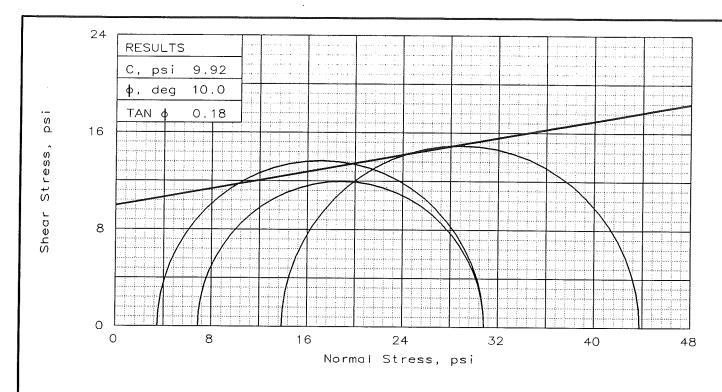

Data file: GPBAPD09

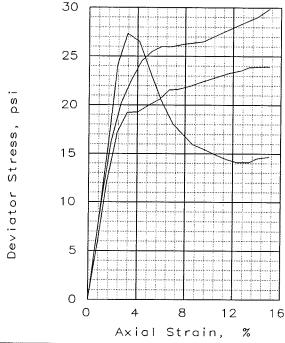
Specimen Parameter W moist soil and tare:	Initial 123.060	Saturated	Final 135.090
dry soil and tare:	97.410		96.100
Wt. of tare:	30.410		0.000
Weight, gms:	134.1		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	38.3	40.6	40.6
Wet density, pcf:	110.7	112.5	
Dry density, pcf:	80.0	80.0	
Void ratio:	1.0830	1.0830	
% Saturation:	94.4	100.0	


Test Readings Data for Specimen No. 3

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure = 13.90 psi
Back pressure = 0.00 psi
Effective confining stress = 13.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 15.96 psi at reading no. 17
UJT. STRESS = not selected

NO.	Det.	Det.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Uni ts	•	Units			psi	psi	psi	Ratio		
0	0.0	0.000	75.0	0.0	0.0	0.00	13.90	13.90	1.00	13.90	0.00
1	25.0	0.025	103.0	8.7	0.8	5.61	13.90	19.51	1.40	16.70	2.80
2	50.0	0.050	116.0	12.7	1.7	8.14	13.90	22.04	1.59	17.97	4.07
3	75.0	0.075	126.0	15.9	2.5	10.04	13.90	23.94	1.72	18.92	5.02
4	105.0	0.105	134.0	18.3	3.5	11.50	13.90	25.40	1.83	19.65	5.75
5	130.0	0.130	140.0	20.2	4.3	12.55	13.90	26.45	1.90	20.18	6.28
6	155.0	0.155	144.0	21.4	5.2	13.21	13.90	27.11	1.95	20.51	6.61
7	180.0	0.180	147.0	22.4	6.0	13.66	13.90	27.56	1.98	20.73	6.83
8	205.0	0.205	148.0	22.7	6.8	13.73	13.90	27.63	1.99	20.77	6.87
9	235.0	0.235	149.0	23.0	7.8	13.77	13.90	27.67	1.99	20.79	6.89
10	260.0	0.260	150.0	23.3	8.7	13.83	13.90	27.73	1.99	20.82	6.92
11	285.0	0.285	152.0	23.9	9.5	14.07	13.90	27.97	2.01	20.93	7.03
12	315.0	0.315	154.0	24.6	10.5	14.28	13.90	28.18	2.03	21.04	7.14
13	340.0	0.340	157.0	25.5	11.3	14.68	13.90	28.58	2.06	21.24	7.34
14	365.0	0.365	160.0	26.4	12.2	15.07	13.90	28.97	2.08	21.44	7.54
15	395.0	0.395	162.0	27.0	13.2	15.25	13.90	29.15	2.10	21.53	7.63
16	420.0	0.420	165.0	28.0	14.0	15.63	13.90	29.53	2.12	21.71	7.81
17	450.0	0.450	168.0	28.9	15.0	15.96	13.90	29.86	2.15	21.88	7.98


	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	Ash Pond Dike	10	28.5-30 feet		23	56	33	СН					


Client: Southern Company

SOUTHERN COMPANY

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: UD

DESCRIPTION: Tan fat clay with

sand

LL= 56 PL= 23

PI= 33

SPECIFIC GRAVITY= 2.69

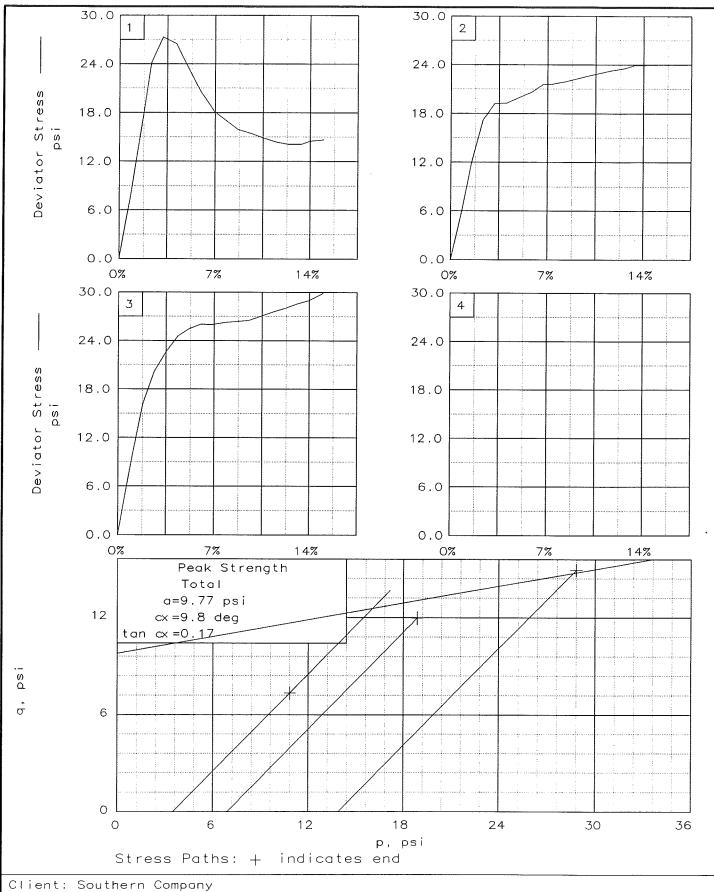
REMARKS:

SA	MPLE NO.:	1	2	3	
INITIAL	DRY DENSITY, pcf SATURATION, %	94.2 0.674 1.40	102.7 94.1	105.8 90.1 0.587 1.40	
TE	DRY DENSITY, pcf SATURATION, % VOID RATIO	100.0 0.674 1.40	102.7 100.0 0.636	105.8 97.1 0.587 1.40	
St	rain rate, %/min	0.0010	0.0010	0.0010	***
ВА	CK PRESSURE, psi	0.0	0.0	0.0	
CE	LL PRESSURE, psi	3.5	6.9	13.9	
FA:	IL. STRESS, psi	27.3	23.9	29.9	
UL.	T. STRESS, psi				
σ ₁	FAILURE, psi	30.8	30.8	43.8	
⊘ 3	FAILURE, psi	3.5	6.9	13.9	

CLIENT: Southern Company

PROJECT: GPCo - Plant Bowen Ash Pond Dike

SAMPLE LOCATION: Boring #6
Depth: 28.5 - 30.0 feet


PROJ. NO.: 2051

DATE: 10/02/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lab No: 10

Project: GPCo - Plant Bowen Ash Pond Dike Location: Boring #6 Depth: 28.5 - 30.0 feet

File: GPBAPD10

Project No.: 2051 Lab No: 10

Project and Sample Data

Date: 10/02/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Sample location: Boring #6 Depth: 28.5 - 30.0 feet

Sample description: Tan fat clay with sand

Remarks:

Fig no.: 10 2nd page Fig no. (if applicable): 10

Type of sample: UD

Specific gravity= 2.69 LL= 56 PL= 23 PI= 33

Test method: ASTM - Method A

Specimen Parameters for Specimen No. 1

Initial	Saturated	Final
		154.550
104.280		123.570
30.340		0.000
150.3		
1.400	1.400	
1.539	1.539	
3.000	3.000	
	0.000	
23.6	25.1	25.1
124.0	125.4	
100.3	100.3	
0.6744	0.6744	
94.2	100.0	
	121.750 104.280 30.340 150.3 1.400 1.539 3.000 23.6 124.0 100.3 0.6744	121.750 104.280 30.340 150.3 1.400

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.30179 lbs per input unit
Secondary load ring constant= 0.78528 lbs per input unit
Crossover reading for secondary load ring= 462 input units
Cell pressure = 3.50 psi
Back pressure = 0.00 psi
Effective confining stress = 3.50 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 27.34 psi at reading no. 4

ULT. STRESS = not selected

Test Readings Data for Specimen No. 1

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
1											
	0.0	0.000	70.0	0.0	0.0	0.00	3.50	3.50	1.00	3.50	0.00
1	25.0	0.025	110.0	12.1	0.8	7.78	3.50	11.28	3.22	7.39	3.89
2	50.0	0.050	156.0	26.0	1.7	16.58	3.50	20.08	5.74	11.79	8.29
3	70.0	0.070	196.0	38.0	2.3	24.13	3.50	27.63	7.89	15.56	12.06
4	95.0	0.095	214.0	43.5	3.2	27.34	3.50	30.84	8.81	17.17	13.67
5	125.0	0.125	211.0	42.6	4.2	26.49	3.50	29.99	8.57	16.75	13.25
6	150.0	0.150	197.0	38.3	5.0	23.65	3.50	27.15	7.76	15.33	11.83
7	180.0	0.180	181.0	33.5	6.0	20.46	3.50	23.96	6.84	13.73	10.23
8	210.0	0.210	169.0	29.9	7.0	18.05	3.50	21.55	6.16	12.53	9.03
9	235.0	0.235	164.0	28.4	7.8	16.98	3.50	20.48	5.85	11.99	8.49
10	260.0	0.260	159.0	26.9	8.7	15.94	3.50	19.44	5.55	11.47	7.97
11	290.0	0.290	157.0	26.3	9.7	15.41	3.50	18.91	5.40	11.20	7.70
12	315.0	0.315	155.0	25.7	10.5	14.91	3.50	18.41	5.26	10.96	7.46
13	345.0	0.345	153.0	25.0	11.5	14.40	3.50	17.90	5.11	10.70	7.20
14	370.0	0.370	152.0	24.7	12.3	14.09	3.50	17.59	5.03	10.55	7.05
15	400.0	0.400	153.0	25.0	13.3	14.10	3.50	17.60	5.03	10.55	7.05
16	420.0	0.420	156.0	26.0	14.0	14.50	3.50	18.00	5.14	10.75	7.25
17	450.0	0.450	158.0	26.6	15.0	14.66	3.50	18.16	5.19	10.83	7.33

Specimen Parameters for Specimen No. 2

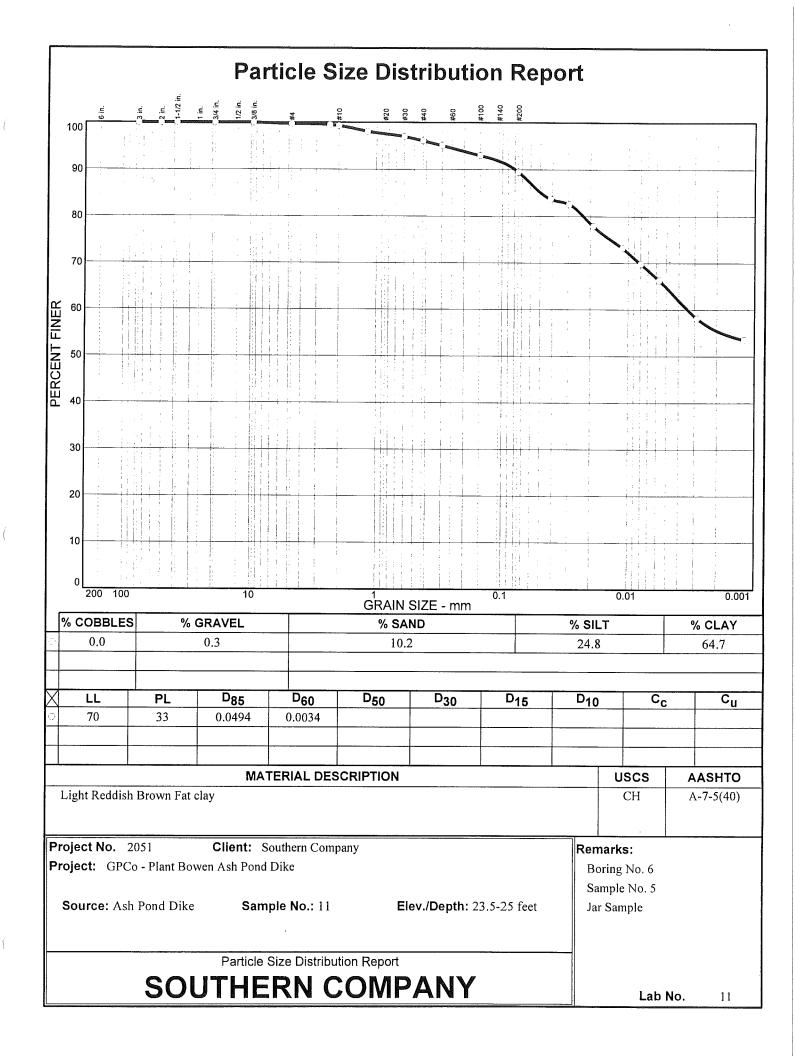
Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 149.730 128.000 30.300 152.2	Saturated	Final 154.970 125.350 0.000
Diameter, in: Area, in ² : Height, in: Net decrease in height, in:	1.400 1.539 3.000	1.400 1.539 3.000 0.000	
<pre>% Moisture: Wet density, pcf: Dry density, pcf: Void ratio: % Saturation:</pre>	22.2 125.5 102.7 0.6356 94.1	23.6 126.9 102.7 0.6356 100.0	23.6

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Cell pressure = 6.90 psi
Back pressure = 0.00 psi
Effective confining stress = 6.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 23.95 psi at reading no. 17
UT.T. STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P ps	i Qpsi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	73.0	0.0	0.0	0.00	6.90	6.90	1.00	6.90	0.00
1	25.0	0.025	104.0	9.7	0.8	6.23	6.90	13.13	1.90	10.02	3.12
2	45.0	0.045	133.0	18.7	1.5	11.98	6.90	18.88	2.74	12.89	5.99
3	70.0	0.070	160.0	27.1	2.3	17.22	6.90	24.12	3.50	15.51	8.61
4	95.0	0.095	171.0	30.6	3.2	19.23	6.90	26.13	3.79	16.52	9.62
5	120.0	0.120	172.0	30.9	4.0	19.26	6.90	26.16	3.79	16.53	9.63
6	150.0	0.150	177.0	32.4	5.0	20.02	6.90	26.92	3.90	16.91	10.01
7	175.0	0.175	181.0	33.7	5.8	20.61	6.90	27.51	3.99	17.21	10.31
8	200.0	0.200	187.0	35.6	6.7	21.56	6.90	28.46	4.13	17.68	10.78
9	220.0	0.220	188.0	35.9	7.3	21.60	6.90	28.50	4.13	17.70	10.80
10	250.0	0.250	191.0	36.8	8.3	21.92	6.90	28.82	4.18	17.86	10.96
11	275.0	0.275	194.0	37.8	9.2	22.28	6.90	29.18	4.23	18.04	11.14
12	300.0	0.300	197.0	38.7	10.0	22.62	6.90	29.52	4.28	18.21	11.31
13	325.0	0.325	200.0	39.6	10.8	22.95	6.90	29.85	4.33	18.38	11.48
14	350.0	0.350	203.0	40.6	11.7	23.27	6.90	30.17	4.37	18.54	11.64
15	380.0	0.380	206.0	41.5	12.7	23.54	6.90	30.44	4.41	18.67	11.77
16	400.0	0.400	209.0	42.4	13.3	23.89	6.90	30.79	4.46	18.84	11.94
17	450.0	0.450	212.0	43.4	15.0	23.95	6.90	30.85	4.47	18.87	11.97

Data file: GPBAPD10

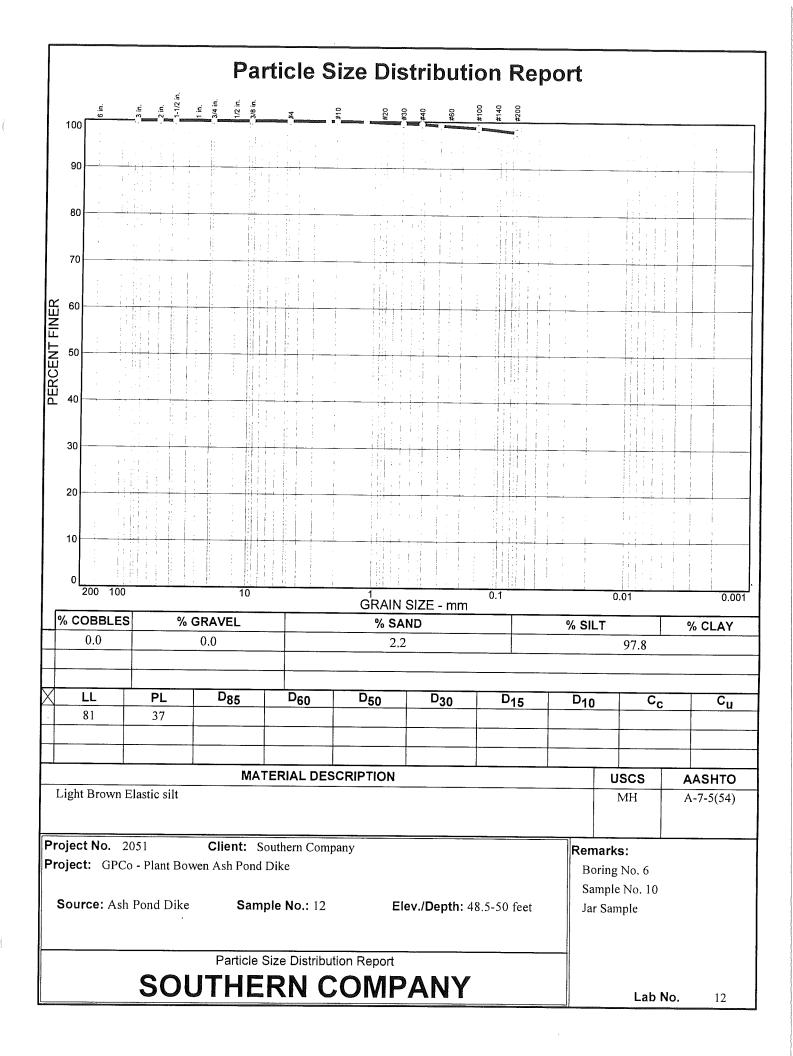

Specimen Parameters for Specimen No. 3

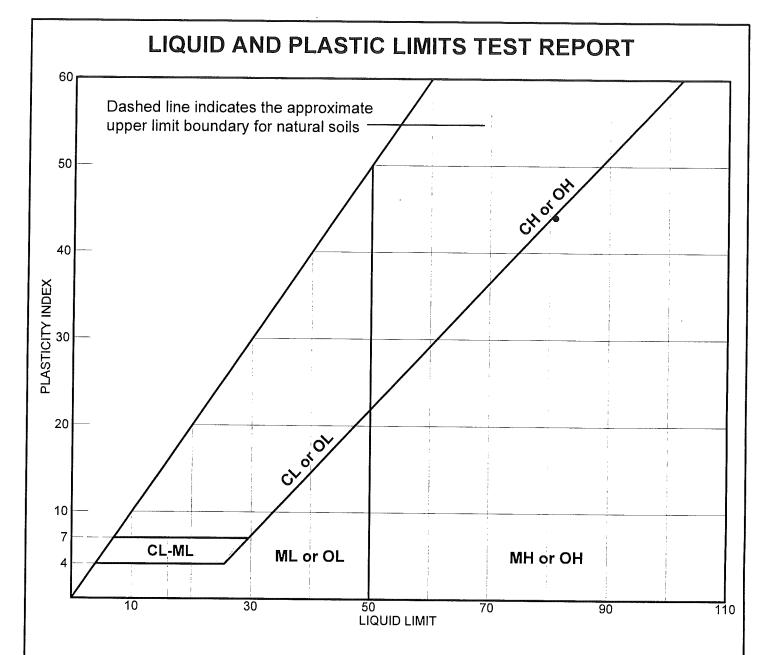
Specimen Parameter moist soil and tare:	Initial 138.740	Saturated	Final 155.300
dry soil and tare:	120.940		128.150
Wt. of tare:	30.350		0.000
Weight, gms:	153.5		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	19.6	21.2	21.2
Wet density, pcf:	126.6	128.3	
Dry density, pcf:	105.8	105.8	
Void ratio:	0.5867	0.5867	
% Saturation:	90.1	97.1	

Test Readings Data for Specimen No. 3

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure = 13.90 psi
Back pressure = 0.00 psi
Effective confining stress = 13.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 29.86 psi at reading no. 17
ULT. STRESS = not selected

Ĺ											
No.	υef.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P ps	i Qpsi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		,
	Units		Units			psi	psi	psi	Ratio		
_											
0			78.0	0.0	0.0	0.00	13.90	13.90	1.00	13.90	0.00
1	30.0	0.030	125.0	14.6	1.0	9.39	13.90	23.29	1.68	18.60	4.70
2	55.0	0.055	160.0	25.5	1.8	16.25	13.90	30.15	2.17	22.03	8.13
3	80.0	0.080	181.0	32.0	2.7	20.24	13.90	34.14	2.46	24.02	10.12
4	105.0	0.105	194.0	36.1	3.5	22.60	13.90	36.50	2.63	25.20	11.30
5	130.0	0.130	205.0	39.5	4.3	24.53	13.90	38.43	2.76	26.17	12.27
6	155.0	0.155	211.0	41.3	5.2	25.47	13.90	39.37	2.83	26.63	12.73
7	180.0	0.180	215.0	42.6	6.0	26.00	13.90	39.90	2.87	26.90	13.00
8	205.0	0.205	216.0	42.9	6.8	25.96	13.90	39.86	2.87	26.88	12.98
9	235.0	0.235	219.0	43.8	7.8	26.24	13.90	40.14	2.89	27.02	13.12
10	260.0	0.260	221.0	44.4	8.7	26.37	13.90	40.27	2.90	27.08	13.18
11	285.0	0.285	223.0	45.1	9.5	26.49	13.90	40.39	2.91	27.15	13.25
12	315.0	0.315	228.0	46.6	10.5	27.11	13.90	41.01	2.95	27.45	13.55
13	340.0	0.340	232.0	47.9	11.3	27.57	13.90	41.47	2.98	27.68	13.78
14	365.0	0.365	236.0	49.1	12.2	28.02	13.90	41.92	3.02	27.91	14.01
15	395.0	0.395	241.0	50.7	13.2	28.58	13.90	42.48	3.06	28.19	14.29
16	420.0	0.420	245.0	51.9	14.0	29.00	13.90	42.90		28.40	14.50
17	450.0	0.450	252.0	54.1	15.0	29.86	13.90	43.76		28.83	14.93

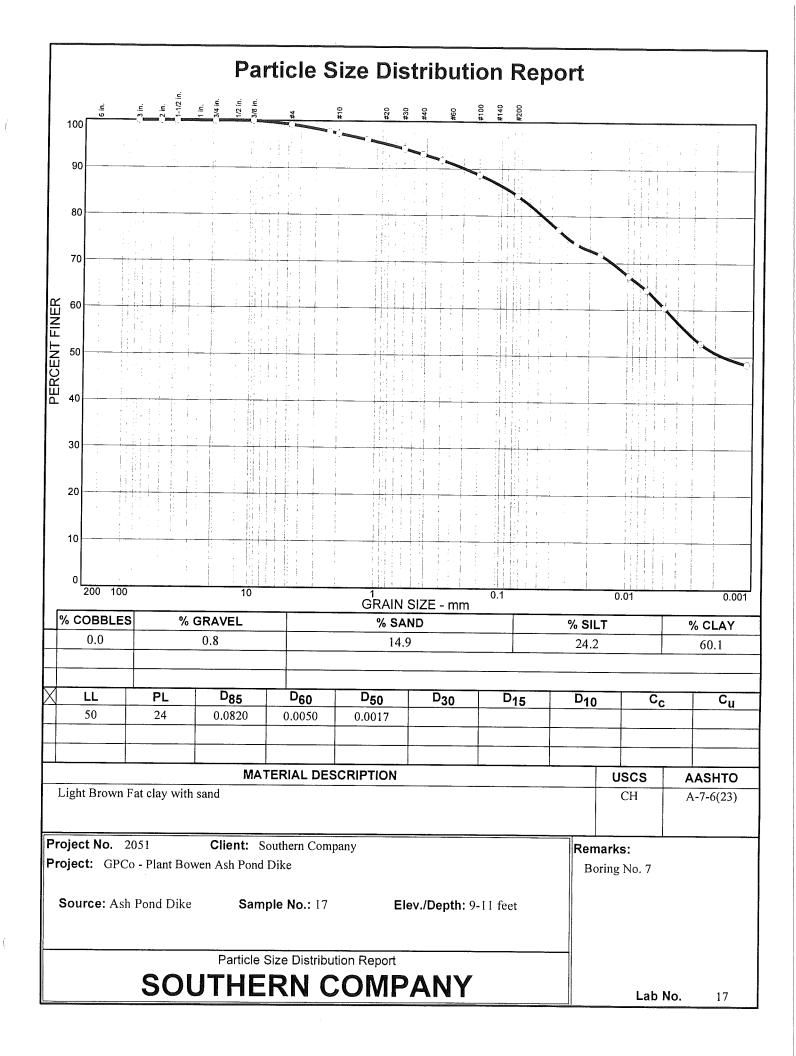

			,	SOIL DATA	1			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	Ash Pond Dike	11	23.5-25 feet		33	70	37	СН

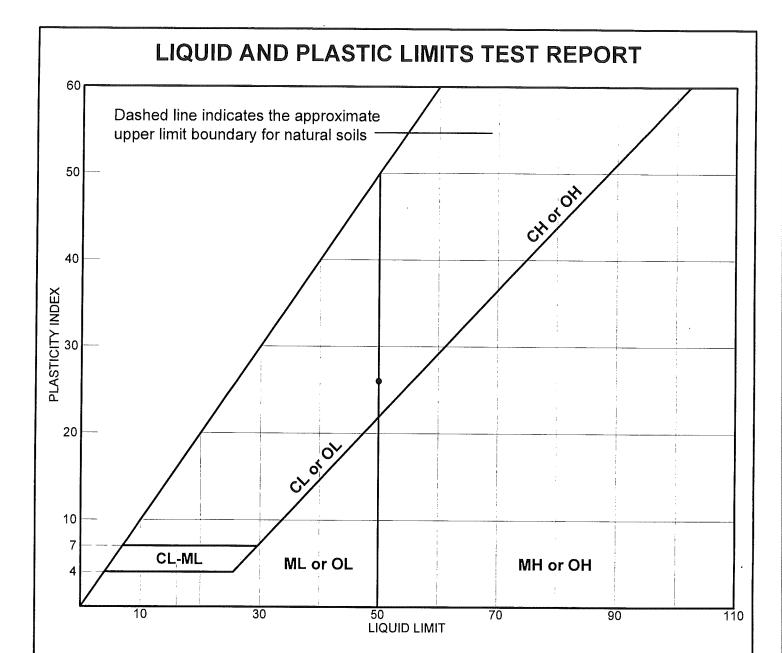

SOUTHERN COMPANY

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

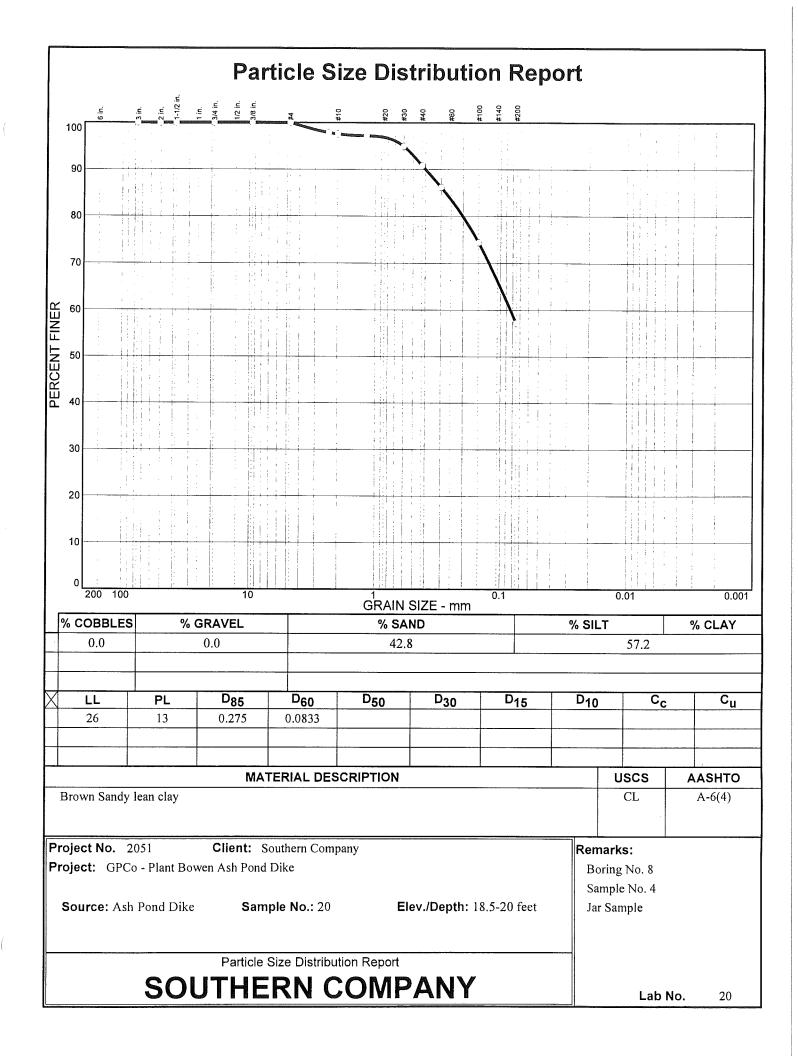

			SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS							
•	Ash Pond Dike	12	48.5-50 feet		37	. 81	44	МН							


SOUTHERN COMPANY

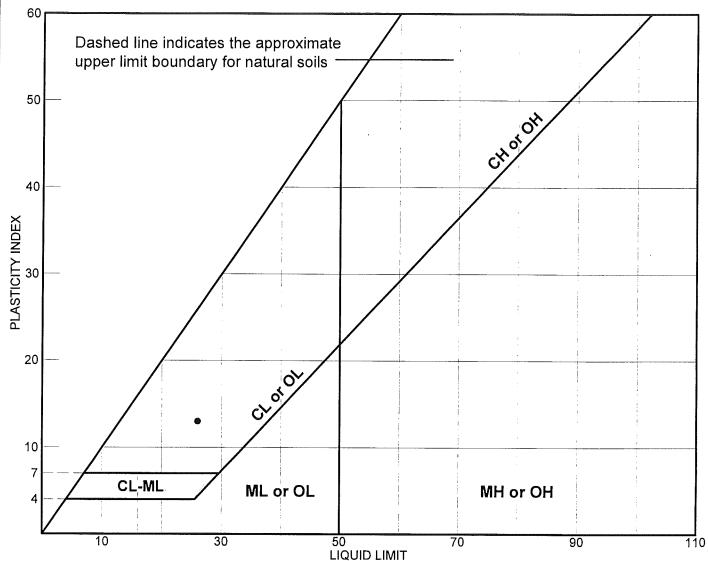
Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

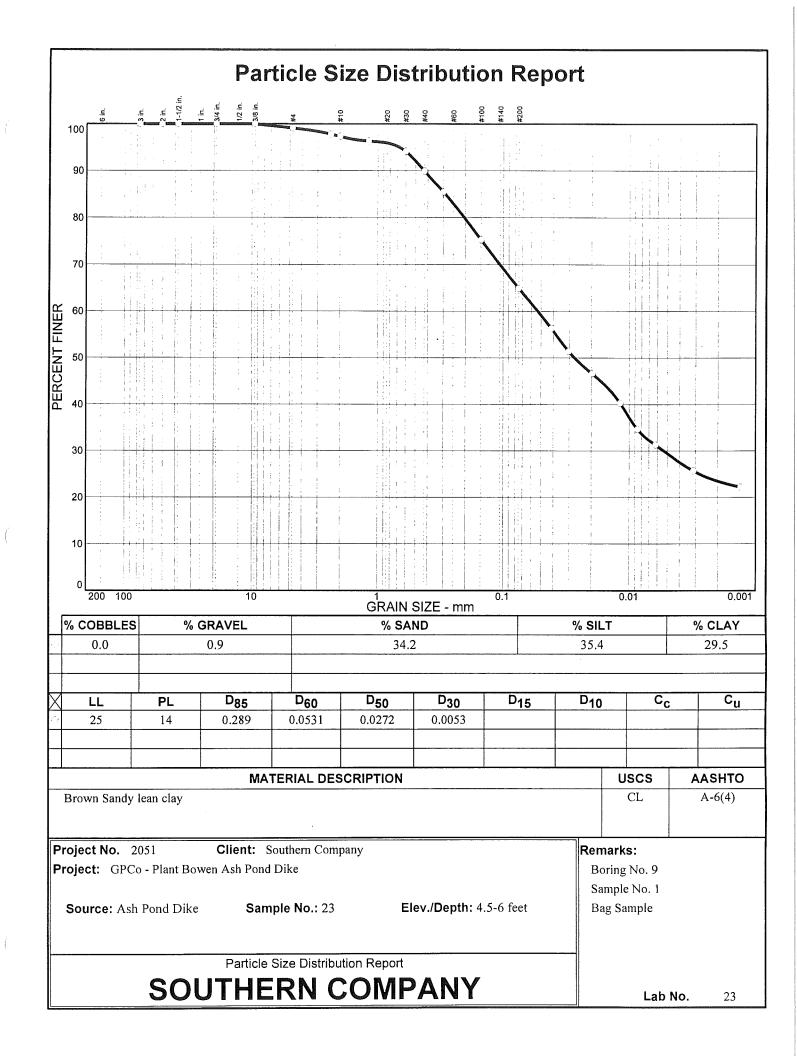

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	Ash Pond Dike	17	9-11 feet		24	50	26	СН					

SOUTHERN COMPANY

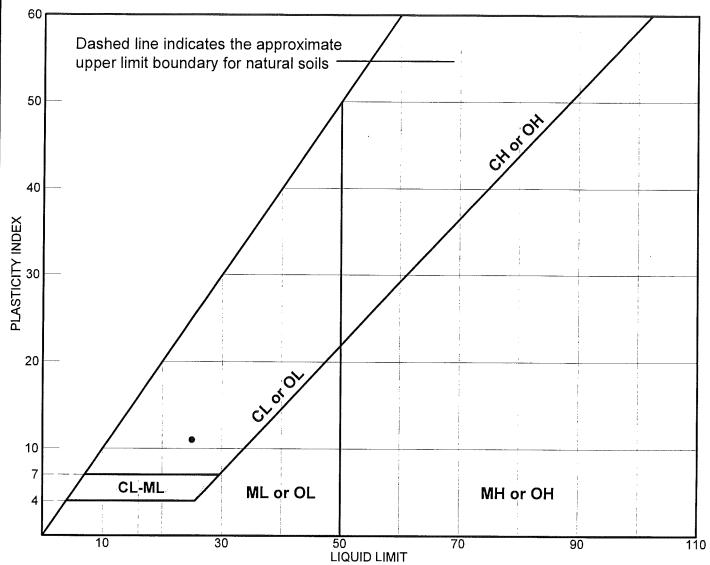

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

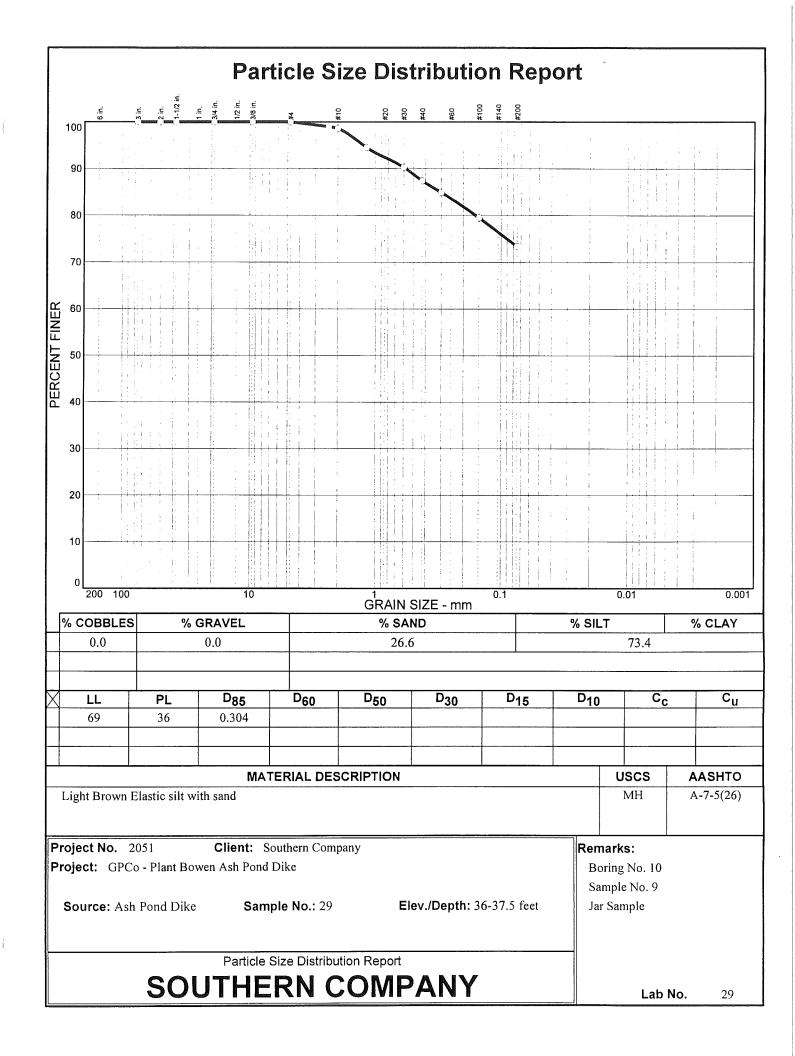

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs					
•	Ash Pond Dike	20	18.5-20 feet		13	26	13	CL					

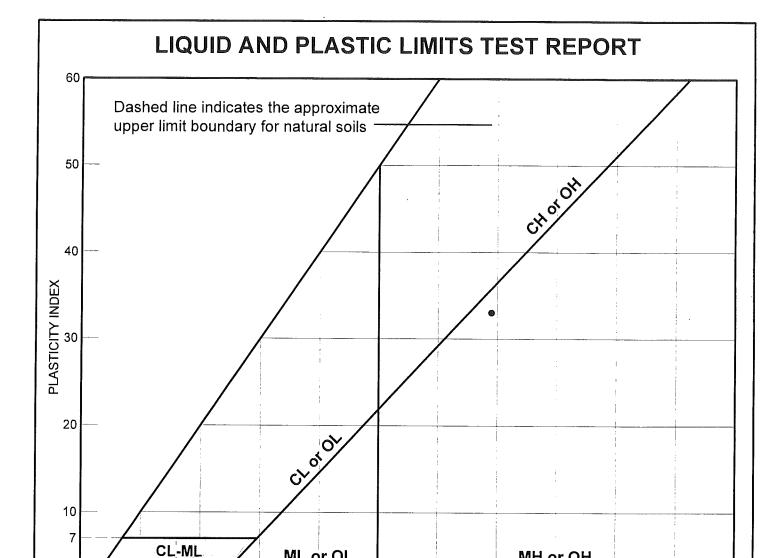
SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051


	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs					
•	Ash Pond Dike	23	4.5-6 feet		14	25		CL					


SOUTHERN COMPANY

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	Ash Pond Dike	29	36-37.5 feet		36	69	33	МН					

50 LIQUID LIMIT

ML or OL

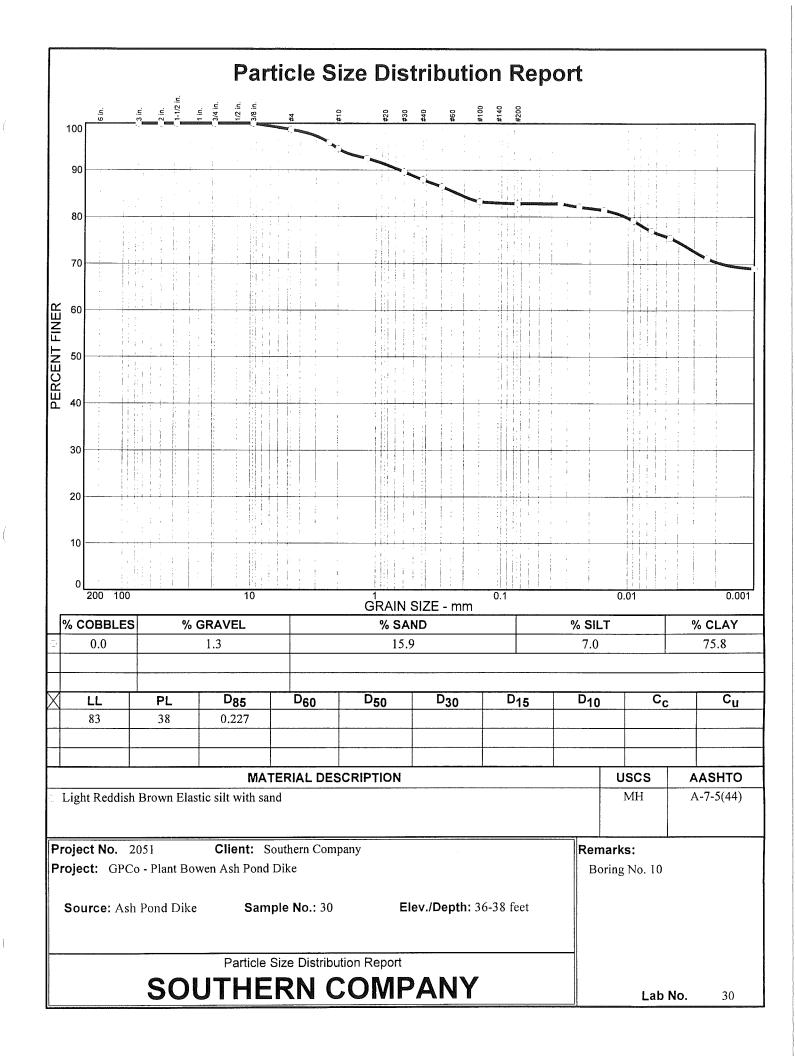
30

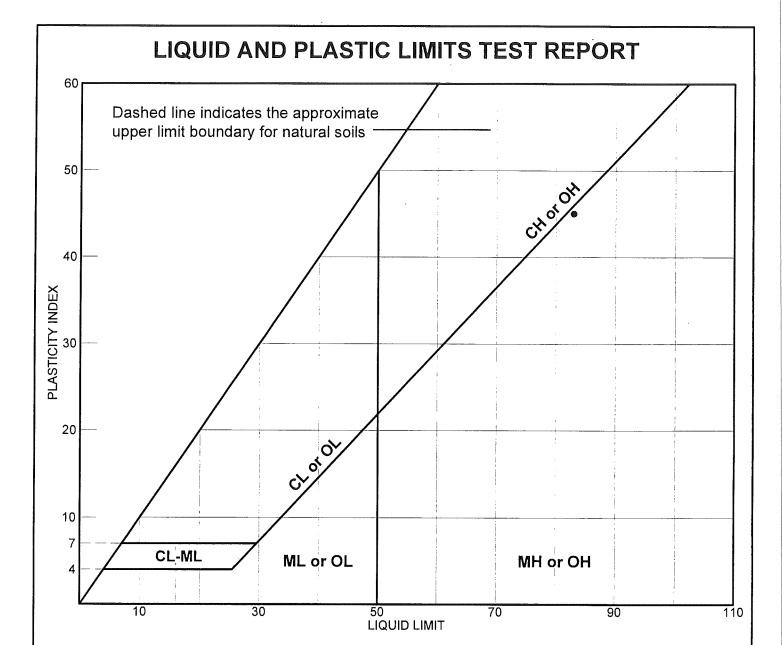
LIQUID AND PLASTIC LIMITS TEST REPORT

SOUTHERN COMPANY

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

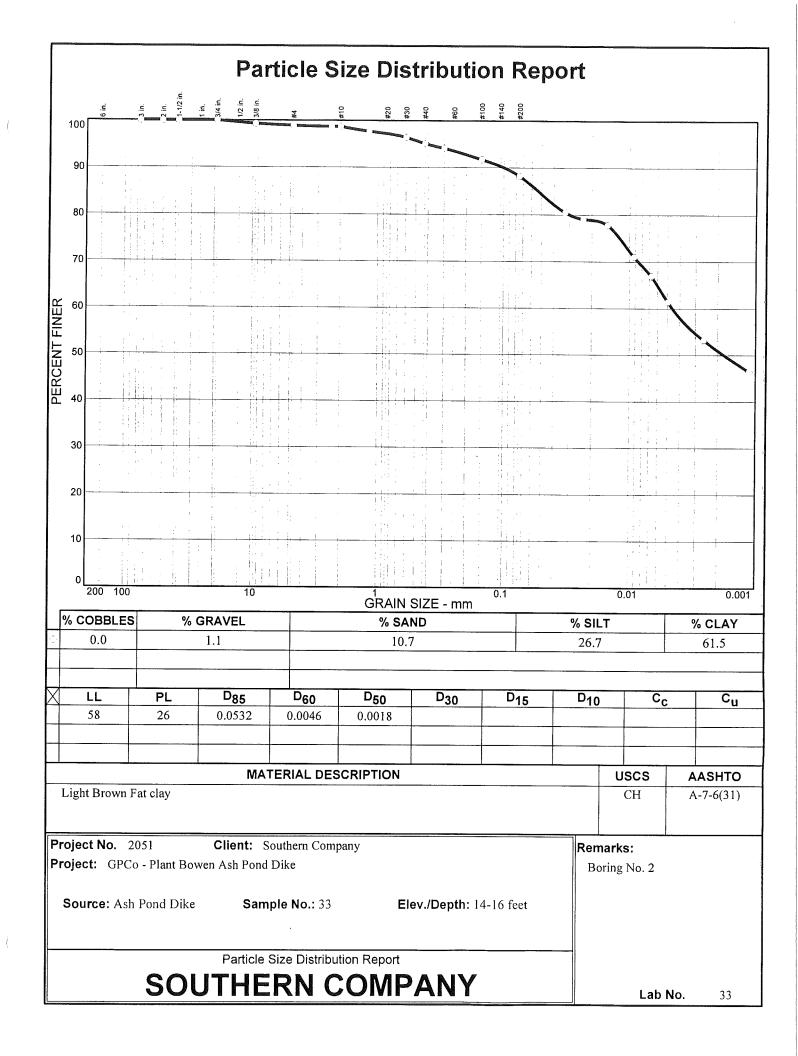

Project No.: 2051


Lab No. 29

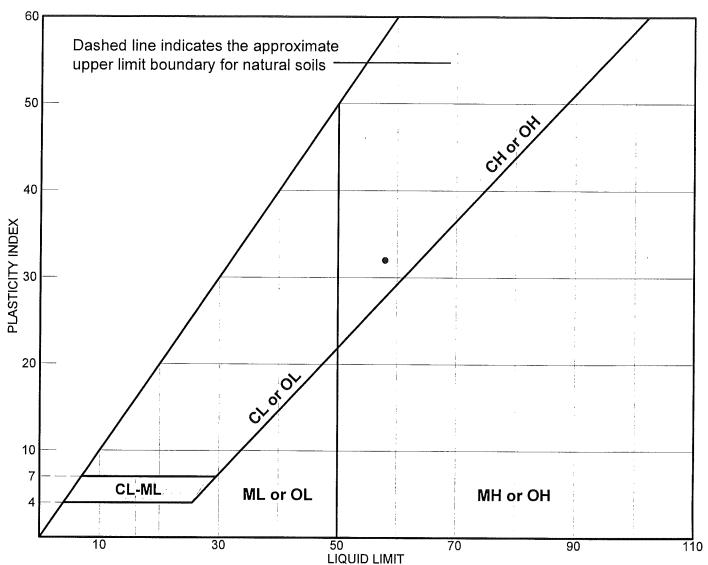
MH or OH

90

70

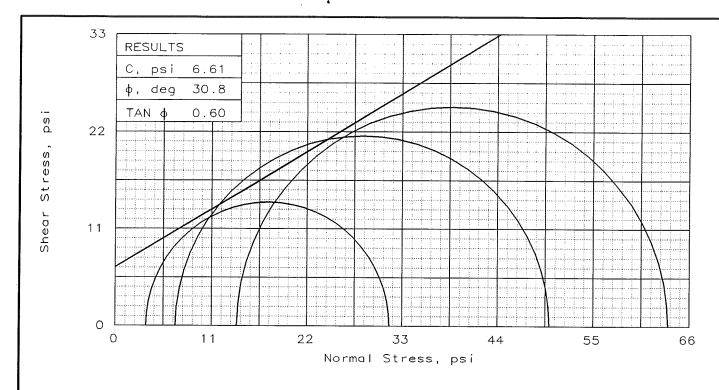

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	Ash Pond Dike	30	36-38 feet		38	83	45	МН					

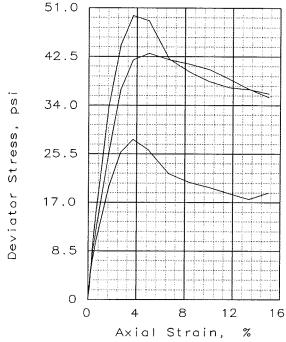
SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051


	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs					
•	Ash Pond Dike	33	14-16 feet		26	58	32	СН					


SOUTHERN COMPANY

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

TYPE OF TEST:

Consolidated Drained

SAMPLE TYPE: UD

DESCRIPTION: Light brown fat

clay

LL= 58 PL= 26 PI= 32

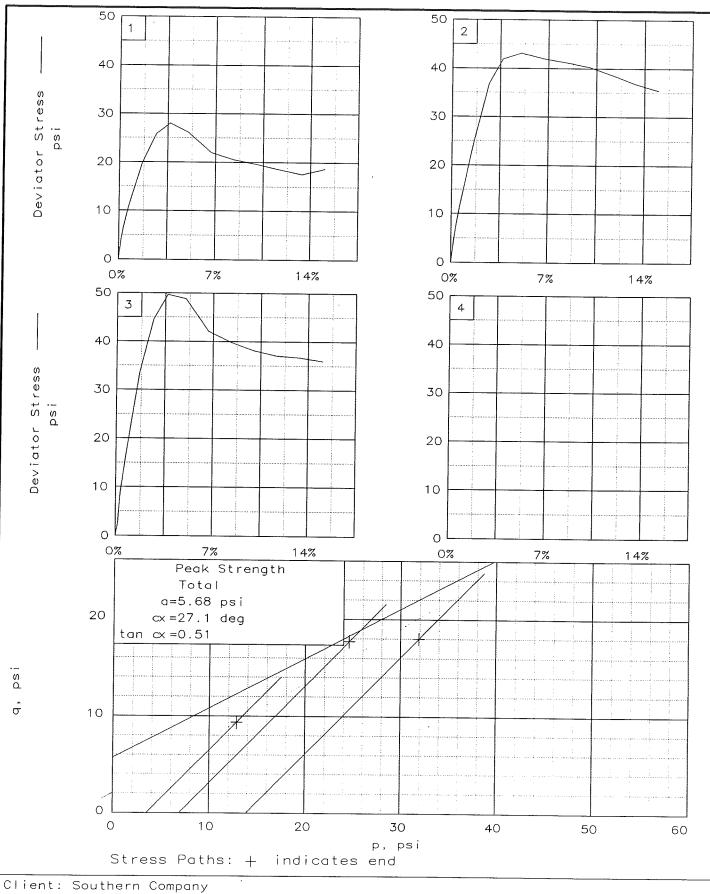
SPECIFIC GRAVITY= 2.64

REMARKS:

SA	MPLE NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	96.9 100.0 0.701 1.40	100.0 0.646	101.0 100.0 0.632 1.40	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	100.0 0.694 1.40	100.6 100.0 0.637	101.8 100.0 0.619 1.40	
St	rain rate, %/min	0.0010	0.0010	0.0010	
ВА	CK PRESSURE, psi	0.0	0.0	0.0	
CE	LL PRESSURE, psi	3.5	6.9	13.9	
FA	IL. STRESS, psi	28.0	43.1	49.7	
UL	T. STRESS, psi				
□ 1	FAILURE, psi	31.5	50.0	63.6	
Ø3	FAILURE, psi	3.5	6.9	13.9	

CLIENT: Southern Company

PROJECT: GPCo - Plant Bowen Ash Pond Dike


SAMPLE LOCATION: Boring #2

PROJ. NO.: 2051 DATE: 10/10/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lab No: 33

Project: GPCo - Plant Bowen Ash Pond Dike

Location: Boring #2

File: GPBAPD33

Project No.: 2051

Lab No: 33

Project and Sample Data

Date: 10/10/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Sample location: Boring #2

Sample description: Light brown fat clay

Remarks:

Fig no.: 33 2nd page Fig no. (if applicable): 33

Type of sample: UD

Specific gravity= 2.64 LL= 58 PL= 26 PI= 32

Test method: Corps of Eng. - uniform strain

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 116.970 98.780 30.260 148.6	Saturated	Consolidated	Final 116.970 98.780 30.260
Diameter, in: Area, in ² : Height, in: Net decrease in height, in: Net decrease in water volume	1.400 1.539 3.000	1.400 1.539 3.000 0.000	1.398 1.535 2.996 0.004	
Disture: Wed density, pcf: Dry density, pcf: Void ratio: % Saturation:	26.5 122.6 96.9 0.7011 100.0	26.6 122.6 96.9 0.7011 100.0	26.3 122.9 97.3 0.6943 100.0	26.5

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.30179 lbs per input unit
Secondary load ring constant= 0.72586 lbs per input unit
Crossover reading for secondary load ring= 462 input units
Consolidation cell pressure = 3.50 psi
Consolidation back pressure = 0.00 psi
Consolidation effective confining stress = 3.50 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 28.02 psi at reading no. 6
ULT. STRESS = not selected

Test Readings Data for Specimen No. 1

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	i Qpsi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
i											
1	0.0	0.000	6.0	0.0	0.0	0.00	3.50	3.50	1.00	3.50	0.00
1	5.0	0.005	26.0	6.0	0.2	3.92	3.50	7.42	2.12	5.46	1.96
2	10.0	0.010	39.0	10.0	0.3	6.47	3.50	9.97	2.85	6.73	3.23
3	20.0	0.020	60.0	16.3	0.7	10.54	3.50	14.04	4.01	8.77	5.27
4	50.0	0.050	108.0	30.8	1.7	19.72	3.50	23.22	6.63	13.36	9.86
5	80.0	0.080	141.0	40.7	2.7	25.83	3.50	29.33	8.38	16.41	12.91
6	110.0	0.110	154.0	44.7	3.7	28.02	3.50	31.52	9.01	<u>17.5</u> 1	14.01
7	150.0	0.150	146.0	42.3	5.0	26.14	3.50	29.64	8.47	16.57	13.07
8	200.0	0.200	126.0	36.2	6.7	22.01	3.50	25.51	7.29	14.51	11.01
9	250.0	0.250	120.0	34.4	8.3	20.54	3.50	24.04	6.87	13.77	10.27
10	300.0	0.300	117.0	33.5	10.0	19.63	3.50	23.13	6.61	13.32	9.82
11	350.0	0.350	113.0	32.3	11.7	18.58	3.50	22.08	6.31	12.79	9.29
12	400.0	0.400	109.0	31.1	13.4	17.54	3.50	21.04	6.01	12.27	8.77
13	450.0	0.450	118.0	33.8	15.0	18.71	3.50	22.21	6.35	12.85	9.35

Specimen Parameters for Specimen No. 2

Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 121.060 103.220 30.300 151.1	Saturated	Consolidated	Final 121.060 103.220 30.300
Diameter, in:	1.400	1.400	1.398	
Area, in²:	1.539	1.539	1.534	
Height, in:	3.000	3.000	2.995	
Net decrease in height, in:		0.000	0,005	
Net decrease in water volume	e, cc:			
% Moisture:	24.5	24.5	24.1	24.5
Wet density, pcf:	124.6	124.6	125.0	21.3
Dry density, pcf:	100.1	100.1	100.6	
Void ratio:	0.6457	0.6457	0.6375	
% Saturation:	100.0	100.0	100.0	

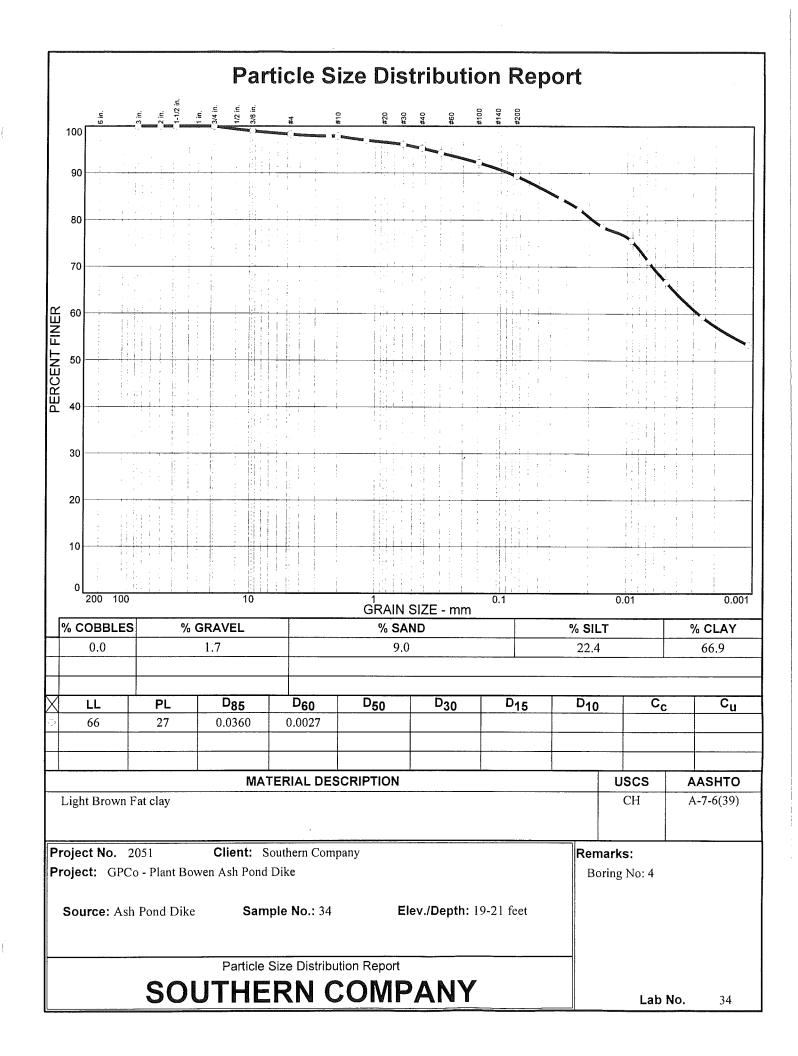
Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Consolidation cell pressure = 6.90 psi
Consolidation back pressure = 0.00 psi
Consolidation effective confining stress = 6.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 43.08 psi at reading no. 7

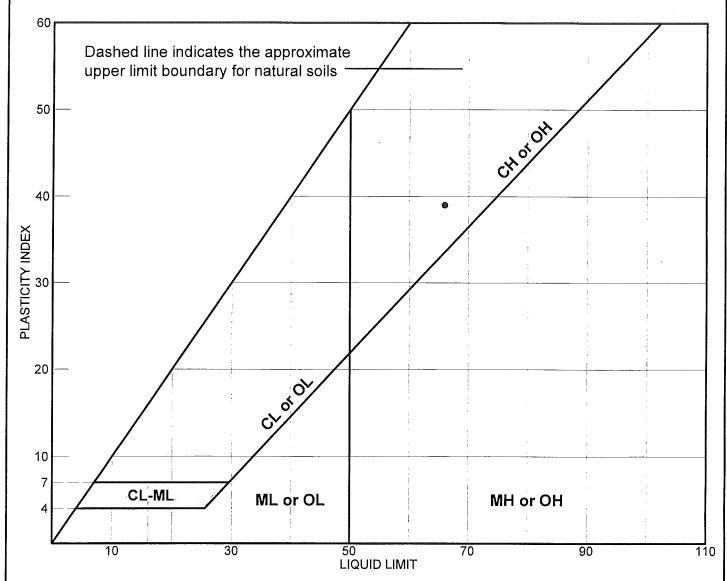
No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P ps	i Qpsi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	8.0	0.0	0.0	0.00	6.90	6.90	1.00	6.90	0.00
1	5.0	0.005	29.0	6.6	0.2	4.26	6.90	11.16	1.62	9.03	2.13
2	10.0	0.010	45.0	11.5	0.3	7.50	6.90	14.40	2.09	10.65	3.75
3	20.0	0.020	70.0	19.3	0.7	12.52	6.90	19.42	2.82	13.16	6.26
4	50.0	0.050	136.0	39.9	1.7	25.59	6.90	32.49	4.71	19.70	12.80
5	80.0	0.080	194.0	58.0	2.7	36.81	6.90	43.71	6.34	25.31	18.41
6	110.0	0.110	222.0	66.8	3.7	41.92	6.90	48.82	7.08	27.86	20.96
7	150.0	0.150	231.0	69.6	5.0	43.08	6.90	49.98	7.24	28.44	21.54
8	200.0	0.200	229.0	68.9	6.7	41.94	6.90	48.84	7.08	27.87	20.97
9	250.0	0.250	229.0	68.9	8.3	41.19	6.90	48.09	6.97	27.49	20.59
10	300.0	0.300	228.0	68.6	10.0	40.26	6.90	47.16	6.83	27.03	20.13
11	350.0	0.350	223.0	67.1	11.7	38.61	6.90	45.51	6.60	26.21	19.31
12	400.0	0.400	217.0	65.2	13.4	36.82	6.90	43.72	6.34	25.31	18.41
13	450.0	0.450	213.0	64.0	15.0	35.42	6.90	42.32	6.13	24.61	17.71

Data file: GPBAPD33

Specimen Parameters for Specimen No. 3

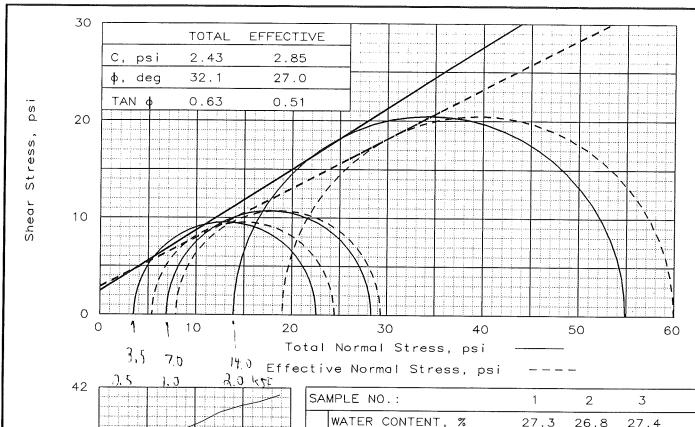

Specimen Parameter The moist soil and tare: And dry soil and tare: Wt. of tare: Weight, gms:	Initial 119.440 102.220 30.280 151.7	Saturated	Consolidated	Final 119.440 102.220 30.280
Diameter, in:	1.400	1.400	1.396	
Area, in²:	1.539	1.539	1.531	
Height, in:	3.000	3.000	2.992	
Net decrease in height, in:		0.000	0.008	
Net decrease in water volume	e, cc:		_	
% Moisture:	23.9	23.9	23.4	23.9
Wet density, pcf:	125.2	125.2	125.7	
Dry density, pcf:	101.0	101.0	101.8	
Void ratio:	0.6320	0.6320	0.6190	
% Saturation:	100.0	100.0	100.0	

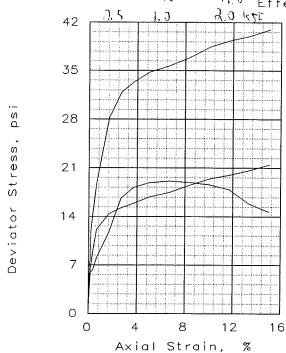
Test Readings Data for Specimen No. 3


Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 13.90 psi
Consolidation back pressure = 0.00 psi
Consolidation effective confining stress = 13.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 49.66 psi at reading no. 6
U STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal Str	esses	P psi	i Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	14.0	0.0	0.0	0.00	13.90	13.90	1.00	13.90	0.00
1	5.0	0.005	26.0	3.7	0.2	2.43	13.90	16.33	1.17	15.12	1.22
2	10.0	0.010	57.0	13.4	0.3	8.70	13.90	22.60	1.63	18.25	4.35
3	20.0	0.020	92.0	24.2	0.7	15.73	13.90	29.63	2.13	21.76	7.86
4	50.0	0.050	183.0	52.5	1.7	33.73	13.90	47.63	3.43	30.77	16.87
5	80.0	0.080	240.0	70.2	2.7	44.65	13.90	58.55	4.21	36.22	22.32
6	110.0	0.110	268.0	78.9	3.7	49.66	13.90	63.56	4.57	38. <u>73</u>	24.83
7	150.0	0.150	267.0	78.6	5.0	48.78	13.90	62.68	4.51	38.29	24.39
8	200.0	0.200	236.0	69.0	6.7	42.05	13.90	55.95	4.03	34.92	21.02
9	250.0	0.250	228.0	66.5	8.4	39.81	13.90	53.71	3.86	33.80	19.90
10	300.0	0.300	223.0	65.0	10.0	38.17	13.90	52.07	3.75	32.98	19.08
11	350.0	0.350	221.0	64.3	11.7	37.10	13.90	51.00	3.67	32.45	18.55
12	400.0	0.400	223.0	65.0	13.4	36.75	13.90	50.65	3.64	32.28	18.38
13	450.0	0.450	223.0	65.0	15.0	36.04	13.90	49.94	3.59	31.92	18.02

Data file: GPBAPD33


	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	Ash Pond Dike	34	19-21 feet		27	66	39	СН					


SOUTHERN COMPANY

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

111 - 01 1-51.	TYPE	OF	TEST:
----------------	------	----	-------

CU with Pore Pressures

SAMPLE TYPE: UD

DESCRIPTION: Light brown fat

clay

LL= 66 PL= 27

PI= 39

SPECIFIC GRAVITY= 2.67

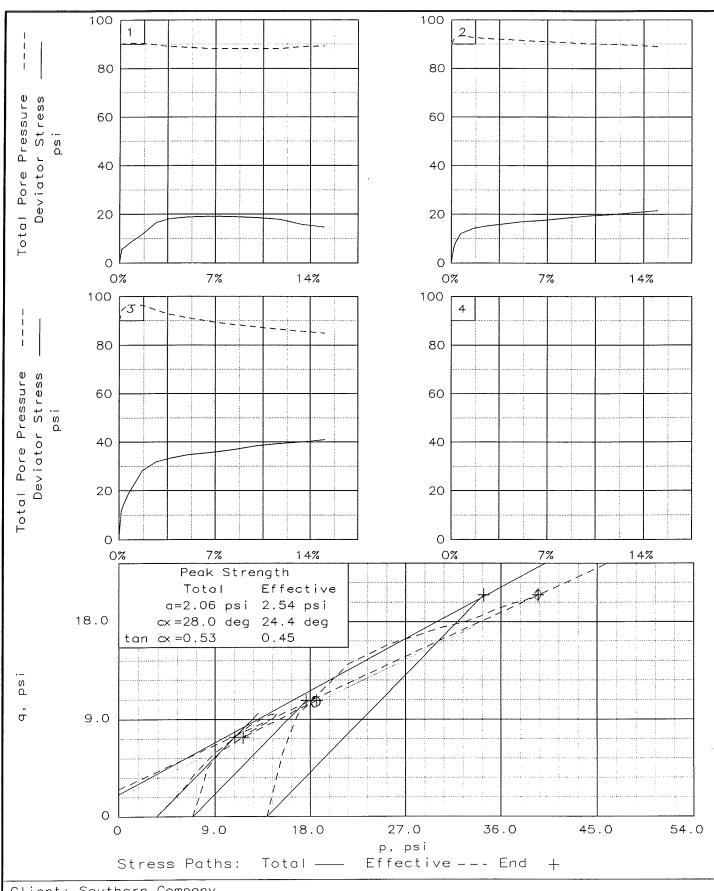
REMARKS:

	C ^	MDLE NO :	4		_	
	SA	MPLE NO.:	1	2	3	
INITIAL	INITIAL	DRY DENSITY, pcf Saturation, % Void ratio	0.821 1.40	93.0 90.2 0.792	94.4 95.7 0.765 1.40	
	TE(WATER CONTENT, % DRY DENSITY, pcf SATURATION, %	30.5 91.9 100.0 0.814 1.40	29.2 93.7 100.0 0.780	27.9 95.6 100.0 0.744 1.39	
	BAC CEI FAI	IL. STRESS, psi OTAL PORE PR., psi	90.0 93.5 19.1	90.0 96.9 21.5	90.0 103.9 41.0	
ò	T ⊙1	F. STRESS, psi OTAL PORE PR., psi FAILURE, psi FAILURE, psi		29.4 7.9		

CLIENT: Southern Company

PROJECT: GPCo - Plant Bowen Ash Pond Dike

SAMPLE LOCATION: Boring #4


PROJ. NO.: 2051

DATE: 10/10/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lab No: 34

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Location: Boring #4

File: GPBAPD34 Project No.: 2051 Lab No: 34

Data file: GPBAPD34

Project and Sample Data

Date: 10/10/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Sample location: Boring #4

Sample description: Light brown fat clay

Remarks:

Fig no.: 34 2nd page Fig no. (if applicable): 34

Type of sample: UD

Specific gravity= 2.67 LL= 66 PL= 27 PI= 39

Test method: Corps of Eng. - uniform strain

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 132.710 110.740 30.390 141.3	Saturated	Consolidated	Final 143.190 105.440 0.000
Diameter, in:	1.400	1.400	1.398	
Area, in ² :	1.539	1.538	1.535	
Height, in:	3.000	2.999	2.996	
Net decrease in height, in	:	0.001	0.003	
Net decrease in water volu	me, cc:			
j pisture:	27.3	30.7	30.5	35.8
Waldensity, pcf:	116.5	119.7	119.9	
Dry density, pcf:	91.5	91.6	91.9	
Void ratio:	0.8213	0.8194	0.8140	
% Saturation:	88.9	100.0	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.30179 lbs per input unit
Secondary load ring constant= 0.72586 lbs per input unit
Crossover reading for secondary load ring= 462 input units
Consolidation cell pressure = 93.50 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 3.50 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 19.08 psi at reading no. 8
ULT. STRESS = not selected

					Tes	st Read	lings	Data	for	Spe	cimen	No. 1
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Stre	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
ĺ	0.0	0.000	70.0	0.0	0.0	0.00	3.50	3.50	1.00	90.00	3.50	0.00
1	5.0	0.005	100.0	9.1	0.2	5.89	3.40	9.29	2.73	90.10	6.34	2.94
2	10.0	0.010	102.0	9.7	0.3	6.27	3.30	9.57	2.90	90.20	6.43	3.13
3	20.0	0.020	111.0	12.4	0.7	8.01	3.10	11.11	3.58	90.40	7.10	4.00
4	50.0	0.050	131.0	18.4	1.7	11.79	3.10	14.89	4.80	90.40	9.00	5.90
5	80.0	0.080	157.0	26.3	2.7	16.65	3.80	20.45	(5.38 (89.70	12.12	8.32
6	110.0	0.110	166.0	29.0	3.7	18.18	4.40	22.58	5.13	89.10	13.49	9.09
7	150.0	0.150	171.0	30.5	5.0	18.86	4.80	23.66	4.93	88.70	14.23	9.43
8	200.0	0.200	174.0	31.4	6.7	19.08	5.40	24.48	4.53	88.10	14.94	9.54
9	250.0	0.250	175.0	31.7	8.3	18.92	5.30	24.22	4.57	88.20	14.76	9.46
10	300.0	0.300	175.0	31.7	10.0	18.57	5.40	23.97	4.44	88.10	14.69	9.29
11	350.0	0.350	173.0	31.1	11.7	17.88	5.40	23.28	4.31	88.10	14.34	8.94
12	400.0	0.400	163.0	28.1	13.4	15.84	4.50	20.34	4.52	89.00	12.42	7.92
13	450.0	0.450	158.0	26.6	15.0	14.70	4.30	19.00	4.42	89.20	11.65	7.35

t' = t - u u + 20.45 = t $t' + t'_{3}$ $t' + t'_{3}$

Specimen Parameters for Specimen No. 2

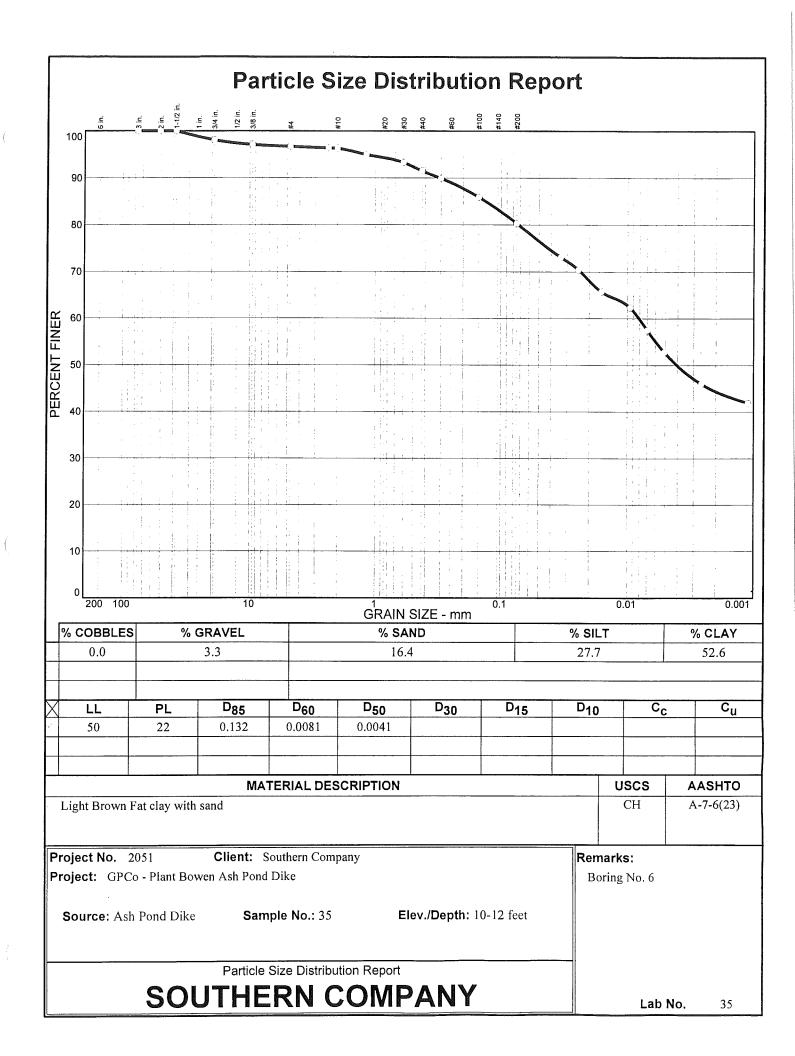
Specimen Parameter Weight, gms:	Initial 120.500 101.460 30.310 142.9	Saturated	Consolidated	Final 147.930 113.990 0.000
Diameter, in:	1.400	1.400	1.397	
Area, in ² :	1.539	1.538	1.532	
Height, in:	3.000	2.999	2.993	
Net decrease in height, in:		0.001	0.006	
Net decrease in water volume				
% Moisture:	26.8	29.6	29.2	29.8
Wet density, pcf:	117.9	120.7	121.0	
Dry density, pcf:	93.0	93.1	93.7	
Void ratio:	0.7924	0.7906	0.7799	
% Saturation:	90.2	100.0	100.0	

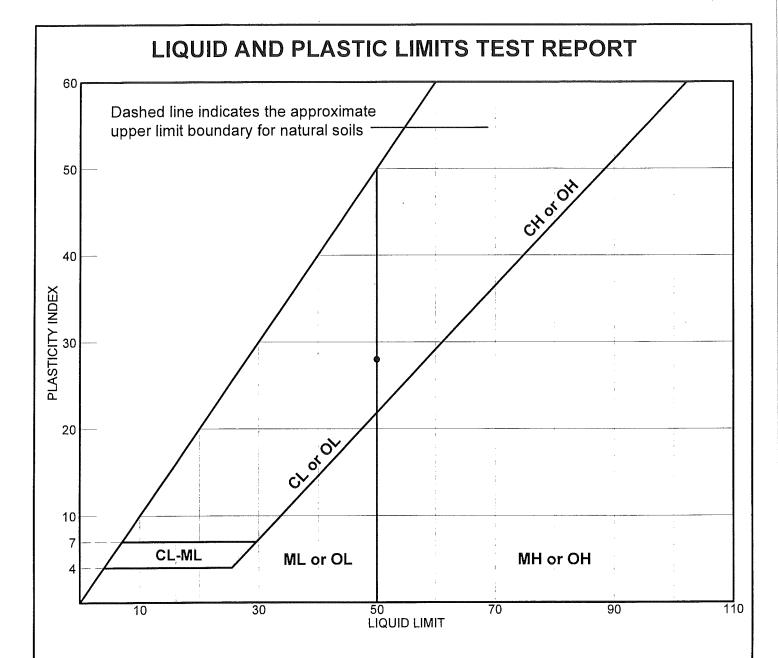
Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Consolidation cell pressure = 96.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 6.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 21.45 psi at reading no. 13

© STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Effective Stresses			Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	68.0	0.0	0.0	0.00	6.90	6.90	1.00	90.00	6.90	0.00
1	5.0	0.005	100.0	10.0	0.2	6.51	4.70	11.21	2.38	92.20	7.95	3.25
2	10.0	0.010	112.0	13.7	0.3	8.93	3.80	12.73	3.35	93.10	8.26	4.46
3	20.0	0.020	128.0	18.7	0.7	12.14	3.50	15.64	4.47	93.40	9.57	6.07
4	50.0	0.050	140.0	22.5	1.7	14.42	4.20	18.62	4.43	92.70	11.41	7.21
5	80.0	0.080	145.0	24.0	2.7	15.26	4.60	19.86	4.32	92.30	12.23	7.63
6	110.0	0.110	149.0	25.3	3.7	15.89	4.90	20.79	4.24	92.00	12.84	7.94
7	150.0	0.150	155.0	27.1	5.0	16.83	5.30	22.13	4.17	91.60	13.71	8.41
8	200.0	0.200	160.0	28.7	6.7	17.48	5.90	23.38	3.96	91.00	14.64	8.74
9	250.0	0.250	167.0	30.9	8.4	18.47	6.30	24.77	3.93	90.60	15.54	9.24
10	300.0	0.300	174.0	33.1	10.0	19.42	6.70	26.12	3.90	90.20	16.41	9.71
11	350.0	0.350	179.0	34.6	11.7	19.96	7.00	26.96	3.85	89.90	16.98	9.98
12	400.0	0.400	185.0	36.5	13.4	20.64	7.40	28.04	3.79	89.50	17.72	10.32
13	450.0	0.450	192.0	38.7	15.0	21.45	7.90	29.35	3.72	89.00	18.63	10.73


Data file: GPBAPD34


Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 131.460 109.630 30.070 145.9	Saturated	Consolidated	Final 148.130 114.120 0.000
Diameter, in:	1.400	1.400	1.394	
Area, in ² :	1.539	1.538	1.527	
Height, in:	3.000	2.999	2.988	
Net decrease in height, in:		0.001	0.011	
Net decrease in water volum				
% Moisture:	27.4	28.6	27.9	29.8
Wet density, pcf:	120.3	121.5	122.2	
Dry density, pcf:	94.4	94.5	95.6	
Void ratio:	0.7654	0.7636	0.7443	
% Saturation:	95.7	100.0	100.0	

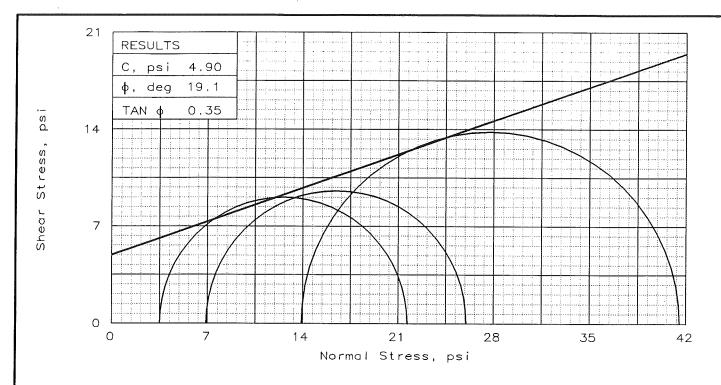
Test Readings Data for Specimen No. 3

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 103.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 13.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 40.97 psi at reading no. 13
I . STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	80.0	0.0	0.0	0.00	13.90	13.90	1.00	90.00	13.90	0.00
1	5.0	0.005	138.0	18.0	0.2	11.78	9.50	21.28	2.24	94.40	15.39	5.89
2	10.0	0.010	151.0	22.1	0.3	14.40	8.70	23.10	2.66	95.20	15.90	7.20
3	20.0	0.020	173.0	28.9	0.7	18.80	7.40	26.20	3.54	96.50	16.80	9.40
4	50.0	0.050	221.0	43.8	1.7	28.22	7.50	35.72	(4.76)	96.40	<u>21.6</u> 1	14.11
5	80.0	0.080	241.0	50.0	2.7	31.89	9.60	41.49	4.32	94.30	25.55	15.95
6	110.0	0.110	250.0	52.8	3.7	33.33	11.30	44.63	3.95	92.60	27.96	16.66
7	150.0	0.150	260.0	55.9	5.0	34.80	12.80	47.60	3.72	91.10	30.20	17.40
8	200.0	0.200	268.0	58.4	6.7	35.70	14.30	50.00	3.50	89.60	32.15	17.85
9	250.0	0.250	278.0	61.5	8.4	36.93	15.50	52.43	3.38	88.40	33.96	18.46
10	300.0	0.300	290.0	65.3	10.0	38.45	16.50	54.95	3.33	87.40	35.72	19.22
11	350.0	0.350	299.0	68.1	11.7	39.35	17.40	56.75	3.26	86.50	37.08	19.68
12	400.0	0.400	307.0	70.6	13.4	40.02	18.30	58.32	3.19	85.60	38.31	20.01
13	450.0	0.450	317.0	73.7	15.1	40.97	19.00	59.97	3.16	84.90	39.49	20.49

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
•	Ash Pond Dike	35	10-12 feet		22	50	28	СН				

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Project No.: 2051

Lab No. 35

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: UD

DESCRIPTION: Light brown fat

clay with sand

LL= 50

PL= 22

PI= 28

SPECIFIC GRAVITY= 2.76

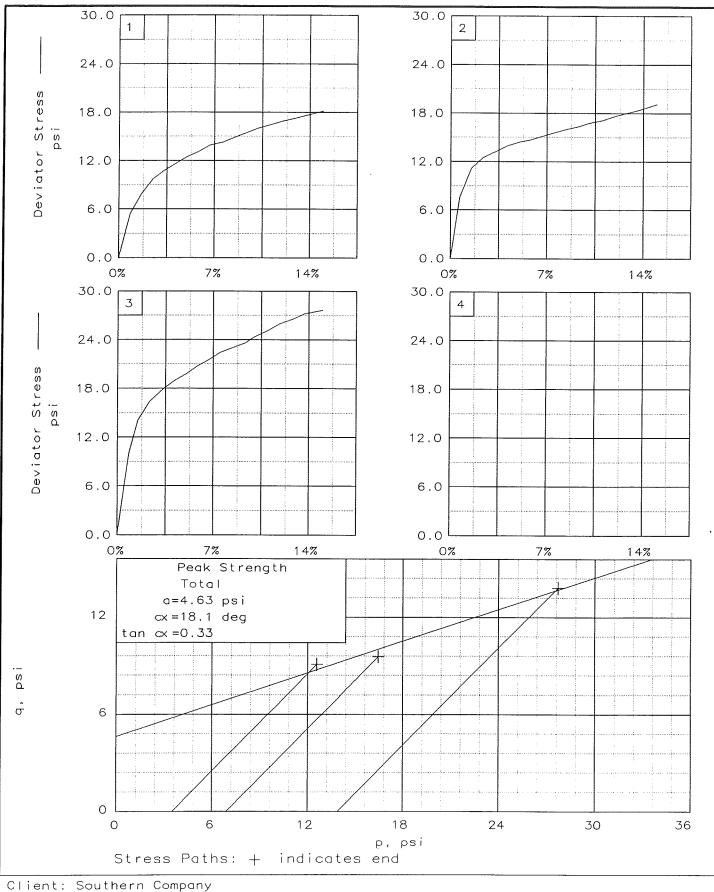
REMARKS:

SA	MPLE NO.:	1	2	3	
INITIAL	DRY DENSITY, pcf SATURATION, %	1.046 1.40	86.9 91.1 0.982	93.9 93.1 0.835 1.40	
AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	100.0 1.046 1.40	86.9 100.0 0.982	93.9 100.0 0.835 1.40	
St	rain rate, %/min	0.0010	0.0010	0.0010	
ВА	CK PRESSURE, psi	0.0	0.0	0.0	
CE	LL PRESSURE, psi	3.5	6.9	13.9	
FA	IL. STRESS, psi	18.2	19.1	27.6	
UL	T. STRESS, psi				
$-\sigma_1$	FAILURE, psi	21.7	26.0	41.5	
⊘ 3	FAILURE, psi	3.5	6.9	13.9	

CLIENT: Southern Company

PROJECT: GPCo - Plant Bowen Ash Pond Dike

SAMPLE LOCATION: Boring #6


PROJ. NO.: 2051

DATE: 10/10/2002

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lab No: 35

Project: GPCo - Plant Bowen Ash Pond Dike

Locotion: Boring #6

File: GPBAPF35 Project No.: 2051 Lab No: 35

Project and Sample Data

Date: 10/10/2002

Client: Southern Company

Project: GPCo - Plant Bowen Ash Pond Dike

Sample location: Boring #6

Sample description: Light brown fat clay with sand

Remarks:

Fig no.: 35 2nd page Fig no. (if applicable): 35

Type of sample: UD

Specific gravity= 2.76 LL= 50 PL= 22 PI= 28

Test method: Corps of Eng. - uniform strain

Specimen Parameters for Specimen No. 1

Specimen Parameter	Initial	Saturated	Final
Wt. moist soil and tare:	126.650		142.550
Wt. dry soil and tare:	101.000		100.470
Wt. of tare:	30.370		0.000
Weight, gms:	139.2		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	36.3	37.9	41.9
<pre>density, pcf:</pre>	114.8	116.1	
Dry density, pcf:	84.2	84.2	
Void ratio:	1.0459	1.0459	
% Saturation:	95.8	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.30179 lbs per input unit Secondary load ring constant= 0.72586 lbs per input unit Crossover reading for secondary load ring= 462 input units

Cell pressure = 3.50 psi Back pressure = 0.00 psi

Effective confining stress = 3.50 psi

Strain rate, %/min = 0.00

FAIL. STRESS = 18.16 psi at reading no. 17

ULT. STRESS = not selected

Test Readings Data for Specimen No. 1

No.	Def.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	ps i	psi	Ratio		
ſ											
į	0.0	0.000	68.0	0.0	0.0	0.00	3.50	3.50	1.00	3.50	0.00
1	25.0	0.025	96.0	8.5	0.8	5.44	3.50	8.94	2.56	6.22	2.72
2	50.0	0.050	109.0	12.4	1.7	7.90	3.50	11.40	3.26	7.45	3.95
3	75.0	0.075	119.0	15.4	2.5	9.75	3.50	13.25	3.79	8.37	4.87
4	100.0	0.100	125.0	17.2	3.3	10.80	3.50	14.30	4.09	8.90	5.40
5	125.0	0.125	130.0	18.7	4.2	11.65	3.50	15.15	4.33	9.32	5.82
6	150.0	0.150	135.0	20.2	5.0	12.48	3.50	15.98	4.57	9.74	6.24
7	175.0	0.175	139.0	21.4	5.8	13.11	3.50	16.61	4.74	10.05	6.55
8	200.0	0.200	144.0	22.9	6.7	13.91	3.50	17.41	4.97	10.45	6.95
9	230.0	0.230	147.0	23.8	7.7	14.30	3.50	17.80	5.09	10.65	7.15
10	255.0	0.255	151.0	25.0	8.5	14.89	3.50	18.39	5.25	10.94	7.44
11	280.0	0.280	155.0	26.3	9.3	15.46	3.50	18.96	5.42	11.23	7.73
12	305.0	0.305	159.0	27.5	10.2	16.03	3.50	19.53	5.58	11.51	8.01
13	330.0	0.330	162.0	28.4	11.0	16.40	3.50	19.90	5.69	11.70	8.20
14	360.0	0.360	166.0	29.6	12.0	16.91	3.50	20.41	5.83	11.95	8.45
15	385.0	0.385	169.0	30.5	12.8	17.26	3.50	20.76	5.93	12.13	8.63
16	410.0	0.410	172.0	31.4	13.7	17.60	3.50	21.10	6.03	12.30	8.80
17	450.0	0.450	177.0	32.9	15.0	18.16	3.50	21.66	6.19	12.58	9.08

Specimen Parameter W moist soil and tare: dry soil and tare: Wt. of tare:	Initial 111.000 91.250 30.310	Saturated	Final 140.140 103.670 0.000
Weight, gms:	139.6		
Diameter, in:	1.400	1.400	
Area, in ² :	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	32.4	35.6	35.2
Wet density, pcf:	115.1	117.9	
Dry density, pcf:	86.9	86.9	
Void ratio:	0.9817	0.9817	
% Saturation:	91.1	100.0	
Wet density, pcf: Dry density, pcf: Void ratio:	115.1 86.9 0.9817	117.9 86.9 0.9817	33.2

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Cell pressure = 6.90 psi
Back pressure = 0.00 psi
Effective confining stress = 6.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 19.12 psi at reading no. 17
ULT. STRESS = not selected

No.	⊌ef.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
•	0.0	0.000	<i>(</i> / 0	0 0	0.0	0.00	4 00	4 00	1.00	4 00	0.00
0			64.0			0.00	6.90	6.90		6.90	0.00
1	20.0	0.020	102.0	11.9	0.7	7.65	6.90	14.55	2.11	10.73	3.83
2	45.0	0.045	120.0	17.5	1.5	11.18	6.90	18.08	2.62	12.49	5.59
3	70.0	0.070	127.0	19.7	2.3	12.47	6.90	19.37	2.81	13.14	6.24
4	95.0	0.095	131.0	20.9	3.2	13.15	6.90	20.05	2.91	13.47	6.57
5	125.0	0.125	136.0	22.5	4.2	13.98	6.90	20.88	3.03	13.89	6.99
6	150.0	0.150	139.0	23.4	5.0	14.44	6.90	21.34	3.09	14.12	7.22
7	175.0	0.175	141.0	24.0	5.8	14.70	6.90	21.60	3.13	14.25	7.35
8	200.0	0.200	144.0	25.0	6.7	15.13	6.90	22.03	3.19	14.47	7.57
9	225.0	0.225	147.0	25.9	7.5	15.56	6.90	22.46	3.26	14.68	7.78
10	250.0	0.250	150.0	26.8	8.3	15.98	6.90	22.88	3.32	14.89	7.99
11	280.0	0.280	153.0	27.8	9.3	16.35	6.90	23.25	3.37	15.08	8.18
12	300.0	0.300	156.0	28.7	10.0	16.78	6.90	23.68	3.43	15.29	8.39
13	330.0	0.330	159.0	29.6	11.0	17.14	6.90	24.04	3.48	15.47	8.57
14	360.0	0.360	163.0	30.9	12.0	17.66	6.90	24.56	3.56	15.73	8.83
15	385.0	0.385	166. 0	31.8	12.8	18.02	6.90	24.92	3.61	15.91	9.01
16	410.0	0.410	169.0	32.8	13.7	18.37	6.90	25.27	3.66	16.09	9.19
17	450.0	0.450	175.0	34.6	15.0	19.12	6.90	26.02	3.77	16.46	9.56

Specimen Parameter W moist soil and tare: dry soil and tare:	Initial 107.330 90.370	Saturated	Final 146.230 112.730
Wt. of tare:	30.160		0.000
Weight, gms:	145.9		
Diameter, in:	1.400	1.400	
Area, in²:	1.539	1.539	
Height, in:	3.000	3.000	
Net decrease in height, in:		0.000	
% Moisture:	28.2	30.2	29.7
Wet density, pcf:	120.4	122.3	
Dry density, pcf:	93.9	93.9	
Void ratio:	0.8349	0.8349	
% Saturation:	93.1	100.0	

Test Readings Data for Specimen No. 3

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Cell pressure = 13.90 psi
Back pressure = 0.00 psi
Effective confining stress = 13.90 psi
Strain rate, %/min = 0.00
FAIL. STRESS = 27.63 psi at reading no. 17
UJT. STRESS = not selected

No.	υef.	Def.	Load	Load	Strain	Deviator	Princ	ipal St	resses	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3		
	Units		Units			psi	psi	psi	Ratio		
0	0.0	0.000	75.0	0.0	0.0	0.00	13.90	13.90	1.00	13.90	0.00
1	25.0	0.025	125.0	15.5	0.8	10.01	13.90	23.91	1.72	18.91	5.01
2	45.0	0.045	146.0	22.1	1.5	14.12	13.90	28.02	2.02	20.96	7.06
3	70.0	0.070	158.0	25.8	2.3	16.37	13.90	30.27	2.18	22.08	8.18
4	100.0	0.100	167.0	28.6	3.3	17.96	13.90	31.86	2.29	22.88	8.98
5	125.0	0.125	173.0	30. 5	4.2	18.96	13.90	32.86	2.36	23.38	9.48
6	150.0	0.150	178.0	32.0	5.0	19.76	13.90	33.66	2.42	23.78	9.88
7	175.0	0.175	184.0	33.9	5.8	20.72	13.90	34.62	2.49	24.26	10.36
8	200.0	0.200	189.0	35.4	6.7	21.48	13.90	35.38	2.55	24.64	10.74
9	225.0	0.225	195.0	37.3	7.5	22.41	13.90	36.31	2.61	25.11	11.21
10	250.0	0.250	199.0	38.5	8.3	22.95	13.90	36. 85	2.65	25.37	11.47
11	280.0	0.280	204.0	40.1	9.3	23.61	13.90	37.51	2.70	25.71	11.81
12	300.0	0.300	209.0	41.6	10.0	24.35	13.90	38.25	2.75	26.07	12.17
13	330.0	0.330	215.0	43.5	11.0	25.16	13.90	39.06	2.81	26.48	12.58
14	355.0	0.355	221.0	45.4	11.8	25.99	13.90	39.89	2.87	26.89	12.99
15	385.0	0.385	226.0	46.9	12.8	26.57	13.90	40.47	2.91	27.19	13.29
16	410.0	0.410	231.0	48.5	13.7	27.19	13.90	41.09	2.96	27.50	13.60
17	450.0	0.450	236.0	50.0	15.0	27.63	13.90	41.53	2.99	27.72	13.82

SOUTHERN COMPANY Energy to Serve Your World*

SOUTHERN COMPANY CENTRAL LABORATORY

outhern Company Services Georgia Power Company – Plant Bowen Ash Pond Stability Soil Testing Report February 18, 2003

Mr. Richard M. Franke

Mr. Ray Halbert Southern Company

Enclosed are the test results for the soil samples delivered to the Southern Company, Central Laboratory on November 19, 2002. Performed test included Atterberg Limits (ASTM D-4318), Specific Gravity (ASTM D854), Natural Moisture Content (ASTM D-2216), Consolidated-Undrained (R) Triaxial Test and Torvane Shear Testing.

Laboratory sample #1, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-7, Boring AH-1, Sample No. UD-1, from a depth of 11.0-13.0 feet. Liquid Limit was 65 with a Plasticity Limit was 32 with a Plasticity Index of 33. Specific Gravity was 3.18. Note: Sample appears to contain iron oxide. Natural Moisture content was 36.9%. For Consolidated-Undrained (R) Triaxial Test, see attached report. For Torvane Shear Test and Moisture Content, see attached report.

Laboratory sample #2, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-7, Boring AH-1, Sample No. UD-2, from a depth of 13.0-15.0 feet. Liquid Limit was 43 with a Plasticity Limit was 23 with a Plasticity Index of 20. Specific Gravity was 2.89. Natural Moisture content was 41.2%. For Consolidated-Undrained (R) Triaxial Test, see attached report. For Torvane Shear Test and Moisture Content, see attached report.

Laboratory sample #3, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-14, Boring AH-2, Sample No. UD-5, from a depth of 12.0-14.0 feet. Liquid Limit was 58 with a Plasticity Limit was 23 with a Plasticity Index of 35. Specific Gravity was 2.72. Natural Moisture content was 24.5%. For Consolidated-Undrained (R) Triaxial Test, see attached report. For Torvane Shear Test and Moisture Content, see attached report.

Laboratory sample #4, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-14, Boring AH-2, Sample No. UD-4, from a depth of 10.0-12.0 feet. Liquid Limit was 65 with a Plasticity Limit was 24 with a Plasticity Index of 41. Specific Gravity was 2.67. Natural Moisture content was 29.9%.

Laboratory sample #5, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-14, Sample No. UD-4, from a depth of 10.0-12.0 feet. Liquid Limit was 52 with a Plasticity Limit 22 was with a Plasticity Index of 30. Specific Gravity was 2.75. Natural Moisture content was 24.2%. For Consolidated-Undrained (R) Triaxial Test, see attached report. For Torvane Shear Test and Moisture Content, see attached report.

Laboratory sample #6, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-14, Sample No. UD-5, from a depth of 12.0-14.00 feet. Liquid Limit was 81 with a Plasticity Limit 39 was with a Plasticity Index of 42. Specific Gravity was 2.74. Natural Moisture content was 45.6%. For Consolidated-Undrained (R) Triaxial Test, see attached report. For Torvane Shear Test and Moisture Content, see attached report.

Laboratory sample #7, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-11, Sample No. UD-6, from a depth of 18.0-20.0 feet. Liquid Limit was 86 with a Plasticity Limit 49 was with a Plasticity Index of 37. Specific Gravity was 2.75. Natural Moisture content was 35.8%. For Consolidated-Undrained (R) Triaxial Test, see attached report. For Torvane Shear Test and Moisture Content, see attached report.

Laboratory sample #8, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-11, Sample No. UD-7, from a depth of 23.0-25.0feet. Liquid Limit was 34 with a Plasticity Limit 19 was with a Plasticity Index of 15. Specific Gravity was 2.69. Natural Moisture content was 24.1%. Note: No Consolidated-Undrained (R) Triaxial Test performed due to sandy material. For Torvane Shear Test and Moisture Content, see attached report.

Energy to Serve Your World

SOUTHERN COMPANY CENTRAL LABORATORY

Laboratory sample #9, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-12S, Sample No. UD-8, from a depth of 19.0-21.0 feet. Liquid Limit was 62 with a Plasticity Limit was 24 with a Plasticity Index of 38. Specific Gravity was 2.69. Natural Moisture content was 40.1%. For Consolidated-Undrained (R) Triaxial Test, see attached report. For Torvane Shear Test and Moisture Content, see attached report.

Laboratory sample #10, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-38, Sample No. UD-11, from a depth of 3.0-5.0 feet. Liquid Limit was 54 with a Plasticity Limit was 28 with a Plasticity Index of 26. Specific Gravity was 2.70. Natural Moisture content was 21.6%. For Consolidated-Undrained (R) Triaxial Test, see attached report. For Torvane Shear Test and Moisture Content, see attached report.

Laboratory sample #11, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-38, Sample No. UD-12, from a depth of 5.0-7.0 feet. Liquid Limit was 45 with a Plasticity Limit was 27 with a Plasticity Index of 18. Specific Gravity was 2.66. Natural Moisture content was 32.4%. For Consolidated-Undrained (R) Triaxial Test, see attached report. For Torvane Shear Test and Moisture Content, see attached report.

Laboratory sample #12, represents a UD soil sample material from the GPCo-Plant Bowen Ash Pond Stability Project, Location: DCP-38, Sample No. UD-13, from a depth of 7.0-9.0 feet. Liquid Limit was 54 with a Plasticity Limit was 22 with a Plasticity Index of 32. Specific Gravity was 2.69. Natural Moisture content was 26.8%. For Consolidated-Undrained (R) Triaxial Test, see attached report. For Torvane Shear Test and Moisture Content, see attached report.

We appreciate the opportunity to assist you on this project. If there are any questions or if we can be of any further assistance, please call at extension (205/664-6266) or 8-255-6266.

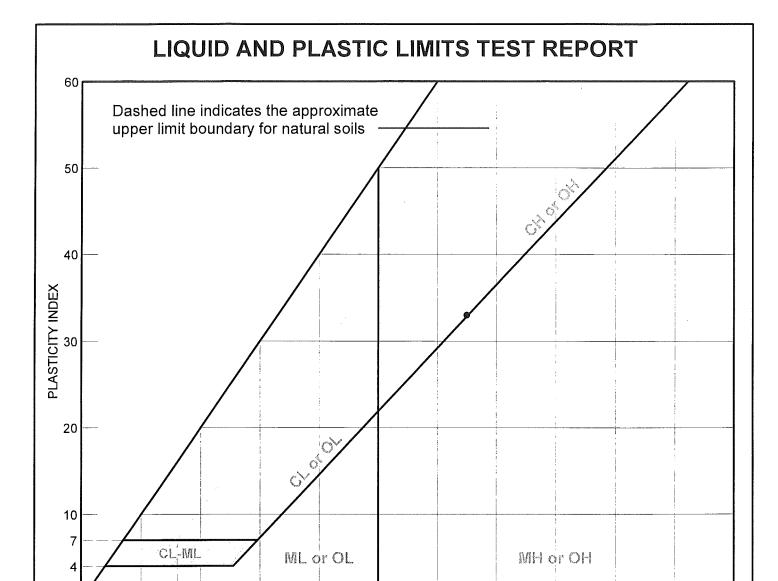
Sincerely,

lav Halbert, PE. CM Southern Company

SOUTHERN COMPANY CENTRAL LABORATORY

GPCo – Plant Bowen Ash Stability Vane Shear Test Results

Lab No.	Location:	Sample No.	Boring No.	Depth: (ft.)	Sample Location: (ft.)	% Moisture	Shear Strength (tsf.)
1	DCP-7	UD-1	AH-1	11-13	12' 8"	27.5	90
I	DCI-7	OD-1	All-1	11-13	12' 4"	37.5	.80
-					12' 4"	30.8 31.8	.95
					12' 0"	39.5	.95 .85
					12' 0"	41.7	
					11' 8"	39.9	.90 .75
2	DCP-7	UD-2	AH-1	13-15	14' 8"	36.5	.73
	Bei 7	UD 2	711-1	13-13	14' 4"	44.8	.35
					14' 4"	42.2	.35
· · · · · · · · · · · · · · · · · · ·					14' 0"	44.1	.15
					14' 0"	37.4	.175
					13' 8"	42.2	.40
3	DCP-14	UD-5	AH-2	12-14	13' 8"	25.6	>1.0
	201 11		71112	12 17	13' 4"	22.0	>1.0
					13' 4"	22.7	>1.0
					13, 0,,	25.4	>1.0
					13' 0"	25.2	>1.0
					12' 8"	26.0	>1.0
4	DCP-14	UD-4	AH-2	10-12	11' 8"	29.9	.45
5	DCP-14	UD-4	71172	10-12	11' 8"	21.6	>1.0
	201 11			10 12	11' 4"	23.3	>1.0
					11' 4"	23.6	>1.0
				4	11' 0"	25.5	>1.0
					11, 0,,	25.8	>1.0
					10' 8"	24.0	>1.0
6	DCP-14	UD-5		12-14	13' 8"	44.7	.35
	20			12 11	13' 4"	42.1	.40
				W-104-M-	13' 4"	42.1	.45
					13' 0"	36.2	>1.0
					13' 0"	34.3	>1.0
	., .,				12' 8"	35.8	>1.0
7	DCP-11	UD-6		18-20	19' 8"	34.7	>1.0
					19' 4"	33.7	.70
					19' 4"	27.3	>1.0
					19' 0"	31.6	>1.0
					19' 0"	33.8	>1.0
					18' 8"	27.9	>1.0
8	DCP-11	UD-7		23-25	24' 8"	20.5	.45
					24' 4"	14.1	NA *
					24' 4"	12.7	.35 *
					24' 0"	15.8	.40 *
					24' 0"	14.7	.40 *
					23' 8"	27.9	.85


SOUTHERN COMPANY CENTRAL LABORATORY

Lab No.	Location:	Sample No.	Boring No.	Depth: (ft.)	Sample	% Moisture	Shear
					Location: (ft.)		Strength (tsf.)
9	DCP-125	UD-8		19-21	20' 8"	38.6	.30
					20' 4"	34.5	.60
					20' 4"	35.5	.47
					19' 0"	34.9	.52
					19' 0"	35.3	.49
					18' 8"	37.9	.41
10	DCP-38	UD-11		3-5	4' 8"	21.2	>1.0
					4' 4"	19.7	>1.0
					4' 4"	21.7	>1.0
					4' 0"	19.6	.90
					4' 0"	20.6	>1.0
					3' 8"	21.7	.85
11	DCP-38	UD-12		5-7	6' 8"	26.2	.30
					6' 4"	22.6	.75
					6' 4"	21.8	.75
					6' 0"	26.3	.65
					6' 0"	26.7	NA
					5' 8"	28.8	.60
12	DCP-38	UD-13		7-9	8' 8"	27.4	.50
					8' 4"	18.1	>1.0
					8' 4"	16.6	>1.0
					8' 0"	19.0	>1.0
					8' 0"	18.7	.85
					7' 8"	28.9	NA **

Note:

 ^{1.) *} indicates sample was sandy.
 2.) ** indicates sample was rocky.

	SOIL DATA										
SYMBOL	SYMBOL SOURCE SAMPLE NO.			DEPTH WATER PLASTIC (ft.) CONTENT LIMIT (%) (%)			PLASTICITY INDEX (%)	USCS			
•	Plant Bowen	Ī	11-13		32	65	33				

LIQUID LIMIT

70

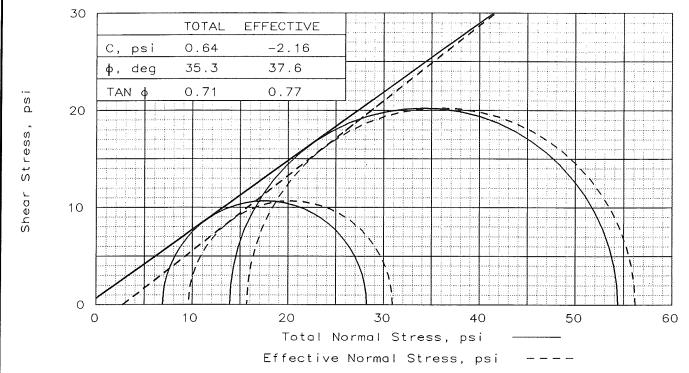
LIQUID AND PLASTIC LIMITS TEST REPORT

10

30

SOUTHERN COMPANY

Client: Southern Company


Project: GPCo - Plant Bowen Stability

Project No.: 2051

Lab No. 1

90

110

TYPE OF TEST:

CU with Pore Pressures

SAMPLE TYPE: UD DESCRIPTION:

LL= 65

PL= 32

PI= 33

SPECIFIC GRAVITY= 3.18
REMARKS: BORING NO: AH-1

SAMPLE NO: UD-1

DEPTH: 11.0-13.0 FEET

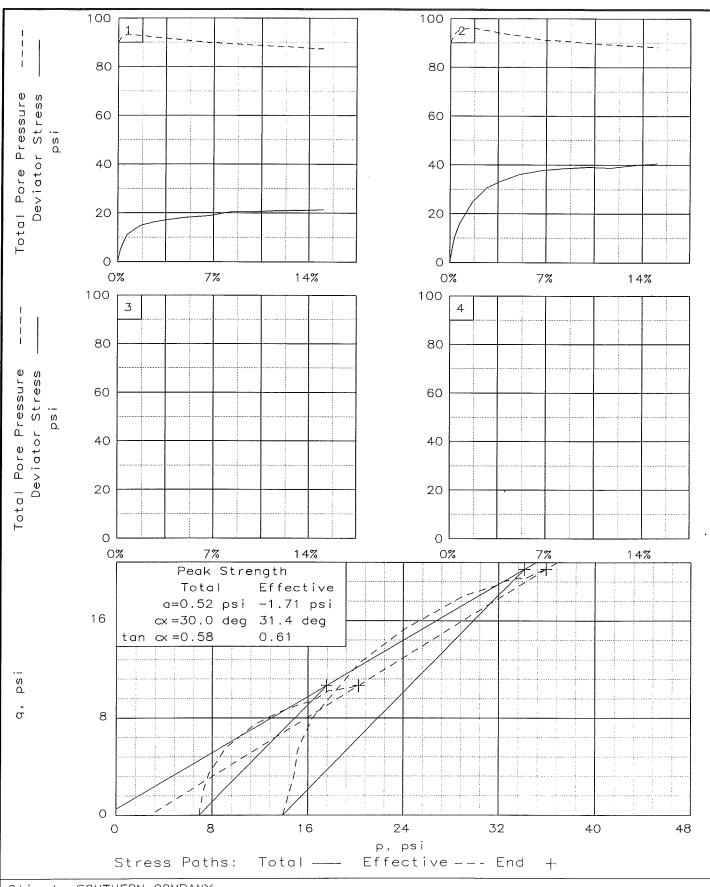
Lab No: 1

SA	MPLE NO.:	1	2	
_	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	87.7 96.1 1.265 1.40	1.077	
TES	VOID RATIO	90.0 100.0 1.207 1.38	100.0 1.067	
BA CE FA UL	rain rate, %/min CK PRESSURE, psi LL PRESSURE, psi IL. STRESS, psi FOTAL PORE PR., psi T. STRESS, psi FOTAL PORE PR., psi FAILURE, psi	0.0080 90.0 96.9 21.3 87.3	0.0080 90.0 103.9 40.5 88.2	
₫3	FAILURE, psi	9.6	15.7	

CLIENT: SOUTHERN COMPANY

PROJECT: PLANT BOWEN STABILITY

SAMPLE LOCATION: PLANT BOWEN


DCP-7

PROJ. NO.: 2051

DATE: 02/12/2003

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Client: SOUTHERN COMPANY

Project: PLANT BOWEN STABILITY Location: PLANT BOWEN DCP-7

File: GPBOW1

Project No.: 2051

Lab No: 1

Data file: GPBOW1

Project and Sample Data

Date: 02/12/2003

Client: SOUTHERN COMPANY

Project: PLANT BOWEN STABILITY
Sample location: PLANT BOWEN DCP-7

Sample description:

Remarks: BORING NO: AH-1 SAMPLE NO: UD-1

DEPTH: 11.0-13.0 FEET

· Fig no.: 1 2nd page Fig no. (if applicable): 1

Type of sample: UD

Specific gravity= 3.18 LL= 65 PL= 32 PI= 33

Test method: Corps of Eng. - saturation assumed

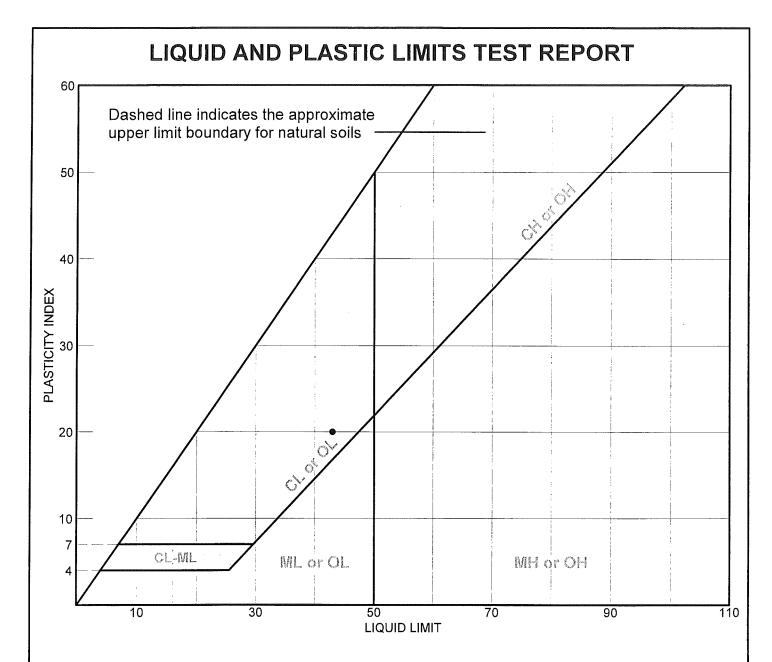
Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare:	Initial 111.580 89.120 30.370	Saturated	Consolidated	Final 150.970 106.370 30.370
Weight, gms:	146.9			
Diameter, in:	1.400	1.385	1.383	
Area, in²:	1.539	1.507	1.503	
Height, in:	3.000	2.999	2.994	
Net decrease in height, in:		0.001	0.005	
Net decrease in water volum	e, cc:	0.000	0.300	
{ pisture:	38.2	38.2	37.9	58.7
Wet density, pcf:	121.2	123.9	124.1	
Dry density, pcf:	87.7	89.6	90.0	
Void ratio:	1.2647	1.2157	1.2067	
% Saturation:	96.1	100.0	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Consolidation cell pressure = 96.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 6.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 21.34 psi at reading no. 13
ULT. STRESS = not selected

					Tes	st Read	dings	Data	for	Spe	cimen	No. 1
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
	0.0	0.000	79.0	0.0	0.0	0.00	6.90	4 00	1 00	00.00	4 00	0.00
1								6.90		90.00	6.90	0.00
	5.0		99.0	6.2	0.2	4.14	5.20	9.34	1.80	91.70	7.27	2.07
2	10.0	0.010	112.0	10.3	0.3	6.83	4.30	11.13	2.59	92.60	7.71	3.41
3	20.0	0.020	133.0	16.8	0.7	11.13	3.60	14.73	4.09	93.30	9.17	5.57
4	50.0	0.050	152.0	22.8	1.7	14.90	4.10	19.00	4.63	92.80	11.55	7.45
5	80.0	0.080	160.0	25.3	2.7	16.36	4.80	21.16	4.41	92.10	12.98	8.18
6	110.0	0.110	165.0	26.8	3.7	17.20	5.30	22.50	4.24	91.60	13.90	8.60
7	150.0	0.150	171.0	28.7	5.0	18.14	6.10	24.24	3.97	90.80	15.17	9.07
8	200.0	0.200	176.0	30.3	6.7	18.79	7.00	25.79	3.68	89.90	16.40	9.40
9	250.0	0.250	187.0	33.7	8.4	20.55	7.50	28.05	3.74	89.40	17.77	10.27
10	300.0	0.300	189.0	34.3	10.0	20.55	8.10	28.65	3.54	88.80	18.37	10.27
11	350.0	0.350	193.0	35.6	11.7	20.90	8.60	29.50	3.43	88.30	19.05	10.45
12	400.0	0.400	196.0	36.5	13.4	21.04	9.10	30.14	3.31	87.80	19.62	10.52
13	450.0	0.450	200.0	37.8	15.0	21.34	9.60	30.94	3.22	87.30	20.27	10.67


Initial 98.810 81.460 30.260	Saturated	Consolidated	Final 157.750 113.430 30.260
1.400	1.400	1.400	
1.539	1.540	1.539	
3.000	2.999	2.986	
	0.001	0.013	
e, cc:	0.000	0.400	
33.9	33.9	33.5	53.3
127.9	127.9	128.3	
95.6	95.6	96.1	
1.0774	1.0776	1.0666	
100.0	100.0	100.0	
	98.810 81.460 30.260 155.1 1.400 1.539 3.000 e, cc: 33.9 127.9 95.6 1.0774	98.810 81.460 30.260 155.1 1.400 1.539 3.000 2.999 0.001 0.001 0.000 33.9 127.9 95.6 1.0774 1.0776	98.810 81.460 30.260 155.1 1.400 1.539 3.000 2.999 2.986 0.001 0.013 2.000 33.9 33.9 127.9 127.9 128.3 95.6 95.6 96.1 1.0774 1.0776 1.0666

Test Readings Data for Specimen No. 2

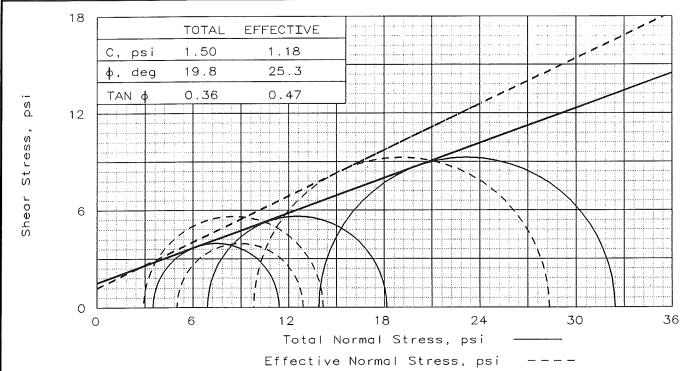
Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 103.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 13.90 psi
Strain rate, %/min = 0.01
FATL. STRESS = 40.49 psi at reading no. 13

No.	Def.	Def.	Load	Load	Strain	Deviator	Effective Stresses		Pore	P psi	Q psi	
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	ps i		
0	0.0	0.000	76.0	0.0	0.0	0.00	13.90	13.90	1.00	90.00	13.90	0.00
1	5.0	0.005	107.0	9.6	0.2	6.25	11.70	17.95	1.53	92.20	14.83	3.13
2	10.0	0.010	129.0	16.5	0.3	10.67	9.80	20.47	2.09	94.10	15.14	5.34
3	20.0	0.020	155.0	24.6	0.7	15.85	8.40	24.25	2.89	95.50	16.33	7.93
4	50.0	0.050	202.0	39.2	1.7	25.03	7.80	32.83	4.21	96.10	20.31	12.51
5	80.0	0.080	232.0	48.5	2.7	30.67	8.80	39.47	4.49	95.10	24.13	15.33
6	110.0	0.110	247.0	53.1	3.7	33.27	9.90	43.17	4.36	94.00	26.54	16.64
7	150.0	0.150	264.0	58.4	5.0	36.07	11.00	47.07	4.28	92.90	29.03	18.03
8	200.0	0.200	276.0	62.2	6.7	37.70	12.80	50.50	3.94	91.10	31.65	18.85
9	250.0	0.250	284.0	64.6	8.4	38.50	13.20	51.70	3.92	90.70	32.45	19.25
10	300.0	0.300	291.0	66.8	10.0	39.07	14.10	53.17	3.77	89.80	33.63	19.53
11	350.0	0.350	294.0	67.8	11.7	38.88	14.70	53.58	3.64	89.20	34.14	19.44
12	400.0	0.400	304.0	70.9	13.4	39.89	15.20	55.0 9	3.62	88.70	35.14	19.94
13	450.0	0.450	312.0	73.3	15.1	40.49	15.70	56.19	3.58	88.20	35.94	20.24

Data file: GPBOW1

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	Plant Bowen	2	13-15		23	43	20				

LIQUID AND PLASTIC LIMITS TEST REPORT


Client: Southern Company


SOUTHERN COMPANY

Project: GPCo - Plant Bowen Stability

Project No.: 2051

Lab No. 2

TYPE OF TEST:

CU with Pore Pressures

SAMPLE TYPE: UD DESCRIPTION:

LL= 43

PL=23

PI= 20

SPECIFIC GRAVITY= 2.89 REMARKS: BORING NO: AH-1

SAMPLE NO: UD-2

DEPTH: 13.0-15.0 FEET

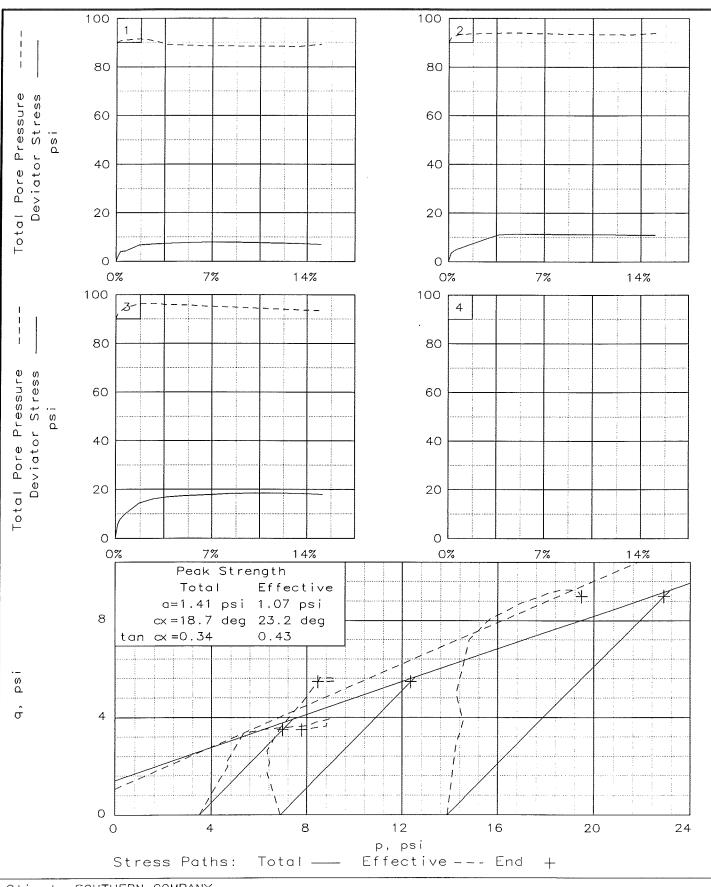
Lab No: 2

SA	MPLE NO.:	1	2	3	
	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	73.4 97.6 1.458 1.40	75.9 100.0 1.377	89.2 100.0 1.022 1.40	
TES	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	75.1 100.0 1.404 1.39	76.8 100.0 1.349	91.1 100.0 0.980 1.39	
BA CE FA UL	LL PRESSURE, psi IL. STRESS, psi TOTAL PORE PR., psi T. STRESS, psi TOTAL PORE PR., psi FAILURE, psi	90.0 93.5 7.9 88.5	90.0 96.9 11.3 94.0	90.0 103.9 18.5 94.1	
⊘ 3	FAILURE, psi	5.0	2.9	9.8	

CLIENT: SOUTHERN COMPANY

PROJECT: PLANT BOWEN STABILITY

SAMPLE LOCATION: PLANT BOWEN


DCP-2

PROJ. NO.: 2051

DATE: 02/12/2003

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Client: SOUTHERN COMPANY

Project: PLANT BOWEN STABILITY Location: PLANT BOWEN DCP-2

File: GPBOW2

Project No.: 2051

Lab No: 2

Project and Sample Data

Date: 02/12/2003

Client: SOUTHERN COMPANY

Project: PLANT BOWEN STABILITY
Sample location: PLANT BOWEN DCP-2

Sample description:

Remarks: BORING NO: AH-1 SAMPLE NO: UD-2

DEPTH: 13.0-15.0 FEET

Fig no.: 2 2nd page Fig no. (if applicable): 2

Type of sample: UD

Specific gravity= 2.89 LL= 43 PL= 23 PI= 20

Test method: Corps of Eng. - saturation assumed

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, qms:	Initial 105.080 80.450 30.430 132.8	Saturated	Consolidated	Final 133.030 84.670 30.430
Diameter, in:	1.400	1.390	1.385	
Area, in ² :	1.539	1.518	1.507	
Height, in:	3.000	2.999	2.996	
Net decrease in height, in:		0.001	0.003	
Net decrease in water volume	e, cc:	0.000	0.600	
jisture:	49.2	49.2	48.6	89.2
Wed density, pcf:	109.5	111.1	111.5	
Dry density, pcf:	73.4	74.5	75.1	
Void ratio:	1.4584	1.4230	1.4036	
% Saturation:	97.6	100.0	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.30179 lbs per input unit
Secondary load ring constant= 0.72586 lbs per input unit
Crossover reading for secondary load ring= 462 input units
Consolidation cell pressure = 93.50 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 3.50 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 7.89 psi at reading no. 9
ULT. STRESS = not selected

					Tes	st Read	dings	Data	for	Spe	cimen	No. 1
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
(0.0	0.000	69.0	0.0	0.0	0.00	3.50	3.50	1.00	90.00	3.50	0.00
1	5.0		81.0		0.2	2.40	3.00	5.40	1.80	90.50	4.20	1.20
2	10.0	0.010	89.0	6.0	0.3	3.99	2.70	6.69	2.48	90.80	4.70	2.00
3	20.0	0.020	90.0	6.3	0.7	4.18	2.50	6.68	2.67	91.00	4.59	2.09
4	50.0	0.050	103.0	10.3	1.7	6.69	2.00	8.69	4.35	91.50	5.35	3.35
5	80.0	0.080	105.0	10.9	2.7	7.02	2.70	9.72	3.60	90.80	6.21	3.51
6	110.0	0.110	107.0	11.5	3.7	7.33	4.40	11.73	2.67	89.10	8.07	3.67
7	150.0	0.150	109.0	12.1	5.0	7.61	4.60	12.21	2.65	88.90	8.40	3.80
8	200.0	0.200	111.0	12.7	6.7	7.85	5.00	12.85	2.57	88.50	8.92	3.92
9	250.0	0.250	112.0	13.0	8.3	7.89	5.00	12.89	2.58	88.50	8.95	3.95
10	300.0	0.300	112.0	13.0	10.0	7.75	5.10	12.85	2.52	88.40	8.97	3.87
11	350.0	0.350	111.0	12.7	11.7	7.43	5.10	12.53	2.46	88.40	8.81	3.71
12	400.0	0.400	111.0	12.7	13.4	7.29	5.20	12.49	2.40	88.30	8.84	3.64
13	450.0	0.450	110.0	12.4	15.0	6.98	4.30	11.28	2.62	89.20	7.79	3.49

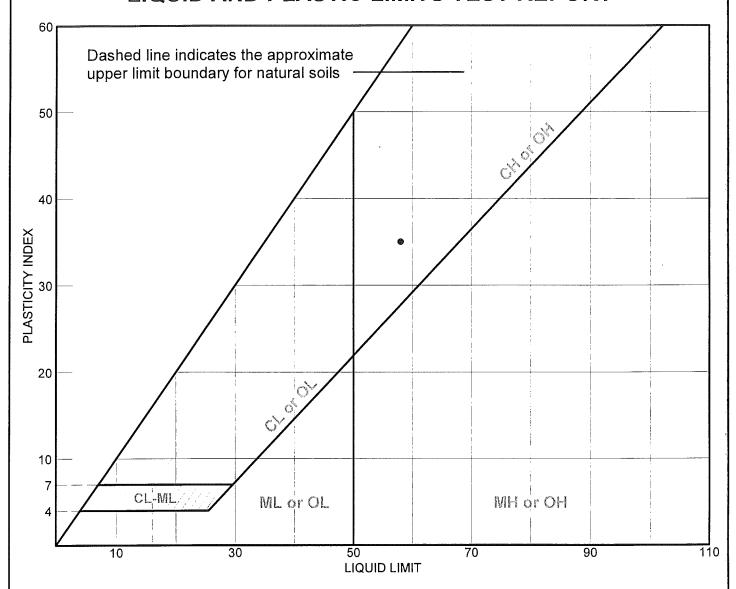
Specimen Parameter Which moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 110.190 84.400 30.300 135.9	Saturated	Consolidated	Final 136.120 87.600 30.300
Diameter, in:	1.400	1.400	1.394	
Area, in ² :	1.539	1.540	1.527	
Height, in:	3.000	2.999	2.989	
Net decrease in height, in:		0.001	0.010	
Net decrease in water volume,	, cc:	0.000	0.900	
% Moisture:	47.7	47.7	46.7	84.7
Wet density, pcf:	112.1	112.1	112.6	
Dry density, pcf:	75.9	75.9	76.8	
Void ratio:	1.3772	1.3777	1.3494	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Consolidation cell pressure = 96.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 6.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 11.26 psi at reading no. 7

I . STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Effective Stresses		Pore	P psi	Q psi	
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	68.0	0.0	0.0	0.00	6.90	6.90	1.00	90.00	6.90	0.00
1	5.0	0.005	85.0	5.3	0.2	3.47	4.60	8.07	1.75	92.30	6.33	1.73
2	10.0	0.010	89.0	6.6	0.3	4.28	4.30	8.58	1.99	92.60	6.44	2.14
3	20.0	0.020	94.0	8.1	0.7	5.28	3.70	8.98	2.43	93.20	6.34	2.64
4	50.0	0.050	104.0	11.2	1.7	7.23	3.30	10.53	3.19	93.60	6.92	3.62
5	80.0	0.080	114.0	14.4	2.7	9.15	3.20	12.35	3.86	93.70	7.77	4.57
6	110.0	0.110	124.0	17.5	3.7	11.02	3.00	14.02	4.67	93.90	8.51	5.51
7	150.0	0.150	126.0	18.1	5.0	11.26	2.90	14.16	4.88	94.00	8.53	5.63
8	200.0	0.200	127.0	18.4	6.7	11.25	3.20	14.45	4.52	93.70	8.82	5.62
9	250.0	0.250	128.0	18.7	8.4	11.23	3.40	14.63	4.30	93.50	9.02	5.62
10	300.0	0.300	129.0	19.0	10.0	11.21	3.50	14.71	4.20	93.40	9.11	5.61
11	350.0	0.350	130.0	19.3	11.7	11.18	3.60	14.78	4.11	93.30	9.19	5.59
12	400.0	0.400	130.0	19.3	13.4	10.97	3.70	14.67	3.97	93.20	9.19	5.49
13	450.0	0.450	131.0	19.7	15.1	10.93	3.00	13.93	4.64	93.90	8.47	5.47


Specimen Parameter We moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 105.500 85.850 30.300 146.4	Saturated	Consolidated	Final 147.850 105.860 30.300
Diameter, in:	1.400	1.400	1.393	
Area, in ² :	1.539	1.540	1.524	
Height, in:	3.000	2.999	2.967	
Net decrease in height, in:		0.001	0.032	
Net decrease in water volume	, cc:	0.000	1.600	
% Moisture:	35.4	35.4	33.9	55.6
Wet density, pcf:	120.8	120.8	122.0	
Dry density, pcf:	89.2	89.2	91.1	
Void ratio:	1.0218	1.0223	0.9795	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 3

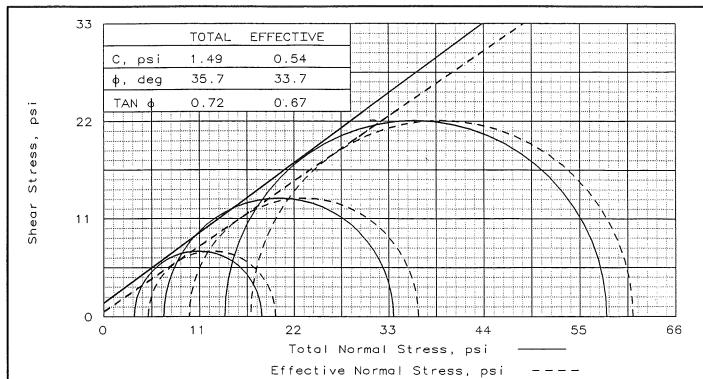
Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 103.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 13.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 18.53 psi at reading no. 11
1 . STRESS = not selected

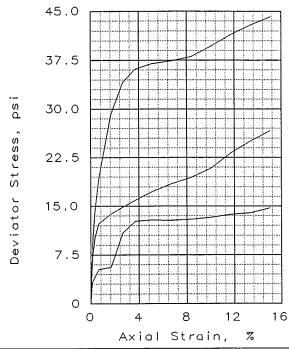
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	77.0	0.0	0.0	0.00	13.90	13.90	1.00	90.00	13.90	0.00
1	5.0	0.005	105.0	8.7	0.2	5.70	11.40	17.10	1.50	92.50	14.25	2.85
2	10.0	0.010	115.0	11.8	0.3	7.72	10.70	18.42	1.72	93.20	14.56	3.86
3	20.0	0.020	126.0	15.2	0.7	9.93	9.30	19.23	2.07	94.60	14.26	4.96
4	50.0	0.050	149.0	22.4	1.7	14.44	7.60	22.04	2.90	96.30	14.82	7.22
5	80.0	0.080	158.0	25.2	2.7	16.07	7.60	23.67	3.11	96.30	15.64	8.04
6	110.0	0.110	163.0	26.7	3.7	16.89	8.00	24.89	3.11	95.90	16.44	8.44
7	150.0	0.150	167.0	28.0	5.1	17.43	8.20	25.63	3.13	95.70	16.91	8.71
8	200.0	0.200	171.0	29.2	6.7	17.88	8.70	26.58	3.05	95.20	17.64	8.94
9	250.0	0.250	175.0	30.5	8.4	18.30	9.00	27.30	3.03	94.90	18.15	9.15
10	300.0	0.300	178.0	31.4	10.1	18.52	9.40	27.92	2.97	94.50	18.66	9.26
11	350.0	0.350	180.0	32.0	11.8	18.53	9.80	28.33	2.89	94.10	19.06	9.26
12	400.0	0.400	181.0	32.3	13.5	18.35	10.20	28.55	2.80	93.70	19.38	9.18
13	450.0	0.450	181.0	32.3	15.2	17.99	10.50	28.49	2.71	93.40	19.50	9.00

LIQUID AND PLASTIC LIMITS TEST REPORT

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
•	Plant Bowen	3	12-14		23	58	35					

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Stability

Project No.: 2051

Lab No. 3

TYPE OF TEST:

CU with Pore Pressures

SAMPLE TYPE: UD DESCRIPTION:

LL= 58

PL= 23

PI= 35

SPECIFIC GRAVITY= 2.72 REMARKS: BORING NO: AH-2

SAMPLE NO: UD-5

DEPTH: 12.0-14.0 FEET

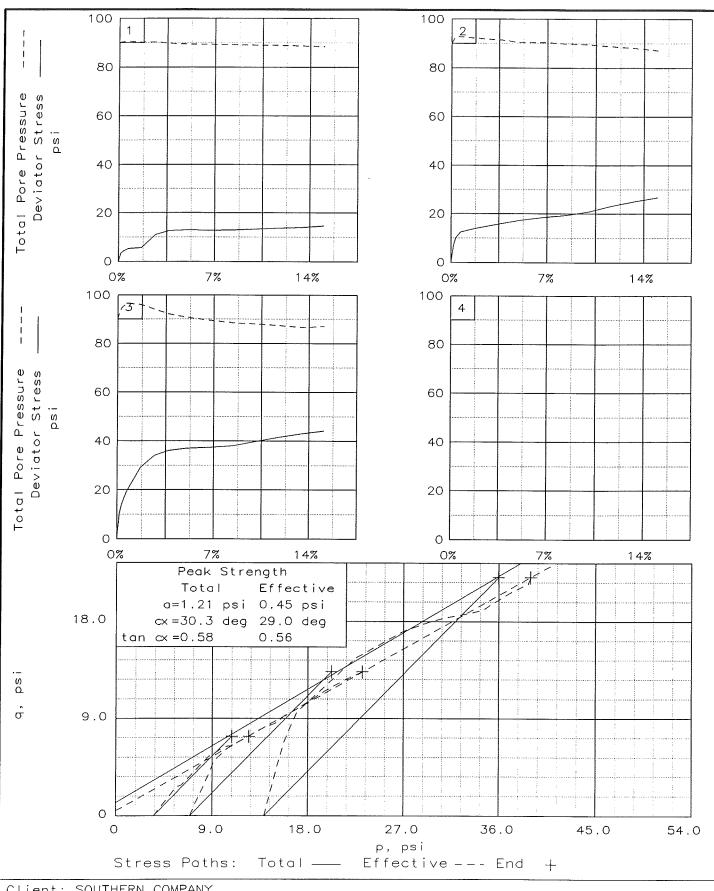
Lab No: 3

SA	MPLE NO.:	1	2	3	
ITT		103.0	103.5 100.0 0.641 1.40	103.9 100.0 0.635 1.40	
TE	DRY DENSITY, pcf SATURATION, %	100.0 0.645	104.0 100.0 0.633	104.3 100.0 0.628	
St BA CE FA UL		0.0090 90.0 93.5 14.7 88.4	0.0090 90.0 96.9 26.6	0.0090 90.0 103.9 44.2 87.0	
	FAILURE, psi		9.8		

CLIENT: SOUTHERN COMPANY

PROJECT: PLANT BOWEN STABILITY

SAMPLE LOCATION: PLANT BOWEN


DCP-14

PROJ. NO.: 2051

DATE: 02/12/2003

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Client: SOUTHERN COMPANY

Project: PLANT BOWEN STABILITY Location: PLANT BOWEN DCP-14

File: GPBOW3

Project No.: 2051

Lab No: 3

Project and Sample Data

Dace: 02/12/2003

Client: SOUTHERN COMPANY

Project: PLANT BOWEN STABILITY

Sample location: PLANT BOWEN DCP-14

Sample description:

Remarks: BORING NO: AH-2 SAMPLE NO: UD-5

DEPTH: 12.0-14.0 FEET

Fig no.: 3 2nd page Fig no. (if applicable): 3

Type of sample: UD

Specific gravity= 2.72 LL= 58 PL= 23 PI= 35

Test method: Corps of Eng. - saturation assumed

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 107.470 92.660 30.370 154.6	Saturated	Consolidated	Final 152.760 119.230 30.370
Diameter, in:	1.400	1.400	1.399	
Area, in ² :	1.539	1.539	1.538	
Height, in:	3.000	2.999	2.997	
Net decrease in height, in:		0.001	0.002	
Net decrease in water volum		0.000	0.100	
/ 'oisture:	23.8	23.8	23.7	37.7
density, pcf:	127.5	127.6	127.7	
Dry density, pcf:	103.0	103.1	103.3	
Void ratio:	0.6481	0.6467	0.6445	•
% Saturation:	99.8	100.0	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.30179 lbs per input unit
Secondary load ring constant= 0.72586 lbs per input unit
Crossover reading for secondary load ring= 462 input units
Consolidation cell pressure = 93.50 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 3.50 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 14.68 psi at reading no. 13
ULT. STRESS = not selected

Test	Readings	Data	for	Specimen	No.	1
エーロー	1/20711100	Daca	T O T		110.	-

No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
į	0.0	0.000	69.0	0.0	0.0	0.00	3.50	3,50	1.00	90.00	3.50	0.00
1	0.0											
1	5.0	0.005	86.0	5.1	0.2	3.33	3.20	6.53	2.04	90.30	4.87	1.67
2	10.0	0.010	90.0	6.3	0.3	4.11	3.10	7.21	2.33_	90.40	5.15	2.05
3	20.0	0.020	96.0	8.1	0.7	5.26	3.00	8.26	2.75	90.50	5.63	2.63
4	50.0	0.050	98.0	8.8	1.7	5.60	3.30	8.90	2.70	90.20	6.10	2.80
5	80.0	0.080	126.0	17.2	2.7	10.89	3.20	14.09	4.40	90.30	8.64	5.44
6	110.0	0.110	136.0	20.2	3.7	12.67	3.80	16.47	4.33	89.70	10.13	6.33
7	150.0	0.150	138.0	20.8	5.0	12.87	4.10	16.97	4.14	89.40	10.53	6.43
8	200.0	0.200	139.0	21.1	6.7	12.82	4.20	17.02	4.05	89.30	10.61	6.41
9	250.0	0.250	141.0	21.7	8.3	12.95	4.30	17.25	4.01	89.20	10.78	6.48
10	300.0	0.300	144.0	22.6	10.0	13.25	4.50	17 <i>.7</i> 5	3.94	89.00	11.12	6.62
11	350.0	0.350	148.0	23.8	11.7	13.70	4.60	18.30	3.98	88.90	11.45	6.85
12	400.0	0.400	151.0	24.7	13.3	13.95	4.80	18.75	3.91	88.70	11.77	6.97
13	450.0	0.450	157.0	26.6	15.0	14.68	5.10	19.78	3.88	88.40	12.44	7.34

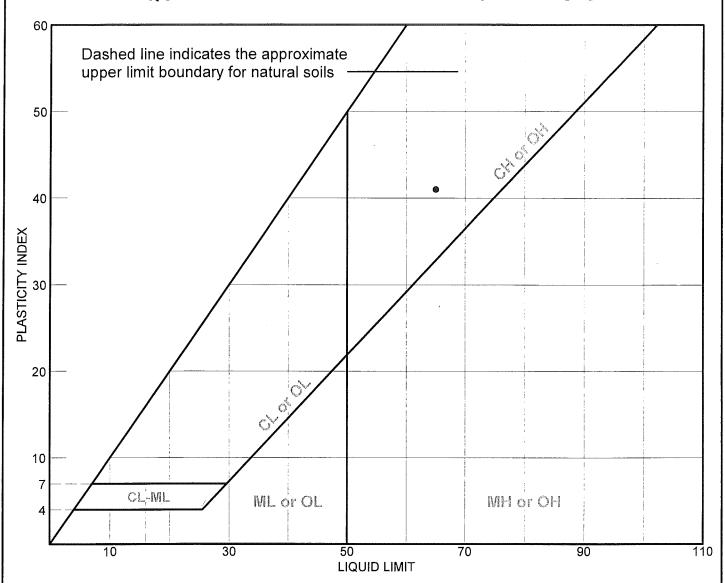
Specimen Parameter Wt. moist soil and tare: dry soil and tare: Wc. of tare:	Initial 124.110 106.210 30.300	Saturated	Consolidated	Final 156.100 122.200 30.300
Weight, gms:	155.0	1		
Diameter, in:	1.400	1.400	1.397	
Area, in²:	1.539	1.540	1.533	
Height, in:	3.000	2.999`	2.997	
Net decrease in height, in:		0.001	0.002	
Net decrease in water volum	e, cc:	0.000	0.400	
% Moisture:	23.6	23.6	23.3	36.9
Wet density, pcf:	127.9	127.8	128.2	
Dry density, pcf:	103.5	103.5	104.0	
Void ratio:	0.6411	0.6414	0.6327	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Consolidation cell pressure = 96.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 6.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 26.63 psi at reading no. 13

[STRESS = not selected]

No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi	
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.			
	Units		Units			psi	psi	psi	Ratio	psi			
0	0.0	0.000	68.0	0.0	0.0	0.00	6.90	6.90	1.00	90.00	6.90	0.00	
1	5.0	0.005	103.0	10.9	0.2	7.11	5.00	12.11	2.42	91.90	8.56	3.56	
2	10.0	0.010	118.0	15.6	0.3	10.14	4.10	14.24	3.47	92.80	9.17	5.07	
3	20.0	0.020	129.0	19.0	0.7	12.33	4.20	16.53	3.94	92.70	10.37	6.17	
4	50.0	0.050	137.0	21.5	1.7	13.81	4.70	18.51	3.94	92.20	11.60	6.90	
5	80.0	0.080	143.0	23.4	2.7	14.86	5.10	19.96	3.91	91.80	12.53	7.43	
6	110.0	0.110	149.0	25.3	3.7	15.88	5.50	21.38	3.89	91.40	13.44	7.94	
7	150.0	0.150	157.0	27.8	5.0	17.21	6.50	23.71	3.65	90.40	15.10	8.60	
8	200.0	0.200	165.0	30.3	6.7	18.42	6.50	24.92	3.83	90.40	15.71	9.21	
9	250.0	0.250	172.0	32.4	8.3	19.40	7.00	26.40	3.77	89.90	16.70	9.70	
10	300.0	0.300	182.0	35.6	10.0	20.88	7.40	28.28	3.82	89.50	17.84	10.44	
11	350.0	0.350	197.0	40.2	11.7	23.19	8.10	31.29	3.86	88.80	19.69	11.59	
12	400.0	0.400	210.0	44.3	13.3	25.04	8.90	33.94	3.81	88.00	21.42	12.52	
13	450.0	0.450	222.0	48.0	15.0	26.63	9.80	36.43	3.72	87.10	23.12	13.32	


Specimen Parameter Wt. moist soil and tare: dry soil and tare: Wc. of tare:	Initial 107.580 92.960 30.310	Saturated	Consolidated	Final 158.640 123.780 30.100
Weight, gms:	155.3	ya.		
Diameter, in:	1.400	1.400	1.401	
Area, in²:	1.539	1.540	1.542	
Height, in:	3.000	2.999`	2.984	
Net decrease in height, in:		0.001	0.015	
Net decrease in water volume	e, cc:	0.000	0.300	
% Moisture:	23.3	23.3	23.1	37.2
Wet density, pcf:	128.1	128.1	128.4	
Dry density, pcf:	103.9	103.9	104.3	
Void ratio:	0.6346	0.6347	0.6283	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 3

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 103.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 13.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 44.17 psi at reading no. 13
7 `. STRESS = not selected

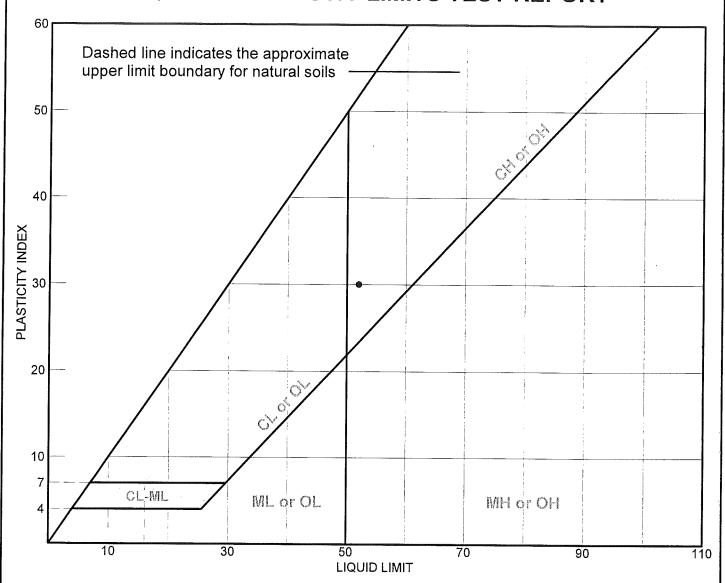
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	77.0	0.0	0.0	0.00	13.90	13.90	1.00	90.00	13.90	0.00
1	5.0	0.005	127.0	15.5	0.2	10.06	10.20	20.26	1.99	93.70	15.23	5.03
2	10.0	0.010	147.0	21.8	0.3	14.06	8.80	22.86	2.60	95.10	15.83	7.03
3	20.0	0.020	173.0	29.8	0.7	19.22	7.40	26.62	3.60	96.50	17.01	9.61
4	50.0	0.050	224.0	45.7	1.7	29.14	7.90	37.04	4.69	96.00	22.47	14.57
5	80.0	0.080	251.0	54.1	2.7	34.14	9.90	44.04	4.45	94.00	26.97	17.07
6	110.0	0.110	263.0	57.8	3.7	36.12	11.70	47.82	4.09	92.20	29.76	18.06
7	150.0	0.150	270.0	60.0	5.0	36.95	13.20	50.15	3.80	90.70	31.68	18.48
8	200.0	0.200	276.0	61.8	6.7	37.43	14.40	51.83	3.60	89.50	33.11	18.71
9	250.0	0.250	283.0	64.0	8.4	38.05	15.40	53.45	3.47	88.50	34.43	19.03
10	300.0	0.300	296.0	68.1	10.1	39.71	15.90	55.61	3.50	88.00	35.76	19.86
11	350.0	0.350	310.0	72.4	11.7	41.46	16.50	57.96	3.51	87.40	37.23	20.73
12	400.0	0.400	323.0	76.5	13.4	42.95	17.30	60.25	3.48	86.60	38.77	21.47
13	450.0	0.450	335.0	80.2	15.1	44.17	16.90	61.07	3.61	87.00	38.98	22.08

LIQUID AND PLASTIC LIMITS TEST REPORT

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	Plant Bowen	4	10-12		24	65	41				

LIQUID AND PLASTIC LIMITS TEST REPORT

SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Stability

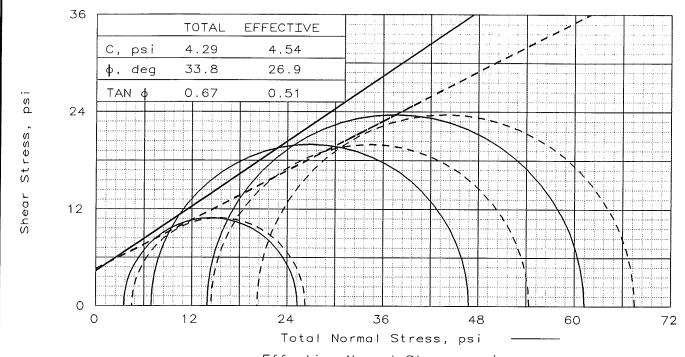
Project No.: 2051

Lab No. 4

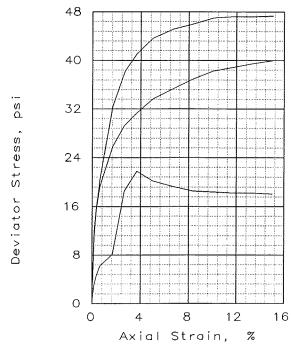
LIQUID AND PLASTIC LIMITS TEST REPORT

SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs		
•	Plant Bowen	5	10-12		22	52	30			

LIQUID AND PLASTIC LIMITS TEST REPORT


Client: Southern Company

SOUTHERN COMPANY


Project: GPCo - Plant Bowen Stability

Project No.: 2051

Lab No. 5

Effective Normal Stress, psi

TYPE OF TEST:

CU with Pore Pressures

SAMPLE TYPE: UD DESCRIPTION:

LL=52PL= 22

PI= 30

SPECIFIC GRAVITY= 2.75 REMARKS: SAMPLE NO: UD-4 DEPTH: 10.0-12.0 FEET

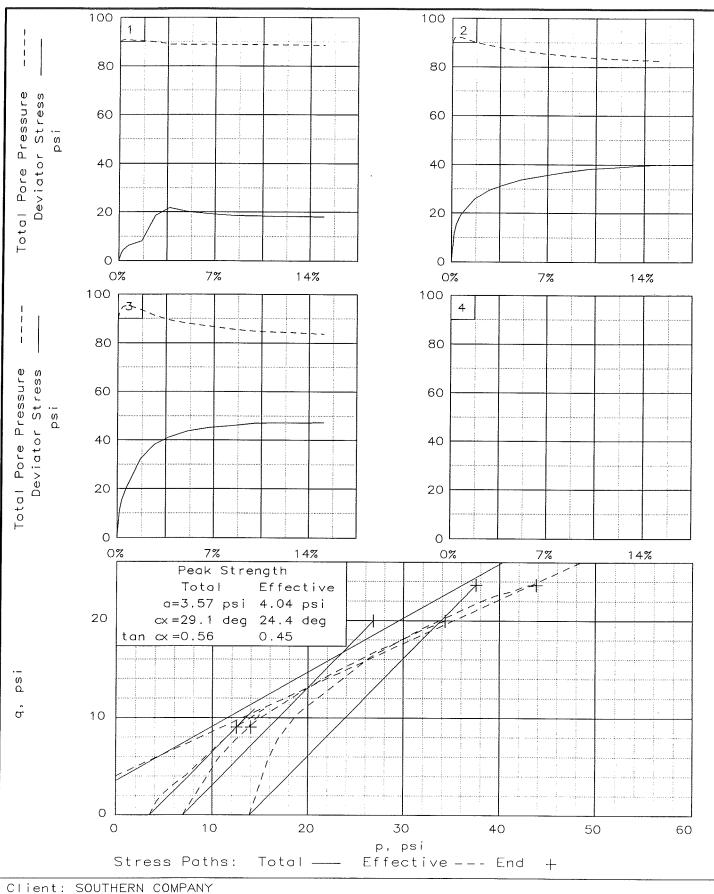
SAMPLE NO.:	1	2	3	
WATER CONTENT, % DRY DENSITY, pcf H SATURATION, % VOID RATIO Z DIAMETER, in HEIGHT, in	100.4 100.0 0.709 1.40	100.8 100.0 0.703	105.1 98.2 0.633 1.40	
WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	100.8 100.0 0.703 1.40	101.4 100.0 0.694	106.3 100.0 0.615 1.40	
Strain rate, %/min BACK PRESSURE, psi CELL PRESSURE, psi FAIL. STRESS, psi TOTAL PORE PR., psi ULT. STRESS, psi TOTAL PORE PR., psi	0.0080 90.0 93.5 21.8 89.0	0.0080 90.0 96.9 39.9 82.5	0.0080 90.0 103.9 47.3 83.7	
Ō ₁ FAILURE, psi Ō ₃ FAILURE, psi		54.3 14.4		

CLIENT: SOUTHERN COMPANY

PROJECT: GPCo - PLANT BOWEN STABILITY

SAMPLE LOCATION: PLANT BOWEN

DCP-14


PROJ. NO.: 2051

DATE: 02/19/2003

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lab No: 5

Project: GPCo - PLANT BOWEN STABILITY

Location: PLANT BOWEN DCP-14

File: GPBOW5 Project No.: 2051

CU with Pore Pressures

Project and Sample Data

Date: 02/19/2003

Client: SOUTHERN COMPANY

Project: GPCo - PLANT BOWEN STABILITY Sample location: PLANT BOWEN DCP-14

Sample description:

Remarks: SAMPLE NO: UD-4 DEPTH: 10.0-12.0 FEET

Fig no.: 5 2nd page Fig no. (if applicable): 5

Type of sample: UD

Specific gravity= 2.75 LL= 52 PI = 30

Test method: Corps of Eng. - saturation assumed

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 116.420 98.760 30.300 153.2	Saturated	Consolidated	Final 155.570 120.570 30.300
Diameter, in:	1.400	1.400	1.398	
Area, in²:	1.539	1.540	1.535	
Height, in:	3.000	2.999	2.997	
Net decrease in height, in:		0.001	0.002	
Net decrease in water volume	, cc:	0.000	0.300	
<pre></pre>	25.8	25.8	25.5	38.8
Wel density, pcf:	126.4	126.3	126.6	
Dry density, pcf:	100.4	100.4	100.8	
Void ratio:	0.7092	0.7094	0.7026	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit Primary load ring constant = 0.30179 lbs per input unit Secondary load ring constant= 0.72586 lbs per input unit Crossover reading for secondary load ring= 462 input units Consolidation cell pressure = 93.50 psi Consolidation back pressure = 90.00 psi Consolidation effective confining stress = 3.50 psi Strain rate, %/min = 0.01 FAIL. STRESS = 21.78 psi at reading no. 6 ULT. STRESS = not selected

					Tes	st Read	dings	Data	for	Spe	cimen	No. 1	
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi	
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.			
	Units		Units			psi	psi	psi	Ratio	psi			
į	0.0	0.000	69.0	0.0	0.0	0.00	3.50	3.50	1.00	90.00	3.50	0.00	
1	5.0	0.005	84.0	4.5	0.2	2.94	2.80	5.74		90.70	4.27	1.47	
2	10.0	0.010	92.0	6.9	0.3	4.51	2.70	7.21	2.67	90.80	4.95	2.25	
3	20.0	0.020	101.0	9.7	0.7	6.25	2.80	9.05	3.23	90.70	5.92	3.12	
4	50.0	0.050	111.0	12.7	1.7	8.12	3.10	11.22	3.62	90.40	7.16	4.06	
5	80.0	0.080	166.0	29.3	2.7	18.56	3.60	22.16	6.16	89.90	12.88	9.28	
6	110.0	0.110	184.0	34.7	3.7	21.78	4.50	26.28	5.84	89.00	15.39	10.89	
7	150.0	0.150	177.0	32.6	5.0	20.17	4.70	24.87	5.29	88.80	14.79	10.09	
8	200.0	0.200	174.0	31.7	6.7	19.27	4.60	23.87	5.19	88.90	14.23	9.63	
9	250.0	0.250	172.0	31.1	8.3	18.56	4.70	23.26	4.95	88.80	13.98	9.28	
10	300.0	0.300	173.0	31.4	10.0	18.40	4.70	23.10	4.92	88.80	13.90	9.20	
11	350.0	0.350	174.0	31.7	11.7	18.23	4.80	23.03	4.80	88.70	13.92	9.12	
12	400.0	0.400	176.0	32.3	13.3	18.23	4.90	23.13	4.72	88.60	14.01	9.11	
13	450.0	0.450	177.0	32.6	15.0	18.05	5.00	23.05	4.61	88.50	14.02	9.02	

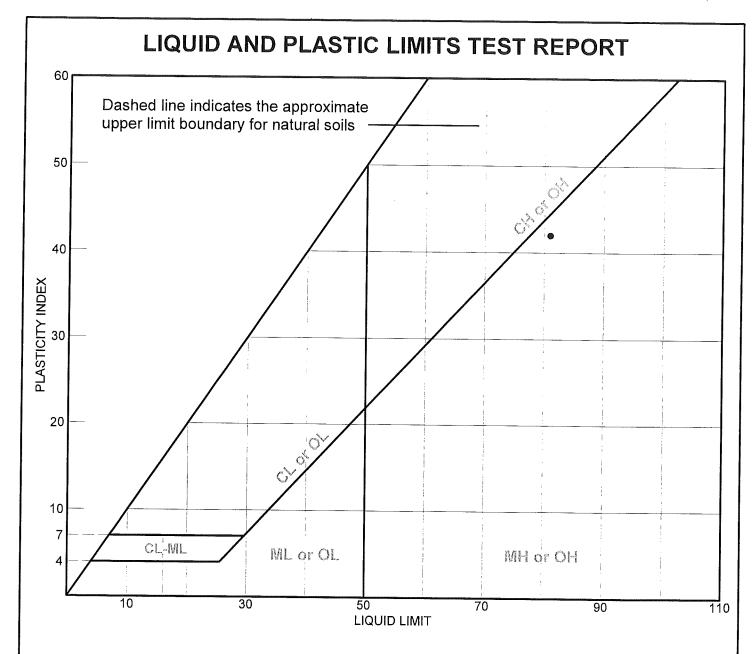
Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 108.080 92.250 30.310 153.4	Saturated	Consolidated	Final 155.910 122.780 30.310
Diameter, in:	1.400	1.400	1.397	
Area, in ² :	1.539	1.540	1.533	
Height, in:	3.000	2.999	2.996	
Net decrease in height, in:		0.001	0.003	
Net decrease in water volume	, cc:	0.000	0.400	
% Moisture:	25.6	25.6	25.2	35.8
Wet density, pcf:	126.6	126.6	126.9	
Dry density, pcf:	100.8	100.8	101.4	
Void ratio:	0.7031	0.7028	0.6938	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.31199 lbs per input unit Secondary load ring constant= 0.72824 lbs per input unit Crossover reading for secondary load ring= 480 input units Consolidation cell pressure = 96.90 psi Consolidation back pressure = 90.00 psi Consolidation effective confining stress = 6.90 psi Strain rate, %/min = 0.01

F^IL. STRESS = 39.95 psi at reading no. 13

No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	68.0	0.0	0.0	0.00	6.90	6.90	1.00	90.00	6.90	0.00
1	5.0	0.005	125.0	17.8	0.2	11.58	4.80	16.38	3.41	92.10	10.59	5.79
2	10.0	0.010	144.0	23.7	0.3	15.42	4.70	20.12	4.28	92.20	12.41	7.71
3	20.0	0.020	164.0	30.0	0.7	19.41	4.90	24.31	4.96	92.00	14.60	9.70
4	50.0	0.050	197.0	40.2	1.7	25.81	6.80	32.61	4.80	90.10	19.71	12.91
5	80.0	0.080	216.0	46.2	2.7	29.31	8.10	37.41	4.62	88.80	22.76	14.66
6	110.0	0.110	228.0	49.9	3.7	31.37	9.20	40.57	4.41	87.70	24.88	15.68
7	150.0	0.150	242.0	54.3	5.0	33.64	10.30	43.94	4.27	86.60	27.12	16.82
8	200.0	0.200	254.0	58.0	6.7	35.33	11.50	46.83	4.07	85.40	29.16	17.66
9	250.0	0.250	266.0	61.8	8.3	36.93	12.30	49.23	4.00	84.60	30.77	18.47
10	300.0	0.300	277.0	65.2	10.0	38.27	13.10	51.37	3.92	83.80	32.24	19.14
11	350.0	0.350	284.0	67.4	11.7	38.82	13.60	52.42	3.85	83.30	33.01	19.41
12	400.0	0.400	292.0	69.9	13.4	39.50	14.00	53.50	3.82	82.90	33.75	19.75
13	450.0	0.450	299.0	72.1	15.0	39.95	14.40	54.35	3.77	82.50	34.37	19.97


Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 118.220 102.020 30.350 156.3	Saturated	Consolidated	Final 157.390 124.850 30.350
Diameter, in:	1.400	1.395	1.395	
Area, in²:	1.539	1.529	1.529	
Height, in:	3.000	2.999	2.988	
Net decrease in height, in:		0.001	0.011	
Net decrease in water volume	e, cc:	0.000	0.300	
% Moisture:	22.6	22.6	22.4	34.4
Wet density, pcf:	128.9	129.8	130.1	
Dry density, pcf:	105.1	105.9	106.3	
Void ratio:	0.6329	0.6216	0.6151	
% Saturation:	98.2	100.0	100.0	

Test Readings Data for Specimen No. 3

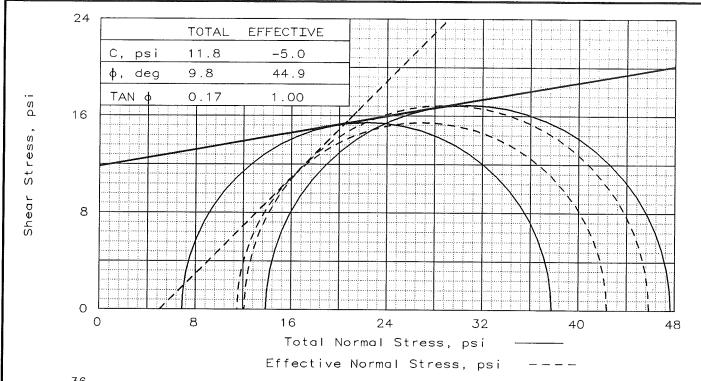
Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.3108 lbs per input unit Secondary load ring constant= 0.77882 lbs per input unit Crossover reading for secondary load ring= 474 input units Consolidation cell pressure = 103.90 psi Consolidation back pressure = 90.00 psi Consolidation effective confining stress = 13.90 psi Strain rate, %/min = 0.01 F^TL. STRESS = 47.32 psi at reading no. 13

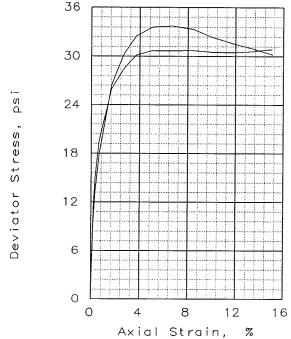
No.	Def. Dial Units	Def. in	Load Dial Units	Load lbs	Strain %	Deviator Stress psi	Effect Minor psi	ive Str Major psi	esses 1:3 Ratio	Pore Pres. psi	P psi	Q psi
0	0.0	0.000	78.0	0.0	0.0	0.00	13.90	13.90	1.00	90.00	13.90	0.00
1	5.0	0.005	132.0	16.8	0.2	10.96	10.30	21.26	2.06	93.60	15.78	5.48
2	10.0	0.010	154.0	23.6	0.3	15.40	9.10	24.50	2.69	94.80	16.80	7.70
3	20.0	0.020	180.0	31.7	0.7	20.60	8.50	29.10	3.42	95.40	18.80	10.30
4	50.0	0.050	240.0	50.3	1.7	32.38	10.30	42.68	4.14	93.60	26.49	16.19
5	80.0	0.080	271.0	60.0	2.7	38.19	12.70	50.89	4.01	91.20	31.79	19.09
6	110.0	0.110	288.0	65.3	3.7	41.12	14.40	55.52	3.86	89.50	34.96	20.56
7	150.0	0.150	304.0	70.2	5.0	43.64	15.90	59.54	3.74	88.00	37.72	21.82
8	200.0	0.200	316.0	74.0	6.7	45.15	17.00	62.15	3.66	86.90	39.57	22.57
9	250.0	0.250	325.0	76.8	8.4	46.01	18.30	64.31	3.51	85.60	41.31	23.01
10	300.0	0.300	335.0	79.9	10.0	47.00	19.10	66.10	3.46	84.80	42.60	23.50
11	350.0	0.350	341.0	81.7	11.7	47.21	19.40	66.61	3.43	84.50	43.00	23.60
12	400.0	0.400	346.0	83.3	13.4	47.19	19.80	66.99	3.38	84.10	43.40	23.60
13	450.0	0.450	352.0	85.2	15.1	47.32	20.20	67.52	3.34	83.70	43.86	23.66

Data file: GPBOW5

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
•	Plant Bowen	6	12-14		39	81	42					

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Stability

Project No.: 2051

Lab No. 6

TYPE OF TEST:

CU with Pore Pressures

SAMPLE TYPE: UD DESCRIPTION:

LL= 81 PL= 39 PI= 42

SPECIFIC GRAVITY= 2.74 REMARKS: SAMPLE NO: UD-5

DEPTH: 12.0-14.0

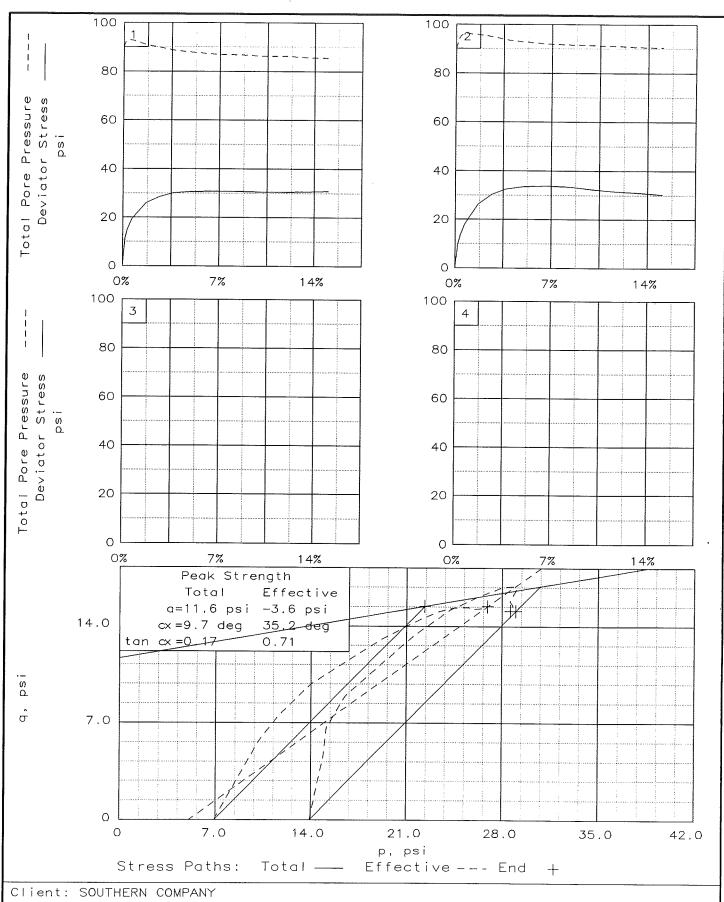
Lab	No:	6

SA	MPLE NO.:	1	2	
INITIAL	• •	38.1 83.7 100.0 1.044 1.40 3.00	84.7 100.0 1.020	
	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in		85.3 100.0 1.006 1.40	
BA CE FA UL	LL PRESSURE, psi	0.0080 90.0 96.9 30.9	0.0080 90.0 103.9 33.8	
1	FAILURE, psi FAILURE, psi		45.9 12.1	

CLIENT: SOUTHERN COMPANY

PROJECT: PLANT BOWEN STABILITY

SAMPLE LOCATION: PLANT BOWEN


DCP-14

PROJ. NO.: 2051

DATE: 02/19/2003

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Project: PLANT BOWEN STABILITY Location: PLANT BOWEN DCP-14

File: GPBOW6

Project No.: 2051

TRIAXIAL COMPRESSION TEST CU with Pore Pressures

2-19-2003 3:11 pm

Data file: GPBOW6

Project and Sample Data

Date: 02/19/2003

Client: SOUTHERN COMPANY

Project: PLANT BOWEN STABILITY
Sample location: PLANT BOWEN DCP-14

Sample description:

Remarks: SAMPLE NO: UD-5 DEPTH: 12.0-14.0

Fig no.: 6 2nd page Fig no. (if applicable): 6

Type of sample: UD

Specific gravity= 2.74 LL= 81 PL= 39 PI= 42

Test method: Corps of Eng. - saturation assumed

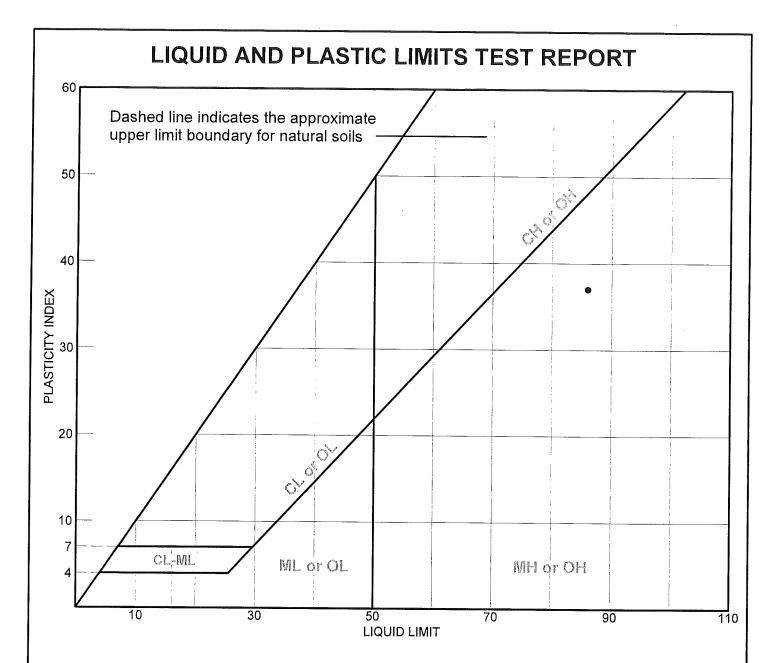
Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, qms:	Initial 124.710 98.650 30.280 140.1	Saturated	Consolidated	Final 143.280 100.550 30.280
Diameter, in: Area, in ² :	1.400	1.400	1.398	
Height, in:	3.000	1.540 2.999	1.536 2.991	
Net decrease in height, in:		0.001	0.008	
Net decrease in water volum	•	0.000	0.400	
{ pisture:	38.1	38.1	37.7	60.8
Wec density, pcf:	115.6	115.6	115.8	
Dry density, pcf:	83.7	83.7	84.1	
Void ratio:	1.0442	1.0444	1.0336	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3119 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Consolidation cell pressure = 96.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 6.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 30.88 psi at reading no. 13
ULT. STRESS = not selected

					Tes	st Read	dings	Data	for	Spe	cimen	No. 1
No.	Def.	Def.	Load	Load		Deviator		ive Str		Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		•
	Units		Units			psi	psi	psi	Ratio	psi		
(0.0	0.000	66.0	0.0	0.0	0.00	6.90	6.90	1.00	90.00	6.90	0.00
1	5.0	0.005	121.0	17.2	0.2	11.15	4.50	15.65	3.48	92.40	10.07	5.57
2	10.0	0.010	140.0	23.1	0.3	14.98	4.10	19.08		92.80	11.59	7.49
3	20.0	0.020	163.0	30.3	0.7	19.57	4.20	23.77		92.70	13.98	9.78
4	50.0	0.050	196.0	40.5	1.7	25.96	6.10	32.06		90.80	19.08	12.98
5	80.0	0.080	210.0	44.9	2.7	28.46	7.20	35.66		89.70	21.43	14.23
6	110.0	0.110	220.0	48.0	3.7	30.12	8.30	38.42		88.60	23.36	15.06
7	150.0	0.150	225.0	49.6	5.0	30.67	9.20	39.87	4.33	87.70	24.53	15.33
8	200.0	0.200	228.0	50.5	6.7	30.70	10.00	40.70	4.07	86.90	25.35	15.35
9	250.0	0.250	231.0	51.5	8.4	30.70	10.20	40.90	4.01	86.70	25.55	15.35
10	300.0	0.300	233.0	52.1	10.0	30.51	10.70	41.21	3.85	86.20	25.96	15.26
11	350.0	0.350	236.0	53.0	11.7	30.48	10.70	41.18	3.85	86.20	25.94	15.24
12	400.0	0.400	240.0	54.3	13.4	30.61	11.30	41.91	3.71	85.60	26.60	15.30
13	450.0	0.450	245.0	55.8	15 N	30 88	11 50	/2 38	7 40	05 40	24 0/	15 //


Specimen Parameter W' moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 123.930 98.540 30.300 140.9	Saturated	Consolidated	Final 141.400 99.140 30.300
Diameter, in: Area, in²:	1.400	1.400	1.399	
Height, in:	1.539 3.000	1.540 2.999	1.538 2.983	
Net decrease in height, in:		0.001	0.016	
Net decrease in water volume % Moisture:	· ·	0.000	0.500	
<pre>% Moisture: Wet density, pcf:</pre>	37.2	37.2	36.7	61.4
Dry density, pcf:	116.2	116.2	116.6	
Void ratio:	84.7	84.7	85.3	
	1.0198	1.0195	1.0061	
<pre>% Saturation:</pre>	100.0	100.0	100.0	

Test Readings Data for Specimen No. 2

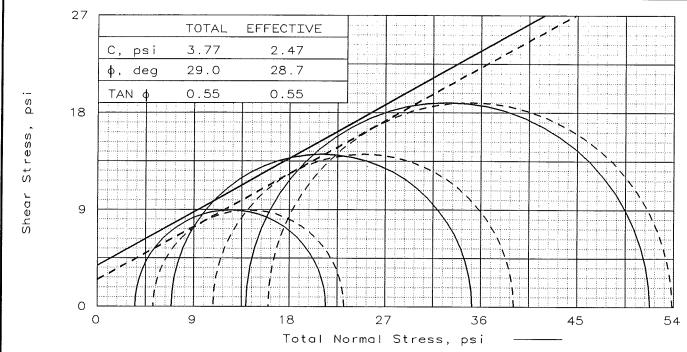
Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 103.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 13.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 33.75 psi at reading no. 8

(STRESS = not selected

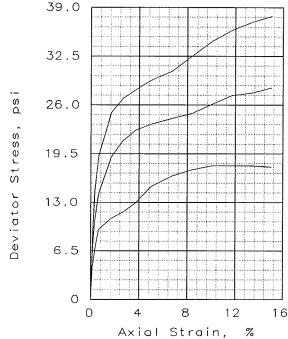
No.	Def.	Def.	Load	Load	Strain	Deviator	Effective Stresses		Pore	P psi	Q psi	
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	78.0	0.0	0.0	0.00	13.90	13.90	1.00	90.00	13.90	0.00
1	5.0	0.005	125.0	14.6	0.2	9.48	10.20	19.68	1.93	93.70	14.94	4.74
2	10.0	0.010	144.0	20.5	0.3	13.30	8.50	21.80	2.56	95.40	15.15	6.65
3	20.0	0.020	167.0	27.7	0.7	17.87	7.60	25.47	3.35	96.30	16.53	8.93
4	50.0	0.050	211.0	41.3	1.7	26.43	8.20	34.63	4.22	95.70	21.42	13.22
5	80.0	0.080	232.0	47.9	2.7	30.29	9.00	39.29	4.37	94.90	24.15	15.15
6	110.0	0.110	245.0	51.9	3.7	32.51	10.30	42.81	4.16	93.60	26.55	16.25
7	150.0	0.150	253.0	54.4	5.0	33.59	11.20	44.79	4.00	92.70	28.00	16.80
8	200.0	0.200	257.0	55.6	6.7	33.75	12.10	45.85	3.79	91.80	28.98	16.88
9	250.0	0.250	258.0	55.9	8.4	33.33	12.40	45.73	3.69	91.50	29.07	16.67
10	300.0	0.300	256.0	55.3	10.1	32.36	12.60	44.96	3.57	91.30	28.78	16.18
11	350.0	0.350	255.0	55.0	11.7	31.58	12.80	44.38	3.47	91.10	28.59	15.79
12	400.0	0.400	255.0	55.0	13.4	30.98	13.30	44.28	3.33	90.60	28.79	15.49
13	450.0	0.450	254.0	54.7	15.1	30.21	13.50	43.71	3.24	90.40	28.60	15.10

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	Plant Bowen	7	18-20		49	86	37				

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY

Client: Southern Company


Project: GPCo - Plant Bowen Stability

Project No.: 2051

Lab No. 7

Effective Normal Stress, psi

TYPE OF TEST:

CU with Pore Pressures

SAMPLE TYPE: UD DESCRIPTION:

LL= 86 PL= 49 PI= 37

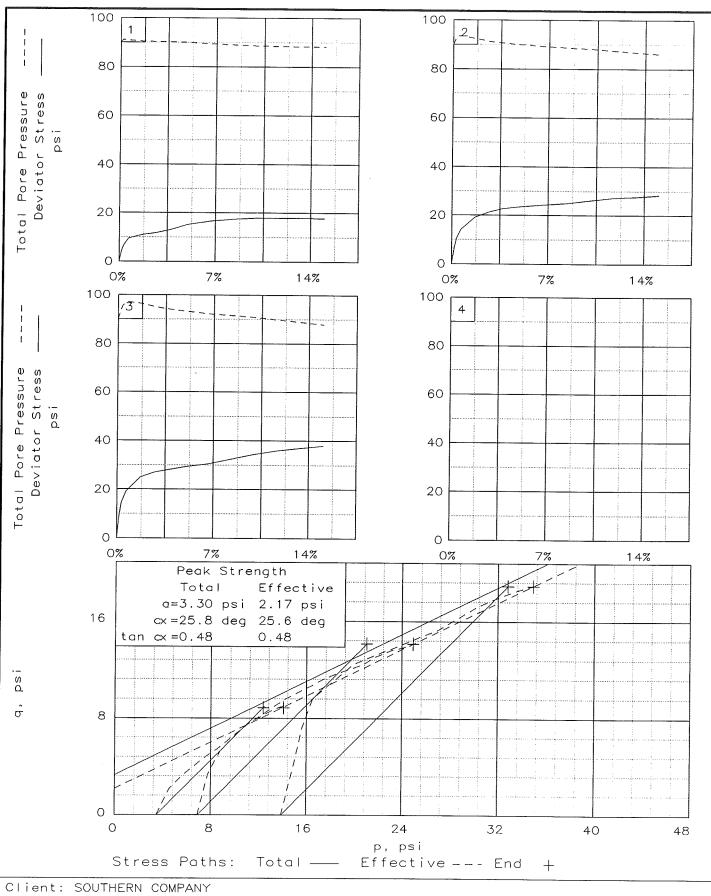
SPECIFIC GRAVITY= 2.75 REMARKS: SAMPLE NO: UD-6 DEPTH: 18.0-20.0 FEET

SA	MPLE NO.:	1	2	3	
INITIAL	DRY DENSITY, pcf Saturation, % Void ratio	99.3 0.967 1.40	93.7 98.2 0.833	101.7 100.0 0.689 1.40	:
'	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	87.8 100.0 0.955 1.40	94.7 100.0 0.813	101.9 100.0 0.684 1.40	:
BA CE FA - UL	CK PRESSURE, psi LL PRESSURE, psi IL. STRESS, psi TOTAL PORE PR., psi T. STRESS, psi TOTAL PORE PR., psi	17.9 88.3	90.0 96.9 28.3 86.1	90.0 103.9 37.9 87.9	
	FAILURE, psi FAILURE, psi		39.1 10.8		

CLIENT: SOUTHERN COMPANY

PROJECT: PLANT BOWEN STABILITY

SAMPLE LOCATION: PLANT BOWEN


DCP-11

PROJ. NO.: 2051

DATE: 02/18/2003

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Project: PLANT BOWEN STABILITY Location: PLANT BOWEN DCP-11

File: GPBOW7 Project No.: 2051

Project and Sample Data

Date: 02/18/2003

Client: SOUTHERN COMPANY

Project: PLANT BOWEN STABILITY

Sample location: PLANT BOWEN DCP-11

Sample description:

Remarks: SAMPLE NO: UD-6 DEPTH: 18.0-20.0 FEET

Fig no.: 7 2nd page Fig no. (if applicable): 7

Type of sample: UD

Specific gravity= 2.75 LL= 86 PL= 49 PI= 37

Test method: Corps of Eng. - saturation assumed

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 117.740 95.110 30.310 142.7	Saturated	Consolidated	Final 146.400 105.980 30.310
Diameter, in: Area, in ² :	1.400	1.398 1.535	1.397 1.532	
Height, in:	3.000	2.999	2.996	
Net decrease in height, in: Net decrease in water volume	e, cc:	0.001 0.000	0.003 0.200	
{ pisture:	34.9	34.9	34.7	53.4
Wec density, pcf:	117.7	118.2	118.3	
Dry density, pcf: Void ratio:	87.3 0.9672	87.6 0.9604	87.8 0.9552	
% Saturation:	99.3	100.0	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.30179 lbs per input unit
Secondary load ring constant= 0.72586 lbs per input unit
Crossover reading for secondary load ring= 462 input units
Consolidation cell pressure = 93.50 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 3.50 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 17.92 psi at reading no. 12
ULT. STRESS = not selected

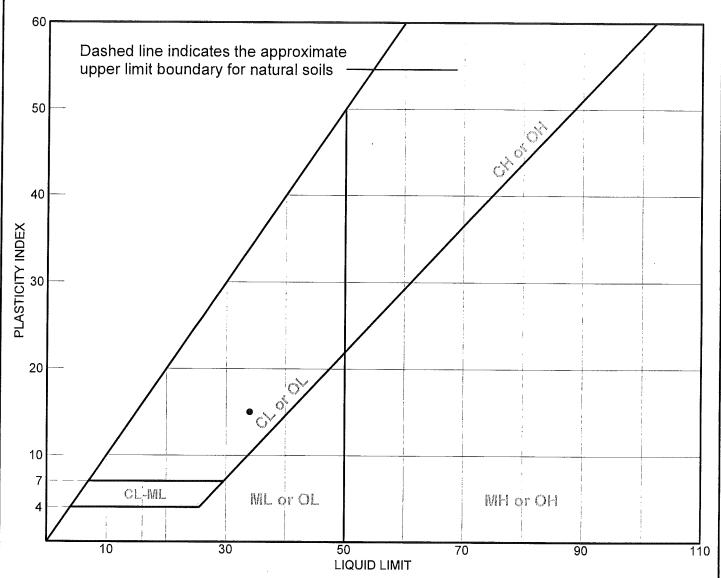
	- 4					st Read				_		
No.	Def.	Def.	Load	Load	Strain	Deviator		ive Str		Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	ps i	psi	Ratio	psi		
(
1	0.0	0.000	67.0	0.0	0.0	0.00	3.50	3.50	1.00	90.00	3.50	0.00
1	5.0	0.005	89.0	6.6	0.2	4.33	2.40	6.73	2.80	91.10	4.56	2.16
2	10.0	0.010	101.0	10.3	0.3	6.68	2.40	9.08	3.78	91.10	5.74	3.34
3	20.0	0.020	115.0	14.5	0.7	9.39	2.70	12.09	4.48	90.80	7.40	4.70
4	50.0	0.050	123.0	16.9	1.7	10.85	3.10	13.95	4.50	90.40	8.52	5.42
5	80.0	0.080	128.0	18.4	2.7	11.70	3.20	14.90	4.65	90.30	9.05	5.85
6	110.0	0.110	135.0	20.5	3.7	12.90	3.30	16.20	4.91	90.20	9.75	6.45
7	150.0	0.150	148.0	24.4	5.0	15.16	3.60	18.76	5.21	89.90	11.18	7.58
8	200.0	0.200	157.0	27.2	6.7	16.55	4.10	20.65	5.04	89.40	12.37	8.27
9	250.0	0.250	163.0	29.0	8.3	17.33	4.50	21.83	4.85	89.00	13.17	8.67
10	300.0	0.300	168.0	30.5	10.0	17.90	4,90	22.80	4.65	88.60	13.85	8.95
11	350.0	0.350	170.0	31.1	11.7	17.92	5.10	23.02	4.51	88.40	14.06	8.96
12	400.0	0.400	172.0	31.7	13.4	17.92	5.20	23.12	4.45	88.30	14.16	8.96
13	450.0	0.450	173.0	32.0	15.0	17.74	5.20	22.94	4.41	88.30	14.07	8.87
							2.20	/7	7,71	55.50	17.07	0.07

Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 128.170 105.740 30.350 147.3	Saturated	Consolidated	Final 149.950 112.910 30.350
Diameter, in:	1.400	1.395	1.394	
Area, in²:	1.539	1.527	1.527	
Height, in:	3.000	2.999	2.992	
Net decrease in height, in:		0.001	0.007	
Net decrease in water volum	e, cc:	0.000	0.200	
% Moisture:	29.8	29.8	29.6	44.9
Wet density, pcf:	121.5	122.5	122.7	
Dry density, pcf:	93.7	94.4	94.7	
Void ratio:	0.8330	0.8182	0.8133	
% Saturation:	98.2	100.0	100.0	

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Consolidation cell pressure = 96.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 6.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 28.30 psi at reading no. 13
[. STRESS = not selected]

No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	66.0	0.0	0.0	0.00	6.90	6.90	1.00	90.00	6.90	0.00
1	5.0	0.005	99.0	10.3	0.2	6.73	4.40	11.13	2.53	92.50	7.77	3.37
2	10.0	0.010	118.0	16.2	0.3	10.59	3.50	14.09	4.03	93.40	8.79	5.29
3	20.0	0.020	136.0	21.8	0.7	14.21	3.40	17.61	5.18	93.50	10.50	7.10
4	50.0	0.050	161.0	29.6	1.7	19.09	4.60	23.69	5.15	92.30	14.14	9.54
5	80.0	0.080	173.0	33.4	2.7	21.28	5.70	26.98	4.73	91.20	16.34	10.64
6	110.0	0.110	181.0	35.9	3.7	22.63	6.30	28.93	4.59	90.60	17.62	11.32
7	150.0	0.150	187.0	37.8	5.0	23.48	7.00	30.48	4.35	89.90	18.74	11.74
8	200.0	0.200	193.0	39.6	6.7	24.21	7.70	31.91	4.14	89.20	19.81	12.11
9	250.0	0.250	199.0	41.5	8.4	24.90	8.30	33.20	4.00	88.60	20.75	12.45
10	300.0	0.300	208.0	44.3	10.0	26.10	8.70	34.80	4.00	88.20	21.75	13.05
11	350.0	0.350	217.0	47.1	11.7	27.24	9.50	36.74	3.87	87.40	23.12	13.62
12	400.0	0.400	222.0	48.7	13.4	27.61	10.20	37.81	3.71	86.70	24.01	13.81
13	450.0	0.450	229.0	50.9	15.0	28.30	10.80	39.10	3.62	86.10	24.95	14.15


Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 126.710 107.400 30.300 154.1	Saturated	Consolidated	Final 155.320 122.740 30.300
Diameter, in:	1.400	1.400	1.401	
Area, in ² :	1.539	1.540	1.541	
Height, in:	3.000	2.999	2.989	
Net decrease in height, in:		0.001	0.010	
Net decrease in water volum	e, cc:	0.000	0.200	
% Moisture:	25.0	25.0	24.9	35.2
Wet density, pcf:	127.1	127.1	127.3	33,2
Dry density, pcf:	101.7	101.7	101.9	
Void ratio:	0.6885	0.6887	0.6843	
% Saturation:	100.0	100.0	100.0	

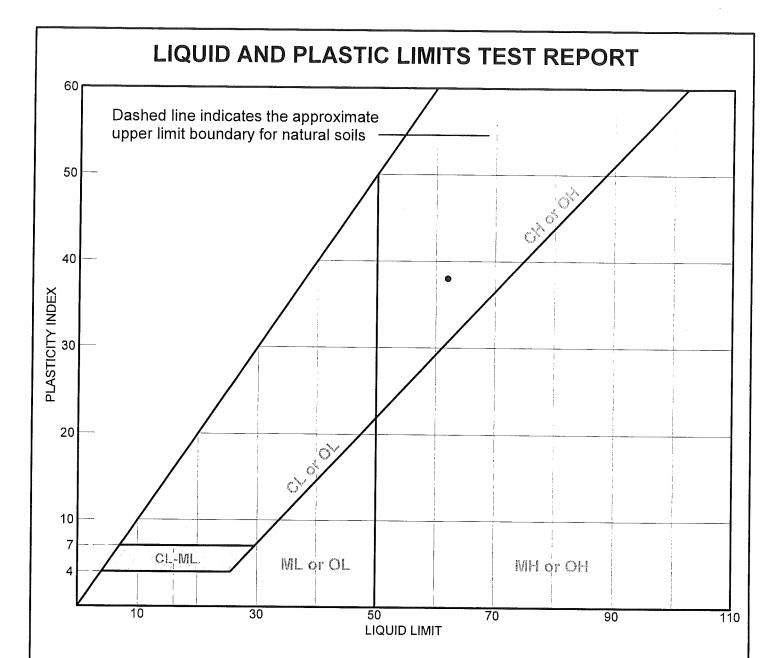
Test Readings Data for Specimen No. 3

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 103.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 13.90 psi
Strain rate, %/min = 0.01
F^TL. STRESS = 37.86 psi at reading no. 13

No.	Def.	Def.	Load	Load	Strain	Deviator	Effective Stresses			Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	78.0	0.0	0.0	0.00	13.90	13.90	1.00	90.00	13.90	0.00
1	5.0	0.005	123.0	14.0	0.2	9.06	10.50	19.56	1.86	93.40	15.03	4.53
2	10.0	0.010	150.0	22.4	0.3	14.47	8.40	22.87	2.72	95.50	15.64	7.24
3	20.0	0.020	174.0	29.8	0.7	19.23	6.90	26.13	3.79	97.00	16.52	9.62
4	50.0	0.050	204.0	39.2	1.7	24.98	7.50	32.48	4.33	96.40	19.99	12.49
5	80.0	0.080	215.0	42.6	2.7	26.89	8.90	35.79	4.02	95.00	22.34	13.44
6	110.0	0.110	222.0	44.8	3.7	27.97	9.80	37.77	3.85	94.10	23.79	13.99
7	150.0	0.150	231.0	47.6	5.0	29.31	10.70	40.01	3.74	93.20	25.35	14.65
8	200.0	0.200	240.0	50.3	6.7	30.48	11.70	42.18	3.61	92.20	26.94	15.24
9	250.0	0.250	254.0	54.7	8.4	32.52	12.40	44.92	3.62	91.50	28.66	16.26
10	300.0	0.300	268.0	59.1	10.0	34.47	13.10	47.57	3.63	90.80	30.34	17.24
11	350.0	0.350	280.0	62.8	11.7	35.97	14.10	50.07	3.55	89.80	32.08	17.98
12	400.0	0.400	290.0	65.9	13.4	37.03	15.00	52.03	3.47	88.90	33.52	18.52
13	450.0	0.450	299.0	68.7	15.1	37.86	16.00	53.86	3.37	87.90	34.93	18.93

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	Plant Bowen	8	23-25		19	34	15				

LIQUID AND PLASTIC LIMITS TEST REPORT


Client: Southern Company

SOUTHERN COMPANY

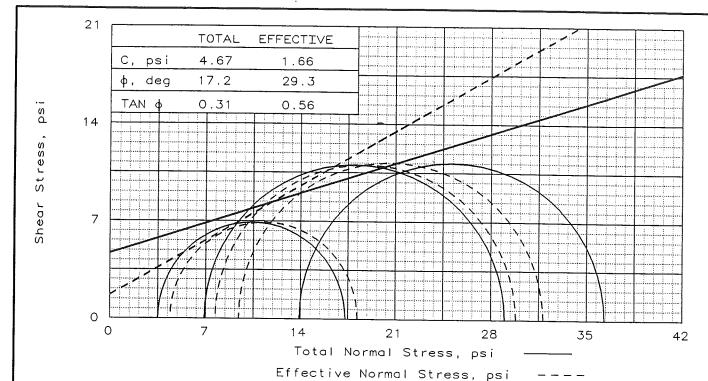
Project: GPCo - Plant Bowen Stability

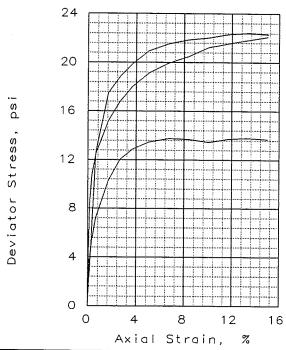
Project No.: 2051

Lab No. 8

SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID Limit (%)	PLASTICITY INDEX (%)	USCS		
•	Plant Bowen	9	19-21		24	62	38			

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY


Client: Southern Company

Project: GPCo - Plant Bowen Stability

Project No.: 2051

Lab No. 9

TYPE OF TEST:

CU with Pore Pressures

SAMPLE TYPE: UD DESCRIPTION:

LL= 62 PL= 24 PI= 38

SPECIFIC GRAVITY= 2.69 REMARKS: SAMPLE NO: UD-8 DEPTH: 19.0-21.0 FEET

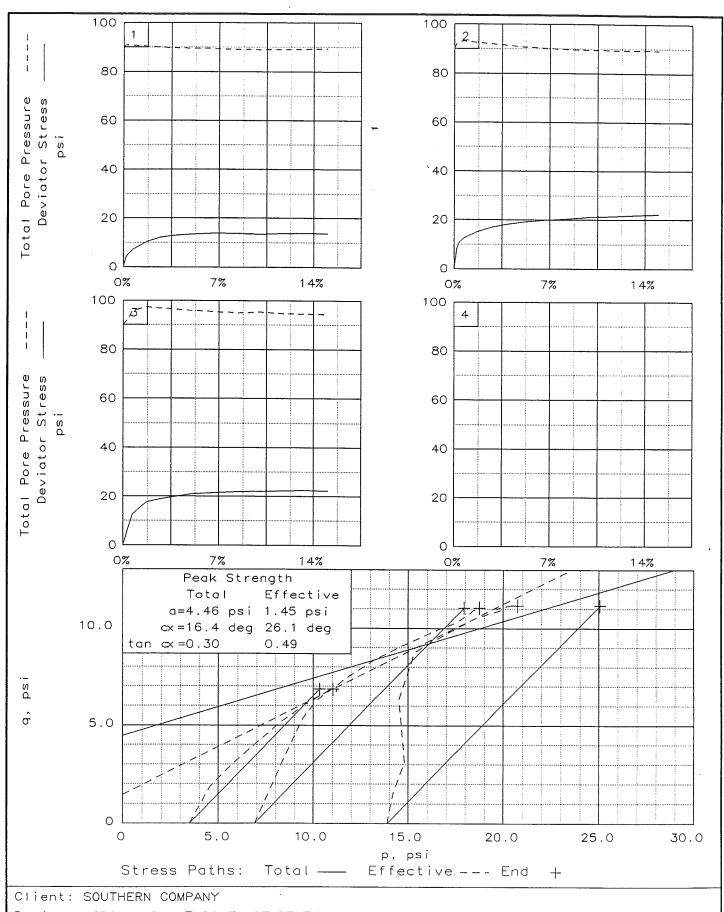
Lab No: 9

SA	MPLE NO.:	1	2	3	
INITIAL	DRY DENSITY, pcf	100.0	89.2 100.0 0.883 1.40	88.5 100.0 0.897 1.40	
AT TEST	DRY DENSITY, pcf SATURATION, % VOID RATIO	100.0 0.933 1.40	89.5 100.0 0.876	89.0 100.0 0.887 1.40	
BA CE FA UL	LL PRESSURE, psi IL. STRESS, psi TOTAL PORE PR., psi T. STRESS, psi TOTAL PORE PR., psi	0.01 90.0 93.5 13.8 89.1	0.01 90.0 96.9 22.1 89.2	0.01 90.0 103.9 22.4 94.5	
ŧ	FAILURE, psi FAILURE, psi		29.8 7.7		

CLIENT: SOUTHERN COMPANY

PROJECT: GPCo - PLANT BOWEN STABILITY

SAMPLE LOCATION: PLANT BOWEN


DCP-12S

PROJ. NO.: 2051

DATE: 02/11/2003

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Project: GPCo - PLANT BOWEN STABILITY

Location: PLANT BOWEN DCP-12S

File: GPBOW9 Project No.: 2051

Project and Sample Data

Dace: 02/11/2003

Client: SOUTHERN COMPANY

Project: GPCo - PLANT BOWEN STABILITY Sample location: PLANT BOWEN DCP-12S

Sample description:

Remarks: SAMPLE NO: UD-8 DEPTH: 19.0-21.0 FEET

Fig no.: 9 2nd page Fig no. (if applicable): 9

Type of sample: UD

Specific gravity= 2.69 LL= 62 PL= 24 PI= 38

Test method: Corps of Eng. - saturation assumed

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 92.150 76.130 30.300 141.6	Saturated	Consolidated	Final 143.980 103.170 30.300
Diameter, in: Area, in ² : Height, in: Net decrease in height, in: Net decrease in water volume, ' bisture: W density, pcf: Dry density, pcf: Void ratio: % Saturation:	1.400 1.539 3.000	1:400 1.540 2.999 0.001 0.000 35.0 116.8 86.5 0.9403 100.0	1.398 1.535 2.996 0.003 0.300 34.7 117.0 86.9 0.9326 100.0	56.0

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.30179 lbs per input unit Secondary load ring constant= 0.72586 lbs per input unit Crossover reading for secondary load ring= 462 input units Consolidation cell pressure = 93.50 psi Consolidation back pressure = 90.00 psi Consolidation effective confining stress = 3.50 psi Strain rate, %/min = 0.01 FAIL. STRESS = 13.80 psi at reading no. 12 ULT. STRESS = not selected

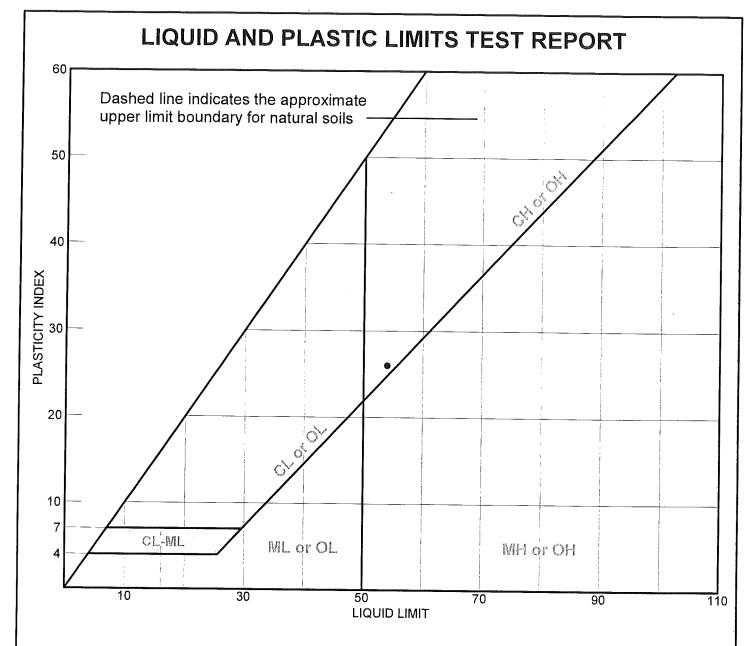
No.	Def. Dial Units	Def. in	Load Dial Units	Load lbs	Tes Strain %	St Read Deviator Stress psi		Data ive Str Major psi		Spe Pore Pres. psi	ecimen P psi	No. 1 Q psi
ĺ	0.0	0.000	70.0	0.0	0.0	0.00	3.50	3.50	1.00	90.00	3.50	0,00
1	5.0	0.005	89.0	5.7	0.2	3.73	2.70	6.43	2.38	90.80	4.56	1.86
2	10.0	0.010	97.0	8.1	0.3	5.29	2.70	7.99	2.96_	90.80	5.35	2.65
3	20.0	0.020	107.0	11.2	0.7	7.23	2.80	10.03	3.58	90.70	6.41	3.61
4	50.0	0.050	123.0	16.0	1.7	10.25	3.10	13.35	4.31	90.40	8.22	5.12
5	80.0	0.080	133.0	19.0	2.7	12.06	3.50	15.56	4.44	90.00	9.53	6.03
6	110.0	0.110	138.0	20.5	3.7	12.88	3.80	16.68	4.39	89.70	10.24	6.44
7	150.0	0.150	142.0	21.7	5.0	13.45	4.00	17.45	4.36	89.50	10.72	6.72
8	200.0	0.200	145.0	22.6	6.7	13.76	4.10	17.86	4.36	89.40	10.98	6.88
9	250.0	0.250	146.0	22.9	8.3	13.70	4.40	18.10	4.11	89.10	11.25	6.85
10	300.0	0.300	146.0	22.9	10.0	13.45	4.50	17.95	3.99	89.00	11.22	6.72
11	350.0	0.350	149.0	23.8	11.7	13.72	4.40	18.12	4.12	89.10	11.26	6.86
12	400.0	0.400	151.0	24.4	13.4	13.80	4.40	18.20	4.14	89.10	11.30	6.90
13	450.0	0.450	152.0	24.7	15.0	13.70	4.20	17.90	4.26	89.30	11.05	6.85

Specimen Parameter Wt. moist soil and tare: dry soil and tare: w of tare:	Initial 110.870 90.960 30.350	Saturated	Consolidated	Final 144.920 105.780 30.350
Weight, gms:	143.6	-		
Diameter, in:	1.400	1.400	1.398	
Area, in²:	1.539	1.540	1.535	
Height, in:	3.000	2.999`	2.997	
Net decrease in height, in:		0.001	0.002	
Net decrease in water volume	e, cc:	0.000	0.300	
% Moisture:	32.8	32.8	32.6	51.9
Wet density, pcf:	118.5	118.4	118.7	
Dry density, pcf:	89.2	89.2	89.5	
Void ratio:	0.8833	0.8836	0.8762	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Consolidation cell pressure = 96.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 6.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 22.11 psi at reading no. 13

[`. STRESS = not selected]


No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	67.0	0.0	0.0	0.00	6.90	4 00	1 00	00.00	4 00	0.00
				-				6.90		90.00	6.90	0.00
1	5.0	0.005	108.0	12.8	0.2	8.32	4.70	13.02	2.77	92.20	8.86	4.16
2	10.0	0.010	120.0	16.5	0.3	10.74	4.10	14.84	3.62	92.80	9.47	5.37
3	20.0	0.020	129.0	19.3	0.7	12.52	3.90	16.42	4.21	93.00	10.16	6.26
4	50.0	0.050	143.0	23.7	1.7	15.19	4.40	19.59	4.45	92.50	11.99	7.59
5	80.0	0.080	152.0	26.5	2.7	16.81	4.90	21.71	4.43	92.00	13.31	8.41
6	110.0	0.110	159.0	28.7	3.7	18.01	5.50	23.51	4.27	91.40	14.51	9.01
7	150.0	0.150	166.0	30.9	5.0	19.11	6.20	25.31	4.08	90.70	15.76	9.56
8	200.0	0.200	172.0	32.8	6.7	19.92	6.70	26.62	3.97	90.20	16.66	9.96
9	250.0	0.250	177.0	34.3	8.3	20.49	7.20	27.69	3.85	89.70	17.45	10.25
10	300.0	0.300	183.0	36.2	10.0	21.22	7.40	28.62	3.87	89.50	18.01	10.61
11	350.0	0.350	187.0	37.4	11.7	21.54	7.50	29.04	3.87	89.40	18.27	10.77
12	400.0	0.400	191.0	38.7	13.3	21.84	7.50	29.34	3.91	89.40	18.42	10.92
13	450.0	0.450	195.0	39.9	15.0	22.11	7.70	29.81	3 87	89 20	18 75	11 05

Specimen Parameter W+. moist soil and tare: dry soil and tare: Wc. of tare:	Initial 102.110 84.150 30.310	Saturated	Consolidated	Final 145.210 104.950 30.310
Weight, gms:	143.1	-		
Diameter, in:	1.400	1.400	1.399	
Area, in ² :	1.539	1.540	1.537	
Height, in:	3.000	2.999`	2.988	
Net decrease in height, in:		0.001	0.011	
Net decrease in water volume	e, cc:	0.000	0.400	
% Moisture:	33.4	33.4	33.0	53.9
Wet density, pcf:	118.0	118.0	118.3	55.5
Dry density, pcf:	88.5	88.5	89.0	
Void ratio:	0.8973	0.8973	0.8873	
% Saturation:	100.0	100.0	100.0	

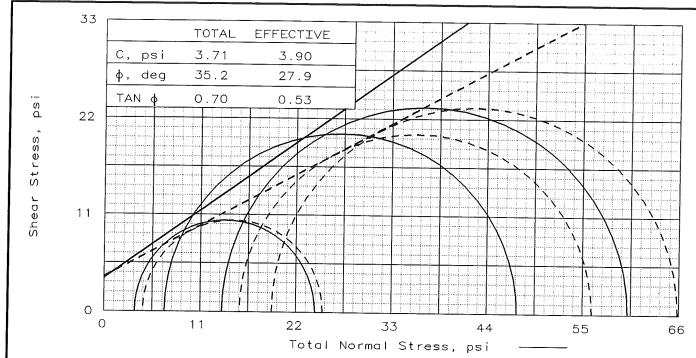
Test Readings Data for Specimen No. 3

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 103.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 13.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 22.41 psi at reading no. 12

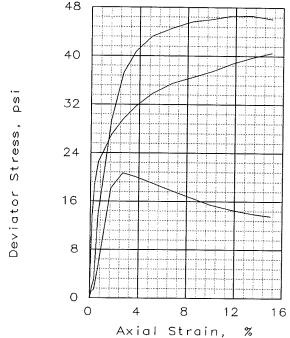
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	75.0	0.0	0.0	0.00	13.90	13.90	1.00	90.00	13.90	0.00
1	5.0	0.005	90.0	4.7	0.2	3.03	12.70	15.73		91.20	14.21	1.51
2	10.0	0.010	106.0	9.6	0.3	6.25	11.70	17.95	1.53	92.20	14.82	3.12
3	20.0	0.020	138.0	19.6	0.7	12.65	8.20	20.85	2.54	95.70	14.53	6.33
4	50.0	0.050	163.0	27.4	1.7	17.49	6.60	24.09	3.65	97.30	15.35	8.75
5	80.0	0.080	171.0	29.8	2.7	18.89	7.10	25.99	3.66	96.80	16.54	9.44
6	110.0	0.110	177.0	31.7	3.7	19.86	7.50	27.36	3.65	96.40	17.43	9.93
7	150.0	0.150	184.0	33.9	5.0	20.93	8.00	28.93	3.62	95.90	18.46	10.46
8	200.0	0.200	189.0	35.4	6.7	21.50	8.50	30.00	3.53	95.40	19.25	10.75
9	250.0	0.250	193.0	36.7	8.4	21.86	9.00	30.86	3.43	94.90	19.93	10.93
10	300.0	0.300	196.0	37.6	10.0	22.00	8.60	30.60	3.56	95.30	19.60	11.00
11	350.0	0.350	200.0	38.9	11.7	22.31	9.20	31.51	3.42	94.70	20.35	11.15
12	400.0	0.400	203.0	39.8	13.4	22.41	9.40	31.81	3.38	94.50	20.61	11.21
13	450.0	0.450	205.0	40.4	15.1	22.32	9.60	31.92	3.33	94.30	20.76	11.16

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
•	Plant Bowen	10	3-5		28	54	26					

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY

Client: Southern Company


Project: GPCo - Plant Bowen Stability

Project No.: 2051

Lab No. 10

Effective Normal Stress, psi

TYPE OF TEST:

CU with Pore Pressures

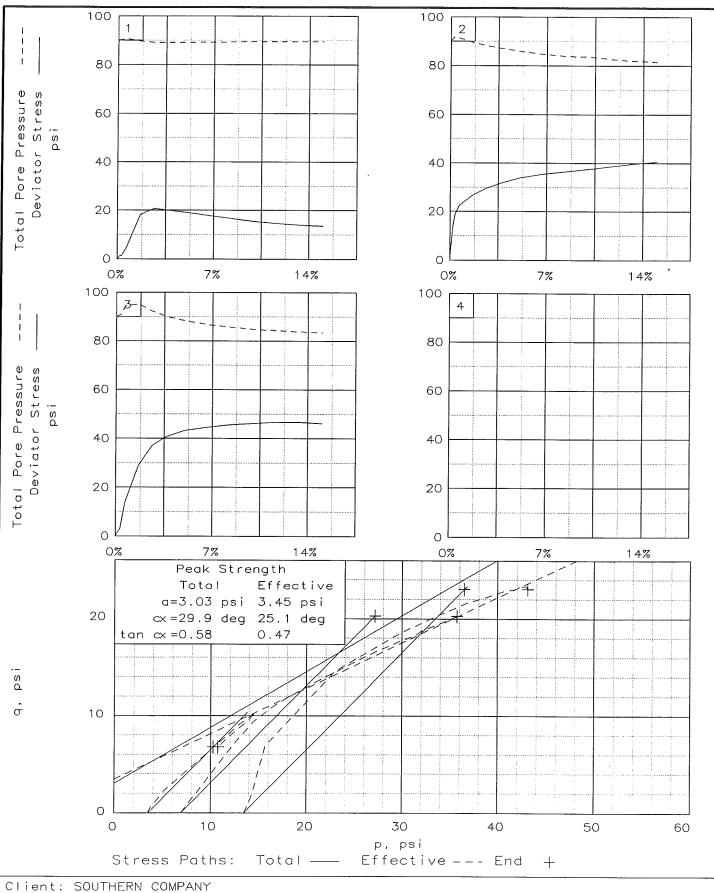
SAMPLE TYPE: UD DESCRIPTION:

LL= 54	PL= 28	PI= 26
SPECIFIC	GRAVITY= 2.	7
REMARKS:	SAMPLE NO:	UD-11
DEPTH:	3.0-5.0 FEE	T

_					
SA	MPLE NO.:	1	2	3	
INITIAL	DRY DENSITY, pcf SATURATION, % VOID RATIO	100.0	109.6 100.0 0.539 1.40	109.9 100.0 0.533 1.40	
AT TEST	DRY DENSITY, pcf SATURATION, % VOID RATIO	100.0	109.9 100.0 0.534 1.40	110.4 100.0 0.527 1.40	
BA CE FA	CK PRESSURE, psi LL PRESSURE, psi IL. STRESS, psi FOTAL PORE PR., psi T. STRESS, psi FOTAL PORE PR., psi	0.0080 90.0 93.5 20.7 89.1	0.0078 90.0 96.9 40.5 81.4	0.0078 90.0 103.5 46.6 84.3	
	FAILURE, psi FAILURE, psi		56.0 15.5		

CLIENT: SOUTHERN COMPANY

PROJECT: PLANT BOWEN STABILITY


SAMPLE LOCATION: PLANT BOWEN

DCP-38

PROJ. NO.: 2051 DATE: 02/12/2003

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Project: PLANT BOWEN STABILITY Location: PLANT BOWEN DCP-38

File: GPBOW10 Project No.: 2051

TRIAXIAL COMPRESSION TEST CU with Pore Pressures

2-18-2003 5:12 pm

Data file: GPBOW10

Project and Sample Data

Date: 02/12/2003

Client: SOUTHERN COMPANY

Project: PLANT BOWEN STABILITY

Sample location: PLANT BOWEN DCP-38

Sample description:

Remarks: SAMPLE NO: UD-11 DEPTH: 3.0-5.0 FEET

Fig no.: 10 2nd page Fig no. (if applicable): 10

Type of sample: UD

Specific gravity= 2.70 LL= 54 PL= 28 PI= 26

Test method: Corps of Eng. - saturation assumed

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 132.420 114.680 30.310 157.7	Saturated	Consolidated	Final 161.610 129.220 30.310
Diameter, in:	1.400	1.400	1.398	
Area, in²:	1.539	1.540	1.534	
Height, in:	3.000	2.999	2.998	
Net decrease in height, in:		0.001	0.001	
Net decrease in water volume	, cc:	0.000	0.300	
oisture:	21.0	21.0	20.8	32.7
Waldensity, pcf:	130.1	130.1	130.4	
Dry density, pcf:	107.5	107.5	107.9	
Void ratio:	0.5677	0.5677	0.5615	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.30179 lbs per input unit Secondary load ring constant= 0.72586 lbs per input unit Crossover reading for secondary load ring= 462 input units Consolidation cell pressure = 93.50 psi Consolidation back pressure = 90.00 psi Consolidation effective confining stress = 3.50 psi Strain rate, %/min = 0.01 FAIL. STRESS = 20.68 psi at reading no. 5 ULT. STRESS = not selected

					Tes	st Read	dings	Data	for	Spe	cimen	No. 1
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
	0.0	0.000	68.0	0.0	0.0	0.00	7 50	7 50	4 00	00.00	7	
					0.0	0.00	3.50	3.50		90.00	3.50	0.00
1	5.0		74.0	1.8	0.2	1.18	3.20	4.38	1.37	90.30	3.79	0.59
2	10.0	0.010	75.0	2.1	0.3	1.37	3.20	4.57	1.43	90.30	3.89	0.69
3	20.0	0.020	93.0	7.5	0.7	4.88	2.90	7.78	2.68	90.60	5.34	2.44
4	50.0	0.050	162.0	28.4	1.7	18.18	3.90	22.08	5.66	89.60	12.99	9.09
5	80.0	0.080	176.0	32.6	2.7	20.68	4.40	25.08	5.70	89.10	14.74	10.34
6	110.0	0.110	174.0	32.0	3.7	20.08	4.40	24.48	5.56	89.10	14.44	10.04
7	150.0	0.150	170.0	30.8	5.0	19.06	4.40	23.46	5.33	89.10	13.93	9.53
8	200.0	0.200	165.0	29.3	6.7	17.81	4.30	22.11	5.14	89.20	13.20	8.90
9	250.0	0.250	160.0	27.8	8.3	16.59	4.20	20.79	4.95	89.30	12.49	8.29
10	300.0	0.300	155.0	26.3	10.0	15.40	4.00	19.40	4.85	89.50	11.70	7.70
11	350.0	0.350	152.0	25.4	11.7	14.59	4.00	18.59	4.65	89.50	11.30	7.30
12	400.0	0.400	150.0	24.7	13.3	13.98	4.00	17.98	4.49	89.50	10.99	6.99
13	450.0	0.450	149.0	24.4	15.0	13.54	4.00	17.54	4.39	89.50	10.77	6.77

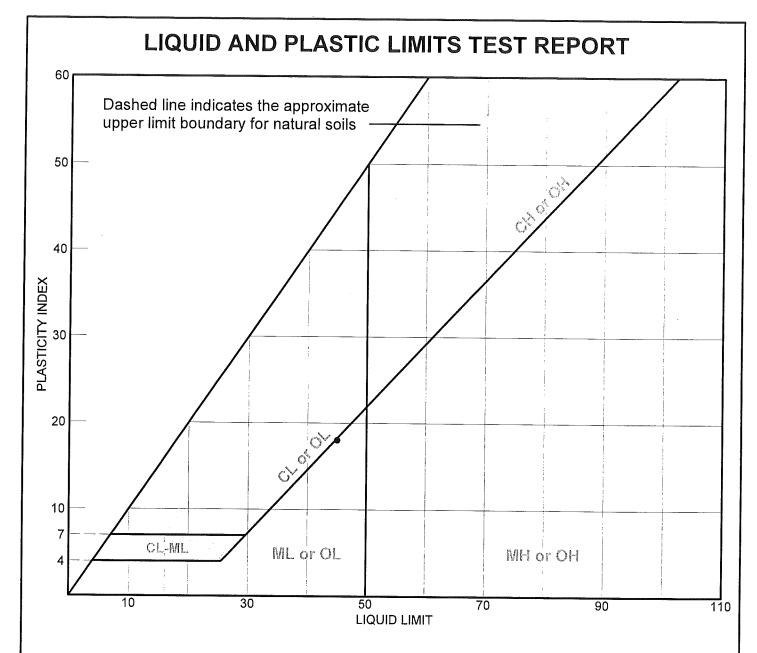
Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 115.030 100.950 30.350 159.3	Saturated	Consolidated	Final 160.970 131.140 30.350
Diameter, in:	1.400	1.400	1.399	
Area, in²:	1.539	1.540	1.537	
Height, in:	3.000	2.999	2.997	
Net decrease in height, in:		0.001	0.002	
Net decrease in water volum	e, cc:	0.000	0.200	
% Moisture:	19.9	19.9	19.8	29.6
Wet density, pcf:	131.4	131.4	131.6	
Dry density, pcf:	109.6	109.6	109.9	
Void ratio:	0.5386	0.5385	0.5344	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.31199 lbs per input unit Secondary load ring constant= 0.72824 lbs per input unit Crossover reading for secondary load ring= 480 input units Consolidation cell pressure = 96.90 psi Consolidation back pressure = 90.00 psi Consolidation effective confining stress = 6.90 psi Strain rate, %/min = 0.01 FAIL. STRESS = 40.55 psi at reading no. 13

No.	Def.	Def. Load Load Strain Deviator Effective Stresse					esses	Pore	P psi	Q psi		
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	66.0	0.0	0.0	0.00	6.90	6.90	1.00	90.00	6.90	0.00
1	5.0	0.005	133.0	20.9	0.2	13.58	5.40	18.98	3.51	91.50	12.19	6.79
2	10.0	0.010	159.0	29.0	0.3	18.82	5.10	23.92	4.69	91.80	14.51	9.41
3	20.0	0.020	178.0	34.9	0.7	22.59	5.70	28.29	4.96	91.20	16.99	11.29
4	50.0	0.050	201.0	42.1	1.7	26.95	7.50	34.45	4.59	89.40	20.98	13.48
5	80.0	0.080	216.0	46.8	2.7	29.64	8.80	38.44	4.37	88.10	23.62	14.82
6	110.0	0.110	228.0	50.5	3.7	31.68	9.80	41.48	4.23	87.10	25.64	15.84
7	150.0	0.150	241.0	54.6	5.0	33.75	11.00	44.75	4.07	85.90	27.88	16.88
8	200.0	0.200	253.0	58.3	6.7	35.43	12.20	47.63	3.90	84.70	29.92	17.72
9	250.0	0.250	262.0	61.2	8.3	36.47	13.10	49.57	3.78	83.80	31.34	18.24
10	300.0	0.300	271.0	64.0	10.0	37.45	13.30	50.75	3.82	83.60	32.03	18.73
11	350.0	0.350	282.0	67.4	11.7	38.73	14.30	53.03	3.71	82.60	33.67	19.37
12	400.0	0.400	292.0	70.5	13.3	39.76	15.00	54.76	3.65	81.90	34.88	19.88
13	450.0	0.450	301.0	73.3	15.0	40.55	15.50	56.05	3.62	81.40	35.77	20.27

Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 119.040 104.400 30.300 159.6	Saturated	Consolidated	Final 160.950 131.170 30.300
Diameter, in:	1.400	1.400	1.398	
Area, in²:	1.539	1.540	1.536	
Height, in:	3.000	2.999	2.995	
Net decrease in height, in:		0.001	0.004	
Net decrease in water volum	ne, cc:	0.000	0.300	
% Moisture:	19.8	19.8	19.5	29.5
Wet density, pcf:	131.6	131.6	131.9	
Dry density, pcf:	109.9	109.9	110.4	
Void ratio:	0.5333	0.5334	0.5274	
% Saturation:	100.0	100.0	100.0	


Test Readings Data for Specimen No. 3

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 103.50 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 13.50 psi
Strain rate, %/min = 0.01
F^IL. STRESS = 46.64 psi at reading no. 11

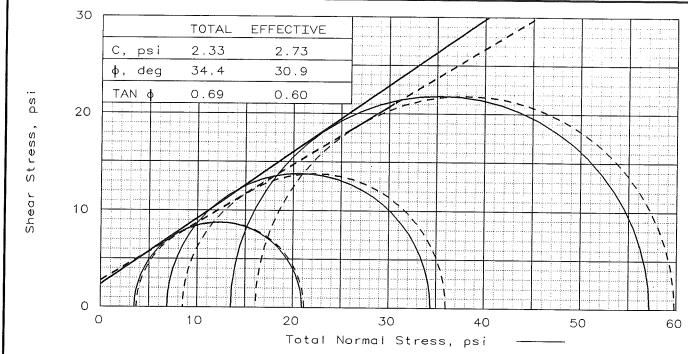
. STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	77.0		0.0	0.00	47.50	47 50	4 00	00.00	47.50	
0			77.0	0.0	0.0	0.00	13.50	13.50	1.00	90.00	13.50	0.00
1	5.0	0.005	86.0	2.8	0.2	1.82	13.00	14.82	1.14	90.50	13.91	0.91
2	10.0	0.010	92.0	4.7	0.3	3.03	12.70	15.73	1.24	90.80	14.21	1.51
3	20.0	0.020	146.0	21.4	0.7	13.87	8.80	22.67	2.58	94.70	15.73	6.93
4	50.0	0.050	224.0	45.7	1.7	29.25	8.40	37.65	4.48	95.10	23.02	14.62
5	80.0	0.080	266.0	58.7	2.7	37.22	11.40	48.62	4.27	92.10	30.01	18.61
6	110.0	0.110	286.0	65.0	3.7	40.74	13.50	54.24	4.02	90.00	33.87	20.37
7	150.0	0.150	302.0	69.9	5.0	43.25	15.20	58.45	3.85	88.30	36.82	21.62
8	200.0	0.200	313.0	73.3	6.7	44.57	16.80	61.37	3.65	86.70	39.08	22.28
9	250.0	0.250	323.0	76.5	8.3	45.62	17.80	63.42	3.56	85.70	40.61	22.81
10	300.0	0.300	330.0	78.6	10.0	46.07	18.70	64.77	3.46	84.80	41.73	23.03
11	350.0	0.350	338.0	81.1	11.7	46.64	19.20	65.84	3.43	84.30	42.52	23.32
12	400.0	0.400	343.0	82.7	13.4	46.64	19.70	66.34	3.37	83,80	43.02	23.32
13	450.0	0.450	345.0	83.3	15.0	46.08	20.10	66.18	3.29	83.40	43.14	23 04

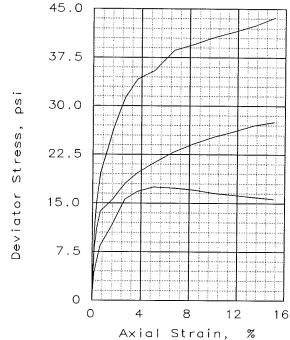
Data file: GPBOW10

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs			
•	Plant Bowen	11	5-7		27	45	18				

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY

Client: Southern Company


Project: GPCo - Plant Bowen Stability

Project No.: 2051

Lab No. 11

Effective Normal Stress, psi

Т	YF	PΕ	ΟF	TEST	
,		_	01	1 1	٠

CU with Pore Pressures

SAMPLE TYPE: UD

DESCRIPTION:

LL= 45 PL= 27 PI= 18

SPECIFIC GRAVITY= 2.66 REMARKS: SAMPLE NO: UD-12

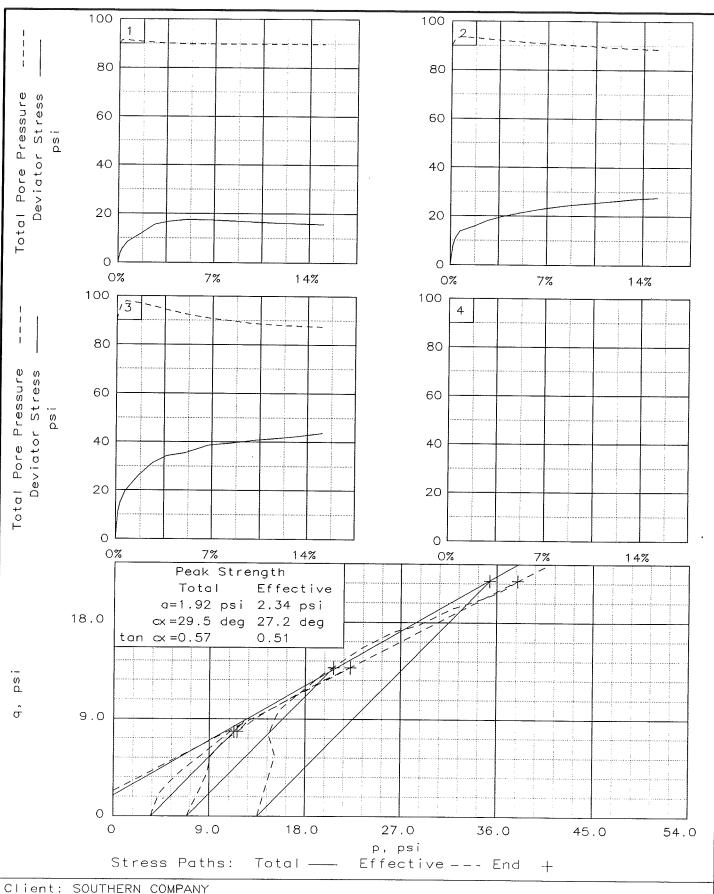
DEPTH: 5.0-7.0 FEET

				-16	
SA	MPLE NO.:	1	2	3	
INITIAL	IST	98.8 98.5 0.681 1.40	95.5 0.562	109.0 100.0 0.524 1.40	
AT TEST	DRY DENSITY, pcf SATURATION, %		108.7 100.0 0.528 1.39	109.4 100.0 0.518 1.40	
BAG CE FA: T UL	rain rate, %/min CK PRESSURE, psi LL PRESSURE, psi IL. STRESS, psi TOTAL PORE PR., psi T. STRESS, psi	0.0080 90.0 93.5	0.0080 90.0 96.9 27.5	0.0080 90.0 103.5 43.7	
!	FAILURE, psi FAILURE, psi		36.0 8.5		

CLIENT: SOUTHERN COMPANY

PROJECT: PLANT BOWEN STABILITY

SAMPLE LOCATION: PLANT BOWEN


DCP-38

PROJ. NO.: 2051

DATE: 02/17/2003

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Project: PLANT BOWEN STABILITY Location: PLANT BOWEN DCP-38

File: GPBOW11

Project No.: 2051

TRIAXIAL COMPRESSION TEST CU with Pore Pressures

2-18-2003 5:14 pm

Project and Sample Data

Date: 02/17/2003

Client: SOUTHERN COMPANY

Project: PLANT BOWEN STABILITY
Sample location: PLANT BOWEN DCP-38

Sample description:

Remarks: SAMPLE NO: UD-12 DEPTH: 5.0-7.0 FEET

Fig no.: 11 2nd page Fig no. (if applicable): 11

Type of sample: UD

Specific gravity= 2.66 LL= 45 PL= 27 PI= 18

Test method: Corps of Eng. - saturation assumed

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 115.650 98.470 30.350 150.0	Saturated	Consolidated	Final 153.910 118.890 30.350
Diameter, in:	1.400	1.396	1.394	
Area, in²:	1.539	1.531	1.525	
Height, in:	3.000	2.999	2.994	
Net decrease in height, in:		0.001	0.005	
Net decrease in water volum	e, cc:	0.000	0.400	
oisture:	25.2	25.2	24.9	39.6
Wec density, pcf:	123.7	124.5	124.8	
Dry density, pcf:	98.8	99.4	99.9	
Void ratio:	0.6808	0.6709	0.6620	
% Saturation:	98.5	100.0	100.0	

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.30179 lbs per input unit
Secondary load ring constant= 0.72586 lbs per input unit
Crossover reading for secondary load ring= 462 input units
Consolidation cell pressure = 93.50 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 3.50 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 17.48 psi at reading no. 7
ULT. STRESS = not selected

					Tes	st Read	lings	Data	for	Spe	cimen	No. 1
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Stre	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
/												
1	0.0	0.000	69.0	0.0	0.0	0.00	3.50	3.50	1.00	90.00	3.50	0.00
1	5.0	0.005	90.0	6.3	0.2	4.15	2.20	6.35	2.89	91.30	4.27	2.07
2	10.0	0.010	99.0	9.1	0.3	5.92	2.10	8.02	3.82	91.40	5.06	2.96
3	20.0	0.020	112.0	13.0	0.7	8.45	2.20	10.65	4.84	91.30	6.43	4.23
4	50.0	0.050	130.0	18.4	1.7	11.87	2.70	14.57	5.40	90.80	8.63	5.93
5	80.0	0.080	150.0	24.4	2.7	15.60	3.10	18.70	6.03	90.40	10.90	7.80
6	110.0	0.110	157.0	26.6	3.7	16.77	3.50	20.27	5.79	90.00	11.89	8.39
7	150.0	0.150	162.0	28.1	5.0	17.48	3.70	21.18	5.72	89.80	12.44	8.74
8	200.0	0.200	163.0	28.4	6.7	17.36	3.80	21.16	5.57	89.70	12.48	8.68
9	250.0	0.250	163.0	28.4	8.4	17.05	3.80	20.85	5.49	89.70	12.32	8.52
10	300.0	0.300	162.0	28.1	10.0	16.56	3.80	20.36	5.36	89.70	12.08	8.28
11	350.0	0.350	162.0	28.1	11.7	16.25	3.80	20.05	5.28	89.70	11.93	8.13
12	400.0	0.400	162.0	28.1	13.4	15.94	3.80	19.74	5.20	89.70	11.77	7.97

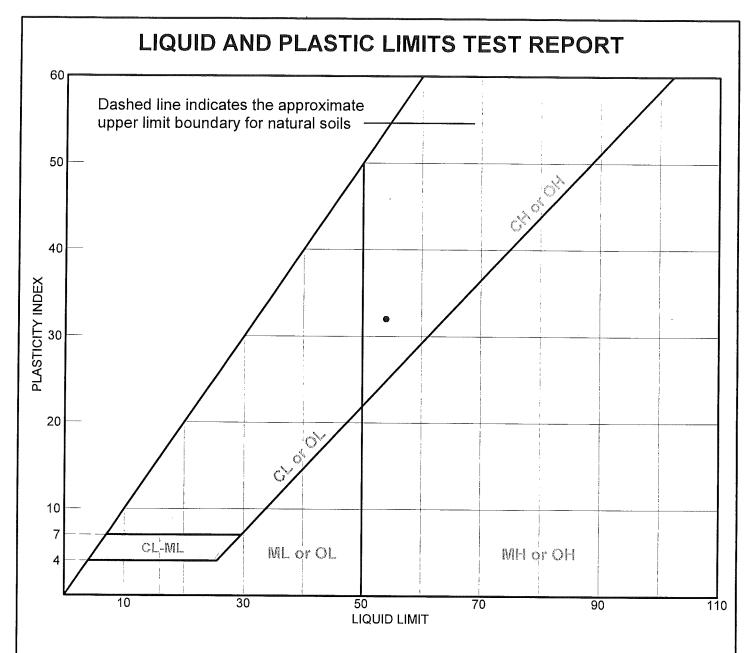
13 450.0 0.450 162.0 28.1 15.0 15.64 3.80 19.44 5.11 89.70 11.62 7.82

Specimen Parameter " moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 144.090 124.990 30.310 154.9	Saturated	Consolidated	Final 158.670 127.660 30.310
Diameter, in:	1.400	1.389	1.387	
Area, in²:	1.539	1.515	1.512	
Height, in:	3.000	2.999	2.990	
Net decrease in height, in:		0.001	0.009	
Net decrease in water volum	e, cc:	0.000	0.400	
% Moisture:	20.2	20.2	19.9	31.9
Wet density, pcf:	127.8	129.9	130.2	
Dry density, pcf:	106.3	108.1	108.7	
Void ratio:	0.5617	0.5366	0.5284	
% Saturation:	95.5	100.0	100.0	

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.31199 lbs per input unit
Secondary load ring constant= 0.72824 lbs per input unit
Crossover reading for secondary load ring= 480 input units
Consolidation cell pressure = 96.90 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 6.90 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 27.53 psi at reading no. 13
| STRESS = not selected

No.	Def.	Def.	Load	Load	Strain	Deviator	or Effective Stresses			Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	66.0	0.0	0.0	0.00	6.90	6.90	1.00	90.00	6.90	0.00
1	5.0	0.005	105.0	12.2	0.2	8.04	4.80	12.84	2.67	92.10	8.82	4.02
2	10.0	0.010	119.0	16.5	0.3	10.90	3.60	14.50	4.03	93.30	9.05	5.45
3	20.0	0.020	133.0	20.9	0.7	13.74	3.40	17.14	5.04	93.50	10.27	6.87
4	50.0	0.050	143.0	24.0	1.7	15.63	3.80	19.43	5.11	93.10	11.61	7.81
5	80.0	0.080	156.0	28.1	2.7	18.08	4.30	22.38	5.20	92.60	13.34	9.04
6	110.0	0.110	165.0	30.9	3.7	19.68	4.80	24.48	5.10	92.10	14.64	9.84
7	150.0	0.150	174.0	33.7	5.0	21.17	5.40	26.57	4.92	91.50	15.99	10.59
8	200.0	0.200	185.0	37.1	6.7	22.92	6.10	29.02	4.76	90.80	17.56	11.46
9	250.0	0.250	194.0	39.9	8.4	24.21	6.70	30.91	4.61	90.20	18.81	12.11
10	300.0	0.300	202.0	42.4	10.0	25.26	7.20	32.46	4.51	89.70	19.83	12.63
11	350.0	0.350	209.0	44.6	11.7	26.06	7.70	33.76	4.38	89.20	20.73	13.03
12	400.0	0.400	217.0	47.1	13.4	27.00	8.10	3 5.10	4.33	88.80	21.60	13.50
13	450.0	0.450	223.0	49.0	15.1	27.53	8.50	3 6.03	4.24	88.40	22.26	13.76


Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 112.070 98.620 30.300 158.1	Saturated	Consolidated	Final 160.880 131.980 30.300
Diameter, in:	1.400	1.400	1.401	
Area, in²:	1.539	1.540	1.541	•
Height, in:	3.000	2.999	2.985	
Net decrease in height, in:		0.001	0.014	
Net decrease in water volum	e, cc:	0.000	0,300	
% Moisture:	19.7	19.7	19.5	28.4
Wet density, pcf:	130.4	130.4	130.7	
Dry density, pcf:	109.0	109.0	109.4	
Void ratio:	0.5238	0.5237	0.5176	
% Saturation:	100.0	100.0	100.0	

Test Readings Data for Specimen No. 3

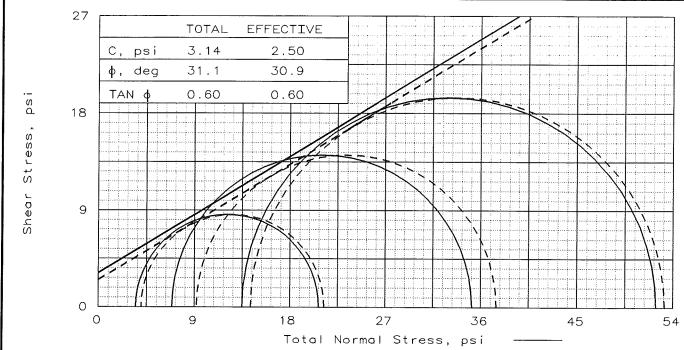
Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.3108 lbs per input unit Secondary load ring constant= 0.77882 lbs per input unit Crossover reading for secondary load ring= 474 input units Consolidation cell pressure = 103.50 psi Consolidation back pressure = 90.00 psi Consolidation effective confining stress = 13.50 psi Strain rate, %/min = 0.01 FAIL. STRESS = 43.68 psi at reading no. 13

No.	Def. Dial Units	Def. in	Load Dial Units	Load lbs	Strain %	Deviator Stress psi	Effect Minor psi	ive Str Major psi	esses 1:3 Ratio	Pore Pres. psi	P psi	Q psi
0	0.0	0.000	77.0	0.0	0.0	0.00	13.50	13.50	1.00	90.00	13.50	0.00
1	5.0	0.005	132.0	17.1	0.2	11.08	9.60	20.68	2.15	93.90	15.14	5.54
2	10.0	0.010	152.0	23.3	0.3	15.08	7.00	22.08	3.15	96.50	14.54	7.54
3	20.0	0.020	175.0	30.5	0.7	19.64	5.70	25.34	4.44	97.80	15.52	9.82
4	50.0	0.050	210.0	41.3	1.7	26.38	6.50	32.88	5.06	97.00	19.69	13.19
5	80.0	0.080	237.0	49.7	2.7	31.41	7.80	39.21	5.03	95.70	23.50	15.70
6	110.0	0.110	253.0	54.7	3.7	34.19	9.20	43.39	4.72	94.30	26.30	17.10
7	150.0	0.150	262.0	57.5	5.0	35.44	10.90	46.34	4.25	92.60	28.62	17.72
8	200.0	0.200	282.0	63.7	6.7	38.58	12.60	51.18	4.06	90.90	31.89	19.29
9	250.0	0.250	291.0	66.5	8.4	39.55	13.70	53.25	3.89	89.80	33.48	19.78
10	300.0	0.300	301.0	69.6	10.1	40.64	14.80	55.44	3.75	88.70	35.12	20.32
11	350.0	0.350	310.0	72.4	11.7	41.49	15.40	56.89	3.69	88.10	36.14	20.74
12	400.0	0.400	320.0	75.5	13.4	42.45	15.80	58.25	3.69	87.70	37.02	21.22
13	450.0	0.450	332.0	79.3	15.1	43.68	16.10	59.78	3.71	87.40	37.94	21.84

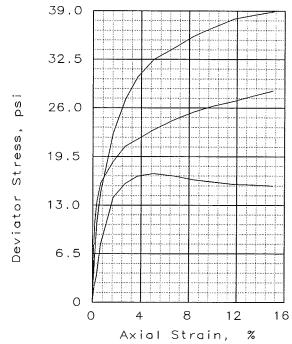
Data file: GPBOW11

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs			
•	Plant Bowen	12	7-9		22	54	32				

LIQUID AND PLASTIC LIMITS TEST REPORT


SOUTHERN COMPANY

Client: Southern Company


Project: GPCo - Plant Bowen Stability

Project No.: 2051

Lab No. 12

Effective Normal Stress, psi

TYPE OF TEST:

CU with Pore Pressures

SAMPLE TYPE: UD

DESCRIPTION:

LL= 54 PL= 22 PI= 32

SPECIFIC GRAVITY= 2.69

REMARKS: SAMPLE NO: DCP-38

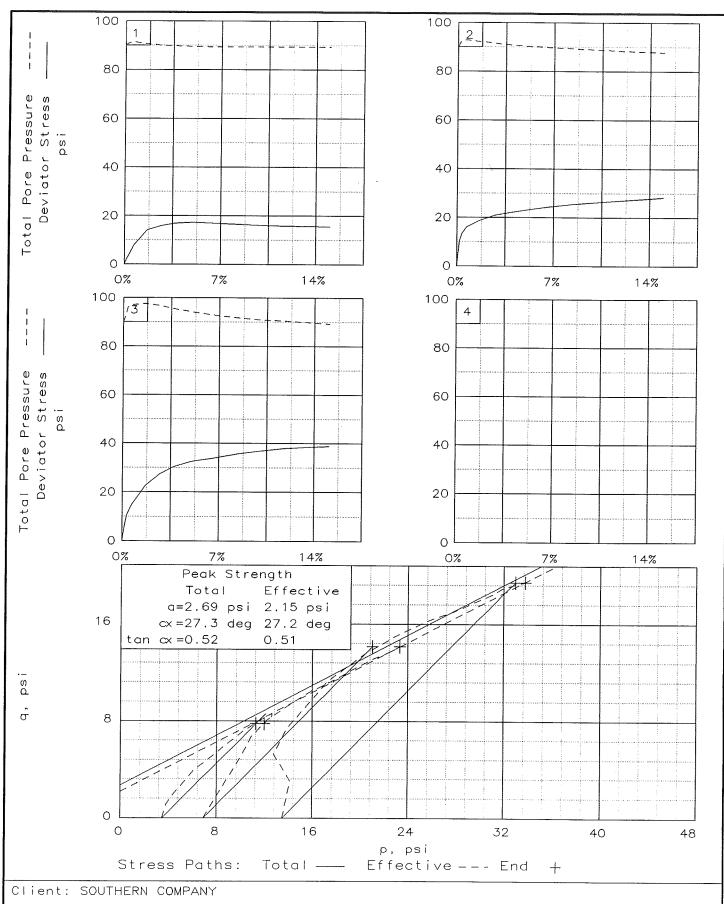
DEPTH 7.0-9.0 FEET

SA	MPLE NO.:	1	2	3	
INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	108.6 98.1 0.546 1.40	109.8 100.0 0.529 1.40	111.1 100.0 0.511 1.40	
1'	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	111.6 100.0 0.505	110.7 100.0 0.517	112.8 100.0 0.489	:
St BA CE FA UL	rain rate, %/min CK PRESSURE, psi LL PRESSURE, psi IL. STRESS, psi FOTAL PORE PR., psi T. STRESS, psi FOTAL PORE PR., psi	0.01 90.0 93.5 17.2 89.5	0.01 90.0 96.9 28.3 87.7	0.01 90.0 103.5 38.9 89.2	
	FAILURE, psi FAILURE, psi		37.5 9.2		

CLIENT: SOUTHERN COMPANY

PROJECT: GPCo - PLANT BOWEN STABILITY

SAMPLE LOCATION: PLANT BOWEN


PROJ. NO.: 2051

DATE: 02/11/2003

TRIAXIAL SHEAR TEST REPORT

SOUTHERN COMPANY SERVICES

Lob No: 12

Project: GPCo - PLANT BOWEN STABILITY

Location: PLANT BOWEN

File: GPBOW12 Project No.: 2051

TRIAXIAL COMPRESSION TEST CU with Pore Pressures

2-18-2003 5:14 pm

Project and Sample Data

Date: 02/11/2003

Client: SOUTHERN COMPANY

Project: GPCo - PLANT BOWEN STABILITY

Sample location: PLANT BOWEN

Sample description:

Remarks: SAMPLE NO: DCP-38 DEPTH 7.0-9.0 FEET

Fig no.: 12 2nd page Fig no. (if applicable): 12

Type of sample: UD

Specific gravity= 2.69 LL= 54 PL= 22 PI= 32

Test method: Corps of Eng. - saturation assumed

Specimen Parameters for Specimen No. 1

Specimen Parameter Wt. moist soil and tare: Wt. dry soil and tare: Wt. of tare: Weight, gms:	Initial 105.260 92.820 30.300 157.9	Saturated	Consolidated	Final 160.930 131.570 30.300
Diameter, in: Area, in²: Height, in: Net decrease in height, in: Net decrease in water volume % pisture: Well density, pcf: Dry density, pcf: Void ratio: % Saturation:	1.400 1.539 3.000 , CC: 19.9 130.2 108.6 0.5459 98.1	1.395 1.529 2.999 0.001 0.000 19.9 131.1 109.4 0.5352 100.0	1.382 1.500 2.997 0.002 1.500 18.8 132.5 111.6 0.5046 100.0	29.0

Test Readings Data for Specimen No. 1

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.30179 lbs per input unit Secondary load ring constant= 0.72586 lbs per input unit Crossover reading for secondary load ring= 462 input units Consolidation cell pressure = 93.50 psi Consolidation back pressure = 90.00 psi Consolidation effective confining stress = 3.50 psi Strain rate, %/min = 0.01 FAIL. STRESS = 17.20 psi at reading no. 7 ULT. STRESS = not selected

					Tes	st Read	dings	Data	for	Spe	cimen	No. 1
No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
The state of the s												
	0.0		70.0	0.0	0.0	0.00	3.50	3.50	1.00	90.00	3.50	0.00
1	5.0	0.005	81.0	3.3	0.2	2.21	2.70	4.91	1.82	90.80	3.80	1.10
2	10.0	0.010	88.0	5.4	0.3	3.61	2.50	6.11	2.44	91.00	4.30	1.80
3	20.0	0.020	109.0	11.8	0.7	7.80	2.20	10.00	4.54	91.30	6.10	3.90
4	50.0	0.050	141.0	21.4	1.7	14.05	3.00	17.05	5.68	90.50	10.02	7.02
5	80.0	0.080	151.0	24.4	2.7	15.86	3.50	19.36	5.53	90.00	11.43	7.93
6	110.0	0.110	157.0	26.3	3.7	16.86	3.80	20.66	5 44	89.70	12.23	8.43
7	150.0	0.150	160.0	27.2	5.0	17.20	4.00	21.20	5.30	89.50	12.60	8.60
8	200.0	0.200	160.0	27.2	6.7	16.90	4.20	21.10	5.02	89.30	12.65	8.45
9	250.0	0.250	159.0	26.9	8.3	16.42	4.20	20.62	4.91	89.30	12.41	8.21
10	300.0	0.300	159.0	26.9	10.0	16.12	4.20	20.32	4.84	89.30	12.26	8.06
11	350.0	0.350	159.0	26.9	11.7	15.82	4.20	20.02	4.77	89.30	12.11	7.91
12	400.0	0.400	160.0	27.2	13.3	15.69	4.20	19.89	4.74	89.30	12.05	7.85
13	450.0	0.450	161.0	27.5	15.0	15.56	4.20	19.76	4.71	89.30	11.98	7.78

Specimen Parameter W moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 121.010 106.100 30.310 159.3	Saturated	Consolidated	Final 161.300 129.810 30.310
Diameter, in: Area, in ² : Height, in: Net decrease in height, in: Net decrease in water volum % Moisture: Wet density, pcf: Dry density, pcf: Void ratio: % Saturation:	1.400 1.539 3.000 e, cc: 19.7 131.4 109.8 0.5293 100.0	1.400 1.540 2.999 0.001 0.000 19.7 131.4 109.8 0.5292 100.0	1.395 1.529 2.997 0.002 0.600 19.2 132.0 110.7 0.5171 100.0	31.6

Test Readings Data for Specimen No. 2

Deformation dial constant= 0.001 in per input unit Primary load ring constant= 0.31199 lbs per input unit Secondary load ring constant= 0.72824 lbs per input unit Crossover reading for secondary load ring= 480 input units Consolidation cell pressure = 96.90 psi Consolidation back pressure = 90.00 psi Consolidation effective confining stress = 6.90 psi Strain rate, %/min = 0.01 FAIL. STRESS = 28.27 psi at reading no. 13

No.	Def.	Def.	Load	Load	Strain	Deviator	Effect	ive Str	esses	Pore	P psi	Q psi
	Dial	in	Dial	lbs	%	Stress	Minor	Major	1:3	Pres.		
	Units		Units			psi	psi	psi	Ratio	psi		
0	0.0	0.000	66.0	0.0	0.0	0.00						
				0.0	0.0	0.00	6.90	6.90	1.00	90.00	6.90	0.00
1	5.0	0.005	117.0	15.9	0.2	10.39	4.90	15.29	3.12	92.00	10.10	5.20
2	10.0	0.010	132.0	20.6	0.3	13.43	4.20	17.63	4.20	92.70	10.91	6.71
3	20.0	0.020	145.0	24.6	0.7	16.02	4.10	20.12	4.91	92.80	12.11	8.01
4	50.0	0.050	160.0	29.3	1.7	18.87	4.80	23.67	4.93	92.10	14.23	9.43
5	80.0	0.080	171.0	32.8	2.7	20.86	5.40	26.26	4.86	91.50	15.83	10.43
6	110.0	0.110	177.0	34.6	3.7	21.82	6.00	27.82	4.64	90.90	16.91	10.91
7	150.0	0.150	185.0	37.1	5.0	23.07	6.60	29.67	4.50	90.30	18.14	11.54
8	200.0	0.200	194.0	39.9	6.7	24.38	7.10	31.48	4.43	89.80	19.29	12.19
9	250.0	0.250	202.0	42.4	8.3	25.44	7.60	33.04	4.35	89.30	20.32	12.72
10	300.0	0.300	209.0	44.6	10.0	26.27	8.00	34.27	4.28	88.90	21.13	13.13
11	350.0	0.350	215.0	46.5	11.7	26.86	8.50	35.36	4.16	88.40	21.93	13.43
12	400.0	0.400	222.0	48.7	13.3	27.59	8.90	36.49	4.10	88.00	22.70	13.80
13	450.0	0.450	229.0	50.9	15.0	28.27	9.20	37.47	4.07	87.70	23.34	14.14

Specimen Parameter moist soil and tare: dry soil and tare: Wt. of tare: Weight, gms:	Initial 106.300 94.170 30.350 160.3	Saturated	Consolidated	Final 162.110 132.830 30.350
Diameter, in: Area, in ² : Height, in: Net decrease in height, in: Net decrease in water volum % Moisture: Wet density, pcf: Dry density, pcf: Void ratio: % Saturation:	1.400 1.539 3.000 e, cc: 19.0 132.3 111.1 0.5111 100.0	1.400 1.540 2.999 0.001 0.000 19.0 132.2 111.1 0.5113 100.0	1.394 1.526 2.982 0.017 1.100 18.2 133.3 112.8 0.4893 100.0	28.6

Test Readings Data for Specimen No. 3

Deformation dial constant= 0.001 in per input unit
Primary load ring constant= 0.3108 lbs per input unit
Secondary load ring constant= 0.77882 lbs per input unit
Crossover reading for secondary load ring= 474 input units
Consolidation cell pressure = 103.50 psi
Consolidation back pressure = 90.00 psi
Consolidation effective confining stress = 13.50 psi
Strain rate, %/min = 0.01
FAIL. STRESS = 38.90 psi at reading no. 13

No.	Def. Dial Units	Def. in	Load Dial Units	Load lbs	Strain %	Deviator Stress psi	Effect Minor psi	ive Str Major psi	esses 1:3 Ratio	Pore Pres. psi	P psi	Q psi
0	0.0	0.000	77.0	0.0	0.0	0.00	13.50	13.50	1.00	90.00	13.50	0.00
1	5.0	0.005	107.0	9.3	0.2	6.10	11.10	17.20	1.55	92.40	14.15	3.05
2	10.0	0.010	129.0	16.2	0.3	10.55	7.50	18.05	2.41	96.00	12.78	5.28
3	20.0	0.020	150.0	22.7	0.7	14.77	6.50	21.27	3.27	97.00	13.88	7.38
4	50.0	0.050	190.0	35.1	1.7	22.62	6.00	28.62	4.77	97.50	17.31	11,31
5	80.0	0.080	214.0	42.6	2.7	27.15	6.90	34.05	4.93	96.60	20.47	13.57
6	110.0	0.110	231.0	47.9	3.7	30.20	8.10	38.30	4.73	95.40	23.20	15.10
7	150.0	0.150	245.0	52.2	5.0	32.49	9.40	41.89	4.46	94.10	25.64	16.24
8	200.0	0.200	256.0	55.6	6.7	34.01	10.80	44.81	4.15	92.70	27.80	17.00
9	250.0	0.250	268.0	59.4	8.4	35.63	11.80	47.43	4.02	91.70	29.62	17.82
10	300.0	0.300	278.0	62.5	10.1	36.81	12.60	49.41	3.92	90.90	31.01	18.41
11	350.0	0.350	288.0	65.6	11.7	37.92	13.00	50.92	3.92	90.50	31.96	18.96
12	400.0	0.400	295.0	67.8	13.4	38.44	13.60	52.04	3.83	89.90	32.82	19.22
13	450.0	0.450	302.0	69.9	15.1	38.90	14.30	53.20	3.72	89.20	33.75	19.45

Data file: GPBOW12