Georgia Power Company
Plant Yates – AP-3, A, B, and B'
Newnan, Georgia
Coweta County

2019 FIRST SEMIANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

PROESSIONAL CERTIFICATION

This 2019 First Semiannual Groundwater Monitoring and Corrective Action Report, Georgia Power Company - Plant Yates AP-3, A, B, and B'. has been prepared in compliance with the United States Environmental Protection Agency coal combustion residual rule [40 Code of Federal Regulations (CFR) 257 Subpart D] and the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10 by a qualified groundwater scientist or engineer with Atlantic Coast Consulting, Inc.

Evan B. Perry, P. Project Manager Date: 2019-07-31

ATLANTIC COAST CONSULTING MICE

Chris A. Klamke, P.G. Vice-President

Page 1

TABLE OF CONTENTS

<u>Section</u>	on	Page No.
1.0	INTRODUCTION	1
1.1	Site Description and Background	1
1.2	Regional Geology and Hydrogeologic Setting	2
1.3	Groundwater Monitoring System and CCR Units	2
2.0	GROUNDWATER MONITORING ACTIVITIES	3
2.1	Monitoring Well Installation and Maintenance	3
2.2	Detection Monitoring	3
2	2.2.1 Background Monitoring	3
2	2.2.2 Initial Detection Monitoring	3
2.3	Assessment Monitoring	4
2.4	Assessment of Corrective Measures	4
3.0	SAMPLE METHODOLOGY & ANALYSES	4
3.1	Groundwater Flow Direction, Gradient, and Velocity	4
3.2	Groundwater Sampling	5
3.3	Laboratory Analyses	5
3.4	Quality Assurance and Quality Control Summary	6
4.0	STATISTICAL ANALYSIS	6
4.1	Statistical Methods	6
4	1.1.1 Appendix III Constituents	6
4	1.1.2 Assessment Monitoring Statistics	7
4.2	Statistical Analysis Results	7
4	1.2.1 First Semiannual Assessment Monitoring Event	8
5.0	MONITORING PROGRAM STATUS	8
6.0	CONCLUSIONS AND FUTURE ACTIONS	8
7.0	REFERENCES	9
Tables	S	
	Table 1A – Monitoring Network Well Summary	
	Table 1B – Non-Network Well Summary	
	Table 2A – Groundwater Sampling Event Summary for the First Half of 2019	
	Table 2B – AP-A Groundwater Sampling Event Summary	
	Table 3A – Summary of Groundwater Elevations – February 2019	

Table 3B - Summary of Groundwater Elevations - March 2019

Table 4 - Groundwater Flow Velocity Calculations - March 2019

Table 5A – Summary of Groundwater Analytical Data – March 2019

Table 5B - Summary of Groundwater Analytical Data - April 2019

Table 6 - Statistical Method Summary

Table 7 – Summary of Background Levels and Groundwater Protection Standards

Figures

Figure 1 - Site Location Map

Figure 2 - Well Location Map

Figure 3 - March 2019 Water Table Contour Map

Appendices

Appendix A – Laboratory Analytical and Field Sampling Reports

Appendix B - AP-A Data Summary Tables

Appendix C - Statistical Analyses

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (US EPA) Coal Combustion Residuals (CCR) Rule 40 Code of Federal Regulations (CFR) 257 Subpart D and the Georgia Environmental Protection Division (GA EPD) Rules of Solid Waste Management 391-3-4-.10, Atlantic Coast Consulting, Inc. (ACC) has prepared this Semiannual Groundwater Monitoring Report to document groundwater monitoring activities at Georgia Power Company's (GPC's) Plant Yates AP-3, A, B, and B' (Site). To specify groundwater monitoring requirements, GA EPD rule 391-3-4-.10(6)(a) incorporates by reference the United States Environmental Protection Agency (US EPA) Coal Combustion Residuals (CCR) Rule 40 Code of Federal Regulations (CFR) § 257 Subpart D. For ease of reference, the US EPA CCR rules are cited within this report.

AP-A ceased receiving waste prior to the effective date of the USEPA CCR rule promulgated in April 2015. A notification of intent to initiate closure of the inactive CCR surface impoundment was certified on December 7, 2015 and posted to GPC's website. Therefore, groundwater monitoring and reporting for AP-A are being completed in accordance with the alternate schedule in § 257.100(e)(5) of the revised USEPA CCR rule (August 5, 2016).

Groundwater monitoring and reporting for CCR units is performed in accordance with the monitoring requirements § 257.90 through 257.91 and § 257.93 through 257.94 of the Federal CCR rule and the Georgia EPD rule 391-3-4-.10(6)(a)-(c). This report documents the activities completed to establish the groundwater monitoring program and actions through the first half of 2019 in accordance with § 257.90(e).

A permit application package for AP-3, A, B, and B' was submitted to GA EPD in November 2018 and is currently under review. CCR units AP-3, A, B, and B' are located adjacent to each other. Due to the configuration of the units and overall groundwater flow direction, a combined groundwater monitoring network for the four CCR units was selected in the permit packages. Groundwater monitoring in the AP-3, A, B, and B' multi-unit network have been monitored in accordance with the requirements of 40 CFR § 257.90 through § 257.95 and reported as required.

Reports for Ash Ponds 3, B and B' were previously completed per 40 CFR § 257.90(e), and those sites have been placed in assessment monitoring. Background monitoring data and the initial detection monitoring analysis for AP-A are subject to the timelines promulgated under § 257.100.

An Assessment of Corrective Measures (ACM) Report was completed in June 2019 per 40 CFR § 257.96 to address a statistically significant level (SSL) of beryllium in samples from groundwater monitoring network well YGWC-33S. Data from YAMW-1 and PZ-35 confirm that the respective vertical and lateral extent of beryllium concentrations above the groundwater protection standard (GWPS) is limited to the immediate vicinity of YGWC-33S.

1.1 Site Description and Background

Plant Yates is located at 708 Dyer Road, on the east bank of the Chattahoochee River in Coweta County, Georgia near the Coweta and Carroll County line, approximately 8 miles northwest of the city of Newnan and 13 miles southeast of the city of Carrollton. Plant Yates occupies approximately 2,400 acres. Figure 1, Site Location Map, depicts the site location relative to the surrounding area.

1.2 Regional Geology and Hydrogeologic Setting

Plant Yates is located in the Inner Piedmont Physiographic Province of western Georgia, immediately southeast of the regional zone of deformation referred to as the Brevard Zone. Rock units at Plant Yates are primarily interlayered gneiss and schists. The rocks in the area have been subjected to several episodes of metamorphism and intrusion by igneous bodies. Extensive jointing occurs in the area. Surface expressions of the joints are observed on topographic maps and aerial photos of the Plant Yates area.

A thin layer of soil from one to two feet thick overlies a thick layer of saprolite. The saprolite, which extends to typical depths of 20-40 feet below ground surface, was formed in-place by the physical and chemical weathering of the underlying metamorphic rocks. There is typically a zone of variable thickness (approximately 5-20 feet) of transitionally weathered rock between the saprolite and competent bedrock. Localized alluvial soils consisting of generally coarser material (silty-sand, clayey silt, and silty clay with well-rounded gravel and cobbles) than that observed in saprolite may be related to historical river channel migration.

At Plant Yates, groundwater is typically encountered slightly above the saprolite/weathered rock interface. Groundwater flow in the saprolite zone is through interconnected pores and relict textures and fractures. As the rock becomes increasing competent with depth groundwater flow occurs mainly through joints and fractures (i.e. secondary porosity). Recharge to the water-bearing zones in fractured bedrock takes place by seepage through the overlying mantle of soil/saprolite, or by direct entrance through openings in outcrops. The average depth of the water table at Plant Yates varies with topography, ranging from approximately 5 to 50 feet below ground surface. The water table occurs in the saprolite and in the transitionally weathered zone, at least several feet above the top of rock.

In-situ slug tests were performed in saprolite and weathered bedrock at multiple locations on the site. The hydraulic conductivity at these locations is typically in a range from 10^{-3} to 10^{-4} centimeters per second, based on multiple rising-head and falling-head slug tests. This indicates a fairly uniform medium across the saprolite and weathered rock horizon. The values from the field test fall within the standard range of hydraulic conductivity values associated with a silty sand.

1.3 Groundwater Monitoring System and CCR Units

Pursuant to § 257.91, a multi-unit groundwater monitoring system was installed within the uppermost aquifer at the Site. The multi-unit monitoring system is designed to monitor groundwater passing the waste boundary of the CCR Units within the uppermost aquifer. Figure 2, Well Location Map, shows the monitoring well locations. Wells were located to serve as upgradient and downgradient monitoring points based on groundwater flow direction (Table 1A, Monitoring Network Well Summary, and Table 1B, Non-Network Well Summary).

As typical of the Piedmont Physiographic Province, there is a high degree of connectivity between the overburden, partially weathered rock, fractured bedrock, and the materials comprise a single uppermost aquifer. Based on the site hydrogeology, the monitoring system is designed to monitor groundwater flow in the overburden, the transition-zone, and the upper bedrock as a single interconnected aquifer system. Wells suffixed with an "S" are installed in overburden (saprolitic soil), an "I" indicates partially weathered rock (transition zone), and "D" indicates upper bedrock. The monitoring well network for the Site is provided on Figure 2, Well Location Map.

2.0 GROUNDWATER MONITORING ACTIVITIES

Pursuant to 40 CFR § 257.90(e), the following describes monitoring-related activities performed in the first half of 2019 and discusses any status changes of the monitoring program. All groundwater sampling was performed in accordance with § 257.93. Samples were collected from each well in the certified monitoring system shown on Figure 2.

Pursuant to § 257.90(e)(3), Table 2A, Groundwater Sampling Event Summary for the First Half of 2019, presents a summary of groundwater sampling events completed at the Site during the first half of 2019. Groundwater events were conducted at the Site during March 2019 and April 2019. During the March event, groundwater samples were collected and analyzed for Appendix IV constituents to meet the requirements of § 257.95(b). During the April semiannual sampling event, groundwater samples were collected for both Appendix III and the Appendix IV constituents detected during the March event at each monitoring well. Background monitoring events and monitoring completed during the first half of 2019 for AP-A are summarized in Table 2B, AP-A Groundwater Sampling Event Summary. Results of sampling activities conducted during background for AP-A and in the first half of 2019 for the entire site are presented in Appendix A, Laboratory Analytical and Field Sampling Reports.

2.1 Monitoring Well Installation and Maintenance

Monitoring well-related activities were limited to the following: visual inspection of well conditions prior to sampling, recording the site conditions, and performing exterior maintenance to provide safe access for sampling.

2.2 Detection Monitoring

The groundwater monitoring network certification was revised to also include AP-A and well YGWC-49 in the multi-unit system on April 17, 2019. AP-A is an inactive surface impoundment subject to the revised requirements of 40 CFR §257.100 and was added to the multi-unit system in accordance with the timeline provided by 40 CFR §257.100(e)(5)(i).

In accordance with §257.94(b), a detection monitoring program was implemented by collecting eight (8) background samples. In addition, a ninth round of groundwater samples were collected as the initial detection monitoring event.

2.2.1 Background Monitoring

Eight (8) independent samples were collected from YGWC-49 and analyzed for the constituents listed in Appendix III and IV. Tables summarizing the background sampling results are included in Appendix B, AP-A Data Summary Tables. Pursuant to §257.90(e)(3), data reports for each sampling event are included in Appendix A.

2.2.2 Initial Detection Monitoring

Following completion of the eight independent sampling events, a groundwater sample was collected on March 28, 2019 and analyzed for Appendix III constituents as part of the first semiannual detection monitoring event. Pursuant to §257.90(e)(3), the data report for the sampling event is included in Appendix A and a summary table provided in Appendix B.

2.3 Assessment Monitoring

Based on results of the 2017 Annual Groundwater and Corrective Action Monitoring Report, an assessment monitoring program was implemented for AP-3, B, and B' on January 15, 2018. A notice of assessment monitoring was placed in the operating record on May 15, 2018.

Monitoring wells were sampled for Appendix IV parameters in March 2019 pursuant to 40 CFR § 257.95(b). The first semiannual assessment monitoring event occurred in April 2019, when monitoring wells were sampled for Appendix III and Appendix IV parameters detected during the March event. A summary of groundwater sampling events completed in the first half of 2019 is provided in Table 2.

2.4 Assessment of Corrective Measures

Based on assessment monitoring results presented in the 2018 Annual Groundwater and Corrective Action Monitoring Report, an ACM was implemented on January 13, 2019 in accordance with 40 CFR § 257.96 and posted to the Operating Record on June 12, 2019.

3.0 SAMPLE METHODOLOGY & ANALYSES

The following sections describe the methods used to conduct groundwater monitoring at the Site.

3.1 Groundwater Flow Direction, Gradient, and Velocity

Prior to each assessment sampling event, groundwater elevations were recorded from piezometers and each well in the network. Groundwater elevations recorded during the background and detection monitoring events are summarized in Tables 3A and 3B, Summary of Groundwater Elevations – February 2019 and March 2019, respectively. Groundwater elevation data was used to develop a potentiometric surface elevation contour map (Figure 3, March 2019 Water Table Contour Map). The general direction of groundwater flow across the site is towards the north-northwest. The groundwater flow patterns observed during the March 2019 monitoring event are consistent with historical patterns.

The groundwater flow velocity at Plant Yates was calculated using a derivation of Darcy's Law. Specifically:

Equation

$$v = \underbrace{ \ \ \, K \, (dh/dl) \ \ \, }_{P_e} \quad \text{where:} \quad v = \text{ground water velocity} \\ K = \text{hydraulic conductivity} \\ dh/dl = \text{hydraulic gradient} \\ P_e = \text{effective porosity}$$

Groundwater flow velocities were calculated for the site based on hydraulic gradients, average hydraulic conductivity based on previous slug test data from the Site, and an estimated effective porosity of 0.20 (based on a review of several sources, including Driscoll, 1986; US EPA, 1989; Freeze and Cherry, 1979). Groundwater flow velocities have been calculated and are tabulated on Table 4, Groundwater Flow Velocity Calculations – March 2019. The calculated flow velocity ranges between 0.006 to 0.20 feet per day or 2.3 to 87 feet per year.

3.2 Groundwater Sampling

Groundwater samples were collected using low-flow sampling procedures in accordance with 40 CFR § 257.93(a). Purging and sampling was primarily performed using bladder pumps dedicated to each well. For wells sampled with peristaltic pumps, tubing was lowered into the well so that the intake was at the midpoint of the well screen (or as appropriate determined by the water level). Peristaltic pump samples were collected using new disposable polyethylene tubing. All non-disposable equipment was decontaminated before use and between well locations.

Monitoring wells were purged and sampled using low-flow sampling procedures. A SmarTroll (In-Situ field instrument) was used to monitor and record field water quality parameters (pH, conductivity, and dissolved oxygen) during well purging to verify stabilization prior to sampling. Turbidity was measured using a Hach 2100Q portable turbidimeter. Groundwater samples were collected when the following stabilization criteria were met:

- ± 0.1 standard units for pH
- ± 10% for specific conductance
- \pm 10% for DO where DO > 0.5 mg/L. No criterion applies if DO < 0.5 mg/L.
- Turbidity measurements less than 10 nephelometric turbidity units (NTU)

Once stabilization was achieved, samples were collected directly into appropriately preserved laboratory-supplied sample containers. Sample bottles were placed in ice-packed coolers and submitted to Pace Analytical Services, LLC (Pace) of Peachtree Corners, Georgia and Greensburg, Pennsylvania following chain-of-custody protocol. Stabilization logs for each well during each monitoring event are included in Appendix A.

3.3 Laboratory Analyses

Except for the monitoring well associated with AP-A (YGWC-49) groundwater samples were collected during two groundwater monitoring events in the first half of 2019. During the March 2019 sampling event, wells were sampled and analyzed for Appendix IV monitoring parameters pursuant to 40 CFR § 257.95(b). Groundwater samples collected during the subsequent semiannual event in April 2019 were analyzed for Appendix III and those Appendix IV parameters detected above the laboratory method detection limit (MDL) during the March event in accordance with 40 CFR § 257.95(d). Parameters not detected in the March event above the laboratory MDL included: chromium, mercury, and molybdenum. YGWC-49 was sampled for Appendix III parameters on March 28, 2019. Analytical methods used for groundwater monitoring parameters are provided in laboratory reports in Appendix A.

Analytical data collected in the March and April 2019 monitoring events are summarized in Tables 5A and 5B, Summary of Groundwater Analytical Data – March 2019 and April 2019, respectively.

Laboratory analyses were performed by Pace. Pace is accredited by the National Environmental Laboratory Accreditation Program (NELAP) and maintains a NELAP certification for all parameters analyzed for this project. In addition, Pace is certified to perform analysis by the State of Georgia. Laboratory reports and chain-of-custody records for the monitoring events are presented in Appendix A.

3.4 Quality Assurance and Quality Control Summary

During each sampling event, quality assurance/quality control (QA/QC) samples are collected at a rate of one QA/QC sample per every 10 groundwater assessment samples. Equipment blanks (where non-dedicated sampling equipment is used) and duplicate samples were collected during each sampling event. QA/QC sample data were evaluated during data validation and are included in Appendix A.

Groundwater quality data in this report was validated in accordance with US EPA guidance (US EPA, 2011) and the analytical methods. Data validation generally consisted of reviewing sample integrity, holding times, laboratory method blanks, laboratory control samples, matrix spikes/matrix spike duplicate recoveries and relative percent differences, post digestions spikes, laboratory and field duplicate RPDs, field and equipment blanks, and reporting limits. Where appropriate, validation qualifiers and flags are applied to the data using US EPA procedures as guidance (US EPA, 2017).

Values followed by a "J" flag indicate that the value is an estimated analyte concentration detected between the method detection limit (MDL) and the laboratory reporting limit (PQL). The estimated value is positively identified, but is below the lowest level that can be reliably achieved within specified limits of precision and accuracy under routine laboratory operating conditions. "J" flagged data are used to establish background statistical limits but are not used when performing statistical analyses.

4.0 STATISTICAL ANALYSIS

Statistical analysis of Appendix III and IV groundwater monitoring data was performed on samples collected from the certified groundwater monitoring network pursuant to 40 CFR § 257.93 and following the appropriate PE-certified method. The statistical method used at the site was developed by MacStat Consulting, Ltd, in accordance with 40 CFR § 257.93(f) using methodology presented in *Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance*, March 2009, US EPA 530/R-09-007 (US EPA, 2009). To develop the statistical method, analytical data collected during the background period were evaluated and used to develop statistical limits for each Appendix III parameter. Subsequent detection monitoring results were compared to the statistical limits to determine if concentrations were statistically different from background.

4.1 Statistical Methods

Sanitas groundwater statistical software was used to perform the statistical analyses. Sanitas is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by US EPA regulations. Although Assessment Monitoring has been implemented for the AP-3, A, B, and B' network (except for AP-A), statistical evaluation of Appendix III constituents is performed to determine if constituents have returned to background conditions.

4.1.1 Appendix III Constituents

Statistical tests used to evaluate the groundwater monitoring data consist of interwell prediction limits combined with a 1-of-2 verification resample plan for each of the Appendix III parameters except chloride. Monitoring results for chloride were evaluated using intrawell prediction limits combined with a 1-of-3 verification resample plan. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent, and the most recent sample from each downgradient well is compared to the same limit for each parameter. Intrawell

prediction limits are constructed from historical data within a given well, and the most recent sample is compared to background. If the most recent sample exceeds its respective background statistical limit, an initial statistically significant increase (SSI) is identified. A summary of the statistical methodology used at the Site for routine groundwater monitoring is provided in Table 6, Summary of Statistical Methods.

4.1.2 Assessment Monitoring Statistics

Parametric tolerance limits were used to calculate background limits from pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. The background limits were then used when determining the GWPS established under 40 CFR § 257.95(h) and GA EPD Rule 391-3-4-.10(6)(a).

As described in 40 CFR § 257.95(h)(1-3), the GWPS is:

- (1) The maximum contaminant level (MCL) established under §§ 141.62 and 141.66 of this title:
- (2) Where an MCL has not been established:
 - (i) Cobalt (0.006 mg/L);
 - (ii) Lead (0.015 mg/L)
 - (iii) Lithium (0.040 mg/L);
 - (iv) Molybdenum (0.100 mg/L).
- (3) Background levels for constituents were the background level is higher than the MCL or rule-identified GWPS.

US EPA revised the Federal CCR Rule on July 30, 2018, providing GWPS for cobalt, lead, lithium, and molybdenum as described above in 40 CFR 257.95(h)(2). Presently those updated GWPS have not yet been incorporated in the current GA EPD Rules for Solid Waste Management 391-3-4-.10(6)(a); and therefore, background concentrations are considered when determining the GWPS for constituents where an MCL has not been established (or where background is higher than the MCL). Under the existing GA EPD rules, the GWPS is:

- (1) The MCL;
- (2) Where an MCL has not been established, the background concentration;
- (3) Background levels for constituents where the background level is higher than the MCL.

Following the above Federal and State rule requirements, GWPS have been established for statistical comparison of Appendix IV constituents. Table 7, Summary of Background Levels and Groundwater Protection Standards, summarizes the background limit established at each monitoring well and the GWPS established under State and Federal rules.

To complete the statistical comparison to GWPS, confidence intervals were constructed for each of the Appendix IV parameters in each downgradient well. Those confidence intervals were compared to the GWPS established under the State and Federal rules. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard.

4.2 Statistical Analysis Results

Analytical data from the semiannual monitoring event in April 2019 were statistically analyzed in accordance with the Statistical Analysis Plan. Appendix III statistical analysis for wells associated with AP-3, B and B' was performed to determine if constituents have returned to background

levels. Appendix IV assessment monitoring parameters were evaluated to determine if concentrations statistically exceeded the established GWPS.

Based on review of the Appendix III statistical analyses for AP-3, B, and B' presented in Appendix C, Appendix III constituents have not returned to background levels and assessment monitoring should continue pursuant to 40 CFR § 257.95(f).

Additional AP-A monitoring well YGWC-49 was added to the detection monitoring event and data were statistically analyzed in accordance with the PE-certified statistical methods.

Based on the statistical results presented in Appendix C, an SSI for sulfate was observed during the most recent monitoring event. the following summarizes the parameter exhibiting an SSI for AP-A as follows:

Sulfate: YGWC-49

Pursuant to §257.90(e), within 90 days from determining an SSI, GPC will either (1) prepare a demonstration that a source other than the CCR unit(s) was the cause, or (2) implement assessment monitoring per §257.95. Since the site has completed an ACM and is in assessment monitoring, well YGWC-49 will be added to the assessment monitoring program.

4.2.1 First Semiannual Assessment Monitoring Event

Statistical analysis of Appendix IV data identified two constituents at SSLs above the established GWPS at groundwater monitoring well YGWC-33S. The GWPS for beryllium and cobalt are the same whether derived following the updated Federal CCR rules or the existing GA EPD rules. The lower 95% confidence levels for beryllium and cobalt at YGWC-33S statistically exceed the respective GWPS of 0.004 and 0.013 mg/L.

5.0 MONITORING PROGRAM STATUS

In accordance with 40 CFR § 257.94(e), an assessment monitoring program was implemented in January 2018. SSLs of Appendix IV parameters were identified at the multi-unit network during the assessment monitoring event conducted in the first half of 2019. An Assessment of Corrective Measures Report was posted to the operating record on June 12, 2019 in accordance with 40 CFR § 257.96.

AP-A is subject to the timelines promulgated under § 257.100 and was added to the multi-unit network on April 17, 2019. In the upcoming groundwater sampling event YGWC-49 will be sampled for Appendix IV pursuant to 40 CFR § 257.95(b) and then sampled for Appendix III and detected Appendix IV constituents in order to bring the multiunit sampling schedule into alignment.

6.0 CONCLUSIONS AND FUTURE ACTIONS

The site has completed an ACM and is continuing to perform assessment monitoring pursuant to per §257.95. Statistical evaluations of the groundwater monitoring data for the Site identified SSLs of beryllium and cobalt in well YGWC-33S during the April 2019 sampling event. The Site will continue assessment monitoring pursuant to § 257.95 and implement assessment of corrective measures as required by § 257.96.

The next scheduled groundwater monitoring event is scheduled for the second half of 2019.

7.0 REFERENCES

Driscoll, Fletcher G., 1986 *Groundwater and Wells*, Johnson Screens, Saint Paul, Minnesota, 1089 pp.

EPRI, 2015 Technical Report, Groundwater Monitoring Guidance for the Coal Combustion Residuals Rule.

Freeze, R.A. and Cherry, J.A. 1979, *Groundwater*, Prentice-Hall, Englewood Cliffs, New Jersey, 604 pp.

State Waste Management Board. 2016. State Solid Waste Management Regulations – (9VAC20 81 et seq.). January.

MacStat Consulting, Ltd., Statistical Analysis Plan - Plant Yates Ash Pond 3 and B/B'. 2017.

US EPA, 1989 Risk Assessment Guidance for Superfund (RAGS), Vol. I: Human Health Evaluation Manual (Part A) (540-1-89-002).

US EPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery – Program Implementation and Information Division. March.

US EPA. 2011. *Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Region IV. Athens, GA. September.

US EPA. 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January.

TABLES

Table 1A Monitoring Network Well Summary

Well ID	Installation Date (mm/dd/yyyy)	Bottom Depth (ft BTOC)	Bottom Elevation (ft MSL)	Depth to Top of Screen (ft MSL)	Top of Screen Elevation (ft MSL)	Purpose
		A	P-3, A, B, and B'			
YGWA-4I	05/21/2014	48.70	735.48	38.37	745.81	Upgradient
YGWA-5I	05/21/2014	57.60	726.93	47.27	737.26	Upgradient
YGWA-5D	05/21/2014	128.80	655.73	78.47	706.06	Upgradient
YGWA-17S	09/10/2015	40.10	742.93	29.77	753.26	Upgradient
YGWA-18S	09/08/2015	40.30	750.23	29.97	760.56	Upgradient
YGWA-18I	09/08/2015	80.00	710.56	69.67	720.89	Upgradient
YGWA-20S	09/29/2015	29.52	737.78	19.19	748.11	Upgradient
YGWA-21I	09/28/2015	80.35	703.27	70.02	713.60	Upgradient
YGWC-23S	09/21/2015	29.79	734.83	19.46	745.16	Downgradient
YGWC-24S	09/16/2015	57.57	706.55	47.24	716.88	Downgradient
YGWC-33S	03/03/2016	38.53	706.01	28.33	716.21	Downgradient
YGWC-36	07/20/2016	55.86	683.67	45.53	694.00	Downgradient
YGWC-49	07/13/2016	78.83	703.89	68.83	713.89	Downgradient

- Notes:
 1. ft BTOC indicates feet below top of casing.
 2. ft MSL indicates feet mean sea level.

Table 1B Non-Network Well Summary

Well ID	Installation Date (mm/dd/yyyy)	Bottom Depth (ft BTOC)	Bottom Elevation (ft MSL)	Depth to Top of Screen (ft MSL)	Top of Screen Elevation (ft MSL)	Purpose
YGWA-6S	05/19/2014	39.60	742.68	29.27	753.01	Piezometer
YGWA-6I	05/19/2014	69.10	713.48	58.77	723.81	Piezometer
YAMW-1	09/19/2018	69.66	674.10	59.66	684.10	Downgradient
PZ-04S	05/21/2014	32.97	751.56	22.64	761.89	Piezometer
PZ-05S	05/21/2014	41.90	742.74	31.57	753.07	Piezometer
PZ-06D	05/19/2014	135.85	646.08	85.52	696.41	Piezometer
PZ-24I	09/16/2015	89.79	674.54	79.46	684.87	Piezometer
PZ-35	07/20/2016	49.37	694.37	39.04	704.70	Downgradient
PZ-48	07/11/2016	59.04	720.84	48.71	731.17	Piezometer

- ft BTOC indicates feet below top of casing.
 ft MSL indicates feet mean sea level.
 YAMW-1 and PZ-35 used for downgradient characterization of YGWC-33S.

Table 2A **Groundwater Sampling Event Summary for the First Half of 2019**

Well	Hydraulic Location	Mar. 4-6, 2019	Apr. 2-9, 2019
Purpose E	Assessment	First Semiannual	
YGWA-4I	Upgradient	Scan	A-03
YGWA-5I	Upgradient	Scan	A-03
YGWA-5D	Upgradient	Scan	A-03
YGWA-17S	Upgradient	Scan	A-03
YGWA-18S	Upgradient	Scan	A-03
YGWA-18I	Upgradient	Scan	A-03
YGWA-20S	Upgradient	Scan	A-03
YGWA-21I	Upgradient	Scan	A-03
YGWC-23S	Downgradient	Scan	A-03
YGWC-24S	Downgradient	Scan	A-03
YGWC-33S	Downgradient	Scan	A-03
YGWC-36	Downgradient	Scan	A-03

- Scan = All Appendix IV.
 A-XX = Assessment Event Number (Appendix III and Detected Appendix IV).

Table 2B AP-A Groundwater Sampling Event Summary

Well	Hydraulic Location	September 1, 2016	November 15, 2016	February 27, 2017	May 9, 2017	July 13, 2017	October 11, 2017	April 4, 2018	September 20, 2018	March 28, 2019
Purpose of Sampling Event		Background	Background	Background	Background	Background	Background	Background	Background	Detection
YGWC-49	Downgradient	BG01	BG02	BG03	BG04	BG05	BG06	BG07	BG08	D01

- Notes:

 1. BGXX = Background Event (Appendix III and Appendix IV)

 2. DXX = Detection Event (Appendix III)

Table 3A **Summary of Groundwater Elevations** February 2019

Well ID	TOC Elevation (ft MSL)	Depth-to- Water (ft BTOC)	Groundwater Elevation (ft MSL)
YGWA-4I	784.18	19.79	764.39
YGWA-5I	784.53	15.75	768.78
YGWA-5D	784.53	23.91	760.62
YGWA-6S	782.28	16.66	765.62
YGWA-6I	782.58	17.12	765.46
YGWA-17S	783.03	10.02	773.01
YGWA-18S	790.53	17.35	773.18
YGWA-18I	790.56	20.92	769.64
YGWA-20S	767.30	11.01	756.29
YGWA-21I	783.62	28.11*	755.51
YGWC-23S	764.62	15.19*	749.43
YGWC-24S	764.12	26.56	737.56
YGWC-33S	744.54	12.47*	732.07
YGWC-36	739.53	9.65*	729.88
YGWC-49	782.72	29.81	752.91
YAMW-1	743.76	11.54	732.22
PZ-04S	784.53	21.45	763.08
PZ-05S	784.64	15.62	769.02
PZ-06D	781.93	20.37	761.56
PZ-24I	764.33	27.49	736.84
PZ-35	743.74	11.81	731.93
PZ-48	779.88	18.14	761.74

- ft BTOC indicates feet below top of casing.
 ft MSL indicates feet mean sea level.
 Depths to water measured February 25-26, 2019.
 Depth to water recorded from transducer reading on February 25, 12:00 pm.

Table 3B Summary of Groundwater Elevations March 2019

Well ID	TOC Elevation (ft MSL)	Depth-to- Water (ft BTOC)	Groundwater Elevation (ft MSL)
YGWA-4I	784.18	19.03	765.15
YGWA-5I	784.53	15.49	769.04
YGWA-5D	784.53	22.57	761.96
YGWA-6S	782.28	16.62	765.66
YGWA-6I	782.58	17.17	765.41
YGWA-17S	783.03	11.05	771.98
YGWA-18S	790.53	17.15	773.38
YGWA-18I	790.56	20.78	769.78
YGWA-20S	767.30	11.10	756.20
YGWA-21I	783.62	27.66*	755.96
YGWC-23S	764.62	16.07*	748.55
YGWC-24S	764.12	26.67	737.45
YGWC-33S	744.54	13.22*	731.32
YGWC-36	739.53	10.00*	729.53
YGWC-49	782.72	29.34	753.38
YAMW-1	743.76	12.08	731.68
PZ-04S	784.53	20.65	763.88
PZ-05S	784.64	15.40	769.24
PZ-06D	781.93	20.12	761.81
PZ-24I	764.33	27.63	736.70
PZ-35	743.74	13.22	730.52
PZ-37	760.53	16.46*	744.07
PZ-48	779.88	18.04	761.84

- Notes:

 1. ft BTOC indicates feet below top of casing.
 2. ft MSL indicates feet mean sea level.
 3. Depths to water measured March 25-26, 2019.
 * Depth to water recorded from transducer reading on March 25, 12:00 pm.

 PROJECT NUMBER:
 I054-110
 PAGE:
 1
 OF
 1

 PROJECT NAME:
 Plant Yates
 BY:
 MM
 DATE:
 June 2019

 SUBJECT:
 AP-3, A, B, and B'
 CHK'D:
 EP
 DATE:
 June 2019

Table 4 GROUNDWATER FLOW VELOCITY CALCULATIONS March 2019

Equation

 $v = \frac{K (dh/dl)}{P_e}$ where: v = ground water velocity K = hydraulic conductivity dh/dl = hydraulic gradient

P_e = effective porosity

Values Used in Calculation

	Value		Source
K _{max} =	3.7E-03	cm/sec	
	10	ft/day	See note 1.
K _{min} =	9.7E-05	cm/sec	See note 1.
	0.28	ft/day	
			Hydraulic gradient from
i ₁ =	0.006	unitless	YGWA-20S to YGWC-33S
i ₂ =	0.003	unitless	YGWC-33S to YGWC-36
i _{avg} =	0.005	unitless	Average
P _e =	0.20	unitless	See note 2.

Minimum Flow Velocity

$$v_{min} = \underline{(0.28)(0.005)}$$
0.20

 $v_{min} = 0.006 \text{ ft/day, or } 2.3 \text{ ft/year}$

Maximum Flow Velocity

$$v_{\text{max}} = (10) (0.005)$$
 0.20

 $v_{max} = 0.24 \text{ ft/day, or } 87 \text{ ft/year}$

- (1) Slug tests performed by Atlantic Coast Consulting, Inc. (2017)
- (2) Default value for silty sands from Interim Final RCRA Investigation (EPA, 1989)

Table 5A Summary of Groundwater Analytical Data March 2019

	· · la atamaa	MCL/	YGWA-4I	YGWA-5I	YGWA-5D	YGWA-17S	YGWA-18S	YGWA-18I	YGWA-20S	YGWA-21I
3	Substance		3/4/2019	3/4/2019	3/4/2019	3/5/2019	3/5/2019	3/6/2019	3/5/2019	3/5/2019
	Antimony	0.006	ND	ND	ND	ND	ND	ND	ND	ND (0.0011 J)
	Arsenic	0.01	ND	ND	ND	ND	ND	ND	ND	ND (0.0013 J)
	Barium	2	0.016	0.019	ND (0.0077 J)	0.015	0.020	0.024	0.016	0.011
	Beryllium	0.004	ND	ND	ND	ND (0.000091 J)	ND (0.000079 J)	ND	ND (0.00011 J)	ND
	Cadmium	0.005	ND	ND	ND	ND	ND	ND	ND	ND
	Chromium	0.1	ND	ND	ND	ND	ND	ND	ND	ND
×i	Cobalt	N/R	ND	ND	ND	ND	ND	ND	ND	ND (0.0039 J)
bua	Fluoride	4	ND	ND	ND (0.19 J)	ND	ND	ND	ND	0.32
Appendix	Lead	0.015	ND	ND	ND	ND	ND	ND	ND	ND
	Lithium	N/R	ND (0.015 J)	ND (0.0032 J)	ND (0.0065 J)	ND	ND (0.0031 J)	ND (0.0033 J)	ND	ND (0.0053 J)
	Mercury	0.002	ND	ND	ND	ND	ND	ND	ND	ND
	Molybdenum	N/R	ND	ND	ND	ND	ND	ND	ND	ND
	Radium	5	1.21 U	1.00 U	4.43	0.272 U	0.474 U	0.714 U	0.840 U	0.985 U
	Selenium	0.05	ND	ND	ND	ND	ND	ND	ND	ND
	Thallium	0.002	ND	ND	ND	ND	ND	ND	ND	ND

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guidline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the laboratory method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instrument could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated value.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5A Summary of Groundwater Analytical Data March 2019

	whatanaa	MCL/	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
3	ubstance	(SMCL)	3/6/2019	3/5/2019	3/6/2019	3/6/2019
	Antimony	0.006	ND	ND	ND	ND (0.0011 J)
	Arsenic	0.01	ND	ND	ND (0.0022 J)	ND
	Barium	2	0.019	0.019	0.012	0.041
	Beryllium	0.004	ND (0.000066 J)	ND (0.00016 J)	0.023	ND (0.00029 J)
	Cadmium	0.005	ND	ND	0.0030	ND (0.00015 J)
	Chromium	0.1	ND	ND	ND	ND
××	Cobalt	N/R	ND	ND	0.028	ND
pua	Fluoride	4	ND	ND	0.49	ND
Appendix	Lead	0.015	ND	ND	ND (0.0012 J)	ND
~	Lithium	N/R	ND (0.0025 J)	ND	ND (0.033 J)	ND (0.0057 J)
	Mercury	0.002	ND	ND	ND	ND
	Molybdenum	N/R	ND	ND	ND	ND
	Radium	5	0.736 U	0.837 U	0.970 U	0.919 U
	Selenium	0.05	0.019	ND	0.013	ND (0.0033 J)
	Thallium	0.002	ND	ND	ND (0.00016 J)	ND

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guidline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the laboratory method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instrument could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated value.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5B Summary of Groundwater Analytical Data April 2019

S	ubstance	MCL/	YGWA-4I	YGWA-5I	YGWA-5D	YGWA-17S	YGWA-18S	YGWA-18I	YGWA-20S	YGWA-21I
		(SMCL)	4/3/2019	4/3/2019	4/3/2019	4/2/2019	4/3/2019	4/3/2019	4/3/2019	4/2/2019
	Boron	N/R	ND (0.0055 J)	ND (0.0044 J)	ND (0.0076 J)	ND (0.0066 J)	ND (0.0053 J)	ND	ND	ND (0.011 J)
■	Calcium	N/R	8.4	2.8	ND (24.7 J)	2.5	1.2	5.3	2.9	8.8
ļ ģ	Chloride	(250)	4.3	4.2	4.0	4.8	6.3	6.9	3.1	2.5
Appendix	Fluoride	4	ND	ND	ND (0.047 J)	ND	ND	ND	ND	ND (0.12 J)
₽	Sulfate	(250)	8.5	2.1	7.0	5.1	1.3	ND (0.82 J)	ND (0.12 J)	3.8
	TDS	(500)	111	83.0	142	72.0	63.0	89.0	57.0	134
	Antimony	0.006	ND	ND	ND	ND	ND	ND	ND	ND (0.0011 J)
	Arsenic	0.01	ND	ND	ND	ND	ND	ND	ND	ND (0.00096 J)
	Barium	2	0.017	0.023	ND (0.0087 J)	0.016	0.017	0.025	0.018	0.011
	Beryllium	0.004	ND	ND	ND	ND (0.000090 J)	ND (0.000075 J)	ND	ND (0.000064 J)	ND
Appendix IV	Cadmium	0.005	ND	ND	ND	ND	ND	ND	ND	ND
pua	Cobalt	N/R	ND (0.00083 J)	ND	ND	ND	ND	ND	ND	ND (0.0039 J)
)dd\	Lead	0.015	ND	ND	ND	ND	ND	ND	ND	ND
	Lithium	N/R	ND (0.014 J)	ND (0.0035 J)	ND (0.0070 J)	ND	ND (0.0028 J)	ND (0.0035 J)	ND	ND (0.0051 J)
	Radium	5	1.07 U	0.430 U	4.79	0.847 U	0.429 U	0.385 U	1.01	1.42
	Selenium	0.05	ND	ND	ND	ND	ND	ND	ND	ND
	Thallium	0.002	ND	ND	ND	ND	ND	ND	ND	ND

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guidline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the laboratory method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instrument could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated value.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5B Summary of Groundwater Analytical Data April 2019

	ubstance	MCL/	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
3	ubstance	(SMCL)	4/4/2019	4/4/2019	4/4/2019	4/4/2019
	Boron	N/R	0.60	ND	15.4	0.22
≡	Calcium	N/R	3.7	1.9	163	ND (16.9 J)
) dix	Chloride	(250)	1.7	5.9	5.8	5.4
Appendix III	Fluoride	4	ND (0.049 J)	ND (0.033 J)	0.57	ND (0.043 J)
Αp	Sulfate	(250)	27.9	ND (0.29 J)	847	119
	TDS	(500)	85.0	63.0	1260	240
	Antimony	0.006	ND	ND	ND	0.0041
	Arsenic	0.01	ND	ND	ND (0.0024 J)	ND
	Barium	2	0.019	0.020	0.014	0.042
-	Beryllium	0.004	ND (0.000072 J)	ND (0.00015 J)	0.025	ND (0.00033 J)
Appendix IV	Cadmium	0.005	ND	ND	0.0035	ND (0.00019 J)
end	Cobalt	N/R	ND	ND	0.031	ND
ďdγ	Lead	0.015	ND	ND	ND (0.0014 J)	ND (0.00037 J)
1	Lithium	N/R	ND (0.0018 J)	ND	ND (0.035 J)	ND (0.0058 J)
	Radium	5	0.474 U	0.502 U	1.14	1.05 U
	Selenium	0.05	0.017	ND	0.012	ND (0.0029 J)
	Thallium	0.002	ND	ND	ND (0.00018 J)	ND

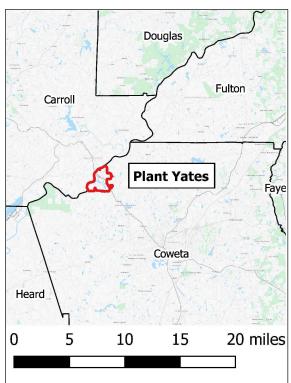
- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guidline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the laboratory method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instrument could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated value.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 6 Statistical Method Summary

Plant Yates AP-3, A, B, and B' Statistical Method Summary							
Monitoring Well Network	Upgradient Wells	YGWA-4I, YGWA-5I, YGWA- 5D, YGWA-17S, YGWA-18S, YGWA-18I, YGWA-20S, YGWA-21I, YGWA-39 and YGWA-40					
	Downgradient Wells	YGWC-38, YGWC-41, YGWC- 42, and YGWC-43					
CCR Monitoring Parameters	Appendix III (Detection Monitoring)	Boron, Calcium, Chloride, Fluoride, pH, Sulfate, and TDS					
	Appendix IV (Assessment Monitoring)	Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, combined Radium 226 + 228, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, and Thallium					
	Data Screening Proposed Background	Evaluate outliers, trends, and seasonality when sufficient data are available					
Statistical Methodology	Statistical Limits	Interwell (boron, calcium, fluoride, pH, sulfate, and TDS) or intrawell (chloride) statistical limits are on constituent specific basis, depending on the appropriateness of the method as determined by the Analysis of Variance					

Table 7 Summary of Background Levels and Groundwater Protection Standards


Constituent	Units	Site Background	Federal GWPS	State GWPS	
Antimony	mg/L	0.0015	0.006	0.006	
Arsenic	mg/L	0.0025	0.010	0.010	
Barium	mg/L	0.067	2	2	
Beryllium	mg/L	0.0015	0.004	0.004	
Cadmium	mg/L	0.0005	0.005	0.005	
Cobalt	mg/L	0.013	0.013	0.013	
Fluoride	mg/L	0.32	4	4	
Lead	mg/L	0.0025	0.015	0.015	
Lithium	mg/L	0.025	0.040	0.025	
Radium	pCi/L	6.92	6.92	6.92	
Selenium	mg/L	0.005	0.050	0.050	
Thallium	mg/L	0.0005	0.002	0.002	

- 1. Site Background = Parametric tolerance limits calculated from pooled upgradient well data.
- Federal GWPS = Groundwater protection standard, per 257.95(h)(1-3).
 State GWPS = Groundwater protection standard, per Georgia EPD Rule 391-3-4-.10(6)(a).
- 4. Units are milligrams per liter (mg/L), except for radium, which are picocuries per liter (pCi/L).

FIGURES

ATLANTIC COAST CONSULTING, INC.

1150 Northmeadow Pkwy. Suite 100 Roswell, GA 30076 770.594.5998 www.atlcc.net

PROJECT:

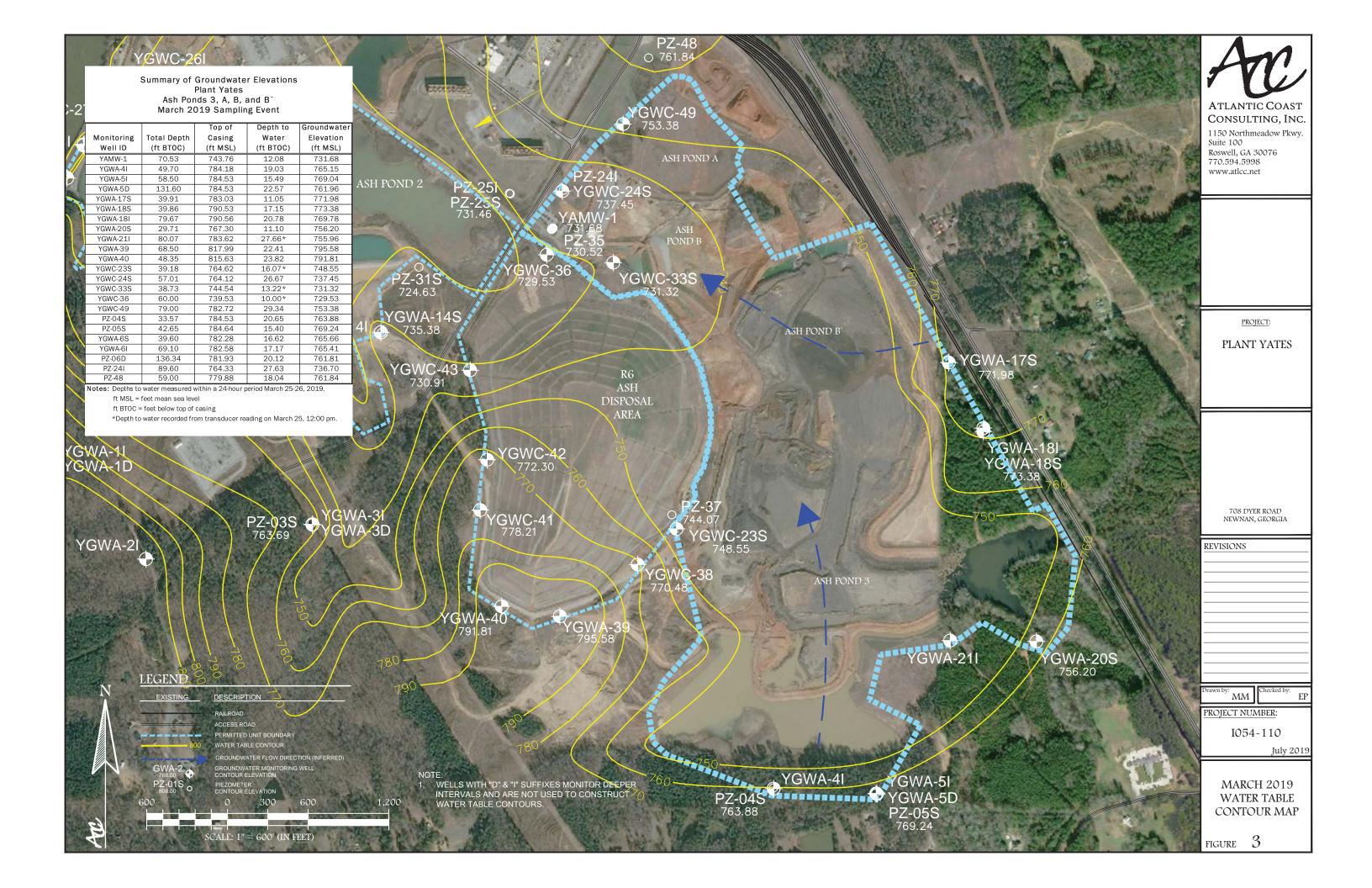
PLANT YATES

708 DYER ROAD NEWNAN, GEORGIA

REVISIONS

MM Checked by:

PROJECT NUMBER:


I054~110

July 2019

SITE LOCATION MAP

figure 1

APPENDICES

APPENDIX A

LABORATORY ANALYTICAL AND FIELD SAMPLING REPORTS

Product Name: Low-Flow System

Date: 2019-03-04 14:36:46

Project Information:

Pump Information: Operator Name **Hunter Auld** Pump Model/Type

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter .25 in Plant Yates Tubing Length Site Name Plant Yates AP3 50 ft

0° 0' 0" Latitude 0° 0' 0" Longitude Sonde SN 598939

Turbidity Make/Model Hach 2100Q Pump placement from TOC 45 ft

Pumping Information: Well Information:

Final Pumping Rate Well ID YGWA-4I 90 mL/min Well diameter Total System Volume 0.7081711 L 2 in Calculated Sample Rate Well Total Depth 49.7 ft 300 sec Stabilization Drawdown Screen Length 10 ft 12.2 in Depth to Water 2.9 L 19.53 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	14:14:12	600.03	11.81	6.21	131.39	1.10	20.20	2.09	75.44
Last 5	14:19:12	900.03	12.50	6.18	131.92	1.10	20.35	1.53	77.32
Last 5	14:24:21	1209.01	12.90	6.17	132.82	0.8	20.40	1.41	76.70
Last 5	14:29:21	1509.03	12.97	6.18	131.88	0.70	20.50	1.35	77.08
Last 5	14:34:21	1809.02	12.90	6.18	131.39	0.70	20.55	1.36	77.09
Variance 0			0.40	-0.01	0.90			-0.12	-0.63
Variance 1			0.07	0.00	-0.94			-0.05	0.38
Variance 2			-0.06	-0.00	-0.49			0.00	0.01

Notes

Sampled at 1435 on 3-4-19. Partly cloudy, 40s.

Grab Samples

Product Name: Low-Flow System

Date: 2019-03-04 13:17:41

Project Information:

Pump Information: Operator Name Pump Model/Type **Hunter Auld**

QED Bladder Pump Company Name Tubing Type ACC poly Project Name Tubing Diameter .25 in Plant Yates Tubing Length Site Name Plant Yates AP3 59 ft

0° 0' 0" Latitude 0° 0' 0" Longitude Sonde SN 598939

Turbidity Make/Model Hach 2100Q Pump placement from TOC 53 ft

Pumping Information: Well Information:

Final Pumping Rate Well ID YGWA-5I 180 mL/min Well diameter Total System Volume 0.7483419 L 2 in Calculated Sample Rate Well Total Depth 58.5 ft 300 sec 3.6 in Screen Length 10 ft Stabilization Drawdown Depth to Water **Total Volume Pumped** 5.9 L 15.5 ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	12:54:21	600.04	13.99	5.92	72.81	1.00	15.80	5.76	90.08
Last 5	12:59:24	903.02	14.22	5.86	72.97	1.20	15.80	6.02	92.54
Last 5	13:04:24	1203.03	14.30	5.78	73.66	0.80	15.80	6.41	103.73
Last 5	13:09:27	1506.02	14.27	5.78	74.68	0.95	15.80	6.16	105.20
Last 5	13:14:36	1815.01	14.36	5.75	75.10	0.90	15.80	6.43	108.02
Variance 0			0.08	-0.08	0.70			0.40	11.19
Variance 1			-0.03	-0.00	1.02			-0.25	1.47
Variance 2			0.09	-0.03	0.42			0.27	2.82

Notes

Sampled at 1317 on 3-4-19. Sunny, 40.

Grab Samples

Product Name: Low-Flow System

Date: 2019-03-04 12:03:26

Project Information:

Pump Information: Operator Name **Hunter Auld** Pump Model/Type

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter .25 in Plant Yates Tubing Length Site Name Plant Yates AP3 132 ft

0° 0' 0" Latitude 0° 0' 0" Longitude Sonde SN 598939

Turbidity Make/Model Hach 2100Q Pump placement from TOC 105 ft

Pumping Information: Well Information:

Final Pumping Rate Well ID YGWA-5D 120 mL/min Well diameter Total System Volume 1.074172 L 2 in Calculated Sample Rate Well Total Depth 131.6 ft 300 sec Stabilization Drawdown Screen Length 50 ft 4.2 in Depth to Water 4.6 L 23.75 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	11:39:56	905.03	12.40	7.42	199.89	0.60	24.10	0.17	-106.99
Last 5	11:44:56	1205.03	12.54	7.53	200.97	0.55	24.10	0.12	-122.30
Last 5	11:49:59	1508.02	12.55	7.50	188.11	0.50	24.10	0.11	-121.19
Last 5	11:55:07	1816.01	12.58	7.47	183.72	0.5	24.10	0.10	-116.70
Last 5	12:00:08	2117.01	12.57	7.46	182.07	0.50	24.10	0.09	-117.63
Variance 0			0.01	-0.03	-12.87			-0.02	1.11
Variance 1			0.03	-0.04	-4.38			-0.01	4.48
Variance 2			-0.01	-0.01	-1.65			-0.01	-0.93

Notes

Sampled at 1203 on 3-4-19. Cloudy, 30s.

Grab Samples

Date: 2019-03-05 11:38:40

Project Information:

Pump Information: Operator Name **Hunter Auld** Pump Model/Type

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter .25 in Plant Yates Tubing Length Site Name Plant Yates AP3 32 ft

0° 0' 0" Latitude 0° 0' 0" Longitude Sonde SN 598939

Turbidity Make/Model Hach 2100Q Pump placement from TOC 26 ft

Pumping Information: Well Information:

Final Pumping Rate Well ID YGWA-17S 210 mL/min Well diameter Total System Volume 0.7938874 L 2 in Calculated Sample Rate Well Total Depth 31.61 ft 300 sec Stabilization Drawdown Screen Length 10 ft 4.2 in Depth to Water 9.95 ft **Total Volume Pumped** 10.1 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	11:16:19	1501.03	15.66	5.48	80.17	5.10	10.30	2.52	136.05
Last 5	11:21:24	1806.02	15.35	5.48	81.13	5.40	10.30	1.72	136.72
Last 5	11:26:24	2106.01	15.35	5.49	81.63	5.40	10.30	1.57	131.15
Last 5	11:31:24	2406.01	15.57	5.48	81.71	4.87	10.30	1.53	135.86
Last 5	11:36:25	2706.99	15.71	5.48	81.97	4.40	10.30	1.49	129.38
Variance 0			0.00	0.01	0.50			-0.15	-5.57
Variance 1			0.22	-0.01	80.0			-0.04	4.71
Variance 2			0.14	0.00	0.26			-0.04	-6.48

Notes

Sampled at 1138 on 3-5-19. Sunny, 30s.

Date: 2019-03-05 16:52:55

Pumping Information:

Project Information:

Pump Information: Operator Name **Hunter Auld** Pump Model/Type

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter .25 in Plant Yates Tubing Length Site Name Plant Yates AP3 40 ft

0° 0' 0" Latitude 0° 0' 0" Longitude Sonde SN 598939

Turbidity Make/Model Hach 2100Q Pump placement from TOC 35 ft

Well Information:

Final Pumping Rate 180 mL/min Well ID YGWA-18S Well diameter Total System Volume 0.8711092 L 2 in Calculated Sample Rate Well Total Depth 39.86 ft 300 sec Stabilization Drawdown Screen Length 10 ft 16.32 in Depth to Water 17.04 ft **Total Volume Pumped** 32.4 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	16:31:35	9644.91	15.13	5.26	61.26	10.10	18.40	3.40	128.84
Last 5	16:36:49	9958.91	15.17	5.26	61.33	9.40	18.40	3.39	128.75
Last 5	16:41:49	10258.90	15.14	5.26	61.34	9.70	10.40	3.38	131.19
Last 5	16:46:49	10558.90	15.17	5.27	61.35	9.90	10.40	3.36	128.00
Last 5	16:51:50	10859.89	15.20	5.26	61.60	9.30	10.40	3.37	128.06
Variance 0			-0.02	-0.00	0.02			-0.01	2.44
Variance 1			0.02	0.01	0.00			-0.02	-3.20
Variance 2			0.03	-0.00	0.25			0.02	0.06

Notes

Sampled at 1653 on 3-5-19. Sunny, 40s.

Date: 2019-03-06 11:25:43

Project Information:

Pump Information: Operator Name Pump Model/Type **Hunter Auld**

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter .25 in Plant Yates Tubing Length Site Name Plant Yates AP3 80 ft

0° 0' 0" Latitude 0° 0' 0" Longitude Sonde SN 598939

Turbidity Make/Model Hach 2100Q Pump placement from TOC 74 ft

Pumping Information: Well Information:

Final Pumping Rate 160 mL/min Well ID YGWA-18I Well diameter Total System Volume 1.257218 L 2 in Calculated Sample Rate Well Total Depth 79.67 ft 300 sec Stabilization Drawdown Screen Length 10 ft 0 in Depth to Water 7.5 L 20.86 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	11:03:58	1500.01	14.40	6.01	89.46	1.50	20.90	4.06	93.78
Last 5	11:08:58	1800.04	14.58	5.99	83.85	1.60	20.90	4.04	94.35
Last 5	11:13:59	2101.02	14.53	6.02	90.04	1.70	20.85	4.22	93.20
Last 5	11:19:02	2404.02	14.66	6.01	90.00	1.60	20.85	4.45	95.48
Last 5	11:24:02	2704.01	14.36	5.99	90.23	1.90	20.86	4.38	99.08
Variance 0			-0.05	0.02	6.19			0.18	-1.15
Variance 1			0.13	-0.01	-0.04			0.23	2.29
Variance 2			-0.30	-0.02	0.23			-0.07	3.60

Notes

Sampled at 1125 on 3-6-19. Sunny, 30s.

Date: 2019-03-05 13:40:15

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Project Information:

Operator Name Chris Parker

Company Name Atlantic Coast Consulting Project Name Plant Yates
Site Name Plant Yates - AP 3

Latitude 0° 0' 0"

Longitude 0° 0' 0"

Sonde SN 596190

Turbidity Make/Model Hach 2100 Q

Pump placement from TOC

25 ft

Poly

.25 in

30 ft

Bladder Pump

Well Information:

Well IDYGWA-20SWell diameter2 inWell Total Depth29.71 ftScreen Length10 ftDepth to Water10.87 ft

Pumping Information:

Final Pumping Rate 170 mL/min
Total System Volume 0.6189027 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 6 in
Total Volume Pumped 6.8 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	13:16:56	900.00	15.44	6.14	63.25	6.25	11.40	5.32	98.63
Last 5	13:21:56	1199.99	15.44	6.08	63.16	5.97	11.40	5.17	91.97
Last 5	13:26:56	1499.99	15.54	6.07	62.96	5.76	11.40	5.24	93.69
Last 5	13:31:56	1799.97	15.48	6.07	62.80	5.14	11.40	5.24	95.24
Last 5	13:36:56	2099.97	15.48	6.07	62.57	4.50	11.40	5.21	92.44
Variance 0			0.11	-0.01	-0.20			0.08	1.72
Variance 1			-0.06	-0.00	-0.16			-0.00	1.54
Variance 2			-0.00	0.01	-0.23			-0.03	-2.80

Notes

Sampled at 13:40. Sunny 30s.

Date: 2019-03-05 12:05:17

Project Information:

Operator Name Chris Parker

Company Name Atlantic Coast Consulting
Project Name Plant Yates
Site Name Plant Yates - AP 3

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 596190

Turbidity Make/Model Hach 2100 Q

Well Information:

Well ID YGWA-21I
Well diameter 2 in
Well Total Depth 80.07 ft
Screen Length 10 ft
Depth to Water - ft

Pump Information:

Pump Model/Type Bladder Pump

75 ft

Tubing TypePolyTubing Diameter.25 inTubing Length80 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 150 mL/min
Total System Volume 1.257218 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 0 in
Total Volume Pumped 2.8 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	11:43:01	900.03	12.11	6.93	182.53	1.07		0.73	-87.61
Last 5	11:48:01	1199.99	11.70	7.00	199.26	0.77		0.54	-107.54
Last 5	11:53:01	1499.97	13.39	7.13	217.67	0.54		0.26	-133.28
Last 5	11:58:01	1799.97	13.76	7.20	219.08	0.65		0.24	-136.99
Last 5	12:03:01	2099.96	13.76	7.22	221.68	0.56		0.18	-140.86
Variance 0			1.69	0.13	18.41			-0.28	-25.74
Variance 1			0.37	0.07	1.40			-0.02	-3.70
Variance 2			0.00	0.02	2.60			-0.05	-3.87

Notes

Sampled at 12:05. Sunny 30s. Transducer in well.

Date: 2019-03-06 13:15:55

Project Information:

Pump Information: Operator Name **Hunter Auld** Pump Model/Type

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter .25 in Plant Yates Tubing Length Site Name Plant Yates AP3 40 ft

0° 0' 0" Latitude 0° 0' 0" Longitude Sonde SN 598939

Turbidity Make/Model Pump placement from TOC 34 ft Hach 2100Q

Pumping Information: Well Information:

Final Pumping Rate 180 mL/min Well ID YGWC-23S Well diameter Total System Volume 0.8711092 L 2 in Calculated Sample Rate Well Total Depth 39.18 ft 300 sec Stabilization Drawdown Screen Length 10 ft 0 in Depth to Water 4.7 L **Total Volume Pumped** ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	12:54:31	300.05	16.66	5.94	77.83	1.40	0.00	8.79	119.31
Last 5	12:59:31	600.05	16.81	5.89	76.15	1.20		8.64	119.14
Last 5	13:04:31	900.04	16.65	5.87	74.99	1.00		8.64	119.81
Last 5	13:09:31	1200.04	17.01	5.86	74.93	0.80		8.57	123.37
Last 5	13:14:31	1500.04	16.96	5.84	74.64	0.93		8.68	122.43
Variance 0			-0.17	-0.02	-1.17			0.00	0.67
Variance 1			0.36	-0.01	-0.06			-0.08	3.57
Variance 2			-0.05	-0.02	-0.29			0.11	-0.94

Notes

Sampled at 1315 on 3-6-19. Sunny, 40s. Transducer in well, no WL.

Date: 2019-03-05 14:53:03

Project Information:

Operator Name Chris Parker

Company Name
Project Name
Site Name

Atlantic Coast Consulting
Plant Yates
Plant Yates - AP 3

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 596190

Turbidity Make/Model Hach 2100 Q

Pump Information:

Pump placement from TOC

Pump Model/Type Bladder Pump Tubing Type Poly

Tubing Diameter .25 in Tubing Length 57 ft

52'

Well Information: Pumping Information:

Final Pumping Rate 150 mL/min Well ID YGWC-24S Well diameter Total System Volume 1.035206 L 2 in Calculated Sample Rate Well Total Depth 57.01 ft 300 sec Stabilization Drawdown Screen Length 10 ft 8 in Depth to Water 5.4 L 26.43 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	14:30:28	300.01	15.12	6.25	68.51	4.35	26.80	6.27	100.70
Last 5	14:35:28	600.00	15.70	5.77	66.93	1.28	27.00	6.31	116.80
Last 5	14:40:28	900.00	15.68	5.74	66.27	1.80	27.10	6.23	116.93
Last 5	14:45:28	1199.98	16.02	5.74	66.11	0.92	27.10	6.15	115.07
Last 5	14:50:28	1499.98	16.06	5.72	66.36	0.63	27.10	6.15	116.59
Variance 0			-0.02	-0.04	-0.66			-0.08	0.12
Variance 1			0.34	0.00	-0.16			-0.09	-1.85
Variance 2			0.04	-0.02	0.25			0.00	1.52

Notes

Sampled at 14:55. Sunny 30s.

Date: 2019-03-06 12:59:11

Project Information:

Operator Name Chris Parker

Company Name Atlantic Coast Consulting
Project Name Plant Yates
Site Name Plant Yates - AP 3

Latitude 0° 0' 0"

Longitude 0° 0' 0"

Sonde SN 596190

Turbidity Make/Model Hach 2100 Q

Well Information:

Well ID YGWC-33S
Well diameter 2 in
Well Total Depth 38.73 ft
Screen Length 10 ft
Depth to Water ft

Pump Information:

Pump Model/Type Bladder Pump

33 ft

Tubing TypePolyTubing Diameter.25 inTubing Length38 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.8518038 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 0 in
Total Volume Pumped 9 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	12:35:19	900.00	17.57	3.28	1416.98	1.67		1.14	285.53
Last 5	12:40:19	1199.99	17.99	3.28	1411.66	1.52		0.67	279.21
Last 5	12:45:19	1499.99	17.85	3.27	1405.50	1.40		0.58	274.06
Last 5	12:50:19	1799.98	17.97	3.27	1409.21	1.71		0.56	268.25
Last 5	12:55:19	2099.97	18.05	3.27	1404.44	1.39		0.56	268.62
Variance 0			-0.13	-0.01	-6.16			-0.09	-5.14
Variance 1			0.12	0.00	3.71			-0.02	-5.82
Variance 2			0.08	0.00	-4.77			-0.01	0.37

Notes

Transducer in well

Sampled at 1300. Sunny 40s. DUP 4 here.

Date: 2019-03-06 11:29:34

Project Information:

Operator Name Chris Parker

Company Name
Project Name
Site Name

Atlantic Coast Consulting
Plant Yates
Plant Yates - AP 3

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 596190

Turbidity Make/Model Hach 2100 Q

Well Information:

Well ID YGWC-36
Well diameter 2 in
Well Total Depth 60.0 ft
Screen Length 10 ft
Depth to Water ft

Pump Information:

Pump Model/Type Bladder Pump

55 ft

Tubing Type Poly
Tubing Diameter .25 in
Tubing Length 60 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 160 mL/min
Total System Volume 1.064164 L
Calculated Sample Rate 300 sec
Stabilization Drawdown
Total Volume Pumped 5.6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	11:05:58	300.06	16.64	6.18	380.48	2.35		1.98	64.69
Last 5	11:10:58	600.02	16.87	5.30	361.44	0.93		2.13	121.48
Last 5	11:15:58	900.01	17.08	5.21	357.04	1.14		2.00	124.54
Last 5	11:20:58	1199.99	17.01	5.24	355.96	0.98		1.97	125.60
Last 5	11:25:58	1499.99	17.06	5.21	355.56	1.25		1.94	125.31
Variance 0			0.21	-0.09	-4.39			-0.13	3.05
Variance 1			-0.07	0.03	-1.08			-0.03	1.07
Variance 2			0.05	-0.03	-0.39			-0.03	-0.29

Notes

Sampled at 11:30. Sunny 30s. EB 4 here at 10:45 - gloves. Transducer in well.

Date: 2019-04-03 13:46:50

Project Information:

Operator Name Chris Parker

Company Name
Project Name
Plant Yates - AP 3
Site Name
Plant Yates
Plant Yates
Plant Yates
Plant Yates
Plant Yates
O° 0' 0"

Longitude
O° 0' 0"
Sonde SN
369807
Turbidity Make/Model
Hach 2100 Q

Pump Information:

Pump Model/Type Bladder Pump

Tubing TypePolyTubing Diameter.25 inTubing Length50 ft

Pump placement from TOC

45 ft

Well Information:

Well IDYGWA-4IWell diameter2 inWell Total Depth49.70 ftScreen Length10 ftDepth to Water19.22 ft

Pumping Information:

Final Pumping Rate 140 mL/min
Total System Volume 0.9676365 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 12 in
Total Volume Pumped 7 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	13:23:47	1199.99	18.45	6.44	163.72	8.90	20.20	1.55	137.30
Last 5	13:28:47	1499.99	18.18	6.44	164.28	7.13	20.20	1.37	136.60
Last 5	13:33:47	1799.98	18.10	6.43	163.92	5.78	20.20	1.32	136.87
Last 5	13:38:47	2099.97	17.87	6.43	163.39	5.05	20.20	1.32	137.22
Last 5	13:43:47	2399.96	17.76	6.43	162.51	4.64	20.20	1.30	136.76
Variance 0			-0.08	-0.00	-0.36			-0.04	0.28
Variance 1			-0.23	-0.00	-0.53			-0.01	0.34
Variance 2			-0.11	0.00	-0.88			-0.02	-0.45

Notes

Sampled at 13:50. Sunny 60s. DUP 1 here.

Date: 2019-04-03 13:51:50

Project Information:

Pump Information: Operator Name **Hunter Auld** Pump Model/Type

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter 0.25 in Plant Yates AP3 Tubing Length Site Name Plant Yates 83 ft

0° 0' 0" Latitude 0° 0' 0" Longitude Sonde SN 407447

Turbidity Make/Model Hach 2100Q Pump placement from TOC 106 ft

Pumping Information: Well Information:

Final Pumping Rate 120 mL/min Well ID YGWA-5D Well diameter Total System Volume 1.286177 L 2 in Calculated Sample Rate Well Total Depth 131.60 ft 300 sec Stabilization Drawdown Screen Length 50 ft 5 in Depth to Water 5.4 L 22.43 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	13:30:10	1200.01	16.95	7.01	241.54	2.60	22.85	0.97	-134.54
Last 5	13:35:10	1500.04	16.94	7.07	229.76	2.90	22.85	0.75	-123.00
Last 5	13:40:10	1800.01	16.88	7.08	226.93	2.70	22.85	0.41	-117.08
Last 5	13:45:10	2100.02	16.94	7.09	224.20	3.10	22.85	0.28	-113.43
Last 5	13:50:15	2405.02	16.96	7.11	222.12	3.00	22.85	0.24	-109.98
Variance 0			-0.07	0.01	-2.83			-0.34	5.93
Variance 1			0.06	0.01	-2.73			-0.13	3.65
Variance 2			0.02	0.02	-2.08			-0.04	3.45

Notes

Sampled at 1555 on 4-3-19. Sunny, 60s. FB-1-4-3-19 here at 1320.

Date: 2019-04-03 15:40:17

Project Information:

Pump Information: Operator Name **Hunter Auld** Pump Model/Type

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter 0.25 in Plant Yates AP3 Tubing Length Site Name Plant Yates 59 ft 0° 0' 0" Latitude

0° 0' 0" Longitude Sonde SN 407447

Turbidity Make/Model Hach 2100Q Pump placement from TOC 53 ft

Pumping Information: Well Information:

Final Pumping Rate 150 mL/min Well ID YGWA-5I Well diameter Total System Volume 1.054511 L 2 in Calculated Sample Rate Well Total Depth 58.5 ft 300 sec Stabilization Drawdown Screen Length 10 ft 3.2 in Depth to Water **Total Volume Pumped** 5.3 L 15.78 ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	15:16:39	600.05	16.96	5.95	90.18	3.70	16.05	6.32	119.12
Last 5	15:21:39	900.02	16.87	5.75	90.48	3.50	16.05	6.22	122.89
Last 5	15:26:40	1201.01	16.83	5.65	90.38	3.10	16.05	6.15	125.31
Last 5	15:31:40	1501.04	16.92	5.66	90.45	4.10	16.05	6.14	123.17
Last 5	15:36:40	1801.00	16.87	5.63	91.01	4.10	16.05	6.10	123.00
Variance 0			-0.04	-0.09	-0.10			-0.07	2.42
Variance 1			0.09	0.00	0.07			-0.01	-2.14
Variance 2			-0.04	-0.02	0.56			-0.04	-0.17

Notes

Sampled at 1540 on 4-3-19. Sunny, 70.

Date: 2019-04-02 15:09:20

Pump Information:

Project Information:

Operator Name Chris Parker

Company Name
Project Name
Plant Yates - AP 3
Site Name
Plant Yates

Pump Model/Type Tubing Type Tubing Diameter Tubing Length

Poly .25 in 39 ft

Bladder Pump

Sonde SN Turbidity Make/Model

Hach 2100 Q

Pump placement from TOC

34 ft

Well Information:

Well IDYGWA-17SWell diameter2 inWell Total Depth39.91 ftScreen Length10 ftDepth to Water11.35 ft

Pumping Information: Final Pumping Rate

Final Pumping Rate 210 mL/min
Total System Volume 0.8614565 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 6 in
Total Volume Pumped 12.6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	14:42:20	1799.98	17.36	5.75	80.80	7.64	11.80	1.53	183.09
Last 5	14:47:20	2099.97	17.47	5.74	80.80	6.86	11.80	1.51	183.82
Last 5	14:52:20	2399.96	17.36	5.74	80.88	5.59	11.80	1.51	184.44
Last 5	14:57:21	2700.95	17.31	5.74	81.03	4.96	11.80	1.49	184.92
Last 5	15:02:21	3000.94	17.36	5.74	81.13	4.81	11.80	1.49	185.18
Variance 0			-0.11	-0.01	0.09			-0.00	0.62
Variance 1			-0.05	0.00	0.15			-0.02	0.49
Variance 2			0.05	-0.00	0.10			-0.01	0.26

Notes

Sampled at 15:10. Sunny 60s.

Date: 2019-04-03 11:32:39

Project Information:

Operator Name Chris Parker

Company Name
Project Name
Plant Yates - AP 3
Site Name
Plant Yates
Latitude
Plant Yates
O° 0' 0"

Longitude
O° 0' 0"
Sonde SN
369807

Pump Information:

Pump Model/Type Bladder Pump

Tubing Type Poly
Tubing Diameter .25 in
Tubing Length 80 ft

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 75 ft

Well Information:

Well ID YGWA-18I
Well diameter 2 in
Well Total Depth 79.67 ft
Screen Length 10 ft
Depth to Water 21.03 ft

Pumping Information:

Final Pumping Rate 150 mL/min
Total System Volume 1.257218 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 2 in
Total Volume Pumped 6.8 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	11:09:04	900.00	15.82	6.28	119.15	6.38	21.20	3.90	159.26
Last 5	11:14:04	1199.99	15.97	6.27	118.99	5.49	21.20	3.83	160.66
Last 5	11:19:04	1499.99	16.04	6.29	118.78	5.11	21.20	3.66	161.44
Last 5	11:24:04	1799.98	16.11	6.28	119.00	4.98	21.20	3.55	163.24
Last 5	11:29:04	2099.97	16.16	6.29	119.21	4.87	21.20	3.50	163.11
Variance 0			0.06	0.01	-0.22			-0.17	0.77
Variance 1			0.07	-0.01	0.22			-0.11	1.80
Variance 2			0.05	0.01	0.21			-0.05	-0.13

Notes

Sampled at 11:35. Sunny 60s

Date: 2019-04-03 10:15:10

Project Information:

Operator Name Chris Parker

Company Name
Project Name
Plant Yates - AP 3
Site Name
Plant Yates

Pump Information:

Pump Model/Type Bladder Pump Tubing Type Poly

Tubing Diameter .25 in Tubing Length 40 ft

Turbidity Make/Model Hach 2100 Q

Pump placement from TOC

35 ft

Well Information:

Well IDYGWA-18SWell diameter2 inWell Total Depth39.86 ftScreen Length10 ftDepth to Water17.42 ft

Pumping Information:

Final Pumping Rate 140 mL/min
Total System Volume 0.8711092 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 9 in
Total Volume Pumped 9.1 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	09:53:05	600.01	14.03	5.64	61.36	4.46	18.20	4.19	212.28
Last 5	09:58:05	900.04	14.13	5.50	61.00	3.92	18.20	4.09	216.56
Last 5	10:03:05	1200.00	14.20	5.49	60.81	3.66	18.20	4.07	216.09
Last 5	10:08:05	1499.98	14.24	5.48	60.86	3.15	18.20	4.02	215.80
Last 5	10:13:05	1799.98	14.35	5.47	60.74	3.58	18.20	4.01	215.41
Variance 0			0.07	-0.01	-0.19			-0.02	-0.48
Variance 1			0.04	-0.01	0.05			-0.05	-0.28
Variance 2			0.11	-0.01	-0.12			-0.01	-0.39

Notes

Sampled at 10:15. Sunny 50s

Date: 2019-04-03 12:32:31

Project Information:

Pump Information: Operator Name **Hunter Auld** Pump Model/Type

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter 0.25 in Plant Yates AP3 Tubing Length Site Name Plant Yates 24 ft

0° 0' 0" Latitude 0° 0' 0" Longitude Sonde SN 407447

Turbidity Make/Model Hach 2100Q Pump placement from TOC 18 ft

Pumping Information: Well Information:

Final Pumping Rate 120 mL/min Well ID YGWA-20S Well diameter Total System Volume 0.7166655 L 2 in Calculated Sample Rate Well Total Depth 23.79 ft 300 sec Stabilization Drawdown Screen Length 10 ft 6 in Depth to Water 12.4 L 11.05 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	12:07:06	4799.97	16.56	5.72	62.43	6.30	11.55	5.78	154.52
Last 5	12:12:06	5099.94	16.69	5.71	62.36	5.60	11.55	5.77	165.69
Last 5	12:17:06	5399.93	16.74	5.67	62.29	5.60	11.55	5.73	175.88
Last 5	12:22:06	5699.96	17.13	5.72	62.19	5.20	11.55	5.74	194.05
Last 5	12:27:06	5999.94	17.29	5.71	62.24	4.85	11.55	5.74	223.44
Variance 0			0.06	-0.03	-0.08			-0.04	10.18
Variance 1			0.39	0.05	-0.10			0.01	18.18
Variance 2			0.16	-0.01	0.05			0.00	29.39

Notes

Sampled at 1230 on 4-3-19. Sunny, 60. EB-1-4-3-19 here at 1100.

Date: 2019-04-02 15:56:13

Project Information:

Pump Information: Operator Name **Hunter Auld** Pump Model/Type

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter 0.25 in Plant Yates AP3 Tubing Length Site Name Plant Yates 80 ft 0° 0' 0" Latitude

0° 0' 0" Longitude Sonde SN 407447

Turbidity Make/Model Hach 2100Q Pump placement from TOC 75 ft

Pumping Information: Well Information:

Final Pumping Rate 110 mL/min Well ID YGWA-21I Well diameter Total System Volume 1.257218 L 2 in Calculated Sample Rate Well Total Depth 80.07 ft 300 sec Stabilization Drawdown Screen Length 10 ft 0 in Depth to Water **Total Volume Pumped** 4 L ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	15:34:24	900.04	17.72	6.77	212.59	0.50		0.74	-107.24
Last 5	15:39:24	1200.03	18.03	6.85	211.08	0.50		0.68	-106.44
Last 5	15:44:24	1500.03	18.12	6.89	206.74	0.40		0.45	-102.50
Last 5	15:49:24	1800.02	18.26	6.90	203.26	0.50		0.30	-99.61
Last 5	15:54:24	2100.02	17.64	6.94	202.66	0.50		0.25	-97.69
Variance 0			0.09	0.04	-4.34			-0.23	3.94
Variance 1			0.13	0.01	-3.48			-0.15	2.89
Variance 2			-0.62	0.03	-0.60			-0.04	1.92

Notes

Sampled at 1556 on 4-2-19. Sunny, 60.

Date: 2019-04-04 13:07:03

Project Information:

Pump Information: Operator Name **Hunter Auld** Pump Model/Type

QED Bladder Pump Company Name ACC **Tubing Type** poly Project Name Tubing Diameter 0.25 in Plant Yates AP3 Tubing Length Site Name Plant Yates 40 ft 0° 0' 0" Latitude

0° 0' 0" Longitude Sonde SN 407447

Turbidity Make/Model Hach 2100Q Pump placement from TOC 34 ft

Pumping Information: Well Information:

Final Pumping Rate 220 mL/min Well ID YGWC-23S Well diameter Total System Volume 0.8711092 L 2 in Calculated Sample Rate Well Total Depth 39.18 ft 300 sec Stabilization Drawdown Screen Length 10 ft 0 in Depth to Water **Total Volume Pumped** 7.7 L ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	12:42:59	600.03	18.30	5.58	89.55	33.00		8.23	147.05
Last 5	12:47:59	900.02	18.24	5.61	89.14	16.00		8.21	151.23
Last 5	12:52:59	1200.02	18.17	5.59	88.85	12.00		8.22	149.94
Last 5	12:57:59	1500.02	18.15	5.62	88.68	6.90		8.24	145.87
Last 5	13:02:59	1800.02	18.07	5.64	87.88	4.80		8.23	146.91
Variance 0			-0.07	-0.02	-0.29			0.01	-1.28
Variance 1			-0.02	0.02	-0.18			0.03	-4.08
Variance 2			-0.08	0.02	-0.80			-0.01	1.04

Notes

Sampled at 1305 on 4-4-19. Cloudy, 70s. FB-2-4-4-19 here at 1325.

Date: 2019-04-04 12:18:44

Project Information:

Operator Name Chris Parker

Company Name
Project Name
Plant Yates - AP 3
Site Name
Plant Yates
Latitude
Plant Yates
Plant Yates
O° 0' 0"

Longitude
O° 0' 0"
Sonde SN
369807

Pump Information:

Pump Model/Type Bladder Pump Tubing Type Poly

Tubing Diameter .25 in Tubing Length 57 ft

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 52 ft

Well Information:

Well ID YGWC-24S
Well diameter 2 in
Well Total Depth 57.01 ft
Screen Length 10 ft
Depth to Water 26.92 ft

Pumping Information:

Final Pumping Rate 210 mL/min
Total System Volume 1.035206 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 9 in
Total Volume Pumped 8.4 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	11:54:12	600.01	17.90	6.01	65.65	3.11	27.50	6.53	183.53
Last 5	11:59:12	900.00	17.95	5.78	65.33	3.98	27.60	6.34	189.08
Last 5	12:04:12	1199.99	17.90	5.72	65.27	3.40	27.60	6.33	197.22
Last 5	12:09:12	1499.98	17.94	5.67	65.35	3.07	27.60	6.35	192.49
Last 5	12:14:12	1799.97	17.98	5.66	65.36	2.94	27.60	6.37	192.64
Variance 0			-0.05	-0.06	-0.06			-0.00	8.14
Variance 1			0.04	-0.05	80.0			0.01	-4.73
Variance 2			0.04	-0.01	0.02			0.02	0.15

Notes

Sampled at 12:20. Cloudy 60s. EB 2 here at 11:25 - gloves.

Date: 2019-04-09 12:04:27

Project Information:

Operator Name Chris Parker

Company Name Atlantic Coast Consulting Project Name Plant Yates - AP 3 Site Name Plant Yates 0° 0' 0" Latitude 0° 0' 0" Longitude Sonde SN 369807 Turbidity Make/Model Hach 2100 Q

Pump Information:

Pump Model/Type Bladder Pump **Tubing Type** Poly Tubing Diameter Tubing Length

.25 in 57 ft

Pump placement from TOC 52 ft

Well Information:

Well ID YGWC-24S Well diameter 2 in Well Total Depth 57.01 ft Screen Length 10 ft Depth to Water 26.95 ft

Pumping Information:

Final Pumping Rate 190 mL/min Total System Volume 1.035206 L Calculated Sample Rate 300 sec Stabilization Drawdown 5 in **Total Volume Pumped** 7.6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	11:38:47	600.01	18.66	6.00	62.31	0.86	27.30	6.66	185.58
Last 5	11:43:47	900.00	18.85	5.81	61.94	1.02	27.30	6.61	189.12
Last 5	11:48:47	1199.99	18.74	5.74	61.84	0.88	27.30	6.49	190.64
Last 5	11:53:47	1499.98	18.81	5.69	61.98	1.09	27.30	6.39	191.74
Last 5	11:58:47	1799.98	19.06	5.69	61.91	1.01	27.30	6.41	192.44
Variance 0			-0.11	-0.07	-0.10			-0.12	1.52
Variance 1			0.07	-0.05	0.14			-0.09	1.10
Variance 2			0.25	-0.00	-0.07			0.01	0.70

Notes

Sampled at 12:05. Cloudy 60s.

Date: 2019-04-04 11:33:09

Project Information:

Operator Name **Hunter Auld**

Company Name ACC Project Name Plant Yates AP3 Site Name Plant Yates Latitude 0° 0' 0" Longitude

0° 0' 0" 407447

Turbidity Make/Model Hach 2100Q

Well Information:

Sonde SN

Well ID YGWC-33S Well diameter 2 in Well Total Depth 38.73 ft Screen Length 10 ft Depth to Water ft

Pump Information:

Pump Model/Type **QED Bladder Pump**

33 ft

Tubing Type poly Tubing Diameter 0.25 in Tubing Length 39 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 200 mL/min Total System Volume 0.8614565 L Calculated Sample Rate 300 sec Stabilization Drawdown 0 in 8 L **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS,	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 0
Last 5	11:12:15	900.02	18.79	3.87	1357.11	12.10		0.24	280.88
Last 5	11:17:15	1200.02	18.76	3.86	1359.06	8.90		0.20	279.20
Last 5	11:22:15	1500.01	18.74	3.87	1356.92	6.40		0.18	274.01
Last 5	11:27:15	1800.01	18.73	3.88	1355.84	5.50		0.18	270.61
Last 5	11:32:15	2100.00	18.73	3.88	1354.35	4.90		0.17	268.24
Variance 0			-0.02	0.01	-2.13			-0.02	-5.20
Variance 1			-0.02	0.00	-1.08			0.00	-3.40
Variance 2			0.01	0.00	-1.49			-0.01	-2.36

Notes

Sampled at 1135 on 4-4-19. Cloudy, 70. Dup-2 here. Transducer in well, no WL.

Date: 2019-04-04 14:35:45

Project Information:

Operator Name Chris Parker

Company Name
Project Name
Plant Yates - AP 3
Site Name
Plant Yates
Latitude
Plant Yates
O° 0' 0"

Longitude
O° 0' 0"
Sonde SN
369807

Pump Information:

Pump Model/Type Bladder Pump

Tubing Type Poly
Tubing Diameter .25 in
Tubing Length 60 ft

Hach 2100 Q Pump placement from TOC 55 ft

Well Information:

Turbidity Make/Model

Well ID YGWC-36
Well diameter 2 in
Well Total Depth 60 ft
Screen Length 10 ft
Depth to Water ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 1.064164 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 0 in
Total Volume Pumped 17 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	14:11:01	3899.92	19.08	5.73	355.09	6.34		1.51	166.32
Last 5	14:16:02	4200.92	19.03	5.74	355.24	5.78		1.50	164.62
Last 5	14:21:02	4500.91	19.01	5.74	355.11	5.21		1.47	163.14
Last 5	14:26:02	4800.90	18.92	5.74	354.91	4.98		1.46	162.74
Last 5	14:31:03	5101.90	18.89	5.74	354.45	4.57		1.47	164.34
Variance 0			-0.02	0.00	-0.12			-0.03	-1.48
Variance 1			-0.09	-0.00	-0.20			-0.01	-0.40
Variance 2			-0.03	-0.01	-0.46			0.01	1.61

Notes

Sampled at 14:35. Cloudy 60s.

April 04, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on March 06, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

This revised report replaces the report issued on 3/13/2019. The report has been revised to correct a sample ID per consultant request. No other changes have been made to this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200

Project Manager

Enclosures

cc: Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

CERTIFICATIONS

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

Georgia DW Microbiology Certification #: 812

North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2615736001	YGWA-4I	Water	03/04/19 14:35	03/06/19 16:13
2615736002	YGWA-5I	Water	03/04/19 13:17	03/06/19 16:13
2615736003	YGWA-5D	Water	03/04/19 12:03	03/06/19 16:13
2615736004	YGWA-17S	Water	03/05/19 11:38	03/06/19 16:13
2615736005	YGWA-18S	Water	03/05/19 16:53	03/06/19 16:13
2615736006	YGWA-18I	Water	03/06/19 11:25	03/06/19 16:13
2615736007	YGWA-20S	Water	03/05/19 13:40	03/06/19 16:13
2615736008	YGWA-21I	Water	03/05/19 12:05	03/06/19 16:13
2615736009	YGWC-23S	Water	03/06/19 13:15	03/06/19 16:13
2615736010	YGWC-24S	Water	03/05/19 14:55	03/06/19 16:13
2615736011	YGWC-33S	Water	03/06/19 13:00	03/06/19 16:13
2615736012	YGWC-36	Water	03/06/19 11:30	03/06/19 16:13
2615736013	EB-3-3-5-19	Water	03/05/19 11:00	03/06/19 16:13
2615736014	EB-4-3-6-19	Water	03/06/19 10:45	03/06/19 16:13
2615736015	DUP-3	Water	03/06/19 00:00	03/06/19 16:13
2615736016	DUP-4	Water	03/06/19 00:00	03/06/19 16:13
2615736017	FB-3-3-5-19	Water	03/05/19 13:30	03/06/19 16:13
2615736018	FB-4-3-6-19	Water	03/06/19 13:45	03/06/19 16:13

SAMPLE ANALYTE COUNT

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

2615736001 YGWA-41 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736002 YGWA-51 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 500.0 RLC 1 EPA 7470A DRB 1 EPA 8000B CSW 12 EPA 8000B CSW 12 EPA 7470A DRB 1 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A	Lab ID	Sample ID	Method	Analysts	Analytes Reported
Page	2615736001	YGWA-4I	EPA 6020B	CSW	12
2615736002 YGWA-5I EPA 6020B CSW 12 2615736003 YGWA-5D EPA 300.0 RLC 1 2615736003 YGWA-5D EPA 300.0 RLC 1 2615736004 YGWA-17S EPA 6020B CSW 12 2615736005 YGWA-18S EPA 6020B CSW 12 2615736006 YGWA-18S EPA 6020B CSW 12 2615736007 YGWA-18I EPA 6020B CSW 12 2615736006 YGWA-18I EPA 300.0 RLC 1 2615736007 YGWA-20S EPA 6020B CSW 12 2615736007 YGWA-20S EPA 6020B CSW 12 2615736007 YGWA-21I EPA 6020B CSW 12 2615736008 YGWA-21I EPA 6020B CSW 12 2615736009 YGWC-23S EPA 6020B CSW 12 2615736009 YGWC-24S EPA 6020B CSW 12 2615736010 YGWC-24S EPA 6020B CSW 12 EPA 7470A DRB 1			EPA 7470A	DRB	1
PAT PAT			EPA 300.0	RLC	1
PA 300.0 RLC 1 1 1 1 1 1 1 1 1	2615736002	YGWA-5I	EPA 6020B	CSW	12
2615736003 YGWA-5D EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736004 YGWA-17S EPA 6020B CSW 12 EPA 7470A DRB 1 1 2615736005 YGWA-18S EPA 6020B CSW 12 EPA 7470A DRB 1 1 EPA 6020B CSW 12 EPA 300.0 RLC 1 2615736006 YGWA-18I EPA 6020B CSW 12 EPA 300.0 RLC 1 EPA 470A DRB 1 1 EPA 300.0 RLC 1 1 EPA 7470A DRB 1 1 EPA 7470A DRB 1 1 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 6020B C			EPA 7470A	DRB	1
PAPA 7470A DRB 1 PAPA 300.0 RLC 1 PAPA 300.0 RLC 1 PAPA 300.0 RLC 1 PAPA 300.0 RLC 1 PAPA 7470A DRB 1 PAPA 6020B CSW 12 PAPA 7470A DRB 1 PAPA 300.0 RLC 1 PAPA 300.0 R			EPA 300.0	RLC	1
PA 300.0 RLC 1 1 1 1 1 1 1 1 1	2615736003	YGWA-5D	EPA 6020B	CSW	12
2615736004 YGWA-17S EPA 6020B CSW 12 2615736005 YGWA-18S EPA 6020B CSW 12 2615736006 YGWA-18S EPA 6020B CSW 12 2615736006 YGWA-18I EPA 300.0 RLC 1 2615736007 YGWA-20S EPA 6020B CSW 12 2615736008 YGWA-20S EPA 6020B CSW 12 2615736008 YGWA-21I EPA 6020B CSW 12 2615736009 YGWC-23S EPA 300.0 RLC 1 2615736010 YGWC-24S EPA 6020B CSW 12 2615736011 YGWC-24S EPA 6020B CSW 12 2615736011 YGWC-33S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 2615736011 YGWC-33S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1			EPA 7470A	DRB	1
PAP 7470A DRB 1			EPA 300.0	RLC	1
Page	2615736004	YGWA-17S	EPA 6020B	CSW	12
2615736005 YGWA-18S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736006 YGWA-18I EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736007 YGWA-20S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736008 YGWA-21I EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736009 YGWC-23S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 2615736010 YGWC-24S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB<			EPA 7470A	DRB	1
PAP 7470A DRB 1			EPA 300.0	RLC	1
EPA 300.0 RLC 1 1 1 1 1 1 1 1 1	2615736005	YGWA-18S	EPA 6020B	CSW	12
2615736006 YGWA-18I EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736007 YGWA-20S EPA 6020B CSW 12 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 4740A DRB 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 4740A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 7470A DRB 1			EPA 7470A	DRB	1
PA 7470A DRB 1 PA 300.0 RLC PA 300			EPA 300.0	RLC	1
PA 300.0 RLC 1 1 1 1 1 1 1 1 1	2615736006	YGWA-18I	EPA 6020B	CSW	12
2615736007 YGWA-20S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736008 YGWA-21I EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736011 YGWC-24S EPA 6020B CSW 12 EPA 300.0 RLC 1 2615736011 YGWC-33S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 6020B CSW 12 EPA 6020B CSW			EPA 7470A	DRB	1
EPA 7470A DRB 1			EPA 300.0	RLC	1
PA 300.0 RLC 1	2615736007	YGWA-20S	EPA 6020B	CSW	12
2615736008 YGWA-21I EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736009 YGWC-23S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736010 YGWC-24S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736011 YGWC-33S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736012 YGWC-36 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 <t< td=""><td></td><td></td><td>EPA 7470A</td><td>DRB</td><td>1</td></t<>			EPA 7470A	DRB	1
EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736009 YGWC-23S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736010 YGWC-24S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736011 YGWC-33S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736011 YGWC-33S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736012 YGWC-36 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1			EPA 300.0	RLC	1
EPA 300.0 RLC 1 2615736009 YGWC-23S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1	2615736008	YGWA-21I	EPA 6020B	CSW	12
2615736009 YGWC-23S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736010 YGWC-24S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736011 YGWC-33S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736012 YGWC-36 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 6020B CSW 12 EPA 7470A DRB 1			EPA 7470A	DRB	1
EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 7470A DRB 1 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1			EPA 300.0	RLC	1
EPA 300.0 RLC 1 2615736010 YGWC-24S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1	2615736009	YGWC-23S	EPA 6020B	CSW	12
2615736010 YGWC-24S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736011 YGWC-33S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736012 YGWC-36 EPA 6020B CSW 12 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 6020B CSW 12			EPA 7470A	DRB	1
EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1			EPA 300.0	RLC	1
EPA 300.0 RLC 1 2615736011 YGWC-33S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 300.0 RLC 1 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1	2615736010	YGWC-24S	EPA 6020B	CSW	12
2615736011 YGWC-33S EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1 2615736012 YGWC-36 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1			EPA 7470A	DRB	1
EPA 7470A DRB 1 EPA 300.0 RLC 1 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 300.0 RLC 1			EPA 300.0	RLC	1
EPA 300.0 RLC 1 2615736012 YGWC-36 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1	2615736011	YGWC-33S	EPA 6020B	CSW	12
2615736012 YGWC-36 EPA 6020B CSW 12 EPA 7470A DRB 1 EPA 300.0 RLC 1			EPA 7470A	DRB	1
EPA 7470A DRB 1 EPA 300.0 RLC 1			EPA 300.0	RLC	1
EPA 300.0 RLC 1	2615736012	YGWC-36	EPA 6020B	CSW	12
			EPA 7470A	DRB	1
2615736013 EB-3-3-5-19 EPA 6020B CSW 12			EPA 300.0	RLC	1
	2615736013	EB-3-3-5-19	EPA 6020B	CSW	12

SAMPLE ANALYTE COUNT

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 7470A	DRB	1
		EPA 300.0	RLC	1
2615736014	EB-4-3-6-19	EPA 6020B	CSW	12
		EPA 7470A	DRB	1
		EPA 300.0	RLC	1
2615736015	DUP-3	EPA 6020B	CSW	12
		EPA 7470A	DRB	1
		EPA 300.0	RLC	1
2615736016	DUP-4	EPA 6020B	CSW	12
		EPA 7470A	DRB	•
		EPA 300.0	RLC	•
2615736017	FB-3-3-5-19	EPA 6020B	CSW	12
		EPA 7470A	DRB	1
		EPA 300.0	RLC	1
2615736018	FB-4-3-6-19	EPA 6020B	CSW	12
		EPA 7470A	DRB	1
		EPA 300.0	RLC	•

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWA-4I	Lab ID:	2615736001	Collecte	ed: 03/04/19	14:35	Received: 03/	06/19 16:13 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 18:46	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 18:46	7440-38-2	
Barium	0.016	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 18:46	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 18:46	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 18:46	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 18:46	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 18:46	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 18:46	7439-92-1	
Lithium	0.015J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 18:46	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 18:46	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 18:46	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 18:46	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 14:30	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 08:17	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWA-5I	Lab ID:	2615736002	Collecte	ed: 03/04/19	3 13:17	Received: 03/	06/19 16:13 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 18:52	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 18:52	7440-38-2	
Barium	0.019	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 18:52	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 18:52	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 18:52	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 18:52	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 18:52	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 18:52	7439-92-1	
Lithium	0.0032J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 18:52	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 18:52	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 18:52	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 18:52	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 14:44	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 09:27	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWA-5D	Lab ID:	2615736003	Collecte	ed: 03/04/19	12:03	Received: 03/	06/19 16:13 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 18:58	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 18:58	7440-38-2	
Barium	0.0077J	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 18:58	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 18:58	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 18:58	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 18:58	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 18:58	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 18:58	7439-92-1	
Lithium	0.0065J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 18:58	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 18:58	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 18:58	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 18:58	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 14:51	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Fluoride	0.19J	mg/L	0.30	0.029	1		03/09/19 09:50	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWA-17S	Lab ID:	Collecte	ed: 03/05/19	11:38	Received: 03/	06/19 16:13 Ma	atrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 19:03	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 19:03	7440-38-2	
Barium	0.015	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 19:03	7440-39-3	
Beryllium	0.000091J	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 19:03	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 19:03	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 19:03	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 19:03	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 19:03	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 19:03	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 19:03	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 19:03	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 19:03	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 14:53	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 10:13	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWA-18S	Lab ID:	Collecte	ed: 03/05/19	16:53	Received: 03/	06/19 16:13 Ma	atrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 19:09	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 19:09	7440-38-2	
Barium	0.020	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 19:09	7440-39-3	
Beryllium	0.000079J	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 19:09	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 19:09	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 19:09	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 19:09	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 19:09	7439-92-1	
Lithium	0.0031J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 19:09	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 19:09	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 19:09	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 19:09	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Pre	paration Met	hod: EP	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 14:56	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 10:37	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWA-18I	Lab ID:	2615736006	Collecte	ed: 03/06/19	11:25	Received: 03/	06/19 16:13 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 19:15	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 19:15	7440-38-2	
Barium	0.024	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 19:15	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 19:15	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 19:15	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 19:15	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 19:15	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 19:15	7439-92-1	
Lithium	0.0033J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 19:15	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 19:15	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 19:15	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 19:15	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 14:58	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 11:00	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWA-20S	Lab ID:	2615736007	Collecte	ed: 03/05/19	13:40	Received: 03/	06/19 16:13 Ma	atrix: Water	
			Report						
Parameters —	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 19:20	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 19:20	7440-38-2	
Barium	0.016	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 19:20	7440-39-3	
Beryllium	0.00011J	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 19:20	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 19:20	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 19:20	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 19:20	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 19:20	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 19:20	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 19:20	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 19:20	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 19:20	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:01	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 11:23	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWA-21I	Lab ID:	2615736008	Collecte	ed: 03/05/19	12:05	Received: 03/	06/19 16:13 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	0.0011J	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 19:26	7440-36-0	
Arsenic	0.0013J	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 19:26	7440-38-2	
Barium	0.011	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 19:26	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 19:26	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 19:26	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 19:26	7440-47-3	
Cobalt	0.0039J	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 19:26	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 19:26	7439-92-1	
Lithium	0.0053J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 19:26	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 19:26	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 19:26	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 19:26	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:03	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Fluoride	0.32	mg/L	0.30	0.029	1		03/09/19 11:46	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWC-23S	Lab ID:	2615736009	Collecte	ed: 03/06/19	13:15	Received: 03/	06/19 16:13 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 19:43	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 19:43	7440-38-2	
Barium	0.019	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 19:43	7440-39-3	
Beryllium	0.000066J	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 19:43	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 19:43	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 19:43	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 19:43	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 19:43	7439-92-1	
Lithium	0.0025J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 19:43	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 19:43	7439-98-7	
Selenium	0.019	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 19:43	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 19:43	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:05	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 13:42	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWC-24S	Lab ID:	2615736010	Collecte	ed: 03/05/19	Received: 03/06/19 16:13 Matrix: Water				
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 19:49	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 19:49	7440-38-2	
Barium	0.019	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 19:49	7440-39-3	
Beryllium	0.00016J	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 19:49	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 19:49	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 19:49	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 19:49	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 19:49	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 19:49	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 19:49	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 19:49	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 19:49	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:08	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 14:06	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWC-33S	Lab ID:	2615736011	Collecte	ed: 03/06/19	13:00	Received: 03/	06/19 16:13 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 19:55	7440-36-0	
Arsenic	0.0022J	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 19:55	7440-38-2	
Barium	0.012	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 19:55	7440-39-3	
Beryllium	0.023	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 19:55	7440-41-7	
Cadmium	0.0030	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 19:55	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 19:55	7440-47-3	
Cobalt	0.028	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 19:55	7440-48-4	
Lead	0.0012J	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 19:55	7439-92-1	
Lithium	0.033J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 19:55	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 19:55	7439-98-7	
Selenium	0.013	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 19:55	7782-49-2	
Thallium	0.00016J	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 19:55	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:10	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Fluoride	0.49	mg/L	0.30	0.029	1		03/09/19 14:52	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: YGWC-36	Lab ID:	2615736012	Collecte	ed: 03/06/19	11:30	30 Received: 03/06/19 16:13 Matrix: Water					
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A					
Antimony	0.0011J	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 20:18	7440-36-0			
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 20:18	7440-38-2			
Barium	0.041	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 20:18	7440-39-3			
Beryllium	0.00029J	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 20:18	7440-41-7			
Cadmium	0.00015J	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 20:18	7440-43-9			
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 20:18	7440-47-3			
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 20:18	7440-48-4			
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 20:18	7439-92-1			
Lithium	0.0057J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 20:18	7439-93-2			
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 20:18	7439-98-7			
Selenium	0.0033J	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 20:18	7782-49-2			
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 20:18	7440-28-0			
7470 Mercury	Analytical	Method: EPA 7	7470A Pre	paration Met	hod: EF	PA 7470A					
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:12	7439-97-6			
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0								
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 15:15	16984-48-8			

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: EB-3-3-5-19	Lab ID:	2615736013	Collecte	ed: 03/05/19	11:00	Received: 03/06/19 16:13 Matrix: Water				
			Report							
Parameters —	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A				
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 20:23	7440-36-0		
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 20:23	7440-38-2		
Barium	ND	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 20:23	7440-39-3		
Beryllium	ND	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 20:23	7440-41-7		
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 20:23	7440-43-9		
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 20:23	7440-47-3		
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 20:23	7440-48-4		
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 20:23	7439-92-1		
Lithium	ND	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 20:23	7439-93-2		
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 20:23	7439-98-7		
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 20:23	7782-49-2		
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 20:23	7440-28-0		
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A				
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:20	7439-97-6		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0							
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 15:38	16984-48-8		

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: EB-4-3-6-19	Lab ID:	2615736014	Collect	ed: 03/06/19	10:45	Received: 03/06/19 16:13 Matrix: Water				
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A				
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 20:29	7440-36-0		
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 20:29	7440-38-2		
Barium	ND	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 20:29	7440-39-3		
Beryllium	ND	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 20:29	7440-41-7		
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 20:29	7440-43-9		
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 20:29	7440-47-3		
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 20:29	7440-48-4		
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 20:29	7439-92-1		
Lithium	ND	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 20:29	7439-93-2		
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 20:29	7439-98-7		
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 20:29	7782-49-2		
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 20:29	7440-28-0		
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A				
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:22	7439-97-6		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0							
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 16:02	16984-48-8		

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: DUP-3	Lab ID:	2615736015	Collecte	ed: 03/06/19	00:00	Received: 03/	06/19 16:13 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 20:35	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 20:35	7440-38-2	
Barium	0.019	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 20:35	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 20:35	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 20:35	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 20:35	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 20:35	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 20:35	7439-92-1	
Lithium	0.0032J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 20:35	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 20:35	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 20:35	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 20:35	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	nod: EP	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:24	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 16:25	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: DUP-4	Lab ID:	2615736016	Collecte	Received: 03/	leceived: 03/06/19 16:13 Matrix: Water				
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 20:52	7440-36-0	
Arsenic	0.0023J	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 20:52	7440-38-2	
Barium	0.012	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 20:52	7440-39-3	
Beryllium	0.024	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 20:52	7440-41-7	
Cadmium	0.0030	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 20:52	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 20:52	7440-47-3	
Cobalt	0.029	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 20:52	7440-48-4	
Lead	0.0013J	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 20:52	7439-92-1	
Lithium	0.035J	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 20:52	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 20:52	7439-98-7	
Selenium	0.014	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 20:52	7782-49-2	
Thallium	0.00016J	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 20:52	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:27	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Fluoride	0.40	mg/L	0.30	0.029	1		03/09/19 16:48	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: FB-3-3-5-19	Lab ID:	2615736017	Collecte	ed: 03/05/19	13:30	Received: 03/	06/19 16:13 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		Method: EPA 6							
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 20:58	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00077	1	03/08/19 12:18	03/08/19 20:58		
Barium	ND	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 20:58		
Beryllium	ND	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 20:58	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 20:58	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 20:58	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 20:58	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 20:58	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 20:58	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 20:58	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 20:58	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 20:58	7440-28-0	
7470 Mercury	Analytical I	Method: EPA	7470A Pre	paration Met	hod: EP	A 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:29	7439-97-6	
300.0 IC Anions 28 Days	Analytical I	Method: EPA	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 17:12	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Sample: FB-4-3-6-19	Lab ID:	2615736018	Collecte	ed: 03/06/19	13:45	Received: 03/	06/19 16:13 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	03/08/19 12:18	03/08/19 21:04	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	03/08/19 12:18	03/08/19 21:04	7440-38-2	
Barium	ND	mg/L	0.010	0.00078	1	03/08/19 12:18	03/08/19 21:04	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	03/08/19 12:18	03/08/19 21:04	7440-41-7	
Cadmium	ND	mg/L	0.0010	0.000093	1	03/08/19 12:18	03/08/19 21:04	7440-43-9	
Chromium	ND	mg/L	0.010	0.0016	1	03/08/19 12:18	03/08/19 21:04	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	03/08/19 12:18	03/08/19 21:04	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	03/08/19 12:18	03/08/19 21:04	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	03/08/19 12:18	03/08/19 21:04	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	03/08/19 12:18	03/08/19 21:04	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	03/08/19 12:18	03/08/19 21:04	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	03/08/19 12:18	03/08/19 21:04	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	03/08/19 08:56	03/08/19 15:31	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Fluoride	ND	mg/L	0.30	0.029	1		03/09/19 19:13	16984-48-8	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Parameter

Date: 04/04/2019 03:05 PM

Mercury

QC Batch: 23871 Analysis Method: EPA 7470A QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Associated Lab Samples: 2615736001, 2615736002, 2615736003, 2615736004, 2615736005, 2615736006, 2615736007, 2615736008,

2615736009, 2615736010, 2615736011, 2615736012, 2615736013, 2615736014, 2615736015, 2615736016,

2615736017, 2615736018

METHOD BLANK: 107019 Matrix: Water

Units

mg/L

Result

ND

Conc.

0.0025

Associated Lab Samples: 2615736001, 2615736002, 2615736003, 2615736004, 2615736005, 2615736006, 2615736007, 2615736008,

2615736009, 2615736010, 2615736011, 2615736012, 2615736013, 2615736014, 2615736015, 2615736016,

2615736017, 2615736018 Blank Reporting Parameter Units Limit MDL Qualifiers Result Analyzed Mercury ND 0.00050 0.000036 03/08/19 14:25 mg/L LABORATORY CONTROL SAMPLE: 107020 LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers Mercury mg/L 0.0025 0.0024 96 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 107021 107022 MS MSD 2615736001 MSD MS Spike Spike MS MSD % Rec Max RPD RPD

Conc.

0.0025

Result

0.0025

Result

0.0025

% Rec

98

% Rec

100

Limits

75-125

2 20 Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

QC Batch: 23903 Analysis Method: EPA 6020B QC Batch Method: **EPA 3005A** Analysis Description: 6020B MET

2615736001, 2615736002, 2615736003, 2615736004, 2615736005, 2615736006, 2615736007, 2615736008, Associated Lab Samples:

2615736009, 2615736010, 2615736011, 2615736012, 2615736013, 2615736014, 2615736015, 2615736016,

2615736017, 2615736018

METHOD BLANK: 107116 Matrix: Water

Associated Lab Samples:

 $2615736001,\ 2615736002,\ 2615736003,\ 2615736004,\ 2615736005,\ 2615736006,\ 2615736007,\ 2615736008,\ 2615736010,\ 2615736011,\ 2615736012,\ 2615736013,\ 2615736014,\ 2615736015,\ 2615736016,\ 261$

2615736017, 2615736018

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00078	03/08/19 18:35	
Arsenic	mg/L	ND	0.0050	0.00057	03/08/19 18:35	
Barium	mg/L	ND	0.010	0.00078	03/08/19 18:35	
Beryllium	mg/L	ND	0.0030	0.000050	03/08/19 18:35	
Cadmium	mg/L	ND	0.0010	0.000093	03/08/19 18:35	
Chromium	mg/L	ND	0.010	0.0016	03/08/19 18:35	
Cobalt	mg/L	ND	0.010	0.00052	03/08/19 18:35	
Lead	mg/L	ND	0.0050	0.00027	03/08/19 18:35	
Lithium	mg/L	ND	0.050	0.00097	03/08/19 18:35	
Molybdenum	mg/L	ND	0.010	0.0019	03/08/19 18:35	
Selenium	mg/L	ND	0.010	0.0014	03/08/19 18:35	
Thallium	mg/L	ND	0.0010	0.00014	03/08/19 18:35	

LABORATORY CONTROL SAMPLE:	107117					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.098	98	80-120	
Arsenic	mg/L	0.1	0.095	95	80-120	
3arium	mg/L	0.1	0.097	97	80-120	
Beryllium	mg/L	0.1	0.099	99	80-120	
Cadmium	mg/L	0.1	0.099	99	80-120	
Chromium	mg/L	0.1	0.097	97	80-120	
Cobalt	mg/L	0.1	0.095	95	80-120	
₋ead	mg/L	0.1	0.092	92	80-120	
_ithium	mg/L	0.1	0.10	100	80-120	
Molybdenum	mg/L	0.1	0.095	95	80-120	
Selenium	mg/L	0.1	0.10	100	80-120	
Γhallium	mg/L	0.1	0.091	91	80-120	

MATRIX SPIKE & MATRIX SPII	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 107118											
		0045700044	MS	MSD	MC	MCD	MC	MCD	0/ Da-		M-11	
		2615736011	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.10	0.10	103	102	75-125	2	20	
Arsenic	mg/L	0.0022J	0.1	0.1	0.10	0.10	101	100	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	ATE: 107118	3		107119							
Parameter	Units	2615736011 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.012	0.1	0.1	0.11	0.11	99	97	75-125	2	20	
Beryllium	mg/L	0.023	0.1	0.1	0.11	0.11	84	82	75-125	2	20	
Cadmium	mg/L	0.0030	0.1	0.1	0.10	0.10	97	98	75-125	1	20	
Chromium	mg/L	ND	0.1	0.1	0.098	0.097	97	96	75-125	0	20	
Cobalt	mg/L	0.028	0.1	0.1	0.12	0.12	91	94	75-125	2	20	
Lead	mg/L	0.0012J	0.1	0.1	0.080	0.081	79	79	75-125	1	20	
Lithium	mg/L	0.033J	0.1	0.1	0.12	0.12	87	86	75-125	1	20	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.10	103	102	75-125	1	20	
Selenium	mg/L	0.013	0.1	0.1	0.12	0.11	103	102	75-125	0	20	
Thallium	mg/L	0.00016J	0.1	0.1	0.081	0.080	81	80	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates - Ash Pond 3

2615736 Pace Project No.:

Date: 04/04/2019 03:05 PM

QC Batch: 23825 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

2615736001, 2615736002, 2615736003, 2615736004, 2615736005, 2615736006, 2615736007, 2615736008, Associated Lab Samples:

2615736009, 2615736010, 2615736011, 2615736012, 2615736013, 2615736014, 2615736015, 2615736016,

2615736017, 2615736018

METHOD BLANK: 106700 Matrix: Water

Associated Lab Samples: 2615736001, 2615736002, 2615736003, 2615736004, 2615736005, 2615736006, 2615736007, 2615736008,

2615736009, 2615736010, 2615736011, 2615736012, 2615736013, 2615736014, 2615736015, 2615736016, 2615736017, 2615736018 Reporting Blank Parameter Limit MDL Qualifiers Units Result Analyzed Fluoride ND 0.30 0.029 03/09/19 07:31 mg/L LABORATORY CONTROL SAMPLE: 106701 LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers Fluoride mg/L 10 9.9 99 90-110 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 106702 106703 MS MSD 2615736001 MSD MS MSD Spike Spike MS % Rec Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Fluoride ND 10 10 10.0 10.1 100 101 90-110 mg/L 0 15 MATRIX SPIKE SAMPLE: 106704 2615736002 Spike MS MS % Rec Qualifiers Parameter Units Result Conc. Result % Rec Limits ND Fluoride mg/L 10 10.4 104 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 04/04/2019 03:05 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
2615736001	YGWA-4I	EPA 3005A	23903	EPA 6020B	23932
2615736002	YGWA-5I	EPA 3005A	23903	EPA 6020B	23932
615736003	YGWA-5D	EPA 3005A	23903	EPA 6020B	23932
615736004	YGWA-17S	EPA 3005A	23903	EPA 6020B	23932
615736005	YGWA-18S	EPA 3005A	23903	EPA 6020B	23932
615736006	YGWA-18I	EPA 3005A	23903	EPA 6020B	23932
615736007	YGWA-20S	EPA 3005A	23903	EPA 6020B	23932
615736008	YGWA-21I	EPA 3005A	23903	EPA 6020B	23932
615736009	YGWC-23S	EPA 3005A	23903	EPA 6020B	23932
615736010	YGWC-24S	EPA 3005A	23903	EPA 6020B	23932
615736011	YGWC-33S	EPA 3005A	23903	EPA 6020B	23932
615736012	YGWC-36	EPA 3005A	23903	EPA 6020B	23932
615736013	EB-3-3-5-19	EPA 3005A	23903	EPA 6020B	23932
515736014	EB-4-3-6-19	EPA 3005A	23903	EPA 6020B	23932
615736015	DUP-3	EPA 3005A	23903	EPA 6020B	23932
615736016	DUP-4	EPA 3005A	23903	EPA 6020B	23932
615736017	FB-3-3-5-19	EPA 3005A	23903	EPA 6020B	23932
615736018	FB-4-3-6-19	EPA 3005A	23903	EPA 6020B	23932
615736001	YGWA-4I	EPA 7470A	23871	EPA 7470A	23922
615736002	YGWA-5I	EPA 7470A	23871	EPA 7470A	23922
615736003	YGWA-5D	EPA 7470A	23871	EPA 7470A	23922
615736004	YGWA-17S	EPA 7470A	23871	EPA 7470A	23922
615736005	YGWA-18S	EPA 7470A	23871	EPA 7470A	23922
615736006	YGWA-18I	EPA 7470A	23871	EPA 7470A	23922
615736007	YGWA-20S	EPA 7470A	23871	EPA 7470A	23922
615736008	YGWA-21I	EPA 7470A	23871	EPA 7470A	23922
615736009	YGWC-23S	EPA 7470A	23871	EPA 7470A	23922
615736010	YGWC-24S	EPA 7470A	23871	EPA 7470A	23922
615736011	YGWC-33S	EPA 7470A	23871	EPA 7470A	23922
615736012	YGWC-36	EPA 7470A	23871	EPA 7470A	23922
615736013	EB-3-3-5-19	EPA 7470A	23871	EPA 7470A	23922
615736014	EB-4-3-6-19	EPA 7470A	23871	EPA 7470A	23922
615736015	DUP-3	EPA 7470A	23871	EPA 7470A	23922
615736016	DUP-4	EPA 7470A	23871	EPA 7470A	23922
615736017	FB-3-3-5-19	EPA 7470A	23871	EPA 7470A	23922
615736018	FB-4-3-6-19	EPA 7470A	23871	EPA 7470A	23922
615736001	YGWA-4I	EPA 300.0	23825		
615736002	YGWA-5I	EPA 300.0	23825		
615736003	YGWA-5D	EPA 300.0	23825		
15736004	YGWA-17S	EPA 300.0	23825		
315736005	YGWA-18S	EPA 300.0	23825		
615736006	YGWA-18I	EPA 300.0	23825		
615736007	YGWA-20S	EPA 300.0	23825		
615736008	YGWA-21I	EPA 300.0	23825		
615736009	YGWC-23S	EPA 300.0	23825		
615736010	YGWC-24S	EPA 300.0	23825		
615736011	YGWC-33S	EPA 300.0	23825		
615736012	YGWC-36	EPA 300.0	23825		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615736

Date: 04/04/2019 03:05 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2615736013	EB-3-3-5-19	EPA 300.0	23825		
2615736014	EB-4-3-6-19	EPA 300.0	23825		
2615736015	DUP-3	EPA 300.0	23825		
2615736016	DUP-4	EPA 300.0	23825		
2615736017	FB-3-3-5-19	EPA 300.0	23825		
2615736018	FB-4-3-6-19	EPA 300.0	23825		

CHAIN OF CUSTODY RECORD / Face Analytical

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092

Ŋ

6

7

PAGE:

(770) 734-4200 : FAX (770) 734-4201

5 - NaOH/ZnAc, ≤6°C 7 - ≤6°C not frozen 6 - Na₂S₂O₃, ≤6°C 2 - H₂SO₄, ≤6°C 3 - HNO₃ REMARKS/ADDITIONAL INFORMATION 4 - NaOH, ≤6°C PRESERVATION 1 - HCI, ≤6°C P - PRODUC WO#: 2615736 SL - SLUDGE L- LIQUID SD - SOLID A- AIR *MATRIX CODES: SW - SURFACE WATER DRINKING WATER GW - GROUNDWATER STORM WATER MW - WASTEWATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE S - STERILE O - OTHER V - VOA VIAL P - PLASTIC WATER ST. ū 2 ŗ† N **4** 0 က - 0 乙乙苯酚巴尼 工 FS OTHER 3-6-19 DATE/TIME: DATE/TIME (A) <u>ANALYSIS REQUESTED</u> COURIER # of Coolers (0SE6/315/9320) S Radium 226 & 228 Broken Not Prosent SAMPLE SHIPPED VIA: UPS FED.EY Flouride RELINQUISHED BY: A Metals App. IV (OTATOSOB A93) RELINQUISHED BY ۵. Cugnos Seat CONTAINER TYPE: PRESERVATION: ⋖ - z w & o J J T ı J J -19 3-6-19 SAMPLE IDENTIFICATION 3-6-19 ķ ; in シスタ E13-3 ひとめ EB-4 F13-4 DATE/TIME: \$ 266 / DATE/TIME: FIG Plant Yates - Ash Pond 3 CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER: P # ဗ္ဗ 7 ပဝ Joju Abraham REQUESTED COMPLETION DATE: MATRIX 3 CODE $\mathcal{E}_{\mathcal{N}}$ 241 Ralph McGill Blvd SE B10185 3 2 3 ٤ SAMPLED BY AND TITLE PROJECT NAME/STATE: 1330 Collection 734 シカロ 001 REGINATION BY LAB RECEIVED BY: Atlanta, GA 30308 CLIENT NAME 404-506-7239 REPORT TO: Georgia Power PROJECT #: Collection 7-5-19 34-19 3-5-19 3-6-19 3-6-19 3-6-19

Yates Ash Pond 3 - Blank COCs.xlsx

31 of 33

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc.

Ace Analytical Services, Inc.
110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092
(770) 734-4200 : FAX (770) 734-4201

PAGE:

N

ь Б

CLIENT NAME:					ANAIV	ANAI VSIS DEMI IESTEN		***************************************		
Georgia Power			CONTAINED TABLE	-	֡֝֜֝֓֜֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	SIS RECOCOLET	 - -	J.	CONTAINER TYPE	PRESERVATION
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER	MBER/FAX N	UMBER	DOCUMENT LIFE	1	+		+	¥.	P - PLASTIC	1 - HCl, ≤6°C
241 Ralph McGill Blvd SE B10185	85		THESERVATION	ر ا	? -			m	A - AMBER GLASS	2 - H ₂ SO4, ≤6°C
Atlanta, GA 30308	}		5						G - CLEAR GLASS	3 - HNO ₃
404-506-7239			ď						V - VOA VIAL	4 - NaOH, ≤6°C
REPORT TO:		CC:	· o			-		- (S-STERILE	5 - NaOH/ZnAc, ≤6°C
Joju Abraham			z				_	9	O - OTHER	6 - Na ₂ S ₂ O _{3, ≤} 6°C
REQUESTED COMPLETION DATE:	ATE	PO#:	. -				-	Z		7 - ≤6°C not frozen
PROJECT NAME/STATE:			∢ -)	:MATRI)	'MATRIX CODES:
_	Plant Yates - Ash Pond 3	sh Pond 3	- z :	••				2 0	DW - DRINKING WATER	S- SOIL
PROJECT #:			шα	(0,	228	700		Ш		SL - SLUDGE
			د ده	ΛΙ <i>'</i>	8 8	(0)		۷.	GW - GROUNDWATER	SD - SOLID
Collection	ZX O C R G	SAMDI E IDENTIFICATION		1dA 2 0209	9 4 6 8 W 55 qe	16 AL-				L- LIQUID
DATE TIME CODE	₩ a	SAWILEIDENIILICAUUN	•	Netal Aq3	inoli ulbe?				W. WATER	P PROBUCT
M1) >EN 1 51-6-E	2 Z	17 - 41.74	15	2	3 5				REMARKS/ADDITIC	REMARKS/ADDITIONAL INFORMATION
13:7	3 Z	1.	. 3		7			-		
1203	7	1.	- 3		1			1 1		
<u> </u>	2	1	2	-	7	-) =		
1653	2	1	- 5	-	2			י ד		
3-6-19 1125 BW	7	(2	<u> </u> -	-			ي (
3-5-19 1340 6W) [46WA-205	7	_	-			7		
3-5-19 1205 KW	4-1-1		<u>†</u>	-	12					
3-6-19 1315 6W	7	YEWC - 235	و.	_	7			3	0 .4. 0	1 6
3-5-19 1455 6W	7	547 - JM9K	Ţ					C	KATUR NEC	Mre
3-6-19 1300 6W	7 /	588-2M9X	7	-	1					:
3-6-19 1130 6W	7	-7(7	-	7	,		- 2		
SAMPLED BY AND TITLE:	410	1 +3	RELINQUISH	HED BY:	1		DATE/TIME / /	5	FORLABUSEONLY	USE ONLY
RECEIVED BY:	İ	DATE/TIME:	RELINQUISHED BY	ED BY		1	DATE/TIME: /		LAB#:	
RECENTED BY LABY HON	Z.	DATERINE 19	SAMPLE SHII	HIPPED VIA: TED:EX	UR:		Jesus Oruco	3	JO#:2615736	736
Ares No NA (As)	A.S. No NA	Tempelature 7 C Max.	Antony Seat:	Z	resent		ë.	F		Due Date: 03/13/19
Pateday								를 당	CLIENT: GAPower-CCR	

Yates Ash Pond 3 - Blank COCs.xlsx

Pa**€**e 32 of 33

	Samp	ole	Cond	ition	Upon Receipt		WUH · Z	0T0100		
Pace Analy	<i>tical</i> Client Name: _	<u>d</u>	<u>kory</u>	a f	ower - CCR		PM: BM CLIENT: GAPo	Due Date: (wer-CCR	03/13/	19
Tracking #:	UPS USPS Client			ercial Seals	-		Cotlonal Proj. Du Proj. Na no		eras San	
Docking Materials	□ Bubble Wass □ □ Bubble Ba		☑ N		Other					
-	☐ Bubble Wrap ☐ Bubble Ba	1								
Thermometer Used		- 1	of Ice:	\sim		╟		ing process has begur of person examining		
Cooler Temperatur	<u> </u>	51010	ogicai i		is Frozen: Yes No Comments:		contents: <u>3</u>	7/19 JW		
Temp should be above		╁				╫		<u> </u>		
Chain of Custody Pr		一	S No			<u> </u>		•		
Chain of Custody Fil		_	s 🗆 No	□n/a					-	
Chain of Custody Re		-	s 🗆 No	□N/A		<u> </u>				
Sampler Name & Signature		-	s 🗆 No	□n/a	4.	<u> </u>			_	
Samples Arrived wit	hin Hold Time:		s 🗆 No	□n/A	5.	<u> </u>				
Short Hold Time A	nalysis (<72hr):		s DelNo	□n/a	6.	_				
Rush Turn Around	Time Requested:		s 🖳 No	□n/a	7.					
Sufficient Volume:			s 🗆 No	□n/a	8.					
Correct Containers I	Used:		s 🗆 No	□n/a	9.					
-Pace Containers	Used:	ℴℴ℟	s 🗆 No	□N/A						
Containers Intact:			s 🗆 No	□n/a	10.					
Filtered volume rece	ived for Dissolved tests		s 🗆 No	DINIA	11.	li				
Sample Labels mate		7	s 🗆 No	□n/A						
-Includes date/tin		74			12.					
	reservation have been checked.		s 🗆 No	□N/A	12	\vdash			_	
All containers needing compliance with EPA r	preservation are found to be in	J	s ⊟No		13.					
exceptions: VOA colifor	n, TOC, O&G, WI-DRO (water)	םין.	s Wo		Initial when completed		Lot # of added preservative			
Samples checked for			s 🗆 No	ГОКИА			proservative		\dashv	
Headspace in VOA			s □No			 			- .	
Trip Blank Present:		寸	s 🗆 No							
·	•	. 1	s 🗆 No	_	10.					
Trip Blank Custody		٦٣	s 11110	LIMINA					Ì	
Pace Trip Blank Lot	# (If purchased):	_								
Client Notification/	Resolution:						Field Data Required	? Y/N		
Person Conta	icted:	_		_Date/	Time:	<u> </u>				
Comments/ Resol	ution:	4				<u> </u>				
		4				_				
		_								
		\dashv				-				
	1	+				-			···-	
		\dashv				-				
Project Manager	Review:	_					Date:			
	e is a discrepancy affecting North Car out of hold, incorrect preservative,					m w	ill be sent to the North	Carolina DEHNR		
							F-ALL COO	3rev 3 11Sentember	nen& 3 of 3	3B

April 04, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on March 06, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

This revised report replaces the report issued on 4/2/2019. The report has been revised to correct a sample ID per consultant request. No other changes have been made to this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200

Project Manager

Enclosures

cc: Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

(770)734-4200

CERTIFICATIONS

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888

North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867

North Carolina Certification #: 42706

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2615739001	YGWA-4I	Water	03/04/19 14:35	03/06/19 16:13
2615739002	YGWA-5I	Water	03/04/19 13:17	03/06/19 16:13
2615739003	YGWA-5D	Water	03/04/19 12:03	03/06/19 16:13
2615739004	YGWA-17S	Water	03/05/19 11:38	03/06/19 16:13
2615739005	YGWA-18S	Water	03/05/19 16:53	03/06/19 16:13
2615739006	YGWA-18I	Water	03/06/19 11:25	03/06/19 16:13
2615739007	YGWA-20S	Water	03/05/19 13:40	03/06/19 16:13
2615739008	YGWA-21I	Water	03/05/19 12:05	03/06/19 16:13
2615739009	YGWC-23S	Water	03/06/19 13:15	03/06/19 16:13
2615739010	YGWC-24S	Water	03/05/19 14:55	03/06/19 16:13
2615739011	YGWC-33S	Water	03/06/19 13:00	03/06/19 16:13
2615739012	YGWC-36	Water	03/06/19 11:30	03/06/19 16:13
2615739013	EB-3-3-5-19	Water	03/05/19 11:00	03/06/19 16:13
2615739014	EB-4-3-6-19	Water	03/06/19 10:45	03/06/19 16:13
2615739015	DUP-3	Water	03/06/19 00:00	03/06/19 16:13
2615739016	DUP-4	Water	03/06/19 00:00	03/06/19 16:13
2615739017	FB-3-3-5-19	Water	03/05/19 13:30	03/06/19 16:13
2615739018	FB-4-3-6-19	Water	03/06/19 13:45	03/06/19 16:13

SAMPLE ANALYTE COUNT

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
 2615739001	YGWA-4I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739002	YGWA-5I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739003	YGWA-5D	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739004	YGWA-17S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739005	YGWA-18S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739006	YGWA-18I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739007	YGWA-20S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739008	YGWA-21I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739009	YGWC-23S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739010	YGWC-24S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739011	YGWC-33S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739012	YGWC-36	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739013	EB-3-3-5-19	EPA 9315	LAL	1	PASI-PA

SAMPLE ANALYTE COUNT

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739014	EB-4-3-6-19	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739015	DUP-3	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739016	DUP-4	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739017	FB-3-3-5-19	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2615739018	FB-4-3-6-19	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWA-4I PWS:	Lab ID: 26157390 Site ID:	01 Collected: 03/04/19 14:35 Sample Type:	Received:	03/06/19 16:13	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.593 ± 0.324 (0.460) C:88% T:NA	pCi/L	03/20/19 08:33	13982-63-3	
Radium-228		0.620 ± 0.507 (1.03) C:77% T:87%	pCi/L	03/27/19 16:12	2 15262-20-1	
Total Radium	Total Radium Calculation	1.21 ± 0.831 (1.49)	pCi/L	03/28/19 15:33	3 7440-14-4	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWA-5I Lab ID: 2615739002 Collected: 03/04/19 13:17 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.561 \pm 0.328 \quad (0.486)$ Radium-226 pCi/L 03/20/19 08:32 13982-63-3 C:84% T:NA EPA 9320 0.442 ± 0.359 (0.715) Radium-228 pCi/L 03/27/19 12:58 15262-20-1 C:72% T:90% Total Radium **Total Radium** 1.00 ± 0.687 (1.20) pCi/L 03/28/19 15:33 7440-14-4 Calculation

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWA-5D PWS:	Lab ID: 26157390 Site ID:	O3 Collected: 03/04/19 12:03 Sample Type:	Received:	03/06/19 16:13	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		3.08 ± 0.790 (0.590) C:87% T:NA	pCi/L	03/20/19 08:32	13982-63-3	
Radium-228		1.35 ± 0.489 (0.716) C:72% T:91%	pCi/L	03/27/19 12:58	3 15262-20-1	
Total Radium	Total Radium Calculation	4.43 ± 1.28 (1.31)	pCi/L	03/28/19 15:33	3 7440-14-4	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWA-17S PWS:	Lab ID: 26157390 Site ID:	O4 Collected: 03/05/19 11:38 Sample Type:	Received:	03/06/19 16:13	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.223 ± 0.235 (0.464) C:95% T:NA	pCi/L	03/20/19 08:33	13982-63-3	
Radium-228		0.0490 ± 0.394 (0.897) C:76% T:91%	pCi/L	03/27/19 16:12	2 15262-20-1	
Total Radium	Total Radium Calculation	0.272 ± 0.629 (1.36)	pCi/L	03/28/19 15:33	3 7440-14-4	

Project: Plant Yates - Ash Pond 3

Calculation

Pace Project No.: 2615739

Sample: YGWA-18S Lab ID: 2615739005 Collected: 03/05/19 16:53 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.264 \pm 0.250 \quad (0.483)$ Radium-226 pCi/L 03/20/19 08:33 13982-63-3 C:97% T:NA EPA 9320 0.210 ± 0.458 (1.01) Radium-228 pCi/L 03/27/19 16:12 15262-20-1 C:75% T:82% Total Radium **Total Radium** $0.474 \pm 0.708 \quad (1.49)$ pCi/L 03/28/19 15:33 7440-14-4

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWA-18I Lab ID: 2615739006 Collected: 03/06/19 11:25 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.502 ± 0.292 (0.403) Radium-226 pCi/L 03/20/19 08:33 13982-63-3 C:90% T:NA EPA 9320 0.212 ± 0.352 (0.767) Radium-228 pCi/L 03/27/19 16:12 15262-20-1 C:74% T:91% Total Radium **Total Radium** 0.714 ± 0.644 (1.17) pCi/L 03/28/19 15:33 7440-14-4 Calculation

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWA-20S Lab ID: 2615739007 Collected: 03/05/19 13:40 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.424 \pm 0.295 \quad (0.489)$ Radium-226 pCi/L 03/20/19 08:33 13982-63-3 C:88% T:NA EPA 9320 0.416 ± 0.501 (1.06) Radium-228 pCi/L 03/27/19 16:12 15262-20-1 C:73% T:82% Total Radium **Total Radium** $0.840 \pm 0.796 \quad (1.55)$ pCi/L 03/28/19 15:33 7440-14-4 Calculation

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWA-21I PWS:	Lab ID: 26157390 Site ID:	08 Collected: 03/05/19 12:05 Sample Type:	Received:	03/06/19 16:13	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.985 ± 0.404 (0.437) C:89% T:NA	pCi/L	03/20/19 08:33	13982-63-3	
Radium-228		-0.181 ± 0.459 (1.08) C:76% T:89%	pCi/L	03/27/19 16:12	2 15262-20-1	
Total Radium	Total Radium Calculation	0.985 ± 0.863 (1.52)	pCi/L	03/28/19 15:33	3 7440-14-4	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWC-23S Lab ID: 2615739009 Collected: 03/06/19 13:15 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.278 ± 0.229 (0.374) Radium-226 pCi/L 03/20/19 08:34 13982-63-3 C:88% T:NA EPA 9320 $0.458 \pm 0.403 \quad (0.814)$ Radium-228 pCi/L 03/27/19 16:13 15262-20-1 C:77% T:80% Total Radium **Total Radium** 0.736 ± 0.632 (1.19) pCi/L 03/28/19 15:38 7440-14-4 Calculation

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWC-24S Lab ID: 2615739010 Collected: 03/05/19 14:55 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.229 ± 0.223 (0.406) Radium-226 pCi/L 03/20/19 08:31 13982-63-3 C:89% T:NA EPA 9320 $0.608 \pm 0.429 \quad (0.838)$ Radium-228 pCi/L 03/27/19 16:12 15262-20-1 C:76% T:87% Total Radium **Total Radium** 0.837 ± 0.652 (1.24) pCi/L 03/28/19 15:38 7440-14-4 Calculation

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWC-33S PWS:	Lab ID: 26157390 Site ID:	Collected: 03/06/19 13:00 Sample Type:	Received:	03/06/19 16:13	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.939 ± 0.385 (0.403) C:94% T:NA	pCi/L	03/20/19 08:32	13982-63-3	
Radium-228		0.0313 ± 0.370 (0.851) C:75% T:83%	pCi/L	03/27/19 16:13	3 15262-20-1	
Total Radium	Total Radium Calculation	0.970 ± 0.755 (1.25)	pCi/L	03/28/19 15:38	3 7440-14-4	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: YGWC-36 Lab ID: 2615739012 Collected: 03/06/19 11:30 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.919 ± 0.425 (0.593) Radium-226 pCi/L 03/20/19 08:31 13982-63-3 C:87% T:NA EPA 9320 -0.178 ± 0.339 (0.830) 03/27/19 16:13 15262-20-1 Radium-228 pCi/L C:75% T:83% Total Radium **Total Radium** 0.919 ± 0.764 (1.42) pCi/L 03/28/19 15:38 7440-14-4 Calculation

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: EB-3-3-5-19 Lab ID: 2615739013 Collected: 03/05/19 11:00 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.0654 \pm 0.159 \quad (0.383)$ Radium-226 pCi/L 03/20/19 08:31 13982-63-3 C:91% T:NA EPA 9320 0.181 ± 0.337 (0.739) Radium-228 pCi/L 03/27/19 16:12 15262-20-1 C:76% T:89% Total Radium Total Radium $0.246 \pm 0.496 \quad (1.12)$ pCi/L 03/28/19 15:33 7440-14-4 Calculation

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: EB-4-3-6-19 Lab ID: 2615739014 Collected: 03/06/19 10:45 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.471 ± 0.291 (0.425) Radium-226 pCi/L 03/20/19 08:32 13982-63-3 C:91% T:NA EPA 9320 0.157 ± 0.367 (0.815) Radium-228 pCi/L 03/27/19 16:13 15262-20-1 C:76% T:89% Total Radium Total Radium 0.628 ± 0.658 (1.24) pCi/L 03/28/19 15:38 7440-14-4 Calculation

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: DUP-3 Lab ID: 2615739015 Collected: 03/06/19 00:00 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.154 ± 0.238 (0.524) Radium-226 pCi/L 03/20/19 08:31 13982-63-3 C:89% T:NA 0.0842 ± 0.386 (0.876) EPA 9320 Radium-228 pCi/L 03/27/19 16:12 15262-20-1 C:73% T:85% Total Radium Total Radium 0.238 ± 0.624 (1.40) pCi/L 03/28/19 15:38 7440-14-4 Calculation

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: DUP-4 PWS:	Lab ID: 26157390 Site ID:	Collected: 03/06/19 00:00 Sample Type:	Received:	03/06/19 16:13	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.936 ± 0.397 (0.479) C:95% T:NA	pCi/L	03/20/19 08:3	1 13982-63-3	
Radium-228		0.718 ± 0.431 (0.804) C:73% T:86%	pCi/L	03/27/19 16:13	3 15262-20-1	
Total Radium	Total Radium Calculation	1.65 ± 0.828 (1.28)	pCi/L	03/28/19 15:38	3 7440-14-4	

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Sample: FB-3-3-5-19 Lab ID: 2615739017 Collected: 03/05/19 13:30 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 -0.0550 ± 0.211 (0.598) Radium-226 pCi/L 03/20/19 08:31 13982-63-3 C:92% T:NA EPA 9320 $0.510 \pm 0.379 \quad (0.740)$ Radium-228 pCi/L 03/27/19 16:12 15262-20-1 C:76% T:87% Total Radium Total Radium $0.510 \pm 0.590 \quad (1.34)$ pCi/L 03/28/19 15:33 7440-14-4 Calculation

Project: Plant Yates - Ash Pond 3

Total Radium

Calculation

Pace Project No.: 2615739

Total Radium

Sample: FB-4-3-6-19 Lab ID: 2615739018 Collected: 03/06/19 13:45 Received: 03/06/19 16:13 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.322 \pm 0.264 \quad (0.478)$ Radium-226 pCi/L 03/20/19 08:34 13982-63-3 C:93% T:NA EPA 9320 -0.0367 ± 0.356 (0.835) Radium-228 pCi/L 03/27/19 16:13 15262-20-1 C:73% T:85%

pCi/L

03/28/19 15:38 7440-14-4

 $0.322 \pm 0.620 \quad (1.31)$

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

QC Batch: 333842 Analysis Method: EPA 9315
QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 2615739001, 2615739002, 2615739003, 2615739004, 2615739005, 2615739006, 2615739007, 2615739008,

2615739009, 2615739010, 2615739011, 2615739012, 2615739013, 2615739014, 2615739015, 2615739016,

2615739017, 2615739018

METHOD BLANK: 1624774 Matrix: Water

Associated Lab Samples: 2615739001, 2615739002, 2615739003, 2615739004, 2615739005, 2615739006, 2615739007, 2615739008,

2615739009, 2615739010, 2615739011, 2615739012, 2615739013, 2615739014, 2615739015, 2615739016,

2615739017, 2615739018

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0453 ± 0.182 (0.464) C:88% T:NA
 pCi/L
 03/20/19 08:32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

QC Batch: 334689 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 2615739001, 2615739002, 2615739003, 2615739004, 2615739005, 2615739006, 2615739007, 2615739008,

2615739009, 2615739010, 2615739011, 2615739012, 2615739013, 2615739014, 2615739015, 2615739016,

2615739017, 2615739018

METHOD BLANK: 1628695 Matrix: Water

Associated Lab Samples: 2615739001, 2615739002, 2615739003, 2615739004, 2615739005, 2615739006, 2615739007, 2615739008,

2615739009, 2615739010, 2615739011, 2615739012, 2615739013, 2615739014, 2615739015, 2615739016,

2615739017, 2615739018

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.0633 ± 0.285 (0.651) C:77% T:86%
 pCi/L
 03/27/19 12:58

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 04/04/2019 03:27 PM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Date: 04/04/2019 03:27 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2615739001	YGWA-4I	EPA 9315	333842	_	
2615739002	YGWA-5I	EPA 9315	333842		
615739003	YGWA-5D	EPA 9315	333842		
2615739004	YGWA-17S	EPA 9315	333842		
615739005	YGWA-18S	EPA 9315	333842		
615739006	YGWA-18I	EPA 9315	333842		
615739007	YGWA-20S	EPA 9315	333842		
615739008	YGWA-21I	EPA 9315	333842		
615739009	YGWC-23S	EPA 9315	333842		
615739010	YGWC-24S	EPA 9315	333842		
615739011	YGWC-33S	EPA 9315	333842		
615739012	YGWC-36	EPA 9315	333842		
615739013	EB-3-3-5-19	EPA 9315	333842		
615739014	EB-4-3-6-19	EPA 9315	333842		
615739015	DUP-3	EPA 9315	333842		
615739016	DUP-4	EPA 9315	333842		
615739017	FB-3-3-5-19	EPA 9315	333842		
2615739018	FB-4-3-6-19	EPA 9315	333842		
615739001	YGWA-4I	EPA 9320	334689		
615739002	YGWA-5I	EPA 9320	334689		
615739003	YGWA-5D	EPA 9320	334689		
615739004	YGWA-17S	EPA 9320	334689		
615739005	YGWA-18S	EPA 9320	334689		
615739006	YGWA-18I	EPA 9320	334689		
615739007	YGWA-20S	EPA 9320	334689		
615739008	YGWA-21I	EPA 9320	334689		
615739009	YGWC-23S	EPA 9320	334689		
2615739010	YGWC-24S	EPA 9320	334689		
615739011	YGWC-33S	EPA 9320	334689		
615739012	YGWC-36	EPA 9320	334689		
615739013	EB-3-3-5-19	EPA 9320	334689		
2615739014	EB-4-3-6-19	EPA 9320	334689		
615739015	DUP-3	EPA 9320	334689		
615739016	DUP-4	EPA 9320	334689		
615739017	FB-3-3-5-19	EPA 9320	334689		
615739018	FB-4-3-6-19	EPA 9320	334689		
615739001	YGWA-4I	Total Radium Calculation	335990		
615739002	YGWA-5I	Total Radium Calculation	335990		
615739003	YGWA-5D	Total Radium Calculation	335990		
615739004	YGWA-17S	Total Radium Calculation	335990		
615739005	YGWA-18S	Total Radium Calculation	335990		
615739006	YGWA-18I	Total Radium Calculation	335990		
2615739007	YGWA-20S	Total Radium Calculation	335990		
2615739008	YGWA-21I	Total Radium Calculation	335990		
615739009	YGWC-23S	Total Radium Calculation	335992		
615739010	YGWC-24S	Total Radium Calculation	335992		
2615739011	YGWC-33S	Total Radium Calculation	335992		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates - Ash Pond 3

Pace Project No.: 2615739

Date: 04/04/2019 03:27 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2615739012	YGWC-36	Total Radium Calculation	335992		
2615739013	EB-3-3-5-19	Total Radium Calculation	335990		
2615739014	EB-4-3-6-19	Total Radium Calculation	335992		
2615739015	DUP-3	Total Radium Calculation	335992		
2615739016	DUP-4	Total Radium Calculation	335992		
2615739017	FB-3-3-5-19	Total Radium Calculation	335990		
2615739018	FB-4-3-6-19	Total Radium Calculation	335992		

CHAIN OF CUSTODY RECORD

7

P

PAGE:

Pace Analytical Pace Analytical Services, Inc.
110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092
(770) 734-4200: FAX (770) 734-4201

CLIENT NAME:							Ā	VAI V	ANALYSIS REQUESTED	UESTE	٥		Sall as	CONTAINER TYPE	PRESERVATION	
Georgia Power					CONTAINER TYPE:	L	<u>а</u> — <u>а</u>	a. 				F	¥	P - PLASTIC	1 - HCl. ≤6°C	
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	SSIPHON	E NUMBER	FA	NUMBER:	PRESERVATION:	┝	3 7	<u>د</u>		-	_		8	A - AMBER GLASS	2- H,SO, ≤6°C	
241 Ralph McGill Blvd SE B10185	III BING SE	B10185			‡o‡	and the second	<u> </u>	-					1 m	G - CLEAR GLASS	3- HNO.	
Attanta, GA 30308	90													V - VOA VIAL	4 - NaOH, ≤6°C	
404-506-7239					ပ								.	S - STERILE	5 - NaOH/ZnAc, ≤6°C	
REPORT TO:				;; (3)	0								Δ	O - OTHER	6 - Na ₂ S ₂ O ₃ , ≤6°C	
,	Joju Abraham	am			z										7 - ≤6°C not frozen	
REQUESTED COMPLETION DATE:	OMPLETIC	ON DATE:		PO#:	-				.,				Z			
PRO IECT NAME/STATE	E/STATE				< -) §	*MATRI	MATRIX CODES.	
	i 2 2	Plant Yat	tes - A	Plant Yates - Ash Pond 3	·z									DW - DRINKING WATER	S- SOIL	
					ш		- (88	020	•			142	WW - WASTEWATER		
PROJECT #:					œ		0.Zp	 8 53	20.00				Œ		SD - SOLID	
					σ ·	l .q	· <i>LI</i> 0	97	100						A- AIR	
Collection	Collection	MATRIX	ပ ပ လ	MOJE A CIBIE MACIE DI GOMA O	·	αA εl		S mu	3 918					ST - STORM WATER W - WATER	L- LIQUID P- PRONIICT	_
DATE	TIME	CODE	Σ d K B		-	steM	A93) Lol7	Rad	445)	-					REMARKS/ADDITIONAL INFORMATION	
3-4-19	1434	3	7	14 - AW 9X	4	<u> </u>		2		_						
3-4-14	1317	62	_	YEWA - ST	7	_	_	7	<u> </u>				7			
	1203	Ws)	7		2		_	2					3			•
2-5-19 1	138	3	2	- YEWA -	7	-	-	2					7			
	1653	60	7	1 YEWA - 185	h		-	2					5			•
3-6-19 1	1125	(J.W		YEWA-IBT	7			7					ی			
	1340	GW	7	46WA-205	7			2					Ħ			
3-5-19	1205	KW	1	1 YGWA- 21 I	7	T		4					2			
3-6-19 1	1315	M9	1	_	و.		_	4					8	extra Rac	, lure	
3-5-19 1	1455	6 W	7	1 YGWC - 245	J-			7					2			
3-9-19	1300	<i>(</i> 00	_	16WC-33S	7			2					1			
3-6-19	1130	G W	7	1 Y6WC- 36	<u></u>		_	7	,				12			
SAMPLED BY AND	ND TITLE:	1.7		†	RELINQUISHE	ISHED	D BY:	M	1		DATE/TIME:	#/	13	FOR LAB #	USE ONLY	
RECEIVED BY:				1	RELINQUISHED BY	IISHED	} Market				DATE/TIME:			10# · 264 £720	720	_
RECENTER LA	18 N	Hand		DATERINE 1613	SAMPLE SHIPPED VIA:	SHIPPE	PED VIA:	HSPS	COURIER		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OTHER	_ '	CTO7 - #0	601	
\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	¥.	OBS No NA	2	Tempedature 2 4 Marc	Green Seat:	Seat: Broken	Not Present	sent	44		<u>.</u>		##C#&1			·
Pa Q													:ズ !	2615739		—.

Yates Ash Pond 3 - Blank COCs.xlsx

≥ Pa**g**e 29 of 31

CHAIN OF CUSTODY RECORD

Pace Analytical Pece Analytical Services, Inc.

Pace Analytical 10 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092
(770) 734-4200 : FAX (770) 734-4201

N

P

7

PAGE:

CHOCKET KIARAET					 -	ĺ	ľ		TO CLO	STATE OF				
Geomia Power						-	-	֓֓֓֓֓֓֓֓֓֟֟֓֓֓֓֓֓֓֟֟֓֓֓֓֟֓֓֓֓֓֓֟֓֓֓֓֟	ANAL TOIS REQUESTED	SIEU		ر آ		
5000					CONTAINER TYPE	I ME	+	4		+		∢ 		-
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	HONE NUMBE	ERVFAX.	NUMBER:		PRESERVATION	NO.	3 7	3	_	_		0	A - AMBER GLASS 2 - H,SO _{4, ≤} 6°C	
241 Ralph McGill Blvd SE B10185	d SE B10185			A CONTRACTOR OF THE PARTY OF TH	+ o			-	-	-			G- CLEAR GLASS 3. HIND.	
Atlanta, GA 30308														
404-506-7239					ပ						_			
REPORT TO:			زز		· c								ıı	<u> </u>
	hin Ahraham		ġ) Z				_			⊃3	O-UINEK 6-Na ₂ S ₂ O ₃ , ≤6°C	
DEOLICETED COMPLETION DATE:	ACTION DATE		‡ 0		Z +								7 - 56°C not frozen	
REQUES LED COM	LETION DATE:		į.		- <		_					Z :	OHIO WILLIAM	7
PROJECT NAME/STATE	ATE				· -) 2	-MALKIX CODES:	
	_	Yates - A	Plant Yates - Ash Pond 3		- 2							2 .0	"OO O GETAVA CIAINING MIC	
		2	2		: u			9	(n=			ם ם	DRINKING WATER	
PRO IECT #					1 0		(0,	22	· ·			ŭ . O	CBOINDIAGATED	-
:					: v	ΛI Ί	1711	8 9	ici c			٤.,		
\vdash		၅				naA	020	ZZ			-		STORM WATER	
ن د	_	0		SAMPLE IDENTIFICATION		되	9 ¥	mu	**					
UAIE	E CODE	≨ C. < C0			→	Met	(EP,	bsA	MS)			•	REMARKS/ADDITIONAL INFORMATION	
3-5-19 1100	<i>√</i> 3	_	V EB-	3-3-5-19	7		1	2				5		Τ
3-6-19 1045	3		W EB-4		ב		<u> </u>	۲				7		Τ
\vdash	12 L		74.0	3	5			7		_		ī		Τ
2-6-19	/v. /	1	200	. b . c[ד		_	7				3		T
+	╄	Ė	1	01-7-6-6	=	-	 -					1		Т
065/ 11-6-6	<u>}</u>	+	֡֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		7	+	-	7	+	1				T
3-6-19 134	<u>≯</u>		N F13-4	4-3-6-19	7			7)ଓ		
														-
		+												
		+				\dagger	$\frac{1}{1}$	+		+	1			Т
						1	_	\dashv						
														Γ
														Γ
SAMPLED BY AND TITLE		,	DATE/TIME:		RELINQUISHED BY	JISHED	Ø.∀3			ā	DATE/TIME: //	\$	FOR LAB USE ONLY	Γ
BECENTED BY.	H. H. K.	¥	NATE/TIME:	above	NET INCITION BY	ISHED			000	12	3-6-P4 / P	J	AB #:	
NECEIVED DI.	,			,			<u>.</u>			3	I ET I IIWIE. 1	11		7
RECOMMED BY LAB	7"70"		DATE TIME!	E191 61	SAMPLE SHIPPED VIA:	SHIPPI	N ON X	SdSH	COURIER		7 OTHER	- '	SC /CTO7 - #6	-
		Į i	Temperfune	1. 44.6	Cuprate Seat		A Property of		# of Coolers		Cooler (D)			
ė.	1		, C.	ľ				200		10 m		CLI	CLIENT: GAPower-CCR	

Yates Ash Pond 3 - Blank COCs.xlsx

≥ Pa**§**e 30 of 31

San	iple i	onai	tion	upon Receipt		<u> WUH - ZO</u>	T019A
Pace Analytical Client Name:	G	eorgi	a P	ower-CCR	П	PM: BM CLIENT: GAPow	Due Date: 04/03/ er-CCR
Courier: Fed Ex UPS USPS Clier Tracking #: Custody Seal on Cooler/Box Present: Yes	_		rcial Seals i	_/ -		Proj Due Proj Nam	Date:
Packing Material: Bubble Wrap Bubble	Bags	N	one [Other			140
Thermometer Used 982			(Vet)	Blue None		Samples on ice, cooli	g process has begun
Cooler Temperature 2.40 C Temp should be above freezing to 6°C	- · · I		issue i	s Frozen: Yes No		Date and Initials contents: 3	of person examining 7/19 yw
Chain of Custody Present:	Q∕res	□No	□n/a	1.			
Chain of Custody Filled Out:	Q√es	□No	□n/A	2.			
Chain of Custody Relinquished:	Ŋ/es	□No	□n/a	3.			
Sampler Name & Signature on COC:	₽Ý¢	□No	□n/a	4.			
Samples Arrived within Hold Time:	ØY•	□No	□n/A	5.			
Short Hold Time Analysis (<72hr):	□Yes	ω⁄ν _ο	□n/a	6.			
Rush Turn Around Time Requested:	□Yes	. ⊡No	□n/A	7.			
Sufficient Volume:	DY.	□No	□n/a	8.			
Correct Containers Used:	D 2/4	. □No	□n/a	9.			
-Pace Containers Used:	₽¥.	□No	□n/a				
Containers Intact:	Ū.	No	□n/A	10.			
Filtered volume received for Dissolved tests	□Y	. □No	DAN/A	11.			
Sample Labels match COC:	. 1	₃□No	□n/a	12.			
-Includes date/time/ID/Analysis Matrix:	WI				H		
All containers needing preservation are found to be in compliance with EPA recommendation.	,		□n/a □n/a	13.			
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Y	s DZNo	-	Initial when completed		Lot # of added preservative	
Samples checked for dechlorination:	□Y₃	s 🗆 No	□ N/A	14.			
Headspace in VOA Vials (>6mm):		s 🗆 No	DAV/A	15.			
Trip Blank Present: ^I	□\p	s 🗆 No	B N/A	16.			
Trip Blank Custody Seals Present		s 🗆 No	DMA				
Pace Trip Blank Lot # (if purchased):					_		
Client Notification/Resolution:						Field Data Required	? Y / N
Person Contacted:			Date/	Time:			
Comments/ Resolution:							
<u></u>					<u> </u>		
					_		
1							
Project Manager Review:						Date:	
Note: Whenever there is a discrepancy affecting North Certification Office (i.e. out of hold, incorrect preservations)	Carolina	compli of temp,	ance sa incorrec	mples, a copy of this for ct containers)	m v	ill be sent to the Nort	Carolina DEHNR

F-ALLC003rev.3, 11September290981 of 31

April 12, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on April 04, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Eben Buchanan for

Eben Bustanan

Betsy McDaniel betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

CERTIFICATIONS

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315

Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2617035001	YGWA-4I	Water	04/03/19 13:50	04/04/19 17:22
2617035002	YGWA-5I	Water	04/03/19 15:40	04/04/19 17:22
2617035003	YGWA-5D	Water	04/03/19 13:55	04/04/19 17:22
2617035004	YGWA-17S	Water	04/02/19 15:10	04/04/19 17:22
2617035005	YGWA-18S	Water	04/03/19 10:15	04/04/19 17:22
2617035006	YGWA-18I	Water	04/03/19 11:35	04/04/19 17:22
2617035007	YGWA-20S	Water	04/03/19 12:30	04/04/19 17:22
2617035008	YGWA-21I	Water	04/02/19 15:56	04/04/19 17:22
2617035009	YGWC-23S	Water	04/04/19 13:05	04/04/19 17:22
2617035010	YGWC-24S	Water	04/04/19 12:20	04/04/19 17:22
2617035011	YGWC-33S	Water	04/04/19 11:35	04/04/19 17:22
2617035012	YGWC-36	Water	04/04/19 14:35	04/04/19 17:22
2617035013	EB-1-4-3-19	Water	04/03/19 11:00	04/04/19 17:22
2617035014	EB-2-4-4-19	Water	04/04/19 11:25	04/04/19 17:22
2617035015	Dup-1	Water	04/03/19 00:00	04/04/19 17:22
2617035016	Dup-2	Water	04/04/19 00:00	04/04/19 17:22
2617035017	FB-1-4-3-19	Water	04/03/19 13:20	04/04/19 17:22
2617035018	FB-2-4-4-19	Water	04/04/19 13:25	04/04/19 17:22

SAMPLE ANALYTE COUNT

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2617035001	YGWA-4I	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035002	YGWA-5I	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035003	YGWA-5D	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035004	YGWA-17S	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035005	YGWA-18S	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035006	YGWA-18I	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035007	YGWA-20S	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035008	YGWA-21I	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035009	YGWC-23S	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035010	YGWC-24S	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035011	YGWC-33S	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035012	YGWC-36	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035013	EB-1-4-3-19	EPA 6020B	CSW	12

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Lab ID	Sample ID	Method	Analysts	Analytes Reported
	_	SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035014	EB-2-4-4-19	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035015	Dup-1	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035016	Dup-2	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035017	FB-1-4-3-19	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3
2617035018	FB-2-4-4-19	EPA 6020B	CSW	12
		SM 2540C	RLC	1
		EPA 300.0	RLC	3

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWA-4I	Lab ID:	2617035001	Collecte	ed: 04/03/19	3 13:50	Received: 04/	/04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/10/19 21:44	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/10/19 21:44	7440-38-2	
Barium	0.017	mg/L	0.010	0.00078	1	04/08/19 11:40	04/10/19 21:44	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/10/19 21:44	7440-41-7	
Boron	0.0055J	mg/L	0.040	0.0039	1	04/08/19 11:40	04/10/19 21:44	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/10/19 21:44	7440-43-9	
Calcium	8.4	mg/L	0.50	0.014	1	04/08/19 11:40	04/10/19 21:44	7440-70-2	M1
Cobalt	0.00083J	mg/L	0.010	0.00052	1	04/08/19 11:40	04/10/19 21:44	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/10/19 21:44	7439-92-1	
Lithium	0.014J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/10/19 21:44	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/10/19 21:44	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/10/19 21:44	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	111	mg/L	25.0	10.0	1		04/10/19 16:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.3	mg/L	0.25	0.024	1		04/08/19 23:25	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/08/19 23:25	16984-48-8	
Sulfate	8.5	mg/L	1.0	0.017	1		04/08/19 23:25	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWA-5I	Lab ID:	2617035002	Collecte	ed: 04/03/19	15:40	Received: 04/	04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/10/19 22:35	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/10/19 22:35	7440-38-2	
Barium	0.023	mg/L	0.010	0.00078	1	04/08/19 11:40	04/10/19 22:35	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/10/19 22:35	7440-41-7	
Boron	0.0044J	mg/L	0.040	0.0039	1	04/08/19 11:40	04/10/19 22:35	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/10/19 22:35	7440-43-9	
Calcium	2.8	mg/L	0.50	0.014	1	04/08/19 11:40	04/10/19 22:35	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/10/19 22:35	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/10/19 22:35	7439-92-1	
Lithium	0.0035J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/10/19 22:35	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/10/19 22:35	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/10/19 22:35	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	83.0	mg/L	25.0	10.0	1		04/10/19 16:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.2	mg/L	0.25	0.024	1		04/09/19 00:27	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/09/19 00:27	16984-48-8	
Sulfate	2.1	mg/L	1.0	0.017	1		04/09/19 00:27	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWA-5D	Lab ID:	2617035003	Collecte	ed: 04/03/19	13:55	Received: 04/	04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/10/19 22:47	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/10/19 22:47	7440-38-2	
Barium	0.0087J	mg/L	0.010	0.00078	1	04/08/19 11:40	04/10/19 22:47	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/10/19 22:47	7440-41-7	
Boron	0.0076J	mg/L	0.040	0.0039	1	04/08/19 11:40	04/10/19 22:47	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/10/19 22:47	7440-43-9	
Calcium	24.7J	mg/L	25.0	0.69	50	04/08/19 11:40	04/10/19 22:52	7440-70-2	D3
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/10/19 22:47	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/10/19 22:47	7439-92-1	
Lithium	0.0070J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/10/19 22:47	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/10/19 22:47	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/10/19 22:47	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	142	mg/L	25.0	10.0	1		04/10/19 16:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.0	mg/L	0.25	0.024	1		04/09/19 00:48	16887-00-6	
Fluoride	0.047J	mg/L	0.30	0.029	1		04/09/19 00:48	16984-48-8	
Sulfate	7.0	mg/L	1.0	0.017	1		04/09/19 00:48	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWA-17S	Lab ID:	2617035004	Collecte	ed: 04/02/19	15:10	Received: 04/	04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/10/19 22:58	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/10/19 22:58	7440-38-2	
Barium	0.016	mg/L	0.010	0.00078	1	04/08/19 11:40	04/10/19 22:58	7440-39-3	
Beryllium	0.000090J	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/10/19 22:58	7440-41-7	
Boron	0.0066J	mg/L	0.040	0.0039	1	04/08/19 11:40	04/10/19 22:58	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/10/19 22:58	7440-43-9	
Calcium	2.5	mg/L	0.50	0.014	1	04/08/19 11:40	04/10/19 22:58	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/10/19 22:58	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/10/19 22:58	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	04/08/19 11:40	04/10/19 22:58	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/10/19 22:58	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/10/19 22:58	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	72.0	mg/L	25.0	10.0	1		04/09/19 18:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.8	mg/L	0.25	0.024	1		04/09/19 01:09	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/09/19 01:09	16984-48-8	
Sulfate	5.1	mg/L	1.0	0.017	1		04/09/19 01:09	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWA-18S	Lab ID:	2617035005	Collecte	ed: 04/03/19	10:15	Received: 04/	/04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/10/19 23:10	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/10/19 23:10	7440-38-2	
Barium	0.017	mg/L	0.010	0.00078	1	04/08/19 11:40	04/10/19 23:10	7440-39-3	
Beryllium	0.000075J	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/10/19 23:10	7440-41-7	
Boron	0.0053J	mg/L	0.040	0.0039	1	04/08/19 11:40	04/10/19 23:10	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/10/19 23:10	7440-43-9	
Calcium	1.2	mg/L	0.50	0.014	1	04/08/19 11:40	04/10/19 23:10	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/10/19 23:10	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/10/19 23:10	7439-92-1	
Lithium	0.0028J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/10/19 23:10	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/10/19 23:10	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/10/19 23:10	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	63.0	mg/L	25.0	10.0	1		04/10/19 16:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	6.3	mg/L	0.25	0.024	1		04/09/19 01:29	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/09/19 01:29	16984-48-8	
Sulfate	1.3	mg/L	1.0	0.017	1		04/09/19 01:29	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWA-18I	Lab ID:	2617035006	Collecte	ed: 04/03/19	11:35	Received: 04/	04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical l	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/10/19 23:21	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/10/19 23:21	7440-38-2	
Barium	0.025	mg/L	0.010	0.00078	1	04/08/19 11:40	04/10/19 23:21	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/10/19 23:21	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	04/08/19 11:40	04/10/19 23:21	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/10/19 23:21	7440-43-9	
Calcium	5.3	mg/L	0.50	0.014	1	04/08/19 11:40	04/10/19 23:21	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/10/19 23:21	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/10/19 23:21	7439-92-1	
Lithium	0.0035J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/10/19 23:21	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/10/19 23:21	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/10/19 23:21	7440-28-0	
2540C Total Dissolved Solids	Analytical l	Method: SM 2	540C						
Total Dissolved Solids	89.0	mg/L	25.0	10.0	1		04/10/19 16:34		
300.0 IC Anions 28 Days	Analytical l	Method: EPA	300.0						
Chloride	6.9	mg/L	0.25	0.024	1		04/09/19 01:50	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/09/19 01:50	16984-48-8	
Sulfate	0.82J	mg/L	1.0	0.017	1		04/09/19 01:50	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWA-20S	Lab ID:	2617035007	Collecte	ed: 04/03/19	12:30	Received: 04/	/04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/10/19 23:44	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/10/19 23:44	7440-38-2	
Barium	0.018	mg/L	0.010	0.00078	1	04/08/19 11:40	04/10/19 23:44	7440-39-3	
Beryllium	0.000064J	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/10/19 23:44	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	04/08/19 11:40	04/10/19 23:44	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/10/19 23:44	7440-43-9	
Calcium	2.9	mg/L	0.50	0.014	1	04/08/19 11:40	04/10/19 23:44	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/10/19 23:44	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/10/19 23:44	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	04/08/19 11:40	04/10/19 23:44	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/10/19 23:44	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/10/19 23:44	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	57.0	mg/L	25.0	10.0	1		04/10/19 16:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	3.1	mg/L	0.25	0.024	1		04/09/19 02:11	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/09/19 02:11	16984-48-8	
Sulfate	0.12J	mg/L	1.0	0.017	1		04/09/19 02:11	14808-79-8	В

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWA-21I	Lab ID:	2617035008	Collecte	ed: 04/02/19	15:56	Received: 04/	04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	0.0011J	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/10/19 23:55	7440-36-0	
Arsenic	0.00096J	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/10/19 23:55	7440-38-2	
Barium	0.011	mg/L	0.010	0.00078	1	04/08/19 11:40	04/10/19 23:55	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/10/19 23:55	7440-41-7	
Boron	0.011J	mg/L	0.040	0.0039	1	04/08/19 11:40	04/10/19 23:55	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/10/19 23:55	7440-43-9	
Calcium	8.8	mg/L	0.50	0.014	1	04/08/19 11:40	04/10/19 23:55	7440-70-2	
Cobalt	0.0039J	mg/L	0.010	0.00052	1	04/08/19 11:40	04/10/19 23:55	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/10/19 23:55	7439-92-1	
Lithium	0.0051J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/10/19 23:55	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/10/19 23:55	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/10/19 23:55	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	134	mg/L	25.0	10.0	1		04/09/19 18:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	2.5	mg/L	0.25	0.024	1		04/09/19 02:32	16887-00-6	
Fluoride	0.12J	mg/L	0.30	0.029	1		04/09/19 02:32	16984-48-8	
Sulfate	3.8	mg/L	1.0	0.017	1		04/09/19 02:32	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWC-23S	Lab ID:	2617035009	Collecte	ed: 04/04/19	13:05	Received: 04/	04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/11/19 00:07	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/11/19 00:07	7440-38-2	
Barium	0.019	mg/L	0.010	0.00078	1	04/08/19 11:40	04/11/19 00:07	7440-39-3	
Beryllium	0.000072J	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/11/19 00:07	7440-41-7	
Boron	0.60	mg/L	0.040	0.0039	1	04/08/19 11:40	04/11/19 00:07	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/11/19 00:07	7440-43-9	
Calcium	3.7	mg/L	0.50	0.014	1	04/08/19 11:40	04/11/19 00:07	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/11/19 00:07	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/11/19 00:07	7439-92-1	
Lithium	0.0018J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/11/19 00:07	7439-93-2	
Selenium	0.017	mg/L	0.010	0.0014	1	04/08/19 11:40	04/11/19 00:07	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/11/19 00:07	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	85.0	mg/L	25.0	10.0	1		04/11/19 19:34		D6
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	1.7	mg/L	0.25	0.024	1		04/09/19 04:15	16887-00-6	
Fluoride	0.049J	mg/L	0.30	0.029	1		04/09/19 04:15	16984-48-8	
Sulfate	27.9	mg/L	1.0	0.017	1		04/09/19 04:15	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWC-24S	Lab ID:	2617035010	Collecte	ed: 04/04/19	12:20	Received: 04/	/04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/11/19 00:18	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/11/19 00:18	7440-38-2	
Barium	0.020	mg/L	0.010	0.00078	1	04/08/19 11:40	04/11/19 00:18	7440-39-3	
Beryllium	0.00015J	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/11/19 00:18	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	04/08/19 11:40	04/11/19 00:18	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/11/19 00:18	7440-43-9	
Calcium	1.9	mg/L	0.50	0.014	1	04/08/19 11:40	04/11/19 00:18	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/11/19 00:18	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/11/19 00:18	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	04/08/19 11:40	04/11/19 00:18	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/11/19 00:18	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/11/19 00:18	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	63.0	mg/L	25.0	10.0	1		04/11/19 19:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	5.9	mg/L	0.25	0.024	1		04/09/19 04:36	16887-00-6	
Fluoride	0.033J	mg/L	0.30	0.029	1		04/09/19 04:36	16984-48-8	
Sulfate	0.29J	mg/L	1.0	0.017	1		04/09/19 04:36	14808-79-8	В

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWC-33S	Lab ID:	2617035011	Collecte	ed: 04/04/19	11:35	Received: 04/	04/19 17:22 Ma	atrix: Water	
			Report						
Parameters —	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/11/19 00:30	7440-36-0	
Arsenic	0.0024J	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/11/19 00:30	7440-38-2	
Barium	0.014	mg/L	0.010	0.00078	1	04/08/19 11:40	04/11/19 00:30	7440-39-3	
Beryllium	0.025	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/11/19 00:30	7440-41-7	
Boron	15.4	mg/L	2.0	0.20	50	04/08/19 11:40	04/11/19 00:36	7440-42-8	
Cadmium	0.0035	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/11/19 00:30	7440-43-9	
Calcium	163	mg/L	25.0	0.69	50	04/08/19 11:40	04/11/19 00:36	7440-70-2	
Cobalt	0.031	mg/L	0.010	0.00052	1	04/08/19 11:40	04/11/19 00:30	7440-48-4	
Lead	0.0014J	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/11/19 00:30	7439-92-1	
Lithium	0.035J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/11/19 00:30	7439-93-2	
Selenium	0.012	mg/L	0.010	0.0014	1	04/08/19 11:40	04/11/19 00:30	7782-49-2	
Thallium	0.00018J	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/11/19 00:30	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	1260	mg/L	25.0	10.0	1		04/11/19 19:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	5.8	mg/L	0.25	0.024	1		04/09/19 05:18	16887-00-6	
Fluoride	0.57	mg/L	0.30	0.029	1		04/09/19 05:18	16984-48-8	
Sulfate	847	mg/L	50.0	0.85	50		04/09/19 10:08	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: YGWC-36	Lab ID:	2617035012	Collecte	ed: 04/04/19	14:35	Received: 04/	04/19 17:22 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	0.0041	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/11/19 00:53	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/11/19 00:53	7440-38-2	
Barium	0.042	mg/L	0.010	0.00078	1	04/08/19 11:40	04/11/19 00:53	7440-39-3	
Beryllium	0.00033J	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/11/19 00:53	7440-41-7	
Boron	0.22	mg/L	0.040	0.0039	1	04/08/19 11:40	04/11/19 00:53	7440-42-8	
Cadmium	0.00019J	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/11/19 00:53	7440-43-9	
Calcium	16.9J	mg/L	25.0	0.69	50	04/08/19 11:40	04/11/19 00:58	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/11/19 00:53	7440-48-4	
Lead	0.00037J	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/11/19 00:53	7439-92-1	
Lithium	0.0058J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/11/19 00:53	7439-93-2	
Selenium	0.0029J	mg/L	0.010	0.0014	1	04/08/19 11:40	04/11/19 00:53	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/11/19 00:53	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	240	mg/L	25.0	10.0	1		04/11/19 19:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	5.4	mg/L	0.25	0.024	1		04/09/19 05:38	16887-00-6	
Fluoride	0.043J	mg/L	0.30	0.029	1		04/09/19 05:38	16984-48-8	
Sulfate	119	mg/L	10.0	0.17	10		04/09/19 10:29	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: EB-1-4-3-19	Lab ID:	2617035013	Collecte	ed: 04/03/19	11:00	Received: 04/	/04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/11/19 01:04	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/11/19 01:04	7440-38-2	
Barium	ND	mg/L	0.010	0.00078	1	04/08/19 11:40	04/11/19 01:04	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/11/19 01:04	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	04/08/19 11:40	04/11/19 01:04	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/11/19 01:04	7440-43-9	
Calcium	ND	mg/L	0.50	0.014	1	04/08/19 11:40	04/11/19 01:04	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/11/19 01:04	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/11/19 01:04	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	04/08/19 11:40	04/11/19 01:04	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/11/19 01:04	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/11/19 01:04	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	ND	mg/L	25.0	10.0	1		04/10/19 16:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	0.27	mg/L	0.25	0.024	1		04/09/19 05:59	16887-00-6	В
Fluoride	ND	mg/L	0.30	0.029	1		04/09/19 05:59	16984-48-8	
Sulfate	0.14J	mg/L	1.0	0.017	1		04/09/19 05:59	14808-79-8	В

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: EB-2-4-4-19	Lab ID:	2617035014	Collecte	ed: 04/04/19	9 11:25	Received: 04/	04/19 17:22 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/11/19 01:10	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/11/19 01:10	7440-38-2	
Barium	ND	mg/L	0.010	0.00078	1	04/08/19 11:40	04/11/19 01:10	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/11/19 01:10	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	04/08/19 11:40	04/11/19 01:10	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/11/19 01:10	7440-43-9	
Calcium	ND	mg/L	0.50	0.014	1	04/08/19 11:40	04/11/19 01:10	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/11/19 01:10	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/11/19 01:10	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	04/08/19 11:40	04/11/19 01:10	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/11/19 01:10	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/11/19 01:10	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	ND	mg/L	25.0	10.0	1		04/11/19 19:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	0.23J	mg/L	0.25	0.024	1		04/09/19 06:20	16887-00-6	В
Fluoride	ND	mg/L	0.30	0.029	1		04/09/19 06:20	16984-48-8	
Sulfate	0.069J	mg/L	1.0	0.017	1		04/09/19 06:20	14808-79-8	В

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: Dup-1	Lab ID:	2617035015	Collecte	ed: 04/03/19	00:00	Received: 04/	04/19 17:22 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/11/19 01:16	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/11/19 01:16	7440-38-2	
Barium	0.016	mg/L	0.010	0.00078	1	04/08/19 11:40	04/11/19 01:16	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/11/19 01:16	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	04/08/19 11:40	04/11/19 01:16	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/11/19 01:16	7440-43-9	
Calcium	8.5	mg/L	0.50	0.014	1	04/08/19 11:40	04/11/19 01:16	7440-70-2	
Cobalt	0.00078J	mg/L	0.010	0.00052	1	04/08/19 11:40	04/11/19 01:16	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/11/19 01:16	7439-92-1	
Lithium	0.014J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/11/19 01:16	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/11/19 01:16	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/11/19 01:16	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	81.0	mg/L	25.0	10.0	1		04/10/19 16:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.6	mg/L	0.25	0.024	1		04/09/19 06:41	16887-00-6	
Fluoride	0.030J	mg/L	0.30	0.029	1		04/09/19 06:41	16984-48-8	
Sulfate	8.5	mg/L	1.0	0.017	1		04/09/19 06:41	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: Dup-2	Lab ID:	2617035016	Collected: 04/04/19 00:00			Received: 04/04/19 17:22 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/11/19 01:27	7440-36-0	
Arsenic	0.0022J	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/11/19 01:27	7440-38-2	
Barium	0.012	mg/L	0.010	0.00078	1	04/08/19 11:40	04/11/19 01:27	7440-39-3	
Beryllium	0.023	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/11/19 01:27	7440-41-7	
Boron	9.0	mg/L	0.040	0.0039	1	04/08/19 11:40	04/11/19 01:27	7440-42-8	
Cadmium	0.0032	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/11/19 01:27	7440-43-9	
Calcium	145	mg/L	25.0	0.69	50	04/08/19 11:40	04/11/19 01:33	7440-70-2	
Cobalt	0.029	mg/L	0.010	0.00052	1	04/08/19 11:40	04/11/19 01:27	7440-48-4	
Lead	0.0013J	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/11/19 01:27	7439-92-1	
Lithium	0.033J	mg/L	0.050	0.00097	1	04/08/19 11:40	04/11/19 01:27	7439-93-2	
Selenium	0.011	mg/L	0.010	0.0014	1	04/08/19 11:40	04/11/19 01:27	7782-49-2	
Thallium	0.00017J	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/11/19 01:27	7440-28-0	
2540C Total Dissolved Solids	Analytical Method: SM 2540C								
Total Dissolved Solids	1320	mg/L	25.0	10.0	1		04/11/19 19:34		
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0								
Chloride	5.8	mg/L	0.25	0.024	1		04/09/19 07:02	16887-00-6	
Fluoride	0.56	mg/L	0.30	0.029	1		04/09/19 07:02	16984-48-8	
Sulfate	735	mg/L	50.0	0.85	50		04/12/19 05:48	14808-79-8	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: FB-1-4-3-19	Lab ID: 2617035017		Collected: 04/03/19 13:20			Received: 04/04/19 17:22 Matrix: Water				
		Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA 6	8020B Pre	paration Met	hod: EF	PA 3005A				
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/11/19 01:56	7440-36-0		
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/11/19 01:56	7440-38-2		
Barium	ND	mg/L	0.010	0.00078	1	04/08/19 11:40	04/11/19 01:56	7440-39-3		
Beryllium	ND	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/11/19 01:56	7440-41-7		
Boron	ND	mg/L	0.040	0.0039	1	04/08/19 11:40	04/11/19 01:56	7440-42-8		
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/11/19 01:56	7440-43-9		
Calcium	0.016J	mg/L	0.50	0.014	1	04/08/19 11:40	04/11/19 01:56	7440-70-2		
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/11/19 01:56	7440-48-4		
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/11/19 01:56	7439-92-1		
Lithium	ND	mg/L	0.050	0.00097	1	04/08/19 11:40	04/11/19 01:56	7439-93-2		
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/11/19 01:56	7782-49-2		
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/11/19 01:56	7440-28-0		
2540C Total Dissolved Solids	Analytical Method: SM 2540C									
Total Dissolved Solids	ND	mg/L	25.0	10.0	1		04/10/19 16:34			
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0									
Chloride	0.31	mg/L	0.25	0.024	1		04/09/19 07:22	16887-00-6	В	
Fluoride	ND	mg/L	0.30	0.029	1		04/09/19 07:22	16984-48-8		
Sulfate	3.5	mg/L	1.0	0.017	1		04/09/19 07:22	14808-79-8		

ANALYTICAL RESULTS

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Sample: FB-2-4-4-19	Lab ID:	2617035018	Collecte	ed: 04/04/19	13:25	Received: 04/	04/19 17:22 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/08/19 11:40	04/11/19 02:01	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/08/19 11:40	04/11/19 02:01	7440-38-2	
Barium	ND	mg/L	0.010	0.00078	1	04/08/19 11:40	04/11/19 02:01	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/08/19 11:40	04/11/19 02:01	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	04/08/19 11:40	04/11/19 02:01	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/08/19 11:40	04/11/19 02:01	7440-43-9	
Calcium	ND	mg/L	0.50	0.014	1	04/08/19 11:40	04/11/19 02:01	7440-70-2	
Cobalt	ND	mg/L	0.010	0.00052	1	04/08/19 11:40	04/11/19 02:01	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/08/19 11:40	04/11/19 02:01	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	04/08/19 11:40	04/11/19 02:01	7439-93-2	
Selenium	ND	mg/L	0.010	0.0014	1	04/08/19 11:40	04/11/19 02:01	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/08/19 11:40	04/11/19 02:01	7440-28-0	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	ND	mg/L	25.0	10.0	1		04/11/19 19:34		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	0.10J	mg/L	0.25	0.024	1		04/09/19 09:06	16887-00-6	В
Fluoride	ND	mg/L	0.30	0.029	1		04/09/19 09:06	16984-48-8	
Sulfate	0.033J	mg/L	1.0	0.017	1		04/09/19 09:06	14808-79-8	В

Plant Yates Ash Pond 3 Project:

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

QC Batch: 25995 Analysis Method: EPA 6020B QC Batch Method: **EPA 3005A** Analysis Description: 6020B MET

2617035001, 2617035002, 2617035003, 2617035004, 2617035005, 2617035006, 2617035007, 2617035008, Associated Lab Samples:

2617035009, 2617035010, 2617035011, 2617035012, 2617035013, 2617035014, 2617035015, 2617035016,

2617035017, 2617035018

METHOD BLANK: 117356 Matrix: Water

 $2617035001,\ 2617035002,\ 2617035003,\ 2617035004,\ 2617035005,\ 2617035006,\ 2617035007,\ 2617035008,\ 2617035009,\ 2617035010,\ 2617035011,\ 2617035012,\ 2617035013,\ 2617035014,\ 2617035015,\ 2617035016,\ 261$ Associated Lab Samples:

2617035017, 2617035018

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00078	04/10/19 21:32	
Arsenic	mg/L	ND	0.0050	0.00057	04/10/19 21:32	
Barium	mg/L	ND	0.010	0.00078	04/10/19 21:32	
Beryllium	mg/L	ND	0.0030	0.000050	04/10/19 21:32	
Boron	mg/L	ND	0.040	0.0039	04/10/19 21:32	
Cadmium	mg/L	ND	0.0010	0.000093	04/10/19 21:32	
Calcium	mg/L	ND	0.50	0.014	04/10/19 21:32	
Cobalt	mg/L	ND	0.010	0.00052	04/10/19 21:32	
Lead	mg/L	ND	0.0050	0.00027	04/10/19 21:32	
Lithium	mg/L	ND	0.050	0.00097	04/10/19 21:32	
Selenium	mg/L	ND	0.010	0.0014	04/10/19 21:32	
Thallium	mg/L	ND	0.0010	0.00014	04/10/19 21:32	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.11	110	80-120	
Arsenic	mg/L	0.1	0.10	101	80-120	
Barium	mg/L	0.1	0.11	106	80-120	
Beryllium	mg/L	0.1	0.11	110	80-120	
Boron	mg/L	1	1.1	109	80-120	
Cadmium	mg/L	0.1	0.11	108	80-120	
Calcium	mg/L	1	1.0	102	80-120	
Cobalt	mg/L	0.1	0.10	105	80-120	
.ead	mg/L	0.1	0.10	101	80-120	
ithium	mg/L	0.1	0.11	109	80-120	
Selenium	mg/L	0.1	0.099	99	80-120	
⁻ hallium	mg/L	0.1	0.10	101	80-120	

MATRIX SPIKE SAMPLE:	117359						
		2617035001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	ND	0.1	0.11	110	75-125	
Arsenic	mg/L	ND	0.1	0.10	101	75-125	
Barium	mg/L	0.017	0.1	0.12	106	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

MATRIX SPIKE SAMPLE:	117359						
		2617035001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Beryllium	 mg/L	ND	0.1	0.098	98	75-125	
Boron	mg/L	0.0055J	1	0.99	98	75-125	
Cadmium	mg/L	ND	0.1	0.11	106	75-125	
Calcium	mg/L	8.4	1	9.4	107	75-125	
Cobalt	mg/L	0.00083J	0.1	0.10	103	75-125	
Lead	mg/L	ND	0.1	0.10	102	75-125	
Lithium	mg/L	0.014J	0.1	0.11	100	75-125	
Selenium	mg/L	ND	0.1	0.10	101	75-125	
Thallium	mg/L	ND	0.1	0.10	101	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

QC Batch: 26059 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 2617035004, 2617035008

LABORATORY CONTROL SAMPLE: 117667

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 400 407 102 84-108

SAMPLE DUPLICATE: 117668

2616931001 Dup Max RPD **RPD** Units Result Qualifiers Parameter Result **Total Dissolved Solids** 540 670 21 10 D6 mg/L

SAMPLE DUPLICATE: 117669

Date: 04/12/2019 05:55 PM

2617082006 Dup Max Result RPD RPD Qualifiers Parameter Units Result 728 **Total Dissolved Solids** mg/L 766 5 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

QC Batch: 26131 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

2617035001, 2617035002, 2617035003, 2617035005, 2617035006, 2617035007, 2617035013, 2617035015, Associated Lab Samples:

26170350	017					
LABORATORY CONTROL SAMPLE:	117963	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids	mg/L	400	408	102	84-108	
SAMPLE DUPLICATE: 117964						
		2617035001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	11	1 10)3	7	10
SAMPLE DUPLICATE: 117965						
		2617076005	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	218	0 211	0	3	10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

QC Batch: 26251 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 2617035009, 2617035010, 2617035011, 2617035012, 2617035014, 2617035016, 2617035018

LABORATORY CONTROL SAMPLE: 118507

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 400 404 101 84-108

SAMPLE DUPLICATE: 118508

2617035009 Dup Max RPD **RPD** Units Result Qualifiers Parameter Result **Total Dissolved Solids** 85.0 50.0 52 10 D6 mg/L

SAMPLE DUPLICATE: 118509

Date: 04/12/2019 05:55 PM

2617069003 Dup Max Result RPD RPD Qualifiers Parameter Units Result mg/L 340 **Total Dissolved Solids** 341 0 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Plant Yates Ash Pond 3 Project:

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

QC Batch: 25956 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

2617035001, 2617035002, 2617035003, 2617035004, 2617035005, 2617035006, 2617035007, 2617035008, Associated Lab Samples:

2617035009, 2617035010, 2617035011, 2617035012, 2617035013, 2617035014, 2617035015, 2617035016,

2617035017, 2617035018

METHOD BLANK: 117263 Matrix: Water

 $2617035001,\ 2617035002,\ 2617035003,\ 2617035004,\ 2617035005,\ 2617035006,\ 2617035007,\ 2617035008,\ 2617035009,\ 2617035010,\ 2617035011,\ 2617035012,\ 2617035013,\ 2617035014,\ 2617035015,\ 2617035016,\ 261$ Associated Lab Samples:

2617035017, 2617035018

		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
Chloride	mg/L	0.066J	0.25	0.024	04/08/19 22:43		
Fluoride	mg/L	ND	0.30	0.029	04/08/19 22:43		
Sulfate	mg/L	0.045J	1.0	0.017	04/08/19 22:43		

LABORATORY CONTROL SAMPLE:	117264					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		9.8	98	90-110	
Fluoride	mg/L	10	9.7	97	90-110	
Sulfate	mg/L	10	9.7	97	90-110	

MATRIX SPIKE & MATRIX SPIK	E DUPLIC	CATE: 11726	5		117266							
		2617035001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.3	10	10	14.3	14.4	100	101	90-110	1	15	_
Fluoride	mg/L	ND	10	10	9.7	9.8	97	98	90-110	1	15	
Sulfate	mg/L	8.5	10	10	17.6	17.7	91	92	90-110	0	15	

MATRIX SPIKE SAMPLE:	117267						
		2617035002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	4.2	10	13.9	96	90-110	
Fluoride	mg/L	ND	10	9.3	93	90-110	
Sulfate	mg/L	2.1	10	11.2	91	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/12/2019 05:55 PM

- B Analyte was detected in the associated method blank.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2617035001	YGWA-4I	EPA 3005A	25995	EPA 6020B	26012
2617035002	YGWA-5I	EPA 3005A	25995	EPA 6020B	26012
2617035003	YGWA-5D	EPA 3005A	25995	EPA 6020B	26012
617035004	YGWA-17S	EPA 3005A	25995	EPA 6020B	26012
617035005	YGWA-18S	EPA 3005A	25995	EPA 6020B	26012
617035006	YGWA-18I	EPA 3005A	25995	EPA 6020B	26012
617035007	YGWA-20S	EPA 3005A	25995	EPA 6020B	26012
617035008	YGWA-21I	EPA 3005A	25995	EPA 6020B	26012
617035009	YGWC-23S	EPA 3005A	25995	EPA 6020B	26012
617035010	YGWC-24S	EPA 3005A	25995	EPA 6020B	26012
617035011	YGWC-33S	EPA 3005A	25995	EPA 6020B	26012
617035012	YGWC-36	EPA 3005A	25995	EPA 6020B	26012
617035013	EB-1-4-3-19	EPA 3005A	25995	EPA 6020B	26012
617035014	EB-2-4-4-19	EPA 3005A	25995	EPA 6020B	26012
617035015	Dup-1	EPA 3005A	25995	EPA 6020B	26012
617035016	Dup-2	EPA 3005A	25995	EPA 6020B	26012
617035017	FB-1-4-3-19	EPA 3005A	25995	EPA 6020B	26012
617035018	FB-2-4-4-19	EPA 3005A	25995	EPA 6020B	26012
617035001	YGWA-4I	SM 2540C	26131		
617035002	YGWA-5I	SM 2540C	26131		
617035003	YGWA-5D	SM 2540C	26131		
617035004	YGWA-17S	SM 2540C	26059		
617035005	YGWA-18S	SM 2540C	26131		
617035006	YGWA-18I	SM 2540C	26131		
617035007	YGWA-20S	SM 2540C	26131		
2617035008	YGWA-21I	SM 2540C	26059		
617035009	YGWC-23S	SM 2540C	26251		
617035010	YGWC-24S	SM 2540C	26251		
617035011	YGWC-33S	SM 2540C	26251		
617035012	YGWC-36	SM 2540C	26251		
2617035013	EB-1-4-3-19	SM 2540C	26131		
2617035014	EB-2-4-4-19	SM 2540C	26251		
617035015	Dup-1	SM 2540C	26131		
2617035016	Dup-2	SM 2540C	26251		
2617035017	FB-1-4-3-19	SM 2540C	26131		
617035018	FB-2-4-4-19	SM 2540C	26251		
617035001	YGWA-4I	EPA 300.0	25956		
617035002	YGWA-5I	EPA 300.0	25956		
617035003	YGWA-5D	EPA 300.0	25956		
617035004	YGWA-17S	EPA 300.0	25956		
2617035005	YGWA-18S	EPA 300.0	25956		
2617035006	YGWA-18I	EPA 300.0	25956		
2617035007	YGWA-20S	EPA 300.0	25956		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617035

Date: 04/12/2019 05:55 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2617035008	YGWA-21I	EPA 300.0	 25956	_	
2617035009	YGWC-23S	EPA 300.0	25956		
2617035010	YGWC-24S	EPA 300.0	25956		
2617035011	YGWC-33S	EPA 300.0	25956		
2617035012	YGWC-36	EPA 300.0	25956		
2617035013	EB-1-4-3-19	EPA 300.0	25956		
2617035014	EB-2-4-4-19	EPA 300.0	25956		
2617035015	Dup-1	EPA 300.0	25956		
2617035016	Dup-2	EPA 300.0	25956		
2617035017	FB-1-4-3-19	EPA 300.0	25956		
2617035018	FB-2-4-4-19	EPA 300.0	25956		

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc.

110 TechnoLogy Parkway, PEACHTREE CORNERS, GA 30092

(770) 734-4200 : FAX (770) 734-4201

P

PAGE:

CLIENT NAME:			Ā	ANALYSIS REQUESTED	REQUE	STED)	CONTAINER TYPE	PRESERVATION	_
Georgia Power	18	CONTAINER TYPE:	<u>а</u>		_ a			****	P - PLASTIC	1 - HCl, ≤6°C	
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	æ	PRESERVATION:	3 7		3	_		0	A - AMBER GLASS	2 - H ₂ SO ₄ , ≤6°C	
241 Ralph McGill Blvd SE B10185	<u> ** </u>	#of		_					G - CLEAR GLASS	3 - HNO ₃	
Allanta, GA 30308									V-VOA VIAL	4-NaOH, 46°C	1
		٠							S-SIERILE	5 - NAUTIVERAC, SO-C	_
REPORT TO:		• :						ο:	O-OTHER	6 - Na ₂ S ₂ O ₃ , ≤6°C	
			(0							7 - ≤6°C not frozen	
REQUESTED COMPLETION DATE: PO #:		- d	747		922			Z :	*MATR	*MATRIX CODES:	_
PROJECT NAME/STATE:		<u> </u>		tsi.	9 97			2			
Plant Yates - Ash Pond 3		z		1 99				344	DW - DRINKING WATER	S- SOIL	
		ш		S)						SL - SLUDGE	
PROJECT #:		~	m.	۷I c		-		0.13		SD - SOLID	
		s	ılciı 8.	id∀		•				A- AIR	
ტ დ			°၁ .	pə)				\$ <u>\$</u>		L- LIQUID	
TIME	NOLLAN		letals onon ;I, F,	Petec	A .19(8-W2				W - WAIEK	F- PRODUCI	
			о В	٥				10.0 Vision	KEMAKKS/ADUITK	REMARKS/ADDITIONAL INFORMATION	4
14-5-19 1350 600 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H	.	7	7	7			A	APP III plus detected APP IV	,	
14.3-19 1540 600 1V V6 WA-57	11	4	7	7	7						
4.3-19 1355 Wid V V W. V -50.		5	7	7	7						
15:00 600 1	\ \ -	7	7	Ž	7						
3.2	185	7	7	7	2						
	_	4	1/1	1/	1	_	•		Ι.		
7		7	7	7	//		_		2617035	<u>ن</u>	
4.2-19 1556 EW / YEWA-21	212	7	7	7	7						
-3847 1 W3	23.5	7	1	Ž	1						1
24-4-19 1220 6W / YEWC- 245		7	7	2	' '		3(2617035			_
14-419 1135 6W 1 1 46WC - 33S	\$\$	η	7	7	Ž						
1 M9		9	1/	<u> </u>	/		•		Extra Rad 1	hie.	
SAMPLED BY AND TITLE AND AND TITLE AND		RELINQUISHED BY:	ED BY:		1	DATE 4.	DATE/TIME: / /	722	FOR LAB	FOR LAB USE ONLY	
		RELINQUISHED BY	ED BY:			DATE	DATE/TIME: /		Entered-Into LINS:		earneal
PIPERED BY	1722 SAMPL	VMPLE SHII	E SHIPPED VIA: FED-EX L	USPS	COURIER	(cuent)	ОТНЕВ	Fs	Tracking #:		
plingsted; Value 100 No NA Temperature 1 (7	peag Assay	n Mai Present		a of Coolers		ğ	***			
								1			7

APP III, plus Detected APP IV

ಕ್ಷಿ ಕ್ಷರ್ಕೀಕ APP IV: Antimony, Arsenic, Barium, Beryllium, Cadmium, Cobalt, Fluoride, Lead, Lithium, Selenium, Thallium, Radium Bolded Detections: Listed above or included with App III Yates Ash Pond 3 - Blank COCs.xisx ಲ್ಲಿ

Pace Analytical * **CHAIN OF CUSTODY RECORD**

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201

N

P

PAGE:

5 - NaOH/ZnAc, ≤6°C 7 - ≤6°C not frozen 6 - Na₂S₂O₃, s6°C 2 - H₂SO4, ≤6°C 3 - HNO₃ Due Date: 04/12/19 4-NaOH, 56°C REMARKS/ADDITIONAL INFORMATION P - PRODUCT PRESERVATION 1 - HCI, ≤6°C SL- SLUDGE L. LIQUID SD - SOLID A- AIR FOR LAB USE ONLY *MATRIX CODES: MO#:2617035 APP III plus detected APP IV DRINKING WATER SURFACE WATER GW - GROUNDWATER CLIENT: GRPower-CCR STORM WATER WASTEWATER A - AMBER GLASS G - CLEAR GLASS V-VOAVIAL S - STERILE P - PLASTIC WATER O-OTHER racking #: LAB#: - **X** ST. SW. 1722 _ **~** @ ۵ – ᇰᇰᆂᇜᄜᄰ OTHER DATE/TIME: DATE/TIME CLIENT **7SIS REQUESTED** COURIER # af Coulers (0266/9166 948-MS) ۵ Det. App. IV Radium 226 & 228 Defected App IV (See List below) USPS (EPA 300.0 & SM 2540C) ٩ CI, F, SO, & TDS SAMPLE SHIPPED VIA UPS FED-EX RELINQUISHED BY: Boron, Calcium RELINQUISHED BY Metals App. III (EPA 6020/7470) CONTADIER TYPE: # of # 00 1 1 7 7 7 J FB-2-4.4-19 SAMPLE IDENTIFICATION FB-1-4-3-19 58-2-4-4-19 JB-1-4-3-19 Dup - 2 SZE aboire Ź Dup -1 DATE/TIME: Plant Yates - Ash Pond 3 CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER # 02 ပ္ပ o α < α G No NA 0024 Joju Abraham REQUESTED COMPLETION DATE: MATRIX CODE* 241 Ralph McGill Blvd SE B10185 3 ₹ 3 3 PROJECT NAME/STATE Collection 320 1100 125 1325 ş C. P.CKEC, H. Wanta GA 30308 CLIENT NAME Georgia Power 404-508-7239 4-3-19 4-4-19 REPORT TO: 하하나 Ş PROJECT #: Collection DATE 4-4-19 4-2-19 4-3-19

APP III, plus Detected APP IV

To a selected APP IV: Antimony, Arsenic, Barium, Beryllium, Cadmium, Cobalt, Fluoride, Lead, Lithium, Selenium, Thallium, Radium

Bolded Detections: Listed above or included with App III

Yates Ash Pond 3 - Blank COCs.xlsx

	Sampi	e Conditio	n Upon Receipt		1
Pace Analy	<i>rtical</i> Client Name:	GIA	Power	Project #	
Courier: Fed E	x 🗆 UPS 🗆 USPS 🔎 Client [Commercial	☐ Pace Other	WO#:26	17035
	ooler/Box Present: Ves	no Seal	s intact: yes	PM: BM	Due Date: 04/12/1
Packing Material:	7	l .		CLIENT: GAPOL	êr-CCR'
Thermometer Used		1 '	Blue None		
Cooler Temperatur			is Frozen: Yes No	Date and Initials	ing process has begun
Temp should be above	freezing to 6°C	yogical Hissue	Comments:	contents: 4	of person examining
Chain of Custody Pr	esent:	es 🗆 No 🗆 N/A	<u> </u>		
Chain of Custody Fit		es □No □N/A			
Chain of Custody Re		s □No □N/A			
Sampler Name & Sig		es 🗆 No 🗆 N/A			
Samples Arrived with		ds □No □N/A			
Short Hold Time Ar		S-DNG DN/A			
Rush Turn Around		es Dino □N/A	7.		
Sufficient Volume:	_BY	es 🗆 No 🗆 N/A	8.		
Correct Containers L	Jsed:	s □No □N/A	9.	:	
-Pace Containers	Used:	es ⊡No □N/A			
Containers Intact:	□Y-	B DHG DN/A	10. See	Commes	7
Filtered volume recei	ved for Dissolved tests	S □No ₽N/A	11.		
Sample Labels matcl	i COC:	S □No □N/A	12.		
-Includes date/tim	e/ID/Analysis Matrix:	W			
All containers needing pr	eservation have been checked.	DNo □N/A	13.		
All containers needing poor compliance with EPA re	oreservation are found to be in commendation.	es □No □N/A			
exceptions: VOA, coliform	TOC. O&G, WI-DRO (water)	□ □No	Initial when completed	Lot # of added preservative	
Samples checked for	dechlorination:	No PMA	14.		
Headspace in VOA V	(als (>6mm):	No ĐNA	15.		
Trip Blank Present:	□ Y ŧ	□No ⊿N7A	16.		
Trip Blank Custody S	eals Present	No ₽			
Pace Trip Blank Lot #	(if purchased):				
Client Notification/ I	Resolution:			Field Data Danie do	
Person Contac		Date/	Time:	Field Data Required?	Y / N
Comments/ Resolu	4 0 1	1 m to	inax box	V 64 (1)	c- 245
arereived	to The lab	witte	a Very	Limited	Samula Val
secondar	+ to lid not	beir	a closed	tight.	,
			0		
Project Manager (Review:			Date:	
Note: Whenever there	s a discrepancy affecting North Carolina	compliance sam	ples, a copy of this form	will be sent to the North	Carolina DEHNR
Certification Office (i.e	out of hold, incorrect preservative, out of	temp, incorrect	containers)		Page 35 of 35
				F-ALLC003r	ev.3, 11September2006

April 29, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on April 04, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

(770)734-4200

CERTIFICATIONS

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082

Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

North Dakota Certification #: R-190

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2617037001	YGWA-4I	Water	04/03/19 13:50	04/04/19 17:22
2617037002	YGWA-5I	Water	04/03/19 15:40	04/04/19 17:22
2617037003	YGWA-5D	Water	04/03/19 13:55	04/04/19 17:22
2617037004	YGWA-17S	Water	04/02/19 15:10	04/04/19 17:22
2617037005	YGWA-18S	Water	04/03/19 10:15	04/04/19 17:22
2617037006	YGWA-18I	Water	04/03/19 11:35	04/04/19 17:22
2617037007	YGWA-20S	Water	04/03/19 12:30	04/04/19 17:22
2617037008	YGWA-21I	Water	04/02/19 15:56	04/04/19 17:22
2617037009	YGWC-23S	Water	04/04/19 13:05	04/04/19 17:22
2617037011	YGWC-33S	Water	04/04/19 11:35	04/04/19 17:22
2617037012	YGWC-36	Water	04/04/19 14:35	04/04/19 17:22
2617037013	EB-1-4-3-19	Water	04/03/19 11:00	04/04/19 17:22
2617037014	EB-2-4-4-19	Water	04/04/19 11:25	04/04/19 17:22
2617037015	Dup-1	Water	04/03/19 00:00	04/04/19 17:22
2617037016	Dup-2	Water	04/04/19 00:00	04/04/19 17:22
2617037017	FB-1-4-3-19	Water	04/03/19 13:20	04/04/19 17:22
2617037018	FB-2-4-4-19	Water	04/04/19 13:25	04/04/19 17:22

SAMPLE ANALYTE COUNT

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
2617037001	YGWA-4I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037002	YGWA-5I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037003	YGWA-5D	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037004	YGWA-17S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037005	YGWA-18S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037006	YGWA-18I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037007	YGWA-20S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037008	YGWA-21I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037009	YGWC-23S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037011	YGWC-33S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037012	YGWC-36	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037013	EB-1-4-3-19	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037014	EB-2-4-4-19	EPA 9315	LAL	1	PASI-PA

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037015	Dup-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037016	Dup-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037017	FB-1-4-3-19	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2617037018	FB-2-4-4-19	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWA-4I PWS:	Lab ID: 26170370 Site ID:	O1 Collected: 04/03/19 13:50 Sample Type:	Received:	04/04/19 17:22	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.956 ± 0.433 (0.582) C:96% T:NA	pCi/L	04/17/19 09:02	13982-63-3	
Radium-228		0.111 ± 0.339 (0.762) C:85% T:80%	pCi/L	04/18/19 15:36	5 15262-20-1	
Total Radium	Total Radium Calculation	1.07 ± 0.772 (1.34)	pCi/L	04/22/19 11:21	7440-14-4	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWA-5I Lab ID: 2617037002 Collected: 04/03/19 15:40 Received: 04/04/19 17:22 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac CAS No. **Parameters** Units Analyzed Qual EPA 9315 0.294 ± 0.225 (0.342) Radium-226 pCi/L 04/17/19 08:08 13982-63-3 C:102% T:NA EPA 9320 $0.136 \pm 0.397 \quad (0.886)$ Radium-228 pCi/L 04/18/19 15:36 15262-20-1 C:86% T:78% Total Radium **Total Radium** 0.430 ± 0.622 (1.23) pCi/L 04/22/19 11:21 7440-14-4 Calculation

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWA-5D PWS:	Lab ID: 26170370 Site ID:	O3 Collected: 04/03/19 13:55 Sample Type:	Received:	04/04/19 17:22	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		3.23 ± 0.801 (0.382) C:97% T:NA	pCi/L	04/17/19 08:08	13982-63-3	
Radium-228	EPA 9320	1.56 ± 0.525 (0.732) C:84% T:82%	pCi/L	04/18/19 15:36	5 15262-20-1	
Total Radium	Total Radium Calculation	4.79 ± 1.33 (1.11)	pCi/L	04/22/19 11:21	7440-14-4	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWA-17S Lab ID: 2617037004 Collected: 04/02/19 15:10 Received: 04/04/19 17:22 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.306 ± 0.213 (0.295) Radium-226 pCi/L 04/17/19 08:08 13982-63-3 C:102% T:NA EPA 9320 0.541 ± 0.415 (0.820) Radium-228 pCi/L 04/18/19 14:52 15262-20-1 C:72% T:81% Total Radium **Total Radium** 0.847 ± 0.628 (1.12) pCi/L 04/22/19 11:21 7440-14-4 Calculation

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWA-18S PWS:	Lab ID: 26170370 Site ID:	O5 Collected: 04/03/19 10:15 Sample Type:	Received:	04/04/19 17:22	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.182 ± 0.200 (0.386) C:97% T:NA	pCi/L	04/17/19 08:08	13982-63-3	
Radium-228		0.247 ± 0.296 (0.626) C:81% T:92%	pCi/L	04/18/19 14:52	2 15262-20-1	
Total Radium	Total Radium Calculation	0.429 ± 0.496 (1.01)	pCi/L	04/22/19 11:21	7440-14-4	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWA-18I PWS:	Lab ID: 26170370 Site ID:	O6 Collected: 04/03/19 11:35 Sample Type:	Received:	04/04/19 17:22	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.385 ± 0.266 (0.419) C:98% T:NA	pCi/L	04/17/19 08:08	13982-63-3	
Radium-228		-0.0186 ± 0.267 (0.636) C:80% T:76%	pCi/L	04/18/19 14:53	3 15262-20-1	
Total Radium	Total Radium Calculation	0.385 ± 0.533 (1.06)	pCi/L	04/22/19 11:21	7440-14-4	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWA-20S PWS:	Lab ID: 26170370 Site ID:	O7 Collected: 04/03/19 12:30 Sample Type:	Received:	04/04/19 17:22	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.320 ± 0.218 (0.305) C:112% T:NA	pCi/L	04/17/19 08:08	13982-63-3	
Radium-228		0.685 ± 0.361 (0.625) C:76% T:82%	pCi/L	04/18/19 14:53	3 15262-20-1	
Total Radium	Total Radium Calculation	1.01 ± 0.579 (0.930)	pCi/L	04/22/19 11:21	7440-14-4	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWA-21I PWS:	Lab ID: 26170370 Site ID:	08 Collected: 04/02/19 15:56 Sample Type:	Received:	04/04/19 17:22	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.670 ± 0.333 (0.396) C:91% T:NA	pCi/L	04/17/19 08:08	13982-63-3	
Radium-228		0.752 ± 0.391 (0.687) C:80% T:79%	pCi/L	04/18/19 14:52	2 15262-20-1	
Total Radium	Total Radium Calculation	1.42 ± 0.724 (1.08)	pCi/L	04/22/19 11:21	7440-14-4	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWC-23S PWS:	Lab ID: 26170370 Site ID:	Collected: 04/04/19 13:05 Sample Type:	Received:	04/04/19 17:22	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.0780 ± 0.159 (0.370) C:91% T:NA	pCi/L	04/18/19 09:0	1 13982-63-3	
Radium-228		0.396 ± 0.357 (0.723) C:87% T:74%	pCi/L	04/18/19 15:38	3 15262-20-1	
Total Radium	Total Radium Calculation	0.474 ± 0.516 (1.09)	pCi/L	04/22/19 11:25	7440-14-4	

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWC-33S Lab ID: 2617037011 Collected: 04/04/19 11:35 Received: 04/04/19 17:22 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.558 ± 0.231 (0.255) Radium-226 pCi/L 04/16/19 21:13 13982-63-3 C:100% T:NA EPA 9320 0.578 ± 0.372 (0.704) Radium-228 pCi/L 04/18/19 15:36 15262-20-1 C:85% T:81% Total Radium **Total Radium** 1.14 ± 0.603 (0.959) pCi/L 04/22/19 11:21 7440-14-4 Calculation

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: YGWC-36 Lab ID: 2617037012 Collected: 04/04/19 14:35 Received: 04/04/19 17:22 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.484 \pm 0.287 \quad (0.376)$ Radium-226 pCi/L 04/18/19 09:01 13982-63-3 C:91% T:NA EPA 9320 $0.569 \pm 0.439 \quad (0.878)$ Radium-228 pCi/L 04/18/19 15:36 15262-20-1 C:83% T:81% Total Radium **Total Radium** 1.05 ± 0.726 (1.25) pCi/L 04/22/19 11:25 7440-14-4 Calculation

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: EB-1-4-3-19 Lab ID: 2617037013 Collected: 04/03/19 11:00 Received: 04/04/19 17:22 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac CAS No. **Parameters** Units Analyzed Qual EPA 9315 $0.280 \pm 0.225 \quad (0.349)$ Radium-226 pCi/L 04/17/19 08:08 13982-63-3 C:84% T:NA -0.0998 ± 0.290 (0.703) EPA 9320 Radium-228 pCi/L 04/18/19 14:52 15262-20-1 C:78% T:79% Total Radium **Total Radium** $0.280 \pm 0.515 \quad (1.05)$ pCi/L 04/22/19 11:21 7440-14-4 Calculation

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: EB-2-4-4-19 Lab ID: 2617037014 Collected: 04/04/19 11:25 Received: 04/04/19 17:22 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.240 ± 0.170 (0.276) Radium-226 pCi/L 04/16/19 21:13 13982-63-3 C:97% T:NA EPA 9320 0.461 ± 0.372 (0.743) Radium-228 pCi/L 04/18/19 15:36 15262-20-1 C:88% T:78% Total Radium Total Radium 0.701 ± 0.542 (1.02) pCi/L 04/22/19 11:21 7440-14-4 Calculation

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: Dup-1 Lab ID: 2617037015 Collected: 04/03/19 00:00 Received: 04/04/19 17:22 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.899 \pm 0.397 \quad (0.447)$ Radium-226 pCi/L 04/17/19 08:08 13982-63-3 C:88% T:NA $0.358 \pm 0.307 \quad (0.614)$ EPA 9320 Radium-228 pCi/L 04/18/19 14:52 15262-20-1 C:81% T:83% Total Radium Total Radium 1.26 ± 0.704 (1.06) pCi/L 04/22/19 11:21 7440-14-4 Calculation

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: Dup-2 Lab ID: 2617037016 Collected: 04/04/19 00:00 Received: 04/04/19 17:22 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.753 \pm 0.334 \quad (0.332)$ Radium-226 pCi/L 04/17/19 08:23 13982-63-3 C:101% T:NA EPA 9320 0.278 ± 0.368 (0.785) Radium-228 pCi/L 04/18/19 15:36 15262-20-1 C:86% T:80% Total Radium Total Radium 1.03 ± 0.702 (1.12) pCi/L 04/22/19 11:21 7440-14-4 Calculation

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Sample: FB-1-4-3-19 Lab ID: 2617037017 Collected: 04/03/19 13:20 Received: 04/04/19 17:22 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.138 \pm 0.190 \quad (0.398)$ Radium-226 pCi/L 04/17/19 08:08 13982-63-3 C:96% T:NA EPA 9320 $0.366 \pm 0.336 \quad (0.680)$ Radium-228 pCi/L 04/18/19 14:53 15262-20-1 C:80% T:77% Total Radium Total Radium 0.504 ± 0.526 (1.08) pCi/L 04/22/19 11:21 7440-14-4 Calculation

Project: Plant Yates Ash Pond 3

Calculation

Pace Project No.: 2617037

Sample: FB-2-4-4-19 Lab ID: 2617037018 Collected: 04/04/19 13:25 Received: 04/04/19 17:22 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.288 ± 0.236 (0.391) Radium-226 pCi/L 04/18/19 09:01 13982-63-3 C:87% T:NA EPA 9320 0.0312 ± 0.316 (0.727) Radium-228 pCi/L 04/18/19 15:36 15262-20-1 C:86% T:81% Total Radium Total Radium 0.319 ± 0.552 (1.12) pCi/L 04/22/19 11:25 7440-14-4

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

QC Batch: 337921 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 2617037009, 2617037012, 2617037018

METHOD BLANK: 1644534 Matrix: Water

Associated Lab Samples: 2617037009, 2617037012, 2617037018

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.156 \pm 0.184 (0.361) C:97% T:NA pCi/L 04/18/19 09:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

QC Batch: 337919 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 2617037001, 2617037002, 2617037003, 2617037004, 2617037005, 2617037006, 2617037007, 2617037008,

2617037011, 2617037013, 2617037014, 2617037015, 2617037016, 2617037017

METHOD BLANK: 1644532 Matrix: Water

Associated Lab Samples: 2617037001, 2617037002, 2617037003, 2617037004, 2617037005, 2617037006, 2617037007, 2617037008,

2617037011, 2617037013, 2617037014, 2617037015, 2617037016, 2617037017

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.211 ± 0.257 (0.538) C:93% T:NA
 pCi/L
 04/17/19 07:57

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

QC Batch: 337912 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 2617037001, 2617037002, 2617037003, 2617037004, 2617037005, 2617037006, 2617037007, 2617037008,

2617037011, 2617037013, 2617037014, 2617037015, 2617037016, 2617037017

METHOD BLANK: 1644522 Matrix: Water

Associated Lab Samples: 2617037001, 2617037002, 2617037003, 2617037004, 2617037005, 2617037006, 2617037007, 2617037008,

2617037011, 2617037013, 2617037014, 2617037015, 2617037016, 2617037017

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.129 ± 0.341 (0.763) C:81% T:73%
 pCi/L
 04/18/19 11:47

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

QC Batch: 337913 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 2617037009, 2617037012, 2617037018

METHOD BLANK: 1644523 Matrix: Water

Associated Lab Samples: 2617037009, 2617037012, 2617037018

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.226 ± 0.293 (0.621) C:88% T:75% pCi/L 04/18/19 15:38

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 04/29/2019 03:32 PM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Date: 04/29/2019 03:32 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2617037001	YGWA-4I	EPA 9315	337919		
617037002	YGWA-5I	EPA 9315	337919		
617037003	YGWA-5D	EPA 9315	337919		
617037004	YGWA-17S	EPA 9315	337919		
617037005	YGWA-18S	EPA 9315	337919		
617037006	YGWA-18I	EPA 9315	337919		
617037007	YGWA-20S	EPA 9315	337919		
617037008	YGWA-21I	EPA 9315	337919		
617037009	YGWC-23S	EPA 9315	337921		
617037011	YGWC-33S	EPA 9315	337919		
617037012	YGWC-36	EPA 9315	337921		
617037013	EB-1-4-3-19	EPA 9315	337919		
617037014	EB-2-4-4-19	EPA 9315	337919		
617037015	Dup-1	EPA 9315	337919		
617037016	Dup-2	EPA 9315	337919		
617037017	FB-1-4-3-19	EPA 9315	337919		
617037018	FB-2-4-4-19	EPA 9315	337921		
617037001	YGWA-4I	EPA 9320	337912		
617037002	YGWA-5I	EPA 9320	337912		
617037003	YGWA-5D	EPA 9320	337912		
617037004	YGWA-17S	EPA 9320	337912		
617037005	YGWA-18S	EPA 9320	337912		
617037006	YGWA-18I	EPA 9320	337912		
617037007	YGWA-20S	EPA 9320	337912		
617037008	YGWA-21I	EPA 9320	337912		
617037009	YGWC-23S	EPA 9320	337913		
617037011	YGWC-33S	EPA 9320	337912		
617037012	YGWC-36	EPA 9320	337913		
617037013	EB-1-4-3-19	EPA 9320	337912		
617037014	EB-2-4-4-19	EPA 9320	337912		
617037015	Dup-1	EPA 9320	337912		
617037016	Dup-2	EPA 9320	337912		
617037017	FB-1-4-3-19	EPA 9320	337912		
617037018	FB-2-4-4-19	EPA 9320	337913		
617037001	YGWA-4I	Total Radium Calculation	339291		
617037002	YGWA-5I	Total Radium Calculation	339291		
617037003	YGWA-5D	Total Radium Calculation	339291		
617037004	YGWA-17S	Total Radium Calculation	339291		
617037005	YGWA-18S	Total Radium Calculation	339291		
617037006	YGWA-18I	Total Radium Calculation	339291		
617037007	YGWA-20S	Total Radium Calculation	339291		
617037008	YGWA-21I	Total Radium Calculation	339291		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Ash Pond 3

Pace Project No.: 2617037

Date: 04/29/2019 03:32 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2617037009	YGWC-23S	Total Radium Calculation	339292		
2617037011	YGWC-33S	Total Radium Calculation	339291		
2617037012	YGWC-36	Total Radium Calculation	339292		
2617037013	EB-1-4-3-19	Total Radium Calculation	339291		
2617037014	EB-2-4-4-19	Total Radium Calculation	339291		
2617037015	Dup-1	Total Radium Calculation	339291		
2617037016	Dup-2	Total Radium Calculation	339291		
2617037017	FB-1-4-3-19	Total Radium Calculation	339291		
2617037018	FB-2-4-4-19	Total Radium Calculation	339292		

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc.

7ace Analytical 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092
(770) 734-4200: FAX (770) 734-4201

Р

PAGE:

			NAIAI VOI	ANALYSIS BEOLIESTED	100	CONTAINER TYPE	PRESERVATION
CLIENT NAME:		,	DIANE I OF	פ אבעטבטורם	A A		1 - HCI, ≤6°C
Georgia Power	CONTAINER LIFE.	╀		. 6		A - AMBER GLASS	2 - H,SO4, ≤6°C
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	PRESERVATION	?		2		C EAR GLASS	3 - HVO
241 Raiph McGill Blvd SE B10185 Atlanta, GA 30308	 to #					V - VOA VIAL	4 - NaOH, 56°C
	_ ა				_ (O STERILE	S NaCrical Co.
ı	0 2				a	N	7 - 56°C not frozen
Joju Abraham	 z	(02	(MC	8	Z		
REQUESTED COMPLETION DATE:	- «	<u> </u>		8 22	.	*MATRIX CODES	CODES:
PROJECT NAME/STATE:	<u>-</u>	2050		923	2 1		100
Plant Yates - Ash Pond 3	Zι	9 V c			n u	DW - DRINKING WATER	SL - SLUDGE
	<u>п</u> (M		1 0		SD - SOLID
PROJECT #:	z w	muio	3 8 6				A - AIR
O		Cal	0.008			ST - STORM WATER	L - LIQUID P - PRODICT
Collection Collection MATRIX O R SAMPLE IDENTIFICATION DATE TIME CODE* M A P B	—	Metals Boron, Cl, F, S	(EPA 3	IA J9Q 8-W2)			VAL INFORMATION
14-2-19 1250 (1,2) V 6 WA-4 I	7	7	7	7		APP III plus detected APP IV	
15th Circl Obsi	5	7	7				
1332	5	1	1	7			
A W. 7 W. 0.21	7	7	7	1			
1 Mg Via.	J	7	7	>			i i i
1 (V.)	7	7	7	7			
1230 6W / YEWA-	7	\	7	3	TOT	LIO# - 264 7027	
4-2-19 1556 EW 4 YEWA-21I	2	7)	7	503	C01107 .	
1305 CW V	7	1	7	7			
4-4-19 12-20 6W N YBWC- 245	7	7	7	?	2617037		
1135 GW	7	7	7	7			
1	٩	>	7	74		Exita Ras here	Let All V
BY AND TITLE: DATE/TIME:	RELINQUISHED BY:	IED BY:		1	DATE/TIME: / 1722	LAB#: FOK LAB	USE ONL!
DATE/TIME:	RELINQUISHED BY	IED BY:			DATE/TIME: /	Entered into LIMS:	
RECEIVED BY UB MINOUN ONTERING 4/19 172.	SAMPLE SHIPPED VIA UPS FED-EX	PPED VIA D-EX	USPS	M	CLIENT) OTHER FS	Tracking #:	
DH. opered: Company of the Company o	Curry Seaf: Intact Broken		Not Present	# of Coolers	Goler IU.		
) original in							

APP III, plus Detected APP IV

APP III, plus Detected APP IV

Betected APP IV: Antimony, Arsenic, Barium, Beryllium, Cadmium, Cobalt, Fluoride, Lead, Lithium, Selenium, Thallium, Radium

Radium

Radium

Radium

Yates Ash Pond 3 - Blank COCs.xlsx

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201

Р

PAGE:

Or other statements				ANAIY	ANAI YSIS REOLIESTED	FED		CONTAINER TYPE	PRESERVATION
CLIEN NAME:		BOYT GRININGS	۵	 -	a		۷ ا	P - PLASTIC	1 - HCI, ≤6°C
Georgia Power		CONTAINER	+	. ^	. 6		· cc	A - AMBER GLASS	2 - H.SO. <6°C
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	v	PRESERVATION:	,	+	,		ī	G - CI FAR GI ASS	3 - HNO.
241 Ralph McGill Blvd SE B10185		io #						V - VOA VIAL	4 - NaOH, ≤6°C
Atlanta, GA 30308								S - STERILE	5 - NaOH/ZnAc, ≤6°C
		-					0	O - OTHER	6 - Na ₂ S ₂ O ₃ , ≤6°C
REPORT TO:) Z		(211			7 - <6°C not frozen
Joju Aplandiii		: -	(02	,MO			z		
		. «	. Þ Z/0					*MATR	*MATRIX CODES:
PROJECT NAME/STATE:			020	_			Σ		(
Plant Yates - Ash Pond 3	13	z	9 V		z u		O 1		, ,
		ш		Z W	ınib		ш (WW - WASIEWAIEK	SL - SLUDGE
PROJECT #:		œ	wr	IS 18	Ra		¥	GW - GROUNDWAIER	ק א
		σ,	iole	3 0.	ΛΙ		The same of	ST STOPM WATER	
0 0			ъЭ,	300	·dd			W- WATER	P - PRODUCT
Collection Collection WAI NA S S DATE TIME CODE* M A S	SAMPLE IDENTIFICATION	-	Metals	SI, F, EPA	A JəC 3-W2		P 4800		REMARKS/ADDITIONAL INFORMATION
	01-21 11 22	. 13			7)	APP III plus detected APP IV	2
4-3-14 1100 W	1-1-1-1-05		•						
3	EB-2-4.4-19	7	7	7	7				
V (ii)	74 P	3	7	7	7		Ar.		
7 M.	200	2	7	7	/		*		
1 1 1 22 1	ER-1-4-3-19	77	7	7	7				
1250 W	10	-	-	7	7				
	FD-6 1:1-14	7	+	:					
				-			1	. 064700	1
						5	#5	MU# - ZOI / M3/	
						<u>a</u>	PM: BM	Due Date	Due Date: 05/03/19
				_		5	CLIENT:	GAPower-CCR	
				+			35		
				-		DATECTINAL		FORLA	FOR LAB USE ONLY
SAMPLED BY AND TITLE:	/TIME:	RELINQUISHED BY:	HED BY:	1/2	10/1	10A1E/11ME:	1722	LAB#:	
7	DATE/TIME:	RELINQUISHED BY	HED BY:			DATE/TIME: '		Entered into LIMS:	2.00 - 100 -
REGENED BY LAB: 1, AMO AA DATECTIME	17E1 PINSUIT	SAMPLE SI	LE SHIPPED VIA: FED.EX	Y:	COURIER	GLIENT OTHER	FS	Tracking #:	
<u>108.</u>	1	dy See			# of Coolers	Coeffer ID:			
Yes No NA Yes No NA	Min: // S Max:	1	Broken Not	Not Present					
))							

APP III, plus Detected APP IV

APP III, plus Detected APP IV

By

Opetected APP IV: Antimony, Arsenic, Barium, Beryllium, Cadmium, Cobalt, Fluoride, Lead, Lithium, Selenium, Thallium, Radium

Applied Detections: Listed above or included with App III

Applied Detections: Listed above or included with Applied The Cocton of T

Sample Condition Upon Receipt

Pace Analytical Client Name	: <u>GIA</u>	Power	Project #
Courier:	ent 🗌 Commercia	al Pace Other	WO#: 2617037 PM: BM Due Date: 05/03/
Custody Seal on Cooler/Box Present: Ves	s 🗌 no Se	als intact: yes [- CLIENT: GAPower-CCR
Packing Material: Bubble Wrap Bubbl	le Bags None	Other	
Thermometer Used <u>34</u>	Type of Ice: M	Blue None [Samples on ice, cooling process has begun
Cooler Temperature 0 5 5 Temp should be above freezing to 6°C	Biological Tiss	ue is Frozen: Yes No Comments:	Date and Initials of person examining contents: 4/19 mg
Chain of Custody Present:	Yes 🗆 No 🗀	N/A 1.	
Chain of Custody Filled Out:	∠EYes □No □I	N/A 2.	
Chain of Custody Relinquished:	-BYes □No □I	N/A 3.	
Sampler Name & Signature on COC:	-EYes □No □I	N/A 4.	
Samples Arrived within Hold Time:	-Byes □No □I	N/A 5.	
Short Hold Time Analysis (<72hr):	□Yes ⊒No □	N/A 6.	
Rush Turn Around Time Requested:	□Yes □Mo □i	N/A 7.	
Sufficient Volume:	₽Yes □No □	N/A 8.	
Correct Containers Used:	-EYes □No □	N/A 9.	
-Pace Containers Used:	_⊟Yes □No □		
Containers Intact:	□Yes □M6 □	N/A 10. See	Com ment
Filtered volume received for Dissolved tests	□Yes □No 🔎	N/A 11.	
Sample Labels match COC:	→ PYes □No □	N/A 12.	
-Includes date/time/ID/Analysis Matrix:	\mathcal{L}		
All containers needing preservation have been checked.	→EYes □No □	N/A 13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	Yes No 🗆		
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No	Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No ♣	N/A 14.	
Headspace in VOA Vials (>6mm):	□Yes □No 🗗		
Trip Blank Present:	□Yes □No 🔎	N/A 16.	
Trip Blank Custody Seals Present	□Yes □No 🔎	N/A	
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution: Person Contacted: Evan Pero Comments/ Resolution: ANTIVERY to the la Cleandary to lid Per consultant, a Casampled.	m (on by write not be	tainer 4/5/20 tainer bot a very ing closes CNC-245	Field Data Required? Y/N 019 12:58 CE Y GOLD C-245 Limited Sample Vol. 1 tight. TE will be
Project Manager Review: BMel	D		Date: 4/5/2019

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

May 01, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates-Ash Pond 3

Pace Project No.: 2617220

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on April 10, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

(770)734-4200

CERTIFICATIONS

Project: Plant Yates-Ash Pond 3

Pace Project No.: 2617220

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: Plant Yates-Ash Pond 3

Pace Project No.: 2617220

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2617220001	YGWC-24S	Water	04/09/19 12:05	04/10/19 08:40

SAMPLE ANALYTE COUNT

Project: Plant Yates-Ash Pond 3

Pace Project No.: 2617220

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
2617220001	YGWC-24S	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Yates-Ash Pond 3

Calculation

Pace Project No.: 2617220

Sample: YGWC-24S Lab ID: 2617220001 Collected: 04/09/19 12:05 Received: 04/10/19 08:40 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.282 ± 0.130 (0.193) Radium-226 pCi/L 04/22/19 21:19 13982-63-3 C:91% T:NA EPA 9320 $0.220 \pm 0.301 \quad (0.643)$ Radium-228 pCi/L 04/25/19 14:16 15262-20-1 C:80% T:82% Total Radium Total Radium $0.502 \pm 0.431 \quad (0.836)$ pCi/L 04/26/19 09:32 7440-14-4

Project: Plant Yates-Ash Pond 3

Pace Project No.: 2617220

QC Batch: 338631

Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 2617220001

METHOD BLANK: 1648339 Matrix: Water

Associated Lab Samples: 2617220001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.146 ± 0.0893 (0.139) C:90% T:NA
 pCi/L
 04/22/19 21:19

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

EPA 9320

Project: Plant Yates-Ash Pond 3

Pace Project No.: 2617220

QC Batch: 338745

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 2617220001

METHOD BLANK: 1648702 Matrix: Water

Associated Lab Samples: 2617220001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.552 ± 0.362 (0.681) C:81% T:74%
 pCi/L
 04/25/19 11:04

Analysis Method:

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates-Ash Pond 3

Pace Project No.: 2617220

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 05/01/2019 02:20 PM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates-Ash Pond 3

Pace Project No.: 2617220

Date: 05/01/2019 02:20 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2617220001	YGWC-24S	EPA 9315	338631		
2617220001	YGWC-24S	EPA 9320	338745		
2617220001	YGWC-24S	Total Radium Calculation	340066		

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc.

#ace Analytical 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201

P

PAGE:

CHENT NAME	ius.							ANA! YS	ANA! YSIS REO! IESTED			CONTAINED TYPE	TACH AND TO SEE	Г
Georgia Power	įģ					CONTAINED TYPE	4				J d	P. PIASTIC	1 HCI <6°C	
TOV TIVE	CHICKE ADDICE MUNDED EAX NI INDED	CF 11 11 2 11 11 11 11 11 11 11 11 11 11 1	Š	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			,	.			כ נ	SHOULD OF ACC		
CLIEN ADI	JKESS/PHO	NE NOMB	ž	ž		PRESERVATION	<u>"</u>	,	2		מ	A - AMBER GLASS	2 - H ₂ SO, ≤6°C	_
241 Ralph M	241 Ralph McGill Bivd SE B10185	E B10185				# of						G - CLEAR GLASS	3- HNO3	-
Atlanta, GA	Atlanta, GA 30308		Í	i	The state of the s							V - VOA VIAL	4 - NaOH, SG'C	+
404-506-7239	 ايو					<u> </u>						S - STERILE	5 - NaOH/ZnAc, ≤6°C	
REPORT TO:					ij	0					Δ	O - OTHER	6 - Na ₂ S ₂ O ₃ , ≤6°C	
	Joju Abraham	aham				z	(((^					7 - ≤6°C not frozen	
REQUESTE	REQUESTED COMPLETION DATE:	TION DATE	نن		PO#.	⊢ ∢	0 7 470	pelov	228		2 3	*MATRIX	*MATRIX CODES:	-
PROJECT N	PROJECT NAME/STATE:	iii					020		8 97) E			
		Plant	t Yate	ss - A	Plant Yates - Ash Pond 3	21	9 ∀∢	966 52 4 0	m 25		m 1	DW - DRINKING WATER	S- SOIL	
								: W	nib SE(n		SL - SLUDGE	
PROJECT #	٠					œ	wr	IS 1	Rac 15/8		Ľ		SD - SOLID	-
			ł	-		<u></u>	ici	? 0	ΛI ΛI				A- AIR	_
;						_	e)	00	'de) -			
Collection		MAIRK CODE	2 2	× 4	SAMPLE IDENTIFICATION		'uo.		iA :. ∙8-V			W - WATER	P - PRODUCT	_
2						→	Bor	43)	IĐQ VS)		+	REMARKS/ADDITIO	REMARKS/ADDITIONAL INFORMATION	
4-8-19	125	S	+	<u> </u>	7626-245	7			7			APP III plus detected APP IV		\vdash
			 	L				_						F
			+	4			1							7
			 											_
			-								,			_
			╀	1			Ţ	+						_
			\dashv	4			1							_
										_			,	
			╁	-							共	この世・してイレシシの		ī
			╁	-						1	-	17:101	1.	+
			#	\parallel			\parallel				Ħ			+
ı			\dashv	4				-						_
										2617220	7220			i
											77.20			_
SAMPLED	SAMPLED BY OND TITLE	iúi.	1	,	DATE/TIME:	RELINQUISHED BY:	ED BY:	1	0	DATE/TIME:	0840	IAB#	USE ONLY	gjans
RECEIVED B	`````````````````````````````````````	,	4	1		RELINQUISHED BY:	ED BY:			╄	_			
RECEIVED BY	BY LAB		1	1	DATE/TIME // ACLES	SAMPLE SHI	E SHIPPED VIA:	الخا				Tracking #:		
	7 Z X	12/2/2/2/	3			UPS FE	A C	USPS		OTHER	FS			
A Xes No) NA	(res) No NA	9	\$	I emperature.	Custody Seal:	Seal: Broken Not Present	Present	# 01 Codlers	Coelection			2	abila
				ĺ	ľ									1
APP III	APP III, plus Defected APP IV	ad APP	≥		۲	١								

APP III, plus Detected APP IV

ಹಿetected APP IV: Antimony, Arsenic, Barium, Beryllium, Cadmium, Cobalt, Fluoride, Lead, Lithium, Selenium, Thallium, Radium Bolded Detections: Listed above or included with App III ೨ ೨

	ample Condition	i upon Receip		
Face Analytical Client Nam	e: GA	Power	Project #	
Courier: Fed Ex UPS USPS CI	ient Commercial	•	WO#: 261	
Custody Seal on Cooler/Box Present: ye	es 🔲 no Seals	s intact: yes	1.1	Due Date: 05/08/19
Packing Material: Bubble Wrap Bubb		•	CLIENT: GAPower	-CCR
Thermometer Used 8 5	Type of Ice: Well		Samples on ice, cooling	torococc has begun
Cooler Temperature / ` /		is Frozen: Yes No	Date and Initials of	person examining
Temp should be above freezing to 6°C		Comments:	contents: 47	idia m
Chain of Custody Present:	es ONO ON/A	1.		
Chain of Custody Filled Out:	- Øres □No □N/A	2.		
Chain of Custody Relinquished:	Des □No □N/A			
Sampler Name & Signature on COC:	DYES DNO DN/A	4.		
Samples Arrived within Hold Time:	□ es □No □N/A	5.		
Short Hold Time Analysis (<72hr):	□Yes □N67 □N/A			
Rush Turn Around Time Requested:	□ ves □NO □N/A			
Sufficient Volume:	-Bres □No □N/A			
Correct Containers Used:	ØYes □No □N/A	1		
-Pace Containers Used:	ET es ONo ON/A			
Containers Intact:	-ETes ONo ON/A			
Filtered volume received for Dissolved tests	□ves □No ☑N/A	· · · · · · · · · · · · · · · · · · ·		
Sample Labels match COC:	DIES ONO ON/A			
-Includes date/time/ID/Analysis Matrix:	$1/\omega$			
All containers needing preservation have been checked.	□Ves □No □N/A	13.		
All containers needing preservation are found to be in compliance with EPA recommendation.	- Tes Ono On/A			
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No	Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	□Yes □No ☑N/A			
Headspace in VOA Vials (>6mm):	□Yes □No ▼□N/A			
Trip Blank Present:	□Yes □No ₽N/A	<u> </u>		
Trip Blank Custody Seals Present	□Yes □No □M TA			
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:				
Person Contacted:	Date/	Tima:	Field Data Required?	Y / N
Comments/ Resolution:	Date	e.		
				-
Project Manager Review:			Date:	
Note: Whenever there is a discrepancy affecting North	Carolina compliance sam	nples, a copy of this for	m will be sent to the North Car	olina DEHNR

Page 11 of 11

Date: 2016-09-01 10:02:31

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Project Information:

Operator Name WB Company Name **AECOM** Project Name Plant Yates Site Name YGWC-49 Latitude 33° 27' 43.08" Longitude -84° -53' -52.52"

449474

Sonde SN

Turbidity Make/Model LaMotte 2020we Pump placement from TOC

73.50 ft

Sample Pro

PΕ

0.17 in

80 ft

Well Information:

Well ID YGWC-49 Well diameter 2 in Well Total Depth 78.49 ft Screen Length 10 ft Depth to Water 31.33 ft

Pumping Information:

Final Pumping Rate 175 mL/min Total System Volume 0.5470738 L Calculated Sample Rate 300 sec Stabilization Drawdown 7.8 in **Total Volume Pumped** 3.68 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.5	+/- 0.1	+/- 5%	+/- 10		+/- 0.2	+/- 10
Last 5	09:41:28	300.08	20.89	5.81	285.55	5.20	32.06	1.76	-9.06
Last 5	09:46:28	600.02	20.53	5.77	287.34	5.25	32.10	1.56	16.09
Last 5	09:51:28	900.02	20.48	5.75	284.57	4.49	32.10	1.49	18.35
Last 5	09:56:28	1200.02	20.52	5.78	284.32	3.20	32.11	1.38	12.89
Last 5									
Variance 0			-0.37	-0.04	1.79			-0.20	25.15
Variance 1			-0.04	-0.02	-2.77			-0.07	2.26
Variance 2			0.04	0.02	-0.25			-0.11	-5.47

Notes

Collect sample at 10:04.

Grab Samples YGWC-49 10:04

Date: 2016-11-15 10:36:02

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Bladder Pump

Poly

.17 in

85 ft

73 ft

Project Information:
Operator Name
Chris Parker

Company Name
Atlantic Coast Consulting
Project Name
Plant Yates Phase 2 CCR
Site Name
Plant Yates

Site Name Plant Yates
Latitude 33° 27' 46.14"
Longitude -84° -53' -52.68"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC

Well Information: Pumping Information:

Final Pumping Rate Well ID YGWC-49 160 mL/min Well diameter Total System Volume 0.769391 L 2 in Calculated Sample Rate Well Total Depth 78.45 ft 300 sec Stabilization Drawdown Screen Length 10 ft 6 in Depth to Water 32.89 ft **Total Volume Pumped** 8 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	10:13:02	1500.00	18.44	5.80	288.58	6.74	33.40	1.40	47.65
Last 5	10:18:02	1799.99	18.52	5.81	290.25	5.31	33.40	1.31	46.61
Last 5	10:23:02	2100.02	18.69	5.81	291.47	5.08	33.40	1.30	46.53
Last 5	10:28:02	2399.99	18.74	5.81	292.17	4.50	33.40	1.30	47.73
Last 5	10:33:02	2699.98	18.83	5.81	291.87	4.23	33.40	1.30	48.07
Variance 0			0.16	0.00	1.21			-0.01	-0.09
Variance 1			0.06	-0.00	0.70			0.00	1.20
Variance 2			0.09	-0.00	-0.29			-0.00	0.34

Notes

Collected at 10:35. Sunny60s

Date: 2017-02-27 13:08:37

Tubing Diameter

Tubing Length

Bladder

.375 in

Poly

84 ft

74 ft

Project Information:

Operator Name

Company Name

Ryan Walker

Atlantic Coast Consulting, Inc.

Pump Information:

Pump Information:

Pump Model/Type

Tubing Type

Site Name Plant Yates - Phase 2

Latitude 33° 27' 36.3" Longitude -84° -53' -43.45"

Sonde SN 466058

Turbidity Make/Model Hach 2100Q Pump placement from TOC

Plant Yates AP - Phase 2 CCR

Well Information: Pumping Information:

Final Pumping Rate Well ID YGWC-49 130 mL/min Well diameter Total System Volume 2.309366 L 2 in Calculated Sample Rate Well Total Depth 79 ft 300 sec Stabilization Drawdown Screen Length 10 ft 6 in Depth to Water 5.2 L 33.60 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

Time		Elapsed	Temp C	рН	SpCond µS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	12:46:03	1200.00	16.76	5.84	259.61	0.83	34.00	2.00	30.66
Last 5	12:51:03	1500.00	16.78	5.78	260.86	1.31	34.10	1.86	45.95
Last 5	12:56:03	1800.00	16.74	5.73	262.47	1.07	34.10	1.66	55.83
Last 5	13:01:03	2100.00	16.74	5.70	263.29	0.93	34.10	1.63	62.32
Last 5	13:06:03	2399.98	16.68	5.68	263.71	0.96	34.10	1.62	67.85
Variance 0			-0.04	-0.05	1.61			-0.20	9.88
Variance 1			0.00	-0.02	0.82			-0.03	6.49
Variance 2			-0.06	-0.02	0.43			-0.01	5.53

Notes

Rain 50's. Sampled at 13:10.

Grab Samples

Project Name

Date: 2017-05-09 13:21:34

Pump Information:

Bladder

.375 in

Poly

79 ft

Project Information:
Operator Name

J Berisford

Operator Name

Company Name

Project Name

Plant Yates - Phase 2

Plant Yates - Phase 2

Tubing Type

Tubing Diameter

Tubing Length

Latitude 33° 27' 36.16" Longitude -84° -53' -43.68"

Sonde SN 466058

Turbidity Make/Model Hach 2100Q Pump placement from TOC 74 ft

Well Information: Pumping Information:

Final Pumping Rate 120 mL/min Well ID YGWC-49 Well diameter Total System Volume 2.200773 L 2 in Calculated Sample Rate Well Total Depth 79 ft 300 sec Stabilization Drawdown Screen Length 10 ft 6 in Depth to Water 33.54 ft **Total Volume Pumped** 3 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	13:00:01	300.09	21.33	6.42	248.26	0.71	34.00	2.16	139.70
Last 5	13:05:01	600.01	20.66	6.24	264.32	0.34	34.00	1.88	138.09
Last 5	13:10:01	900.01	20.68	6.20	266.96	0.76	34.00	1.76	138.74
Last 5	13:15:01	1200.01	20.57	6.19	267.90	0.44	34.00	1.68	139.98
Last 5	13:20:01	1500.01	20.69	6.18	268.90	0.45	34.00	1.64	141.49
Variance 0			0.02	-0.04	2.64			-0.12	0.65
Variance 1			-0.11	-0.01	0.94			-0.08	1.24
Variance 2			0.12	-0.01	1.00			-0.03	1.51

Notes

Sunny, sample time- 1320

Date: 2017-07-13 12:56:15

QED

Project Information:

Operator Name

Chris Parker

Pump Information:

Pump Model/Type

Company NameACCTubing TypeBladderProject NamePlant Yates - Phase 2Tubing Diameter.375 inSite NamePlant Yates - Phase 2 CCRTubing Length80.0 ft

Latitude 33° 27' 27.71" Longitude -84° -53' -49.99"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 75.0 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID YGWC-49 200 mL/min Well diameter Total System Volume 2.222492 L 2 in Calculated Sample Rate Well Total Depth 79.00 ft 300 sec Stabilization Drawdown Screen Length 10 ft 8 in Depth to Water 33.20 ft **Total Volume Pumped** 8 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV	
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O	
Last 5	12:29:58	603.02	21.37	5.63	266.42	1.56	33.80	1.95	97.85	
Last 5	12:34:58	903.02	20.87	5.59	265.80	1.33	33.90	1.72	95.56	
Last 5	12:40:05	1210.01	20.64	5.58	266.16	1.24	33.90	1.60	94.20	
Last 5	12:45:06	1511.02	20.57	5.60	265.79	0.94	33.90	1.61	91.05	
Last 5	12:50:06	1811.02	20.66	5.60	266.16	0.78	33.90	1.60	87.30	
Variance 0			-0.23	-0.01	0.35			-0.12	-1.36	
Variance 1			-0.07	0.01	-0.37			0.01	-3.15	
Variance 2			0.09	0.00	0.37			-0.01	-3.75	

Notes

Collected at 12:55. Sunny 80s. EB-1 here.

Date: 2017-10-11 13:22:44

Project Information:

Operator Name Chris Parker Company Name ACC

Project Name

Plant Yates - Phase 2

Site Name

Plant Yates - Phase 2

Plant Yates - Phase 2 CCR

Latitude 33° 27' 27.71" Longitude -84° -53' -49.99"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Well Information:

Well ID YGWC-49
Well diameter 2 in
Well Total Depth 79.0 ft
Screen Length 10 ft
Depth to Water 32.17 ft

Pump Information:

Pump Model/Type QED
Tubing Type Bladder
Tubing Diameter .375 in
Tubing Length 80.0 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 160 mL/min
Total System Volume 2.222492 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 5 in
Total Volume Pumped 8.8 L

74.0 ft

Low-Flow Sampling Stabilization Summary

	Time Elapsed		Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	12:58:12	1501.00	22.67	5.60	266.68	5.89	32.70	1.82	115.25
Last 5	13:03:12	1800.99	22.58	5.62	265.11	6.71	32.70	1.77	118.17
Last 5	13:08:12	2100.99	21.99	5.55	265.21	5.99	32.70	1.78	123.85
Last 5	13:13:12	2400.99	22.12	5.56	266.99	4.98	32.70	1.78	123.58
Last 5	13:18:12	2700.99	22.55	5.61	266.86	4.30	32.70	1.76	124.43
Variance 0			-0.59	-0.07	0.11			0.01	5.68
Variance 1			0.13	0.01	1.77			0.00	-0.26
Variance 2			0.43	0.05	-0.13			-0.02	0.84

Notes

Collected at 13:25. Sunny 80s. DUP 1 here

Date: 2018-04-04 12:50:56

Project Information:

Operator Name J Berisford

Company Name
Project Name
Site Name
Atlantic Coast Consulting
Plant Yates- Phase 2
Plant Yates

Latitude 33° 27' 36.26" Longitude -84° -53' -43.39"

Sonde SN 466058

Turbidity Make/Model Hach 2100Q Pump placement from TOC

Well Information:

Well ID YGWC-49
Well diameter 2 in
Well Total Depth 79 ft
Screen Length 10 ft
Depth to Water 31.7 ft

Pump Information:

Pump Model/Type QED Bladder

Tubing Type poly
Tubing Diameter .375 in
Tubing Length 79 ft

Pumping Information:

Final Pumping Rate 160 mL/min
Total System Volume 2.200773 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 7.2 in
Total Volume Pumped 4.8 L

74 ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 10	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 10
Last 5	12:25:04	300.09	17.85	6.38	265.32	1.57	32.20	1.36	84.52
Last 5	12:30:03	600.02	17.92	6.12	264.55	1.75	32.30	1.96	85.06
Last 5	12:40:04	1201.00	18.02	6.04	263.46	2.16	32.30	1.95	88.39
Last 5	12:45:04	1501.00	18.04	5.99	264.03	1.99	32.30	1.95	89.66
Last 5	12:50:04	1800.99	18.21	5.98	263.33	1.92	32.30	1.94	91.02
Variance 0			0.11	-0.08	-1.09			-0.01	3.33
Variance 1			0.01	-0.05	0.56			-0.00	1.27
Variance 2			0.17	-0.02	-0.70			-0.01	1.36

Notes

Sunny, sample time -1250, FB-6-4-4-18

Date: 2018-09-20 13:52:05

Tubing Type

Pump Information: Pump Model/Type

Tubing Diameter

Tubing Length

Project Information:

Operator Name Chris Parker Company Name ACC

Company Name ACC
Project Name Plant Yates - Phase 2
Site Name Plant Yates - Phase 2 CCR

Latitude 33° 27' 27.71" Longitude -84° -53' -49.99"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Pump placement from TOC

74 ft

QED

Bladder

.25 in

79 ft

Well Information:

Well IDYGWC-49Well diameter2 inWell Total Depth79 ftScreen Length10 ftDepth to Water31.7 ft

Pumping Information:

Final Pumping Rate 150 mL/min
Total System Volume 1.247566 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 6 in
Total Volume Pumped 6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	13:30:20	600.04	22.22	5.85	249.60	2.77	32.10	1.81	47.10
Last 5	13:35:20	900.04	21.58	5.73	248.77	1.89	32.10	2.02	65.76
Last 5	13:40:20	1200.03	21.12	5.67	248.90	1.52	32.20	2.01	71.15
Last 5	13:45:20	1500.02	20.88	5.67	249.18	1.48	32.20	2.01	72.66
Last 5	13:50:20	1800.02	20.75	5.67	249.32	1.29	32.20	2.03	73.83
Variance 0			-0.47	-0.06	0.13			-0.01	5.39
Variance 1			-0.23	0.00	0.29			0.00	1.50
Variance 2			-0.13	0.00	0.13			0.01	1.17

Notes

Collected at 13:55. Sunny 90s. DUP -1 here

Date: 2019-03-28 10:31:00

Project Information:

Operator Name Chris Parker

Company Name
Project Name
Site Name
Plant Yates - Pond A
Plant Yates
Plant Yates
Plant Yates

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 369807

Turbidity Make/Model Hach 2100 Q

Well Information:

Well ID YGWC-49
Well diameter 2 in
Well Total Depth 79.0 ft
Screen Length 10 ft
Depth to Water 29.32 ft

Pump Information:

Pump Model/Type Bladder Pump

74 ft

Tubing Type Poly
Tubing Diameter .25 in
Tubing Length 79 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 160 mL/min
Total System Volume 1.247566 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 5 in
Total Volume Pumped 6.4 L

Low-Flow Sampling Stabilization Summary

Time	Time	Elapsed	Temp C	рН	SpCond μS	/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	10:09:33	900.00	16.92	5.95	260.01	3.70	29.70	2.20	151.43
Last 5	10:14:33	1199.99	17.18	5.90	259.29	3.25	29.70	2.17	153.64
Last 5	10:19:33	1499.98	17.36	5.88	259.56	3.42	29.70	2.12	154.61
Last 5	10:24:33	1799.98	17.62	5.86	259.42	2.82	29.70	2.07	155.18
Last 5	10:29:33	2099.97	17.72	5.86	259.54	2.67	29.70	2.08	153.60
Variance 0			0.18	-0.02	0.27			-0.06	0.97
Variance 1			0.26	-0.02	-0.14			-0.04	0.57
Variance 2			0.10	-0.00	0.12			0.01	-1.58

Notes

Sampled at 10:30. Sunny 50s

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AZI0049

September 12, 2016

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, Inc.

All test results relate only to the samples analyzed.

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
YGWC-46	AZI0049-01	Ground Water	09/01/16 09:50	09/02/16 08:35
YGWC-49	AZI0049-02	Ground Water	09/01/16 10:04	09/02/16 08:35

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0049 Client ID: YGWC-46

Date/Time Sampled: 9/1/2016 9:50:00AM

Matrix: Ground Water

September 12, 2016

Project: CCR Event
Lab Number ID: AZI0049-01

Date/Time Received: 9/2/2016 8:35:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1240	25	10	mg/L	SM 2540 C		1	09/06/16 19:55	09/06/16 19:55	6090125	JPT
Inorganic Anions											
Chloride	37	0.25	0.01	mg/L	EPA 300.0	B-01	1	09/05/16 10:11	09/05/16 18:18	6090088	RLC
Fluoride	0.08	0.30	0.02	mg/L	EPA 300.0	J	1	09/05/16 10:11	09/05/16 18:18	6090088	RLC
Sulfate	770	20	1.0	mg/L	EPA 300.0		20	09/05/16 10:11	09/07/16 01:33	6090088	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Barium	0.0414	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Boron	2.12	1.00	0.0642	mg/L	EPA 6020B		10	09/06/16 10:15	09/08/16 17:36	6090062	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Calcium	96.8	5.00	0.311	mg/L	EPA 6020B		10	09/06/16 10:15	09/08/16 17:36	6090062	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Cobalt	0.0171	0.0100	0.0005	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Selenium	ND	0.0100	0.0010	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Lithium	0.0077	0.0500	0.0021	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 19:03	6090062	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 11:30	09/06/16 16:12	6090078	MTC

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0049 Client ID: YGWC-49

Date/Time Sampled: 9/1/2016 10:04:00AM

Matrix: Ground Water

September 12, 2016

Project: CCR Event
Lab Number ID: AZI0049-02

Date/Time Received: 9/2/2016 8:35:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	228	25	10	mg/L	SM 2540 C		1	09/06/16 19:55	09/06/16 19:55	6090125	JPT
Inorganic Anions											
Chloride	5.3	0.25	0.01	mg/L	EPA 300.0	B-01	1	09/05/16 10:11	09/05/16 18:38	6090088	RLC
Fluoride	0.09	0.30	0.02	mg/L	EPA 300.0	J	1	09/05/16 10:11	09/05/16 18:38	6090088	RLC
Sulfate	95	5.0	0.26	mg/L	EPA 300.0		5	09/05/16 10:11	09/07/16 01:54	6090088	RLC
Metals, Total											
Antimony	ND	0.0030	8000.0	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Barium	0.0770	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Beryllium	0.0001	0.0030	0.00008	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Boron	0.0113	0.100	0.0064	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Calcium	13.9	2.50	0.155	mg/L	EPA 6020B		5	09/06/16 10:15	09/08/16 17:42	6090062	CSW
Chromium	0.0013	0.0100	0.0009	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Selenium	0.0086	0.0100	0.0010	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Lithium	0.0034	0.0500	0.0021	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 19:09	6090062	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 11:30	09/06/16 16:19	6090078	MTC

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0049

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090125 - SM 2540 C											
Blank (6090125-BLK1)						Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	ND	25	10	mg/L		•					
LCS (6090125-BS1)						Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	402	25	10	mg/L	400.00		100	84-108			
Duplicate (6090125-DUP1)		Soi	urce: AZI00	22-04		Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	77	25	10	mg/L		190			85	10	QR-03
Duplicate (6090125-DUP2)		Soi	urce: AZI00	22-09		Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	429	25	10	mg/L		406		-	6	10	

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0049

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090088 - EPA 300.0											
Blank (6090088-BLK1)						Prepare	ed & Analy	yzed: 09/0	5/16		
Chloride	0.05	0.25	0.01	mg/L							J
Fluoride	ND	0.30	0.02	mg/L							
Sulfate	ND	1.0	0.05	mg/L							
LCS (6090088-BS1)						Prepare	ed & Analy	yzed: 09/0	5/16		
Chloride	10.1	0.25	0.01	mg/L	10.010		101	90-110			
Fluoride	10.0	0.30	0.02	mg/L	10.010		100	90-110			
Sulfate	10.2	1.0	0.05	mg/L	10.010		102	90-110			
Matrix Spike (6090088-MS1)		Sou	rce: AZI00	50-01		Prepare	ed & Analy	yzed: 09/0	5/16		
Chloride	466	0.25	0.01	mg/L	10.010	478	NR	90-110			QM-02
Fluoride	11.8	0.30	0.02	mg/L	10.010	0.34	114	90-110			QM-05
Sulfate	275	1.0	0.05	mg/L	10.010	291	NR	90-110			QM-02
Matrix Spike (6090088-MS2)		Sou	ırce: AZI00	59-03		Prepare	ed: 09/05/	16 Analyz	ed: 09/06/	/16	
Chloride	13.9	0.25	0.01	mg/L	10.010	3.33	105	90-110			
Fluoride	10.9	0.30	0.02	mg/L	10.010	0.20	107	90-110			
Sulfate	12.7	1.0	0.05	mg/L	10.010	2.66	101	90-110			
Matrix Spike Dup (6090088-MSD1)		Sou	ırce: AZI00	50-01		Prepare	ed & Analy	yzed: 09/0	5/16		
Chloride	486	0.25	0.01	mg/L	10.010	478	84	90-110	4	15	QM-02
Fluoride	11.7	0.30	0.02	mg/L	10.010	0.34	114	90-110	0.4	15	QM-05
Sulfate	275	1.0	0.05	mg/L	10.010	291	NR	90-110	0.1	15	QM-02

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham September 12, 2016

Report No.: AZI0049

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090062 - EPA 3005A											
Blank (6090062-BLK1)	Prepared: 09/06/16 Analyzed: 09/07/16										
Antimony	ND	0.0030	0.0008	mg/L							
Arsenic	ND	0.0050	0.0016	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00008	mg/L							
Boron	ND	0.100	0.0064	mg/L							
Cadmium	ND	0.0010	0.00007	mg/L							
Calcium	ND	0.500	0.0311	mg/L							
Chromium	ND	0.0100	0.0009	mg/L							
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0050	0.0005	mg/L							
Lead	ND	0.0050	0.0001	mg/L							
Molybdenum	ND	0.0100	0.0017	mg/L							
Nickel	ND	0.0050	0.0006	mg/L							
Selenium	ND	0.0100	0.0010	mg/L							
Silver	ND	0.0050	0.0005	mg/L							
Thallium	ND	0.0010	0.0002	mg/L							
Vanadium	ND	0.0100	0.0071	mg/L							
Zinc	ND	0.0100	0.0021	mg/L							
Lithium	ND	0.0500	0.0021	mg/L							
				9. =							
LCS (6090062-BS1)						Prepare		16 Analyz	ed: 09/07/	/16	
Antimony	0.111	0.0030	8000.0	mg/L	0.10000		111	80-120			
Arsenic	0.101	0.0050	0.0016	mg/L	0.10000		101	80-120			
Barium	0.100	0.0100	0.0004	mg/L	0.10000		100	80-120			
Beryllium	0.104	0.0030	0.00008	mg/L	0.10000		104	80-120			
Boron	1.04	0.100	0.0064	mg/L	1.0000		104	80-120			
Cadmium	0.105	0.0010	0.00007	mg/L	0.10000		105	80-120			
Calcium	1.00	0.500	0.0311	mg/L	1.0000		100	80-120			
Chromium	0.104	0.0100	0.0009	mg/L	0.10000		104	80-120			
Cobalt	0.101	0.0100	0.0005	mg/L	0.10000		101	80-120			
Copper	0.101	0.0050	0.0005	mg/L	0.10000		101	80-120			
Lead	0.100	0.0050	0.0001	mg/L	0.10000		100	80-120			
Molybdenum	0.105	0.0100	0.0017	mg/L	0.10000		105	80-120			
Nickel	0.102	0.0050	0.0006	mg/L	0.10000		102	80-120			
Selenium	0.107	0.0100	0.0010	mg/L	0.10000		107	80-120			
Silver	0.101	0.0050	0.0005	mg/L	0.10000		101	80-120			
Thallium	0.101	0.0010	0.0002	mg/L	0.10000		101	80-120			
Vanadium	0.103	0.0100	0.0071	mg/L	0.10000		103	80-120			
Zinc	0.105	0.0100	0.0021	mg/L	0.10000		105	80-120			
Lithium	0.106	0.0500	0.0021	mg/L	0.10000		106	80-120			

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0049

Metals, Total - Quality Control

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Spike %REC RPD Source RL Result MDI Units Analyte Level Result %REC Limits **RPD** Limit Notes Batch 6090062 - EPA 3005A Matrix Spike (6090062-MS1) Source: AZI0050-04 Prepared: 09/06/16 Analyzed: 09/07/16 Antimony 0.106 0.0030 0.0008 0.10000 ND 106 75-125 ma/L Arsenic 0.111 0.0050 0.0016 0.10000 0.0095 102 75-125 mg/L Barium 0.157 0.0100 0.0004 mg/L 0.10000 0.0666 91 75-125 0.0934 0.0030 Beryllium 0.00008 mg/L 0.10000 ND 93 75-125 0.100 Boron 1.14 0.0064 mg/L 1.0000 0.349 79 75-125 0.102 0.0010 0.00007 Cadmium mg/L 0.10000 ND 102 75-125 9.88 0.500 Calcium 0.0311 mg/L 1.0000 8.90 97 75-125 0.101 0.0100 0.0009 0.10000 NΠ 101 75-125 Chromium mg/L 0.0950 0.0100 0.0005 75-125 Cobalt mg/L 0.10000 NΠ 95 0.0050 Copper 0.0995 0.0005 mg/L 0.10000 ND 99 75-125 0.0961 0.0050 0.0001 0.10000 ND 96 75-125 Lead mg/L 0.0100 Molybdenum 0.102 0.0017 mg/L 0.10000 ND 102 75-125 0.104 0.0050 0.0006 0.0042 Nickel 99 75-125 mg/L 0.10000 0.0100 0.100 0.0010 Selenium mg/L 0.10000 ND 100 75-125 0.0927 0.0050 Silver 0.0005 mg/L 0.10000 ND 93 75-125 Thallium 0.0952 0.0010 0.0002 0.10000 ND 95 75-125 mg/L 0.104 0.0100 0.0071 Vanadium mg/L 0.10000 ND 104 75-125 0.108 0.0100 0.0021 0.0026 105 75-125 Zinc 0.10000 mg/L Lithium 0.102 0.0500 0.0021 0.10000 0.0044 98 75-125 mg/L Matrix Spike Dup (6090062-MSD1) Source: AZI0050-04 Prepared: 09/06/16 Analyzed: 09/07/16 0.107 0.0030 0.0008 Antimony 0.10000 ND 75-125 8.0 20 mg/L 107 0.0050 0.111 Arsenic 0.0016 mg/L 0.10000 0.0095 102 75-125 0.003 20 0.0100 Barium 0.143 0.0004 mg/L 0.10000 0.0666 77 75-125 9 20 0.0897 0.0030 0.00008 90 20 Beryllium mg/L 0.10000 ND 75-125 4 0.100 Boron 1.05 0.0064 1.0000 0.349 70 75-125 8 20 QM-02 mg/L 0.101 0.0010 0.00007 0.10000 ND 75-125 Cadmium mg/L 101 1 20 0.500 Calcium 7.88 0.0311 1.0000 NR 22 mg/L 8 90 75-125 20 QM-02, QR-03 0.102 0.0100 0.0009 0.10000 ND 75-125 0.6 Chromium mg/L 102 20 0.0100 0.0984 Cobalt 0.0005 mg/L 0.10000 ND 98 75-125 3 20 0.0050 Copper 0.0997 0.0005 mg/L 0.10000 ND 100 75-125 0.3 20 Lead 0.0959 0.0050 0.0001 mg/L 0.10000 ND 96 75-125 0.2 20 0.0100 Molybdenum 0.0991 0.0017 ma/L 0.10000 ND 99 75-125 3 20 0.103 0.0050 0.0006 0.6 Nickel ma/L 0.10000 0.0042 99 75-125 20 0.104 0.0100 0.0010 ND 4 20 Selenium mg/L 0.10000 104 75-125 Silver 0.0963 0.0050 0.0005 0.10000 ND 96 75-125 4 20 mg/L Thallium 0.0952 0.0010 0.0002 mg/L 0.10000 ND 95 75-125 0.06 20 Vanadium 0.103 0.0100 0.0071 mg/L 0.10000 ND 103 75-125 0.6 20 Zinc 0.106 0.0100 0.0021 mg/L 0.10000 0.0026 103 75-125 2 20

September 12, 2016

Georgia Power 2480 Maner Road Atlanta GA, 30339

Mercury

Attention: Mr. Joju Abraham September 12, 2016

Report No.: AZI0049

Metals, Total - Quality Control

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090062 - EPA 3005A											
Matrix Spike Dup (6090062-MSD	01)	Sou	rce: AZI00	50-04		Prepare	ed: 09/06/	16 Analyz	ed: 09/07/	′16	
Lithium	0.0974	0.0500	0.0021	mg/L	0.10000	0.0044	93	75-125	5	20	
Post Spike (6090062-PS1)		Sou	ırce: AZI00	50-04		Prepare	ed: 09/06/	16 Analyz	ed: 09/07/	′16	
Antimony	99.5			ug/L	100.00	0.100	99	80-120			
Arsenic	112			ug/L	100.00	9.50	102	80-120			
Barium	159			ug/L	100.00	66.6	92	80-120			
Beryllium	91.8			ug/L	100.00	0.0195	92	80-120			
Boron	1120			ug/L	1000.0	349	77	80-120			QM-02
Cadmium	101			ug/L	100.00	-0.0066	101	80-120			
Calcium	9570			ug/L	1000.0	8900	67	80-120			QM-02
Chromium	104			ug/L	100.00	0.586	104	80-120			
Cobalt	100			ug/L	100.00	0.0381	100	80-120			
Copper	101			ug/L	100.00	0.224	101	80-120			
Lead	93.7			ug/L	100.00	0.0558	94	80-120			
Molybdenum	101			ug/L	100.00	0.0984	101	80-120			
Nickel	104			ug/L	100.00	4.21	100	80-120			
Selenium	104			ug/L	100.00	0.394	103	80-120			
Silver	94.0			ug/L	100.00	-0.000050	94	80-120			
Thallium	93.2			ug/L	100.00	0.0002	93	80-120			
Vanadium	107			ug/L	100.00	2.25	104	80-120			
Zinc	104			ug/L	100.00	2.61	102	80-120			
Lithium	97.5			ug/L	100.00	4.38	93	80-120			
Batch 6090078 - EPA 7470A											
Blank (6090078-BLK1)						Prepare	ed & Anal	yzed: 09/0	6/16		

mg/L

0.00050

0.000041

Georgia Power 2480 Maner Road

Atlanta GA, 30339

Attention: Mr. Joju Abraham Report No.: AZI0049

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090078 - EPA 7470A											
LCS (6090078-BS1)						Prepare	ed & Anal	yzed: 09/06	6/16		
Mercury	0.00241	0.00050	0.000041	mg/L	2.5000E-3		96	80-120			
Matrix Spike (6090078-MS1)		Sou	ırce: AZI003	8-05		Prepare	ed & Anal	yzed: 09/06	6/16		
Mercury	0.00241	0.00050	0.000041	mg/L	2.5000E-3	ND	96	75-125			
Matrix Spike Dup (6090078-MSD1)		Sou	ırce: AZI003	8-05		Prepare	ed & Anal	yzed: 09/06	6/16		
Mercury	0.00234	0.00050	0.000041	mg/L	2.5000E-3	ND	93	75-125	3	20	
Post Spike (6090078-PS1)		Sou	ırce: AZI003	8-05		Prepare	ed & Anal	yzed: 09/06	6/16		
Mercury	1.69			ug/L	1.6667	0.00587	101	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham September 12, 2016

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QR-03** The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to suspected matrix interference and/or non-homogeneous sample matrix.
- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD and/or PDS due to suspected matrix interference. Sample results for the QC batch were accepted based on acceptable LCS recoveries.
- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).
 - B-01 Analyte was detected in the associated method blank at an estimated level equal to or greater than the MDL. Sample values reported as greater than the MDL and less than 10x the method blank value are reported as estimated values.

Note: Unless otherwise noted, all results are reported on an as received basis.

CHAIN OF CUSTODY RECORD /

Pace Analytical Tho Technology Parkway, PEACHTREE CORNERS, GA 30092 (770) 734-4200: FAX (770) 734-4201: www.asi-lab.com

6

•

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen REMARKS/ADDITIONAL INFORMATION 2 - H₂SO4, ≤6°C 4 - NaOH, ≤6°C P - PRODUCT PRESERVATION 1 - HCI, 56°C SL - SLUDGE L- LIQUID anos - as 3- HNO3 S - SOL A - AIR FOR LAB USE ONL MATHIX CODES: GW - GROUNDWATER SW - SURFACE WATER ST - STORM WATER **DRINKING WATER VW - WASTEWATER** A - AMBER GLASS G - CLEAR GLASS Entered into LIMS: CONTAINER TYPE V - VOA VIAL S - STERILE O - OTHER P - PLASTIC W - WATER racking # LAB#: - **4** 0 - 0 OTHER DATE/TIME: DATE/TIME: CLIENT (ANALYSIS REQUESTED COURIER # of Coders 2AN-846 9316/9320 8SS & 9SS mulbsA USPS Not Present EPA 300.0, TDS SM 2540C SAMPLE SHIPPED VIA: UPS FED-EX (Cystocky Seat: Antacl Broken Not Pre IC (CI, F, SO4) RELINQUISHED BY: EPA 6020/7470 RELINQUISHED BY VI & III .qqA sleteM CONTAINER TYPE: RESERVATION **j**0# 002-4-2mes 083 CC: MRPADILL@southernco.com CHMCCORK@southernco.com SAMPLE IDENTIFICATION 130 Southern Company Services LLMILLET@southernco.com DATE/TIME, 1-1/ 15W-16 DATE/TME: / Temberature: / 10 / Min: DATE/TIME: YATES AP CCR GW CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER 241 Raiph McOIII BIWd. SE, 810185 **σα∢** α SS Mes No NA 0020 JABRAHAM@southernco.com Joju Abraham MATRIX CODE REQUESTED COMPLETION DATE: ZZZ \mathcal{S} લ STANDARD 200 PROJECT NAME/STATE: Collection TIME SAMPLED BY AND THE 0950 NA NA HECELVED BY LAB Atlanta, GA 30308 ECEIVED BY: CLIENT NAME HEPORT TO: PROJECT #: Collection DATE 9-1-16

Pace COC Plant Yates AP CCR GW

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

P

Note	CLIENT NAME:		Ø	ş	Southern Company Services			¥	JALYS	ANALYSIS REQUESTED	ESTE	٩				CONTAINER TYPE	PRESERVATION	
Software Color C						CONTAINER TYPE	Ц	a.	Ь		_	L				P - PLASTIC	1 - HCI, 56°C	
Mark St., British	CLIENT ADDRESS/P	HONE NUM		FAX	UMBER:	PRESERVATION		7	က			L			m	A - AMBER GLASS	2 - H,SO, ≤6°C	
All All All All All All All All All Al	241 Raiph McGIII Blvd Atlanta, GA 30308	I. SE, B1018	₹.			**************************************	In the same									G - CLEAR GLASS V - VOA VIAL	3 - HNO₃ 4 - NaOH, ≤6°C	
STANDARD OF F. DOF F. T T T T T T T T T	REPORT TO: JABRAHAM®	Joju Abrat southernco.	man .com		CC: MRPADILL@southernco.com CHMCCORK@southernco.com	оо: Т	Yankaa				····	_			- a	S - STERILE O - OTHER	5 - NaOH/ZnAc, ≤ 6 - Na ₂ S ₂ O ₃ , ≤6°C 7 - ≤6°C not froze	ပ္စ
Philoso 2 C.C. Philoso 3 C.C. Time	REQUESTED COMPI STAI	LETION DAT	ij		PO #:	2 ⊢ ∢	(care dis		_						z =	INATE	V CODES	
Phice C.C. SAMPLE IDENTIFICATION S. B. B. C.	PROJECT NAME/ST/	l	TES	AP (CCR GW	- 2 u	Λ (2.12) 2.0	OPSZ WS	•							W - DRINKING WATER	S - SOIL	
CODE IN A PARTIEL CODE IN A SAMPLE IDENTIFICATION WITH STATE CODE IN A SAMPLE SHIPPED VIA. Partiel Code ID	PROJECT #:	Phase	1	პ	2) Œ Ø	1 18 11) 1 18 11)	(40	9 8 556					· · ·		W - WASIEWAIEH W - GROUNDWATER W - SIBFACE WATER	SL - SLUUGE SD - SOLID A - AIR	
COOK (LW) X VIGUIC-49 3 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2			× 2.				Metals App TOSOS A93	C (Cl, F, S	Radium 22								L- LIQUID P- PRODUCT	- 1
POTITIE POTETIME WE Stade THE LINGUISHED BY: BY STADE SHIPPED VIA: THE LINGUISHED BY: BY STADE SHIPPED VIA: THE LINGUISHED BY: BY STADE SHIPPED VIA: THE LINGUISHED BY: THE LINGUISHED BY: BY STADE SHIPPED VIA: THE LINGUISHED BY: THE SHIPPED VIA: THE BY: THE SHIPPED VIA: THE BY: T	91/1	╟╫	2			8									7			
Pare			+	+			\perp	\bot	\perp		+							
POTITIE: PATENTIME: PATENTIM			+	+		-	\perp		\perp		+	-						-
PTITLE: DATE/TIME:			H	H							+	-	L					
NOTITIE: DATE/TIME: A RELINQUISHED BY: A SAMPLE SHIPPED VIA: DATE/TIME: BRIEFER CLIENT OTHER FS Tracking #: India			+	+														
NATITIE: PATE/TIME: // BATE/TIME: // BATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME: BATE/TIME: BATE/T			十一	+			_		_		+	-			1			
PATITIE: BATESTIME: RELINQUISHED BY: SELVENDOUSHED BY: SCUBLING BELINQUISHED BY: BATESTIME: BATESTI			\vdash	\forall							H							
AN MAN I Temperature: 1 PATE/TIME: 1 PATE/TIME: 1 PATE/TIME: 2 PATE/TI		-		+				\perp			+	_						- 1
PATEITIME: DATEITIME: RELINQUISHED BY: ST. DATEITIME: LAB #: PATEITIME: DATEITIME: LAB #: DATEITIME: LAB #: PATEITIME: LAB #: DATEITIME: LAB #: Entered into 1 Tracking #: India 1062 No NA 1 min Max India 10 Coolers Cooler C											+							İ
DATE/TIME: DATE/TIME: PELINQUISHED BY: DATE/TIME: Entered into 1	SAMPLED BY AND THE	TLE Bowon			DATE/TIME: //L	RELINOUIS	TED BY	N,		} 		DATE	TIME:	1/16	5		USE ONLY	
LAW MAN DATE TIME 16 0835 SAMPLE SHIPPED VIA: CAUMIER CLIENT OTHER FS IND. NA 1 Min. 1 Max. / Infact. / Broken Not Present: 8 of Coolers Cooler ID: NA Keig. No. NA 1 Min. 1 Max. / Infact. / Broken Not Present:	RECEIVED BY:					RELINQUIS	LED BY					DATE	TIME			th t	2400	
100 NA (1662) NO NA 1 Mir. / Max. / Intract / Broken Not Present 8 of Coolars	TESTED IN THE	man	7	$ \cdot $	5680 91	SAMPLE SH UPS FI	PPED D-EX	.¥! ∪.	3PS	COURIER		ZIENZ)				acking #:		
	و	<u>~</u>		₹	perature: (/ Max.	Postedy Seat: Intact Brot	Les Les	lot Presi		# of Coolars		Teloo)						

Pace COC Plant Yates AP CCR GW

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 9/12/2016 5:43:47PM

Attn: Mr. Joju Abraham

Client: Georgia Power

Project: CCR Event Work Order: AZI0049

Date Received: 09/02/16 08:35 Logged In By: Mohammad M. Rahman

OBSERVATIONS

#Samples: 2 **#Containers:** 7

Minimum Temp(C): 1.0 Maximum Temp(C): 1.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

C
S
S
S
S
S
S
S
S
S
S
S

Comments:

October 04, 2016

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: Yates AP CCR GW

Pace Project No.: 30195135

Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on September 06, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins

Legalylellin

jacquelyn.collins@pacelabs.com

Project Manager

Enclosures

Pace Analytical Services, LLC

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Yates AP CCR GW Project:

Pace Project No.: 30195135

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification

Hawaii Certification

Idaho Certification

Illinois Certification

Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008

Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification

Missouri Certification #: 235

Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14

Nevada Certification #: PA014572015-1

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification #: PA01457

New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8

Utah/TNI Certification #: PA014572015-5

USDA Soil Permit #: P330-14-00213

Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 460198

Washington Certification #: C868

West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C Wisconsin Certification

Wyoming Certification #: 8TMS-L

Pace Analytical Services, LLC

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE SUMMARY

Project: Yates AP CCR GW

Pace Project No.: 30195135

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30195135001	YGWC-46	Water	09/01/16 09:50	09/06/16 08:50

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: Yates AP CCR GW

Pace Project No.: 30195135

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30195135001	YGWC-46	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Yates AP CCR GW

Pace Project No.: 30195135

Sample: YGWC-46 PWS:	Lab ID: 3019513 Site ID:	5001 Collected: 09/01/16 09:50 Sample Type:	Received:	09/06/16 08:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.467 ± 0.226 (0.277) C:87% T:NA	pCi/L	09/28/16 11:36	13982-63-3	
Radium-228	EPA 9320	1.81 ± 0.565 (0.708) C:80% T:83%	pCi/L	09/23/16 22:08	3 15262-20-1	
Total Radium	Total Radium Calculation	2.28 ± 0.791 (0.985)	pCi/L	10/04/16 15:39	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: Yates AP CCR GW

Pace Project No.: 30195135

QC Batch: 232981 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30195135001

METHOD BLANK: 1141806 Matrix: Water

Associated Lab Samples: 30195135001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0211 ± 0.0919 (0.290) C:86% T:NA
 pCi/L
 09/28/16 11:34

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: Yates AP CCR GW

Pace Project No.: 30195135

QC Batch: 232987 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30195135001

METHOD BLANK: 1141823 Matrix: Water

Associated Lab Samples: 30195135001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.450 ± 0.440 (0.907) C:80% T:77%
 pCi/L
 09/23/16 22:33

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Yates AP CCR GW

Pace Project No.: 30195135

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 10/04/2016 05:00 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

CHAIN OF CUSTODY RECORD

Face Analytical Pace Analy (770) 734-4

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

Ь

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen REMARKS/ADDITIONAL INFORMATION 4 - NaOH, ≤6°C 2 - H₂SO₄, ≤6°C L - LIQUID P - PRODUCT S- SOIL SL- SLUDGE PRESERVATION 1 - HCI, ≤6°C SD - SOLID 3- HNO3 A - AIR FOR LAB USE ONLY *MATRIX CODES DRINKING WATER SW - SURFACE WATER ST - STORM WATER W - WATER SURFACE WATER GW - GROUNDWATER WW - WASTEWATER A - AMBER GLASS G - CLEAR GLASS Entered into LIMS: V - VOA VIAL S - STERILE O - OTHER P - PLASTIC Tracking #: LAB #: . MQ WO#:30195135 _ 0 9 A L 5590 FS OTHER DATE/TIME: 30195135 Cooler ID: CLENT <u>ANALYSIS REQUESTED</u> COURIER # of Coolers 0ZE6/91E6 9#8-MS ட ო Radium 226 & 228 USPS Not Presen EPA 300.0, TDS SM 2540C α. IC (CI' E' 204) SAMPLE SHIPPED VIA: JPS FED-EX RELINQUISHED BY: 0747\0S08 A93 RELINQUISHED BY: ۵. Metals App. III & IV UPS FE Custody Seal: CONTAINER TYPE: PRESERVATION: # of 00×-4-2mms 6:53 CC: MRPADILL@southernco.com SAMPLE IDENTIFICATION CHMCCORK@southernco.com Max. (33) 130 Southern Company Services LLMILLET@southernco.com DATE/TIME: DATE/ZEME: 2/ DATE/TIME: (6) 15 DC - 19 emperature; YATES AP CCR GW CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER: PO #: O H A B No NA 0024 IP LE JABRAHAM@southernco.com Joju Abraham MATRIX CODE* REQUESTED COMPLETION DATE: 241 Ralph McGill Blvd. SE, B10185 B Cf ichiel Hitelinan APICO CO STANDARD Dars. 正を図 Collection TIME PROJECT NAME/STATE: 0950 Atlanta, GA 30308 ECEINED BY CLIENT NAME: REPORT TO: Collection DATE SAMPLED 9.1.16 PROJECT

Pace COC Plant Yates AP CCR GW

Sample Condition Upon Rec	eipt l	Pittsl	ourg	ıh					
Pace Analytical Client Name:		_fa	20	e, GA	Project#_	30	1	9 5	13
Courier: Fed Ex UPS USPS Clic Tracking #: 6812 5098 884 Custody Seal on Cooler/Box Present: yes				☐ Pace Other					
Thermometer Used	,	of Ice							
Cooler Temperature Observed Temp	mags.	٠c		rection Factor:	°C Final 7	emp:	93-	٠c	;
Temp should be above freezing to 6°C									
					Date and Ir	nitials of page	ion ex	aminin	2
Comments:	Yes	No	N/A	N .					
Chain of Custody Present:	$\perp X$			1.					
Chain of Custody Filled Out:	X			2.					_
Chain of Custody Relinquished:	$\perp X$		<u> </u>	3,		<u> </u>			
Sampler Name & Signature on COC:	$\perp X$			4.					
Sample Labels match COC:	\mathbb{X}			5.					
-Includes date/time/ID/Analysis Matrix:	<u>VT</u>								
Samples Arrived within Hold Time:	X			6.					
Short Hold Time Analysis (<72hr remaining):		X		7.					
Rush Turn Around Time Requested:		X		8.					
Sufficient Volume:	X			9.					
Correct Containers Used:	X,			10.					
-Pace Containers Used:		X							
Containers Intact:	X			11.					
Filtered volume received for Dissolved tests			X	12.					
All containers needing preservation have been checked.	X.			13. 110					
All containers needing preservation are found to be in compliance with EPA recommendation.	X			PHCZ					
exceptions: VOA, coliform, TOC, O&G, Phenolics	;			Initial when a completed and formulated by the completed by the complete by th	Date/time of preservation				
Headspace in VOA Vials (>6mm):			X	14.					
Trip Blank Present:		X		15.					
Trip Blank Custody Seals Present			X						_
Rad Aqueous Samples Screened > 0.5 mrem/hr	1	X		Initial when completed:	Date: 9-6	-14			
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:			Date/	Time:	Contacte			Nagarati di Santa da Santa da Santa da Santa da Santa da Santa da Santa da Santa da Santa da Santa da Santa da	
				~ -					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

5

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample I.D. Sample MS I.D. Sample MSD I.D. Spike I.D.:

Sample Collection Date:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):
Spike Volume Used in MS (mL);
Spike Volume Used in MSD (mL);

Sample Result:

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): Spike uncertainty (calculated):

MS Aliquot (L, g, F);

Sample Result Counting Uncertainty (pCifL, g, F): Sample Matrix Spike Result:

	Sample Matrix Spike Control Assessment			
WRR	9/26/2016	31362	DW	
Analyst	Date:	Worklist	Matrix:	

Ra-226

Test

						-	
	1141806	-0.021	0.092	0,290	-0.45	Y/X	Pass
hod Blank Assessment	MB Sample ID	MB concentration;	M/B Counting Uncertainty:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs. MDC:

Laborator

						Ma								
z	LCSD31362									•				
LCSD (Y or N)?	LCS31362	9/28/2016	16-026	44,677	0.10	0.504	8.870	0.417	7.482	0.849	-2.87	84.36%	ΝΆ	Pass
ny Control Sample Assessment		Count Date:	Spike I.D.:	Spike Concentration (pCi/mL):	Volume Used (mL):	Aliquot Volume (L, g, F);	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	. Result (pCi/L, g, F):	LCS/LCSD Counting Uncertainty (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:

other than LCS/LCSD in the Sample Matrix Spike Result Counting Uncertainty (DCI/L, g, F)	sample IDs if
Sample Matrix Shike Dunificate Result	Matrix Spike Result Count

30195128008 30195128008DUP

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessment

Sample Result (pClfu, g, F):
Sample Result Counting Uncertainty (pClfu, g, F):
Sample Duplicate Result (pClfu, g, F):
Sample Duplicate Result Counting Uncertainty (pClfu, g, F):
Are sample and/or duplicate results below MDC?

0.625 0.301 0.359 0.228 See Below ## 1.384 54.21% N/A

Duplicate Numerical Performance Indicator:

Duplicate RPD: Duplicate Status vs Numerical Indicator;

Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate

Comments:

***Batch must be re-prepped due to unacceptable precision.

TAR DW QC Printed: 10/4/2016 4:08 PM

1 of 1

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Collection Date: Sample MS I.D. Sample MSD 1.D. Spike 1.D.:

Sample Matrix Spike Control Assessment

9/15/2016 31367 DW JLW Analyst: Test: Date: Worklist: Matrix:

Face Analytical

0.432 0.907 2.04 N/A Pass MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: MB Sample ID MB concentration: M/B Counting Uncertainty: MB MDC: Method Blank Assessment

LCSD31367 9/23/2016 16-025 25.595 (N でと) LCS31367 0.20 0.813 6.293 0.453 7.559 Aliquot Volume (L, g, F); Target Conc. (pCi/L, g, F); Uncertainty (Calculated); Spike Concentration (pCi/mL): Volume Used (mt.): Spike I.D. Laboratory Control Sample Assessment

MS Numerical Performance Indicator: MSD Numerical Performance Indicator:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MSD Target Conc. (pCi/L, g, F):

Spike uncertainty (calculated):

Sample Result

Sample Result Counting Uncertainty (pCilL, g, F):

Sample Matrix Spike Result:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL) MS Aliquot (L, g, F) MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery: MSD Status vs Recovery:

MSD Percent Recovery:

MS Percent Recovery

LCS/LCSD Counting Uncertainty (pCi/L, g, F); Numerical Performance Indicator: Percent Recovery: Status vs Numerical Indicator: Status vs Recovery

Result (pCi/L. g, F):

Sample Matrix Spike Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Sample I.D. Matrix Spike Result Counting Uncertainty (pCi/L, g, F); Sample Matrix Spike Duplicate Result Sample MS I.D. Sample MSD I,D. Duplicate Numerical Performance Indicator Matrix Spike/Matrix Spike Duplicate Sample Assessment

LCS/LCSD in the space below.

0.475 1.232 0.428

Sample Result (p.Cit., g. F):
Sample Result (p.Cit., g. F):
Sample Duplicate Result (p.Cit., g. F):
Sample Duplicate Result (p.Cit., g. F):
Are sample and/or duplicate results below MOC?

See Below 排

1.791

Duplicate RPD:

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD:

Duplicate Numerical Performance Indicator:

N'A Fail

Enter Duplicate sample IDs if other than

Sample I.D.: 30195128008 Duplicate Sample I.D. 30195128008DUP

Duplicate Sample Assessmen

(Based on the Percent Recoveries) MS/ MSD Duplicate RPD; MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate

Comments:

***Batch must be re-prepped due to unacceptable precision.

Ra-228 NELAC DW2 Printed: 10/4/2016 4:12 PM

1 of 1

October 04, 2016

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: Yates AP CCR GW

Pace Project No.: 30195136

Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on September 06, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins

Legalylellin

jacquelyn.collins@pacelabs.com

Project Manager

Enclosures

Pace Analytical Services, LLC

Pace Analytical®

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: Yates AP CCR GW

Pace Project No.: 30195136

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590

Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification

Hawaii Certification

Idaho Certification

Illinois Certification

Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Reflucky Certification #. 90 133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification

Missouri Certification #: 235

Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14

Nevada Certification #: PA014572015-1

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification #: PA01457

New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8

Utah/TNI Certification #: PA014572015-5

Jian/Thi Certification #. PA014572015-5

USDA Soil Permit #: P330-14-00213

Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 460198

Washington Certification #: C868
West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Certification

Wyoming Certification #: 8TMS-L

Pace Analytical Services, LLC

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE SUMMARY

Project: Yates AP CCR GW

Pace Project No.: 30195136

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30195136001	YGWC-49	Water	09/01/16 10:04	09/06/16 08:50

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: Yates AP CCR GW

Pace Project No.: 30195136

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30195136001	YGWC-49	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Yates AP CCR GW

Pace Project No.: 30195136

Sample: YGWC-49 PWS:	Lab ID: 30195 Site ID:	136001 Collected: 09/01/16 10:0 Sample Type:	4 Received:	09/06/16 08:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.122 ± 0.157 (0.331) C:85% T:NA	pCi/L	09/28/16 11:36	13982-63-3	
Radium-228	EPA 9320	1.08 ± 0.481 (0.784) C:79% T:76%	pCi/L	09/23/16 22:08	8 15262-20-1	
Total Radium	Total Radium Calculation	1.20 ± 0.638 (1.12)	pCi/L	10/04/16 15:39	9 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: Yates AP CCR GW

Pace Project No.: 30195136

QC Batch: 232981 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30195136001

METHOD BLANK: 1141806 Matrix: Water

Associated Lab Samples: 30195136001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0211 ± 0.0919 (0.290) C:86% T:NA
 pCi/L
 09/28/16 11:34

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

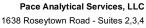
Project: Yates AP CCR GW

Pace Project No.: 30195136

QC Batch: 232987 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30195136001


METHOD BLANK: 1141823 Matrix: Water

Associated Lab Samples: 30195136001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.450 ± 0.440 (0.907) C:80% T:77%
 pCi/L
 09/23/16 22:33

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Yates AP CCR GW

Pace Project No.: 30195136

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 10/04/2016 05:00 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

CHAIN OF CUSTODY RECORD $\sqrt{-\kappa^a}$

Pace Analytical Pace Anal 110 TECH (770) 734-

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

Ы

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen OGO REMARKS/ADDITIONAL INFORMATION 2 - H₂SO₄, ≤6°C 4 - NaOH, ≤6°C P - PRODUCT SL - SLUDGE SD - SOLID 1 - HCI, ≤6°C L - LIQUID 3 - HNO3 A - AIR FOR LAB USE ONLY "MATRIX CODES: DRINKING WATER SW - SURFACE WATER GW - GROUNDWATER A - AMBER GLASS G - CLEAR GLASS V - VOA VIAL S - STERILE O - OTHER ST - STORM WATER WW - WASTEWATER Intered into LIMS ONTAINER TYPE P - PLASTIC W - WATER racking #: WO#:30195136 LAB #: -MO DATE/TIME: 1/16 OLSS DATE/TIME: 9 Y L _ o FS OTHER 30195136 CLIENT Cooler ID: ANALYSIS REQUESTED COURIER of Coolers 2M-846 9315/9320 Radium 226 & 228 USPS Not Present EPA 300:0, TDS SM 2540C ۵. IC (CI' E' 204) SAMPLE SHIPPED VIA: UPS FED-EX EPA 6020/7470 RELINQUISHED BY: RELINQUISHED BY ۵ Vi & III & IV CONTAINER TYPE: Custody Seal: PHESERVATION: 0 0 Z F A - Z M E S W 6:53 CC: MRPADILL@southernco.com SAMPLE IDENTIFICATION 0880 Max: CHMCCORK@southernco.com Southern Company Services LLMILLET@southernco.com メゲじく 49 DATE/TUNE/LING DATE/TIME: DATEGIME: 161 emperature YATES AP CCR GW PO #: CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER. CCR BARG × 8 (% OOZG JABRAHAM@southernco.com MATRIX CODE* Joju Abraham REQUESTED COMPLETION DATE: 3 241 Ralph McGill Blvd. SE, B10185 Phese 10000 S Yes STANDARD Collection TIME PROJECT NAME/STATE: 700 ž Atlanta, GA 30308 CLIENT NAME: 30 RECEIVEDIB SAMPLED BY Collection DATE PROJECT 9

Pace COC Plant Yates AP CCR GW

ge 9 of 12

Sample Condition Upon Rece	∍ipt F	Pittst	ourg	h
Pace Analytical Client Name:		_Fa	200	2/GA Project # 3019513
Courier: Fed Ex UPS USPS Clien Tracking #: 6812 5098 884				
Custody Seal on Cooler/Box Present: yes	Ø			s intact: yes no
Thermometer Used	Type			t Blue Noné)
Cooler Temperature Observed Temp		- ° C	Corr	ection Factor: C Final Temp: C
Temp should be above freezing to 6°C				Date and Initials of person examining
	Yes	No	N/A	Date and Initials of person examining contents:
Comments:	163	140	14//	1.
Chain of Custody Present:	\forall	┼──		2.
Chain of Custody Filled Out:	$+ \bigcirc$	<u> </u>	-	
Chain of Custody Relinquished:		\ \	-	3.
Sampler Name & Signature on COC:	1	X	 	4 No Signature
Sample Labels match COC:			<u> </u>	5.
-Includes date/time/ID/Analysis Matrix: 1	//-	ī	T	
Samples Arrived within Hold Time:	1			6.
Short Hold Time Analysis (<72hr remaining):		\Rightarrow		7.
Rush Turn Around Time Requested:		X		8.
Sufficient Volume:	X		<u> </u>	9.
Correct Containers Used:	X,	-		10.
-Pace Containers Used:		X	<u> </u>	
Containers Intact:	X			11.
Filtered volume received for Dissolved tests			X_{-}	12.
All containers needing preservation have been checked.	X			13. OH12
All containers needing preservation are found to be in compliance with EPA recommendation.	X			PINCE
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when Date/time of completed Completed
Headspace in VOA Vials (≻6mm):			X	14.
Trip Blank Present:		X		15.
Trip Blank Custody Seals Present			X	
Rad Aqueous Samples Screened > 0.5 mrem/hr		X		Initial when 1918 Date: 9-6-16
Client Notification/ Resolution:			vice property of the	
Person Contacted:			Date/	Time: Contacted By:
Comments/ Resolution:				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow

Test:

Pace Analytical"

Sample Collection Date: Sample MS I.D. Sample MSD I.D. Spike I.D.

Sample Matrix Spike Control Assessment 9/26/2016 Ra-226 WRR 31362 DW Worklist: Matrix: Date: Analyst

0.021 0.092 0.290 0.290 0.45 N/A Pass MB Sample ID MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: MB concentration: M/B Counting Uncertainty

Method Blank Assessment

MS Target Conc.(pCil., g, F):
MSD Aliquot (L, g, F):
MSD Target Conc. (pCil., g, F):

MS Aliquot (L, g, F):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL)

Spike Votume Used in MSD (mL)

Spike uncertainty (calculated):

Sample Result:

Sample Matrix Spike Result:

Sample Result Counting Uncertainty (pCi/L, g, F): Matrix Spike Result Counting Uncertainty (pCi/L, g, F);

LCSD31362 LCSD (Y or N)? LCS31362 9/28/2016 16-026 44,677 84.36% 0.10 0.504 8.870 7.482 0.849 Aliquot Volume (t., g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated): Result (pCI/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Percent Recovery: Numerical Performance Indicator: Count Date Spike Concentration (pCi/mL): Volume Used (mL): Spike I.D. Status vs Numerical Indicator Laboratory Control Sample Assessment

MSD Numerical Performance Indicator:

MS Percent Recovery:

MSD Percent Recovery.

MS Numerical Performance Indicator.

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery.

MSD Status vs Recover

Matrix Spike/Matrix Spike Duplicate Sample Assessment Status vs Recovery

Duplicate Sample Assessment

Matrix Spike Duplicate Result Counting Uncertainty (pCifL, g, F): other than LCS/LCSD in the Enter Duplicate sample IDs if space below. 30195128008DUP See Below 排 30195128008 1.384 54.21% 0.625 0.301 0.359 0.228 NA Fail** Duplicate Sample I.D. Sample Result (pCl/IL, g, F):
Sample Result Counting Uncertainty (pCl/IL, g, F):
Sample Duplicate Result (pCl/L, g, F):
Sample Duplicate Result (pCl/IL, g, F): Sample I.D.: Are sample and/or duplicate results below MDC? Duplicate RPD: Duplicate Numerical Performance Indicator; Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD:

Sample Matrix Spike Result:

Sample I.D. Sample MS I.D. Sample MSD I.D. Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result.

MS/ MSD Duplicate RPD:

MS/ MSD Duplicate Status vs RPD

Ouplicate Numerical Performance Indicator. MS/ MSD Duplicate Status vs Numerical Indicator:

> A Street below the MDC. ## Evaluation of duplicate precision is not applicable if either the sample or duplicate

Comments:

***Batch must be re-prepped due to unacceptable precision.

TAR DW QC Printed: 10/4/2016 4:08 PM

1 of 1

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Collection Date: Sample MS I.D. Sample MSD I.D. Spike I.D.:

Sample Matrix Spike Control Assessment

9/15/2016 31367 DW JLW Test Analyst: Date: Worklist: Matrix:

Pace Analytical

0.432 0.907 2.04 N/A Pass MB Sample ID MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: MB concentration: M/B Counting Uncertainty: MB MDC: Method Blank Assessment

LCSD31367 SD (Y or N)? LCS31367 9/23/2016 Count Date: aboratory Control Sample Assessment

MSD Target Conc. (pCi/L, g, F):

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F); Spike uncertainty (calculated):

MS Aliquot (L, g, F):

MS/MSD Decay Corrected Spike Concentration (pOi/mL):

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL)

Sample Result Counting Uncertainty (pCi/L, g, F): Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Result

Sample Result:

16-025 25.595 0.20 0.813 6.293 0.453 7.559 0.863 Alfquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated): LCS/LCSD Counting Uncertainty (pCl/L, g, F):
Numerical Performance Indicator: Result (pCi/L, g, F): Volume Used (mL): Percent Recovery: Status vs Numerical Indicator: Spike I.D.: Spike Concentration (pCi/mL):

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):
MS Numerical Performance Indicator:
MSD Numerical Performance Indicator:

Sample Matrix Spike Duplicate Result:

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery: MSD Status vs Recovery

Matrix Spike/Matrix Spike Duplicate Sample Assessment

MS Percent Recovery: MSD Percent Recovery: Sample I.D.

Sample Matrix Spike Result:

Sample MSD I.D.

Sample MS I.D

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

MS/ MSD Duplicate Status vs Numerical Indicator:

MS/ MSD Duplicate Status vs RPD

Status vs Recovery Duplicate Sample Assessment

Matrix Spike Duplicate Result Counting Uncertainty (pCML, g, F):
Duplicate Numerical Performance Indicator:
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: other than LCS/LCSD in Enter Duplicate the space below, sample IDs if Sample 1.D.: 30195128008 Duplicate Sample 1.D. 30195128008DUP See Below 排 1.791 38.33% 0.475 1.232 0.428 Sample Result (pCift., g, F):
Sample Result Counting Uncertainty (pCift., g, F):
Sample Duplicate Result (pCift., g, F):
Sample Duplicate Result Counting Uncertainty (pCift., g, F):
Are sample and/or duplicate results below MDC?

N.A Fail* Duplicate Numerical Performance Indicator: Duplicate RPD: Duplicate Status vs Numerical Indicator:

Evaluation of duplicate precision is not applicable if either the sample or duplicate Duplicate Status vs RPD:

***Batch must be re-prepped due to unacceptable precision.

Comments:

Ra-228 NELAC DW2 Printed: 10/4/2016 4:12 PM

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AZK0570

December 05, 2016

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 05, 2016

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
YGWC-46	AZK0570-01	Ground Water	11/16/16 10:05	11/17/16 09:50
YGWC-42	AZK0570-02	Ground Water	11/16/16 13:05	11/17/16 09:50
EB-1-11-16-16	AZK0570-03	Water	11/16/16 14:10	11/17/16 09:50
YGWC-43	AZK0570-04	Ground Water	11/16/16 15:05	11/17/16 09:50

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

December 05, 2016

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0570 Project: CCR Event

Client ID: YGWC-46 Lab Number ID: AZK0570-01

Date/Time Sampled: 11/16/2016 10:05:00AM Date/Time Received: 11/17/2016 9:50:00AM

Matrix: Ground Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1220	25	10	mg/L	SM 2540 C		1	11/18/16 14:30	11/18/16 14:30	6110490	JPT
Inorganic Anions											
Chloride	37	0.25	0.01	mg/L	EPA 300.0		1	11/18/16 15:35	11/20/16 08:52	6110512	RLC
Fluoride	0.04	0.30	0.02	mg/L	EPA 300.0	J	1	11/18/16 15:35	11/20/16 08:52	6110512	RLC
Sulfate	780	50	2.6	mg/L	EPA 300.0		50	11/18/16 15:35	11/20/16 10:37	6110512	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Barium	0.0365	0.0100	0.0004	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	11/21/16 10:15	11/29/16 18:38	6110508	CSW
Boron	2.03	0.400	0.0642	mg/L	EPA 6020B		10	11/21/16 10:15	12/01/16 12:00	6110508	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Calcium	107	25.0	1.55	mg/L	EPA 6020B		50	11/21/16 10:15	12/01/16 13:47	6110508	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Cobalt	0.0145	0.0100	0.0005	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Selenium	ND	0.0100	0.0010	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Lithium	0.0075	0.0500	0.0021	mg/L	EPA 6020B	J	1	11/21/16 10:15	11/23/16 22:03	6110508	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	11/22/16 10:15	11/22/16 14:53	6110560	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0570

Client ID: YGWC-42

Date/Time Sampled: 11/16/2016 1:05:00PM

Matrix: Ground Water

December 05, 2016

Project: CCR Event

Lab Number ID: AZK0570-02

Date/Time Received: 11/17/2016 9:50:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1420	25	10	mg/L	SM 2540 C		1	11/18/16 14:30	11/18/16 14:30	6110490	JPT
Inorganic Anions											
Chloride	4.7	0.25	0.01	mg/L	EPA 300.0		1	11/18/16 15:35	11/20/16 10:58	6110512	RLC
Fluoride	0.07	0.30	0.02	mg/L	EPA 300.0	J	1	11/18/16 15:35	11/20/16 10:58	6110512	RLC
Sulfate	940	50	2.6	mg/L	EPA 300.0		50	11/18/16 15:35	11/20/16 11:19	6110512	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Arsenic	0.0017	0.0050	0.0016	mg/L	EPA 6020B	J	1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Barium	0.0541	0.0100	0.0004	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	11/21/16 10:15	11/29/16 18:43	6110508	CSW
Boron	16.4	2.00	0.321	mg/L	EPA 6020B		50	11/21/16 10:15	12/01/16 13:53	6110508	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Calcium	125	25.0	1.55	mg/L	EPA 6020B		50	11/21/16 10:15	12/01/16 13:53	6110508	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Cobalt	0.0020	0.0100	0.0005	mg/L	EPA 6020B	J	1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Lead	0.0002	0.0050	0.0001	mg/L	EPA 6020B	J	1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Molybdenum	0.0027	0.0100	0.0017	mg/L	EPA 6020B	J	1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Selenium	0.0313	0.0100	0.0010	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Lithium	0.0221	0.0500	0.0021	mg/L	EPA 6020B	J	1	11/21/16 10:15	11/23/16 22:08	6110508	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	11/22/16 10:15	11/22/16 14:56	6110560	MTC
	112	0.0000	0.000041	9/=			•			0000	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0570

Client ID: EB-1-11-16-16

Date/Time Sampled: 11/16/2016 2:10:00PM

Matrix: Water

December 05, 2016

Project: CCR Event

Lab Number ID: AZK0570-03

Date/Time Received: 11/17/2016 9:50:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	11/18/16 14:30	11/18/16 14:30	6110490	JPT
Inorganic Anions											
Chloride	0.06	0.25	0.01	mg/L	EPA 300.0	J	1	11/18/16 15:35	11/20/16 11:41	6110512	RLC
Fluoride	0.02	0.30	0.02	mg/L	EPA 300.0	J	1	11/18/16 15:35	11/20/16 11:41	6110512	RLC
Sulfate	ND	1.0	0.05	mg/L	EPA 300.0		1	11/18/16 15:35	11/20/16 11:41	6110512	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Barium	ND	0.0100	0.0004	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	11/21/16 10:15	11/29/16 18:49	6110508	CSW
Boron	ND	0.0400	0.0064	mg/L	EPA 6020B		1	11/21/16 10:15	12/02/16 13:17	6110508	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Calcium	0.0507	0.500	0.0311	mg/L	EPA 6020B	J	1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Selenium	ND	0.0100	0.0010	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:14	6110508	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	11/22/16 10:15	11/22/16 14:58	6110560	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0570

Client ID: YGWC-43

Date/Time Sampled: 11/16/2016 3:05:00PM

Matrix: Ground Water

December 05, 2016

Project: CCR Event

Lab Number ID: AZK0570-04

Date/Time Received: 11/17/2016 9:50:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	112	25	10	mg/L	SM 2540 C		1	11/18/16 14:30	11/18/16 14:30	6110490	JPT
Inorganic Anions											
Chloride	1.7	0.25	0.01	mg/L	EPA 300.0		1	11/18/16 15:35	11/20/16 12:02	6110512	RLC
Fluoride	0.20	0.30	0.02	mg/L	EPA 300.0	J	1	11/18/16 15:35	11/20/16 12:02	6110512	RLC
Sulfate	240	5.0	0.26	mg/L	EPA 300.0		5	11/18/16 15:35	11/20/16 16:38	6110512	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Barium	0.0092	0.0100	0.0004	mg/L	EPA 6020B	J	1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	11/21/16 10:15	11/29/16 18:55	6110508	CSW
Boron	0.406	0.0400	0.0064	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Calcium	3.79	0.500	0.0311	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Selenium	ND	0.0100	0.0010	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Lithium	0.0095	0.0500	0.0021	mg/L	EPA 6020B	J	1	11/21/16 10:15	11/23/16 22:20	6110508	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	11/22/16 10:15	11/22/16 15:01	6110560	MTC

Georgia Power 2480 Maner Road

Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0570

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

December 05, 2016

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110490 - SM 2540 C											
Blank (6110490-BLK1)						Prepar	ed & Analy	yzed: 11/18	3/16		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (6110490-BS1)						Prepar	ed & Analy	yzed: 11/18	3/16		
Total Dissolved Solids	382	25	10	mg/L	400.00		96	84-108			
Duplicate (6110490-DUP1)		Soi	ırce: AZK0	570-03		Prepar	ed & Analy	yzed: 11/18	3/16		
Total Dissolved Solids	ND	25	10	mg/L		ND				10	
Duplicate (6110490-DUP2)		Soi	ırce: AZK0	570-04		Prepar	ed & Analy	yzed: 11/18	3/16		
Total Dissolved Solids	110	25	10	mg/L		112			2	10	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0570

December 05, 2016

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110512 - EPA 300.0											
Blank (6110512-BLK1)						Prepare	ed: 11/18/	16 Analyze	ed: 11/20/	16	
Chloride	ND	0.25	0.01	mg/L							
Fluoride	ND	0.30	0.02	mg/L							
Sulfate	ND	1.0	0.05	mg/L							
LCS (6110512-BS1)						Prepare	ed: 11/18/	16 Analyze	ed: 11/20/	16	
Chloride	10.3	0.25	0.01	mg/L	10.010		103	90-110			
Fluoride	10.3	0.30	0.02	mg/L	10.020		103	90-110			
Sulfate	10.1	1.0	0.05	mg/L	10.020		101	90-110			
Matrix Spike (6110512-MS1)		Sou	ırce: AZK05	45-01		Prepare	ed: 11/18/	16 Analyze	ed: 11/20/	16	
Chloride	11.5	0.25	0.01	mg/L	10.010	2.34	91	90-110			
Fluoride	9.23	0.30	0.02	mg/L	10.020	0.04	92	90-110			
Sulfate	9.46	1.0	0.05	mg/L	10.020	0.49	90	90-110			
Matrix Spike (6110512-MS2)		Sou	ırce: AZK06	37-01		Prepare	ed: 11/18/	16 Analyze	ed: 11/20/	16	
Chloride	10.5	0.25	0.01	mg/L	10.010	1.17	93	90-110			
Fluoride	9.72	0.30	0.02	mg/L	10.020	0.02	97	90-110			
Sulfate	11.1	1.0	0.05	mg/L	10.020	1.85	92	90-110			
Matrix Spike Dup (6110512-MSD1)		Sou	ırce: AZK05	645-01		Prepare	ed: 11/18/	16 Analyze	ed: 11/20/	16	
Chloride	12.2	0.25	0.01	mg/L	10.010	2.34	98	90-110	6	15	
Fluoride	10.0	0.30	0.02	mg/L	10.020	0.04	99	90-110	8	15	
Sulfate	10.2	1.0	0.05	mg/L	10.020	0.49	96	90-110	7	15	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0570

December 05, 2016

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110508 - EPA 3005A											
Blank (6110508-BLK1)						Prepare	ed: 11/21/	16 Analyz	ed: 11/23/	16	
Antimony	ND	0.0030	0.0008	mg/L							
Arsenic	ND	0.0050	0.0016	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00008	mg/L							
Boron	ND	0.0400	0.0064	mg/L							
Cadmium	ND	0.0010	0.00007	mg/L							
Calcium	ND	0.500	0.0311	mg/L							
Chromium	ND	0.0100	0.0009	mg/L							
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0250	0.0005	mg/L							
Lead	ND	0.0050	0.0001	mg/L							
Molybdenum	ND	0.0100	0.0017	mg/L							
Nickel	ND	0.0100	0.0006	mg/L							
Selenium	ND	0.0100	0.0010	mg/L							
Silver	ND	0.0100	0.0005	mg/L							
Thallium	ND	0.0010	0.0002	mg/L							
Vanadium	ND	0.0100	0.0071	mg/L							
Zinc	ND	0.0100	0.0021	mg/L							
Lithium	ND	0.0500	0.0021	mg/L							
				3							
LCS (6110508-BS1)						Prepare		16 Analyz	ed: 11/23/	16	
Antimony	0.114	0.0030	0.0008	mg/L	0.10000		114	80-120			
Arsenic	0.105	0.0050	0.0016	mg/L	0.10000		105	80-120			
Barium	0.103	0.0100	0.0004	mg/L	0.10000		103	80-120			
Beryllium	0.0973	0.0030	0.00008	mg/L	0.10000		97	80-120			
Boron	0.978	0.0400	0.0064	mg/L	1.0000		98	80-120			
Cadmium	0.106	0.0010	0.00007	mg/L	0.10000		106	80-120			
Calcium	1.10	0.500	0.0311	mg/L	1.0000		110	80-120			
Chromium	0.107	0.0100	0.0009	mg/L	0.10000		107	80-120			
Cobalt	0.108	0.0100	0.0005	mg/L	0.10000		108	80-120			
Copper	0.103	0.0250	0.0005	mg/L	0.10000		103	80-120			
Lead	0.106	0.0050	0.0001	mg/L	0.10000		106	80-120			
Molybdenum	0.109	0.0100	0.0017	mg/L	0.10000		109	80-120			
Nickel	0.105	0.0100	0.0006	mg/L	0.10000		105	80-120			
Selenium	0.116	0.0100	0.0010	mg/L	0.10000		116	80-120			
Silver	0.106	0.0100	0.0005	mg/L	0.10000		106	80-120			
Thallium	0.104	0.0010	0.0002	mg/L	0.10000		104	80-120			
Vanadium	0.105	0.0100	0.0071	mg/L	0.10000		105	80-120			
Zinc	0.108	0.0100	0.0021	mg/L	0.10000		108	80-120			
Lithium	0.0972	0.0500	0.0021	mg/L	0.10000		97	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0570

December 05, 2016

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110508 - EPA 3005A											
Matrix Spike (6110508-MS1)		Sou	ırce: AZK05	70-01		Prepar	ed: 11/21/	16 Analyze	ed: 11/23/	16	
Antimony	0.114	0.0030	0.0008	mg/L	0.10000	ND	114	75-125			
Arsenic	0.109	0.0050	0.0016	mg/L	0.10000	ND	109	75-125			
Barium	0.141	0.0100	0.0004	mg/L	0.10000	0.0365	104	75-125			
Beryllium	0.0932	0.0030	0.00008	mg/L	0.10000	ND	93	75-125			
Boron	2.83	2.00	0.321	mg/L	1.0000	2.03	80	75-125			
Cadmium	0.0998	0.0010	0.00007	mg/L	0.10000	ND	100	75-125			
Calcium	107	25.0	1.55	mg/L	1.0000	107	NR	75-125			QM-02
Chromium	0.102	0.0100	0.0009	mg/L	0.10000	ND	102	75-125			
Cobalt	0.116	0.0100	0.0005	mg/L	0.10000	0.0145	101	75-125			
Copper	0.0931	0.0250	0.0005	mg/L	0.10000	ND	93	75-125			
Lead	0.0987	0.0050	0.0001	mg/L	0.10000	ND	99	75-125			
Molybdenum	0.110	0.0100	0.0017	mg/L	0.10000	ND	110	75-125			
Nickel	0.108	0.0100	0.0006	mg/L	0.10000	0.0109	97	75-125			
Selenium	0.116	0.0100	0.0010	mg/L	0.10000	ND	116	75-125			
Silver	0.0975	0.0100	0.0005	mg/L	0.10000	ND	98	75-125			
Thallium	0.0997	0.0010	0.0002	mg/L	0.10000	ND	100	75-125			
Vanadium	0.106	0.0100	0.0071	mg/L	0.10000	ND	106	75-125			
Zinc	0.101	0.0100	0.0021	mg/L	0.10000	0.0024	99	75-125			
Lithium	0.0949	0.0500	0.0021	mg/L	0.10000	0.0075	87	75-125			
Matrix Spike Dup (6110508-MSD1)		Soi	ırce: AZK05	70-01		Prepar	ed: 11/21/	16 Analyze	ed: 11/23/	16	
Antimony	0.115	0.0030	0.0008	mg/L	0.10000	ND	115	75-125	1	20	
Arsenic	0.110	0.0050	0.0016	mg/L	0.10000	ND	110	75-125	0.6	20	
Barium	0.140	0.0100	0.0004	mg/L	0.10000	0.0365	103	75-125	0.7	20	
Beryllium	0.0916	0.0030	0.00008	mg/L	0.10000	ND	92	75-125	2	20	
Boron	2.80	2.00	0.321	mg/L	1.0000	2.03	77	75-125	0.9	20	
Cadmium	0.102	0.0010	0.00007	mg/L	0.10000	ND	102	75-125	2	20	
Calcium	106	25.0	1.55	mg/L	1.0000	107	NR	75-125	1	20	QM-02
Chromium	0.105	0.0100	0.0009	mg/L	0.10000	ND	105	75-125	3	20	
Cobalt	0.112	0.0100	0.0005	mg/L	0.10000	0.0145	97	75-125	3	20	
Copper	0.0953	0.0250	0.0005	mg/L	0.10000	ND	95	75-125	2	20	
Lead	0.101	0.0050	0.0001	mg/L	0.10000	ND	101	75-125	2	20	
Molybdenum	0.114	0.0100	0.0017	mg/L	0.10000	ND	114	75-125	3	20	
Nickel	0.107	0.0100	0.0006	mg/L	0.10000	0.0109	97	75-125	0.7	20	
Selenium	0.120	0.0100	0.0010	mg/L	0.10000	ND	120	75-125	3	20	
Silver	0.0992	0.0100	0.0005	mg/L	0.10000	ND	99	75-125 75-125	2	20	
Thallium	0.101	0.0010	0.0002	mg/L	0.10000	ND	101	75-125 75-125	1	20	
Vanadium	0.106	0.0100	0.0071	mg/L	0.10000	ND	106	75-125 75-125	0.08	20	
Zinc	0.100	0.0100	0.0021	mg/L	0.10000	0.0024	99	75-125 75-125	0.5	20	
Lithium	0.102	0.0500	0.0021	mg/L	0.10000	0.0024	99 94	75-125 75-125	0.5 7	20	
Lighten	0.101	0.0000	0.0021	mg/L	0.10000	0.0073	J4	10-120	1	20	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0570

December 05, 2016

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110508 - EPA 3005A											
Post Spike (6110508-PS1)		Soi	urce: AZK05	70-01		Prepare	ed: 11/21/	16 Analyze	ed: 11/23/	16	
Antimony	112			ug/L	100.00	0.240	111	80-120			
Arsenic	106			ug/L	100.00	0.856	105	80-120			
Barium	135			ug/L	100.00	36.5	99	80-120			
Beryllium	94.1			ug/L	100.00	0.0351	94	80-120			
Boron	2720			ug/L	1000.0	2030	69	80-120			QM-02
Cadmium	97.9			ug/L	100.00	0.0406	98	80-120			
Calcium	104000			ug/L	1000.0	107000	NR	80-120			QM-02
Chromium	102			ug/L	100.00	0.298	102	80-120			
Cobalt	113			ug/L	100.00	14.5	99	80-120			
Copper	93.4			ug/L	100.00	0.0318	93	80-120			
Lead	95.7			ug/L	100.00	0.0679	96	80-120			
Molybdenum	108			ug/L	100.00	0.953	107	80-120			
Nickel	110			ug/L	100.00	10.9	99	80-120			
Selenium	117			ug/L	100.00	0.746	116	80-120			
Silver	97.5			ug/L	100.00	0.0337	97	80-120			
Thallium	97.9			ug/L	100.00	0.125	98	80-120			
Vanadium	107			ug/L	100.00	-0.396	107	80-120			
Zinc	104			ug/L	100.00	2.37	101	80-120			
Lithium	104			ug/L	100.00	7.51	97	80-120			
Batch 6110560 - EPA 7470A											
Blank (6110560-BLK1)						Prepare	ed & Analy	yzed: 11/22	2/16		
Mercury	ND	0.00050	0.000041	mg/L							
LCS (6110560-BS1)						Prepare	ed & Analy	yzed: 11/22	2/16		
Mercury	0.00246	0.00050	0.000041	mg/L	2.5000E-3		98	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0570

December 05, 2016

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110560 - EPA 7470A											
Matrix Spike (6110560-MS1)		Sou	urce: AZK06	39-05		Prepare	ed & Analy	/zed: 11/22	2/16		
Mercury	0.00236	0.00050	0.000041	mg/L	2.5000E-3	ND	94	75-125			
Matrix Spike Dup (6110560-MSD1)		Sou	urce: AZK06	39-05		Prepare	ed & Analy	/zed: 11/22	2/16		
Mercury	0.00238	0.00050	0.000041	mg/L	2.5000E-3	ND	95	75-125	0.9	20	
Post Spike (6110560-PS1)		Sou	urce: AZK06	39-05		Prepare	ed & Analy	/zed: 11/22	2/16		
Mercury	1.69			ug/L	1.6667	-0.00940	102	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham December 05, 2016

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

QM-02 The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.

J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

Ь

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen REMARKS/ADDITIONAL INFORMATION 2 - H₂SO4, ≤6°C 4 - NaOH, ≤6°C P. PRODUCT **PRESERVATION** 1 - HCl, ≤6°C SL - SLUDGE L- LIQUID SD - SOLID 3- HNO3 S- SOIL A- AIR *MATRIX CODES DW - DRINKING WATER SW - SURFACE WATER GW - GROUNDWATER ST - STORM WATER WW- WASTEWATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE V - VOA VIAL S - STERILE P - PLASTIC 0 - OTHER W- WATER racking # LAB#: 4/2 0560 < ∞ OTHER 11-17-11 DATE/TIME DATE/TIME CLIENT ANALYSIS REQUESTED COURIER # of Coolers Д. o. (0266/3166 348-WS) N Radium 226 & 228 USPS Not Present م (EPA 300.0 & SM 2540C) CI, F, SO, & TDS SAMPLE SHIPPED VIA UPS: FED-EX RELINQUISHED BY: (0747/0S08 A93) RELINQUISHED BY ۵. က VI & III .qqA alateM Broken CONTAINER TYPE: PRESERVATION TO THE PERSON NAMED IN COLUMN ф # ⋖ 3 M M 7 0900 laburch@southernco.com 1600 E3-1-11-16-16 SAMPLE IDENTIFICATION Heath McCorkle 46WC-46 46WC- 42 Y6WC-43 Maria Padilla 11-16-110 / Name DATE/TIME DATE/TIME Plant Yates Phase II Facilities Phase 2 CCR CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER #04 ပ္ပ 9245 Mes) No NA 40 0024 REQUESTED COMPLETION DATE MATRIX CODE* G.W S 241 Ralph McGill Blvd SE B10185 67 ≥ Lauren Petty SAMPLED BY AND TITLE PROJECT NAME/STATE 1005 Collection 1305 1505 TIME 14/0 Manta, GA 30308 CLIENT NAME: XEINED BY **Seorgia Power** 41.63 404-506-7239 91-91-11 REPORT TO: PROJECT # 11-16-16 4-9-1 71-91-11 Collection DATE V-0-1

Plant Yates COC Phase II Facilities.xlsx

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 12/5/2016 2:15:38PM

Attn: Mr. Joju Abraham

Client: Georgia Power

Project: CCR Event Work Order: AZK0570

Date Received: 11/17/16 09:50 **Logged In By:** Mohammad M. Rahman

OBSERVATIONS

#Samples: 4 **#Containers:** 13

Minimum Temp(C): 1.0 Maximum Temp(C): 1.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

(724)850-5600

December 22, 2016

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: Plant Yates

Pace Project No.: 30203117

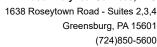
Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on November 18, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins


Suguely allins

jacquelyn.collins@pacelabs.com

Project Manager

Enclosures

CERTIFICATIONS

Project: Plant Yates
Pace Project No.: 30203117

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

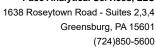
Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082
Nebraska Certification #: NE-05-29-14
Nevada Certification #: PA014572015-1
New Hampshire/TNI Certification #: 2976
New Jersey/TNI Certification #: PA 051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Oregon/TNI Certification #: PA200002
Pennsylvania/TNI Certification #: 65-00282
Puerto Rico Certification #: PA01457

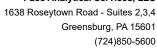

Rhode Island Certification #: 65-00282 South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Certification

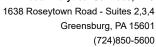
Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: Plant Yates
Pace Project No.: 30203117

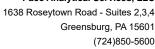
Lab ID	Sample ID	Matrix	Date Collected	Date Received
30203117001	YGWC-46	Water	11/16/16 10:05	11/18/16 11:40
30203117002	YGWC-42	Water	11/16/16 13:05	11/18/16 11:40
30203117003	EB-1-11-16-16	Water	11/16/16 14:10	11/18/16 11:40
30203117004	YGWC-43	Water	11/16/16 15:05	11/18/16 11:40



SAMPLE ANALYTE COUNT

Project: Plant Yates
Pace Project No.: 30203117

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30203117001	YGWC-46	EPA 9315	LAL	1
		EPA 9320	JAL	1
		Total Radium Calculation	CMC	1
30203117002	YGWC-42	EPA 9315	LAL	1
		EPA 9320	JAL	1
		Total Radium Calculation	CMC	1
30203117003	EB-1-11-16-16	EPA 9315	LAL	1
		EPA 9320	JAL	1
		Total Radium Calculation	CMC	1
30203117004	YGWC-43	EPA 9315	LAL	1
		EPA 9320	JAL	1
		Total Radium Calculation	CMC	1



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Yates
Pace Project No.: 30203117

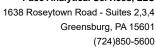
Sample: YGWC-46	Lab ID: 30203	3117001 Collected: 11/16/16 10:05	Received:	11/18/16 11:40 I	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.380 ± 0.406 (0.776) C:91% T:NA	pCi/L	12/07/16 10:57	13982-63-3	
Radium-228	EPA 9320	0.259 ± 0.564 (1.16) C:64% T:82%	pCi/L	12/21/16 19:39	15262-20-1	
Total Radium	Total Radium Calculation	0.639 ± 0.970 (1.94)	pCi/L	12/22/16 16:27	7440-14-4	
Sample: YGWC-42	Lab ID: 30203		Received:	11/18/16 11:40 I	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	2.60 ± 0.644 (0.397) C:91% T:NA	pCi/L	12/07/16 10:57	13982-63-3	
Radium-228	EPA 9320	1.41 ± 0.565 (0.865) C:65% T:78%	pCi/L	12/21/16 19:39	15262-20-1	
Total Radium	Total Radium Calculation	4.01 ± 1.21 (1.26)	pCi/L	12/22/16 16:27	7440-14-4	
Sample: EB-1-11-16-16	Lab ID: 30203	3117003 Collected: 11/16/16 14:10	Received:	11/18/16 11:40	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0989 ± 0.142 (0.301) C:96% T:NA	pCi/L	12/07/16 10:57	13982-63-3	
Radium-228	EPA 9320	0.698 ± 0.476 (0.877) C:63% T:87%	pCi/L	12/21/16 19:39	15262-20-1	
Total Radium	Total Radium Calculation	0.797 ± 0.618 (1.18)	pCi/L	12/22/16 16:27	7440-14-4	
Sample: YGWC-43 PWS:	Lab ID: 30203 Site ID:	3117004 Collected: 11/16/16 15:05 Sample Type:	Received:	11/18/16 11:40 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.107 ± 0.171 (0.374) C:70% T:NA	pCi/L	12/07/16 10:57	13982-63-3	
Radium-228	EPA 9320	0.666 ± 0.431 (0.780) C:65% T:85%	pCi/L	12/21/16 19:39	15262-20-1	
Total Radium	Total Radium Calculation	$0.773 \pm 0.602 (1.15)$	pCi/L	12/22/16 16:27	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates
Pace Project No.: 30203117

QC Batch: 241712 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium


Associated Lab Samples: 30203117001, 30203117002, 30203117003, 30203117004

METHOD BLANK: 1188126 Matrix: Water
Associated Lab Samples: 30203117001, 30203117002, 30203117003, 30203117004

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.104 ± 0.157 (0.342) C:95% T:NA pCi/L 12/07/16 09:29

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates
Pace Project No.: 30203117

QC Batch: 242658 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30203117001, 30203117002, 30203117003, 30203117004

METHOD BLANK: 1192650 Matrix: Water
Associated Lab Samples: 30203117001, 30203117002, 30203117003, 30203117004

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.455 ± 0.420 (0.810) C:64% T:90% pCi/L 12/21/16 19:39

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(724)850-5600

QUALIFIERS

Project: Plant Yates
Pace Project No.: 30203117

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SAMPLE QUALIFIERS

Date: 12/22/2016 06:34 PM

Sample: 30203117001

[1] Low volume, client notified. Client advised to proceed.

Pace Analytical "

LAB USE ONLY Results Requested By: 12/20/2016 Comments WO#:30203117 Requested Analysis 186 16 Date/Time Radium 226, 228, Total Preserved Containers Owner Received Date: ниоз Matrix Kar Fr 8 MΘ ĕ ≷ Received By AZK0570-03 AZK0570-02 AZK0570-04 AZK0570-01 Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Plant Yates Collect Date/Time Lab ID Date/Time Pace - Pittsburgh 11/16/2016 15:05 11/16/2016 10:05 11/16/2016 13:05 11/16/2016 14:10 Stes. 2,3,4 Workorder Name: Sample Type IJ G G G Peachtree Corners, GA 30092 Workorder: AZK0570 110 Technology Parkway Pace Analytical Atlanta Transfers | Released By Phone (770)-734-4200 EB-1-11-16-16 Betsy McDaniel Item Sample ID. YGWC-46 YGWC-42 YGWC-43 Report To:

Cooler Temperature on Receipt NA °C Custody Seal Y or N	Received on Ice Y or (1) S	Sample Intact Y or 🐠
***In order to maintain client confidentiality, location/name of the sampli	name of the sampling site, sampler's name and signature may not be provided on this COC	on this COC
This chain of custody is considered complete as is since this information is available in the owner laboratory.	available in the owner laboratory.	

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

P PAGE:

ICLIENT NAME:							ANAL	YSIS RI	ANALYSIS REQUESTED	٥		:155	CONTAINER TYPE	PRESERVATION	
Georgia Power					CONTAINER TYPE:		Ы	U.				4	P - PLASTIC	1 - HCl, ≤6°C	
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	HONE NUM	1BER/F	AX NC		PRESERVATION:	SN:	7	3				1	A - AMBER GLASS	2 - H₂SO4, ≤6°C	
241 Ralph McGill Blvd SE B10185	'd SE B10185	ſſ			# of								G - CLEAR GLASS	3 - HNO3	
Atlanta, GA 30308										•			V - VOA VIAL	4 - NaOH, ≤6°C	
404-506-7239					U								S - STERILE	5 - NaOH/ZnAc, ≤6°C	
REPORT TO				ICC: Maria Padilla	0							Δ	O - OTHER	6 - Na ₂ S ₂ O ₃ , ≤6°C	
	Lauren Pettv													7 - ≤6°C not frozen	
REQUESTED COMPLETION DATE:	LETION DA	正		PO#:	<u> </u>							Z			
				laburch@southernco.com	۷							5	*MATR	*MATRIX CODES:	
PROJECT NAME/STATE	'ATE:				_		(၁၀							,	
	Plant	Yates F	hase	Plant Yates Phase II Facilities	z	,						ш ; М 1	DW - DRINKING WATER		
			ļ		ш	ر) ۱۱۲ ۱۱۲	S S						WWW - WASTEWATER	SL - SLUDGE	
PROJECT #:			Ph	Phase 2 CCR	מבי	3 III	TD 8.8				-	i i i i i	GW - GROUNDWAIER	,,	
		-	ŀ	- With district to the state of	 თ	Z/O	,8 , 5 0.					が高い。		A - AIR	
acito clip C	VIOT 485					qΑ : S08	008 'OS					0050g 10 50g 10 50g	S SLOKIM WALER	L- LIQUID	
_		> ≥ ¤	۷ حز ۱	SAMPLE IDENTIFICATION)	etale AqΞ	,3 ,1: A93	8-MS				55-30 30008-		WOLLEN TOWN THEODORAN DESIGNATION OF THE CONTROL OF	T-
W-0-W	**************************************	-	+		+	I) N)		 - -		<u> </u>				Τ
11-16-16 1005	55 GW	<u> </u>	/	16WC-46	ኅ	~	-	_				X			T
11-16-16 1305		<i>≥</i>	7	746WC-42	~	-	<u> </u>	_				Á			
 		_	7	F 12-11-16-16	~	,	_	-				b)			
+-	 		Z	2777177	ד			7				<i>y</i>	A THE PARTY OF THE		
┼┈	-	-										(24) (24)			<u> </u>
								-						NAMES OF THE PARTY	[
40.00		+				<u> </u>						35.55 17:55 13:55 13:55			
		+	1			-						77			Ţ
								-							
									,			7164. Spj. 1	***		
-				Towns and											
	_	 		17.00			,					(Ac. of 1/4) (Ac.			
				***************************************								(3.134 (3.144) (3.144)	-		
SAMPLED BY AND	TITLE	7	\ <u>\</u>	DATE/TIME:	RELING	RELINQUISHED BY:	6	1		DATE/TIME:	- '	020	LAB#; Z 3	FOR LAB USE ONLY	\$.E
RECEIVED BY:			1))	RELING	RELINQUISHED BY). 			DATE/TIME:	9		Entered into LIMS:	$\mathcal{N}_{\mathcal{Q}}^{\sigma_{I}C}$	
RECEWED/BY LAB	MA	7		DATE/INE 16 09 SAMPLE	SAMPLE	SHIPPEDIVIA: FED-EX:	VIA: USPS		COURIER	(/ CLIENT)	OTHER	FS	Tracking #:		
pH.ofecked:		No		Ϋ́	Custody Seal:	Seal. Not Present	Not Present		# of Coolers a						NE C
)					- > .	000		1121						

Plant Yates COC Phase II Facilities.xlsx

ge 10 of 13

Sample Condition Upon Receipt Pittsburgh

30203117

Face Analytical (Client Name:	Ī	ace	<u>e (</u>	zeergia	Project#	4.4
Courier: ☑ Fed Ex ☐ U	IPS □ USPS □ Clie				_		
Tracking #: <u>U\$12.5</u> Custody Seal on Cooler/B		D/	<u></u> по	Se	als intact: 🔲 yes	□ no	
	NA				et Blue (None)		
						A °C Final Temp: NY) ·c
Temp should be above freezing		<u> </u>		00	Tection Factor.	Tillal Tettip. 147	
_						Date and Initials of persor	examining
Comments:		Yes	No	N/	<u>A]</u>	contents; Kork 1-1	<u> </u>
Chain of Custody Present:		V			1.		
Chain of Custody Filled Out:			<u> </u>		2.		
Chain of Custody Relinquish	ed:	1			3.		
Sampler Name & Signature o	on COC:				4.	·	
Sample Labels match COC:					5.		
-Includes date/time/ID/An	alysis Matrix: 📈	ţ		<u> </u>			
Samples Arrived within Hold	Time:	1			6.		
Short Hold Time Analysis (<72hr remaining):		✓		7.		
Rush Turn Around Time Re	quested:		<u> </u>		8.		
Sufficient Volume:		V			9. Law volume	in sample 001. ~half	the 1/2 gal
Correct Containers Used:		//	. ,		 10.		Ì
-Pace Containers Used:			✓				
Containers Intact:		/			11.		
Filtered volume received for D					12.		
All containers needing preservation	nave been checked.				13.		
All containers needing preservation of the commend compliance with EPA recommend							1
compliance with EFA recommend	alion.		<u>L</u>		Initial when 1/1	Date/time of	
exceptions: VOA, coliform, T	OC, O&G, Phenolics				Initial when completed	preservation	
					Lot # of added preservative		•
leadspace in VOA Vials (>6ri	nm):			/	14.		
rip Blank Present:				1	15.		
ः rip Blank Custody Seals Pres	ent			1	· 		
lad Aqueous Samples Scree			/		Initial when completed:	Date: 11-19-10	
lient Notification/ Resolution Person Contacted:	ni Madlin)ate/⊺			
		1	Managara and I	<u></u>			
							

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Pace Analytical"

Analyst Must Manually Enter All Fields Highlighted in Yellow.

	Sample Matrix Spike Control Assessment	ample	Sample MS I.D. Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Concentration (pC/mL):	Spike Volume Used in MSD (mL):	MS Alianof (L. a. F):	MS Target Cond (mg/L) (1)	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	Spike uncertainty (calculated):	Sample Result:	Sample Result Counting Uncertainty (pCl/L, g, F):	Sample Matrix Spike Result.	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	
										_	z	LCSD32687					
Ra-226	LAL 12/6/2016	32687 DW		1188126	0.104	0.157	0.342	<u>ا</u>	ANA	(rass	CSD (Yor N)?	LCS32687	12/7/2016	16-026	44,673	0.10	
Test:	Analyst:	Worklist: Matrix		MB Sample ID	MB concentration:	M/B Counting Uncertainty:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs. MDC.			Count Date:	Spike I.D.:	Snike Concentration (pCi/mL):	Volume Used (mL):	
мим расенью, сол				Method Blank Assessment							4 Clause 6	Laboratory Control Sample Assessment					

MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	Matrix Spike/Matrix Spike Duplicate Sample Assessment
					Ma

94.35%

Percent Recovery:

1.01

8.916

Aliquot Volume (L, g, F): Target Conc. (pCl/L, g, F): Uncertainty (Calculated):

Result (pCi/L, g, F):

LCS/LCSD Counting Uncertainty (pCi/L, g, F): Numerical Performance Indicator: Status vs Numerical Indicator Status vs Recover

Matrix Spike Duplicate Result Counting Uncertainty (pCifl., g, F):
MS Numerical Performance Indicator:
MSD Numerical Performance Indicator:

MS Percent Recovery:

Juplicate Sample Assessment
Sample I.D.: 30203117004
Duplicate Sample I.D. 30203117004DUP
Sample Result (pCl/L, g, F):
Sample Result Counting Uncertainty (pCi/L, g, F):
Sample Duplicate Result (pCi/L, g, F):
Sample Duplicate Result Counting Uncertainty (pCl/L, g, F):
Duniticate Numerical Performance Indicator: X -1.635
Duplicate RPD:
Duplicate Status vs Numerical Indicator:
Duplicate Status vs RPD:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Spike Duplicate Result Counting Uncertainty (pCl/L. 9, F):

Sample Matrix Spike Duplicate Result: Duplicate Numerical Performance Indicator:

Sample Matrix Spike Result:

Sample I.D. Sample MS I.D. Sample MSD 1.D. MS/ MSD Duplicate Status vs Numerical Indicator:

MS/ MSD Duplicate Status vs RPD

MS/ MSD Duplicate RPD:

Indicater is acceptable ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC. * Numerical

***Batch must be re-prepped due to unacceptable precision.

Comments:

41/20/217

TAR DW QC Printed: 12/22/2016 6:11 PM

1 of 1

Page 12 of 13

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample MSD I.D.

Sample I.D. Sample MS I.D. Spike I.D.:

Sample Collection Date:

Sample Matrix Spike Control Assessment

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL):

MS Aliquot (L, g, F): MS Target Conc.(pCVL, g, F): MSD Aliquot (L, g, F): Spike uncertainty (calculated):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

MSD Target Conc. (pCi/L, g, F):

Sample Result:

Sample Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Result:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result: MS Numerical Performance Indicator: MSD Numerical Performance Indicator:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MS Status vs Numerical Indicator. MSD Status vs Numerical Indicator.

MS Status vs Recovery: MSD Status vs Recovery:

Sample I.D. Sample MS I.D.

MS Percent Recovery: MSD Percent Recovery:

12/15/2016 Ra-228 JAL Test: Date: Analyst:

32865 DW Worklist: Matrix:

0.412 0.810 2.17 N/A Pass 0.455 MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC; MB Sample ID MB concentration: W/B Counting Uncertainty: MB MDC: Method Blank Assessmen

LCSD32865 SD (Y or N)? LCS32865 12/21/2016 16-027 25.764 0,20: 0.799 6.448 6.959 0.802 1.08 Result (pCI/L, g, F): LCS/LCSD Counting Uncertainty (pCI/L, g, F): Spike Concentration (pCI/mL): Volume Used (mL): Spike I.D.: Aliquot Volume (L, g, F): Numerical Performance Indicator: Percent Recovery: Count Date: 'arget Conc. (pCi/L, g, F): Uncertainty (Calculated): Status vs Numerical Indicator: Status vs Recovery Laboratory Control Sample Assessment

Matrix Spike/Matrix Spike Duplicate Sample Assessment Enter Duplicate he space below LCS/LCSD in sample IDs if other than Duplicate Sample I.D. 30203120001DUP 30203120001 0.579 0.423 0.205 0.366 N/A Fail* Duplicate Numerical Performance Indicator: 💢 Sample I.D.: Sample Result (pC/I/L, g, F):
Sample Result Counting Uncertainty (pC/I/L, g, F):
Sample Duplicate Result (pC/I/L, g, F):
Sample Duplicate Result Counting Uncertainty (pC/I/L, g, F): Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: Are sample and/or duplicate results below MDC? Duplicate RPD:

Duplicate Sample Assessmen

Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCl/L, g, F); Matrix Spike Duplicate Result Counting Uncertainty (pCiVL, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: Sample MSD I.D. Sample Matrix Spike Duplicate Result:

SCC e ota 56 (ndicater ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC. * Nonevice

***Batch must be re-prepped due to unacceptable precision.

Comments:

Ra-228 32865 W GA Ra-228 (R086-7 12Aug2016).xls

1 of 1

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AAC0053

March 08, 2017

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

March 08, 2017

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
YGWC-49	AAC0053-01	Ground Water	02/27/17 13:10	03/01/17 16:50
FB-1-2-28-17	AAC0053-02	Water	02/28/17 10:00	03/01/17 16:50
YGWC-44	AAC0053-03	Ground Water	02/28/17 10:30	03/01/17 16:50
YGWC-36	AAC0053-04	Ground Water	02/28/17 14:00	03/01/17 16:50

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAC0053

Client ID: YGWC-49

Date/Time Sampled: 2/27/2017 1:10:00PM

Matrix: Ground Water

March 08, 2017

Project: CCR Event

Lab Number ID: AAC0053-01

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	382	25	10	mg/L	SM 2540 C		1	03/03/17 10:25	03/03/17 10:25	7030106	JPT
Inorganic Anions											
Chloride	4.6	0.25	0.01	mg/L	EPA 300.0		1	03/05/17 16:25	03/06/17 14:25	7030132	RLC
Fluoride	0.06	0.30	0.004	mg/L	EPA 300.0	J	1	03/05/17 16:25	03/06/17 14:25	7030132	RLC
Sulfate	84	10	0.92	mg/L	EPA 300.0		10	03/05/17 16:25	03/07/17 01:02	7030132	RLC
Metals, Total											
Antimony	0.0011	0.0030	0.0003	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Barium	0.0888	0.0100	0.0003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Beryllium	0.0001	0.0030	0.00007	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Cadmium	0.00007	0.0010	0.000060	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Calcium	12.5	2.50	0.0522	mg/L	EPA 6020B		5	03/02/17 12:35	03/06/17 21:27	7030080	CSW
Chromium	0.0016	0.0100	0.0003	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Cobalt	0.0008	0.0100	0.0005	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Lead	ND	0.0050	0.00005	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Molybdenum	0.0007	0.0100	0.0002	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Selenium	0.0098	0.0100	0.0014	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Thallium	0.00009	0.0010	0.00003	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Lithium	0.0036	0.0500	0.0011	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:46	7030080	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	03/02/17 11:10	03/02/17 14:40	7030045	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAC0053

Client ID: FB-1-2-28-17

Date/Time Sampled: 2/28/2017 10:00:00AM

Matrix: Water

March 08, 2017

Project: CCR Event

Lab Number ID: AAC0053-02

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	03/03/17 15:10	03/03/17 15:10	7030156	JPT
Inorganic Anions											
Chloride	ND	0.25	0.01	mg/L	EPA 300.0		1	03/05/17 16:25	03/06/17 14:46	7030132	RLC
Fluoride	0.04	0.30	0.004	mg/L	EPA 300.0	J	1	03/05/17 16:25	03/06/17 14:46	7030132	RLC
Sulfate	ND	1.0	0.09	mg/L	EPA 300.0		1	03/05/17 16:25	03/06/17 14:46	7030132	RLC
Metals, Total											
Antimony	0.0004	0.0030	0.0003	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Barium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Cadmium	ND	0.0010	0.000060	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Calcium	0.0200	0.500	0.0104	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Lead	ND	0.0050	0.00005	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Molybdenum	ND	0.0100	0.0002	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Thallium	ND	0.0010	0.00003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Lithium	ND	0.0500	0.0011	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:52	7030080	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	03/02/17 11:10	03/02/17 14:47	7030045	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAC0053

Client ID: YGWC-44

Date/Time Sampled: 2/28/2017 10:30:00AM

Matrix: Ground Water

March 08, 2017

Project: CCR Event

Lab Number ID: AAC0053-03

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	483	25	10	mg/L	SM 2540 C		1	03/03/17 10:25	03/03/17 10:25	7030106	JPT
Inorganic Anions											
Chloride	12	0.25	0.01	mg/L	EPA 300.0		1	03/05/17 16:25	03/06/17 15:07	7030132	RLC
Fluoride	0.07	0.30	0.004	mg/L	EPA 300.0	J	1	03/05/17 16:25	03/06/17 15:07	7030132	RLC
Sulfate	130	10	0.92	mg/L	EPA 300.0		10	03/05/17 16:25	03/07/17 01:23	7030132	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Arsenic	0.0005	0.0050	0.0004	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Barium	0.121	0.0100	0.0003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Boron	0.623	0.0400	0.0060	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Cadmium	ND	0.0010	0.000060	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Calcium	26.4	5.00	0.104	mg/L	EPA 6020B		10	03/02/17 12:35	03/06/17 21:04	7030080	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Cobalt	0.0017	0.0100	0.0005	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Lead	ND	0.0050	0.00005	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Molybdenum	0.0005	0.0100	0.0002	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Thallium	ND	0.0010	0.00003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Lithium	0.0124	0.0500	0.0011	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 20:58	7030080	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	03/02/17 11:10	03/02/17 14:49	7030045	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAC0053 Client ID: YGWC-36

Date/Time Sampled: 2/28/2017 2:00:00PM

Matrix: Ground Water

March 08, 2017

Project: CCR Event

Lab Number ID: AAC0053-04

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	306	25	10	mg/L	SM 2540 C		1	03/03/17 15:10	03/03/17 15:10	7030156	JPT
Inorganic Anions											
Chloride	5.4	0.25	0.01	mg/L	EPA 300.0		1	03/05/17 16:25	03/06/17 15:29	7030132	RLC
Fluoride	0.09	0.30	0.004	mg/L	EPA 300.0	J	1	03/05/17 16:25	03/06/17 15:29	7030132	RLC
Sulfate	110	10	0.92	mg/L	EPA 300.0		10	03/05/17 16:25	03/07/17 01:44	7030132	RLC
Metals, Total											
Antimony	0.0004	0.0030	0.0003	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Arsenic	0.0006	0.0050	0.0004	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Barium	0.0230	0.0100	0.0003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Beryllium	0.0001	0.0030	0.00007	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Boron	0.215	0.0400	0.0060	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Cadmium	0.0001	0.0010	0.000060	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Calcium	8.37	0.500	0.0104	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Lead	0.0003	0.0050	0.00005	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Molybdenum	0.0038	0.0100	0.0002	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Selenium	0.0017	0.0100	0.0014	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Thallium	ND	0.0010	0.00003	mg/L	EPA 6020B		1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Lithium	0.0038	0.0500	0.0011	mg/L	EPA 6020B	J	1	03/02/17 12:35	03/06/17 21:09	7030080	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	03/02/17 11:10	03/02/17 14:52	7030045	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Report No.: AAC0053

Attention: Mr. Joju Abraham

March 08, 2017

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030106 - SM 2540 C											
Blank (7030106-BLK1)						Prepare	ed & Analy	/zed: 03/03	3/17		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (7030106-BS1)						Prepare	ed & Analy	/zed: 03/03	3/17		
Total Dissolved Solids	356	25	10	mg/L	400.00		89	84-108			
Duplicate (7030106-DUP1)		So	urce: AAC00	053-04		Prepare	ed & Analy	/zed: 03/03	3/17		
Total Dissolved Solids	526	25	10	mg/L		441			18	10	QR-03
Batch 7030156 - SM 2540 C											
Blank (7030156-BLK1)						Prepare	ed & Analy	/zed: 03/06	6/17		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (7030156-BS1)						Prepare	ed & Anal	/zed: 03/06	6/17		
Total Dissolved Solids	426	25	10	mg/L	400.00		106	84-108			
Duplicate (7030156-DUP1)		So	urce: AAC00	053-02RE1		Prepare	ed & Analy	/zed: 03/06	6/17		
Total Dissolved Solids	ND	25	10	mg/L		ND				10	
Duplicate (7030156-DUP2)		So	urce: AAC00	053-04RE1		Prepare	ed & Anal	/zed: 03/06	6/17		
Total Dissolved Solids	286	25	10	mg/L		306			7	10	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAC0053

March 08, 2017

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030132 - EPA 300.0											
Blank (7030132-BLK1)						Prepare	ed: 03/05/	17 Analyz	ed: 03/06/	′ 17	
Chloride	ND	0.25	0.01	mg/L							
Fluoride	ND	0.30	0.004	mg/L							
Sulfate	ND	1.0	0.09	mg/L							
LCS (7030132-BS1)						Prepare	ed: 03/05/	17 Analyz	ed: 03/06/	′17	
Chloride	9.75	0.25	0.01	mg/L	10.010		97	90-110			
Fluoride	10.1	0.30	0.004	mg/L	10.020		101	90-110			
Sulfate	9.95	1.0	0.09	mg/L	10.020		99	90-110			
Matrix Spike (7030132-MS1)		Sou	ırce: AAB09	13-01		Prepare	ed: 03/05/	17 Analyz	ed: 03/06/	/17	
Chloride	15.1	0.25	0.01	mg/L	10.010	5.47	96	90-110			
Fluoride	10.6	0.30	0.004	mg/L	10.020	0.05	105	90-110			
Sulfate	105	1.0	0.09	mg/L	10.020	107	NR	90-110			QM-02
Matrix Spike (7030132-MS2)		Sou	ırce: AAB09	13-04		Prepare	ed: 03/05/	17 Analyz	ed: 03/06/	′17	
Chloride	14.3	0.25	0.01	mg/L	10.010	4.69	96	90-110			
Fluoride	10.7	0.30	0.004	mg/L	10.020	0.06	106	90-110			
Sulfate	399	1.0	0.09	mg/L	10.020	422	NR	90-110			QM-02
Matrix Spike Dup (7030132-MSD1)		Sou	ırce: AAB09	13-01		Prepare	ed: 03/05/	17 Analyz	ed: 03/06/	′17	
Chloride	15.1	0.25	0.01	mg/L	10.010	5.47	96	90-110	0.07	15	
Fluoride	10.6	0.30	0.004	mg/L	10.020	0.05	105	90-110	0.1	15	
Sulfate	105	1.0	0.09	mg/L	10.020	107	NR	90-110	0.04	15	QM-02

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAC0053

March 08, 2017

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 7030045 - EPA 7470A													
Blank (7030045-BLK1)						Prepare	ed & Anal	yzed: 03/02	2/17				
Mercury	ND	0.00050	0.000041	mg/L									
LCS (7030045-BS1)						Prepare	ed & Anal	yzed: 03/02	2/17				
Mercury	0.00236	0.00050	0.000041	mg/L	2.5000E-3		94	80-120					
Matrix Spike (7030045-MS1)	Source: AAC0053-01				Prepared & Analyzed: 03/02/17								
Mercury	0.00232	0.00050	0.000041	mg/L	2.5000E-3	ND	93	75-125					
Matrix Spike Dup (7030045-MSD1)		So		Prepare	ed & Anal	yzed: 03/02	2/17						
Mercury	0.00233	0.00050	0.000041	mg/L	2.5000E-3	ND	93	75-125	0.4	20			
Post Spike (7030045-PS1)		So		Prenare	ad & Anal	yzed: 03/02	0/17						
Mercury	1.66		urce: AAC00	ug/L	1.6667	-0.00660	99	80-120	2/1/				
				_									
Batch 7030080 - EPA 3005A													
Blank (7030080-BLK1)						Prepare	ed: 03/02/	17 Analyz	ed: 03/06/	17			
Antimony	ND	0.0030	0.0003	mg/L									
Arsenic	ND	0.0050	0.0004	mg/L									
Barium	ND	0.0100	0.0003	mg/L									
Beryllium	ND	0.0030	0.00007	mg/L									
Boron	ND	0.0400	0.0060	mg/L									
Cadmium	ND	0.0010	0.000060	mg/L									
Calcium	ND	0.500	0.0104	mg/L									
Chromium	ND	0.0100	0.0003	mg/L									
Cobalt	ND	0.0100	0.0005	mg/L									
Copper	ND	0.0250	0.0002	mg/L									
Lead	ND	0.0050	0.00005	mg/L									
Molybdenum	ND	0.0100	0.0002	mg/L									
Nickel	ND	0.0100	0.0003	mg/L									
Selenium	ND	0.0100	0.0014	mg/L									
Silver	ND	0.0100	0.0003	mg/L									
Thallium	ND	0.0010	0.00003	mg/L									
Vanadium	ND	0.0100	0.0014	mg/L									
Zinc	ND	0.0100	0.0014	mg/L									
Lithium	ND	0.0500	0.0013	mg/L									
LittiuIII	140	0.0000	0.0011	my/L									

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAC0053

March 08, 2017

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 7030080 - EPA 3005A													
LCS (7030080-BS1)						Prepared: 03/02/17 Analyzed: 03/06/17							
Antimony	0.104	0.0030	0.0003	mg/L	0.10000		104	80-120					
Arsenic	0.0954	0.0050	0.0004	mg/L	0.10000		95	80-120					
Barium	0.0993	0.0100	0.0003	mg/L	0.10000		99	80-120					
Beryllium	0.0908	0.0030	0.00007	mg/L	0.10000		91	80-120					
Boron	0.954	0.0400	0.0060	mg/L	1.0000		95	80-120					
Cadmium	0.0958	0.0010	0.000060	mg/L	0.10000		96	80-120					
Calcium	0.988	0.500	0.0104	mg/L	1.0000		99	80-120					
Chromium	0.105	0.0100	0.0003	mg/L	0.10000		105	80-120					
Cobalt	0.100	0.0100	0.0005	mg/L	0.10000		100	80-120					
Copper	0.100	0.0250	0.0002	mg/L	0.10000		100	80-120					
Lead	0.102	0.0050	0.00005	mg/L	0.10000		102	80-120					
Molybdenum	0.109	0.0100	0.0002	mg/L	0.10000		109	80-120					
Nickel	0.0989	0.0100	0.0003	mg/L	0.10000		99	80-120					
Selenium	0.0952	0.0100	0.0014	mg/L	0.10000		95	80-120					
Silver	0.102	0.0100	0.0003	mg/L	0.10000		102	80-120					
Thallium	0.102	0.0010	0.00003	mg/L	0.10000		102	80-120					
Vanadium	0.102	0.0100	0.0014	mg/L	0.10000		102	80-120					
Zinc	0.101	0.0100	0.0013	mg/L	0.10000		101	80-120					
Lithium	0.0913	0.0500	0.0011	mg/L	0.10000		91	80-120					
Matrix Spike (7030080-MS1)		Source: AAC0053-02			Prepared: 03/02/17 Analyzed: 03/06/17								
Antimony	0.105	0.0030	0.0003	mg/L	0.10000	0.0004	104	75-125					
Arsenic	0.0966	0.0050	0.0004	mg/L	0.10000	ND	97	75-125					
Barium	0.102	0.0100	0.0003	mg/L	0.10000	ND	102	75-125					
Beryllium	0.0966	0.0030	0.00007	mg/L	0.10000	ND	97	75-125					
Boron	0.991	0.0400	0.0060	mg/L	1.0000	ND	99	75-125					
Cadmium	0.0980	0.0010	0.000060	mg/L	0.10000	ND	98	75-125					
Calcium	1.06	0.500	0.0104	mg/L	1.0000	0.0200	104	75-125					
Chromium	0.103	0.0100	0.0003	mg/L	0.10000	ND	103	75-125					
Cobalt	0.0996	0.0100	0.0005	mg/L	0.10000	ND	100	75-125					
Copper	0.0995	0.0250	0.0002	mg/L	0.10000	ND	99	75-125					
Lead	0.104	0.0050	0.00005	mg/L	0.10000	ND	104	75-125					
Molybdenum	0.105	0.0100	0.0002	mg/L	0.10000	ND	105	75-125					
Nickel	0.0998	0.0100	0.0003	mg/L	0.10000	ND	100	75-125					
Selenium	0.0969	0.0100	0.0014	mg/L	0.10000	ND	97	75-125					
Silver	0.105	0.0100	0.0003	mg/L	0.10000	ND	105	75-125					
Thallium	0.105	0.0010	0.00003	mg/L	0.10000	ND	105	75-125					
Vanadium	0.100	0.0100	0.0014	mg/L	0.10000	ND	100	75-125					
Zinc	0.105	0.0100	0.0013	mg/L	0.10000	ND	105	75-125					

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAC0053

March 08, 2017

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 7030080 - EPA 3005A												
Matrix Spike Dup (7030080-MSD1)	Source: AAC0053-02				Prepared: 03/02/17 Analyzed: 03/06/17							
Antimony	0.106	0.0030	0.0003	mg/L	0.10000	0.0004	106	75-125	2	20		
Arsenic	0.0938	0.0050	0.0004	mg/L	0.10000	ND	94	75-125	3	20		
Barium	0.104	0.0100	0.0003	mg/L	0.10000	ND	104	75-125	1	20		
Beryllium	0.0988	0.0030	0.00007	mg/L	0.10000	ND	99	75-125	2	20		
Boron	1.01	0.0400	0.0060	mg/L	1.0000	ND	101	75-125	1	20		
Cadmium	0.0996	0.0010	0.000060	mg/L	0.10000	ND	100	75-125	2	20		
Calcium	1.05	0.500	0.0104	mg/L	1.0000	0.0200	103	75-125	0.3	20		
Chromium	0.101	0.0100	0.0003	mg/L	0.10000	ND	101	75-125	2	20		
Cobalt	0.0973	0.0100	0.0005	mg/L	0.10000	ND	97	75-125	2	20		
Copper	0.0995	0.0250	0.0002	mg/L	0.10000	ND	99	75-125	0.006	20		
Lead	0.103	0.0050	0.00005	mg/L	0.10000	ND	103	75-125	0.8	20		
Molybdenum	0.108	0.0100	0.0002	mg/L	0.10000	ND	108	75-125	3	20		
Nickel	0.101	0.0100	0.0003	mg/L	0.10000	ND	101	75-125	0.7	20		
Selenium	0.0982	0.0100	0.0014	mg/L	0.10000	ND	98	75-125	1	20		
Silver	0.105	0.0100	0.0003	mg/L	0.10000	ND	105	75-125	0.06	20		
Thallium	0.105	0.0010	0.00003	mg/L	0.10000	ND	105	75-125	0.1	20		
Vanadium	0.103	0.0100	0.0014	mg/L	0.10000	ND	103	75-125	3	20		
Zinc	0.102	0.0100	0.0013	mg/L	0.10000	ND	102	75-125	3	20		
Lithium	0.102	0.0500	0.0011	mg/L	0.10000	ND	102	75-125	6	20		
Post Spike (7030080-PS1)		So	urce: AAC00	53-02		Prepar	ed: 03/02/	17 Analyz	ed: 03/06/	17		
Antimony	99.0			ug/L	100.00	0.350	99	80-120				
Arsenic	96.2			ug/L	100.00	0.0026	96	80-120				
Barium	101			ug/L	100.00	0.0641	101	80-120				
Beryllium	97.7			ug/L	100.00	0.0039	98	80-120				
Boron	971			ug/L	1000.0	0.0913	97	80-120				
Cadmium	100			ug/L	100.00	0.0138	100	80-120				
Calcium	1060			ug/L	1000.0	20.0	104	80-120				
Chromium	104			ug/L	100.00	0.158	104	80-120				
Cobalt	99.4			ug/L	100.00	0.0071	99	80-120				
Copper	102			ug/L	100.00	0.146	102	80-120				
Lead	102			ug/L	100.00	0.0150	102	80-120				
Molybdenum	109			ug/L	100.00	0.0580	109	80-120				
Nickel	101			ug/L	100.00	0.0629	100	80-120				
Selenium	100			ug/L	100.00	0.589	100	80-120				
Silver	105			ug/L	100.00	0.0028	105	80-120				
Thallium	103			ug/L	100.00	0.0170	103	80-120				
Vanadium	105			ug/L	100.00	-0.323	105	80-120				
Zinc	106			ug/L	100.00	0.540	106	80-120				
Lithium	101			ug/L	100.00	0.0163	101	80-120				

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham March 08, 2017

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QR-03** The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to suspected matrix interference and/or non-homogeneous sample matrix.
- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Serv 110 TECHNOLOGY (770) 734-4200 : FA

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

PF

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen REMARKS/ADDITIONAL INFORMATION 2 - H₂SO₄, ≤6°C 4 - NaOH, ≤6°C 1 - HCI, ≤6°C P - PRODUCT PRESERVATION SL - SLUDGE L - LIQUID SD - SOLID 3 - HNO3 A - AIR *MATRIX CODES SW - SURFACE WATER DRINKING WATER GW - GROUNDWATER STORM WATER MW - WASTEWATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE S - STERILE O - OTHER V - VOA VIAL P - PLASTIC WATER LAB #: Š 1 1650 BAL - 0 Z D Z B W K 3 t DATE/TIME DATE/TIME ANALYSIS REQUESTED (SW-846 9315/9320) ۵. 7 N N Radium 226 & 228 EPA 300.0 & SM 2540C) ۵ CI, F, SO, & TDS (OT47\0208 A93) RELINQUISHED BY: RELINQUISHED BY: ۵. Wetals App. III & IV ONTAINER TYPE RESERVATION # of $z \vdash 4$ - Z M R S 7 7 コ J laburch@southernco.com 2480 SAMPLE IDENTIFICATION F1-82-2-1-87 Heath McCorkle Y6WC-49 46WC-44 Maria Padilla 3-1-17 YGWC DATE/TIME: DATE/TIME: Phase 2 CCR CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER # Od CC Plant Yates AP > 0024 REQUESTED COMPLETION DATE: MATRIX CODE: GW 3 241 Ralph McGill Blvd SE B10185 68 3 SAMPLED BY AND TITLE Lauren Petty PROJECT NAME/STATE Collection 000/ 1370 030 1400 Atlanta, GA 30308 C. PONKET CLIENT NAME Georgia Power 404-506-7239 REPORT TO £1-67-7 1-82-2 PROJECT #. F1-82-2 F1-87-2 M-00-44 Collection DATE

Plant Yates COC Ash Ponds

Entered into LIMS:

Fracking #:

OTHER

TILL

COURIER

SAMPLE SHIPPED VIA UPS FED-EX

(agot

t

AN

o_N

ž

No.

RECEMBED BY

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

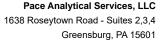
LOG-IN CHECKLIST

Attn: Mr. Joju Abraham

Client: Georgia Power

OBSERVATIONS

#Samples: 4 #Containers: 16


Minimum Temp(C): 1.4 Maximum Temp(C): 1.4 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

Printed: 3/2/2017 10:01:29AM

(724)850-5600

March 24, 2017

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: AAC0053 Plant Yates Pace Project No.: 30212422

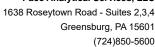
Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on March 03, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins


Sugnely Sellins

jacquelyn.collins@pacelabs.com

(724)850-5612 Project Manager

Enclosures

CERTIFICATIONS

Project: AAC0053 Plant Yates

Pace Project No.: 30212422

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391 Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008

Louisiana DEQ/TNI Certification #: 4086

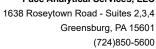
Maine Certification #: PA00091 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457


Rhode Island Certification #: 65-00282 South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Certification

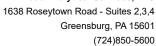
Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: AAC0053 Plant Yates

Pace Project No.: 30212422

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30212422001	YGWC-49	Water	02/27/17 13:10	03/03/17 09:45
30212422002	FB-1-2-28-17	Water	02/28/17 10:00	03/03/17 09:45
30212422003	YGWC-44	Water	02/28/17 10:30	03/03/17 09:45
30212422004	YGWC-36	Water	02/28/17 14:00	03/03/17 09:45

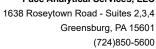


SAMPLE ANALYTE COUNT

Project: AAC0053 Plant Yates

Pace Project No.: 30212422

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30212422001	YGWC-49	EPA 9315	LAL	1
		EPA 9320	JJY	1
		Total Radium Calculation	JAL	1
30212422002	FB-1-2-28-17	EPA 9315	LAL	1
		EPA 9320	JJY	1
		Total Radium Calculation	JAL	1
30212422003	YGWC-44	EPA 9315	LAL	1
		EPA 9320	JJY	1
		Total Radium Calculation	JAL	1
30212422004	YGWC-36	EPA 9315	LAL	1
		EPA 9320	JJY	1
		Total Radium Calculation	JAL	1



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAC0053 Plant Yates

Pace Project No.: 30212422

Sample: YGWC-49	Lab ID: 3021242		Received:	03/03/17 09:45 M	atrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.174 ± 0.114 (0.158) C:94% T:NA	pCi/L	03/20/17 10:26	13982-63-3	
Radium-228	EPA 9320	0.0703 ± 0.319 (0.730) C:81% T:79%	pCi/L	03/18/17 15:46	15262-20-1	
Total Radium	Total Radium Calculation	0.244 ± 0.433 (0.888)	pCi/L	03/23/17 11:14	7440-14-4	
Sample: FB-1-2-28-17	Lab ID: 3021242	2002 Collected: 02/28/17 10:00	Received:	03/03/17 09:45 M	atrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0124 ± 0.0654 (0.175) C:99% T:NA	pCi/L	03/20/17 10:26	13982-63-3	
Radium-228	EPA 9320	-0.0875 ± 0.354 (0.848) C:74% T:83%	pCi/L	03/18/17 15:47	15262-20-1	
Total Radium	Total Radium Calculation	0.0124 ± 0.419 (1.02)	pCi/L	03/23/17 11:14	7440-14-4	
Sample: YGWC-44	Lab ID: 3021242		Received:	03/03/17 09:45 M	atrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0926 ± 0.104 (0.207) C:94% T:NA	pCi/L	03/20/17 10:26	13982-63-3	
Radium-228	EPA 9320	0.148 ± 0.367 (0.820) C:70% T:81%	pCi/L	03/18/17 15:47	15262-20-1	
Total Radium	Total Radium Calculation	0.241 ± 0.471 (1.03)	pCi/L	03/23/17 11:14	7440-14-4	
Sample: YGWC-36 PWS:	Lab ID: 3021242 Site ID:	2004 Collected: 02/28/17 14:00 Sample Type:	Received:	03/03/17 09:45 M	atrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.130 ± 0.127 (0.245)	pCi/L	03/20/17 10:26	13982-63-3	
Radium-228	EPA 9320	C:85% T:NA 1.21 ± 0.776 (1.45) C:41% T:78%	pCi/L	03/18/17 15:47	15262-20-1	
Total Radium	Total Radium Calculation	1.34 ± 0.903 (1.70)	pCi/L	03/23/17 11:14	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

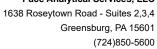
Project: AAC0053 Plant Yates

Pace Project No.: 30212422

QC Batch: 251731 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30212422001, 30212422002, 30212422003, 30212422004


METHOD BLANK: 1238369 Matrix: Water

Associated Lab Samples: 30212422001, 30212422002, 30212422003, 30212422004

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 -0.00178 ± 0.0626 (0.181) C:99% T:NA pCi/L 03/20/17 08:36

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: AAC0053 Plant Yates

Pace Project No.: 30212422

QC Batch: 251828 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30212422001, 30212422002, 30212422003, 30212422004


METHOD BLANK: 1238974 Matrix: Water

Associated Lab Samples: 30212422001, 30212422002, 30212422003, 30212422004

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 -0.0635 ± 0.343 (0.815) C:78% T:91% pCi/L 03/18/17 15:44

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AAC0053 Plant Yates

Pace Project No.: 30212422

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 03/24/2017 01:57 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WO#:30212422

Chain of Custody

Workorder Name:

Owner Received Date:

Face Analytical *

Results Requested By: 3/24/2017

LAB USE ONLY Requested Analysis Radium 226, 228, Total Preserved Containers EONF Matrix Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Collect Date/Time Lab ID Pace - Pittsburgh Subcontract To: Stes. 2,3,4 Sample Type Peachtree Corners, GA 30092 Workorder: AAC0053 110 Technology Parkway Pace Analytical Atlanta Phone (770)-734-4200 Betsy McDaniel tem Sample ID

888

, - 1	YGWC-49	9	2/27/2017 13:10	13:10	AAC0053-01	Ø₩	2		×							
2	FB-1-2-28-17	9	2/28/2017 10:00	10:00	AAC0053-02	ďΜ	2		×						_	
3	YGWC-44	9	2/28/2017 10:30	10:30	AAC0053-03	ВW	2		×							
4	YGWC-36	ŋ	2/28/2017 14:00	14:00	AAC0053-04	GW	2	:	×				\dashv			
5												ļ		····		
9																
7									,,							
∞															,	
6																
10																
Tran	Fransfers Released By			Date/Tir	ime Received By	ad By		Da	Date/Time	e.		S	Comments	nts		12
1	A Mary Com	anh		3/4/17	7 1780 myselal		2	[]-[]	3-17-17 Ofte	2948						
2	4)	**********)											
<u>~</u>																
00	Cooler Temperature on Receipt	N/A	رns عد	tody Sea	Custody Seal Y or (N)		Recei	Received on Ice Y or(N)	I Ice Y	or S		Sam	Sample Intact() or N	() Jue	_ _ 	z

Cooler Jemperature on Receipt 1000	veceived oil ice i oi(v)
***In order to maintain client confidentiality, location/name of the sampling site, sa	cation/name of the sampling site, sampler's name and signature may not be provided on this COC
This chain of custody is considered complete as is since this information is available in the owner laboratory.	ble in the owner laboratory.

Friday, June 17, 2016 11:01:34 AM east of the second secon

Page 1 of 1

FMT-ALL-C-002rev.00 24March2009

P

PAGE:

CHAIN OF CUSTODY RECORD

Pace Analytical * Pace Analytical Services, Inc. #ace Analytical * 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O_{3, ≤}6°C 7 - ≤6°C not frozen 2 - H₂SO₄, ≤6°C 3 - HNO₃ 4 - NaOH, ≤6°C REMARKS/ADDITIONAL INFORMATION L. LIQUID P. PRODUCT SL- SLUDGE SD- SQLD PRESERVATION 1 - HCI, ⊴6°C S- SOIL A. AIR MATRIX CODES: DRINKING WATER SURFACE WATER GROUNDWATER A - AMBER GLASS G - CLEAR GLASS V - VOA VIAL S - STERILE O - OTHER STORM WATER WW - WASTEWATER CONTAINER TYPE P - PLASTIC WATER racking #: LAB# DW. GW. SIV ST. JKE - 0 Z D Z G W C 4 1850 Ť C OTHER DATE/TIME S-1-1 DATE/TIME CHE ANALYSIS REQUESTED COURIER # of Coolers (0266/9166 9h8-W2) a, ന 4 N Radium 226 & 228 N Not Present (EPA 300.0 & SM 2640C) ո CI, F, SO, & TDS SAMPLE SHIPPED VIA. UPS FED-EX RELINQUISHED BY (EPA 6020/7470) RELINQUISHED BY: Welsis App. III & IV C00000 CONTAINER TYPE: PRESERVATION 250 ů # ишсю 7 7 7 J laburch@southernco.com 2480 SAMPLE IDENTIFICATION 2 F1-82-2-1-87 Heath McCorkle Y6wc-49 1 S イヤ M Maria Padilla DATE/TIME:
3-1-17
DATE/TIME: VBWC Y6WC Phase 2 CCR CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER Plant Yates AP **0** a: < a `> して OOMA S Lauren Petty
REQUESTED COMPLETION DATE: MATRIX CODE: 241 Ralph McGill Blvd SE B10185 \mathcal{L} 3.5 Ğ S 3 C. Perker R. Welkor PROJECT NAME/STATE Collection 000/ 1030 29 TIME 740C ž Atlanta, GA 30308 CLIENT NAME Georgia Power 404-506-7239 REPORT TO ECEIVED BY PROJECT # £1-67-7 F1-87-2 ž 44-00-M 61-82-2 61-82-2 Collection DATE

Plant Yates COC Ash Ponds

Sample Condition Upon R	eceipt	Pitts	burg	ıh
FaceAnalytical Client Name	: (Pac	e	Ga. Project # 3021242
Courier: Fed Ex UPS USPS Tracking #: 6812 5102	Client [7312		mercia	Pace Other
Custody Seal on Cooler/Box Present:	yes 🔀	по	Sea	ls intact;
Thermometer Used	Туре	of Ice	: We	et Blue None
Cooler Temperature Observed Temp	\ <i>\\\\</i>] ·c	Сог	rection Factor: °C Final Temp: °C
Temp should be above freezing to 6°C	, -			V
Company	[\ \	- I NI-	1 11/0	Date and Initials of person examining contents
Comments:	Yes	No.	N/A	
Chain of Custody Present:		1	-	1.
Chain of Custody Filled Out:	$-\langle \times \rangle$	-		2.
Chain of Custody Relinquished:		\downarrow	.	3.
Sampler Name & Signature on COC:	$-\downarrow \times$	X	~	4. Red 3/6/17
Sample Labels match COC:	, <u>K</u>		<u>بــــــــــــــــــــــــــــــــــــ</u>	<u></u>
-Includes date/time/ID Matrix:	<u> </u>	. [_	
Samples Arrived within Hold Time:		-	ļ	6.
Short Hold Time Analysis (<72hr remaining)	:	X	<u> </u>	7.
Rush Turn Around Time Requested:		$ \mathcal{X} $	<u> </u>	8.
Sufficient Volume:		ļ		9.
Correct Containers Used:	\times	<u> </u>		10.
-Pace Containers Used:	X			
Containers Intact:				11.
Orthophosphate field filtered		X		12.
Organic Samples checked for dechlorination	n:	ľ	X	13.
Filtered volume received for Dissolved tests		<u></u>	×	14.
All containers have been checked for preservation.	\searrow			15.
All containers needing preservation are found to be in compliance with EPA recommendation.				
exceptions: VOA, coliform, TOC, O&G, Phenol	lics			Initial when Completed Date/time of preservation
				Lot # of added preservative
Headspace in VOA Vials (>6mm):			X	16.
Trip Blank Present:		$\overline{\mathbf{x}}$		17.
Trip Blank Custody Seals Present		$\overline{}$		
Rad Aqueous Samples Screened > 0.5 mrem	/hr			Initial when completed: 17-17
Client Notification/ Resolution;				
		J	Date/T	ime: Contacted By:
Comments/ Resolution:	-,,-,			ime:Contacted By:
$\ \square$ A check in this box indicates that a	dditional	inforn	natior	has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR

Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Face Analytical"

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment

Sample Collection Date: Sample I.D. Sample MSD I.D. Spike I.D.:

Sample MS I.D.

Ra-226 LAL 3/16/2017 34495 DW Analyst: Date: Worklist: Matrix: Test:

Nethod Blank Assessment		
	MB Sample ID	1238369
	MB concentration:	-0.002
	M/B Counting Uncertainty:	0.063
	MB MDC:	0.181
MB	MB Numerical Performance Indicator:	-0.06
	MB Status vs Numerical Indicator:	N/A
	MB Status vs. MDC:	Pass

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F):

MSD Target Conc. (pCi/L, g, F):

MS/MSD Decay Corrected Spike Concentration (pCi/mL): Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL): MS Aliquot (L, g, F):

MSD Status vs Recovery

I aboratory Control Sample Accordment	C(14 - 2 / C(3)	2	MSD Target Conc. (pCi/L, g, F):
	LCSD (Y O'N);	z	Spike uncertainty (calculated):
	LCS34495	LCSD34495	Sample Result:
Count Date:	3/20/2017		Sample Result Counting Uncertainty (p.C.i/L. o. F):
Spike I.D.:	17-003		Sample Matrix Spike Result
Spike Concentration (pCi/mL):	38.230		Matrix Spike Result Counting Uncertainty (pCi/L. p. F)
Volume Used (mL):	0.25		Sample Matrix Spike Duplicate Result
Aliquot Volume (L, g, F):	0.501		Matrix Spike Duplicate Result Counting Uncertainty (pCi/l a F)
Target Conc. (pCi/L, g, F):	19.086		MS Numerical Performance Indicator
Uncertainty (Calculated):	0.898		MSD Numerical Performance Indicator
Result (pCi/L, g, F):	16.203		MS Percent Recovery
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.961		MSD Percent Recovery
Numerical Performance Indicator:	4.30		MS Status vs Numerical Indicator
Percent Recovery:	84.90%		MSD Status vs Numerical Indicator
Status vs Numerical Indicator:	N/A		MS Status vs Recovery
Status vs Recovery:	Pass		MSD Status vs Becovery

Matrix Spike/Matrix Spike Dunlingto Sample Accomment	manny opinemanny opine Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L o F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, q, F):	Duplicate Numerical Performance Indicator:	MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD;
		Enter Duplicate	sample IDs if	other than	LCS/LCSD in the	space below.			30211899003	30211899003DUP		
		Sample I.D.: 30211899003 Enter Duplicate	30211899003DUP	0.098	0.119	0.123	0.106	See Below ##	-0.309	22.69%	N/A	Pass
Duplicate Sample Assessment		Sample I.D.:	Duplicate Sample I.D. 30211899003DUP	Sample Result (pCi/L, g, F):	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	Are sample and/or duplicate results below MDC?	Duplicate Numerical Performance Indicator:	Duplicate RPD:	Duplicate Status vs Numerical Indicator:	Duplicate Status vs RPD:

MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC /

Comments:

TAR DW QC Printed: 3/24/2017 1:38 PM

Face Analytical

Quality Control Sample Performance Assessment

Test: Ra-228
Analyst: JJY
Date: 3/13/2017

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Date:	3/13/2017	Sampl
Worklist:	34513	
Matrix:	ΔM	
Method Blank Assessment		
MB Sample ID	1238974	
MB concentration:	-0.064	
M/B Counting Uncertainty:	0.343	
MB MDC:	0.815	
MB Numerical Performance Indicator:	-0.36	
MB Status vs Numerical Indicator:	N/A	
MB Status vs. MDC:	Pass	
	000	

																-											
Sample Matrix Spike Control Assessment	Sample Collection Date:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	Spike uncertainty (calculated):	Sample Result:	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:

LCSD (Y or N)?	>	
LCS34513	LCSD34513	
3/18/2017	3/18/2017	
17-005	17-005	
25.008	25.008	
0.20	0.20	
0.807	0.806	_
6.198	6.204	
0.446	0.447	
4.807	3.854	
0.605	0.565	
-3.63	-6.39	
77.55%	62.13%	
N/A	A/N	
Pass	Pass	
	CSD (Y or N)? LCS34513 LCS34513 3/18/2017 17-005 25.008 0.20 0.20 0.807 6.198 0.446 4.807 0.605 3.63 77.55% N/A Pass	

	Matrix Spike/Matrix Spike Duplicate Sample Assessment Sample I.D. Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Result Watrix Spike Result Counting Uncertainty (pCif., g, F): Sample Matrix Spike Duplicate Result Matrix Spike Duplicate Result Counting Uncertainty (pCif., g, F):	
$\overline{}$	Duplicate Numerical Performance Indicator:	
7	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator:	
	MS/ MSD Direjects vs DDD:	

Enter Duplicate

sample IDs if other than LCS/LCSD in the space below

LCS34513 LCSD34513 4.807 0.605 3.854 0.565 NO 2.255 22.08% N/A Pass

Sample I.D.:

Duplicate Sample I.D.:
Sample Result (pCifl., g, F):
Sample Result Counting Uncertainty (pCifl., g, F):
Sample Duplicate Result (pCifl., g, F):
Are sample and/or duplicate results below MDC?

Duplicate Sample Assessment

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Numerical Performance Indicator:
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:
Duplicate Status vs Numerical Indicator:
Duplicate Status vs RPD:

Comments:

Jun 3 M

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AAE0387

May 22, 2017

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, LLC.

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

May 22, 2017

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
YGWA-47	AAE0387-01	Ground Water	05/08/17 12:00	05/11/17 09:50
YGWC-44	AAE0387-02	Ground Water	05/08/17 13:35	05/11/17 09:50
YGWC-46	AAE0387-03	Ground Water	05/08/17 15:05	05/11/17 09:50
YGWC-36	AAE0387-04	Ground Water	05/09/17 11:55	05/11/17 09:50
YGWC-49	AAE0387-05	Ground Water	05/09/17 13:20	05/11/17 09:50
YGWC-45	AAE0387-06	Ground Water	05/09/17 15:25	05/11/17 09:50
Dup-1	AAE0387-07	Ground Water	05/09/17 00:00	05/11/17 09:50
YGWC-42	AAE0387-08	Ground Water	05/10/17 12:05	05/11/17 09:50
YGWC-43	AAE0387-09	Ground Water	05/10/17 10:15	05/11/17 09:50
EB-1-5-10-17	AAE0387-10	Water	05/10/17 11:50	05/11/17 09:50
FB-1-5-9-17	AAE0387-11	Water	05/09/17 10:25	05/11/17 09:50

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

May 22, 2017

Case Narrative

The Radium analysis by methods EPA 9315/9320 was performed by Pace-Pittsburgh, 1638 Roseytown Road - Suites 2, 3, 4, Greensburg PA 15601. The Pace-Pittsburgh lab contact is Jacquelyn Collins at 724-850-5612.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387 Client ID: YGWA-47

Date/Time Sampled: 5/8/2017 12:00:00PM

Matrix: Ground Water

Project: CCR Event

Lab Number ID: AAE0387-01

Date/Time Received: 5/11/2017 9:50:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	194	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	5.8	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 11:53	7050437	SLH
Fluoride	0.03	0.30	0.004	mg/L	EPA 300.0	J	1	05/12/17 09:41	05/12/17 11:53	7050437	SLH
Sulfate	120	10	0.92	mg/L	EPA 300.0		10	05/12/17 09:41	05/18/17 16:46	7050437	SLH
Metals, Total											
Antimony	0.0004	0.0030	0.0003	mg/L	EPA 6020B	B-01, J	1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Barium	0.0251	0.0100	0.0003	mg/L	EPA 6020B		1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Beryllium	0.00007	0.0030	0.00007	mg/L	EPA 6020B	J	1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Boron	0.0141	0.0400	0.0060	mg/L	EPA 6020B	J	1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Cadmium	0.0001	0.0010	0.00006	mg/L	EPA 6020B	J	1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Calcium	14.6	5.00	0.522	mg/L	EPA 6020B		50	05/15/17 09:00	05/17/17 17:30	7050474	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Cobalt	0.0099	0.0100	0.0005	mg/L	EPA 6020B	J	1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Lithium	0.0053	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/15/17 09:00	05/17/17 17:24	7050474	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:20	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387 Client ID: YGWC-44

Date/Time Sampled: 5/8/2017 1:35:00PM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0387-02

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	296	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	13	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 12:55	7050437	SLH
Fluoride	0.04	0.30	0.004	mg/L	EPA 300.0	J	1	05/12/17 09:41	05/12/17 12:55	7050437	SLH
Sulfate	150	10	0.92	mg/L	EPA 300.0		10	05/12/17 09:41	05/18/17 17:07	7050437	SLH
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Arsenic	0.0006	0.0050	0.0004	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Barium	0.125	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Boron	0.690	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Calcium	29.9	25.0	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/15/17 22:04	7050449	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Cobalt	0.0018	0.0100	0.0005	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Lithium	0.0132	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 21:58	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:22	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387 Client ID: YGWC-46

Date/Time Sampled: 5/8/2017 3:05:00PM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0387-03

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1160	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	33	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 13:15	7050437	SLH
Fluoride	0.004	0.30	0.004	mg/L	EPA 300.0	J	1	05/12/17 09:41	05/12/17 13:15	7050437	SLH
Sulfate	770	50	4.6	mg/L	EPA 300.0		50	05/12/17 09:41	05/18/17 17:28	7050437	SLH
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Arsenic	0.0007	0.0050	0.0004	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Barium	0.0332	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Boron	1.71	1.00	0.302	mg/L	EPA 6020B		50	05/12/17 12:00	05/15/17 22:27	7050449	CSW
Cadmium	0.0001	0.0010	0.00006	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Calcium	103	25.0	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/15/17 22:27	7050449	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Cobalt	0.0367	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Molybdenum	0.0008	0.0100	0.0006	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Lithium	0.0087	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:21	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:24	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

Client ID: YGWC-36

Date/Time Sampled: 5/9/2017 11:55:00AM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0387-04

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	303	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	5.7	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 13:36	7050437	SLH
Fluoride	0.009	0.30	0.004	mg/L	EPA 300.0	J	1	05/12/17 09:41	05/12/17 13:36	7050437	SLH
Sulfate	130	10	0.92	mg/L	EPA 300.0		10	05/12/17 09:41	05/18/17 17:48	7050437	SLH
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Arsenic	0.0006	0.0050	0.0004	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Barium	0.0349	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Beryllium	0.0002	0.0030	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Boron	0.233	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Cadmium	0.0002	0.0010	0.00006	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Calcium	13.9	5.00	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/15/17 22:39	7050449	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Lead	0.0004	0.0050	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Molybdenum	0.0025	0.0100	0.0006	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Selenium	0.0018	0.0100	0.0014	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Lithium	0.0057	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:33	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:27	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387 Client ID: YGWC-49

Date/Time Sampled: 5/9/2017 1:20:00PM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0387-05

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	154	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	5.3	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 13:57	7050437	SLH
Fluoride	0.05	0.30	0.004	mg/L	EPA 300.0	J	1	05/12/17 09:41	05/12/17 13:57	7050437	SLH
Sulfate	91	5.0	0.46	mg/L	EPA 300.0		5	05/12/17 09:41	05/18/17 18:09	7050437	SLH
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Barium	0.0792	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Beryllium	0.0001	0.0030	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Calcium	14.4	5.00	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/15/17 22:50	7050449	CSW
Chromium	0.0017	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Selenium	0.0076	0.0100	0.0014	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Lithium	0.0038	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:44	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:29	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387 Client ID: YGWC-45

Date/Time Sampled: 5/9/2017 3:25:00PM

Matrix: Ground Water

Project: CCR Event

Lab Number ID: AAE0387-06

Date/Time Received: 5/11/2017 9:50:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	388	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	4.6	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 14:17	7050437	SLH
Fluoride	0.20	0.30	0.004	mg/L	EPA 300.0	J	1	05/12/17 09:41	05/12/17 14:17	7050437	SLH
Sulfate	190	10	0.92	mg/L	EPA 300.0		10	05/12/17 09:41	05/18/17 18:30	7050437	SLH
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Barium	0.0779	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Boron	0.338	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Calcium	56.0	25.0	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/15/17 23:01	7050449	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Cobalt	0.0008	0.0100	0.0005	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Lead	0.0001	0.0050	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Molybdenum	0.0015	0.0100	0.0006	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Lithium	0.0136	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 22:56	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:31	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

Client ID: Dup-1

Date/Time Sampled: 5/9/2017 12:00:00AM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0387-07

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	249	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	5.7	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 14:59	7050437	SLH
Fluoride	0.04	0.30	0.004	mg/L	EPA 300.0	J	1	05/12/17 09:41	05/12/17 14:59	7050437	SLH
Sulfate	130	10	0.92	mg/L	EPA 300.0		10	05/12/17 09:41	05/18/17 18:50	7050437	SLH
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Arsenic	0.0007	0.0050	0.0004	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Barium	0.0352	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Beryllium	0.0002	0.0030	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Boron	0.239	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Cadmium	0.0002	0.0010	0.00006	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Calcium	14.1	5.00	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/15/17 23:13	7050449	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Lead	0.0003	0.0050	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Molybdenum	0.0026	0.0100	0.0006	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Selenium	0.0016	0.0100	0.0014	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Lithium	0.0053	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:07	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:39	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

Client ID: YGWC-42

Date/Time Sampled: 5/10/2017 12:05:00PM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0387-08

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1630	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	4.4	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 16:42	7050437	SLH
Fluoride	ND	0.30	0.004	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 16:42	7050437	SLH
Sulfate	1200	50	4.6	mg/L	EPA 300.0		50	05/12/17 09:41	05/18/17 19:11	7050437	SLH
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Arsenic	0.0022	0.0050	0.0004	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Barium	0.0517	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Beryllium	0.00009	0.0030	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Boron	20.4	2.00	0.302	mg/L	EPA 6020B		50	05/12/17 12:00	05/15/17 23:36	7050449	CSW
Cadmium	0.0002	0.0010	0.00006	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Calcium	130	25.0	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/15/17 23:36	7050449	CSW
Chromium	0.0006	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Cobalt	0.0021	0.0100	0.0005	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Lead	0.00009	0.0050	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Molybdenum	0.0017	0.0100	0.0006	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Selenium	0.0530	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Lithium	0.0316	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:30	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:41	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

Client ID: YGWC-43

Date/Time Sampled: 5/10/2017 10:15:00AM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0387-09

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	203	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	1.2	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 17:03	7050437	SLH
Fluoride	0.04	0.30	0.004	mg/L	EPA 300.0	J	1	05/12/17 09:41	05/12/17 17:03	7050437	SLH
Sulfate	100	5.0	0.46	mg/L	EPA 300.0		5	05/12/17 09:41	05/18/17 19:32	7050437	SLH
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Barium	0.0173	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Boron	0.955	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Calcium	7.90	0.500	0.0104	mg/L	EPA 6020B	B-01	1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Chromium	0.0005	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Lead	0.00008	0.0050	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Lithium	0.0123	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:41	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:43	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

Client ID: EB-1-5-10-17

Date/Time Sampled: 5/10/2017 11:50:00AM

Matrix: Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0387-10

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	ND	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 17:23	7050437	SLH
Fluoride	0.009	0.30	0.004	mg/L	EPA 300.0	J	1	05/12/17 09:41	05/12/17 17:23	7050437	SLH
Sulfate	ND	1.0	0.09	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 17:23	7050437	SLH
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Barium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Boron	0.0071	0.0400	0.0060	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Calcium	0.0638	0.500	0.0104	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Chromium	0.0004	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Lithium	ND	0.0500	0.0011	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:53	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:46	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

Client ID: FB-1-5-9-17

Date/Time Sampled: 5/9/2017 10:25:00AM

Matrix: Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0387-11

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	ND	0.25	0.01	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 17:44	7050437	SLH
Fluoride	ND	0.30	0.004	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 17:44	7050437	SLH
Sulfate	ND	1.0	0.09	mg/L	EPA 300.0		1	05/12/17 09:41	05/12/17 17:44	7050437	SLH
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Barium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Calcium	0.0497	0.500	0.0104	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Lithium	ND	0.0500	0.0011	mg/L	EPA 6020B		1	05/12/17 12:00	05/15/17 23:59	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:48	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050407 - SM 2540 C											
Blank (7050407-BLK1)						Prepar	ed & Anal	yzed: 05/1:	2/17		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (7050407-BS1)						Prepar	ed & Anal	yzed: 05/1:	2/17		
Total Dissolved Solids	378	25	10	mg/L	400.00		94	84-108			
Duplicate (7050407-DUP1)		Soi	ırce: AAE03	313-05		Prepar	ed & Anal	yzed: 05/1:	2/17		
Total Dissolved Solids	ND	25	10	mg/L		ND				10	
Duplicate (7050407-DUP2)		Soi	ırce: AAE0	387-09		Prepar	ed & Anal	yzed: 05/1:	2/17		
Total Dissolved Solids	218	25	10	mg/L		203			7	10	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

May 22, 2017

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050437 - EPA 300.0											
Blank (7050437-BLK1)						Prepare	ed & Analy	/zed: 05/12	2/17		
Chloride	ND	0.25	0.01	mg/L							
Fluoride	ND	0.30	0.004	mg/L							
Sulfate	ND	1.0	0.09	mg/L							
LCS (7050437-BS1)						Prepare	ed & Analy	/zed: 05/12	2/17		
Chloride	10.0	0.25	0.01	mg/L	10.020		100	90-110			
Fluoride	10.0	0.30	0.004	mg/L	10.020		100	90-110			
Sulfate	10.2	1.0	0.09	mg/L	10.050		101	90-110			
Matrix Spike (7050437-MS1)		Sou	urce: AAE03	887-01		Prepare	ed & Analy	/zed: 05/12	2/17		
Chloride	15.8	0.25	0.01	mg/L	10.020	5.79	100	90-110			
Fluoride	10.4	0.30	0.004	mg/L	10.020	0.03	104	90-110			
Sulfate	109	1.0	0.09	mg/L	10.050	110	NR	90-110			QM-02
Matrix Spike (7050437-MS2)		Sou	urce: AAE03	887-06		Prepare	ed & Analy	/zed: 05/12	2/17		
Chloride	14.9	0.25	0.01	mg/L	10.020	4.60	103	90-110			
Fluoride	10.7	0.30	0.004	mg/L	10.020	0.20	105	90-110			
Sulfate	152	1.0	0.09	mg/L	10.050	157	NR	90-110			QM-02
Matrix Spike Dup (7050437-MSD1)		Sou	urce: AAE03	887-01		Prepare	ed & Analy	/zed: 05/12	2/17		
Chloride	16.0	0.25	0.01	mg/L	10.020	5.79	101	90-110	1	15	
Fluoride	10.6	0.30	0.004	mg/L	10.020	0.03	106	90-110	2	15	
Sulfate	108	1.0	0.09	mg/L	10.050	110	NR	90-110	0.2	15	QM-02

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050418 - EPA 7470A											
Blank (7050418-BLK1)						Prepare	ed & Analy	/zed: 05/1	5/17		
Mercury	ND	0.00050	0.000041	mg/L			•				
LCS (7050418-BS1)						Prepare	ed & Analy	/zed: 05/1	5/17		
Mercury	0.00218	0.00050	0.000041	mg/L	2.5000E-3		87	80-120			
Matrix Spike (7050418-MS1)		Sou	urce: AAE03	13-03		Prepare	ed & Analy	/zed: 05/15	5/17		
Mercury	0.00217	0.00050	0.000041	mg/L	2.5000E-3	ND.	87	75-125			
Matrix Spike Dup (7050418-MSD1)		Soi	urce: AAE03	13-03		Prepare	ed & Analy	/zed: 05/1	5/17		
Mercury	0.00215	0.00050	0.000041	mg/L	2.5000E-3	ND	86	75-125	1	20	
Post Spike (7050418-PS1)		Soi	urce: AAE03	13-03		Prepare	ed & Analy	/zed: 05/1	5/17		
Mercury	1.78			ug/L	1.6667	-0.00823	107	80-120			
Batch 7050449 - EPA 3005A											
Blank (7050449-BLK1) Antimony	ND	0.0030	0.0003	mg/L		Prepare	ed: 05/12/	17 Analyz	ed: 05/15/	1/	
Arsenic	ND	0.0050	0.0003	mg/L							
Barium	ND	0.0100	0.0003	mg/L							
Beryllium	ND	0.0030	0.00007	mg/L							
Boron	ND	0.0400	0.0060	mg/L							
Cadmium	ND	0.0010	0.00006	mg/L							
Calcium	0.0319	0.500	0.0104	mg/L							J
Chromium	0.0006	0.0100	0.0003	mg/L							J
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0250	0.0003	mg/L							
Lead	ND	0.0050	0.00007	mg/L							
Molybdenum	ND	0.0100	0.0006	mg/L							
Nickel	ND	0.0100	0.0003	mg/L							
Selenium	ND	0.0100	0.0014	mg/L							
Silver	ND	0.0100	0.0003	mg/L							
Thallium	ND	0.0010	0.00005	mg/L							
Vanadium	ND	0.0100	0.0014	mg/L							
Zinc	ND	0.0100	0.0013	mg/L							
Lithium	ND	0.0500	0.0011	mg/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

Metals, Total - Quality Control

Description Prepared: 05/12/17 Analyzed: 05/15/17 Antmony 0.116 0.0030 0.0003 mg/L 0.10000 116 80-120 0.004 0.10000 120 80-120 0.004 0.10000 0.1000 120 80-120 0.004 0.10000 0.1000	Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Antimony 0.116 0.0030 0.0003 mg/L 0.10000 116 80-120 Arsenic 0.102 0.0050 0.0004 mg/L 0.10000 102 80-120 Beryllium 0.108 0.0030 0.00007 mg/L 0.10000 103 80-120 Beryllium 0.108 0.0030 0.00007 mg/L 0.10000 108 80-120 Beryllium 0.108 0.0030 0.00007 mg/L 0.10000 117 80-120 Cadmium 0.104 0.001 0.00008 mg/L 0.10000 1104 80-120 Cadmium 0.105 0.500 0.01104 mg/L 0.10000 102 80-120 Calcium 1.05 0.500 0.01104 mg/L 0.10000 102 80-120 Cabalt 0.103 0.0100 0.0003 mg/L 0.10000 102 80-120 Cabalt 0.103 0.0100 0.0003 mg/L 0.10000 102 80-120 Cabalt 0.103 0.0100 0.0005 mg/L 0.10000 103 80-120 Cabelt 0.103 0.0050 0.00007 mg/L 0.10000 103 80-120 Cabelt 0.103 0.0050 0.00007 mg/L 0.10000 106 80-120 Cabelt 0.103 0.0050 0.00007 mg/L 0.10000 106 80-120 Cabelt 0.103 0.0000 0.0000 mg/L 0.10000 106 80-120 Cabelt 0.103 0.0100 0.0000 mg/L 0.10000 106 80-120 Cabelt 0.103 0.0000 0.0000 mg/L 0.10000 106 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 106 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 106 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 106 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 106 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 106 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 106 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 106 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 107 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 107 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 107 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 107 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 107 80-120 Cabel 0.103 0.0000 0.0000 mg/L 0.10000 0.103 80-120 Cabel 0.104 0.0000 0.0000 mg/L 0.10000 0.0000 107 80-120 Cabel 0.104 0.0000 0.0000 mg/L 0.10000 0.103 80-120 Cabel 0.104 0.0000 0.0000 mg/L 0.10000 0.0000 107 80-120 Cabel 0.104 0.0000 0.0000 mg/L 0.10000 0.0000 107 80-125 Cabel 0.104 0.0000 0.0000 mg/L 0.10000 0.0000 0.125 Cabel 0.104 0.0000 0.0000 mg/L 0.10000 0.0	Batch 7050449 - EPA 3005A											
Arsenic 0.102 0.0050 0.0004 mg/L 0.10000 102 80-120 Barlum 0.1015 0.0100 0.0003 mg/L 0.10000 105 80-120 Beryllum 0.108 0.0030 0.00007 mg/L 0.10000 1105 80-120 Beryllum 0.108 0.0030 0.00007 mg/L 0.10000 1107 80-120 Cadmium 0.104 0.0010 0.00008 mg/L 0.10000 1107 80-120 Cadmium 0.105 0.500 0.0104 mg/L 0.0000 105 80-120 Calcilum 1.05 0.500 0.0104 mg/L 0.0000 105 80-120 Chromium 0.102 0.0100 0.0003 mg/L 0.10000 105 80-120 Chromium 0.102 0.0100 0.0005 mg/L 0.10000 105 80-120 Chromium 0.103 0.0250 0.0003 mg/L 0.10000 105 80-120 Copper 0.103 0.0250 0.0003 mg/L 0.10000 106 80-120 Chead 0.106 0.0050 0.00007 mg/L 0.10000 106 80-120 Chead 0.1016 0.0050 0.00007 mg/L 0.10000 106 80-120 Chicked 0.103 0.0100 0.0003 mg/L 0.10000 106 80-120 Chicked 0.103 0.0100 0.0003 mg/L 0.10000 106 80-120 Chicked 0.103 0.0100 0.0003 mg/L 0.10000 106 80-120 Chicked 0.103 0.0100 0.0003 mg/L 0.10000 106 80-120 Chicked 0.103 0.0100 0.0003 mg/L 0.10000 106 80-120 Chicked 0.103 0.0100 0.0003 mg/L 0.10000 106 80-120 Chicked 0.103 0.0100 0.0003 mg/L 0.10000 106 80-120 Chicked 0.103 0.0100 0.0003 mg/L 0.10000 100 80-120 Chicked 0.103 0.0100 0.0003 mg/L 0.10000 110 80-120 Chromium 0.108 0.0100 0.0003 mg/L 0.10000 110 80-120 Chromium 0.1017 0.0010 0.00003 mg/L 0.10000 110 80-120 Chromium 0.1017 0.0010 0.0003 mg/L 0.10000 110 80-120 Chromium 0.101 0.0030 0.0001 mg/L 0.10000 110 80-120 Chromium 0.101 0.0030 0.0001 mg/L 0.10000 110 80-120 Chromium 0.101 0.0030 0.0001 mg/L 0.10000 110 80-120 Chromium 0.101 0.0030 0.0003 mg/L 0.10000 110 75-125 Cadmium 0.0030 0.0000 mg/L 0.10000 0.0003 mg/L 0.10000 100 75-125 Cadmium 0.0091 0.0001 0.0003 mg/L 0.10000 0.0001 100 75-125 Charlimony 0.0001 0.0000 0.0003 mg/L 0.10000 0.0001 100 75-125 Charlimony 0.0001 0.0003 mg/L 0.10000 0.0000 100 0.000	LCS (7050449-BS1)						Prepare	ed: 05/12/	17 Analyzo	ed: 05/15/	17	
Barlum 0.105 0.0100 0.0003 mg.L 0.10000 105 80-120 Beryllum 0.108 0.0030 0.00007 mg.L 0.10000 118 80-120 Barlum 0.108 0.0030 0.00007 mg.L 0.10000 117 80-120 Cadmium 0.104 0.0101 0.00006 mg.L 0.10000 117 80-120 Calcium 1.05 0.500 0.0104 mg.L 0.10000 105 80-120 Chromium 0.102 0.0100 0.0003 mg.L 0.10000 105 80-120 Chromium 0.102 0.0100 0.0003 mg.L 0.10000 103 80-120 Cobalt 0.103 0.0100 0.0005 mg.L 0.10000 103 80-120 Cobalt 0.106 0.0050 0.00007 mg.L 0.10000 103 80-120 Cobalt 0.106 0.0000 0.0003 mg.L 0.10000 103 80-120 Cobalt 0.106 0.0000 0.0003 mg.L 0.10000 106 80-120 Kickel 0.108 0.0100 0.0003 mg.L 0.10000 106 80-120 Kickel 0.108 0.0100 0.0003 mg.L 0.10000 108 80-120 Kickel 0.103 0.0100 0.0003 mg.L 0.10000 108 80-120 Kickel 0.103 0.0100 0.0003 mg.L 0.10000 108 80-120 Kickel 0.103 0.0100 0.0003 mg.L 0.10000 108 80-120 Kickel 0.103 0.0100 0.0003 mg.L 0.10000 100 80-120 Kickel 0.103 0.0100 0.0003 mg.L 0.10000 100 80-120 Kickel 0.103 0.0000 0.0003 mg.L 0.10000 100 80-120 Kickel 0.104 0.0000 0.0003 mg.L 0.10000 100 80-120 Kickel 0.104 0.0000 0.0003 mg.L 0.10000 100 80-120 Kickel 0.104 0.0000 0.0003 mg.L 0.10000 0.0006 100 75-125 Kickel 0.1090 0.0000 0.0000 mg.L 0.10000 0.0000 100 75-125 Kickel 0.0000 0	Antimony	0.116	0.0030	0.0003	mg/L	0.10000		116	80-120			
Beryllium	Arsenic	0.102	0.0050	0.0004	mg/L	0.10000		102	80-120			
Baron	Barium	0.105	0.0100	0.0003	mg/L	0.10000		105	80-120			
Cadmium 0.104 0.0101 0.00016 mg/L 0.10000 104 80-120 Calcium 1.05 0.500 0.0104 mg/L 1.0000 105 80-120 Chromium 0.102 0.0100 0.0003 mg/L 0.10000 103 80-120 Cobalt 0.103 0.0220 0.0003 mg/L 0.10000 103 80-120 Copper 0.103 0.0220 0.0003 mg/L 0.10000 103 80-120 Molybdenum 0.106 0.0050 0.0003 mg/L 0.10000 106 80-120 Nickel 0.103 0.0100 0.0003 mg/L 0.10000 103 80-120 Sikver 0.110 0.0100 0.0003 mg/L 0.10000 103 80-120 Thallium 0.107 0.0010 0.0003 mg/L 0.10000 107 80-120 Zinc 0.110 0.0010 0.0011 mg/L 0.10000 107	Beryllium	0.108	0.0030	0.00007	mg/L	0.10000		108	80-120			
Calcium	Boron	1.17	0.0400	0.0060	mg/L	1.0000		117	80-120			
Chromium	Cadmium	0.104	0.0010	0.00006	mg/L	0.10000		104	80-120			
Cobalt 0.103 0.0103 0.0100 0.0005 mg/L 0.10000 103 80-120 Copper 0.103 0.0250 0.0003 mg/L 0.10000 103 80-120 Lead 0.106 0.0050 0.00007 mg/L 0.10000 106 80-120 Molybdenum 0.106 0.0100 0.0006 mg/L 0.10000 106 80-120 Nickel 0.103 0.0100 0.0001 mg/L 0.10000 108 80-120 Selenium 0.101 0.0101 0.0003 mg/L 0.10000 108 80-120 Silver 0.110 0.0101 0.00005 mg/L 0.10000 107 80-120 Thallium 0.107 0.0010 0.00014 mg/L 0.10000 98 80-120 Vanadum 0.0978 0.0100 0.0014 mg/L 0.10000 102 80-120 Lithium 0.112 0.0500 0.0011 mg/L 0.10000	Calcium	1.05	0.500	0.0104	mg/L	1.0000		105	80-120			
Copper 0.103 0.0250 0.0003 mg/L 0.10000 103 80-120 Lead 0.106 0.0050 0.00007 mg/L 0.10000 106 80-120 Molybdenum 0.106 0.0100 0.0003 mg/L 0.10000 106 80-120 Nickel 0.103 0.0100 0.0003 mg/L 0.10000 108 80-120 Selenium 0.108 0.0100 0.0003 mg/L 0.10000 108 80-120 Silver 0.110 0.0100 0.00005 mg/L 0.10000 107 80-120 Vanadium 0.107 0.0010 0.0014 mg/L 0.10000 107 80-120 Zinc 0.102 0.0100 0.0011 mg/L 0.10000 107 80-120 Matrix Spike (750449-MS1) Source: AAE0387-02 Prepared: 05/12/17 Analyzed: 05/15/17 05/15/17 Arsenic 0.107 0.0050 0.0004 mg/L 0.10000 ND 111 75-12	Chromium	0.102	0.0100	0.0003	mg/L	0.10000		102	80-120			
Lead 0.106 0.0060 0.00007 mg/L 0.10000 106 80-120 Molybdenum 0.106 0.0100 0.0006 mg/L 0.10000 106 80-120 Selenium 0.108 0.0100 0.0003 mg/L 0.10000 103 80-120 Silver 0.110 0.0100 0.0014 mg/L 0.10000 107 80-120 Thalllum 0.107 0.0100 0.0003 mg/L 0.10000 107 80-120 Vanadium 0.0978 0.0100 0.0014 mg/L 0.10000 102 80-120 Zinc 0.102 0.0100 0.0013 mg/L 0.10000 102 80-120 Matrix Spike (7050449-MS1) Source: AAE0387-02 Prepared: 05/12/17 Analyzed: 05/15/17 Antimony 0.111 0.0030 0.0001 mg/L 0.10000 ND 111 75-125 Baryllium 0.240 0.0100 0.0004 mg/L 0.10000 ND 99	Cobalt	0.103	0.0100	0.0005	mg/L	0.10000		103	80-120			
Molybdenum 0.106 0.0100 0.0006 mg/L 0.10000 106 80-120 Nickel 0.103 0.0100 0.0003 mg/L 0.10000 103 80-120 Selenium 0.108 0.0100 0.0003 mg/L 0.10000 103 80-120 Silver 0.110 0.0100 0.0003 mg/L 0.10000 110 80-120 Thallium 0.107 0.0010 0.0005 mg/L 0.10000 107 80-120 Vanadium 0.0978 0.0100 0.0014 mg/L 0.10000 98 80-120 Zinc 0.102 0.0100 0.0014 mg/L 0.10000 102 80-120 Matrix Spike (7050449-MS1) Source: AAE0387-02 Prepared: 05/12/17 Analyzed: 05/15/17 Matrix Spike (7050449-MS1) Source: AAE0387-02 Prepared: 05/12/17 Analyzed: 05/15/17 Antimony 0.111 0.0033 mg/L 0.10000 ND 111 75-125 Arsenic	Copper	0.103	0.0250	0.0003	mg/L	0.10000		103	80-120			
Nickel 0.103 0.0100 0.0003 mg/L 0.10000 103 80-120 Selenium 0.108 0.0100 0.0014 mg/L 0.10000 108 80-120 Silver 0.1110 0.0100 0.0003 mg/L 0.10000 110 80-120 Thallium 0.107 0.0010 0.00005 mg/L 0.10000 110 80-120 Thallium 0.0978 0.0100 0.0014 mg/L 0.10000 107 80-120 Thallium 0.0102 0.0100 0.0013 mg/L 0.10000 107 80-120 Time 0.102 0.0100 0.0013 mg/L 0.10000 102 80-120 Lithium 0.113 0.0500 0.0011 mg/L 0.10000 110 80-120 Thallium 0.111 0.0030 0.0001 mg/L 0.10000 110 80-120 Thallium 0.111 0.0030 0.0011 mg/L 0.10000 110 80-120 Thallium 0.111 0.0030 0.0001 mg/L 0.10000 110 80-120 Thallium 0.111 0.0030 0.0001 mg/L 0.10000 110 75-125 Barium 0.240 0.1010 0.0003 mg/L 0.10000 0.006 106 75-125 Barium 0.0991 0.0030 0.00007 mg/L 0.10000 0.125 115 75-125 Beryllium 0.0991 0.0030 0.00007 mg/L 0.10000 ND 99 75-125 Beryllium 0.0991 0.0030 0.00007 mg/L 0.10000 ND 99 75-125 Calcium 3.0.2 25.0 0.522 mg/L 1.0000 0.890 139 75-125 Calcium 3.0.2 25.0 0.522 mg/L 0.10000 ND 104 75-125 Calcium 0.0999 0.0100 0.0003 mg/L 0.10000 ND 102 75-125 Calcium 0.0996 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 Cobalt 0.0996 0.0250 0.0003 mg/L 0.10000 ND 98 75-125 Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 98 75-125 Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 98 75-125 Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 98 75-125 Selenium 0.104 0.0100 0.0006 mg/L 0.10000 ND 98 75-125 Selenium 0.104 0.0100 0.0006 mg/L 0.10000 ND 98 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.100 0.0000 ND 100 75-125 Selenium 0.100 0.0000 ND 100 75-125 Selenium 0.100 0.0000 ND 100 75-125 Selenium 0.1000 0.0000 ND 100 75-125	Lead	0.106	0.0050	0.00007	mg/L	0.10000		106	80-120			
Selenium 0.108 0.0100 0.0014 mg/L 0.10000 108 80-120 Silver 0.110 0.0100 0.0003 mg/L 0.10000 110 80-120 Thallium 0.107 0.0010 0.00015 mg/L 0.10000 107 80-120 Vanadium 0.0978 0.0100 0.0013 mg/L 0.10000 102 80-120 Zinc 0.102 0.0100 0.0011 mg/L 0.10000 102 80-120 Lithium 0.113 0.0500 0.0011 mg/L 0.10000 113 80-120 Matrix Spike (7050449-MS1) Source: AAE0387-02 Prepared: 05/12/17 Analyzed: 05/15/17 Antimony 0.111 0.0030 0.0003 mg/L 0.10000 100 75-125 Arsenic 0.107 0.0050 0.0004 mg/L 0.10000 100 75-125 Beryllium 0.0991 0.0030 0.00007 mg/L 0.10000 ND 99	Molybdenum	0.106	0.0100	0.0006	mg/L	0.10000		106	80-120			
Silver	Nickel	0.103	0.0100	0.0003	mg/L	0.10000		103	80-120			
Thailium 0.107 0.0010 0.00005 mg/L 0.10000 107 80-120 Vanadium 0.0978 0.0100 0.0014 mg/L 0.10000 98 80-120 Zinc 0.102 0.0100 0.0013 mg/L 0.10000 102 80-120 Matrix Spike (7050449-MS1) Source: AAE0387-02 Prepared: 05/12/17 Analyzed: 05/15/17 Antimony 0.111 0.0030 0.003 mg/L 0.10000 ND 111 75-125 Assenic 0.107 0.0050 0.0004 mg/L 0.10000 ND 111 75-125 Barium 0.240 0.0100 0.0003 mg/L 0.10000 ND 19 75-125 Beryllium 0.0991 0.0030 0.0007 mg/L 0.10000 ND 19 75-125 Boron 2.08 0.0400 0.0006 mg/L 1.0000 0.690 139 75-125 QM- Calcium 0.104 0.0101 </td <td>Selenium</td> <td>0.108</td> <td>0.0100</td> <td>0.0014</td> <td>mg/L</td> <td>0.10000</td> <td></td> <td>108</td> <td>80-120</td> <td></td> <td></td> <td></td>	Selenium	0.108	0.0100	0.0014	mg/L	0.10000		108	80-120			
Vanadium 0.0978 0.0100 0.014 mg/L 0.10000 98 80-120 Zinc 0.102 0.0100 0.0013 mg/L 0.10000 102 80-120 Lithium 0.113 0.0500 0.0011 mg/L 0.10000 113 80-120 Matrix Spike (7050449-MS1) Source: AAE0387-02 Prepared: 05/12/17 Analyzed: 05/15/17 Antimony 0.111 0.0030 0.0003 mg/L 0.10000 ND 111 75-125 Arsenic 0.107 0.0050 0.0004 mg/L 0.10000 0.0125 115 75-125 Barium 0.240 0.0100 0.0003 mg/L 0.10000 0.125 115 75-125 Beryllium 0.0991 0.0300 0.00007 mg/L 0.10000 ND 19 75-125 Boron 2.08 0.0400 0.00006 mg/L 0.10000 ND 104 75-125 Calcium 3.0.2 25.0 0.	Silver	0.110	0.0100	0.0003	mg/L	0.10000		110	80-120			
Zinc	Thallium	0.107	0.0010	0.00005	mg/L	0.10000		107	80-120			
Lithium 0.113 0.0500 0.0011 mg/L 0.10000 113 80-120 Matrix Spike (7050449-MS1) Source: AAE0387-02 Prepared: 05/12/17 Analyzed: 05/15/17 Antimony 0.111 0.0030 0.0003 mg/L 0.10000 ND 111 75-125 Arsenic 0.107 0.0050 0.0004 mg/L 0.10000 0.0006 166 75-125 Barium 0.240 0.0100 0.0003 mg/L 0.10000 ND 99 75-125 Beryllium 0.0991 0.0030 0.00007 mg/L 0.10000 ND 99 75-125 Boron 2.08 0.0400 0.0060 mg/L 1.0000 0.690 139 75-125 QM- Cadmium 0.104 0.0010 0.00006 mg/L 1.0000 ND 104 75-125 QM- Calcium 30.2 25.0 0.522 mg/L 1.0000 ND 102 75-125 QM- <tr< td=""><td>Vanadium</td><td>0.0978</td><td>0.0100</td><td>0.0014</td><td>mg/L</td><td>0.10000</td><td></td><td>98</td><td>80-120</td><td></td><td></td><td></td></tr<>	Vanadium	0.0978	0.0100	0.0014	mg/L	0.10000		98	80-120			
Matrix Spike (7050449-MS1) Source: AAE0387-02 Prepared: 05/12/17 Analyzed: 05/15/17 Antimony 0.111 0.0030 0.0003 mg/L 0.10000 ND 111 75-125 Arsenic 0.107 0.0050 0.0004 mg/L 0.10000 0.0066 106 75-125 Barium 0.240 0.0100 0.0003 mg/L 0.10000 ND 99 75-125 Beryllium 0.0991 0.0030 0.00007 mg/L 0.10000 ND 99 75-125 Boron 2.08 0.0400 0.0060 mg/L 1.0000 0.690 139 75-125 Cadmium 0.104 0.0010 0.0006 mg/L 1.0000 0.690 139 75-125 Calcium 30.2 25.0 0.522 mg/L 1.0000 ND 104 75-125 Calcium 30.2 25.0 0.522 mg/L 1.0000 ND 102 75-125 Cobalt 0.0999 0.0100 </td <td>Zinc</td> <td>0.102</td> <td>0.0100</td> <td>0.0013</td> <td>mg/L</td> <td>0.10000</td> <td></td> <td>102</td> <td>80-120</td> <td></td> <td></td> <td></td>	Zinc	0.102	0.0100	0.0013	mg/L	0.10000		102	80-120			
Antimony 0.111 0.0030 0.0003 mg/L 0.10000 ND 111 75-125 Arsenic 0.107 0.0050 0.0004 mg/L 0.10000 0.0006 106 75-125 Barium 0.240 0.0100 0.0003 mg/L 0.10000 0.125 115 75-125 Beryllium 0.0991 0.0030 0.00007 mg/L 0.10000 ND 99 75-125 Beryllium 0.104 0.0010 0.0006 mg/L 1.0000 ND 99 75-125 Boron 2.08 0.0400 0.0006 mg/L 1.0000 ND 99 75-125 Cadmium 0.104 0.0010 0.0006 mg/L 1.0000 ND 104 75-125 Calcium 30.2 25.0 0.522 mg/L 1.0000 ND 104 75-125 Chromium 0.102 0.0100 0.0003 mg/L 0.10000 ND 102 75-125 Cobalt 0.0999 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 Molybdenum 0.102 0.0100 0.0006 mg/L 0.10000 ND 98 75-125 Molybdenum 0.102 0.0100 0.0006 mg/L 0.10000 ND 98 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 102 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Thallium 0.100 0.0010 0.0005 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0014 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0014 mg/L 0.10000 ND 100 75-125 Zinc 0.0970 0.0100 0.0013 mg/L 0.10000 ND 100 75-125	Lithium	0.113	0.0500	0.0011	mg/L	0.10000		113	80-120			
Arsenic 0.107 0.0050 0.0004 mg/L 0.10000 0.0006 106 75-125 Barium 0.240 0.0100 0.0003 mg/L 0.10000 0.125 115 75-125 Beryllium 0.0991 0.0030 0.00007 mg/L 0.10000 ND 99 75-125 Boron 2.08 0.0400 0.0006 mg/L 1.0000 0.690 139 75-125 Cadmium 0.104 0.0010 0.00006 mg/L 0.10000 ND 104 75-125 Calcium 30.2 25.0 0.522 mg/L 1.0000 29.9 33 75-125 QM-Chromium Chromium 0.102 0.0100 0.0003 mg/L 0.10000 ND 102 75-125 Cobalt 0.0999 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 98 75-125 Lead 0.0976 0.0102 0.0100 0.0006	Matrix Spike (7050449-MS1)		Sou	ırce: AAE03	87-02		Prepare	ed: 05/12/	17 Analyz	ed: 05/15/	17	
Barium 0.240 0.0100 0.0003 mg/L 0.10000 0.125 115 75-125 Beryllium 0.0991 0.0030 0.00007 mg/L 0.10000 ND 99 75-125 Boron 2.08 0.0400 0.0060 mg/L 1.0000 0.690 139 75-125 QM-Cadmium Cadmium 0.104 0.0010 0.00006 mg/L 0.10000 ND 104 75-125 QM-Cadmium Calcium 30.2 25.0 0.522 mg/L 1.0000 29.9 33 75-125 QM-Chromium Chromium 0.102 0.0100 0.0003 mg/L 0.10000 ND 102 75-125 QM-Chromium Cobalt 0.0999 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 QM-Chromium 0.0066 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 QM-Chromium 0.0066 0.0250 0.0003 mg/L 0.	Antimony	0.111	0.0030	0.0003	mg/L	0.10000	ND	111	75-125			
Beryllium 0.0991 0.0030 0.00007 mg/L 0.10000 ND 99 75-125 Boron 2.08 0.0400 0.0060 mg/L 1.0000 0.690 139 75-125 QM-Cadmium Cadmium 0.104 0.0010 0.00006 mg/L 0.10000 ND 104 75-125 QM-Cadmium Calcium 30.2 25.0 0.522 mg/L 1.0000 29.9 33 75-125 QM-Chromium Chromium 0.102 0.0100 0.0003 mg/L 0.10000 ND 102 75-125 QM-Chromium Cobalt 0.0999 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 QM-Chromium 0.0066 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 QM-Chromium 0.0066 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 QM-Chromium 0.007 0.007 mg/L 0.10000 ND	Arsenic	0.107	0.0050	0.0004	mg/L	0.10000	0.0006	106	75-125			
Boron 2.08 0.0400 0.0600 mg/L 1.0000 0.690 139 75-125 QM- Cadmium 0.104 0.0010 0.00006 mg/L 0.10000 ND 104 75-125 QM- Calcium 30.2 25.0 0.522 mg/L 1.0000 29.9 33 75-125 QM- Chromium 0.102 0.0100 0.0003 mg/L 0.10000 ND 102 75-125 Cobalt 0.0999 0.0100 0.0005 mg/L 0.10000 ND 98 75-125 Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 Lead 0.0976 0.0050 0.00007 mg/L 0.10000 ND 98 75-125 Molybdenum 0.102 0.0100 0.0006 mg/L 0.10000 ND 102 75-125 Nickel 0.102 0.0100 0.0003 mg/L 0.10000 ND <td>Barium</td> <td>0.240</td> <td>0.0100</td> <td>0.0003</td> <td>mg/L</td> <td>0.10000</td> <td>0.125</td> <td>115</td> <td>75-125</td> <td></td> <td></td> <td></td>	Barium	0.240	0.0100	0.0003	mg/L	0.10000	0.125	115	75-125			
Cadmium 0.104 0.0010 0.00006 mg/L 0.10000 ND 104 75-125 Calcium 30.2 25.0 0.522 mg/L 1.0000 29.9 33 75-125 QM- Chromium 0.102 0.0100 0.0003 mg/L 0.10000 ND 102 75-125 Cobalt 0.0999 0.0100 0.0005 mg/L 0.10000 ND 98 75-125 Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 Lead 0.0976 0.0050 0.00007 mg/L 0.10000 ND 98 75-125 Molybdenum 0.102 0.0100 0.0006 mg/L 0.10000 ND 102 75-125 Nickel 0.102 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0014 mg/L 0.10000 ND 104 75-12	Beryllium	0.0991	0.0030	0.00007	mg/L	0.10000	ND	99	75-125			
Calcium 30.2 25.0 0.522 mg/L 1.0000 29.9 33 75-125 QM-Institute Chromium 0.102 0.0100 0.0003 mg/L 0.10000 ND 102 75-125 Cobalt 0.0999 0.0100 0.0005 mg/L 0.10000 ND 98 75-125 Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 Lead 0.0976 0.0050 0.00007 mg/L 0.10000 ND 98 75-125 Molybdenum 0.102 0.0100 0.0006 mg/L 0.10000 ND 102 75-125 Nickel 0.102 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0014 mg/L 0.10000 ND 104 75-125 Silver 0.101 0.0100 0.0005 mg/L 0.10000 ND 100 <t< td=""><td>Boron</td><td>2.08</td><td>0.0400</td><td>0.0060</td><td>mg/L</td><td>1.0000</td><td>0.690</td><td>139</td><td>75-125</td><td></td><td></td><td>QM-02</td></t<>	Boron	2.08	0.0400	0.0060	mg/L	1.0000	0.690	139	75-125			QM-02
Chromium 0.102 0.0100 0.0003 mg/L 0.10000 ND 102 75-125 Cobalt 0.0999 0.0100 0.0005 mg/L 0.10000 0.0018 98 75-125 Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 Lead 0.0976 0.0050 0.00007 mg/L 0.10000 ND 98 75-125 Molybdenum 0.102 0.0100 0.0006 mg/L 0.10000 ND 102 75-125 Nickel 0.102 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0014 mg/L 0.10000 ND 104 75-125 Silver 0.101 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 Thallium 0.100 0.0100 0.0014 mg/L 0.10000 ND 100 75-125 <td>Cadmium</td> <td>0.104</td> <td>0.0010</td> <td>0.00006</td> <td>mg/L</td> <td>0.10000</td> <td>ND</td> <td>104</td> <td>75-125</td> <td></td> <td></td> <td></td>	Cadmium	0.104	0.0010	0.00006	mg/L	0.10000	ND	104	75-125			
Cobalt 0.0999 0.0100 0.0005 mg/L 0.10000 0.0018 98 75-125 Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 Lead 0.0976 0.0050 0.00007 mg/L 0.10000 ND 98 75-125 Molybdenum 0.102 0.0100 0.0006 mg/L 0.10000 ND 102 75-125 Nickel 0.102 0.0100 0.0003 mg/L 0.10000 ND 104 75-125 Selenium 0.104 0.0100 0.0014 mg/L 0.10000 ND 104 75-125 Silver 0.101 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 Thallium 0.100 0.0010 0.00014 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0013 mg/L 0.10000 ND 100 75-125 </td <td>Calcium</td> <td>30.2</td> <td>25.0</td> <td>0.522</td> <td>mg/L</td> <td>1.0000</td> <td>29.9</td> <td>33</td> <td>75-125</td> <td></td> <td></td> <td>QM-02</td>	Calcium	30.2	25.0	0.522	mg/L	1.0000	29.9	33	75-125			QM-02
Copper 0.0966 0.0250 0.0003 mg/L 0.10000 ND 97 75-125 Lead 0.0976 0.0050 0.00007 mg/L 0.10000 ND 98 75-125 Molybdenum 0.102 0.0100 0.0006 mg/L 0.10000 ND 102 75-125 Nickel 0.102 0.0100 0.0003 mg/L 0.10000 0.0016 101 75-125 Selenium 0.104 0.0100 0.0014 mg/L 0.10000 ND 104 75-125 Silver 0.101 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 Thallium 0.100 0.0010 0.00005 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0013 mg/L 0.10000 ND 100 75-125 Zinc 0.0970 0.0100 0.0013 mg/L 0.10000 0.0013 96 75-125	Chromium	0.102	0.0100	0.0003	mg/L	0.10000	ND	102	75-125			
Lead 0.0976 0.0050 0.00007 mg/L 0.10000 ND 98 75-125 Molybdenum 0.102 0.0100 0.0006 mg/L 0.10000 ND 102 75-125 Nickel 0.102 0.0100 0.0003 mg/L 0.10000 0.0016 101 75-125 Selenium 0.104 0.0100 0.0014 mg/L 0.10000 ND 104 75-125 Silver 0.101 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 Thallium 0.100 0.0010 0.00005 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0013 mg/L 0.10000 ND 100 75-125 Zinc 0.0970 0.0100 0.0013 mg/L 0.10000 0.0013 96 75-125	Cobalt	0.0999	0.0100	0.0005	mg/L	0.10000	0.0018	98	75-125			
Molybdenum 0.102 0.0100 0.0006 mg/L 0.10000 ND 102 75-125 Nickel 0.102 0.0100 0.0003 mg/L 0.10000 0.0016 101 75-125 Selenium 0.104 0.0100 0.0014 mg/L 0.10000 ND 104 75-125 Silver 0.101 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 Thallium 0.100 0.0010 0.00005 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0013 mg/L 0.10000 ND 100 75-125 Zinc 0.0970 0.0100 0.0013 mg/L 0.10000 0.0013 96 75-125	Copper	0.0966	0.0250	0.0003	mg/L	0.10000	ND	97	75-125			
Nickel 0.102 0.0100 0.0003 mg/L 0.10000 0.0016 101 75-125 Selenium 0.104 0.0100 0.0014 mg/L 0.10000 ND 104 75-125 Silver 0.101 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 Thallium 0.100 0.0010 0.00005 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0013 mg/L 0.10000 ND 100 75-125 Zinc 0.0970 0.0100 0.0013 mg/L 0.10000 0.0013 96 75-125	Lead	0.0976	0.0050	0.00007	mg/L	0.10000	ND	98	75-125			
Nickel 0.102 0.0100 0.0003 mg/L 0.10000 0.0016 101 75-125 Selenium 0.104 0.0100 0.0014 mg/L 0.10000 ND 104 75-125 Silver 0.101 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 Thallium 0.100 0.0010 0.0005 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0013 mg/L 0.10000 ND 100 75-125 Zinc 0.0970 0.0100 0.0013 mg/L 0.10000 0.0013 96 75-125	Molybdenum	0.102	0.0100	0.0006	mg/L	0.10000	ND	102	75-125			
Selenium 0.104 0.0100 0.0014 mg/L 0.10000 ND 104 75-125 Silver 0.101 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 Thallium 0.100 0.0010 0.0005 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0014 mg/L 0.10000 ND 100 75-125 Zinc 0.0970 0.0100 0.0013 mg/L 0.10000 0.0013 96 75-125	Nickel	0.102	0.0100	0.0003								
Silver 0.101 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 Thallium 0.100 0.0010 0.0005 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0014 mg/L 0.10000 ND 100 75-125 Zinc 0.097 0.0100 0.0013 mg/L 0.10000 0.0013 96 75-125	Selenium	0.104	0.0100	0.0014	mg/L	0.10000	ND	104	75-125			
Thallium 0.100 0.0010 0.00005 mg/L 0.10000 ND 100 75-125 Vanadium 0.100 0.0100 0.0014 mg/L 0.10000 ND 100 75-125 Zinc 0.0970 0.0100 0.0013 mg/L 0.10000 0.0013 96 75-125	Silver	0.101	0.0100	0.0003	-	0.10000	ND					
Vanadium 0.100 0.0100 0.0014 mg/L 0.10000 ND 100 75-125 Zinc 0.0970 0.0100 0.0013 mg/L 0.10000 0.0013 96 75-125	Thallium	0.100	0.0010	0.00005	-	0.10000	ND	100				
Zinc 0.0970 0.0100 0.0013 mg/L 0.10000 0.0013 96 75-125	Vanadium	0.100	0.0100	0.0014	-		ND	100				
	Zinc	0.0970	0.0100		_							
	Lithium	0.113	0.0500		-							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050449 - EPA 3005A											
Matrix Spike Dup (7050449-MSD1)		Sou	urce: AAE03	87-02		Prepar	ed: 05/12/	17 Analyz	ed: 05/15/	17	
Antimony	0.115	0.0030	0.0003	mg/L	0.10000	ND.	115	75-125	3	20	
Arsenic	0.107	0.0050	0.0004	mg/L	0.10000	0.0006	106	75-125	0.2	20	
Barium	0.249	0.0100	0.0003	mg/L	0.10000	0.125	124	75-125	3	20	
Beryllium	0.106	0.0030	0.00007	mg/L	0.10000	ND	106	75-125	7	20	
Boron	2.11	0.0400	0.0060	mg/L	1.0000	0.690	142	75-125	1	20	QM-02
Cadmium	0.102	0.0010	0.00006	mg/L	0.10000	ND	102	75-125	1	20	
Calcium	30.2	25.0	0.522	mg/L	1.0000	29.9	32	75-125	0.03	20	QM-02
Chromium	0.104	0.0100	0.0003	mg/L	0.10000	ND	104	75-125	2	20	
Cobalt	0.103	0.0100	0.0005	mg/L	0.10000	0.0018	101	75-125	3	20	
Copper	0.0993	0.0250	0.0003	mg/L	0.10000	ND	99	75-125	3	20	
Lead	0.102	0.0050	0.00007	mg/L	0.10000	ND	102	75-125	5	20	
Molybdenum	0.105	0.0100	0.0006	mg/L	0.10000	ND	105	75-125	3	20	
Nickel	0.102	0.0100	0.0003	mg/L	0.10000	0.0016	100	75-125	0.5	20	
Selenium	0.109	0.0100	0.0014	mg/L	0.10000	ND	109	75-125	4	20	
Silver	0.102	0.0100	0.0003	mg/L	0.10000	ND	102	75-125	0.2	20	
Thallium	0.106	0.0010	0.00005	mg/L	0.10000	ND	106	75-125	5	20	
Vanadium	0.107	0.0100	0.0014	mg/L	0.10000	ND	107	75-125	6	20	
Zinc	0.104	0.0100	0.0013	mg/L	0.10000	0.0013	102	75-125	7	20	
Lithium	0.121	0.0500	0.0011	mg/L	0.10000	0.0132	108	75-125	7	20	
Post Spike (7050449-PS1)		Sou	urce: AAE03	87-02		Prepar	ed: 05/12/	17 Analyz	ed: 05/15/	′17	
Antimony	113			ug/L	100.00	0.177	113	80-120			
Arsenic	105			ug/L	100.00	0.577	105	80-120			
Barium	245			ug/L	100.00	125	120	80-120			
Beryllium	99.0			ug/L	100.00	0.0141	99	80-120			
Boron	2110			ug/L	1000.0	690	142	80-120			QM-02
Cadmium	104			ug/L	100.00	-0.0077	104	80-120			
Calcium	28800			ug/L	1000.0	29900	NR	80-120			QM-02
Chromium	104			ug/L	100.00	0.154	104	80-120			
Cobalt	104			ug/L	100.00	1.80	102	80-120			
Copper	97.2			ug/L	100.00	0.173	97	80-120			
Lead	100			ug/L	100.00	0.0257	100	80-120			
Molybdenum	105			ug/L	100.00	0.375	105	80-120			
Nickel	101			ug/L	100.00	1.58	99	80-120			
Selenium	105			ug/L	100.00	0.504	105	80-120			
Silver	104			ug/L	100.00	0.0031	104	80-120			
Thallium	104			ug/L	100.00	0.0152	104	80-120			
Vanadium	105			ug/L	100.00	0.464	105	80-120			
Zinc	101			ug/L	100.00	1.26	99	80-120			
Lithium	115			ug/L	100.00	13.2	102	80-120			
				5			-	-			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham May 22, 2017

Report No.: AAE0387

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050474 - EPA 3005A											
Blank (7050474-BLK1)						Prepare	ed: 05/15/	17 Analyz	ed: 05/17/	17	
Antimony	0.0003	0.0030	0.0003	mg/L		•		•			
Arsenic	ND	0.0050	0.0004	mg/L							
Barium	ND	0.0100	0.0003	mg/L							
Beryllium	ND	0.0030	0.00007	mg/L							
Boron	ND	0.0400	0.0060	mg/L							
Cadmium	ND	0.0010	0.00006	mg/L							
Calcium	ND	0.500	0.0104	mg/L							
Chromium	ND	0.0100	0.0003	mg/L							
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0250	0.0003	mg/L							
Lead	ND	0.0050	0.00007	mg/L							
Molybdenum	ND	0.0100	0.0006	mg/L							
Nickel	ND	0.0100	0.0003	mg/L							
Selenium	ND	0.0100	0.0014	mg/L							
Silver	ND	0.0100	0.0003	mg/L							
Thallium	ND	0.0010	0.00005	mg/L							
Vanadium	ND	0.0100	0.0014	mg/L							
Zinc	ND	0.0100	0.0013	mg/L							
Lithium	ND	0.0500	0.0011	mg/L							
LCS (7050474-BS1)						Prepare	ed: 05/15/	17 Analyz	ed: 05/17/	17	
Antimony	0.106	0.0030	0.0003	mg/L	0.10000		106	80-120			
Arsenic	0.102	0.0050	0.0004	mg/L	0.10000		102	80-120			
Barium	0.104	0.0100	0.0003	mg/L	0.10000		104	80-120			
Beryllium	0.0986	0.0030	0.00007	mg/L	0.10000		99	80-120			
Boron	0.990	0.0400	0.0060	mg/L	1.0000		99	80-120			
Cadmium	0.0997	0.0010	0.00006	mg/L	0.10000		100	80-120			
Calcium	0.982	0.500	0.0104	mg/L	1.0000		98	80-120			
Chromium	0.100	0.0100	0.0003	mg/L	0.10000		100	80-120			
Cobalt	0.0954	0.0100	0.0005	mg/L	0.10000		95	80-120			
Copper	0.103	0.0250	0.0003	mg/L	0.10000		103	80-120			
Lead	0.0978	0.0050	0.00007	mg/L	0.10000		98	80-120			
Molybdenum	0.103	0.0100	0.0006	mg/L	0.10000		103	80-120			
Nickel	0.101	0.0100	0.0003	mg/L	0.10000		101	80-120			
Selenium	0.105	0.0100	0.0014	mg/L	0.10000		105	80-120			
Silver	0.104	0.0100	0.0003	mg/L	0.10000		104	80-120			
Thallium	0.0971	0.0010	0.00005	mg/L	0.10000		97	80-120			
Vanadium	0.104	0.0100	0.0014	mg/L	0.10000		104	80-120			
Zinc	0.0929	0.0100	0.0013	mg/L	0.10000		93	80-120			
_	5.50 <u>-</u> 0	0.0100	0.0010	mg/L	0.10000		00	00 120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0387

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050474 - EPA 3005A											
Matrix Spike (7050474-MS1)		Sou	ırce: AAE03	87-01		Prepare	ed: 05/15/	17 Analyz	ed: 05/17/	17	
Antimony	0.108	0.0030	0.0003	mg/L	0.10000	0.0004	107	75-125			
Arsenic	0.0986	0.0050	0.0004	mg/L	0.10000	ND	99	75-125			
Barium	0.128	0.0100	0.0003	mg/L	0.10000	0.0251	103	75-125			
Beryllium	0.105	0.0030	0.00007	mg/L	0.10000	0.00007	105	75-125			
Boron	1.08	0.0400	0.0060	mg/L	1.0000	0.0141	107	75-125			
Cadmium	0.103	0.0010	0.00006	mg/L	0.10000	0.0001	103	75-125			
Calcium	15.6	25.0	0.522	mg/L	1.0000	14.6	110	75-125			J
Chromium	0.0991	0.0100	0.0003	mg/L	0.10000	ND	99	75-125			
Cobalt	0.106	0.0100	0.0005	mg/L	0.10000	0.0099	96	75-125			
Copper	0.106	0.0250	0.0003	mg/L	0.10000	0.0004	105	75-125			
Lead	0.0966	0.0050	0.00007	mg/L	0.10000	ND	97	75-125			
Molybdenum	0.102	0.0100	0.0006	mg/L	0.10000	ND	102	75-125			
Nickel	0.100	0.0100	0.0003	mg/L	0.10000	0.0026	98	75-125			
Selenium	0.106	0.0100	0.0014	mg/L	0.10000	ND	106	75-125			
Silver	0.0986	0.0100	0.0003	mg/L	0.10000	ND	99	75-125			
Thallium	0.0943	0.0010	0.00005	mg/L	0.10000	ND	94	75-125			
Vanadium	0.104	0.0100	0.0014	mg/L	0.10000	ND	104	75-125			
Zinc	0.0955	0.0100	0.0013	mg/L	0.10000	0.0019	94	75-125			
Lithium	0.108	0.0500	0.0011	mg/L	0.10000	0.0053	103	75-125			
Matrix Spike Dup (7050474-MSD1)		Sou	ırce: AAE03	87-01		Prepare	ed: 05/15/	17 Analyz	ed: 05/17/	17	
Antimony	0.111	0.0030	0.0003	mg/L	0.10000	0.0004	110	75-125	3	20	
Arsenic	0.103	0.0050	0.0004	mg/L	0.10000	ND	103	75-125	4	20	
Barium	0.132	0.0100	0.0003	mg/L	0.10000	0.0251	107	75-125	3	20	
Beryllium	0.108	0.0030	0.00007	mg/L	0.10000	0.00007	107	75-125	2	20	
Boron	1.05	0.0400	0.0060	mg/L	1.0000	0.0141	104	75-125	3	20	
Cadmium	0.101	0.0010	0.00006	mg/L	0.10000	0.0001	101	75-125	2	20	
Calcium	17.0	25.0	0.522	mg/L	1.0000	14.6	245	75-125	8	20	QM-02, J
Chromium	0.0930	0.0100	0.0003	mg/L	0.10000	ND	93	75-125	6	20	
Cobalt	0.103	0.0100	0.0005	mg/L	0.10000	0.0099	93	75-125	3	20	
Copper	0.0980	0.0250	0.0003	mg/L	0.10000	0.0004	98	75-125	7	20	
Lead	0.0977	0.0050	0.00007	mg/L	0.10000	ND	98	75-125	1	20	
Molybdenum	0.105	0.0100	0.0006	mg/L	0.10000	ND	105	75-125	3	20	
Nickel	0.0954	0.0100	0.0003	mg/L	0.10000	0.0026	93	75-125	5	20	
Selenium	0.104	0.0100	0.0014	mg/L	0.10000	ND	104	75-125	1	20	
Silver	0.103	0.0100	0.0003	mg/L	0.10000	ND	103	75-125	4	20	
Thallium	0.0979	0.0010	0.00005	mg/L	0.10000	ND	98	75-125	4	20	
Vanadium	0.103	0.0100	0.0014	mg/L	0.10000	ND	103	75-125	0.9	20	
Zinc	0.0929	0.0100	0.0013	mg/L	0.10000	0.0019	91	75-125	3	20	
Lithium	0.107	0.0500	0.0011	mg/L	0.10000	0.0053	102	75-125	1	20	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham May 22, 2017

Report No.: AAE0387

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050474 - EPA 3005A											_
Post Spike (7050474-PS1)		Sou	urce: AAE0	387-01		Prepare	ed: 05/15/	17 Analyz	ed: 05/17	/17	
Antimony	104			ug/L	100.00	0.356	103	80-120			
Arsenic	101			ug/L	100.00	0.394	100	80-120			
Barium	132			ug/L	100.00	25.1	107	80-120			
Beryllium	106			ug/L	100.00	0.0713	106	80-120			
Boron	1090			ug/L	1000.0	14.1	107	80-120			
Cadmium	100			ug/L	100.00	0.141	100	80-120			
Calcium	16400			ug/L	1000.0	14600	188	80-120			QM-02
Chromium	106			ug/L	100.00	0.255	106	80-120			
Cobalt	112			ug/L	100.00	9.88	102	80-120			
Copper	102			ug/L	100.00	0.417	102	80-120			
Lead	100			ug/L	100.00	0.0274	100	80-120			
Molybdenum	106			ug/L	100.00	0.329	106	80-120			
Nickel	99.6			ug/L	100.00	2.58	97	80-120			
Selenium	106			ug/L	100.00	1.38	104	80-120			
Silver	103			ug/L	100.00	0.0036	103	80-120			
Thallium	101			ug/L	100.00	0.0391	101	80-120			
Vanadium	112			ug/L	100.00	1.32	110	80-120			
Zinc	110			ug/L	100.00	1.91	108	80-120			
Lithium	115			ug/L	100.00	5.34	109	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham May 22, 2017

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).
 - **B-01** Analyte was detected in the associated method blank at an estimated level equal to or greater than the MDL. Sample values reported as greater than the MDL and less than 10x the method blank value are reported as estimated values.

Note: Unless otherwise noted, all results are reported on an as received basis.

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

PAGE:

OT IENT NAME:			•	27.14.1				
Georgia Power			}		ANAL YSIS REQUESTED		览	PRESERVATION
Ceorgia i owei		CONTAINER TYPE:	<u>م</u>	۵.	۵.		P - PLASTIC	1 - HCl. ≤6°C
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	R/FAX NUMBER:	PRESERVATION:	3 7	_			A - AMBER GLASS	2 - H.SO. <6°C
241 Raiph McGill Blvd SE B10185		# of				# 605 7 min 10 m	G - CLEAR GLASS	3- HNO
Atlanta, GA 30308						1995 1995 1995 1995 1995	V - VOA VIAI	4 N2OH /6:0
404-506-7239		v			_	0.000	C CTCDII E	A - Machine A - Coop
REPORT TO:	CC: Maria Padilla	 · c					O OTHER	S NACHIZIIAC, SO C
Lauren Petty							ס-ס	6 - Na ₂ S ₂ O ₃ , ≤6°C
REQUESTED COMPLETION DATE:	# Ca							/ - Se C not frozen
	lahiroh@couthornoo	- <						
PROJECT NAME/STATE	land collection coll	 (-		(:			WATRIX CODES	CODES:
_	Plant Yates Phase II Facilities	- z					MAY - DRINKING MATED	100
		ш		8		100		9- 30lC
PROJECT #:	Phase 2 CCR	ec.	SQ.1	72 5				SD - SOLID
		s	74/	8 9		10000 101000 101000 101000		A. AIR
	_		*O5	72 L				r - rianib
DATE TIME CODE*	M A SAMPLE IDENTIFICATION		elsis 6 Ac 6 , 5	£ Ac nuib 58-\∧		economic le recu le re recu le recu le recu le recu le recu le recu le recu le recu le	W - WATER	P - PRODUCT
ᅱ	-	*	CI,	Ra			REMARKS/ADDITIONAL INFORMATION	IAL INFORMATION
WG 0021 11/8/5	7 YEVA-47	7	/ /	2		1000	Tanana ka	
4/8/17 1225 (LL)	ł١	17	-	2				
1,557	70.00	7	1	1				
5/8/17 1505 6W	1 Yaise - 46	4		7		<u> </u>		
Wel 3511 11/6/2	ı	7	1 1	7				
H	27-10:71	- 73		1				
227	11 0000	<u>, </u>		١		3		
5/9/17 1525 GW	1 7600-45	Ъ-	-	2		9		
S/4/17 6W	V Dup-1	す		7				
Wy 2011 11.05	CH-7019X X	2	-	2		×		
1, 9,	, , , , , , , , , , , , , , , , , , ,		-	1 1				
+	5 h= 2 m4 / 1	 	-	3				
5/10/17 1150 W	N EB-1-5-10-17	<u>r</u>	-	2		9		
8/9/17/1025 W	N FB-1-5-9-17	ゴ	_	7				
SAMPLED BY AND TITLE:	DATE/TIME: /02/	RELINGUISH	ED BY:	7	0	DATE/TIME:	FOR	LAB USE ONLY
Dia.	DATE/TIME:	TON 120) 	7	In	0530 ////		5 6 7
	,	RELINGUISH	EU 61;			DATE/TIME:		
	860 E/11/200 -	SAMPLE SHIP	PPED VIA:	Sasii		Separate (Time)	Tracking #	
\$	Tempelature	** S		-111 -121 -121 -121 -121 -121 -121	##Coclere	e		
A C. O SINOS ESTIMATES A MESTERNOS		Infact Brek	en Kot Presen	Sec.		AND AND AND AND AND AND AND AND AND AND		
24 01	•	Plant	Yates CO	C Phase	Yates COC Phase II Facilities		•	-
f 25								

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 5/12/2017 10:59:18AM

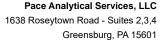
Attn: Mr. Joju Abraham

Client: Georgia Power

Project: CCR Event Work Order: AAE0387

Date Received: 05/11/17 09:50 Logged In By: Mohammad M. Rahman

OBSERVATIONS


#Samples: 11 #Containers: 44

Minimum Temp(C): 4.0 Maximum Temp(C): 4.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

(724)850-5600

June 07, 2017

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: AAE0387 Plant Yates

Pace Project No.: 30218704

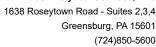
Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on May 12, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins


Sugnely Sellins

jacquelyn.collins@pacelabs.com

(724)850-5612 Project Manager

Enclosures

CERTIFICATIONS

Project: AAE0387 Plant Yates

Pace Project No.: 30218704

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification

Iowa Certification #: 391 Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

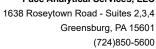
Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

New York/I NI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282 South Dakota Certification


Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Certification

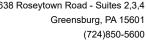
Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: AAE0387 Plant Yates

Pace Project No.: 30218704

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30218704001	YGWA-47	Water	05/08/17 12:00	05/12/17 10:20
30218704002	YGWC-44	Water	05/08/17 13:35	05/12/17 10:20
30218704003	YGWC-46	Water	05/08/17 15:05	05/12/17 10:20
30218704004	YGWC-36	Water	05/09/17 11:55	05/12/17 10:20
30218704005	YGWC-49	Water	05/09/17 13:20	05/12/17 10:20
30218704006	YGWC-45	Water	05/09/17 15:25	05/12/17 10:20
30218704007	Dup-1	Water	05/09/17 00:00	05/12/17 10:20
30218704008	YGWC-42	Water	05/10/17 12:05	05/12/17 10:20
30218704009	YGWC-43	Water	05/10/17 10:15	05/12/17 10:20
30218704010	EB-1-5-10-17	Water	05/10/17 11:50	05/12/17 10:20
30218704011	FB-1-5-9-17	Water	05/09/17 10:25	05/12/17 10:20



SAMPLE ANALYTE COUNT

Project: AAE0387 Plant Yates

Pace Project No.: 30218704

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30218704001	YGWA-47	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218704002	YGWC-44	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218704003	YGWC-46	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218704004	YGWC-36	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218704005	YGWC-49	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218704006	YGWC-45	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218704007	Dup-1	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218704008	YGWC-42	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218704009	YGWC-43	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218704010	EB-1-5-10-17	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218704011	FB-1-5-9-17	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAE0387 Plant Yates

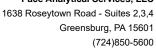
Pace Project No.: 30218704

Sample: YGWA-47	Lab ID: 30218704	001 Collected: 05/08/17 12:00	Received:	05/12/17 10:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.120 ± 0.108 (0.206) C:86% T:NA	pCi/L	05/26/17 08:24	13982-63-3	
Radium-228	EPA 9320	0.335 ± 0.334 (0.688) C:81% T:85%	pCi/L	05/31/17 15:31	15262-20-1	
Total Radium		0.455 ± 0.442 (0.894)	pCi/L	06/05/17 14:39	7440-14-4	
Sample: YGWC-44	Lab ID: 30218704	002 Collected: 05/08/17 13:35	Received:	05/12/17 10:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.118 ± 0.108 (0.208) C:86% T:NA	pCi/L	05/26/17 08:24	13982-63-3	
Radium-228	EPA 9320	0.390 ± 0.399 (0.826)	pCi/L	05/31/17 15:31	15262-20-1	
Total Radium		C:79% T:79% 0.508 ± 0.507 (1.03)	pCi/L	06/05/17 14:39	7440-14-4	
Sample: YGWC-46 PWS:	Lab ID: 30218704 Site ID:	003 Collected: 05/08/17 15:05 Sample Type:	Received:	05/12/17 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.422 ± 0.168 (0.171) C:88% T:NA	pCi/L	05/26/17 08:22	13982-63-3	
Radium-228	EPA 9320	0.529 ± 0.366 (0.709)	pCi/L	05/31/17 15:31	15262-20-1	
Total Radium		C:78% T:88% 0.949 ± 0.534 (0.880)	pCi/L	06/05/17 14:39	7440-14-4	
Sample: YGWC-36 PWS:	Lab ID: 30218704 Site ID:	004 Collected: 05/09/17 11:55 Sample Type:	Received:	05/12/17 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.148 ± 0.101 (0.156)	pCi/L	05/26/17 08:22	13982-63-3	
Radium-228		C:98% T:NA 0.161 ± 0.433 (0.962)	pCi/L	05/31/17 15:31	15262-20-1	
Total Radium	Total Radium Calculation	C:79% T:82% 0.309 ± 0.534 (1.12)	pCi/L	06/05/17 14:39	7440-14-4	
Sample: YGWC-49 PWS:	Lab ID: 30218704 Site ID:	005 Collected: 05/09/17 13:20 Sample Type:	Received:	05/12/17 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.217 ± 0.131 (0.198) C:90% T:NA	pCi/L	05/26/17 08:22	13982-63-3	
Radium-228		0.302 ± 0.371 (0.786) C:79% T:77%	pCi/L	05/31/17 15:31	15262-20-1	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAE0387 Plant Yates

Sample: YGWC-49	Lab ID: 30218704	.005 Collected: 05/09/17 13:20	Received:	05/12/17 10:20 I	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Total Radium	Total Radium Calculation	0.519 ± 0.502 (0.984)	pCi/L	06/05/17 14:39	7440-14-4	
Sample: YGWC-45 PWS:	Lab ID: 30218704 Site ID:	006 Collected: 05/09/17 15:25 Sample Type:	Received:	05/12/17 10:20 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	1.00 ± 0.308 (0.228) C:90% T:NA	pCi/L	05/22/17 09:24	13982-63-3	
Radium-228	EPA 9320	0.403 ± 0.350 (0.707)	pCi/L	05/31/17 15:31	15262-20-1	
Total Radium	Total Radium Calculation	C:79% T:87% 1.40 ± 0.658 (0.935)	pCi/L	06/05/17 14:39	7440-14-4	
Sample: Dup-1 PWS:	Lab ID: 3021870 4 Site ID:	007 Collected: 05/09/17 00:00 Sample Type:	Received:	05/12/17 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0851 ± 0.134 (0.297) C:87% T:NA	pCi/L	05/22/17 09:24	13982-63-3	
Radium-228	EPA 9320	0.479 ± 0.376 (0.745) C:75% T:85%	pCi/L	05/31/17 15:31	15262-20-1	
Total Radium	Total Radium Calculation	0.564 ± 0.510 (1.04)	pCi/L	06/05/17 14:39	7440-14-4	
Sample: YGWC-42 PWS:	Lab ID: 3021870 4 Site ID:	.008 Collected: 05/10/17 12:05 Sample Type:	Received:	05/12/17 10:20 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	1.87 ± 0.459 (0.296) C:88% T:NA	pCi/L	05/22/17 09:24	13982-63-3	
Radium-228	EPA 9320	0.676 ± 0.370 (0.668) C:80% T:89%	pCi/L	05/31/17 15:32	15262-20-1	
Total Radium	Total Radium Calculation	2.55 ± 0.829 (0.964)	pCi/L	06/05/17 14:39	7440-14-4	
Sample: YGWC-43 PWS:	Lab ID: 3021870 4 Site ID:	Collected: 05/10/17 10:15 Sample Type:	Received:	05/12/17 10:20 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.537 ± 0.248 (0.313) C:76% T:NA	pCi/L	05/22/17 09:24	13982-63-3	
Radium-228	EPA 9320	0.735 ± 0.372 (0.641) C:82% T:82%	pCi/L	05/31/17 15:32	15262-20-1	
Total Radium	Total Radium Calculation	1.27 ± 0.620 (0.954)	pCi/L	06/05/17 14:39	7440-14-4	



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAE0387 Plant Yates

Pace Project No.: 30218704

Sample: EB-1-5-10-17 PWS:	Lab ID: 30218 Site ID:	3704010 Collected: 05/10/17 11:50 Sample Type:	Received:	05/12/17 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	-0.0108 ± 0.0858 (0.256) C:83% T:NA	pCi/L	05/22/17 09:24	13982-63-3	
Radium-228	EPA 9320	0.314 ± 0.372 (0.786) C:82% T:83%	pCi/L	05/31/17 15:32	2 15262-20-1	
Total Radium	Total Radium Calculation	0.314 ± 0.458 (1.04)	pCi/L	06/05/17 14:39	7440-14-4	
Sample: FB-1-5-9-17	Lab ID: 30218	3704011 Collected: 05/09/17 10:25	Received:	05/12/17 10:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.140 ± 0.140 (0.272) C:86% T:NA	pCi/L	05/22/17 09:24	13982-63-3	
Radium-228	EPA 9320	0.255 ± 0.381 (0.823) C:93% T:76%	pCi/L	06/02/17 16:28	3 15262-20-1	
Total Radium	Total Radium Calculation	$0.395 \pm 0.521 (1.10)$	pCi/L	06/06/17 14:13	3 7440-14-4	

Project: AAE0387 Plant Yates

Pace Project No.: 30218704

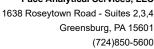
QC Batch: 258875 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

 $Associated \ Lab \ Samples: \quad 30218704001, \ 30218704002, \ 30218704003, \ 30218704004, \ 30218704005, \ 30218704006, \ 30218704007, \ 3021$

30218704008, 30218704009, 30218704010

METHOD BLANK: 1275038 Matrix: Water


Associated Lab Samples: 30218704001, 30218704002, 30218704003, 30218704004, 30218704005, 30218704006, 30218704007,

30218704008, 30218704009, 30218704010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.621 ± 0.402 (0.762) C:76% T:80% pCi/L 05/31/17 11:47

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

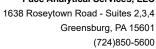
Project: AAE0387 Plant Yates

Pace Project No.: 30218704

QC Batch: 258733 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30218704006, 30218704007, 30218704008, 30218704009, 30218704010, 30218704011


METHOD BLANK: 1274461 Matrix: Water

Associated Lab Samples: 30218704006, 30218704007, 30218704008, 30218704009, 30218704010, 30218704011

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.00989 ± 0.108 (0.288) C:89% T:NA pCi/L 05/22/17 09:24

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

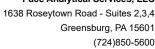
Project: AAE0387 Plant Yates

Pace Project No.: 30218704

QC Batch: 259469 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30218704011


METHOD BLANK: 1278134 Matrix: Water

Associated Lab Samples: 30218704011

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.550 ± 0.338 (0.616) C:94% T:73%
 pCi/L
 06/02/17 16:30

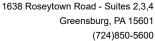
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AAE0387 Plant Yates

Pace Project No.: 30218704

QC Batch: 258653 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium Associated Lab Samples: 30218704001, 30218704002, 30218704003, 30218704004, 30218704005


METHOD BLANK: 1274144 Matrix: Water

Associated Lab Samples: 30218704001, 30218704002, 30218704003, 30218704004, 30218704005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0369 ± 0.0667 (0.151) C:89% T:NA
 pCi/L
 05/26/17 08:31

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AAE0387 Plant Yates

Pace Project No.: 30218704

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 06/07/2017 11:01 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Pace Analytical

F-down

_
∇
0
-
ίO
~~
()
_
4-
•
-
-
<u> </u>
æ
10
_
\mathbf{C}
_

LAB USE ONLY 00 က် (၁ 00H ္မွ <u>о</u> ၁၀ 00 000 <u>ه</u> Results Requested By: 6/5/2017 WO#:30218704 Comments Requested Analysis Date/Time, 5-12-17 Radium 226, 228, Total \times × × × × × × \times Preserved Containers Owner Received Date: Š 2 HNO3 Matrix 8€ ĕ 8 ĕ GW ĞΜ 8 ĕ 8 Received By AAE0387-06 AAE0387-08 AAE0387-09 AAE0387-10 AAE0387-02 AAE0387-03 AAE0387-04 AAE0387-05 AAE0387-07 AAE0387-01 Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Plant Yates Collect Date/Time Lab ID |Date/Time Pace - Pittsburgh Subcontract To: 5/10/2017 11:50 5/10/2017 10:15 5/10/2017 12:05 5/8/2017 13:35 5/9/2017 13:20 5/9/2017 15:25 Stes. 2,3,4 5/8/2017 12:00 5/8/2017 15:05 5/9/2017 11:55 5/9/2017 0:00 Workorder Name: Туре Sample G g g ŋ G G 0 0 ົບ Φ Peachtree Corners, GA 30092 Workorder: AAE0387 110 Technology Parkway Pace Analytical Atlanta Phone (770)-734-4200 Transfers | Released By EB-1-5-10-17 **Betsy McDaniel** Item Sample ID YGWC-36 YGWC-43 YGWC-44 YGWC-46 YGWC-49 YGWC-45 YGWC-42 YGWA-47 Dup-1 10 4 9 ∞ σ

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC This chain of custody is considered complete as is since this information is available in the owner laboratory.

Friday, June 17, 2016 11:01:34 AM

FMT-ALL-C-002rev.00 24March2009

Page 1 of 2

Sample Intact Y or N

Received on Ice Y of N

Custody Seal Y or/N

ŝ

Cooler Temperature on Receipt

Pace Analytical

∂
ö
rst
ರ
of
.⊑
g
\Box

LAB USE ONLY _ () Results Requested By: 6/5/2017 Comments Requested Analysis SS Date/Time Radium 226, 228, Total 5/12/17 Preserved Containers Owner Received Date: Pase ЕОИН 2 Matrix ≥ Received By AAE0387-01 Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Plant Yates Collect Date/Time Lab ID Date/Time Pace - Pittsburgh Subcontract To: Stes. 2,3,4 5/9/2017 10:25 Workorder Name: Sample Type G ナナ Peachtree Corners, GA 30092 Workorder: AAE0387 110 Technology Parkway Pace Analytical Atlanta Phone (770)-734-4200 Transfers | Released By Item Sample ID FB-1-5-9-17 **Betsy McDaniel** Report To: 17 15 18 13 13 14 16 17 20 12

Sample Intact(Y)or N ***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC Received on Ice Y or(N This chain of custody is considered complete as is since this information is available in the owner laboratory. Custody Seal Y or N ပ < 2 Cooler Temperature on Receipt

Friday, June 17, 2016 11:01:34 AM

FMT-ALL-C-002rev.00 24March2009

Page 2 of 2

P

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc.

Ace Analytical 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092

(770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

PAGE

CLIENT ADDRESS/PHONE NUMBER/AN MINISTER			ŀ		ANALISIS RECOESTED			CONTAINER TYPE	(14.100000000
The state of the s		CONTABLE TYPE:	4	-			9	0 - 01 ACTU	ENESERVE ION
241 Raid McGil Blad SF #10.48		PRESERVATION:	3 7	ဗ			() co	A AMBRES CASA	1- HC, SFC
Atlanta, GA 30308		# o#					r (c) (c) (d)	G-CIFARGIASS	2 - H ₂ SO ₄ , ≤6°C
404-506-7239		(-		Te A.	V - VOA VIAL	4 NaOH <5.C
REPORT TO: Maria Padilla	Padilla	· 0						S-STERILE	5 - NaOH/ZnAc, s6°C
	Heath McCorkie	2					O	O-OTHER	6 - Na,S,O,, 56°C
REQUESTED COMPLETION DATE: PO#;		-				704			7 - ≤6°C not frozen
PROJECT NAME/STATE:	laburch@southernco.com	∢					7 (m		***************************************
Plant Yales Phase II Facilities		- 2		(20)		/			A COURS.
		z u		8			10	DW - DRINKING WATER	R S- SOIL
PROJECT #; Phase 2 CCR		ומני	(OYA SQT	8 22			<u>w</u> <u>ar</u>	WW - WASTEWATER GW - GROUNDWATER	SL - SLUDGE
0		n ·	% *0 2/07	97				SW - SURFACE WATER	
Collection MATRIX O R TIME CODE: M A	SAMPLE IDENTIFICATION	-	A alai :03 Ac :08 ,4	968-V		······································		ST - STORM WATER W - WATER	
0		₽	C)'	вЯ				REMASKCADON	SERVED CANONICAL AND AND AND AND AND AND AND AND AND AND
1 1200 621 1	16 WA - 47	ה	_	7					OWAL INFORMATION
8/17 1335 GW V YGL	ソケー・44	4	- '	7					
18/17 1505 GW N YLING	1613C-46	7	_	1			(2)		
WHY 1155 AW WW YEW	Y6WC-36	5	-	7					
C14V 1 6W W210181	74.0 C-49	2	-	1 1					
7 77		- 3	-	، د			0		
777	7600-45	7		3			0	Oden sur	Control of the Contro
2/4/14 5W N Dup-1		+)	2					
CH-JMOK / M9 5021 LIJON/3	-42	J.	-	i			Ø		
5/10/5 GW N YEWC-43	6-43	3	_	1			20		
5/10/17 1150 W N EB-1-	EB-1-5-10-17	٠,	_	2			22.		
17 1025 W N FB-1-	FB-1-5-4-17	3	-	0			\$ \$		
				}					
io trace:	T	RFI INDITISHED BY:	- XB C						
RECEDED BY	0581		7	1		DATE/TIME:	Jem	TO YOU TO STORY	TOSE ONLY X
		RELINQUISHED BY:	D BY;			DATECTIME		\$	11 28 4 4
MABANAN ÖSTIM	S60 E	SAMPLE SHIF	E SHIPPED VIA:	C				Entered into LIMS. Tracking #	
No Ma Yes No was 1250 mg		*		4	27		OTHER IS		

Page 15 of 20

Sample Condition Upon Receipt Pittsburgh

Face Analytical Clien	it Name:		F	ac	e 161	9	Pro	ject#_	3 V &		/ V
Courier: Fed Ex UPS Tracking #: 6812 5104] USPS □ Clie 3057	nt 🗆	Com	mercia	al 🗌 Pa	ce Other		_			
Custody Seal on Cooler/Box Pre	sent: yes	Φ	no	Sea	als intact:	yes	on [
Thermometer Used		Туре	of Ice	: W	et Blue	(None)					
Cooler Temperature Observe	ed Temp	Carrette Contractor	° C	Cor	rrection Fa	actor:	° C	Final T	emp:		°C
Temp should be above freezing to 6°C							Parameters				·
] [Date and In contents:	ithals of per	son examin	1ing 2-17
Comments:		Yes	No	N/A	4				U\	SIMILATIN SIMILA	
Chain of Custody Present:		(X			1.						
Chain of Custody Filled Out:		X			2.						
Chain of Custody Relinquished:		X		<u> </u>	3.						
Sampler Name & Signature on CO	C:	X-			4.						
Sample Labels match COC:		区			5.						
-Includes date/time/ID	Matrix: \	M		_							
Samples Arrived within Hold Time:		X			6.						
Short Hold Time Analysis (<72hr	remaining):		\times		7.						
Rush Turn Around Time Request	ed:		X		8.		•				
Sufficient Volume:	-	X			9.						
Correct Containers Used:		X	•		10.						
-Pace Containers Used:	•	Z									
Containers Intact:		Ý.			11.						
Orthophosphate field filtered				X	12.						
Organic Samples checked for de	echlorination:			X	13.						
Filtered volume received for Dissolv				X	14.						
All containers have been checked for pro		∇		/	15 3	1. ~					
All containers needing preservation are for compliance with EPA recommendation.	ound to be in	X			P	HLZ					
exceptions: VOA, coliform, TOC, O	&G, Phenolics				Initial when	UMM	Date/ti preser				
					Lot # of add preservativ						
leadspace in VOA Vials (>6mm):		J		X	16.						
rip Blank Present:			X		17.						
rip Blank Custody Seals Present				又	1						
ad Aqueous Samples Screened >	0.5 mrem/hr	14	XÏ	_	Initial when completed:	Mana	Date: <	5-17	-17		
lient Notification/ Resolution:			<u> </u>	9495 ***********************************	completed.	V. LLL	Date.	110	'		
Person Contacted:			ı	Date/I	Гіте:			Contacted	i By:		
Comments/ Resolution:											
			_								

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Sample Collection Date:

Spike I.D.:

Sample MS I.D. Sample MSD I.D. Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): Spike uncertainty (calculated):

MSD Target Conc. (pCi/L, g, F):

Sample Result

Sample Matrix Spike Result:

Sample Result Counting Uncertainty (pCi/L, g, F) Matrix Spike Result Counting Uncertainty (pCi/L, g, F)

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MS Numerical Performance Indicator MSD Numerical Performance Indicator.

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment

Ra-226

Test:

5/22/2017 35680 DW Analyst: Date: Worklist: Matrix

Method Blank Assessment	
MB Sample ID	1274461
MB concentration:	0.010
M/B Counting Uncertainty:	0.108
MB MDC:	0.288
MB Numerical Performance Indicator:	0.18
MB Status vs Numerical Indicator.	N/A
MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	z
-	LCS35680	LCSD35680
Count Date:	5/24/2017	
Spike I.D.:	13-033	
Spike Concentration (pCi/mL):	19.848	
Volume Used (mL):	0.40	
Aliquot Volume (L, g, F):	0.502	
Target Conc. (pCi/L, g, F):	15.827	
Uncertainty (Calculated):	0.745	
Result (pCI/L, g, F):	14.483	
LCS/LCSD Counting Uncertainty (pCl/L, g, F):	0.895	
Numerical Performance Indicator:	-2.26	
Percent Recovery:	91.51%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	

Duplicate Sample Assessment		Matrix Spike/Matrix Spike Duplicate Sample Assessment
Sample I.D.: 30218862001 Enter Duplicate	01 Enter Duplicate	Samp
Duplicate Sample I.D. 30218862001DUP	DUP sample IDs if	Sample M
Sample Result (pCi/L, g, F): 0.223	other than	Sample MS
Sample Result Counting Uncertainty (pCi/L, g, F): 0.195	LCS/LCSD in the	Sample Matrix Spike F
Sample Duplicate Result (pCi/l., g, F): 0.160	space below.	Matrix Spike Result Counting Uncertainty (pCi/L,
Sample Duplicate Result Counting Uncertainty (pCi/l, g, F): 0.143		Sample Matrix Spike Duplicate F
Are sample and/or duplicate results below MDC? See Below ##	##	Matrix Spike Duplicate Result Counting Uncertainty (pCI/L,
Duplicate Numerical Performance Indicator: 0.510	30218862001	Duplicate Numerical Performance Indi
Duplicate RPD: 32.90%	30218862001DUP	MS/ MSD Duplicate
Duplicate Status vs Numerical Indicator: N/A		MS/ MSD Duplicate Status vs Numerical Indi
Duplicate Status vs RPD: Fail***	č	MS/ MSD Duplicate Status vs
	<u></u>	

Sample I.D. Sample MS I.D.

Sample Matrix Spike Result:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result.

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MS/ MSD Duplicate RPD:

Duplicate Numerical Performance Indicator:

MS/ MSD Duplicate Status vs Numerical Indicator.

MS/ MSD Duplicate Status vs RPD

Sample MSD I.D.

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MS Status vs Recovery:

MSD Status vs Recovery

MS Percent Recovery: MSD Percent Recovery:

> sults are below the MDC. ## Evaluation of duplicate precision is not applicable if either the sample or duplicate ${f r}_{f c}$

Comments:

***Batch must be re-prepped due to unacceptable precision.

Printed: 6/6/2017 4:04 PM TAR DW QC

Face Analytical"

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Sample MSD I.D. Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL.): Spike Volume Used in MSD (mL):

Sample MS I.D.

www.pacslabs.com	Test:	Ra-226	
	Analyst:	LAL	
	Date:	5/22/2017	
	Worklist	35671	
	Matrix:	ρM	
Mothod Blank Accommon			
ומביווסם בושווע לפספפטוופוזי	MB Sample ID	1274144	
	MB concentration:	0.037	
	M/B Counting Uncertainty:	0.066	
	MB MDC:	0.151	
	MB Numerical Performance Indicator:	1.09	
	MB Status vs Numerical Indicator.	N/A	
	MR Status ve MDC:	Dace	

MS Target Conc.(pC)/L, g, F): MS Target Conc.(pC)/L, g, F): MSD Aliquot (L, g, F):

MSD Target Conc. (pCi/L, g, F):

:/ 16 in a d 2 in a 2 i	Spike uncertainty (calculated):	Sample Result:	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCI/L, g, F):	Sample Matrix Spike Duplicate Result	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:
	z	LCSD35671													
	LCSD (Y or N)?	LCS35671	5/26/2017	13-033	19.848	0.40	0.501	15.854	0.746	13.535	0.772	-4.23	85.37%	N/A	Pass
	Laboratory Control Sample Assessment		Count Date:	Spike I.D.:	Spike Concentration (pCi/mL):	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCl/L, g, F):	Uncertainty (Calculated):	Result (pCI/L, g, F):	LCS/LCSD Counting Uncertainty (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery;	Status vs Numerical Indicator:	Status vs Recovery:

Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCI/L, g, F):	Duplicate Numerical Performance Indicator:	MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:
	Enter Duplicate	sample IDs if	other than	LCS/LCSD in the	space below.			30218700009	30218700009DUP		
	Sample I.D.: 30218700009	30218700009DUP	0.165	0.117	0.206	0.112	See Below ##	-0.498	22.23%	N/A	Pass
Duplicate Sample Assessment	Sample I.D.:	Duplicate Sample I.D. 30218700009DUP sample IDs if	Sample Result (pCI/L, g, F):	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	Are sample and/or duplicate results below MDC?	Duplicate Numerical Performance Indicator:	Duplicate RPD:	Duplicate Status vs Numerical Indicator:	Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

TAR DW QC Printed: 6/6/2017 4:04 PM

Face Analytical"

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

5/24/2017 35720 DW Ra-228 Date: Worklist: Matrix: **Analyst**:

-	
	1275038
	MB Sample ID

Method Blank Assessment

Sample MSD I.D.

Sample Collection Date: Sample MS I.D. Spike 1.D.:

Sample Matrix Spike Control Assessment

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MSD (mL):

Spike Volume Used in MS (mL):

0.621 0.386 0.762 3.15 N/A Pass MB Numerical Performance Indicator; MB Status vs Numerical Indicator: MB Status vs. MDC: M/B Counting Uncertainty: MB concentration: MB MDC

,		
3.15		MS Aliquot (L, g, F):
A/A		MS Target Conc.(pCi/L, g, F):
Pass		MSD Aliquot (L, g, F):
		MSD Target Conc. (pCi/L, g, F):
SD (Y or N)?	z	Spike uncertainty (calculated):
LCS35720	LCSD35720	Sample Result:
5/31/2017		Sample Result Counting Uncertainty (pCi/L, g, F):
17-005		Sample Matrix Spike Result:
24.405		Matrix Spike Result Counting Uncertainty (pCi/l., g, F):
0.20		Sample Matrix Spike Duplicate Result:
0.801		Matrix Spike Duplicate Result Counting Uncertainty (pCl/L, g, F):
6.097		MS Numerical Performance Indicator:
0.439		MSD Numerical Performance Indicator:
4.587		MS Percent Recovery:
0.641		MSD Percent Recovery:
-3.81		MS Status vs Numerical Indicator:
75.23%	•	MSD Status vs Numerical Indicator:
N/A		MS Status vs Recovery:
Pass		MSD Status vs Recovery:

Count Date: Spike I.D.:

aboratory Control Sample Assessment

Spike Concentration (pCi/mL): Volume Used (mL): Aliquot Volume (L, g, F): farget Conc. (pCi/L, g, F): Uncertainty (Calculated):

Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F):

Numerical Performance Indicator:

Percent Recovery: Status vs Numerical Indicator:

Status vs Recovery

Duplicate Sample Assessment

sample IDs if other than LCS/LCSD in Enter Duplicate

30218700009DUP

30218700009

ne space below

0.493 0.348 0.199 0.337

Sample I.D.: 3

Duplicate Sample I.D. 302

Sample Result (DCIII., g. F):
Sample Result Counting Uncertainty (DCIII., g. F):
Sample Duplicate Result (DCIII., g. F):
Sample Duplicate Result (DCIII., g. F):
Are sample and/or duplicate results below MDC?

Sample and/or duplicate results below MDC?

See Below ##

85.07% 1.191

Duplicate RPD:

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD:

Duplicate Numerical Performance Indicator:

Ϋ́

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

***Batch must be re-prepped due to unacceptable precision.

Ra-228 NELAC DW2 Printed: 6/6/2017 4:03 PM

Face Analytical"

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Sample MSD 1.D. Spike I.D.:

Sample MS I.D.

MS/MSD Decay Corrected Spike Concentration (pCl/mL): Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL):

Ra-228 JLW 5/27/2017 35805 Analyst: Date: Worklist: Test

Matrix:	DM
4	
Method blank Assessment	4070404
MID SAMIPLE IN	12/8134
MB concentration:	0.550
M/B Counting Uncertainty:	0.323
MB MDC:	0.616
MB Numerical Performance Indicator:	3.34
MB Status vs Numerical Indicator:	N/A
MB Status vs. MDC:	Pass

MS Target Conc. (p.G./L, g, F):
 MSD Aliquot (L, g, F):
 MSD Aliquot (L, g, F):
 MSD Target Conc. (pCi/L, g, F):

Sample Result:

Spike uncertainty (calculated):

Sample Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Result:

z	LCSD35805													
LCSD (Y or N)?	LCS35805	6/2/2017	17-005	24.388	0.20	0.829	5.885	0.424	6.176	0.678	0.71	104.93%	N/A	Pass
Laboratory Control Sample Assessment		Count Date:	Spike I.D.:	Spike Concentration (pCi/mL):	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCi/L, g, F):	LCS/LCSD Counting Uncertainty (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:

Matrix Spike Result Counting Uncertainty (DCift, g. F):
Sample Matrix Spike Duplicate Result
Matrix Spike Duplicate Result Counting Uncertainty (DCift, g. F):
MS Numerical Performance Indicator:

MS Percent Recovery: MSD Percent Recovery: MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MS Status vs Recovery:

MSD Status vs Recovery

MSD Numerical Performance Indicator:

Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/I ₋ , g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:
	Enter Duplicate	sample IDs if	other than	LCS/LCSD in	the space below.			30218862001	30218862001DUP		

30218862001DUP

30218862001

See Below ##

Are sample and/or duplicate results below MDC? Duplicate Numerical Performance Indicator:

0.669 0.335 0.732 0.329

Sample I.D.:

Duplicate Sample I.D.:
Sample Result (Co'll., g. F):
Sample Result Counting Uncertainty (Co'll., g. F):
Sample Duplicate Result (Co'll., g. F):
Sample Duplicate Result (Co'll., g. F):

Duplicate Sample Assessment

-0.265 9.05%

Duplicate RPD:

Duplicate Status vs Numerical Indicator:

N/A Pass

	2	3	5

Comments:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs RPD

Ra-228 NELAC DW2 Printed: 6/6/2017 4:03 PM

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AAG0387

July 25, 2017

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, LLC.

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

July 25, 2017

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
YGWA-47	AAG0387-01	Ground Water	07/11/17 10:40	07/14/17 09:20
YGWC-42	AAG0387-02	Ground Water	07/11/17 13:10	07/14/17 09:20
YGWC-43	AAG0387-03	Ground Water	07/11/17 14:50	07/14/17 09:20
Dup-1	AAG0387-04	Ground Water	07/11/17 00:00	07/14/17 09:20
YGWC-36	AAG0387-05	Ground Water	07/13/17 10:40	07/14/17 09:20
YGWC-49	AAG0387-06	Ground Water	07/13/17 12:55	07/14/17 09:20
EB-1-7-13-17	AAG0387-07	Water	07/13/17 13:30	07/14/17 09:20
YGWC-44	AAG0387-08	Ground Water	07/13/17 12:25	07/14/17 09:20
YGWC-45	AAG0387-09	Ground Water	07/13/17 10:35	07/14/17 09:20
YGWC-46	AAG0387-10	Ground Water	07/13/17 14:20	07/14/17 09:20
FB-1-7-13-17	AAG0387-11	Water	07/13/17 14:35	07/14/17 09:20

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

July 25, 2017

Case Narrative

The Radium analysis by methods EPA 9315/9320 was performed by Pace-Pittsburgh, 1638 Roseytown Road - Suites 2, 3, 4, Greensburg PA 15601. The Pace-Pittsburgh lab contact is Jacquelyn Collins at 724-850-5612.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: YGWA-47

Date/Time Sampled: 7/11/2017 10:40:00AM

Matrix: Ground Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-01

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	193	25	10	mg/L	SM 2540 C		1	07/17/17 19:50	07/17/17 19:50	7070376	JPT
Inorganic Anions											
Chloride	5.8	0.25	0.02	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 02:06	7070516	RLC
Fluoride	0.07	0.30	0.03	mg/L	EPA 300.0	J	1	07/20/17 16:43	07/21/17 02:06	7070516	RLC
Sulfate	110	10	0.17	mg/L	EPA 300.0		10	07/20/17 16:43	07/23/17 00:01	7070516	RLC
Metals, Total											
Antimony	0.0006	0.0030	0.0006	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Barium	0.0233	0.0100	0.0004	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Boron	0.0131	0.0400	0.0060	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Calcium	14.3	5.00	2.02	mg/L	EPA 6020B		50	07/20/17 15:35	07/21/17 22:46	7070491	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Cobalt	0.0096	0.0100	0.0003	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/24/17 14:21	7070491	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Lithium	0.0051	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 22:40	7070491	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:13	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: YGWC-42

Date/Time Sampled: 7/11/2017 1:10:00PM

Matrix: Ground Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-02

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
General Chemistry											
Total Dissolved Solids	1800	25	10	mg/L	SM 2540 C		1	07/17/17 19:50	07/17/17 19:50	7070376	JPT
Inorganic Anions											
Chloride	4.7	0.25	0.02	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 02:27	7070516	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 02:27	7070516	RLC
Sulfate	1300	50	0.85	mg/L	EPA 300.0		50	07/20/17 16:43	07/23/17 00:22	7070516	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Arsenic	0.0030	0.0050	0.0005	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Barium	0.0451	0.0100	0.0004	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Beryllium	0.0001	0.0030	0.00009	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Boron	25.2	2.00	0.298	mg/L	EPA 6020B		50	07/20/17 15:35	07/21/17 23:09	7070491	CSW
Cadmium	0.0005	0.0010	0.0001	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Calcium	172	25.0	2.02	mg/L	EPA 6020B		50	07/20/17 15:35	07/21/17 23:09	7070491	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Cobalt	0.0014	0.0100	0.0003	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Molybdenum	0.0014	0.0100	0.0010	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Selenium	0.0697	0.0100	0.0018	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Lithium	0.0281	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:03	7070491	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:15	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: YGWC-43

Date/Time Sampled: 7/11/2017 2:50:00PM

Matrix: Ground Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-03

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	238	25	10	mg/L	SM 2540 C		1	07/17/17 19:50	07/17/17 19:50	7070376	JPT
Inorganic Anions											
Chloride	1.5	0.25	0.02	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 02:48	7070516	RLC
Fluoride	0.20	0.30	0.03	mg/L	EPA 300.0	J	1	07/20/17 16:43	07/21/17 02:48	7070516	RLC
Sulfate	110	10	0.17	mg/L	EPA 300.0		10	07/20/17 16:43	07/23/17 00:43	7070516	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Barium	0.0183	0.0100	0.0004	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Boron	0.994	0.0400	0.0060	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Calcium	6.71	0.500	0.0404	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Lithium	0.0131	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:14	7070491	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:18	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: Dup-1

Date/Time Sampled: 7/11/2017 12:00:00AM

Matrix: Ground Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-04

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1810	25	10	mg/L	SM 2540 C		1	07/17/17 19:50	07/17/17 19:50	7070376	JPT
Inorganic Anions											
Chloride	4.8	0.25	0.02	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 03:09	7070516	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 03:09	7070516	RLC
Sulfate	1200	50	0.85	mg/L	EPA 300.0		50	07/20/17 16:43	07/23/17 14:42	7070516	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Arsenic	0.0031	0.0050	0.0005	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Barium	0.0454	0.0100	0.0004	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Beryllium	0.0001	0.0030	0.00009	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Boron	24.6	2.00	0.298	mg/L	EPA 6020B		50	07/20/17 15:35	07/21/17 23:31	7070491	CSW
Cadmium	0.0005	0.0010	0.0001	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Calcium	167	25.0	2.02	mg/L	EPA 6020B		50	07/20/17 15:35	07/21/17 23:31	7070491	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Cobalt	0.0014	0.0100	0.0003	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Molybdenum	0.0014	0.0100	0.0010	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Selenium	0.0700	0.0100	0.0018	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Lithium	0.0287	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:26	7070491	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:20	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: YGWC-36

Date/Time Sampled: 7/13/2017 10:40:00AM

Matrix: Ground Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-05

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	282	25	10	mg/L	SM 2540 C		1	07/20/17 18:53	07/20/17 18:53	7070489	JPT
Inorganic Anions											
Chloride	5.4	0.25	0.02	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 03:29	7070516	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 03:29	7070516	RLC
Sulfate	140	10	0.17	mg/L	EPA 300.0		10	07/20/17 16:43	07/23/17 01:24	7070516	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Barium	0.0484	0.0100	0.0004	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Beryllium	0.0003	0.0030	0.00009	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Boron	0.262	0.0400	0.0060	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Cadmium	0.0002	0.0010	0.0001	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Calcium	16.6	5.00	2.02	mg/L	EPA 6020B		50	07/20/17 15:35	07/21/17 23:43	7070491	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Lead	0.0004	0.0050	0.00007	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Molybdenum	0.0014	0.0100	0.0010	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Selenium	0.0031	0.0100	0.0018	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Lithium	0.0070	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:37	7070491	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:22	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: YGWC-49

Date/Time Sampled: 7/13/2017 12:55:00PM

Matrix: Ground Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-06

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	192	25	10	mg/L	SM 2540 C		1	07/20/17 18:53	07/20/17 18:53	7070489	JPT
Inorganic Anions											
Chloride	4.7	0.25	0.02	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 04:33	7070516	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 04:33	7070516	RLC
Sulfate	88	5.0	0.08	mg/L	EPA 300.0		5	07/20/17 16:43	07/23/17 01:45	7070516	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Barium	0.0839	0.0100	0.0004	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Beryllium	0.0001	0.0030	0.00009	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Boron	0.0093	0.0400	0.0060	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Calcium	14.1	5.00	2.02	mg/L	EPA 6020B		50	07/20/17 15:35	07/21/17 23:54	7070491	CSW
Chromium	0.0019	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Cobalt	0.0005	0.0100	0.0003	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Selenium	0.0093	0.0100	0.0018	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Lithium	0.0036	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/20/17 15:35	07/21/17 23:49	7070491	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:30	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: EB-1-7-13-17

Date/Time Sampled: 7/13/2017 1:30:00PM

Matrix: Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-07

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	07/20/17 18:53	07/20/17 18:53	7070489	JPT
Inorganic Anions											
Chloride	0.08	0.25	0.02	mg/L	EPA 300.0	J	1	07/20/17 16:43	07/21/17 04:54	7070516	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 04:54	7070516	RLC
Sulfate	0.09	1.0	0.02	mg/L	EPA 300.0	J	1	07/20/17 16:43	07/21/17 04:54	7070516	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Barium	ND	0.0100	0.0004	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Boron	0.0101	0.0400	0.0060	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Calcium	ND	0.500	0.0404	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 18:38	7070414	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:32	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: YGWC-44

Date/Time Sampled: 7/13/2017 12:25:00PM

Matrix: Ground Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-08

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	345	25	10	mg/L	SM 2540 C		1	07/20/17 18:53	07/20/17 18:53	7070489	JPT
Inorganic Anions											
Chloride	13	0.25	0.02	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 05:15	7070516	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 05:15	7070516	RLC
Sulfate	150	5.0	0.08	mg/L	EPA 300.0		5	07/20/17 16:43	07/23/17 02:05	7070516	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Barium	0.106	0.0100	0.0004	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Boron	0.649	0.0400	0.0060	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Calcium	30.2	25.0	2.02	mg/L	EPA 6020B		50	07/18/17 10:03	07/20/17 19:16	7070414	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Cobalt	0.0022	0.0100	0.0003	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Lithium	0.0124	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 19:11	7070414	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:34	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: YGWC-45

Date/Time Sampled: 7/13/2017 10:35:00AM

Matrix: Ground Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-09

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	433	25	10	mg/L	SM 2540 C		1	07/20/17 18:53	07/20/17 18:53	7070489	JPT
Inorganic Anions											
Chloride	4.7	0.25	0.02	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 06:40	7070516	RLC
Fluoride	0.11	0.30	0.03	mg/L	EPA 300.0	J	1	07/20/17 16:43	07/21/17 06:40	7070516	RLC
Sulfate	180	5.0	0.08	mg/L	EPA 300.0		5	07/20/17 16:43	07/23/17 02:26	7070516	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Barium	0.0719	0.0100	0.0004	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Boron	0.340	0.0400	0.0060	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Calcium	54.8	25.0	2.02	mg/L	EPA 6020B		50	07/18/17 10:03	07/20/17 19:28	7070414	CSW
Chromium	0.0006	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Cobalt	0.0009	0.0100	0.0003	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Molybdenum	0.0015	0.0100	0.0010	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Lithium	0.0129	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 19:22	7070414	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:37	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: YGWC-46

Date/Time Sampled: 7/13/2017 2:20:00PM

Matrix: Ground Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-10

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	996	25	10	mg/L	SM 2540 C		1	07/20/17 18:53	07/20/17 18:53	7070489	JPT
Inorganic Anions											
Chloride	32	0.25	0.02	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 07:02	7070516	RLC
Fluoride	0.35	0.30	0.03	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 07:02	7070516	RLC
Sulfate	630	20	0.34	mg/L	EPA 300.0		20	07/20/17 16:43	07/23/17 14:22	7070516	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Arsenic	0.0011	0.0050	0.0005	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Barium	0.0365	0.0100	0.0004	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Boron	1.62	0.0400	0.0060	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Calcium	83.7	25.0	2.02	mg/L	EPA 6020B		50	07/18/17 10:03	07/20/17 19:39	7070414	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Cobalt	0.0265	0.0100	0.0003	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Molybdenum	0.0015	0.0100	0.0010	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Lithium	0.0104	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 19:33	7070414	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:39	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Client ID: FB-1-7-13-17

Date/Time Sampled: 7/13/2017 2:35:00PM

Matrix: Water

July 25, 2017

Project: CCR Event

Lab Number ID: AAG0387-11

Date/Time Received: 7/14/2017 9:20:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	07/20/17 18:53	07/20/17 18:53	7070489	JPT
Inorganic Anions											
Chloride	0.08	0.25	0.02	mg/L	EPA 300.0	J	1	07/20/17 16:43	07/21/17 07:23	7070516	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/20/17 16:43	07/21/17 07:23	7070516	RLC
Sulfate	0.28	1.0	0.02	mg/L	EPA 300.0	J	1	07/20/17 16:43	07/21/17 07:23	7070516	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Barium	ND	0.0100	0.0004	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Boron	0.0061	0.0400	0.0060	mg/L	EPA 6020B	J	1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Calcium	ND	0.500	0.0404	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	07/18/17 10:03	07/20/17 19:45	7070414	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/20/17 10:30	07/20/17 16:41	7070380	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070376 - SM 2540 C											
Blank (7070376-BLK1)						Prepare	ed & Anal	yzed: 07/1	7/17		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (7070376-BS1)						Prepare	ed & Anal	yzed: 07/1	7/17		
Total Dissolved Solids	340	25	10	mg/L	400.00		85	84-108			
Duplicate (7070376-DUP1)		Soi	ırce: AAG0	277-09		Prepare	ed & Anal	yzed: 07/1	7/17		
Total Dissolved Solids	ND	25	10	mg/L		ND		,		10	
Duplicate (7070376-DUP2)		Soi	ırce: AAG0	387-03		Prepare	ed & Anal	yzed: 07/1	7/17		
Total Dissolved Solids	236	25	10	mg/L		238		•	0.8	10	
Batch 7070489 - SM 2540 C											
Blank (7070489-BLK1)						Prepare	ed & Anal	yzed: 07/20	0/17		
Total Dissolved Solids	ND	25	10	mg/L				,			
LCS (7070489-BS1)						Prepare	ed & Anal	yzed: 07/20	0/17		
Total Dissolved Solids	406	25	10	mg/L	400.00	- -	102	84-108	_		
Duplicate (7070489-DUP1)		Soi	ırce: AAG0	383-14		Prepare	ed & Anal	yzed: 07/20	0/17		
Total Dissolved Solids	2280	25	10	mg/L		2280			0.2	10	
Duplicate (7070489-DUP2)		Soi	ırce: AAG0	387-07		Prepare	ed & Anal	yzed: 07/20	0/17		
Total Dissolved Solids	ND	25	10	mg/L		ND				10	

July 25, 2017

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

July 25, 2017

Report No.: AAG0387

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070516 - EPA 300.0											
Blank (7070516-BLK1)						Prepare	ed: 07/20/	17 Analyz	ed: 07/21	/17	
Chloride	ND	0.25	0.02	mg/L							
Fluoride	ND	0.30	0.03	mg/L							
Sulfate	ND	1.0	0.02	mg/L							
LCS (7070516-BS1)						Prepare	ed: 07/20/	17 Analyz	ed: 07/21	/17	
Chloride	10.4	0.25	0.02	mg/L	10.020		103	90-110			
Fluoride	10.3	0.30	0.03	mg/L	10.020		103	90-110			
Sulfate	10.5	1.0	0.02	mg/L	10.050		104	90-110			
Matrix Spike (7070516-MS1)		Sou	ırce: AAG0	387-05		Prepare	ed: 07/20/	17 Analyz	ed: 07/21	/17	
Chloride	15.4	0.25	0.02	mg/L	10.020	5.39	100	90-110			
Fluoride	10.3	0.30	0.03	mg/L	10.020	ND	102	90-110			
Sulfate	125	1.0	0.02	mg/L	10.050	129	NR	90-110			QM-02
Matrix Spike (7070516-MS2)		Sou	ırce: AAG0	388-05		Prepare	ed: 07/20/	17 Analyz	ed: 07/21	/17	
Chloride	30.0	0.25	0.02	mg/L	10.020	21.2	87	90-110			QM-02
Fluoride	12.0	0.30	0.03	mg/L	10.020	0.20	117	90-110			QM-05
Sulfate	170	1.0	0.02	mg/L	10.050	178	NR	90-110			QM-02
Matrix Spike Dup (7070516-MSD1)		Sou	ırce: AAG0	387-05		Prepare	ed: 07/20/	17 Analyz	ed: 07/21	/17	
Chloride	15.4	0.25	0.02	mg/L	10.020	5.39	100	90-110	0.2	15	
Fluoride	10.1	0.30	0.03	mg/L	10.020	ND	101	90-110	1	15	
Sulfate	125	1.0	0.02	mg/L	10.050	129	NR	90-110	0.3	15	QM-02

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070380 - EPA 7470A											
Blank (7070380-BLK1)						Prepare	ed & Analy	/zed: 07/20)/17		
Mercury	ND	0.00050	0.000041	mg/L							
LCS (7070380-BS1)						Prepare	ed & Analy	/zed: 07/20)/17		
Mercury	0.00239	0.00050	0.000041	mg/L	2.5000E-3		95	80-120			
Matrix Spike (7070380-MS1)		Soi	urce: AAG03	87-08		Prepare	ed & Anal	/zed: 07/20	0/17		
Mercury	0.00234	0.00050	0.000041	mg/L	2.5000E-3	ND	94	75-125			
Matrix Spike Dup (7070380-MSD1)		Soi	urce: AAG03	87-08		Prepare	ed & Analy	/zed: 07/20)/17		
Mercury	0.00228	0.00050	0.000041	mg/L	2.5000E-3	ND	91	75-125	3	20	
Post Spike (7070380-PS1)		So	urce: AAG03	87-08		Prenare	ad & Analy	/zed: 07/20	1/17		
Mercury	1.67		u. 00. 7 ti 1000	ug/L	1.6667	0.00549	100	80-120	<i>7</i> , 1 <i>1</i>		
D											
Batch 7070414 - EPA 3005A											
Blank (7070414-BLK1)						Prepare	ed: 07/18/	17 Analyz	ed: 07/20/	/17	
Antimony	ND	0.0030	0.0006	mg/L							
Arsenic	ND	0.0050	0.0005	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00009	mg/L							
Boron	ND	0.0400	0.0060	mg/L							
Cadmium	ND	0.0010	0.0001	mg/L							
Calcium	ND	0.500	0.0404	mg/L							
Chromium	ND	0.0100	0.0005	mg/L							
Cobalt	ND	0.0100	0.0003	mg/L							
Copper	0.0004	0.0250	0.0003	mg/L							J
Lead	ND	0.0050	0.00007	mg/L							
Molybdenum	ND	0.0100	0.0010	mg/L							
Nickel	ND	0.0100	0.0005	mg/L							
Selenium	ND	0.0100	0.0018	mg/L							
Silver	ND	0.0100	0.0002	mg/L							
Thallium	ND	0.0010	0.00005	mg/L							
Vanadium	ND	0.0100	0.0012	mg/L							
Zinc	ND	0.0100	0.0012	mg/L							
Lithium	ND	0.0500	0.0015	mg/L							
				5							

July 25, 2017

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

July 25, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070414 - EPA 3005A											
LCS (7070414-BS1)						Prepare	ed: 07/18/	17 Analyz	ed: 07/20/	17	
Antimony	0.102	0.0030	0.0006	mg/L	0.10000		102	80-120			
Arsenic	0.101	0.0050	0.0005	mg/L	0.10000		101	80-120			
Barium	0.102	0.0100	0.0004	mg/L	0.10000		102	80-120			
Beryllium	0.105	0.0030	0.00009	mg/L	0.10000		105	80-120			
Boron	1.11	0.0400	0.0060	mg/L	1.0000		111	80-120			
Cadmium	0.101	0.0010	0.0001	mg/L	0.10000		101	80-120			
Calcium	1.05	0.500	0.0404	mg/L	1.0000		105	80-120			
Chromium	0.108	0.0100	0.0005	mg/L	0.10000		108	80-120			
Cobalt	0.104	0.0100	0.0003	mg/L	0.10000		104	80-120			
Copper	0.100	0.0250	0.0003	mg/L	0.10000		100	80-120			
Lead	0.103	0.0050	0.00007	mg/L	0.10000		103	80-120			
Molybdenum	0.104	0.0100	0.0010	mg/L	0.10000		104	80-120			
Nickel	0.104	0.0100	0.0005	mg/L	0.10000		104	80-120			
Selenium	0.102	0.0100	0.0018	mg/L	0.10000		102	80-120			
Silver	0.104	0.0100	0.0002	mg/L	0.10000		104	80-120			
Thallium	0.102	0.0010	0.00005	mg/L	0.10000		102	80-120			
Vanadium	0.107	0.0100	0.0012	mg/L	0.10000		107	80-120			
Zinc	0.103	0.0100	0.0012	mg/L	0.10000		103	80-120			
Lithium	0.107	0.0500	0.0015	mg/L	0.10000		107	80-120			
Matrix Spike (7070414-MS1)		Soi	urce: AAG03	87-10		Prepare	ed: 07/18/	17 Analyz	ed: 07/20/	17	
Antimony	0.101	0.0030	0.0006	mg/L	0.10000	ND	101	75-125			
Arsenic	0.106	0.0050	0.0005	mg/L	0.10000	0.0011	105	75-125			
Barium	0.119	0.0100	0.0004	mg/L	0.10000	0.0365	83	75-125			
Beryllium	0.0931	0.0030	0.00009	mg/L	0.10000	ND	93	75-125			
Boron	2.53	0.0400	0.0060	mg/L	1.0000	1.62	91	75-125			
Cadmium	0.103	0.0010	0.0001	mg/L	0.10000	ND	103	75-125			
Calcium	84.8	25.0	2.02	mg/L	1.0000	83.7	108	75-125			
Chromium	0.104	0.0100	0.0005	mg/L	0.10000	ND	104	75-125			
Cobalt	0.130	0.0100	0.0003	mg/L	0.10000	0.0265	104	75-125			
Copper	0.0959	0.0250	0.0003	mg/L	0.10000	ND	96	75-125			
Lead	0.0983	0.0050	0.00007	mg/L	0.10000	ND	98	75-125			
Molybdenum	0.107	0.0100	0.0010	mg/L	0.10000	0.0015	105	75-125			
Nickel	0.107	0.0100	0.0005	mg/L	0.10000	0.0054	101	75-125			
Selenium	0.108	0.0100	0.0018	mg/L	0.10000	ND	108	75-125			
Silver	0.0956	0.0100	0.0002	mg/L	0.10000	ND	96	75-125			
Thallium	0.101	0.0010	0.00005	mg/L	0.10000	ND	101	75-125			
Vanadium	0.110	0.0100	0.0012	mg/L	0.10000	ND	110	75-125			
Zinc	0.106	0.0100	0.0012	mg/L	0.10000	0.0040	102	75-125			
Lithium	0.107	0.0500	0.0015	mg/L	0.10000	0.0104	96	75-125			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

July 25, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070414 - EPA 3005A											
Matrix Spike Dup (7070414-MSD1)		Soi	urce: AAG03	87-10		Prepar	ed: 07/18/	17 Analyz	ed: 07/20	/17	
Antimony	0.104	0.0030	0.0006	mg/L	0.10000	ND	104	75-125	3	20	
Arsenic	0.104	0.0050	0.0005	mg/L	0.10000	0.0011	103	75-125	2	20	
Barium	0.122	0.0100	0.0004	mg/L	0.10000	0.0365	86	75-125	2	20	
Beryllium	0.0866	0.0030	0.00009	mg/L	0.10000	ND	87	75-125	7	20	
Boron	2.45	0.0400	0.0060	mg/L	1.0000	1.62	83	75-125	3	20	
Cadmium	0.0971	0.0010	0.0001	mg/L	0.10000	ND	97	75-125	6	20	
Calcium	89.3	25.0	2.02	mg/L	1.0000	83.7	557	75-125	5	20	QM-02
Chromium	0.103	0.0100	0.0005	mg/L	0.10000	ND	103	75-125	0.9	20	
Cobalt	0.127	0.0100	0.0003	mg/L	0.10000	0.0265	100	75-125	3	20	
Copper	0.0921	0.0250	0.0003	mg/L	0.10000	ND	92	75-125	4	20	
Lead	0.0944	0.0050	0.00007	mg/L	0.10000	ND	94	75-125	4	20	
Molybdenum	0.107	0.0100	0.0010	mg/L	0.10000	0.0015	106	75-125	0.8	20	
Nickel	0.103	0.0100	0.0005	mg/L	0.10000	0.0054	98	75-125	3	20	
Selenium	0.107	0.0100	0.0018	mg/L	0.10000	ND	107	75-125	0.3	20	
Silver	0.0963	0.0100	0.0002	mg/L	0.10000	ND	96	75-125	0.7	20	
Thallium	0.0964	0.0010	0.00005	mg/L	0.10000	ND	96	75-125	5	20	
Vanadium	0.107	0.0100	0.0012	mg/L	0.10000	ND	107	75-125	3	20	
Zinc	0.101	0.0100	0.0012	mg/L	0.10000	0.0040	97	75-125	5	20	
Lithium	0.101	0.0500	0.0015	mg/L	0.10000	0.0104	90	75-125	6	20	
Post Spike (7070414-PS1)		Soi	urce: AAG03	87-10		Prepar	ed: 07/18/	17 Analyz	ed: 07/20	/17	
Antimony	102			ug/L	100.00	0.433	101	80-120			
Arsenic	104			ug/L	100.00	1.05	102	80-120			
Barium	122			ug/L	100.00	36.5	86	80-120			
Beryllium	88.6			ug/L	100.00	0.0154	89	80-120			
Boron	2520			ug/L	1000.0	1620	90	80-120			
Cadmium	99.5			ug/L	100.00	0.0284	99	80-120			
Calcium	83200			ug/L	1000.0	83700	NR	80-120			QM-02
Chromium	101			ug/L	100.00	0.357	101	80-120			
Cobalt	123			ug/L	100.00	26.5	97	80-120			
Copper	92.0			ug/L	100.00	0.184	92	80-120			
Lead	94.2			ug/L	100.00	0.0118	94	80-120			
Molybdenum	109			ug/L	100.00	1.54	107	80-120			
Nickel	102			ug/L	100.00	5.37	96	80-120			
Selenium	105			ug/L	100.00	0.612	104	80-120			
Silver	95.9			ug/L	100.00	0.0028	96	80-120			
Thallium	95.6			ug/L	100.00	0.0057	96	80-120			
Vanadium	107			ug/L	100.00	0.726	107	80-120			
Zinc	103			ug/L	100.00	3.98	99	80-120			
Lithium	104			ug/L	100.00	10.4	94	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070491 - EPA 3005A											
Blank (7070491-BLK1)						Prepare	ed: 07/20/	17 Analyz	ed: 07/21/	′17	
Antimony	ND	0.0030	0.0006	mg/L		•		•			
Arsenic	ND	0.0050	0.0005	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00009	mg/L							
Boron	ND	0.0400	0.0060	mg/L							
Cadmium	ND	0.0010	0.0001	mg/L							
Calcium	ND	0.500	0.0404	mg/L							
Chromium	ND	0.0100	0.0005	mg/L							
Cobalt	ND	0.0100	0.0003	mg/L							
Copper	0.0003	0.0250	0.0003	mg/L							
Lead	ND	0.0050	0.00007	mg/L							
Molybdenum	ND	0.0100	0.0010	mg/L							
Nickel	ND	0.0100	0.0005	mg/L							
Selenium	ND	0.0100	0.0018	mg/L							
Silver	ND	0.0100	0.0002	mg/L							
Thallium	ND	0.0010	0.00005	mg/L							
Vanadium	ND	0.0100	0.0012	mg/L							
Zinc	ND	0.0100	0.0012	mg/L							
Lithium	ND	0.0500	0.0015	mg/L							
LCS (7070491-BS1)						Drenare	ad: 07/20/	17 Analyz	od: 07/24/	/17	
Antimony	0.120	0.0030	0.0006	mg/L	0.10000	Пераге	120	80-120	eu. 011241	17	
Arsenic	0.114	0.0050	0.0005	mg/L	0.10000		114	80-120			
Barium	0.106	0.0100	0.0004	mg/L	0.10000		106	80-120			
Beryllium	0.111	0.0030	0.00009	mg/L	0.10000		111	80-120			
Boron	1.13	0.0400	0.0060	mg/L	1.0000		113	80-120			
Cadmium	0.120	0.0010	0.0001	mg/L	0.10000		120	80-120			
Calcium	1.18	0.500	0.0404	mg/L	1.0000		118	80-120			
Chromium	0.114	0.0100	0.0005	mg/L	0.10000		114	80-120			
Cobalt	0.115	0.0100	0.0003	mg/L	0.10000		115	80-120			
Copper	0.114	0.0250	0.0003	mg/L	0.10000		114	80-120			
Lead	0.113	0.0050	0.00007	mg/L	0.10000		113	80-120			
Molybdenum	0.119	0.0100	0.0010	mg/L	0.10000		119	80-120			
Nickel	0.116	0.0100	0.0005	mg/L	0.10000		116	80-120			
Selenium	0.111	0.0100	0.0003	mg/L	0.10000		111	80-120			
Silver	0.117	0.0100	0.0010	mg/L	0.10000		117	80-120			
Thallium	0.117	0.0010	0.0002	mg/L	0.10000		117	80-120 80-120			
Vanadium	0.115	0.0100	0.00003								
	0.115	0.0100	0.0012	mg/L	0.10000		115 116	80-120 80-120			
Zinc	0.110	0.0500		mg/L	0.10000		116	80-120			
Lithium	0.109	0.0500	0.0015	mg/L	0.10000		109	80-120			

July 25, 2017

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

July 25, 2017

Metals, Total - Quality Control

Batch 7070491 - EPA 3005A Matrix Spike (7070491-MS1) Antimony Arsenic	0.115 0.0995										
Antimony											
•			ırce: AAG03	87-01		Prepare	ed: 07/20/	17 Analyze	ed: 07/21/	17	
Arsenic	0.0995	0.0030	0.0006	mg/L	0.10000	0.0006	114	75-125			
	0.0000	0.0050	0.0005	mg/L	0.10000	ND	99	75-125			
Barium	0.117	0.0100	0.0004	mg/L	0.10000	0.0233	94	75-125			
Beryllium	0.0981	0.0030	0.00009	mg/L	0.10000	ND	98	75-125			
Boron	1.02	0.0400	0.0060	mg/L	1.0000	0.0131	101	75-125			
Cadmium	0.106	0.0010	0.0001	mg/L	0.10000	ND	106	75-125			
Calcium	15.3	25.0	2.02	mg/L	1.0000	14.3	101	75-125			J
Chromium	0.103	0.0100	0.0005	mg/L	0.10000	ND	103	75-125			
Cobalt	0.118	0.0100	0.0003	mg/L	0.10000	0.0096	109	75-125			
Copper	0.0984	0.0250	0.0003	mg/L	0.10000	0.0004	98	75-125			
Lead	0.0978	0.0050	0.00007	mg/L	0.10000	ND	98	75-125			
Molybdenum	0.106	0.0100	0.0010	mg/L	0.10000	ND	106	75-125			
Nickel	0.104	0.0100	0.0005	mg/L	0.10000	0.0025	102	75-125			
Selenium	0.100	0.0100	0.0018	mg/L	0.10000	ND	100	75-125			
Silver	0.0994	0.0100	0.0002	mg/L	0.10000	ND	99	75-125			
Thallium	0.100	0.0010	0.00005	mg/L	0.10000	ND	100	75-125			
Vanadium	0.104	0.0100	0.0012	mg/L	0.10000	ND	104	75-125			
Zinc	0.108	0.0100	0.0012	mg/L	0.10000	0.0043	104	75-125			
Lithium	0.103	0.0500	0.0015	mg/L	0.10000	0.0051	98	75-125			
Zianom.			0.00.0	mg/L	0.10000	0.0001	00	70 120			
Matrix Spike Dup (7070491-MSD1)			ırce: AAG03	87-01		Prepare	ed: 07/20/	17 Analyze	ed: 07/21/		
Antimony	0.117	0.0030	0.0006	mg/L	0.10000	0.0006	117	75-125	2	20	
Arsenic	0.103	0.0050	0.0005	mg/L	0.10000	ND	103	75-125	3	20	
Barium	0.120	0.0100	0.0004	mg/L	0.10000	0.0233	97	75-125	3	20	
Beryllium	0.104	0.0030	0.00009	mg/L	0.10000	ND	104	75-125	6	20	
Boron	1.06	0.0400	0.0060	mg/L	1.0000	0.0131	105	75-125	4	20	
Cadmium	0.101	0.0010	0.0001	mg/L	0.10000	ND	101	75-125	5	20	
Calcium	15.5	25.0	2.02	mg/L	1.0000	14.3	123	75-125	1	20	J
Chromium	0.106	0.0100	0.0005	mg/L	0.10000	ND	106	75-125	3	20	
Cobalt	0.117	0.0100	0.0003	mg/L	0.10000	0.0096	108	75-125	1	20	
Copper	0.0987	0.0250	0.0003	mg/L	0.10000	0.0004	98	75-125	0.3	20	
Lead	0.0981	0.0050	0.00007	mg/L	0.10000	ND	98	75-125	0.3	20	
Molybdenum	0.106	0.0100	0.0010	mg/L	0.10000	ND	106	75-125	0.05	20	
Nickel	0.107	0.0100	0.0005	mg/L	0.10000	0.0025	104	75-125	3	20	
Selenium	0.102	0.0100	0.0018	mg/L	0.10000	ND	102	75-125	2	20	
Silver	0.101	0.0100	0.0002	mg/L	0.10000	ND	101	75-125	2	20	
Thallium	0.101	0.0010	0.00005	mg/L	0.10000	ND	101	75-125	0.6	20	
Vanadium	0.107	0.0100	0.0012	mg/L	0.10000	ND	107	75-125	3	20	
Zinc	0.107	0.0100	0.0012	mg/L	0.10000	0.0043	103	75-125	0.8	20	
Lithium	0.110	0.0500	0.0015	mg/L	0.10000	0.0051	104	75-125	6	20	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0387

Metals, Total - Quality Control

					Spike	Source		%REC		RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7070491 - EPA 3005A											
Post Spike (7070491-PS1)		Sou	urce: AAG0	387-01		Prepare	ed: 07/20/	17 Analyz	ed: 07/21	/17	
Antimony	106			ug/L	100.00	0.648	105	80-120			
Arsenic	102			ug/L	100.00	0.0447	102	80-120			
Barium	115			ug/L	100.00	23.3	92	80-120			
Beryllium	100			ug/L	100.00	0.0625	100	80-120			
Boron	1030			ug/L	1000.0	13.1	102	80-120			
Cadmium	103			ug/L	100.00	0.142	103	80-120			
Calcium	15300			ug/L	1000.0	14300	95	80-120			
Chromium	101			ug/L	100.00	0.196	101	80-120			
Cobalt	113			ug/L	100.00	9.61	103	80-120			
Copper	100			ug/L	100.00	0.386	100	80-120			
Lead	97.0			ug/L	100.00	0.0209	97	80-120			
Molybdenum	103			ug/L	100.00	0.316	103	80-120			
Nickel	99.9			ug/L	100.00	2.47	97	80-120			
Selenium	104			ug/L	100.00	1.29	103	80-120			
Silver	99.1			ug/L	100.00	-0.0002	99	80-120			
Thallium	98.5			ug/L	100.00	0.0377	98	80-120			
Vanadium	105			ug/L	100.00	0.324	105	80-120			
Zinc	105			ug/L	100.00	4.33	101	80-120			
Lithium	103			ug/L	100.00	5.08	98	80-120			

July 25, 2017

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

July 25, 2017

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD and/or PDS due to suspected matrix interference. Sample results for the QC batch were accepted based on acceptable LCS recoveries.
- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).

Note: Unless otherwise noted, all results are reported on an as received basis.

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc.
110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092
(770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

P

PAGE:

Colorest Manage.														
CLIEN I NAME:					ŀ	ł	NALY:	ပ္ကု	JESTED			CONTAINER TYPE	PRESERVATION	Γ
Georgia rowei			1	CONTAINER TYPE	TYPE		РР	Ь			⋖	P - PLASTIC	1 - HCl. ≤6°C	
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	NUMBERYFA	AX NU		PRESERVATION:	:NOI	3	7 3				0	A - AMBER GLASS	2 - H.SO. <6°C	
241 Ralph McGill Blvd SE B10185	0185			Jo#	_	_						G - CLEAR GLASS	3 - HNO.	
Atlanta, GA 30308												V - VOA VIAL	4 - NaOH, ≤6°C	
404-506-7239		ŀ	- 1	ပ					_		-	S - STERILE	5 - NaOH/ZnAc. <6°C	
REPORT TO:		<u></u>	CC: Maria Padilla	0				_				O - OTHER	7.82 O-8-8	_
Lauren Petty			Heath McCorkle	z				_		_			7 - <6°C not frozen	
REQUESTED COMPLETION DATE:	DATE:	Ь	PO#.	۰							2	5.3 h		
			laburch@southernco.com	4								TAM.	MATRIX CODES.	Т
PROJECT NAME/STATE:				_			(၁) S		AIA CODES.	
<u> </u>	Plant Yates Phase II Facilities	Phase II	Il Facilities	z								DIAL DOINKING WATED		
				: ш	ΛI		8				ם נ	DW - DRIINKIING WATE		
PROJECT #		Phas	Phase 2 CCR	١۵	. 8	(0.	22							
				٠ 0	111	171	8				Z		(V)	_
	2	9		- -		/07	922						÷.	-
Collection Collection M.	MATRIX O	┿		†	1	:09	30x	+		1		1		+
TIME			SAMPLE IDENTIFICATION		·lete	Aq ,4	Aq Iulibi 8-W					W- WATER	P - PRODUCT	1
**- CO- Y#	<u>a.</u>	-		>	· VV	3)	ਤ (E					REMARKS/ADD	REMARKS/ADDITIONAL INFORMATION	_
7-11-17 1040 6	620	7	16WA-47	4		1	1 2				/			Ī
6 1310 6	6W	7	76-7m91	7			7				Q	10000000		Т
9 05H1 U-11-1	1 M3	t	16WC-43	7			2				6			Τ
1		1		†-		+	1	1	\int) 			٦
2 / 1311	25	7	Du0-1	7-	\dashv		7				<u>†</u>			
) 0401 LI-EI-C	6W	2	Y6W6-36	9		_	ד 				<u>い</u>	by ofte	ا ا ا ا	Г
7-13-17 1255 6	6W	7	7/5W 6-49	7		-	7				10			T
1330	$ \sim$	7	EB-1-7-13-17	1		-	7				7) 1332 m		Т
1-13-17 1225 6	M9	Ž,	76WC-44	J			i				8			Т
7-13-17 1035 6	35	7	160C-45	7			14				10			1
-	6W	7	46WC-46	7	\vdash	-	7							Т
7-13-17 1435 1	3	7	FB-4-7-13-17+	7	+		1/2					+ 6a.1-7-13-17	(a) (1-	Т
				<u> </u>		_						3	1	\top
SAMPLED BY AND TITLE	1. (1/2.7		DATE/TIME:	RELINQUISHED BY:	JISHED	\\ \ \	/		-	DATE/TIME:			B USE ONLY	1.
	4	à	2///	RELINQUISHED BY:	JISHED) !XB	V			DATE/TIME:	07.50		んらなれ	
ELYEDBY LAP	VVCVV		PATEMINE SHIPPED VIA	SAMPLE	SHIPP	D VIA:	90011					Entered into L MS: Tracking #:		i g ilia
ed acked: No Na Na Na Na Na Na Na Na Na Na Na Na Na	Ce: Xes No NA			Custody Strait	Broken	Stati Stati Broken Not Present	2 1698	# of Coders	\mathcal{I}	Color ID	2			atrad
				ŀ										7

Plant Yates COC Phase II Facilities.xlsx

²age 24 of 26

and the same	San	iple C	ond	ition	Upon Receip	t			
Pace Analytical"	Oliant Names		` .		Darnak			A A C	12
1	Client Name:	-19	TA	× 1	Cower	-	Project#_	AGG	\sim
Courier: Fed Ex UPS	USPS Clien		omme	ercial	Pace Other		Proj	onali.	
Custody Seal on Cooler/Box	Present: Xyes		ο ,	Seals	intact: Kyes		no Proj.	Name	
Packing Material: Bubble	Wrap (XBubble I	Bags	Πи	one	Other		•		
Thermometer Used /	12-2	Type o					Samples on ice	cooling process has begu	n
Cooler Temperature	31				is Frozen: Yes No	, []		tials of person examinin	
Temp should be above freezing to	6°C				Comments:		contents:_	7/14/17 D	
Chain of Custody Present:		XX es	□No	□n/a	1.				
Chain of Custody Filled Out:		ZX 95	□N ₀	□n/a	2.		·		
Chain of Custody Relinquished	<u>!</u> :	Des		□n/a			* *********		
Sampler Name & Signature on		DK es	-	□N/A					
Samples Arrived within Hold T	ime:	Ø S	□No	□N/A	5.				
Short Hold Time Analysis (<	72hr):	□Yes	2 40°	□n/a	6.				
Rush Turn Around Time Req		□Yes	DX ₀	□N/A			· · · · · · · · · · · · · · · · · · ·		
Sufficient Volume:		E Yes		□N/A	8.				
Correct Containers Used:		X es	□No	□N/A	9.				
-Pace Containers Used:		X Yes	□No	□N/A					
Containers Intact:		∑X Yes	□No	□N/A	10.				
Filtered volume received for Di	ssolved tests	□Yes	□No	C)NGA	11.				
Sample Labels match COC:		≥ Kes	□No	□N/A	12.				
-Includes date/time/ID/Anal	ysis Matrix:								
All containers needing preservation	have been checked.	≥	□No	□n/A	13.				
All containers needing preservatio compliance with EPA recommends		≥	□No	□N/A					
exceptions: VOA, coliform, TOC, O&G	, WI-DRO (water)	XY as	□No		Initial when completed		Lot # of added preservative	•	
Samples checked for dechloring		□Yes		ČZK VA	14.		•		
Headspace in VOA Vials (>6n	•	□Yes !		· · ·			······································		
Trip Blank Present:		□Yes						· · · · · · · · · · · · · · · · · · ·	
Trip Blank Custody Seals Pres	ent	□Y∌s I		, .					
Pace Trip Blank Lot # (if purch									
Client Notification/ Resolution							Field Data Danii		
Person Contacted:				Date/	Time:		Field Data Requi	red? Y / N	
Comments/ Resolution:	· · · · · · · · · · · · · · · · · · ·			Cato					
									
***************************************	v = 4000					1			
Project Manager Review:							Date:		
Note: Whenever there is a discrep	pancy affecting North Ca	ırolina co	mpliar	ice san	ples, a copy of this fo	rm wil	be sent to the No	orth Carolina DEHNR	

Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

F-ALLC003rev.3, 11September2006

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 7/17/2017 12:13:35PM

Attn: Mr. Joju Abraham

Client: Georgia Power

Project: CCR Event Work Order: AAG0387

Date Received: 07/14/17 09:20 Logged In By: Mohammad M. Rahman

OBSERVATIONS

#Samples: 11 #Containers: 46

Minimum Temp(C): 3.1 Maximum Temp(C): 3.1 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

(724)850-5600

August 07, 2017

Ms. Lauren Petty GA Power 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: AAG0387 Plant Yates Pace Project No.: 30224382

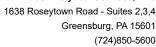
Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on July 17, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins


Suguely allins

jacquelyn.collins@pacelabs.com

(724)850-5612 Project Manager

Enclosures

CERTIFICATIONS

Project: AAG0387 Plant Yates

Pace Project No.: 30224382

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Indiana Certification

lowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

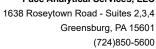
Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification

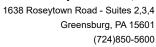

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8

Utah/TNI Certification #: PA014572015-5
USDA Soil Permit #: P330-14-00213
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Certification

Wyoming Certification #: 8TMS-L

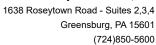


SAMPLE SUMMARY

Project: AAG0387 Plant Yates

Pace Project No.: 30224382

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30224382001	YGWA-47	Water	07/11/17 10:40	07/17/17 09:30
30224382002	YGWC-42	Water	07/11/17 13:10	07/17/17 09:30
30224382003	YGWC-43	Water	07/11/17 14:50	07/17/17 09:30
30224382004	Dup-1	Water	07/11/17 00:00	07/17/17 09:30
30224382005	YGWC-36	Water	07/13/17 10:40	07/17/17 09:30
30224382006	YGWC-49	Water	07/13/17 12:55	07/17/17 09:30
30224382007	EB-1-7-13-17	Water	07/13/17 13:30	07/17/17 09:30
30224382008	YGWC-44	Water	07/13/17 12:25	07/17/17 09:30
30224382009	YGWC-45	Water	07/13/17 10:35	07/17/17 09:30
30224382010	YGWC-46	Water	07/13/17 14:20	07/17/17 09:30
30224382011	FB-1-7-13-17	Water	07/13/17 14:35	07/17/17 09:30



SAMPLE ANALYTE COUNT

Project: AAG0387 Plant Yates

Pace Project No.: 30224382

Lab ID	Sample ID	Method	Analysts	Analytes Reported	
30224382001	YGWA-47	EPA 9315		1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	
30224382002	YGWC-42	EPA 9315	JC2	1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	
30224382003	YGWC-43	EPA 9315	JC2	1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	
30224382004	Dup-1	EPA 9315	JC2	1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	
30224382005	YGWC-36	EPA 9315	JC2	1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	
30224382006	YGWC-49	EPA 9315	JC2	1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	
30224382007	EB-1-7-13-17	EPA 9315	JC2	1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	
30224382008	YGWC-44	EPA 9315	JC2	1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	
30224382009	YGWC-45	EPA 9315	JC2	1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	
30224382010	YGWC-46	EPA 9315	JC2	1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	
30224382011	FB-1-7-13-17	EPA 9315	JC2	1	
		EPA 9320	VAL	1	
		Total Radium Calculation	RMK	1	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAG0387 Plant Yates

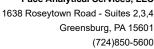
Pace Project No.: 30224382

Pace Project No.: 3022438						
Sample: YGWA-47 PWS:	Lab ID: 30224382 Site ID:	2001 Collected: 07/11/17 10:40 Sample Type:	Received:	07/17/17 09:30 N	Matrix: Water	
F VV 3.						
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.280 ± 0.133 (0.146) C:90% T:NA	pCi/L	08/02/17 09:12	13982-63-3	
Radium-228	EPA 9320	0.191 ± 0.350 (0.766) C:80% T:85%	pCi/L	08/02/17 15:59	15262-20-1	
Total Radium	Total Radium Calculation	0.471 ± 0.483 (0.912)	pCi/L	08/04/17 11:56	7440-14-4	
Sample: YGWC-42	Lab ID: 30224382	2002 Collected: 07/11/17 13:10	Received:	07/17/17 09:30 M	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	1.77 ± 0.391 (0.161) C:94% T:NA	pCi/L	08/02/17 09:12	13982-63-3	
Radium-228	EPA 9320	2.17 ± 0.717 (0.986) C:81% T:61%	pCi/L	08/02/17 15:59	15262-20-1	
Total Radium	Total Radium Calculation	3.94 ± 1.11 (1.15)	pCi/L	08/04/17 11:56	7440-14-4	
Sample: YGWC-43 PWS:	Lab ID: 30224382 Site ID:	2003 Collected: 07/11/17 14:50 Sample Type:	Received:	07/17/17 09:30 N	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.724 ± 0.228 (0.188)	pCi/L	08/02/17 09:12	13982-63-3	
Radium-228	EPA 9320	C:88% T:NA 0.300 ± 0.349 (0.737)	pCi/L	08/02/17 15:59	15262-20-1	
Total Radium	Total Radium Calculation	C:78% T:91% 1.02 ± 0.577 (0.925)	pCi/L	08/04/17 11:56	7440-14-4	
Sample: Dup-1 PWS:	Lab ID: 30224382 Site ID:	2004 Collected: 07/11/17 00:00 Sample Type:	Received:	07/17/17 09:30 M	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	1.73 ± 0.394 (0.141)	pCi/L	08/02/17 09:12	13982-63-3	
Radium-228	EPA 9320	C:85% T:NA 0.679 ± 0.422 (0.801)	pCi/L	08/02/17 15:59	15262-20-1	
Total Radium	Total Radium Calculation	C:79% T:82% 2.41 ± 0.816 (0.942)	pCi/L	08/04/17 11:56	7440-14-4	
Sample: YGWC-36 PWS:	Lab ID: 30224382 Site ID:	2005 Collected: 07/13/17 10:40 Sample Type:	Received:	07/17/17 09:30 N	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.322 ± 0.142 (0.150)	pCi/L	08/02/17 09:12		
Radium-228	EPA 9320	C:92% T:NA 0.296 ± 0.350 (0.739) C:80% T:81%	pCi/L	08/02/17 15:59	15262-20-1	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAG0387 Plant Yates

Pace Project No.: 30224382 Collected: 07/13/17 10:40 Received: 07/17/17 09:30 Sample: YGWC-36 Lab ID: 30224382005 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Total Radium Total Radium $0.618 \pm 0.492 \quad (0.889)$ pCi/L 08/04/17 11:56 7440-14-4 Calculation Sample: YGWC-49 Lab ID: 30224382006 Collected: 07/13/17 12:55 Received: 07/17/17 09:30 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 9315 $0.288 \pm 0.152 \quad (0.226)$ Radium-226 pCi/L 08/02/17 09:12 13982-63-3 C:88% T:NA Radium-228 EPA 9320 0.212 ± 0.373 pCi/L 08/02/17 15:59 15262-20-1 C:84% T:76% Total Radium Total Radium 0.500 ± 0.525 (1.04) pCi/L 08/04/17 11:56 7440-14-4 Calculation Sample: EB-1-7-13-17 Lab ID: 30224382007 Collected: 07/13/17 13:30 Received: 07/17/17 09:30 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 9315 $0.293 \pm 0.143 \quad (0.182)$ Radium-226 08/02/17 09:12 13982-63-3 pCi/L C:90% T:NA Radium-228 EPA 9320 0.585 ± 0.365 (0.691)pCi/L 08/02/17 15:59 15262-20-1 C:83% T:86% Total Radium **Total Radium** $0.878 \pm 0.508 \quad (0.873)$ pCi/L 08/04/17 11:56 7440-14-4 Calculation Lab ID: 30224382008 Received: 07/17/17 09:30 Sample: YGWC-44 Collected: 07/13/17 12:25 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.315 ± 0.137 (0.145) Radium-226 pCi/L 08/02/17 09:12 13982-63-3 C:101% T:NA EPA 9320 0.455 ± 0.381 Radium-228 (0.770)pCi/L 08/02/17 16:00 15262-20-1 C:82% T:85% **Total Radium Total Radium** $0.770 \pm 0.518 \quad (0.915)$ pCi/L 08/04/17 11:56 7440-14-4 Calculation Sample: YGWC-45 Lab ID: 30224382009 Collected: 07/13/17 10:35 Received: 07/17/17 09:30 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units CAS No. Qual Analyzed Radium-226 EPA 9315 $0.611 \pm 0.201 \quad (0.163)$ pCi/L 08/02/17 09:12 13982-63-3 C:94% T:NA EPA 9320 $-0.339 \pm 0.334 \quad (0.858)$ Radium-228 pCi/L 08/02/17 18:09 15262-20-1 C:77% T:85% **Total Radium** pCi/L **Total Radium** 0.611 ± 0.535 (1.02) 08/04/17 11:56 7440-14-4 Calculation



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAG0387 Plant Yates

Pace Project No.: 30224382

Sample: YGWC-46	Lab ID: 30224	382010 Collected: 07/13/17 14:20	Received:	07/17/17 09:30	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.657 ± 0.204 (0.152) C:97% T:NA	pCi/L	08/02/17 09:4	1 13982-63-3	
Radium-228	EPA 9320	0.752 ± 0.408 (0.693) C:77% T:81%	pCi/L	08/02/17 18:09	9 15262-20-1	
Total Radium	Total Radium Calculation	1.41 ± 0.612 (0.845)	pCi/L	08/04/17 11:56	6 7440-14-4	
Sample: FB-1-7-13-17	Lab ID: 30224	382011 Collected: 07/13/17 14:35	Received:	07/17/17 09:30	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.109 ± 0.0982 (0.178) C:89% T:NA	pCi/L	08/02/17 09:42	2 13982-63-3	
Radium-228	EPA 9320	0.478 ± 0.376 (0.738) C:82% T:87%	pCi/L	08/02/17 18:09	9 15262-20-1	
Total Radium	Total Radium Calculation	0.587 ± 0.474 (0.916)	pCi/L	08/04/17 11:56	6 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: AAG0387 Plant Yates

Pace Project No.: 30224382

QC Batch: 265653 Analysis Method: EPA 9320

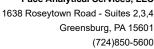
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30224382001, 30224382002, 30224382003, 30224382004, 30224382005, 30224382006, 30224382007,

30224382008, 30224382009, 30224382010, 30224382011

METHOD BLANK: 1308228 Matrix: Water

Associated Lab Samples: 30224382001, 30224382002, 30224382003, 30224382004, 30224382005, 30224382006, 30224382007,


30224382008, 30224382009, 30224382010, 30224382011

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.302 ± 0.274 (0.549) C:82% T:85%
 pCi/L
 08/02/17 16:00

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: AAG0387 Plant Yates

Pace Project No.: 30224382

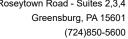
QC Batch: 265657 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30224382001, 30224382002, 30224382003, 30224382004, 30224382005, 30224382006, 30224382007,

30224382008, 30224382009, 30224382010, 30224382011

METHOD BLANK: 1308239 Matrix: Water


Associated Lab Samples: 30224382001, 30224382002, 30224382003, 30224382004, 30224382005, 30224382006, 30224382007,

30224382008, 30224382009, 30224382010, 30224382011

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.254 ± 0.116 (0.177) C:89% T:NA
 pCi/L
 08/01/17 19:52

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AAG0387 Plant Yates

Pace Project No.: 30224382

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 08/07/2017 02:18 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Chain of Custody

Owner Received Date: Workorder Name: Plant Yates Workorder: AAG0387

Results Requested By: 8/8/2017

Repo	Report To:		Subcontract To:	ract To					R	equeste	Requested Analysis	S .		
Betsy	Betsy McDaniel		Pace - Pittsburgh	ittsburg	şh			ls						
Pace	Pace Analytical Atlanta		1638 Roseytown R	seytow	ın Road			toT						
1101	110 Technology Parkway		Stes. 2,3,4	3,4				'87						
Peacl	Peachtree Corners, GA 30092		Greensburg, PA 15	Jurg, Pt	A 15601			Z 'S					1/	
Phon	Phone (770)-734-4200		Phone (724) 850-5600	(724) 8.	20-5600			526					W.	
							Preserved Containers							
Control of the Control		Sample					50	nib	_		_			
Item	Item Sample ID	Туре	Collect Date/Time Lab ID	Ime La	OI 9	Matrix	NH	Ка					LAB USE ONLY	ONLY
П	YGWA-47	9	7/11/2017 10:40	0:40	AAG0387-01	МЫ	2	×					8	1
2	YGWC-42	9	7/11/2017 13:10	3:10	AAG0387-02	MΘ	2	×	_				002	α
8	YGWC-43	9	7/11/2017 14:50	1:50	AAG0387-03	GW	2	×				1	003	D
4	Dup-1	9	7/11/2017 0:00	00:	AAG0387-04	GW	2	×					78	4
5	YGWC-36	9	7/13/2017 10:40	0:40	AAG0387-05	GW	4	×					005	10
9	YGWC-49	9	7/13/2017 12:55	2:55	AAG0387-06	GW	2	×					000	0
7	EB-1-7-13-17	9	7/13/2017 13:30	3:30	AAG0387-07	W	2	×					8	2
8	YGWC-44	9	7/13/2017 12:25	2:25	AAG0387-08	МĐ	2	×					808	0/3
0	YGWC-45	9	7/13/2017 10:35	3:35	AAG0387-09	GW	2	×					600	
10	YGWC-46	9	7/13/2017 14:20	1:20	AAG0387-10	GW	2	×					010	^
Tran	Transfers Released By		D	Date//Time,	ne, Received By	ed By	C	Date/Time	0		Con	Comments		
1	N. RAH	AHMAR		4114	1864-112/8x	BANCH I	100	0-0-6	100	2				
2	3)				
3									_					

Cooler Temperature on Receipt Cooler Temperature	Custody Seal Y or /N	Received on Ice Y of N	Sample Intact V or N
***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC	cation/name of the sampling site,	sampler's name and signature may not be p	ovided on this COC
This chain of custody is considered complete as is since this information is available in the owner laboratory	is since this information is available	le in the owner laboratory.	

Page 1 of 2

Pace Analytical

Chain of Custody

LAB USE ONLY $\overline{\Diamond}$ Results Requested By: 8/8/2017 Comments Requested Analysis Date/Time 10-0-0 Radium 226, 228, Total Preserved Containers Owner Received Date: ЕОИН 7 In Mestical Matrix 8€ Received By AAG0387-11 Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Plant Yates Collect Date/Time | Lab ID 11/4/ Date/Mime Pace - Pittsburgh Subcontract To: 7/13/2017 14:35 Stes. 2,3,4 Workorder Name: イインを入 Type Sample U Peachtree Corners, GA 30092 Workorder: AAG0387 110 Technology Parkway Pace Analytical Atlanta Transfers |Released By Phone (770)-734-4200 FB-1-7-13-17 Sample ID **Betsy McDaniel** Report To: 13 74 15 16 18 13 20 17 1 12

Sample Intact Por N ***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC Received on Ice Y of N This chain of custody is considered complete as is since this information is available in the owner laboratory. Custody Seal Y or/N ွ **Cooler Temperature on Receipt**

CHAIN OF CUSTODY RECORD

CLIENT NAME

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com Pace Analytical "

PRESERVATION

CONTAINER TYP

ANALYSIS REQUESTED

P

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen 2- H₂SO₄, ≤6°C 4 - NaOH, ≤6°C REMARKS/ADDITIONAL INFORMATION 18003A P. PRODUCT 1 - HCI, ≤6°C SL- SLUDGE anos -as 3- HNO3 B S- SOIL A - AIR "MATRIX CODES: FB-1-7-13-17 25 DRINKING WATER SW - SURFACE WATER GW - GROUNDWATER ST. STORM WATER MW - WASTEWATER G. CLEAR GLASS A - AMBER GLASS S - STERILE O - OTHER V - VOA VIAL P - PLASTIC CX+CO W- WATER LAB# + 0920 2 3 **2** 0 U C X 7720 H 20 G 1 9 ∢ D ۵ DATE/TIME: 7-17 ۵ (SW-846 9316/9320) N ij Ŋ Ŋ م N 7 Ŋ Radlum 226 & 228 CI, F, SD, & TDS (EPA 300.0 & SM 2540C) 4 RELINQUISHED BY: Metals App. III & IV (EPA 6020/7470) CONTAINER TYPE: PRESERVATION 30 # 0 O Z F 4 - Z E E S 7 J J 7 7 J T 7 J 4 laburch@southernco.com SAMPLE IDENTIFICATION FB-4-7-13-17 Heath McCorkle 76-2094 丘 1-1-1-13-Y6WC-44 46WC-43 76WC-42 46W C-49 760C-45 46WC-36 DATE/TIME: 7-/5-20;7 DATE/TIME: Maria Padilla Du D-Plant Yates Phase II Facilities Phase 2 CCR CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER ပ္ပြဲ **5** α ∢ α 0 22 4 REQUESTED COMPLETION DATE: 3 MATRIX CODE* のと 62 241 Ralph McGill Blvd SE B10185 5 3 Ŝ 6W 5 δK 3 Lauren Petty SAMPLED BY AND TITLE PROJECT NAME/STATE: 0.541 1435 Collection 1330 1035 1420 1040 1225 1310 1040 1255 Atlanta, GA 30308 Georgia Power 104-506-7239 REPORT TO: 7-13-17 11-21-6 7-13-17 PROJECT # ** - CO - W 7-13-17 コケーケ 7-13-17 0-11-6 T13-17 Calection 7-11-17 7-11-17 ノーニト DATE

Plant Yates COC Phase II Facilities.xlsx

Intered into LIMS

DATECTIME

racking

OHER ES

CLEA

Fol Codes

USPS

FEDEX

SAMPLE SHIPPED VIA:

RELINQUISHED BY

13 of

Sam	ple Condit	ion Upon Receipt	3 0224382
Pace Analytical Client Name:	GTA	power	Project # AAGCO3
Courier: Fed Ex UPS USPS Client Tracking #: Custody Seal on Cooler/Box Present: Yes			Optional Pate: F. W. Proj. Name
• •		• •	
Packing Material: Bubble Wrap Subble B			
7 1	,	Wet Blue None	Samples on ice, cooling process has begun Date and initials of person examining
Cooler Temperature 5 1	pidiodical Ha	sue is Frozen: Yes No Comments:	contents: 7/14/17 MR
Chain of Custody Present:	X es 🗆 No 🖸		
	DA BE CINO C		
Chain of Custody Palinquished:	Des Ono C	7, 1	
Sampler Name & Signature on COC:	Des Ono C		
Samples Arrived within Hold Time:	DARS DIVO C		
	THE DIGO C	······································	
	Dyes Ding [· · · · · · · · · · · · · · · · · · ·	
Rush Turn Around Time Requested:	Day as DNo C		
Sufficient Volume: Correct Containers Used:	Caxos DNo C		
	1920 ps □No □	į	·
	X ps INO E	· · · · · · · · · · · · · · · · · · ·	
	DYPS DNO C		
Filtered volume received for Dissolved tests			
	DN93 □N0 □	JNIA 12.	
-Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked.	Ø 3s □No □) 40	
l	. 1		
All containers needing preservation are found to be in compliance with EPA recommendation.	DNG □No □]N/A	
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	(XYes □No	Initial when completed	Lot # of added preservative
Acceptants. Tox, Content Too, Code, Till arts (state)		KVA 14.	prostruito
	DYBS DNO C		
	□Yes □No D		
		· 1	
, , , , , , , , , , , , , , , , , , ,	LIFE LING L	THE STATE OF THE S	·
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:			Field Data Required? Y 1 N
Person Contacted:	<u> </u>	ate/Time:	
Comments/ Resolution:			
Project Manager Review:			Date:
Note: Whenever there is a discrepancy affecting North Car Certification Office (i.e. out of hold, incorrect preservative,	rollna compliance out of temp, inco	e samples, a copy of this for prect containers)	m will be sent to the North Carolina DEHNR F-ALLC003rev.3, 11September2006

Sample Condition Upon Red				-	
Face Analytical Client Name:		Pc	ice	, G-A	Project# <u>0 2 2 4 3 8</u>
<i>f</i>					0.404
Courler:	ent [bom	nercia	□Pace Olher	Label_TTV
Tracking#: 7413 6657 21	51	<u>/</u> .			LIMS Login &
Custody Seal on Cooler/Box Present:	· #] no	Se	als Intact: Uyes	no
Thermometer Used //	Тур	e of le	e: V	et Blue None	
Cooler Temperature Observed Temp		• •	Co	rrection Factor:	°C Final Temp: °C
Temp should be above freezing to 6°C					Date and initiate of payons avamining
,	·				Date and initials of person examining contents:
Comments:	Ye	s N	o N/		
Chain of Custody Present:	+	- 		1.	
Chain of Custody Filled Out:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\vdash \mid$	_	2.	
Chain of Custody Relinquished:	+	<u> </u>		3.	
Sampler Name & Signature on COC:	-\X	-	-	4.	
Sample Labels malch COC:				5.	
-Includes date/lime/ID Matrix:	<u> </u>	4_	1		
Samples Arrived within Hold Time:	<u> </u> }_			6.	
Short Hold Time Analysis (<72hr remaining):		ĮX,	4-	7.	
tush Turn Around Time Requested:	1.7	X		8.	
ufficient Volume:	く	-		9,	
orrect Containers Used:		-	ļ	10,	
-Pace Containers Used:	$\downarrow \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	1	ļ	<u> </u>	
ontainers intact:	\X	╄		11.	
rihophosphate Neid filtered		ļ <u>.</u>		12.	
rganic Samples checked for dechlorination:	1		X	13.	
llered volume received for Dissolved tests		ļ	X	14.	
containers have been checked for preservation.	X	ļ	 	15. OHL2	•
containers needing preservation are found to be in mpliance with EPA recommendation.	7			001	
ceptions: VOA, coliform, TOC, O&G, Phenolics				completed	Date/lime of preservation
•				Lot # of added	
- 1			X	preservative 16.	
eadspace in VOA Vials (>6mm):		V	/ >	17.	
p Blank Present:		/>	X	11.	
p Blank Custody Seals Present d Aqueous Samples Screened > 0.5 mrem/hr		Χ	/\	Initial when AAA	Date: 7-17-17
		1		completed; /) IVL	Date: / / /
ent Notification/ Resolution:			Dalar	- Ima-	Contacted By:
				me.	Ooffice of 19.
Comments/ Resolution:					

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

1 of 1

PACE Analytical Services Ra-228 Analysis

Quality Control Sample Performance Assessment

Face Analytical"

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCI/L, g, F): Matrix Spike Duplicate Result Counting Uncertainty (PCI/L, 9, F): MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Target Conc. (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, 9, F): Sample Matrix Spike Duplicate Result: MSD Numerical Performance Indicator: MS Percent Recovery: MS/MSD Decay Corrected Spike Concentration (pCl/mL): MS Target Conc. (pCi/L, g, F): MSD Aliquot (L, g, F): Sample Result: MS Numerical Performance Indicator MSD Percent Recovery Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): Spike uncertainty (calculated): Sample MSD I.D. Spike I.D.: Sample Collection Date: Sample MS I.D. Sample Matrix Spike Control Assessment VAL 7/26/2017 1308228 0.302 0.268 0.549 2.21 NIA Pass Ra-228 36803 DW Test: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: Date: Worklist: Matrix: MB Sample ID MB concentration: M/B Counting Uncertainty: Analyst: MB MDC Method Blank Assessment

			_									_	_	_
_	LCSD36803													
CUNTO V COCI	LCS36803	8/2/2017	17-005	23,902	0.20	0.820	5.833	0.420	6.019	0.700	0,45	103.19%	₩	Pass
	Laboratory Control Sample Assessment	Count Date:	Spike I.D.:	Spike Concentration (pCi/mL):	Volume Used (mL):	Alignot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCi/L, g, F):	LCS/LCSD Counting Uncertainty (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery	Status vs Numerical Indicator:	Status vs Recovery:

Sample I.U.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCl/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD;	

he space below. LCS/LCSD in sample IDs if other than

0.346 0.756 0.446

Sample Result Counting Uncertainty (DC/I/L, g, F):
Sample Duplicate Result (pC/I/L, g, F):
Sample Duplicate Result (pC/I/L, g, F):
Are sample and/or duplicate results below MDC?

Duplicate Numerical Performance Indicator:

See Below ##

MS Status vs Recovery: MSD Status vs Recovery:

Matrix Spike/Matrix Spike Duplicate Sample Assessment

Enter Duplicate

30224382005

Duplicate Sample I.D. 30224382005DUP

Sample I.D.:

Duplicate Sample Assessment

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC. 87.57% ie i ¥ Duplicate Status vs Numerical Indicator: Duplicate RPD: Duplicate Status vs RPD:

* Numerical Indicate is acceptible

***Batch must be re-prepped due to unacceptable precision.

Comments:

1 of 1

PACE Analytical Services, Inc QC Sheet Drinking Water

Analyst Must Manually Enter All Fields Highlighted in Yellow. Quality Control Sample Performance Assessment

Face Analytical"

* Numerical Indicator is acceptable ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

*The method blank result is below the reporting limit for this analysis and is acceptable.

***Batch must be re-prepped due to unacceptable precision.

TAR DW QC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AAJ0387

October 27, 2017

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, LLC.

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

October 27, 2017

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
YGWA-47	AAJ0387-01	Ground Water	10/10/17 10:55	10/11/17 17:25
YGWC-44	AAJ0387-02	Ground Water	10/10/17 14:15	10/11/17 17:25
YGWC-45	AAJ0387-03	Ground Water	10/10/17 12:40	10/11/17 17:25
EB-1-10-10-17	AAJ0387-04	Water	10/10/17 15:05	10/11/17 17:25
YGWC-46	AAJ0387-05	Ground Water	10/11/17 11:40	10/11/17 17:25
YGWC-49	AAJ0387-06	Ground Water	10/11/17 13:25	10/11/17 17:25
Dup-1	AAJ0387-07	Ground Water	10/11/17 00:00	10/11/17 17:25

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

October 27, 2017

Case Narrative

The Radium analysis by methods EPA 9315/9320 was performed by Pace-Pittsburgh, 1638 Roseytown Road - Suites 2, 3, 4, Greensburg PA 15601. The Pace-Pittsburgh lab contact is Jacquelyn Collins at 724-850-5612.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0387

Client ID: YGWA-47

Date/Time Sampled: 10/10/2017 10:55:00AM

Matrix: Ground Water

October 27, 2017

Project: CCR Event

Lab Number ID: AAJ0387-01

Date/Time Received: 10/11/2017 5:25:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	175	25	10	mg/L	SM 2540 C		1	10/13/17 13:20	10/13/17 13:20	7100400	JPT
Inorganic Anions											
Chloride	5.9	0.25	0.02	mg/L	EPA 300.0		1	10/15/17 10:10	10/15/17 14:48	7100429	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	10/15/17 10:10	10/15/17 14:48	7100429	RLC
Sulfate	93	10	0.17	mg/L	EPA 300.0		10	10/15/17 10:10	10/20/17 11:46	7100429	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Arsenic	0.0007	0.0050	0.0005	mg/L	EPA 6020B	B-01, J	1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Barium	0.0207	0.0100	0.0004	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Boron	0.0124	0.0400	0.0060	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Calcium	12.1	5.00	2.02	mg/L	EPA 6020B		50	10/18/17 09:05	10/19/17 19:17	7100507	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Cobalt	0.0036	0.0100	0.0003	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	10/18/17 09:05	10/26/17 17:32	7100507	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Lithium	0.0043	0.0500	0.0015	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 19:11	7100507	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/16/17 13:45	10/17/17 13:35	7100415	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0387

Client ID: YGWC-44

Date/Time Sampled: 10/10/2017 2:15:00PM

Matrix: Ground Water

October 27, 2017

Project: CCR Event

Lab Number ID: AAJ0387-02

Date/Time Received: 10/11/2017 5:25:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	311	25	10	mg/L	SM 2540 C		1	10/13/17 13:20	10/13/17 13:20	7100400	JPT
Inorganic Anions											
Chloride	14	0.25	0.02	mg/L	EPA 300.0		1	10/15/17 10:10	10/15/17 15:50	7100429	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	10/15/17 10:10	10/15/17 15:50	7100429	RLC
Sulfate	140	10	0.17	mg/L	EPA 300.0		10	10/15/17 10:10	10/20/17 12:07	7100429	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Arsenic	0.0007	0.0050	0.0005	mg/L	EPA 6020B	B-01, J	1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Barium	0.112	0.0100	0.0004	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Boron	0.603	0.0400	0.0060	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Calcium	27.2	25.0	2.02	mg/L	EPA 6020B		50	10/18/17 09:05	10/19/17 19:40	7100507	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Cobalt	0.0017	0.0100	0.0003	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	10/18/17 09:05	10/26/17 17:38	7100507	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Lithium	0.0123	0.0500	0.0015	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 19:34	7100507	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/16/17 13:45	10/17/17 13:38	7100415	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Lab Number ID: AAJ0387-03

Date/Time Received: 10/11/2017 5:25:00PM

October 27, 2017

Report No.: AAJ0387 Client ID: YGWC-45

Date/Time Sampled: 10/10/2017 12:40:00PM

Matrix: Ground Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	396	25	10	mg/L	SM 2540 C		1	10/13/17 13:20	10/13/17 13:20	7100400	JPT
Inorganic Anions											
Chloride	4.5	0.25	0.02	mg/L	EPA 300.0		1	10/15/17 10:10	10/15/17 16:11	7100429	RLC
Fluoride	0.39	0.30	0.03	mg/L	EPA 300.0		1	10/15/17 10:10	10/15/17 16:11	7100429	RLC
Sulfate	180	10	0.17	mg/L	EPA 300.0		10	10/15/17 10:10	10/20/17 12:28	7100429	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Arsenic	0.0006	0.0050	0.0005	mg/L	EPA 6020B	B-01, J	1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Barium	0.0708	0.0100	0.0004	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Boron	0.319	0.0400	0.0060	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Calcium	52.8	25.0	2.02	mg/L	EPA 6020B		50	10/18/17 09:05	10/19/17 19:51	7100507	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Cobalt	0.0008	0.0100	0.0003	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Molybdenum	0.0015	0.0100	0.0010	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	10/18/17 09:05	10/26/17 17:44	7100507	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Lithium	0.0150	0.0500	0.0015	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 19:46	7100507	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/16/17 13:45	10/17/17 13:40	7100415	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0387

Client ID: EB-1-10-10-17

Date/Time Sampled: 10/10/2017 3:05:00PM

Matrix: Water

October 27, 2017

Project: CCR Event

Lab Number ID: AAJ0387-04

Date/Time Received: 10/11/2017 5:25:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	10/13/17 13:20	10/13/17 13:20	7100400	JPT
Inorganic Anions											
Chloride	0.09	0.25	0.02	mg/L	EPA 300.0	J	1	10/15/17 10:10	10/15/17 16:32	7100429	RLC
Fluoride	0.87	0.30	0.03	mg/L	EPA 300.0		1	10/15/17 10:10	10/15/17 16:32	7100429	RLC
Sulfate	0.12	1.0	0.02	mg/L	EPA 300.0	J	1	10/15/17 10:10	10/15/17 16:32	7100429	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Arsenic	0.0007	0.0050	0.0005	mg/L	EPA 6020B	B-01, J	1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Barium	ND	0.0100	0.0004	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Calcium	0.0605	0.500	0.0404	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	10/18/17 09:05	10/26/17 17:50	7100507	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 19:57	7100507	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/16/17 13:45	10/17/17 13:42	7100415	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0387

Client ID: YGWC-46

Date/Time Sampled: 10/11/2017 11:40:00AM

Matrix: Ground Water

October 27, 2017

Project: CCR Event

Lab Number ID: AAJ0387-05

Date/Time Received: 10/11/2017 5:25:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	835	25	10	mg/L	SM 2540 C		1	10/13/17 13:20	10/13/17 13:20	7100400	JPT
Inorganic Anions											
Chloride	29	0.25	0.02	mg/L	EPA 300.0		1	10/15/17 10:10	10/15/17 18:15	7100429	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	10/15/17 10:10	10/15/17 18:15	7100429	RLC
Sulfate	540	20	0.34	mg/L	EPA 300.0		20	10/15/17 10:10	10/20/17 12:50	7100429	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Arsenic	0.0011	0.0050	0.0005	mg/L	EPA 6020B	B-01, J	1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Barium	0.0288	0.0100	0.0004	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Boron	1.17	0.0400	0.0060	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Calcium	69.0	25.0	2.02	mg/L	EPA 6020B		50	10/18/17 09:05	10/19/17 20:08	7100507	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Cobalt	0.0556	0.0100	0.0003	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Molybdenum	0.0020	0.0100	0.0010	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	10/18/17 09:05	10/26/17 17:55	7100507	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Lithium	0.0099	0.0500	0.0015	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 20:03	7100507	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/16/17 13:45	10/17/17 13:45	7100415	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0387

Client ID: YGWC-49

Date/Time Sampled: 10/11/2017 1:25:00PM

Matrix: Ground Water

October 27, 2017

Project: CCR Event

Lab Number ID: AAJ0387-06

Date/Time Received: 10/11/2017 5:25:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	177	25	10	mg/L	SM 2540 C		1	10/13/17 13:20	10/13/17 13:20	7100400	JPT
Inorganic Anions											
Chloride	5.8	0.25	0.02	mg/L	EPA 300.0		1	10/15/17 10:10	10/15/17 18:36	7100429	RLC
Fluoride	0.14	0.30	0.03	mg/L	EPA 300.0	J	1	10/15/17 10:10	10/15/17 18:36	7100429	RLC
Sulfate	86	10	0.17	mg/L	EPA 300.0		10	10/15/17 10:10	10/20/17 13:11	7100429	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Arsenic	0.0006	0.0050	0.0005	mg/L	EPA 6020B	B-01, J	1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Barium	0.0780	0.0100	0.0004	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Beryllium	0.0001	0.0030	0.00009	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Calcium	12.4	5.00	2.02	mg/L	EPA 6020B		50	10/18/17 09:05	10/19/17 20:20	7100507	CSW
Chromium	0.0014	0.0100	0.0005	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Cobalt	0.0006	0.0100	0.0003	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Selenium	0.0089	0.0100	0.0018	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/26/17 18:18	7100507	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Lithium	0.0036	0.0500	0.0015	mg/L	EPA 6020B	J	1	10/18/17 09:05	10/19/17 20:14	7100507	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/16/17 13:45	10/17/17 13:47	7100415	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Lab Number ID: AAJ0387-07

Date/Time Received: 10/11/2017 5:25:00PM

October 27, 2017

Report No.: AAJ0387 Client ID: Dup-1

Date/Time Sampled: 10/11/2017 12:00:00AM

Matrix: Ground Water

29 RLC 29 RLC 29 RLC
29 RLC 29 RLC
29 RLC
29 RLC
00 DIC
.9 KLC
7 CSW
15 MTC
050 050 050 050

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

October 27, 2017

Report No.: AAJ0387

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100400 - SM 2540 C											
Blank (7100400-BLK1)						Prepar	ed & Analy	/zed: 10/1	3/17		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (7100400-BS1)						Prepar	ed & Analy	/zed: 10/1	3/17		
Total Dissolved Solids	368	25	10	mg/L	400.00		92	84-108			
Duplicate (7100400-DUP1)		Sou	ırce: AAJ03	87-04		Prepar	ed & Analy	/zed: 10/1	3/17		
Total Dissolved Solids	ND	25	10	mg/L		ND				10	
Duplicate (7100400-DUP2)		Sou	ırce: AAJ03	89-01		Prepar	ed & Analy	/zed: 10/1	3/17		
Total Dissolved Solids	225	25	10	mg/L		204	•		10	10	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0387

October 27, 2017

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100429 - EPA 300.0											
Blank (7100429-BLK1)						Prepare	ed & Analy	yzed: 10/15	5/17		
Chloride	ND	0.25	0.02	mg/L							
Fluoride	ND	0.30	0.03	mg/L							
Sulfate	ND	1.0	0.02	mg/L							
LCS (7100429-BS1)						Prepare	ed & Analy	yzed: 10/15	5/17		
Chloride	10.9	0.25	0.02	mg/L	10.020		108	90-110			
Fluoride	9.65	0.30	0.03	mg/L	10.020		96	90-110			
Sulfate	10.6	1.0	0.02	mg/L	10.050		105	90-110			
Matrix Spike (7100429-MS1)		Sou	ırce: AAJ03	87-01		Prepare	ed & Analy	yzed: 10/15	5/17		
Chloride	15.7	0.25	0.02	mg/L	10.020	5.87	99	90-110			
Fluoride	9.92	0.30	0.03	mg/L	10.020	ND	99	90-110			
Sulfate	91.9	1.0	0.02	mg/L	10.050	92.1	NR	90-110			QM-02
Matrix Spike (7100429-MS2)		Sou	ırce: AAJ03	87-06		Prepare	ed & Analy	yzed: 10/15	5/17		
Chloride	15.2	0.25	0.02	mg/L	10.020	5.81	94	90-110			
Fluoride	9.93	0.30	0.03	mg/L	10.020	0.14	98	90-110			
Sulfate	86.2	1.0	0.02	mg/L	10.050	84.8	14	90-110			QM-02
Matrix Spike Dup (7100429-MSD1)		Source: AAJ0387-01				Prepare	ed & Analy	yzed: 10/15	5/17		
Chloride	15.7	0.25	0.02	mg/L	10.020	5.87	98	90-110	0.08	15	
Fluoride	9.99	0.30	0.03	mg/L	10.020	ND	100	90-110	0.7	15	
Sulfate	92.0	1.0	0.02	mg/L	10.050	92.1	NR	90-110	0.04	15	QM-02

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0387

October 27, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100415 - EPA 7470A											
Blank (7100415-BLK1)						Prepare	d: 10/16/	17 Analyze	ed: 10/17/1	7	
Mercury	ND	0.00050	0.000036	mg/L							
LCS (7100415-BS1)						Prepare	d: 10/16/	17 Analyze	ed: 10/17/1	7	
Mercury	0.00236	0.00050	0.000036	mg/L	2.5000E-3		94	80-120			
Matrix Spike (7100415-MS1)		Soi	urce: AAJ038	7-01		Prepare	d: 10/16/	17 Analyze	ed: 10/17/1	7	
Mercury	0.00238	0.00050	0.000036	mg/L	2.5000E-3	ND	95	75-125		-	
Matrix Spike Dup (7100415-MSD1)		Soi	urce: AAJ038	7-01		Prepare	d: 10/16/	17 Analyze	ed: 10/17/1	7	
Mercury	0.00233	0.00050	0.000036	mg/L	2.5000E-3	ND	93	75-125	2	20	
Post Spike (7100415-PS1)		So	urce: AAJ038	7-01		Prenare	d: 10/16/	17 Analyze	ad: 10/17/1	7	
Mercury	1.69		u. 00. 7 ti 1000	ug/L	1.6667	-0.00382	101	80-120	5d. 10/11/	,	
D / =400=0=											
Batch 7100507 - EPA 3005A											
Blank (7100507-BLK1)						Prepare	d: 10/18/	17 Analyze	ed: 10/19/1	7	
Antimony	ND	0.0030	0.0006	mg/L							
Arsenic	0.0006	0.0050	0.0005	mg/L							J
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00009	mg/L							
Boron	ND	0.0400	0.0060	mg/L							
Cadmium	ND	0.0010	0.0001	mg/L							
Calcium	ND	0.500	0.0404	mg/L							
Chromium	ND	0.0100	0.0005	mg/L							
Cobalt	ND	0.0100	0.0003	mg/L							
Copper	ND	0.0250	0.0003	mg/L							
Lead	ND	0.0050	0.00007	mg/L							
Molybdenum	ND	0.0100	0.0010	mg/L							
Nickel	ND	0.0100	0.0005	mg/L							
Selenium	ND	0.0100	0.0018	mg/L							
Silver	ND	0.0100	0.0002	mg/L							
Thallium	ND	0.0010	0.00005	mg/L							
Vanadium	0.0021	0.0100	0.0012	mg/L							J
Zinc	ND	0.0100	0.0012								J
	ND	0.0500	0.0012	mg/L							
Lithium	שוו	0.0000	0.0015	mg/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0387

October 27, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100507 - EPA 3005A											
LCS (7100507-BS1)						Prepare	ed: 10/18/	17 Analyz	ed: 10/19/	17	
Antimony	0.102	0.0030	0.0006	mg/L	0.10000		102	80-120			
Arsenic	0.0967	0.0050	0.0005	mg/L	0.10000		97	80-120			
Barium	0.0981	0.0100	0.0004	mg/L	0.10000		98	80-120			
Beryllium	0.107	0.0030	0.00009	mg/L	0.10000		107	80-120			
Cadmium	0.100	0.0010	0.0001	mg/L	0.10000		100	80-120			
Chromium	0.101	0.0100	0.0005	mg/L	0.10000		101	80-120			
Cobalt	0.0988	0.0100	0.0003	mg/L	0.10000		99	80-120			
Copper	0.0991	0.0250	0.0003	mg/L	0.10000		99	80-120			
Lead	0.103	0.0050	0.00007	mg/L	0.10000		103	80-120			
Nickel	0.0996	0.0100	0.0005	mg/L	0.10000		100	80-120			
Selenium	0.103	0.0100	0.0018	mg/L	0.10000		103	80-120			
Silver	0.100	0.0100	0.0002	mg/L	0.10000		100	80-120			
Thallium	0.104	0.0010	0.00005	mg/L	0.10000		104	80-120			
Vanadium	0.101	0.0100	0.0012	mg/L	0.10000		101	80-120			
Zinc	0.101	0.0100	0.0012	mg/L	0.10000		101	80-120			
Lithium	0.102	0.0500	0.0015	mg/L	0.10000		102	80-120			
Matrix Spike (7100507-MS1)		Sou	urce: AAJ038	37-02		Prepare	ed: 10/18/	17 Analyz	ed: 10/19/	17	
Antimony	0.101	0.0030	0.0006	mg/L	0.10000	ND	101	75-125			
Arsenic	0.101	0.0050	0.0005	mg/L	0.10000	0.0007	100	75-125			
Barium	0.216	0.0100	0.0004	mg/L	0.10000	0.112	104	75-125			
Beryllium	0.0954	0.0030	0.00009	mg/L	0.10000	ND	95	75-125			
Cadmium	0.0974	0.0010	0.0001	mg/L	0.10000	ND	97	75-125			
Chromium	0.101	0.0100	0.0005	mg/L	0.10000	ND	101	75-125			
Cobalt	0.0987	0.0100	0.0003	mg/L	0.10000	0.0017	97	75-125			
Copper	0.0959	0.0250	0.0003	mg/L	0.10000	ND	96	75-125			
Lead	0.101	0.0050	0.00007	mg/L	0.10000	ND	101	75-125			
Nickel	0.0970	0.0100	0.0005	mg/L	0.10000	0.0013	96	75-125			
Selenium	0.106	0.0100	0.0018	mg/L	0.10000	ND	106	75-125			
Silver	0.0974	0.0100	0.0002	mg/L	0.10000	ND	97	75-125			
Thallium	0.103	0.0010	0.00005	mg/L	0.10000	ND	103	75-125			
Vanadium	0.101	0.0100	0.0012	mg/L	0.10000	0.0018	99	75-125			
Zinc	0.0996	0.0100	0.0012	mg/L	0.10000	ND	100	75-125			
Lithium	0.108	0.0500	0.0015	mg/L	0.10000	0.0123	96	75-125			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0387

October 27, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100507 - EPA 3005A											
Matrix Spike Dup (7100507-MSD1)		Sou	ırce: AAJ038	37-02		Prepared: 10/18/17 Analyzed: 10/19/17					
Antimony	0.105	0.0030	0.0006	mg/L	0.10000	ND	105	75-125	4	20	
Arsenic	0.100	0.0050	0.0005	mg/L	0.10000	0.0007	99	75-125	0.6	20	
Barium	0.214	0.0100	0.0004	mg/L	0.10000	0.112	102	75-125	1	20	
Beryllium	0.0988	0.0030	0.00009	mg/L	0.10000	ND	99	75-125	4	20	
Cadmium	0.102	0.0010	0.0001	mg/L	0.10000	ND	102	75-125	4	20	
Chromium	0.101	0.0100	0.0005	mg/L	0.10000	ND	101	75-125	0.2	20	
Cobalt	0.101	0.0100	0.0003	mg/L	0.10000	0.0017	99	75-125	2	20	
Copper	0.0984	0.0250	0.0003	mg/L	0.10000	ND	98	75-125	3	20	
Lead	0.102	0.0050	0.00007	mg/L	0.10000	ND	102	75-125	0.3	20	
Nickel	0.102	0.0100	0.0005	mg/L	0.10000	0.0013	100	75-125	5	20	
Selenium	0.105	0.0100	0.0018	mg/L	0.10000	ND	105	75-125	0.9	20	
Silver	0.0991	0.0100	0.0002	mg/L	0.10000	ND	99	75-125	2	20	
Thallium	0.103	0.0010	0.00005	mg/L	0.10000	ND	103	75-125	0.2	20	
Vanadium	0.101	0.0100	0.0012	mg/L	0.10000	0.0018	99	75-125	0.0007	20	
Zinc	0.102	0.0100	0.0012	mg/L	0.10000	ND	102	75-125	2	20	
Lithium	0.107	0.0500	0.0015	mg/L	0.10000	0.0123	95	75-125	0.4	20	
Post Spike (7100507-PS1)		Sou	ırce: AAJ038	37-02		Prepare	ed: 10/18/	17 Analyz	ed: 10/19/	17	
Antimony	99.2			ug/L	100.00	0.0789	99	80-120			
Arsenic	99.5			ug/L	100.00	0.670	99	80-120			
Barium	217			ug/L	100.00	112	105	80-120			
Beryllium	100			ug/L	100.00	0.0097	100	80-120			
Cadmium	99.9			ug/L	100.00	0.0338	100	80-120			
Chromium	101			ug/L	100.00	0.101	100	80-120			
Cobalt	97.4			ug/L	100.00	1.70	96	80-120			
Copper	98.1			ug/L	100.00	0.0651	98	80-120			
Lead	101			ug/L	100.00	0.0115	101	80-120			
Nickel	98.6			ug/L	100.00	1.30	97	80-120			
Selenium	107			ug/L	100.00	-0.0424	107	80-120			
Silver	103			ug/L	100.00	-0.0009	103	80-120			
Thallium	104			ug/L	100.00	0.0058	104	80-120			
Vanadium	107			ug/L	100.00	1.77	105	80-120			
Zinc	99.8			ug/L	100.00	0.773	99	80-120			
Lithium	106			ug/L	100.00	12.3	94	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham October 27, 2017

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).
 - **B-01** Analyte was detected in the associated method blank at an estimated level equal to or greater than the MDL. Sample values reported as greater than the MDL and less than 10x the method blank value are reported as estimated values.

Note: Unless otherwise noted, all results are reported on an as received basis.

Pace Analytical " **CHAIN OF CUSTODY RECORD**

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

P

PAGE:

5 - NaOH/ZnAc, s6°C 6 - Na₂S₂O₃, s6°C 7 - s6°C not frazen REMARKS/ADDITIONAL INFORMATION 4 - NaOH, S6°C 2 - H₂SO₄, ≤6°C P- PRODUC 1 - HCI, ≤6°C SL - SLUDGE **PRESERVATION** L- LIQUID sp. soup 3 - HNO3 A - AIR *MATRIX CODES **DRINKING WATER** SW - SURFACE WATER GW - GROUNDWATER ST - STORM WATER **NW - WASTEWATER** A - AMBER GLASS G - CLEAR GLASS Entered into LIMS: CONTAINER TYPE V - VOA VIAL S - STERILE P - PLASTIC W- WATER O - OTHER Fracking # **JAB**# ort 4 X 1725 Q N D M M M 4 B _ 0 FS DATE/TIME:

/ 0 - 1 (- |)

DATE/TIME: OTHER CUENT Cooler ID: ANALYSIS REQUESTED COURIER a. 4 7 **_** (OZE6/9126 978-MS) Ŋ Radium 226 & 228 USPS (EPA 300.0 & SM 2540C) ۵. SAMPLE SHIPPED VIA:
UPS FED-EX Cuspex Seal:
Anned Broken Not Pr CI, F, SO, & TDS RELINQUISHED BY: VI & III . 4pp. III & IV (074지0<u>5</u>08 A역크) RELINQUISHED BY: ۵ CONTAINER TYPE: PRESERVATION: 7 7 J J 7 7 7 EB-1-10-10-17 1630 laburch@southemco.com SAMPLE IDENTIFICATION 46 WC- 49 **たち-このの/ グロック・コグ** 760C-45 Heath McCorkle 76 WA-47 Du P-Maria Padilla OATE/TIME: Jahrane 1 DATE/TIME: Plant Yates Phase II Facilities Phase 2 CCR # Od CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER ပ္ပ Y ~ < @ Z !! 0 25 4 MATRIX CODE* REQUESTED COMPLETION DATE: 3 5 GW 3 3 241 Ralph McGill Blvd SE B10185 3 Lauren Petty SAMPLED BY AND TITLE: Collection TIME 1325 1505 12元 12元 PROJECT NAME/STATE 1418 5 1055 tanta, GA 30308 10-10-4 RECEIVED BY 404-508-7239 REPORT TO: CLIENT NAME Georgia Power C1-01-01 (1-0)-0 C1-11-01 10-11-17 0-10-17 PROJECT #: 11-11-01 Collection DATE Page 17 of 19

Plant Yates COC Phase II

Not Present

of Coolers

The state of the s	<u> </u>	ondition			
Face Analytical Client Name	e: <u>6</u> €	AP	ower_	Project #	AAJO38
-,	To		□ Bace Other	10310	
Courier: Fed Ex UPS USPS Clie	ent 🗀 C	primerciai		FIGH	ve pate a substant
Tracking #: Custody Seal on Cooler/Box Present:yes	s 🔲 n	o Seals	intact: yes	no Projection	Vaine 2 GA 60 CA 10
Packing Material: Bubble Wrap Bubbl	le Bags _	None [Other		
Thermometer Used / R- 4		f Ice: Wet	Blue None		cooling process has begun
Cooler Temperature 4.3			is Frozen: Yes No	Date and Init	als of person examining
Temp should be above freezing to 6°C			Comments:		
Chain of Custody Present:	→⊟Y6s	□No □N/A	1.		
Chain of Custody Filled Out:	_ _ ☐Yes	□No □N/A	2.		
Chain of Custody Relinquished:	→ETTES?	□No □N/A	3.		
Sampler Name & Signature on COC:	_⊒res	□No □N/A	4.		
Samples Arrived within Hold Time:	-⊟Yes	□No □N/A	5.		
Short Hold Time Analysis (<72hr):	□Yes	ENTO ON/A	6.		
Rush Turn Around Time Requested:	□Yes	DHO DNA	7.		
Sufficient Volume:	− 876§	□No □N/A	8		
Correct Containers Used:	√ ∑ Yes	□No □N/A	9.	ļ	
-Pace Containers Used:	Yes	□No □N/A			·
Containers Intact:	- ☐Yes	□No □N/A	10.	·	
Filtered volume received for Dissolved tests	□Yes	□No →□N/A	11.		
Sample Labels match COC:	→ TYes	□No □N/A	12.		
-Includes date/time/ID/Analysis Matrix:	GL	W		•.	
All containers needing preservation have been checked.	∠ETYes		13.		
All containers needing preservation are found to be in		□No □N/A			
compliance with EPA recommendation.	≠ ⊆l †es	UNO LINA	1.32.4	l at # at added	
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes	_HN6	Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	Yes	□Nº ÆJN/A	14.		
Headspace in VOA Vials (>6mm):	□Yes	□No ĐNÃ	15.		
Trip Blank Present:	☐Yes	□No ĐNA	16.		
Trip Blank Custody Seals Present	□Yes	□No □N/A			
Pace Trip Blank Lot # (if purchased):			<u> </u>		
Client Notification/ Resolution:				Field Data Requi	red? Y / N
Person Contacted:		Date/	Time:		
Comments/ Resolution:					
			•		
Project Manager Review:				Date:	
					anth Complian DELIND
Note: Whenever there is a discrepancy affecting North Certification Office (i.e. out of hold, incorrect preservations)	n Carolina o itive, out of	ompliance sar temp, incorrec	mpies, a copy of this fo t containers)	inn will be sent to the N	DIGI CARDINIA DEHNK

F-ALLCO03rev.3 11Sep

Page 18 of 19

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 10/13/2017 3:37:27PM

Attn: Mr. Joju Abraham

Client: Georgia Power

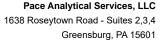
Project: CCR Event

Date Received: 10/11/17 17:25

Work Order: AAJ0387

Logged In By: Mohammad M. Rahman

OBSERVATIONS


#Samples: 7 **#Containers:** 28

Minimum Temp(C): 4.3 Maximum Temp(C): 4.3 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

YES
YES

Comments:

(724)850-5600

October 26, 2017

Mr. Joju Abraham Georgia Power 2480 Maner Road Atlanta, GA 30339

RE: Project: AAJ0387 Plant Yates

Pace Project No.: 30232908

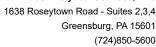
Dear Mr. Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on October 13, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins


Sugnely Sellins

jacquelyn.collins@pacelabs.com

(724)850-5612 Project Manager

Enclosures

CERTIFICATIONS

Project: AAJ0387 Plant Yates

Pace Project No.: 30232908

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 10888

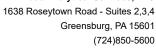
North Carolina Certification #: 42706

North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification


Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5

Utah/TNI Certification #: PA014572015-5
USDA Soil Permit #: P330-14-00213
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C Wisconsin Certification

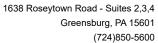
Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: AAJ0387 Plant Yates

Pace Project No.: 30232908

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30232908001	YGWA-47	Water	10/10/17 10:55	10/13/17 09:50
30232908002	YGWC-44	Water	10/10/17 14:15	10/13/17 09:50
30232908003	YGWC-45	Water	10/10/17 12:40	10/13/17 09:50
30232908004	EB-1-10-10-17	Water	10/10/17 15:05	10/13/17 09:50
30232908005	YGWC-46	Water	10/11/17 11:40	10/13/17 09:50
30232908006	YGWC-49	Water	10/11/17 13:25	10/13/17 09:50
30232908007	Dup-1	Water	10/11/17 00:00	10/13/17 09:50



SAMPLE ANALYTE COUNT

Project: AAJ0387 Plant Yates

Pace Project No.: 30232908

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30232908001	YGWA-47	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	JAL	1
30232908002	YGWC-44	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	JAL	1
30232908003	YGWC-45	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	JAL	1
30232908004	EB-1-10-10-17	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	JAL	1
30232908005	YGWC-46	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	JAL	1
30232908006	YGWC-49	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	JAL	1
30232908007	Dup-1	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	JAL	1

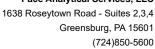
ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAJ0387 Plant Yates

Pace Project No.: 30232908

Sample: YGWA-47 PWS:	Lab ID: 3023290 Site ID:	8001 Collected: 10/10/17 10:55 Sample Type:	Received:	10/13/17 09:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.350 ± 0.226 (0.315) C:89% T:NA	pCi/L	10/19/17 08:27	7 13982-63-3	
Radium-228	EPA 9320	0.299 ± 0.335 (0.696) C:72% T:98%	pCi/L	10/20/17 12:21	15262-20-1	
Total Radium	Total Radium Calculation	0.649 ± 0.561 (1.01)	pCi/L	10/23/17 12:49	7440-14-4	
Sample: YGWC-44	Lab ID: 3023290		Received:	10/13/17 09:50	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.676 ± 0.304 (0.311) C:89% T:NA	pCi/L	10/19/17 08:27	13982-63-3	
Radium-228	EPA 9320	0.751 ± 0.451 (0.832)	pCi/L	10/20/17 12:22	2 15262-20-1	
Total Radium	Total Radium Calculation	C:74% T:83% 1.43 ± 0.755 (1.14)	pCi/L	10/23/17 12:49	7440-14-4	
Sample: YGWC-45 PWS:	Lab ID: 3023290 Site ID:	8003 Collected: 10/10/17 12:40 Sample Type:	Received:	10/13/17 09:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	1.03 ± 0.390 (0.350)	pCi/L	10/19/17 08:27	13982-63-3	
Radium-228	EPA 9320	C:86% T:NA 0.443 ± 0.385 (0.772)	pCi/L	10/20/17 12:22	2 15262-20-1	
Total Radium	Total Radium Calculation	C:66% T:97% 1.47 ± 0.775 (1.12)	pCi/L	10/23/17 12:49	7440-14-4	
Sample: EB-1-10-17 PWS:	Lab ID: 3023290 Site ID:	8004 Collected: 10/10/17 15:05 Sample Type:	Received:	10/13/17 09:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.142 ± 0.211 (0.458)	pCi/L	10/19/17 08:27	13982-63-3	
Radium-228	EPA 9320	C:78% T:NA 1.44 ± 0.609 (1.04)	pCi/L	10/20/17 12:22	15262-20-1	
Total Radium	Total Radium Calculation	C:74% T:84% 1.58 ± 0.820 (1.50)	pCi/L	10/23/17 12:49	7440-14-4	
Sample: YGWC-46 PWS:	Lab ID: 3023290 Site ID:	8005 Collected: 10/11/17 11:40 Sample Type:	Received:	10/13/17 09:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.645 ± 0.314 (0.377)	pCi/L	10/19/17 08:27		
Radium-228	EPA 9320	C:83% T:NA 0.211 ± 0.393 (0.852) C:68% T:89%	pCi/L	10/20/17 12:22		

REPORT OF LABORATORY ANALYSIS


This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAJ0387 Plant Yates

Sample: YGWC-46	Lab ID: 302329	08005 Collected: 10/11/17 11:40	Received:	10/13/17 09:50	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Total Radium	Total Radium Calculation	0.856 ± 0.707 (1.23)	pCi/L	10/23/17 12:49	9 7440-14-4	
Sample: YGWC-49 PWS:	Lab ID: 302329 Site ID:	08006 Collected: 10/11/17 13:25 Sample Type:	Received:	10/13/17 09:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.801 ± 0.352 (0.419) C:89% T:NA	pCi/L	10/19/17 08:27	7 13982-63-3	
Radium-228	EPA 9320	0.605 ± 0.404 (0.764) C:71% T:86%	pCi/L	10/20/17 12:22	2 15262-20-1	
Total Radium	Total Radium Calculation	1.41 ± 0.756 (1.18)	pCi/L	10/23/17 12:49	9 7440-14-4	
Sample: Dup-1 PWS:	Lab ID: 302329 Site ID:	08007 Collected: 10/11/17 00:00 Sample Type:	Received:	10/13/17 09:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.500 ± 0.293 (0.426) C:83% T:NA	pCi/L	10/19/17 08:27	7 13982-63-3	
Radium-228	EPA 9320	0.315 ± 0.453 (0.964) C:65% T:77%	pCi/L	10/20/17 12:22	2 15262-20-1	
Total Radium	Total Radium Calculation	0.815 ± 0.746 (1.39)	pCi/L	10/23/17 11:28	3 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: AAJ0387 Plant Yates

Pace Project No.: 30232908

QC Batch: 275694 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30232908001, 30232908002, 30232908003, 30232908004, 30232908005, 30232908006, 30232908007

METHOD BLANK: 1355356 Matrix: Water

Associated Lab Samples: 30232908001, 30232908002, 30232908003, 30232908004, 30232908005, 30232908006, 30232908007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.573 ± 0.385 (0.731) C:79% T:78%
 pCi/L
 10/20/17 12:21

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

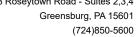
Project: AAJ0387 Plant Yates

Pace Project No.: 30232908

QC Batch: 275693 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30232908001, 30232908002, 30232908003, 30232908004, 30232908005, 30232908006, 30232908007


METHOD BLANK: 1355355 Matrix: Water

Associated Lab Samples: 30232908001, 30232908002, 30232908003, 30232908004, 30232908005, 30232908006, 30232908007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.249 ± 0.195 (0.302) C:89% T:NA
 pCi/L
 10/19/17 08:27

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AAJ0387 Plant Yates

Pace Project No.: 30232908

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 10/26/2017 11:21 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Pace Analytical *

Results Requested By: 11/6/2017 WO#:30232908 Requested Analysis 226, 228, Total Owner Received Date: Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Plant Yates Pace - Pittsburgh Subcontract To: Stes. 2,3,4 Workorder Name: Peachtree Corners, GA 30092 110 Technology Parkway Workorder: AAJ0387 Pace Analytical Atlanta Phone (770)-734-4200 Betsy McDaniel

					Pre	Preserved Containers	100			
ļ	Cample ID				103		nibi			
ב ב	വ ചിവി	ıype	collect Date/Jilme Lab ID		Matrix <u>£</u>		ЗЯ			LAB USE ONLY
- -	YGWA-47	Ð	10/10/2017 10:55	AAJ0387-01	GW 2		×			[[
7	YGWC-44	G	10/10/2017 14:15	AAJ0387-02	GW 2		×			3
3	YGWC-45	9	10/10/2017 12:40	AAJ0387-03	GW 2		×			
4	EB-1-10-10-17	9	10/10/2017 15:05	AAJ0387-04	W 2		×			
Ŋ	YGWC-46	9	10/11/2017 11:40	AAJ0387-05	GW 2		×			3
9	YGWC-49	G	10/11/2017 13:25	AAJ0387-06	GW 2		×			
_	Dup-1	G	10/11/2017 0:00	AAJ0387-07	GW 2		×			
∞										
<u></u>										
10										
Tian	ransfers Released By		Date//Iim	Time Received By	33		Date/Time	103	Comments	
	Z. K	RAHMAN	K1/01 NY/	217	No State of the St	\ \ \	PIE-11 088			
7			-	-) !		
m						-				

	Received on Ice Y or W Sample Intact Y or N	name of the sampling site, sampler's name and signature may not be provided on this COC	laboratory.
	C Custody Seal Y of M	cation/r	e as is since this information is available in the owner laboratory.
7 6 V	Cooler Temperature on Receipt /V//- °C	***In order to maintain client confidentiality, lo	This chain of custody is considered complete as is since thi

Friday, June 17, 2016 11:01:34 AM

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

. Lette					Upon Receipt		306060	!
Pace Analytical	Client Name	6	/ De	P	ower	P	roject# AAJ03	<i>ڳ</i> †
	Cheff Namo			-automorphic CO	CONDESSES TO THE PROPERTY OF T			731
Courier: Fed Ex UPS							OBICHELE THE PROPERTY OF THE P	ON SERVICE STREET
Custody Seal on Cooler/Box	Present: Dyes	□ n	þ	Seals	intact: yes		UO FRANCISCO DE LA COMPANSION DE LA COMP	
Packing Material: 🔲 Bubble	Wrap Taubble	Bags _	Z N	one_[Other		and provident to the state of t	
Thermometer Used	18-4	Туре о	f Ice:	Wei	Blue None		Samples on ice, cooling process has begun	+
Thermometer Used Cooler Temperature	4,3	Biolog			ls Frozen: Yes No	.	Date and Initials of parson examining contents:	
Temp should be above freezing to	8°C				Comments:			
Chain of Custody Present:		====================================	□No	On/a	1.			-
Chain of Custody Filled Out:		Y68		□n/a	2.			
Chain of Custody Relinquished	d:	-Emi	□No	□N⁄A	3.			+
Sampler Name & Signature or		"⊡r68	ONo	□n/a	4.			╢
Samples Arrived within Hold T		-BY65		****				+
Short Hold Time Analysis (<			-	□N/A				H
Rush Turn Around Time Rec	quested:	□Yes	Ω 1 485°	□N⁄A	7.			H
Sufficient Volume:		-876i	□No	□N⁄A	8.			+
Correct Containers Used:		4DY03	□N□	□N⁄A	9.			
-Pace Containers Used:		* - TY65	□No	□wa			•	\forall
Containers Intact:		~ <u>T</u> Y93	□No	□N⁄A	10.			╢
Filtered volume received for D	issolved tests	_ □Yes	□No •	-EINA	11			+
Sample Labels match COC:		-EIYes		□N/A	12.			
-Includes date/time/ID/Ana	ılysis Matrix:	61	W.	~			*.	+
All containers needing preservation	have been checked.	AET Pos	□No	□N/A	13.		·	
All containers needing preservation	on are found to be in	₽ Yes	□No	□N/A				
compliance with EPA recommend	lation.				Initial when		Lot # of added	
exceptions: VOA, coliform, TOC, O&	G, WI-DRO (water)	□Yes			completed		preservative	Sections.
Samples checked for dechlori	ination:	∐Yes	□No	ØJN/A	14.		The state of the s	뉘
Headspace in VOA Vlais (>6	mm):	∐Yes	□No	-EINIA	15.	<u>, , , , , , , , , , , , , , , , , , , </u>	The second secon	\dashv
Trip Blank Present:		□Yes	□No	ZINA	16.	Ì	·	
Trip Blank Custody Seals Pre	sent	□Yes	□No	□N/A				
Pace Trip Blank Lot # (if pure	hased):			-	,			<u></u>
Client Notification/ Resoluti	ion:				The second distribution of the second		Field Data Required? Y / N	
Person Contacted:				_Date/	Time:			
Comments/ Resolution:								+
							The state of the s	
								-
28400000	**************************************		ļ					1
					prisoner Control Contr	<i></i>		T
	* •							T
Project Manager Review:						المرسوس وروم	Date:	
1	renancy affecting North	Carolina (omplia emp.	ance sai	mples, a copy of this feat containers)	orm w	ill be sent to the North Carolina DEHNR	
)	•						F-ALLC003rev.3 11September20	06

Pittsburgh Lab Sample Condition Upon Receipt Pace Analytical Pace GA Project #30 2 3 2 9 0 8 Client Name: Courier: M Fed Ex ☐ UPS ☐ USPS ☐ Client ☐ Commercial ☐ Pace Other LIMS Login > Custody Seal on Cooler/Box Present: ves Deno Type of Ice: Wet Blue None Thermometer Used °C Correction Factor. °C Final Temp: Observed Temp Cooler Temperature Temp should be above freezing to 6°C Date and Initials of person examining contents: N/A Comments: Yes No Chain of Custody Present: 1. Chain of Custody Filled Out: 3, Chain of Custody Relinquished: 4. Sampler Name & Signature on COC: 5. Sample Labels match COC: -Includes date/time/iD Matrix: Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): 8. Rush Turn Around Time Requested: 9. Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used: Containers Intact: 11. Orthophosphate field filtered 12. 13. Hex Cr Aqueous Compliance/NPDES sample field filtered 14. Organic Samples checked for dechlorination: 15. Filtered volume received for Dissolved tests All containers have been checked for preservation. 16. All containers needing preservation are found to be in compliance with EPA recommendation. Date/time of Initial when exceptions: VOA, coliform, TOC, O&G, Phenolics completed preservation Lot # of added preservative Headspace in VOA Vials (>6mm): 17. 18, Trip Blank Present: Trip Blank Custody Seals Present Initial when Rad Aqueous Samples Screened > 0.5 mrem/hr Date: completed: Client Notification/ Resolution: Contacted By: Date/Time: Person Contacted: Comments/ Resolution:

☐ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

. Face Analytical

Quality Control Sample Performance Assessment

10/18/2017 Ra-228 38279 DW Χ Test: Analyst: Worklist: Matrix: Date:

1355356

MB Sample ID MB concentration: M/B Counting Uncertainty:

Method Blank Assessment

0.573 0.371 0.731 3.03 N/A Pass

MB MDC:

MB Numerical Performance Indicator:
MB Status vs Numerical Indicator:
MB Status vs. MDC;

Laboratory Control Sample Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD Decay Corrected Spike Concentration (pCirrL):
Spike Volume Used in MS (mL):
Spike Volume Used in MSD (mL): Sample MS I.D. Sample Collection Date: Sample I.D. Sample MSD I.D. Spike I.D.: Sample Matrix Spike Control Assessment LCSD3

38279		Spike uncertainty (calculated): Sample Result Counling Uncertainty (pclit_g, F): Sample Matrix Spike Pessult Matrix Spike Result Counting Uncertainty (pclit_g, F): Sample Matrix Spike Duplicate Result MS Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery:
-------	--	---

LCSSD (Y or N)?
LCS38279
10/20/2017
17-033
23.228
0.20
0.815
5.699
0.410
5.705

Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F):

Uncertainty (Calculated):

Result (pCI/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F):

Numerical Performance Indicator:

Percent Recovery:

Status vs Numerical Indicator:

Status vs Recovery

Duplicate Sample Assessment

Spike Concentration (pCi/mL); Volume Used (mL):

Count Date: Spike I.D.:

	ó	ď			نئ						. 1.
natux Spikeriliatrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result	Matrix Spike Result Counting Uncertainty (pCi/L, a, F):	Sample Matrix Spike Duplicate Result	warm spike Duplicate Result Counting Uncertainty (pCi/L, g, F);	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD;

other than LCS/LCSD in Enter Duplicate

sample IDs if

30233110002DUP

30233110002

he space below

0.625 0.369 1.022 0.470

Sample i.D.: 302

Duplicate Sample i.D. 302

Sample Result (Colli., g, F):
Sample Result Counting Uncertainty (Colli., g, F):
Sample Duplicate Result (Colli., g, F):
Are sample and/or duplicate results below MDC?

See Below ##

Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator;

-1.302 48.17%

Duplicate RPD:

If Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Fail*** OC

Duplicate Status vs RPD:

Comments:

***Batch must be re-prepped due to unacceptable precision.

Face Analytical"

Quality Control Sample Performance Assessment

JC2 10/18/2017 38278 DW Ra-226 Analyst: Date: Test: Worklist: Matrix:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

1355355 0.249 0.191 0.302 2.55 N/A Pass M/B Counting Uncertainty: MB Sample 1D MB concentration; MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator, MB Status vs. MDC:

Method Blank Assessment

Sample Matrix Spike Control Assessment	Sample Collection Date: Sample I.D.	Sample MS I.D. Sample MSD I.D.	Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCl/ml.)	Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):	MS Aliquot (L, q, F);	MS Target Conc.(pCi/l, g, F):	 Spike uncertainty (calculated):	Sample Result:	Sample Result Counting Uncertainty (pCi/L, g, F);	Sample Matrix Spike Result Counting Theory and Matrix Spike Result	Sample Matrix Spike Dublicate Result	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F);	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery;	MSD Percent Recovery:	MS Status vs Numerical Indicator;	MSD Status vs Numerical Indicator;	MS Status vs Recovery;	MSD Status vs Recovery:
(1)							 													1

Lithorittury Control Sample Assessment

Count Date: Soike ID:	LCS38278 10/19/2017 17,030	LCSD38278 10/19/2017	Sample Res
Spike Concentration (pClimL): Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCliL, g, F): Uncertainty (Calculated): Result (pCliL, g, F): Numerical Performance Indicator: Status vs Numerical Indicator: Status vs Numerical Indicator: Status vs Numerical Indicator:	80.189 0.10 0.508 15.794 1.455 13.094 1.218 2.79 82.91% N/A Passs	17-030 80.189 0.10 0.510 15.727 1.449 12.980 1.2.980 1.2.93 -2.83 82.54% NA Pass	Matrix Spike Ress S Matrix Spike Duplicate Ress MS

Enter Duplicate

Sample I.D.:

Duplicate Sample Assessment

Duplicate Sample I.D.

-CS/LCSD in the sample IDs if

LCS38278 CSD38278 13.094 1.218 12.980 1.233 NO

Sample Result Counting Uncertainty (CCif., g, F);
Sample Duplicate Result (pCif., g, F);
Sumple Duplicate Result Counting Uncertainty (pCif., g, F);
Are sample and/or duplicate results below MDC?

Duplicate Numerical Performance Indicator;

space below. other than

IIII Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

0.129 0.87% N/A Pass

Duplicate RPD:

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD:

Comments:

TAR DW QC Printed: 10/26/2017 8:58 AM

April 30, 2018

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates Phase II Pace Project No.: 263585

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on April 04, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Maria Padilla, Georgia Power
Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.

CERTIFICATIONS

Project: Plant Yates Phase II

Pace Project No.: 263585

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812

Texas Certification #: T104704397-08-TX Virginia Certification #: 460204

North Carolina Certification #: 381

South Carolina Certification #: 98011001

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888

North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Asheville Certification IDs

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: Plant Yates Phase II

Pace Project No.: 263585

Lab ID	Sample ID	Matrix	Date Collected	Date Received
263585001	YGWA-47	Water	04/02/18 14:25	04/04/18 16:45
263585002	YGWA-47	Water	04/02/18 14:25	04/04/18 16:45
263585003	YGWC-45	Water	04/03/18 14:05	04/04/18 16:45
263585004	YGWC-45	Water	04/03/18 14:05	04/04/18 16:45
263585005	YGWC-42	Water	04/04/18 11:45	04/04/18 16:45
263585006	YGWC-42	Water	04/04/18 11:45	04/04/18 16:45
263585007	YGWC-43	Water	04/04/18 09:40	04/04/18 16:45
263585008	YGWC-43	Water	04/04/18 09:40	04/04/18 16:45
263585009	YGWC-44	Water	04/04/18 12:05	04/04/18 16:45
263585010	YGWC-44	Water	04/04/18 12:05	04/04/18 16:45
263585011	YGWC-46	Water	04/04/18 15:55	04/04/18 16:45
263585012	YGWC-46	Water	04/04/18 15:55	04/04/18 16:45
263585013	YGWC-49	Water	04/04/18 12:50	04/04/18 16:45
263585014	YGWC-49	Water	04/04/18 12:50	04/04/18 16:45
263585015	EB-6-4-4-18	Water	04/04/18 11:30	04/04/18 16:45
263585016	EB-6-4-4-18	Water	04/04/18 11:30	04/04/18 16:45
263585017	FB-6-4-4-18	Water	04/04/18 12:30	04/04/18 16:45
263585018	FB-6-4-4-18	Water	04/04/18 12:30	04/04/18 16:45
263585019	Dup-6	Water	04/04/18 00:00	04/04/18 16:45
263585020	Dup-6	Water	04/04/18 00:00	04/04/18 16:45

SAMPLE ANALYTE COUNT

Project: Plant Yates Phase II

Pace Project No.: 263585

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
263585001	YGWA-47	EPA 6020B	CSW	14	PASI-GA
		EPA 7470A	AAP	1	PASI-GA
		SM 2540C	MVC	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
263585002	YGWA-47	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
263585003	YGWC-45	EPA 6020B	CSW	14	PASI-GA
		EPA 7470A	AAP	1	PASI-GA
		SM 2540C	NAL	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
263585004	YGWC-45	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
263585005	YGWC-42	EPA 6020B	CSW	14	PASI-GA
		EPA 7470A	AAP	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
263585006	YGWC-42	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
263585007	YGWC-43	EPA 6020B	CSW	14	PASI-GA
		EPA 7470A	AAP	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
263585008	YGWC-43	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
263585009	YGWC-44	EPA 6020B	CSW	14	PASI-GA
		EPA 7470A	AAP	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
263585010	YGWC-44	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
263585011	YGWC-46	EPA 6020B	CSW	14	PASI-GA
		EPA 7470A	AAP	1	PASI-GA

SAMPLE ANALYTE COUNT

Project: Plant Yates Phase II

Pace Project No.: 263585

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
263585012	YGWC-46	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
263585013	YGWC-49	EPA 6020B	CSW	14	PASI-GA
		EPA 7470A	AAP	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
63585014	YGWC-49	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
263585015	EB-6-4-4-18	EPA 6020B	CSW	14	PASI-GA
		EPA 7470A	AAP	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
63585016	EB-6-4-4-18	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
63585017	FB-6-4-4-18	EPA 6020B	CSW	14	PASI-GA
		EPA 7470A	AAP	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	MWB	3	PASI-GA
63585018	FB-6-4-4-18	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
63585019	Dup-6	EPA 6020B	CSW	14	PASI-GA
		EPA 7470A	AAP	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	MWB, RLC	3	PASI-GA
63585020	Dup-6	EPA 9315	LAL	1	PASI-PA
	YGWC-49 EB-6-4-4-18 EB-6-4-4-18 FB-6-4-4-18 Dup-6	EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Sample: YGWA-47	Lab ID:	263585001	Collecte	ed: 04/02/18	3 14:25	Received: 04/	04/18 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/06/18 09:09	04/10/18 16:19	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/06/18 09:09	04/10/18 16:19	7440-38-2	
Barium	0.022	mg/L	0.010	0.00078	1	04/06/18 09:09	04/10/18 16:19	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/06/18 09:09	04/10/18 16:19	7440-41-7	
Boron	0.013J	mg/L	0.040	0.0039	1	04/06/18 09:09	04/10/18 16:19	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/06/18 09:09	04/10/18 16:19	7440-43-9	
Calcium	ND	mg/L	25.0	0.69	50	04/06/18 09:09	04/10/18 16:24	7440-70-2	D3,M6
Chromium	ND	mg/L	0.010	0.0016	1	04/06/18 09:09	04/10/18 16:19	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	04/06/18 09:09	04/10/18 16:19	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/06/18 09:09	04/10/18 16:19	7439-92-1	
Lithium	0.0045J	mg/L	0.050	0.00097	1	04/06/18 09:09	04/10/18 16:19	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	04/06/18 09:09	04/10/18 16:19	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	04/06/18 09:09	04/10/18 16:19	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/06/18 09:09	04/10/18 16:19	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	04/10/18 11:35	04/10/18 15:13	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	192	mg/L	25.0	25.0	1		04/06/18 21:30		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.8	mg/L	0.25	0.024	1		04/11/18 13:10	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/11/18 13:10	16984-48-8	
Sulfate	88.8	mg/L	10.0	0.17	10		04/13/18 13:51	14808-79-8	

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Sample: YGWC-45	Lab ID:	263585003	Collecte	ed: 04/03/18	3 14:05	Received: 04/	04/18 16:45 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/06/18 09:09	04/10/18 17:13	7440-36-0	
Arsenic	0.00061J	mg/L	0.0050	0.00057	1	04/06/18 09:09	04/10/18 17:13	7440-38-2	
Barium	0.068	mg/L	0.010	0.00078	1	04/06/18 09:09	04/10/18 17:13	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/06/18 09:09	04/10/18 17:13	7440-41-7	
Boron	0.35	mg/L	0.040	0.0039	1	04/06/18 09:09	04/10/18 17:13	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/06/18 09:09	04/10/18 17:13	7440-43-9	
Calcium	50.6	mg/L	25.0	0.69	50	04/06/18 09:09	04/10/18 17:19	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	04/06/18 09:09	04/10/18 17:13	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	04/06/18 09:09	04/10/18 17:13	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/06/18 09:09	04/10/18 17:13	7439-92-1	
₋ithium	0.014J	mg/L	0.050	0.00097	1	04/06/18 09:09	04/10/18 17:13	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	04/06/18 09:09	04/10/18 17:13	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	04/06/18 09:09	04/10/18 17:13	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	04/06/18 09:09	04/10/18 17:13	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	04/10/18 11:35	04/10/18 15:15	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	418	mg/L	25.0	25.0	1		04/08/18 16:46		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.6	mg/L	0.25	0.024	1		04/11/18 14:14	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/11/18 14:14	16984-48-8	
Sulfate	183	mg/L	10.0	0.17	10		04/13/18 14:14		

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Sample: YGWC-42	Lab ID:	263585005	Collecte	ed: 04/04/18	3 11:45	Received: 04/	04/18 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/06/18 09:09	04/10/18 17:25	7440-36-0	
Arsenic	0.0023J	mg/L	0.0050	0.00057	1	04/06/18 09:09	04/10/18 17:25	7440-38-2	
Barium	0.041	mg/L	0.010	0.00078	1	04/06/18 09:09	04/10/18 17:25	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/06/18 09:09	04/10/18 17:25	7440-41-7	
Boron	22.7	mg/L	2.0	0.20	50	04/06/18 09:09	04/10/18 17:31	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/06/18 09:09	04/10/18 17:25	7440-43-9	
Calcium	137	mg/L	25.0	0.69	50	04/06/18 09:09	04/10/18 17:31	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	04/06/18 09:09	04/10/18 17:25	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	04/06/18 09:09	04/10/18 17:25	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/06/18 09:09	04/10/18 17:25	7439-92-1	
Lithium	0.037J	mg/L	0.050	0.00097	1	04/06/18 09:09	04/10/18 17:25	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	04/06/18 09:09	04/10/18 17:25	7439-98-7	
Selenium	0.055	mg/L	0.010	0.0014	1	04/06/18 09:09	04/10/18 17:25	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/06/18 09:09	04/10/18 17:25	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	04/10/18 11:35	04/10/18 15:18	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	1520	mg/L	50.0	50.0	1		04/10/18 18:23		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	3.7	mg/L	0.25	0.024	1		04/11/18 14:35	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/11/18 14:35	16984-48-8	
Sulfate	1020	mg/L	50.0	0.85	50		04/13/18 14:36		

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Sample: YGWC-43	Lab ID:	263585007	Collecte	ed: 04/04/18	3 09:40	Received: 04/	04/18 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/06/18 09:09	04/10/18 17:36	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/06/18 09:09	04/10/18 17:36	7440-38-2	
Barium	0.024	mg/L	0.010	0.00078	1	04/06/18 09:09	04/10/18 17:36	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/06/18 09:09	04/10/18 17:36	7440-41-7	
Boron	1.2	mg/L	0.040	0.0039	1	04/06/18 09:09	04/10/18 17:36	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/06/18 09:09	04/10/18 17:36	7440-43-9	
Calcium	8.6	mg/L	2.5	0.069	5	04/06/18 09:09	04/11/18 16:40	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	04/06/18 09:09	04/10/18 17:36	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	04/06/18 09:09	04/10/18 17:36	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/06/18 09:09	04/10/18 17:36	7439-92-1	
Lithium	0.016J	mg/L	0.050	0.00097	1	04/06/18 09:09	04/10/18 17:36	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	04/06/18 09:09	04/10/18 17:36	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	04/06/18 09:09	04/10/18 17:36	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/06/18 09:09	04/10/18 17:36	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	04/10/18 11:35	04/10/18 15:32	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	292	mg/L	25.0	25.0	1		04/10/18 18:23		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	1.8	mg/L	0.25	0.024	1		04/11/18 14:56	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/11/18 14:56	16984-48-8	
Sulfate	160	mg/L	10.0	0.17	10		04/13/18 14:58		

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Sample: YGWC-44	Lab ID:	263585009	Collecte	ed: 04/04/18	3 12:05	Received: 04/	04/18 16:45 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical l	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/06/18 09:09	04/10/18 17:48	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/06/18 09:09	04/10/18 17:48	7440-38-2	
Barium	0.12	mg/L	0.010	0.00078	1	04/06/18 09:09	04/10/18 17:48	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/06/18 09:09	04/10/18 17:48	7440-41-7	
Boron	0.66	mg/L	0.040	0.0039	1	04/06/18 09:09	04/10/18 17:48	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/06/18 09:09	04/10/18 17:48	7440-43-9	
Calcium	30.1	mg/L	25.0	0.69	50	04/06/18 09:09	04/10/18 17:54	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	04/06/18 09:09	04/10/18 17:48	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	04/06/18 09:09	04/10/18 17:48	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/06/18 09:09	04/10/18 17:48	7439-92-1	
_ithium	0.014J	mg/L	0.050	0.00097	1	04/06/18 09:09	04/10/18 17:48	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	04/06/18 09:09	04/10/18 17:48	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	04/06/18 09:09	04/10/18 17:48	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	04/06/18 09:09	04/10/18 17:48	7440-28-0	
7470 Mercury	Analytical l	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	04/10/18 11:35	04/10/18 15:35	7439-97-6	
2540C Total Dissolved Solids	Analytical l	Method: SM 2	2540C						
Total Dissolved Solids	313	mg/L	25.0	25.0	1		04/10/18 18:23		
300.0 IC Anions 28 Days	Analytical l	Method: EPA	300.0						
Chloride	13.4	mg/L	0.25	0.024	1		04/11/18 15:18	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/11/18 15:18	16984-48-8	
Sulfate	137	mg/L	10.0	0.17	10		04/13/18 15:21		

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Sample: YGWC-46	Lab ID:	263585011	Collecte	ed: 04/04/18	3 15:55	Received: 04/	04/18 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical l	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/06/18 09:09	04/10/18 17:59	7440-36-0	
Arsenic	0.00087J	mg/L	0.0050	0.00057	1	04/06/18 09:09	04/10/18 17:59	7440-38-2	
Barium	0.025	mg/L	0.010	0.00078	1	04/06/18 09:09	04/10/18 17:59	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/06/18 09:09	04/10/18 17:59	7440-41-7	
Boron	1.2	mg/L	0.040	0.0039	1	04/06/18 09:09	04/10/18 17:59	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/06/18 09:09	04/10/18 17:59	7440-43-9	
Calcium	51.9	mg/L	25.0	0.69	50	04/06/18 09:09	04/10/18 18:05	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	04/06/18 09:09	04/10/18 17:59	7440-47-3	
Cobalt	0.025	mg/L	0.010	0.00052	1	04/06/18 09:09	04/10/18 17:59	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/06/18 09:09	04/10/18 17:59	7439-92-1	
Lithium	0.012J	mg/L	0.050	0.00097	1	04/06/18 09:09	04/10/18 17:59	7439-93-2	
Molybdenum	0.0021J	mg/L	0.010	0.0019	1	04/06/18 09:09	04/10/18 17:59	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	04/06/18 09:09	04/10/18 17:59	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/06/18 09:09	04/10/18 17:59	7440-28-0	
7470 Mercury	Analytical l	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	04/10/18 11:35	04/10/18 15:37	7439-97-6	
2540C Total Dissolved Solids	Analytical l	Method: SM 2	2540C						
Total Dissolved Solids	1470	mg/L	50.0	50.0	1		04/10/18 18:23		
300.0 IC Anions 28 Days	Analytical l	Method: EPA	300.0						
Chloride	26.6	mg/L	0.25	0.024	1		04/11/18 15:39	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/11/18 15:39	16984-48-8	
Sulfate	430	mg/L	20.0	0.34	20		04/13/18 15:43		

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Sample: YGWC-49	Lab ID:	263585013	Collecte	ed: 04/04/18	3 12:50	Received: 04/	04/18 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/06/18 09:09	04/10/18 18:36	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/06/18 09:09	04/10/18 18:36	7440-38-2	
Barium	0.074	mg/L	0.010	0.00078	1	04/06/18 09:09	04/10/18 18:36	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/06/18 09:09	04/10/18 18:36	7440-41-7	
Boron	0.0041J	mg/L	0.040	0.0039	1	04/06/18 09:09	04/10/18 18:36	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/06/18 09:09	04/10/18 18:36	7440-43-9	
Calcium	ND	mg/L	25.0	0.69	50	04/06/18 09:09	04/10/18 18:42	7440-70-2	D3
Chromium	ND	mg/L	0.010	0.0016	1	04/06/18 09:09	04/10/18 18:36	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	04/06/18 09:09	04/10/18 18:36	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/06/18 09:09	04/10/18 18:36	7439-92-1	
_ithium	0.0039J	mg/L	0.050	0.00097	1	04/06/18 09:09	04/10/18 18:36	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	04/06/18 09:09	04/10/18 18:36	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	04/06/18 09:09	04/10/18 18:36	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/06/18 09:09	04/10/18 18:36	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	04/10/18 11:35	04/10/18 15:39	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	174	mg/L	25.0	25.0	1		04/10/18 18:23		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.3	mg/L	0.25	0.024	1		04/11/18 16:00	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/11/18 16:00	16984-48-8	
Sulfate	76.5	mg/L	10.0	0.17	10		04/13/18 16:05	14808-79-8	

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Sample: EB-6-4-4-18	Lab ID:	263585015	Collecte	ed: 04/04/18	3 11:30	Received: 04/	04/18 16:45 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical I	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/06/18 09:09	04/10/18 18:48	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/06/18 09:09	04/10/18 18:48	7440-38-2	
Barium	ND	mg/L	0.010	0.00078	1	04/06/18 09:09	04/10/18 18:48	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/06/18 09:09	04/10/18 18:48	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	04/06/18 09:09	04/10/18 18:48	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/06/18 09:09	04/10/18 18:48	7440-43-9	
Calcium	ND	mg/L	0.50	0.014	1	04/06/18 09:09	04/10/18 18:48	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	04/06/18 09:09	04/10/18 18:48	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	04/06/18 09:09	04/10/18 18:48	7440-48-4	
₋ead	ND	mg/L	0.0050	0.00027	1	04/06/18 09:09	04/10/18 18:48	7439-92-1	
₋ithium	ND	mg/L	0.050	0.00097	1	04/06/18 09:09	04/10/18 18:48	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	04/06/18 09:09	04/10/18 18:48	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	04/06/18 09:09	04/10/18 18:48	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	04/06/18 09:09	04/10/18 18:48	7440-28-0	
7470 Mercury	Analytical I	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	04/10/18 11:35	04/10/18 15:42	7439-97-6	
2540C Total Dissolved Solids	Analytical I	Method: SM 2	2540C						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		04/10/18 18:23		
300.0 IC Anions 28 Days	Analytical I	Method: EPA	300.0						
Chloride	ND	mg/L	0.25	0.024	1		04/11/18 16:22	16887-00-6	В
Fluoride	ND	mg/L	0.30	0.029	1		04/11/18 16:22	16984-48-8	
Sulfate	ND	mg/L	1.0	0.017	1		04/11/18 16:22	14808-79-8	

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Sample: FB-6-4-4-18	Lab ID:	263585017	Collecte	ed: 04/04/18	3 12:30	Received: 04/	04/18 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/06/18 09:09	04/10/18 18:53	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/06/18 09:09	04/10/18 18:53	7440-38-2	
Barium	ND	mg/L	0.010	0.00078	1	04/06/18 09:09	04/10/18 18:53	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/06/18 09:09	04/10/18 18:53	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	04/06/18 09:09	04/10/18 18:53	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/06/18 09:09	04/10/18 18:53	7440-43-9	
Calcium	ND	mg/L	0.50	0.014	1	04/06/18 09:09	04/10/18 18:53	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	04/06/18 09:09	04/10/18 18:53	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	04/06/18 09:09	04/10/18 18:53	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/06/18 09:09	04/10/18 18:53	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	04/06/18 09:09	04/10/18 18:53	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	04/06/18 09:09	04/10/18 18:53	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	04/06/18 09:09	04/10/18 18:53	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/06/18 09:09	04/10/18 18:53	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	04/10/18 11:35	04/10/18 15:44	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		04/10/18 18:23		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	ND	mg/L	0.25	0.024	1		04/11/18 21:03	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/11/18 21:03	16984-48-8	
Sulfate	ND	mg/L	1.0	0.017	1		04/11/18 21:03		

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Sample: Dup-6	Lab ID:	263585019	Collecte	ed: 04/04/18	3 00:00	Received: 04/	04/18 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	04/06/18 09:09	04/10/18 18:59	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	04/06/18 09:09	04/10/18 18:59	7440-38-2	
Barium	0.024	mg/L	0.010	0.00078	1	04/06/18 09:09	04/10/18 18:59	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	04/06/18 09:09	04/10/18 18:59	7440-41-7	
Boron	1.2	mg/L	0.040	0.0039	1	04/06/18 09:09	04/10/18 18:59	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	04/06/18 09:09	04/10/18 18:59	7440-43-9	
Calcium	8.3	mg/L	2.5	0.069	5	04/06/18 09:09	04/11/18 16:46	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	04/06/18 09:09	04/10/18 18:59	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	04/06/18 09:09	04/10/18 18:59	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	04/06/18 09:09	04/10/18 18:59	7439-92-1	
Lithium	0.016J	mg/L	0.050	0.00097	1	04/06/18 09:09	04/10/18 18:59	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	04/06/18 09:09	04/10/18 18:59	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	04/06/18 09:09	04/10/18 18:59	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	04/06/18 09:09	04/10/18 18:59	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	04/10/18 11:35	04/10/18 15:47	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	303	mg/L	25.0	25.0	1		04/10/18 18:23		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	1.4	mg/L	0.25	0.024	1		04/11/18 21:24	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		04/11/18 21:24	16984-48-8	
Sulfate	153	mg/L	10.0	0.17	10		04/13/18 16:28		

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

QC Batch: 4044 Analysis Method: EPA 7470A
QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Associated Lab Samples: 263585001, 263585003, 263585005, 263585007, 263585009, 263585011, 263585013, 263585015, 263585017,

263585019

METHOD BLANK: 20252 Matrix: Water

Associated Lab Samples: 263585001, 263585003, 263585005, 263585007, 263585009, 263585011, 263585013, 263585015, 263585017,

263585019

Blank Reporting Parameter Units MDL Qualifiers Result Limit Analyzed Mercury mg/L ND 0.00050 0.000036 04/10/18 14:59 LABORATORY CONTROL SAMPLE: 20253 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 0.0022 90 80-120 Mercury mg/L .0025

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 20254 20255 MS MSD 263498001 Spike Spike MS MSD MS MSD % Rec Max Conc. RPD RPD Parameter Units Result Conc. % Rec % Rec Limits Result Result Qual Mercury mg/L ND .0025 .0025 0.0023 0.0025 89 75-125 6 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

QC Batch: 3855 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 263585001, 263585003, 263585005, 263585007, 263585009, 263585011, 263585013, 263585015, 263585017,

263585019

METHOD BLANK: 19576 Matrix: Water

Associated Lab Samples: 263585001, 263585003, 263585005, 263585007, 263585009, 263585011, 263585013, 263585015, 263585017,

263585019

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND ND	0.0030	0.00078	04/10/18 16:07	
Arsenic	mg/L	ND	0.0050	0.00057	04/10/18 16:07	
Barium	mg/L	ND	0.010	0.00078	04/10/18 16:07	
Beryllium	mg/L	ND	0.0030	0.000050	04/10/18 16:07	
Boron	mg/L	ND	0.040	0.0039	04/10/18 16:07	
Cadmium	mg/L	ND	0.0010	0.000093	04/10/18 16:07	
Calcium	mg/L	ND	0.50	0.014	04/10/18 16:07	
Chromium	mg/L	ND	0.010	0.0016	04/10/18 16:07	
Cobalt	mg/L	ND	0.010	0.00052	04/10/18 16:07	
Lead	mg/L	ND	0.0050	0.00027	04/10/18 16:07	
Lithium	mg/L	ND	0.050	0.00097	04/10/18 16:07	
Molybdenum	mg/L	ND	0.010	0.0019	04/10/18 16:07	
Selenium	mg/L	ND	0.010	0.0014	04/10/18 16:07	
Thallium	mg/L	ND	0.0010	0.00014	04/10/18 16:07	

LABORATORY CONTROL SAMPLE:	19577					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L		0.099	99	80-120	
Arsenic	mg/L	.1	0.099	99	80-120	
Barium	mg/L	.1	0.098	98	80-120	
Beryllium	mg/L	.1	0.11	106	80-120	
Boron	mg/L	1	1.1	107	80-120	
Cadmium	mg/L	.1	0.098	98	80-120	
Calcium	mg/L	1	1.0	101	80-120	
Chromium	mg/L	.1	0.10	102	80-120	
Cobalt	mg/L	.1	0.10	102	80-120	
Lead	mg/L	.1	0.099	99	80-120	
Lithium	mg/L	.1	0.11	107	80-120	
Molybdenum	mg/L	.1	0.098	98	80-120	
Selenium	mg/L	.1	0.096	96	80-120	
Thallium	mg/L	.1	0.099	99	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	ATE: 19578			19579							
			MS	MSD								
		263585001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	.1	.1	0.10	0.11	102	106	75-125	4	20	
Arsenic	mg/L	ND	.1	.1	0.10	0.11	102	106	75-125	5	20	
Barium	mg/L	0.022	.1	.1	0.12	0.13	98	103	75-125	4	20	
Beryllium	mg/L	ND	.1	.1	0.10	0.11	103	112	75-125	8	20	
Boron	mg/L	0.013J	1	1	1.0	1.1	100	109	75-125	8	20	
Cadmium	mg/L	ND	.1	.1	0.098	0.11	98	107	75-125	8	20	
Calcium	mg/L	ND	1	1	12.6J	13.9J	54	178	75-125	9	20	M6
Chromium	mg/L	ND	.1	.1	0.10	0.11	104	110	75-125	6	20	
Cobalt	mg/L	ND	.1	.1	0.11	0.11	103	107	75-125	4	20	
Lead	mg/L	ND	.1	.1	0.10	0.11	101	105	75-125	4	20	
Lithium	mg/L	0.0045J	.1	.1	0.10	0.11	100	107	75-125	7	20	
Molybdenum	mg/L	ND	.1	.1	0.10	0.11	100	106	75-125	5	20	
Selenium	mg/L	ND	.1	.1	0.10	0.11	101	107	75-125	6	20	
Thallium	mg/L	ND	.1	.1	0.10	0.11	100	105	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 263585

QC Batch: 405309 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 263585001

METHOD BLANK: 2248515 Matrix: Water

Associated Lab Samples: 263585001

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 04/06/18 21:30

LABORATORY CONTROL SAMPLE: 2248516

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 250 270 108 90-110

SAMPLE DUPLICATE: 2248517

263579001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers **Total Dissolved Solids** 34.0 5 D6 mg/L 39.0 14

SAMPLE DUPLICATE: 2248518

Date: 04/30/2018 11:26 AM

92379425011 Dup Max RPD RPD Parameter Units Result Result Qualifiers 257 5 **Total Dissolved Solids** mg/L 249 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 263585

QC Batch: 405425 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 263585003

METHOD BLANK: 2249021 Matrix: Water

Associated Lab Samples: 263585003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 04/08/18 16:46

LABORATORY CONTROL SAMPLE: 2249022

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 250 260 104 90-110

SAMPLE DUPLICATE: 2249023

263579017 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers **Total Dissolved Solids** 105 113 7 5 D6 mg/L

SAMPLE DUPLICATE: 2249024

Date: 04/30/2018 11:26 AM

263580011 Dup Max RPD RPD Parameter Units Result Result Qualifiers 660 5 **Total Dissolved Solids** mg/L 644 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 263585

QC Batch: 405558 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 263585005, 263585007, 263585009, 263585011, 263585013, 263585015, 263585017, 263585019

METHOD BLANK: 2249847 Matrix: Water

Associated Lab Samples: 263585005, 263585007, 263585009, 263585011, 263585013, 263585015, 263585017, 263585019

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND25.025.004/10/18 18:23

LABORATORY CONTROL SAMPLE: 2249848

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 250 232 93 90-110

SAMPLE DUPLICATE: 2249849

92379682010 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 46.0 22 5 D6 **Total Dissolved Solids** mg/L 37.0

SAMPLE DUPLICATE: 2249850

Date: 04/30/2018 11:26 AM

		263585019	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	303	298	2	5	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

QC Batch: 4157 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 263585001, 263585003, 263585005, 263585007, 263585009, 263585011, 263585013, 263585015, 263585017,

263585019

METHOD BLANK: 20683 Matrix: Water

Associated Lab Samples: 263585001, 263585003, 263585005, 263585007, 263585009, 263585011, 263585013, 263585015, 263585017,

263585019

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	0.25	0.024	04/11/18 11:46	
Fluoride	mg/L	ND	0.30	0.029	04/11/18 11:46	
Sulfate	mg/L	ND	1.0	0.017	04/11/18 11:46	

LABORATORY CONTROL SAMPLE:	20684					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	10	9.7	97	90-110	
Fluoride	mg/L	10	9.9	99	90-110	
Sulfate	mg/L	10	9.7	97	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 20685 20686												
			MS	MSD								
		263584001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.8	1	1	14.3	14.3	944	942	90-110	0	15	M1
Fluoride	mg/L	ND	1	1	9.9	9.9	975	973	90-110	0	15	M1
Sulfate	mg/L	88.8	1	1	84.8	84.9	-399	-393	90-110	0	15	E

MATRIX SPIKE SAMPLE:	20687						
		263584002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	4.6	10	13.3	87	90-110	
Fluoride	mg/L	ND	10	9.1	89	90-110	
Sulfate	mg/L	183	10	146	-372	90-110 E	<u> </u>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 263585

Sample: YGWA-47 Lab ID: 263585002 Collected: 04/02/18 14:25 Received: 04/04/18 16:45 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.459 ± 0.213 (0.316) Radium-226 pCi/L 04/19/18 08:39 13982-63-3 C:79% T:NA EPA 9320 $0.0533 \pm 0.287 \quad (0.658)$ Radium-228 pCi/L 04/20/18 15:15 15262-20-1 C:73% T:96% Total Radium Total Radium $0.512 \pm 0.500 \quad (0.974)$ pCi/L 04/26/18 13:25 7440-14-4 Calculation

Project: Plant Yates Phase II

Calculation

Pace Project No.: 263585

Sample: YGWC-45 Lab ID: 263585004 Collected: 04/03/18 14:05 Received: 04/04/18 16:45 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.850 \pm 0.266 \quad (0.265)$ Radium-226 pCi/L 04/19/18 08:39 13982-63-3 C:84% T:NA EPA 9320 0.676 ± 0.435 (0.824) Radium-228 pCi/L 04/20/18 15:15 15262-20-1 C:76% T:78% Total Radium Total Radium $1.53 \pm 0.701 \quad (1.09)$ pCi/L 04/26/18 13:25 7440-14-4

Project: Plant Yates Phase II

Pace Project No.: 263585

Sample: YGWC-42 Lab ID: 263585006 Collected: 04/04/18 11:45 Received: 04/04/18 16:45 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.886 \pm 0.244 \quad (0.141)$ Radium-226 pCi/L 04/19/18 10:15 13982-63-3 C:95% T:NA EPA 9320 1.01 ± 0.458 (0.741) Radium-228 pCi/L 04/20/18 15:15 15262-20-1 C:71% T:78% Total Radium Total Radium 1.90 ± 0.702 (0.882) pCi/L 04/26/18 13:25 7440-14-4 Calculation

Project: Plant Yates Phase II

Pace Project No.: 263585

Sample: YGWC-43 Lab ID: 263585008 Collected: 04/04/18 09:40 Received: 04/04/18 16:45 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 1.24 ± 0.308 (0.157) Radium-226 pCi/L 04/19/18 10:15 13982-63-3 C:93% T:NA EPA 9320 0.467 ± 0.325 (0.611) Radium-228 pCi/L 04/20/18 15:15 15262-20-1 C:81% T:76% Total Radium Total Radium 1.71 ± 0.633 (0.768) pCi/L 04/26/18 13:25 7440-14-4 Calculation

Project: Plant Yates Phase II

Pace Project No.: 263585

Sample: YGWC-44 Lab ID: 263585010 Collected: 04/04/18 12:05 Received: 04/04/18 16:45 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.194 ± 0.182 (0.363) Radium-226 pCi/L 04/19/18 08:37 13982-63-3 C:91% T:NA EPA 9320 0.131 ± 0.331 (0.740) 04/25/18 11:24 15262-20-1 Radium-228 pCi/L C:77% T:79% Total Radium Total Radium 0.325 ± 0.516 (1.10) pCi/L 04/26/18 13:38 7440-14-4 Calculation

Project: Plant Yates Phase II

Total Radium

Calculation

Pace Project No.: 263585

Total Radium

Sample: YGWC-46 Lab ID: 263585012 Collected: 04/04/18 15:55 Received: 04/04/18 16:45 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.515 ± 0.231 (0.275) Radium-226 pCi/L 04/19/18 08:37 13982-63-3 C:84% T:NA EPA 9320 $0.459 \pm 0.355 \quad (0.697)$ 04/25/18 11:24 15262-20-1 Radium-228 pCi/L C:81% T:80%

pCi/L

04/26/18 13:38 7440-14-4

 $0.974 \pm 0.586 \quad (0.972)$

Project: Plant Yates Phase II

Pace Project No.: 263585

Sample: YGWC-49 Lab ID: 263585014 Collected: 04/04/18 12:50 Received: 04/04/18 16:45 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.216 ± 0.175 (0.316) Radium-226 pCi/L 04/19/18 08:37 13982-63-3 C:82% T:NA EPA 9320 0.226 ± 0.322 (0.692) Radium-228 pCi/L 04/25/18 11:28 15262-20-1 C:77% T:81% Total Radium Total Radium $0.442 \pm 0.497 \quad (1.01)$ pCi/L 04/26/18 13:38 7440-14-4 Calculation

Project: Plant Yates Phase II

Pace Project No.: 263585

Sample: EB-6-4-4-18 Lab ID: 263585016 Collected: 04/04/18 11:30 Received: 04/04/18 16:45 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.304 \pm 0.203 \quad (0.335)$ Radium-226 pCi/L 04/19/18 08:37 13982-63-3 C:76% T:NA EPA 9320 0.786 ± 0.384 (0.627) Radium-228 pCi/L 04/25/18 11:28 15262-20-1 C:82% T:71% Total Radium Total Radium 1.09 ± 0.587 (0.962) pCi/L 04/26/18 13:38 7440-14-4 Calculation

Project: Plant Yates Phase II

Pace Project No.: 263585

Sample: FB-6-4-4-18 Lab ID: 263585018 Collected: 04/04/18 12:30 Received: 04/04/18 16:45 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.270 ± 0.170 (0.258) Radium-226 pCi/L 04/19/18 08:37 13982-63-3 C:86% T:NA EPA 9320 0.254 ± 0.342 (0.730) Radium-228 pCi/L 04/25/18 14:31 15262-20-1 C:77% T:78% Total Radium Total Radium $0.524 \pm 0.512 \quad (0.988)$ pCi/L 04/26/18 13:38 7440-14-4 Calculation

Project: Plant Yates Phase II

Pace Project No.: 263585

Sample: Dup-6 PWS:	Lab ID: 26358502 Site ID:	Collected: 04/04/18 00:00 Sample Type:	Received:	04/04/18 16:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	1.15 ± 0.356 (0.309) C:83% T:NA	pCi/L	04/19/18 08:37	13982-63-3	
Radium-228		0.537 ± 0.369 (0.712) C:81% T:83%	pCi/L	04/25/18 14:31	15262-20-1	
Total Radium	Total Radium Calculation	1.69 ± 0.725 (1.02)	pCi/L	04/26/18 13:38	3 7440-14-4	

Project: Plant Yates Phase II

Pace Project No.: 263585

 QC Batch:
 294198
 Analysis Method:
 EPA 9320

 QC Batch Method:
 EPA 9320
 Analysis Description:
 9320 Radium 228

 Associated Lab Samples:
 263585010, 263585012, 263585014, 263585016, 263585018, 263585020

METHOD BLANK: 1440645 Matrix: Water

Associated Lab Samples: 263585010, 263585012, 263585014, 263585016, 263585018, 263585020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.0414 ± 0.317 (0.731) C:80% T:78%
 pCi/L
 04/25/18 11:24

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 263585

QC Batch: 294195 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium Associated Lab Samples: 263585010, 263585012, 263585014, 263585016, 263585018, 263585020

METHOD BLANK: 1440640 Matrix: Water

Associated Lab Samples: 263585010, 263585012, 263585014, 263585016, 263585018, 263585020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.202 ± 0.146 (0.231) C:87% T:NA
 pCi/L
 04/19/18 08:37

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 263585

QC Batch: 294196 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 263585002, 263585004, 263585006, 263585008

METHOD BLANK: 1440643 Matrix: Water

Associated Lab Samples: 263585002, 263585004, 263585006, 263585008

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 -0.0447 ± 0.264 (0.636) C:75% T:85% pCi/L 04/20/18 11:37

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 263585

QC Batch: 294194 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 263585002, 263585004, 263585006, 263585008

METHOD BLANK: 1440635 Matrix: Water

Associated Lab Samples: 263585002, 263585004, 263585006, 263585008

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.260 \pm 0.105 (0.126) C:91% T:NA pCi/L 04/18/18 19:04

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates Phase II

Pace Project No.: 263585

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-A	Pace Analytical Services - Asheville
PASI-GA	Pace Analytical Services - Atlanta, GA
PASI-PA	Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 04/30/2018 11:26 AM

B Analyte was detected in the associated method bla	ank.
---	------

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
263585001	YGWA-47	EPA 3005A	3855	EPA 6020B	4097
63585003	YGWC-45	EPA 3005A	3855	EPA 6020B	4097
63585005	YGWC-42	EPA 3005A	3855	EPA 6020B	4097
63585007	YGWC-43	EPA 3005A	3855	EPA 6020B	4097
63585009	YGWC-44	EPA 3005A	3855	EPA 6020B	4097
63585011	YGWC-46	EPA 3005A	3855	EPA 6020B	4097
63585013	YGWC-49	EPA 3005A	3855	EPA 6020B	4097
63585015	EB-6-4-4-18	EPA 3005A	3855	EPA 6020B	4097
63585017	FB-6-4-4-18	EPA 3005A	3855	EPA 6020B	4097
63585019	Dup-6	EPA 3005A	3855	EPA 6020B	4097
63585001	YGWA-47	EPA 7470A	4044	EPA 7470A	4091
63585003	YGWC-45	EPA 7470A	4044	EPA 7470A	4091
3585005	YGWC-42	EPA 7470A	4044	EPA 7470A	4091
63585007	YGWC-43	EPA 7470A	4044	EPA 7470A	4091
63585009	YGWC-44	EPA 7470A	4044	EPA 7470A	4091
63585011	YGWC-46	EPA 7470A	4044	EPA 7470A	4091
63585013	YGWC-49	EPA 7470A	4044	EPA 7470A	4091
63585015	EB-6-4-4-18	EPA 7470A	4044	EPA 7470A	4091
63585017	FB-6-4-4-18	EPA 7470A	4044	EPA 7470A	4091
63585019	Dup-6	EPA 7470A	4044	EPA 7470A	4091
3585002	YGWA-47	EPA 9315	294194		
3585004	YGWC-45	EPA 9315	294194		
3585006	YGWC-42	EPA 9315	294194		
3585008	YGWC-43	EPA 9315	294194		
63585010	YGWC-44	EPA 9315	294195		
63585012	YGWC-46	EPA 9315	294195		
63585014	YGWC-49	EPA 9315	294195		
3585016	EB-6-4-4-18	EPA 9315	294195		
3585018	FB-6-4-4-18	EPA 9315	294195		
3585020	Dup-6	EPA 9315	294195		
63585002	YGWA-47	EPA 9320	294196		
63585004	YGWC-45	EPA 9320	294196		
3585006	YGWC-42	EPA 9320	294196		
3585008	YGWC-43	EPA 9320	294196		
63585010	YGWC-44	EPA 9320	294198		
63585012	YGWC-46	EPA 9320	294198		
63585014	YGWC-49	EPA 9320	294198		
63585016	EB-6-4-4-18	EPA 9320	294198		
63585018	FB-6-4-4-18	EPA 9320	294198		
63585020	Dup-6	EPA 9320	294198		
63585002	YGWA-47	Total Radium Calculation	296141		
63585004	YGWC-45	Total Radium Calculation	296141		
63585006	YGWC-42	Total Radium Calculation	296141		
63585008	YGWC-43	Total Radium Calculation	296141		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Phase II

Pace Project No.: 263585

Date: 04/30/2018 11:26 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
263585012	YGWC-46	Total Radium Calculation	296147		
263585014	YGWC-49	Total Radium Calculation	296147		
263585016	EB-6-4-4-18	Total Radium Calculation	296147		
263585018	FB-6-4-4-18	Total Radium Calculation	296147		
263585020	Dup-6	Total Radium Calculation	296147		
263585001	YGWA-47	SM 2540C	405309		
263585003	YGWC-45	SM 2540C	405425		
263585005	YGWC-42	SM 2540C	405558		
263585007	YGWC-43	SM 2540C	405558		
263585009	YGWC-44	SM 2540C	405558		
263585011	YGWC-46	SM 2540C	405558		
263585013	YGWC-49	SM 2540C	405558		
263585015	EB-6-4-4-18	SM 2540C	405558		
263585017	FB-6-4-4-18	SM 2540C	405558		
263585019	Dup-6	SM 2540C	405558		
263585001	YGWA-47	EPA 300.0	4157		
263585003	YGWC-45	EPA 300.0	4157		
263585005	YGWC-42	EPA 300.0	4157		
263585007	YGWC-43	EPA 300.0	4157		
263585009	YGWC-44	EPA 300.0	4157		
263585011	YGWC-46	EPA 300.0	4157		
263585013	YGWC-49	EPA 300.0	4157		
263585015	EB-6-4-4-18	EPA 300.0	4157		
263585017	FB-6-4-4-18	EPA 300.0	4157		
263585019	Dup-6	EPA 300.0	4157		

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

6

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen 2- H2SO4. 56°C 4 - NaOH, 56°C REMARKS/ADDITIONAL INFORMATION P - PRODUCT 1 - HCl, 56°C SLUDGE SD - SOLID 3- HNO3 A- AIR FOR LAB USE ONLY "MATRIX CODES: me ŝ do#:263585 SW - SURFACE WATER **DRINKING WATER** 2 GW - GROUNDWATER STORM WATER NW - WASTEWATER A - AMBER GLASS G- CLEAR GLASS CONTAINER TYPE S - STERILE O - OTHER V - VOA VIAL P - PLASTIC W- WATER ·extra fracking *%*У<u>Г</u>ТЕАВ #: 263585 z > 2 a w & **ച≪** @ - 0 FS OTHER DATE/TIME: 4-4-18 DATE/TIME: CLIENT O <u>ANALYSIS REQUESTED</u> COURIER I of Coolers Radium 226 & 228 (SW-846 9315/9320) 1 Ļ SAMPLE SHIPPED VIA: UPS FED-EX USPS Not Present CI, F, SQ, & TDS (EPA 300.0 & SM 2540C) ۵ Vetals App. III & IV (0747/0508 A역크) RELINQUISHED BY: RELINQUISHED BY ۵. CONTAINER TYPE: PRESERVATION: 1 \bigvee OOZHE - Z W C 0 S 5 V laburch@southernco.com SAMPLE IDENTIFICATION 1500 FB-6-4-4-18 EB-6-4-4-18 760c-45 76 WC- 42 Y6WC-43 Y6WA-47 Heath McCorkle 76WC-44 46WC- 46 16WC-49 0 n D - 6 *81/ተ*ፈ⁄ጨሄ Maria Padilla DATE/TIME: 4-4-18 DATE/TIME: Plant Yates - Phase 2 Facility Wells Phase 2 CCR CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER. :# Od :DO × **~ < 0** 0 2 0 MATRIX CODE Joju Abraham
REQUESTED COMPLETION DATE: 3 3 **6**8 241 Ralph McGill Blvd SE B10185 S S 3 3 S E ⋛ 3 SAMPLED BY AND TITLE. 1130 PROJECT NAME/STATE: 1425 2460 1405 1250 Collection 5021 1230 1145 1555 TIME Atlanta, GA 30308 CLIENT NAME 404-506-7239 REPORT TO: Georgia Power 4-4-18 87-t-h 4-4-18 4-4-18 81-4-1 Collection DATE 4-10 ROJECT #: 81-2-4 4-3-18 4-4-18 4-4-18

APP III and IV

Face Analytical Client Name	e: 6	ta Po	wer	Project #	•
· ·			•	W0#:263585	
Courier: Fed Ex UPS USPS Cii		1	,	PM: BM Due Date: 04/	11/18
Custody Seal on Cooler/Box Present: // yes	s 🔲 n	Seals	intact: 🖊 yes	CLIENT: GAPouer-CCR	
Packing Material: Bubble Wrap Bubb	le Bags	None	Other		
Thermometer Used 83	Type o	Ice: (Wet) Blue None	Samples on ice, cooling process has begun	1
Cooler Temperature Temp should be above freezing to 6°C	Biolog	cal Tissue	is Frozen: Yes No Comments:	Date and initials of person examining contents:	
Chain of Custody Present:	Aes	□No □N/A	1.		
Chain of Custody Filled Out:	√ Ves	□No □N/A	2.		ļ
Chain of Custody Relinquished:	Yes	DNO DNA	3		
Sampler Name & Signature on COC:	∠ZYęs	DNO DNA	4.		
Samples Arrived within Hold Time:	Æ Yes	DNO DN/A	5]
Short Hold Time Analysis (<72hr):	□Yes	NO ONA	6		
Rush Turn Around Time Requested:	☐Yes ,	N/A	7.		ļ
Sufficient Volume:	ÆYes	□No □N/A	8.		ļ
Correct Containers Used:	ÆN93	DNO DNA	9.		
-Pace Containers Used:	Yes Yes	DNO DNA		· ·]
Containers Intact:	Yes	□No □N/A	10.		
Filtered volume received for Dissolved tests	□Yes	DNO ZINIA	11.		
Sample Labels match COC:	ÆYes	DNO CONA	12.		
-Includes date/time/ID/Analysis Matrix:	G	tw.		•	
All containers needing preservation have been checked.	₽ Yes	NO ONA	13		
All containers needing preservation are found to be in compliance with EPA recommendation.	ZYes ∶	DNO □N/A			
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Y∌s	ario	Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	eeY□	No ZÑIA	14		}
Headspace in VOA Vials (>6mm):	□Y es	DNO ZNIA	15		
Trip Blank Present:	□Yas	No ZMA	16		
Trip Blank Custody Seals Present	□Yes	No ZNA		,	
Pace Trip Blank Lot # (if purchased):					
Client Notification/ Resolution:				Field Oata Required? Y / N	
Person Contacted:		Date/1	Time		
Comments/ Resolution:					
·					
			•		
		-			
Project Manager Review:				Date:	
Note: Whenever there is a discrepancy affection North	Casalian	1			

Sample Condition Upon Receipt

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Cartification Office (1) a put of hold incorrect preservative put of temp incorrect containers.

September 28, 2018

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates Phase II Pace Project No.: 269556

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Maria Padilla, Georgia Power
Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

CERTIFICATIONS

Project: Plant Yates Phase II

Pace Project No.: 269556

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001 Texas Certification #: T104704397-08-TX

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Plant Yates Phase II

Pace Project No.: 269556

Lab ID	Sample ID	Matrix	Date Collected	Date Received
269556001	YGWA-47	Water	09/19/18 10:35	09/21/18 09:30
269556002	YGWC-42	Water	09/20/18 12:30	09/21/18 09:30
269556003	YGWC-43	Water	09/20/18 10:55	09/21/18 09:30
269556004	YGWC-44	Water	09/19/18 13:15	09/21/18 09:30
269556005	YGWC-45	Water	09/19/18 14:50	09/21/18 09:30
269556006	YGWC-46	Water	09/19/18 12:00	09/21/18 09:30
269556007	YGWC-49	Water	09/20/18 13:55	09/21/18 09:30
269556008	EB-1-9-20-18	Water	09/20/18 09:55	09/21/18 09:30
269556009	Dup-1	Water	09/20/18 00:00	09/21/18 09:30
269556010	FB-1-9-19-18	Water	09/19/18 14:20	09/21/18 09:30

SAMPLE ANALYTE COUNT

Project: Plant Yates Phase II

Pace Project No.: 269556

Lab ID	Sample ID	Method	Analysts	Analytes Reported
269556001	YGWA-47	EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
269556002	YGWC-42	EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
269556003	YGWC-43	EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
269556004	YGWC-44	EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
269556005	YGWC-45	EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
269556006	YGWC-46	EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
269556007	YGWC-49	EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
269556008	EB-1-9-20-18	EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
269556009	Dup-1	EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
269556010	FB-1-9-19-18	EPA 6020B	CSW	14

SAMPLE ANALYTE COUNT

Project: Plant Yates Phase II

Pace Project No.: 269556

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Sample: YGWA-47	Lab ID:	269556001	Collecte	ed: 09/19/18	3 10:35	Received: 09/	/21/18 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: Ef	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	09/25/18 15:15	09/26/18 20:32	7440-36-0	
Arsenic	0.00072J	mg/L	0.0050	0.00057	1	09/25/18 15:15	09/26/18 20:32	7440-38-2	В
Barium	0.023	mg/L	0.010	0.00078	1	09/25/18 15:15	09/26/18 20:32	7440-39-3	
Beryllium	0.000057J	mg/L	0.0030	0.000050	1	09/25/18 15:15	09/26/18 20:32	7440-41-7	
Boron	0.012J	mg/L	0.040	0.0039	1	09/25/18 15:15	09/26/18 20:32	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	09/25/18 15:15	09/26/18 20:32	7440-43-9	
Calcium	11.1J	mg/L	25.0	0.69	50	09/25/18 15:15	09/26/18 20:38	7440-70-2	D3,M6
Chromium	ND	mg/L	0.010	0.0016	1	09/25/18 15:15	09/26/18 20:32	7440-47-3	
Cobalt	0.0036J	mg/L	0.010	0.00052	1	09/25/18 15:15	09/26/18 20:32	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	09/25/18 15:15	09/26/18 20:32	7439-92-1	
Lithium	0.0043J	mg/L	0.050	0.00097	1	09/25/18 15:15	09/26/18 20:32	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	09/25/18 15:15	09/26/18 20:32	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	09/25/18 15:15	09/26/18 20:32	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/25/18 15:15	09/26/18 20:32	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	0.000053J	mg/L	0.00050	0.000036	1	09/27/18 10:20	09/27/18 18:04	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	186	mg/L	25.0	10.0	1		09/24/18 13:01		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.0	mg/L	0.25	0.024	1		09/26/18 03:39	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		09/26/18 03:39	16984-48-8	
Sulfate	75.0	mg/L	10.0	0.17	10		09/26/18 13:44		M1

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Sample: YGWC-42	Lab ID:	269556002	Collecte	ed: 09/20/18	3 12:30	Received: 09/	21/18 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	09/25/18 15:15	09/26/18 21:24	7440-36-0	
Arsenic	0.0018J	mg/L	0.0050	0.00057	1	09/25/18 15:15	09/26/18 21:24	7440-38-2	В
Barium	0.038	mg/L	0.010	0.00078	1	09/25/18 15:15	09/26/18 21:24	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	09/25/18 15:15	09/26/18 21:24	7440-41-7	
Boron	20.3	mg/L	2.0	0.20	50	09/25/18 15:15	09/26/18 21:30	7440-42-8	
Cadmium	0.00020J	mg/L	0.0010	0.000093	1	09/25/18 15:15	09/26/18 21:24	7440-43-9	
Calcium	108	mg/L	25.0	0.69	50	09/25/18 15:15	09/26/18 21:30	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	09/25/18 15:15	09/26/18 21:24	7440-47-3	
Cobalt	0.0030J	mg/L	0.010	0.00052	1	09/25/18 15:15	09/26/18 21:24	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	09/25/18 15:15	09/26/18 21:24	7439-92-1	
Lithium	0.049J	mg/L	0.050	0.00097	1	09/25/18 15:15	09/26/18 21:24	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	09/25/18 15:15	09/26/18 21:24	7439-98-7	
Selenium	0.041	mg/L	0.010	0.0014	1	09/25/18 15:15	09/26/18 21:24	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/25/18 15:15	09/26/18 21:24	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	0.000048J	mg/L	0.00050	0.000036	1	09/27/18 10:20	09/27/18 18:06	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	1240	mg/L	25.0	10.0	1		09/24/18 13:01		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	3.8	mg/L	0.25	0.024	1		09/26/18 04:41	16887-00-6	
Fluoride	0.041J	mg/L	0.30	0.029	1		09/26/18 04:41	16984-48-8	
Sulfate	810	mg/L	50.0	0.85	50		09/26/18 14:05		M1

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Sample: YGWC-43	Lab ID:	269556003	Collecte	ed: 09/20/18	3 10:55	Received: 09/	21/18 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	09/25/18 15:15	09/26/18 21:35	7440-36-0	
Arsenic	0.00099J	mg/L	0.0050	0.00057	1	09/25/18 15:15	09/26/18 21:35	7440-38-2	В
Barium	0.035	mg/L	0.010	0.00078	1	09/25/18 15:15	09/26/18 21:35	7440-39-3	
Beryllium	0.00029J	mg/L	0.0030	0.000050	1	09/25/18 15:15	09/26/18 21:35	7440-41-7	
3oron	2.1	mg/L	0.040	0.0039	1	09/25/18 15:15	09/26/18 21:35	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	09/25/18 15:15	09/26/18 21:35	7440-43-9	
Calcium	15.9J	mg/L	25.0	0.69	50	09/25/18 15:15	09/26/18 21:41	7440-70-2	D3
Chromium	ND	mg/L	0.010	0.0016	1	09/25/18 15:15	09/26/18 21:35	7440-47-3	
Cobalt	0.0034J	mg/L	0.010	0.00052	1	09/25/18 15:15	09/26/18 21:35	7440-48-4	
_ead	ND	mg/L	0.0050	0.00027	1	09/25/18 15:15	09/26/18 21:35	7439-92-1	
₋ithium	0.019J	mg/L	0.050	0.00097	1	09/25/18 15:15	09/26/18 21:35	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	09/25/18 15:15	09/26/18 21:35	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	09/25/18 15:15	09/26/18 21:35		
Γhallium	ND	mg/L	0.0010	0.00014	1	09/25/18 15:15	09/26/18 21:35	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	0.000052J	mg/L	0.00050	0.000036	1	09/27/18 10:20	09/27/18 18:09	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	434	mg/L	25.0	10.0	1		09/24/18 13:01		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	1.9	mg/L	0.25	0.024	1		09/26/18 05:02	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		09/26/18 05:02		
Sulfate	247	mg/L	10.0	0.17	10		09/26/18 14:26		

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Sample: YGWC-44	Lab ID:	269556004	Collecte	ed: 09/19/18	3 13:15	Received: 09/	21/18 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	09/25/18 15:15	09/26/18 21:47	7440-36-0	
Arsenic	0.00086J	mg/L	0.0050	0.00057	1	09/25/18 15:15	09/26/18 21:47	7440-38-2	В
Barium	0.11	mg/L	0.010	0.00078	1	09/25/18 15:15	09/26/18 21:47	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	09/25/18 15:15	09/26/18 21:47	7440-41-7	
Boron	0.66	mg/L	0.040	0.0039	1	09/25/18 15:15	09/26/18 21:47	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	09/25/18 15:15	09/26/18 21:47	7440-43-9	
Calcium	29.2	mg/L	25.0	0.69	50	09/25/18 15:15	09/26/18 21:53	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	09/25/18 15:15	09/26/18 21:47	7440-47-3	
Cobalt	0.0025J	mg/L	0.010	0.00052	1	09/25/18 15:15	09/26/18 21:47	7440-48-4	
_ead	ND	mg/L	0.0050	0.00027	1	09/25/18 15:15	09/26/18 21:47	7439-92-1	
_ithium	0.013J	mg/L	0.050	0.00097	1	09/25/18 15:15	09/26/18 21:47	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	09/25/18 15:15	09/26/18 21:47	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	09/25/18 15:15	09/26/18 21:47	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	09/25/18 15:15	09/26/18 21:47	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	0.000060J	mg/L	0.00050	0.000036	1	09/27/18 10:20	09/27/18 18:11	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	326	mg/L	25.0	10.0	1		09/24/18 13:01		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	14.2	mg/L	0.25	0.024	1		09/26/18 05:22	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		09/26/18 05:22		
Sulfate	137	mg/L	10.0	0.17	10		09/26/18 14:48		

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Sample: YGWC-45	Lab ID:	269556005	Collecte	ed: 09/19/18	3 14:50	Received: 09/	21/18 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	09/25/18 15:15	09/26/18 21:58	7440-36-0	
Arsenic	0.00072J	mg/L	0.0050	0.00057	1	09/25/18 15:15	09/26/18 21:58	7440-38-2	В
3arium	0.064	mg/L	0.010	0.00078	1	09/25/18 15:15	09/26/18 21:58	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	09/25/18 15:15	09/26/18 21:58	7440-41-7	
Boron	0.35	mg/L	0.040	0.0039	1	09/25/18 15:15	09/26/18 21:58	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	09/25/18 15:15	09/26/18 21:58	7440-43-9	
Calcium	50.5	mg/L	25.0	0.69	50	09/25/18 15:15	09/26/18 22:04	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	09/25/18 15:15	09/26/18 21:58	7440-47-3	
Cobalt	0.00081J	mg/L	0.010	0.00052	1	09/25/18 15:15	09/26/18 21:58	7440-48-4	
₋ead	ND	mg/L	0.0050	0.00027	1	09/25/18 15:15	09/26/18 21:58	7439-92-1	
.ithium	0.012J	mg/L	0.050	0.00097	1	09/25/18 15:15	09/26/18 21:58	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	09/25/18 15:15	09/26/18 21:58	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	09/25/18 15:15	09/26/18 21:58	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	09/25/18 15:15	09/26/18 21:58	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	0.000071J	mg/L	0.00050	0.000036	1	09/27/18 10:20	09/27/18 18:13	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	413	mg/L	25.0	10.0	1		09/24/18 13:02		
800.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.7	mg/L	0.25	0.024	1		09/26/18 05:43	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		09/26/18 05:43		
Sulfate	192	mg/L	10.0	0.17	10		09/26/18 15:09		

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Sample: YGWC-46	Lab ID:	269556006	Collecte	ed: 09/19/18	3 12:00	Received: 09/	21/18 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical l	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	09/25/18 15:15	09/26/18 22:10	7440-36-0	
Arsenic	0.0012J	mg/L	0.0050	0.00057	1	09/25/18 15:15	09/26/18 22:10	7440-38-2	В
Barium	0.030	mg/L	0.010	0.00078	1	09/25/18 15:15	09/26/18 22:10	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	09/25/18 15:15	09/26/18 22:10	7440-41-7	
Boron	1.2	mg/L	0.040	0.0039	1	09/25/18 15:15	09/26/18 22:10	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	09/25/18 15:15	09/26/18 22:10	7440-43-9	
Calcium	51.9	mg/L	25.0	0.69	50	09/25/18 15:15	09/26/18 22:15	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	09/25/18 15:15	09/26/18 22:10	7440-47-3	
Cobalt	0.042	mg/L	0.010	0.00052	1	09/25/18 15:15	09/26/18 22:10	7440-48-4	
.ead	ND	mg/L	0.0050	0.00027	1	09/25/18 15:15	09/26/18 22:10	7439-92-1	
.ithium	0.011J	mg/L	0.050	0.00097	1	09/25/18 15:15	09/26/18 22:10	7439-93-2	
Nolybdenum	0.0039J	mg/L	0.010	0.0019	1	09/25/18 15:15	09/26/18 22:10	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	09/25/18 15:15	09/26/18 22:10	7782-49-2	
hallium	ND	mg/L	0.0010	0.00014	1	09/25/18 15:15	09/26/18 22:10	7440-28-0	
470 Mercury	Analytical l	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	0.000070J	mg/L	0.00050	0.000036	1	09/27/18 10:20	09/27/18 18:16	7439-97-6	В
2540C Total Dissolved Solids	Analytical l	Method: SM 2	2540C						
Total Dissolved Solids	702	mg/L	25.0	10.0	1		09/24/18 13:02		
300.0 IC Anions 28 Days	Analytical l	Method: EPA	300.0						
Chloride	26.5	mg/L	0.25	0.024	1		09/26/18 06:03	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		09/26/18 06:03	16984-48-8	
Sulfate	395	mg/L	20.0	0.34	20		09/26/18 15:30		

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Sample: YGWC-49	Lab ID:	269556007	Collecte	ed: 09/20/18	3 13:55	Received: 09/	21/18 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: Ef	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	09/25/18 15:15	09/26/18 22:33	7440-36-0	
Arsenic	0.0010J	mg/L	0.0050	0.00057	1	09/25/18 15:15	09/26/18 22:33	7440-38-2	В
Barium	0.074	mg/L	0.010	0.00078	1	09/25/18 15:15	09/26/18 22:33	7440-39-3	
Beryllium	0.00011J	mg/L	0.0030	0.000050	1	09/25/18 15:15	09/26/18 22:33	7440-41-7	
Boron	0.0042J	mg/L	0.040	0.0039	1	09/25/18 15:15	09/26/18 22:33	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	09/25/18 15:15	09/26/18 22:33	7440-43-9	
Calcium	12.0J	mg/L	25.0	0.69	50	09/25/18 15:15	09/26/18 22:38	7440-70-2	D3
Chromium	0.0017J	mg/L	0.010	0.0016	1	09/25/18 15:15	09/26/18 22:33	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	09/25/18 15:15	09/26/18 22:33	7440-48-4	
_ead	ND	mg/L	0.0050	0.00027	1	09/25/18 15:15	09/26/18 22:33	7439-92-1	
_ithium	0.0036J	mg/L	0.050	0.00097	1	09/25/18 15:15	09/26/18 22:33	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	09/25/18 15:15	09/26/18 22:33	7439-98-7	
Selenium	0.0081J	mg/L	0.010	0.0014	1	09/25/18 15:15	09/26/18 22:33		
Γhallium	ND	mg/L	0.0010	0.00014	1	09/25/18 15:15	09/26/18 22:33	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	0.000061J	mg/L	0.00050	0.000036	1	09/27/18 10:20	09/27/18 18:18	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	186	mg/L	25.0	10.0	1		09/24/18 13:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.8	mg/L	0.25	0.024	1		09/26/18 06:24	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		09/26/18 06:24		
Sulfate	84.1	mg/L	10.0	0.17	10		09/26/18 17:16		

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Sample: EB-1-9-20-18	Lab ID:	269556008	Collecte	ed: 09/20/18	3 09:55	Received: 09/	21/18 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	A 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	09/25/18 15:15	09/26/18 22:44	7440-36-0	
Arsenic	0.00093J	mg/L	0.0050	0.00057	1	09/25/18 15:15	09/26/18 22:44	7440-38-2	В
Barium	ND	mg/L	0.010	0.00078	1	09/25/18 15:15	09/26/18 22:44	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	09/25/18 15:15	09/26/18 22:44	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	09/25/18 15:15	09/26/18 22:44	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	09/25/18 15:15	09/26/18 22:44	7440-43-9	
Calcium	ND	mg/L	0.50	0.014	1	09/25/18 15:15	09/26/18 22:44	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	09/25/18 15:15	09/26/18 22:44	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	09/25/18 15:15	09/26/18 22:44	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	09/25/18 15:15	09/26/18 22:44	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	09/25/18 15:15	09/26/18 22:44	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	09/25/18 15:15	09/26/18 22:44	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	09/25/18 15:15	09/26/18 22:44	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/25/18 15:15	09/26/18 22:44	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	A 7470A			
Mercury	0.000056J	mg/L	0.00050	0.000036	1	09/27/18 10:20	09/27/18 18:20	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	ND	mg/L	25.0	10.0	1		09/24/18 13:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	0.064J	mg/L	0.25	0.024	1		09/26/18 06:45	16887-00-6	В
Fluoride	ND	mg/L	0.30	0.029	1		09/26/18 06:45		-
Sulfate	ND	mg/L	1.0	0.017	1		09/26/18 06:45		

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Sample: Dup-1	Lab ID:	269556009	Collecte	ed: 09/20/18	3 00:00	Received: 09/	21/18 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	09/25/18 15:15	09/26/18 22:50	7440-36-0	
Arsenic	0.0011J	mg/L	0.0050	0.00057	1	09/25/18 15:15	09/26/18 22:50	7440-38-2	В
Barium	0.074	mg/L	0.010	0.00078	1	09/25/18 15:15	09/26/18 22:50	7440-39-3	
Beryllium	0.00012J	mg/L	0.0030	0.000050	1	09/25/18 15:15	09/26/18 22:50	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	09/25/18 15:15	09/26/18 22:50	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	09/25/18 15:15	09/26/18 22:50	7440-43-9	
Calcium	12.3J	mg/L	25.0	0.69	50	09/25/18 15:15	09/26/18 22:56	7440-70-2	D3
Chromium	0.0017J	mg/L	0.010	0.0016	1	09/25/18 15:15	09/26/18 22:50	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	09/25/18 15:15	09/26/18 22:50	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	09/25/18 15:15	09/26/18 22:50	7439-92-1	
Lithium	0.0038J	mg/L	0.050	0.00097	1	09/25/18 15:15	09/26/18 22:50	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	09/25/18 15:15	09/26/18 22:50	7439-98-7	
Selenium	0.0073J	mg/L	0.010	0.0014	1	09/25/18 15:15	09/26/18 22:50	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/25/18 15:15	09/26/18 22:50	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	0.000054J	mg/L	0.00050	0.000036	1	09/27/18 10:20	09/27/18 18:23	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	182	mg/L	25.0	10.0	1		09/24/18 13:11		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.6	mg/L	0.25	0.024	1		09/26/18 08:28	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		09/26/18 08:28		
Sulfate	76.8	mg/L	50.0	0.85	50		09/26/18 17:37		

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Sample: FB-1-9-19-18	Lab ID:	269556010	Collecte	ed: 09/19/18	3 14:20	Received: 09/	21/18 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	09/25/18 15:15	09/26/18 23:01	7440-36-0	
Arsenic	0.00090J	mg/L	0.0050	0.00057	1	09/25/18 15:15	09/26/18 23:01	7440-38-2	В
Barium	ND	mg/L	0.010	0.00078	1	09/25/18 15:15	09/26/18 23:01	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	09/25/18 15:15	09/26/18 23:01	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	09/25/18 15:15	09/26/18 23:01	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	09/25/18 15:15	09/26/18 23:01	7440-43-9	
Calcium	ND	mg/L	0.50	0.014	1	09/25/18 15:15	09/26/18 23:01	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	09/25/18 15:15	09/26/18 23:01	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	09/25/18 15:15	09/26/18 23:01	7440-48-4	
Lead	ND	mg/L	0.0050	0.00027	1	09/25/18 15:15	09/26/18 23:01	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	09/25/18 15:15	09/26/18 23:01	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	09/25/18 15:15	09/26/18 23:01	7439-98-7	
Selenium	ND	mg/L	0.010	0.0014	1	09/25/18 15:15	09/26/18 23:01	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/25/18 15:15	09/26/18 23:01	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	0.000059J	mg/L	0.00050	0.000036	1	09/27/18 10:20	09/27/18 18:25	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	12.0J	mg/L	25.0	10.0	1		09/24/18 13:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	0.062J	mg/L	0.25	0.024	1		09/26/18 08:49	16887-00-6	В
Fluoride	ND	mg/L	0.30	0.029	1		09/26/18 08:49	16984-48-8	-
Sulfate	ND	mg/L	1.0	0.017	1		09/26/18 08:49		

Project: Plant Yates Phase II

Pace Project No.: 269556

QC Batch: 14279 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Associated Lab Samples: 269556001, 269556002, 269556003, 269556004, 269556005, 269556006, 269556007, 269556008, 269556009,

269556010

METHOD BLANK: 63605 Matrix: Water

Associated Lab Samples: 269556001, 269556002, 269556003, 269556004, 269556005, 269556006, 269556007, 269556008, 269556009,

269556010

ParameterUnitsBlank ResultReporting LimitMDLAnalyzedQualifiersMercurymg/L0.000076J0.000500.0003609/27/18 17:19

LABORATORY CONTROL SAMPLE: 63606

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers mg/L 0.0025 99 80-120 Mercury .0025

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 63607 63608

MS MSD MS 269182001 Spike Spike MS MSD MSD % Rec Max RPD RPD Parameter Units Result Conc. % Rec % Rec Limits Conc. Result Result Qual Mercury mg/L ND .0025 .0025 0.0021 0.0020 80 76 75-125 20

SAMPLE DUPLICATE: 63664

Date: 09/28/2018 11:39 AM

 Parameter
 Units
 Result
 Result
 RPD
 Max

 Mercury
 mg/L
 ND
 0.000047J
 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

QC Batch: 14164 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 269556001, 269556002, 269556003, 269556004, 269556005, 269556006, 269556007, 269556008, 269556009,

269556010

METHOD BLANK: 63037 Matrix: Water

Associated Lab Samples: 269556001, 269556002, 269556003, 269556004, 269556005, 269556006, 269556007, 269556008, 269556009,

269556010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00078	09/26/18 20:21	
Arsenic	mg/L	0.00070J	0.0050	0.00057	09/26/18 20:21	
Barium	mg/L	ND	0.010	0.00078	09/26/18 20:21	
Beryllium	mg/L	ND	0.0030	0.000050	09/26/18 20:21	
Boron	mg/L	ND	0.040	0.0039	09/26/18 20:21	
Cadmium	mg/L	ND	0.0010	0.000093	09/26/18 20:21	
Calcium	mg/L	ND	0.50	0.014	09/26/18 20:21	
Chromium	mg/L	ND	0.010	0.0016	09/26/18 20:21	
Cobalt	mg/L	ND	0.010	0.00052	09/26/18 20:21	
Lead	mg/L	ND	0.0050	0.00027	09/26/18 20:21	
Lithium	mg/L	ND	0.050	0.00097	09/26/18 20:21	
Molybdenum	mg/L	ND	0.010	0.0019	09/26/18 20:21	
Selenium	mg/L	ND	0.010	0.0014	09/26/18 20:21	
Thallium	mg/L	ND	0.0010	0.00014	09/26/18 20:21	

LABORATORY CONTROL SAMPLE:	63038					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L		0.11	108	80-120	
Arsenic	mg/L	.1	0.11	106	80-120	
Barium	mg/L	.1	0.10	105	80-120	
Beryllium	mg/L	.1	0.11	108	80-120	
Boron	mg/L	1	1.1	111	80-120	
Cadmium	mg/L	.1	0.11	106	80-120	
Calcium	mg/L	1	1.0	102	80-120	
Chromium	mg/L	.1	0.11	109	80-120	
Cobalt	mg/L	.1	0.11	106	80-120	
Lead	mg/L	.1	0.10	104	80-120	
Lithium	mg/L	.1	0.11	109	80-120	
Molybdenum	mg/L	.1	0.11	107	80-120	
Selenium	mg/L	.1	0.10	104	80-120	
Thallium	mg/L	.1	0.11	106	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 63039			63040							
			MS	MSD								
		269556001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	.1	.1	0.11	0.11	106	106	75-125	0	20	
Arsenic	mg/L	0.00072J	.1	.1	0.10	0.10	101	101	75-125	0	20	
Barium	mg/L	0.023	.1	.1	0.12	0.12	100	98	75-125	1	20	
Beryllium	mg/L	0.000057J	.1	.1	0.10	0.10	102	102	75-125	1	20	
Boron	mg/L	0.012J	1	1	1.0	1.0	103	101	75-125	2	20	
Cadmium	mg/L	ND	.1	.1	0.10	0.11	102	106	75-125	4	20	
Calcium	mg/L	11.1J	1	1	11.6J	11.7J	53	60	75-125	1	20	M6
Chromium	mg/L	ND	.1	.1	0.11	0.10	110	103	75-125	7	20	
Cobalt	mg/L	0.0036J	.1	.1	0.11	0.10	106	100	75-125	6	20	
Lead	mg/L	ND	.1	.1	0.10	0.10	102	104	75-125	2	20	
Lithium	mg/L	0.0043J	.1	.1	0.11	0.10	103	99	75-125	3	20	
Molybdenum	mg/L	ND	.1	.1	0.11	0.10	106	104	75-125	1	20	
Selenium	mg/L	ND	.1	.1	0.10	0.10	102	102	75-125	1	20	
Thallium	mg/L	ND	.1	.1	0.10	0.10	103	103	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 269556

QC Batch: 14064 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 269556001, 269556002, 269556003, 269556004, 269556005, 269556006, 269556007, 269556008, 269556010

LABORATORY CONTROL SAMPLE: 62639

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 400 401 100 84-108

SAMPLE DUPLICATE: 62640

269556001 Dup Max RPD **RPD** Units Result Qualifiers Parameter Result **Total Dissolved Solids** 186 178 4 10 mg/L

SAMPLE DUPLICATE: 62641

Date: 09/28/2018 11:39 AM

269555003 Dup Max Result RPD RPD Qualifiers Parameter Units Result mg/L 129 **Total Dissolved Solids** 125 3 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 269556

QC Batch: 14076 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 269556009

LABORATORY CONTROL SAMPLE: 62675

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 400 400 100 84-108

SAMPLE DUPLICATE: 62676

269581001 Dup Max RPD **RPD** Units Result Result Qualifiers Parameter **Total Dissolved Solids** 227 227 0 10 mg/L

SAMPLE DUPLICATE: 62677

Date: 09/28/2018 11:39 AM

269581010 Dup Max Result RPD RPD Qualifiers Parameter Units Result 139 **Total Dissolved Solids** mg/L 139 0 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

QC Batch: 14110 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 269556001, 269556002, 269556003, 269556004, 269556005, 269556006, 269556007, 269556008, 269556009,

269556010

METHOD BLANK: 62772 Matrix: Water

Associated Lab Samples: 269556001, 269556002, 269556003, 269556004, 269556005, 269556006, 269556007, 269556008, 269556009,

269556010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.057J	0.25	0.024	09/26/18 02:58	
Fluoride	mg/L	ND	0.30	0.029	09/26/18 02:58	
Sulfate	mg/L	ND	1.0	0.017	09/26/18 02:58	

LABORATORY CONTROL SAMPLE:	02//3					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		10.3	103	90-110	
Fluoride	mg/L	10	10.1	101	90-110	
Sulfate	mg/L	10	10.0	100	90-110	

MATRIX SPIKE & MATRIX SPIR	KE DUPLIC	ATE: 62774			62775							
			MS	MSD								
		269556001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.0	10	10	13.8	13.8	97	98	90-110	0	15	
Fluoride	mg/L	ND	10	10	9.8	9.9	98	99	90-110	0	15	
Sulfate	mg/L	75.0	10	10	73.7	73.6	-13	-15	90-110	0	15	E,M1

MATRIX SPIKE SAMPLE:	62776						
		269556002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	3.8	10	13.3	95	90-110	
Fluoride	mg/L	0.041J	10	10.3	102	90-110	
Sulfate	mg/L	810	10	345	-4660	90-110 E	Ξ,Μ1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates Phase II

Pace Project No.: 269556

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/28/2018 11:39 AM

B Analyte was detected in the associated method blank.

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Phase II

Pace Project No.: 269556

Date: 09/28/2018 11:39 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
 269556001	YGWA-47	EPA 3005A	14164	EPA 6020B	14198
269556002	YGWC-42	EPA 3005A	14164	EPA 6020B	14198
269556003	YGWC-43	EPA 3005A	14164	EPA 6020B	14198
269556004	YGWC-44	EPA 3005A	14164	EPA 6020B	14198
269556005	YGWC-45	EPA 3005A	14164	EPA 6020B	14198
269556006	YGWC-46	EPA 3005A	14164	EPA 6020B	14198
269556007	YGWC-49	EPA 3005A	14164	EPA 6020B	14198
269556008	EB-1-9-20-18	EPA 3005A	14164	EPA 6020B	14198
269556009	Dup-1	EPA 3005A	14164	EPA 6020B	14198
269556010	FB-1-9-19-18	EPA 3005A	14164	EPA 6020B	14198
269556001	YGWA-47	EPA 7470A	14279	EPA 7470A	14340
269556002	YGWC-42	EPA 7470A	14279	EPA 7470A	14340
269556003	YGWC-43	EPA 7470A	14279	EPA 7470A	14340
269556004	YGWC-44	EPA 7470A	14279	EPA 7470A	14340
269556005	YGWC-45	EPA 7470A	14279	EPA 7470A	14340
269556006	YGWC-46	EPA 7470A	14279	EPA 7470A	14340
269556007	YGWC-49	EPA 7470A	14279	EPA 7470A	14340
269556008	EB-1-9-20-18	EPA 7470A	14279	EPA 7470A	14340
269556009	Dup-1	EPA 7470A	14279	EPA 7470A	14340
269556010	FB-1-9-19-18	EPA 7470A	14279	EPA 7470A	14340
269556001	YGWA-47	SM 2540C	14064		
269556002	YGWC-42	SM 2540C	14064		
269556003	YGWC-43	SM 2540C	14064		
269556004	YGWC-44	SM 2540C	14064		
269556005	YGWC-45	SM 2540C	14064		
269556006	YGWC-46	SM 2540C	14064		
269556007	YGWC-49	SM 2540C	14064		
269556008	EB-1-9-20-18	SM 2540C	14064		
269556009	Dup-1	SM 2540C	14076		
269556010	FB-1-9-19-18	SM 2540C	14064		
269556001	YGWA-47	EPA 300.0	14110		
269556002	YGWC-42	EPA 300.0	14110		
269556003	YGWC-43	EPA 300.0	14110		
269556004	YGWC-44	EPA 300.0	14110		
269556005	YGWC-45	EPA 300.0	14110		
269556006	YGWC-46	EPA 300.0	14110		
269556007	YGWC-49	EPA 300.0	14110		
269556008	EB-1-9-20-18	EPA 300.0	14110		
269556009	Dup-1	EPA 300.0	14110		
269556010	FB-1-9-19-18	EPA 300.0	14110		

CHAIN OF CUSTODY RECORD

hadi

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

OF

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen 2 - H₂SO₄, ≤6°C 4 - NaOH, ≤6°C REMARKS/ADDITIONAL INFORMATION PRESERVATION 1 - HCI, ≤6°C P - PRODUCT SLUDGE 3 SL- SLUDG -HOUR 3 - HNO, A- AIR FOR LAB USE ONLY *MATRIX CODES s NO#: 269556 Rese DW - DRINKING WATER SURFACE WATER GW - GROUNDWATER WW - WASTEWATER STORM WATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE Entered into LIMS: Tracking #: V - VOA VIAL P - PLASTIC WATER Extra SW-LAB#: Š ST 269556 BAL - 0 0932 OTHER DATE/TIME: DATE/TIME: CLIENT ANALYSIS REQUESTED COURIER Radium 226 & 228 (SW-845 9315/9320) 2 4 2 2 USPS (EPA 300.0 & SM 2540C) ۵ CI, F, SD, & TDS (EPA 6020/7470) RELINQUISHED BY SAMPLE SHIPPED 1 ۵. RELINQUISHED BY Metals App. III & IV CONTAINER TYPE PRESERVATION # of 0 O N H A - N H R O I I J 7 J T 7 7 1 laburch@southernco.com FB-1-9-19-18 180C EB-1-9-10-18 SAMPLE IDENTIFICATION 7600-42 Y6WC- 43 77 YEWA-47 45 Heath McCorkle グラジス・イク アでしてして Dup-DATE/TIME: 9-70-18 DATE/TIME: Maria Padilla V6 WC X6 WC Plant Yates - Phase 2 Facility Wells DATELIME Phase 2 CCR CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER CC 0 × × 0 0024 Dem REQUESTED COMPLETION DATE: CODE. 5 3 MATRIX 3 30 30 35 241 Ralph McGill Blvd SE B10185 Ğ. S≥ ₹ BE 3 Joju Abraham PROJECT NAME/STATE: 1230 SAMPLED BY AND TITLE 1055 1450 9-20-18 CGSS Collection 37 H 1035 1315 9-19-18 1206 1355 TIME REGENTO BY LAB! Atlanta, GA 30308 CLIENT NAME Georgia Power 404-506-7239 9-19-18 REPORT TO 9.02.6 9-19-18 3-20-18 9-19-18 ROJECT #: 81-02-b 91-61-6 81-02-6 DATE

APP III and IV

Sample Condition Upon Receipt Client Name: GA Power Project # WO#: 269556 Courier: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: Due Date: 09/28/18 Custody Seal on Cooler/Box Present: Ves no Seals intact: yes CLIENT: GAPower-CCR Packing Material: Bubble Wrap Bubble Bags None Other Thermometer Used Type of Ice: (Wet) Blue None Samples on ice, cooling process has begun Date and Initials of person examining Biological Tissue is Frozen: Yes No. Cooler Temperature contents: Temp should be above freezing to 6°C Comments: Chain of Custody Present: EYes DNO DNA 1 Chain of Custody Filled Out: Yes ONO ON/A Chain of Custody Relinquished: ₽Yes □No □N/A 3. TYPS DNO DNA 4. Sampler Name & Signature on COC: Samples Arrived within Hold Time: - TYes □No □N/A 5. Short Hold Time Analysis (<72hr): □Yes □No □N/A 6. Rush Turn Around Time Requested: □Yes ☑No □N/A 7 Sufficient Volume: EYES DNO DNA 8. Correct Containers Used: -ETTES DNO DN/A 9. ÐYas □No -Pace Containers Used: □N/A Containers Intact: - TYPS ONO ON/A 10. Filtered volume received for Dissolved tests ☐Yes ☐No ☑N/A 11. Pres DNo DN/A 12. Sample Labels match COC: -Includes date/time/ID/Analysis Gia) Matrix: All containers needing preservation have been checked. ₽YES □NO □N/A 13. All containers needing preservation are found to be in ₽Yes □No □N/A compliance with EPA recommendation. Initial when Lot # of added Yes No exceptions: VOA, coliform, TOC, O&G, WI-DRO (water) completed preservative Samples checked for dechlorination: □Yes □No ₽NA 14. Headspace in VOA Vials (>6mm): □Yes □No ₩A 15. Trip Blank Present: ☐Yes ☐No □N/A 16. Trip Blank Custody Seals Present □Yes □No -□N/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required? Person Contacted: Date/Time: Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

Date:

October 19, 2018

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates Phase II Pace Project No.: 269557

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Maria Padilla, Georgia Power
Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

(770)734-4200

CERTIFICATIONS

Project: Plant Yates Phase II

Pace Project No.: 269557

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888

North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867

North Carolina Certification #: 42706

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad

Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: Plant Yates Phase II

Pace Project No.: 269557

Lab ID	Sample ID	Matrix	Date Collected	Date Received
269557001	YGWA-47	Water	09/19/18 10:35	09/21/18 09:30
269557002	YGWC-42	Water	09/20/18 12:30	09/21/18 09:30
269557003	YGWC-43	Water	09/20/18 10:55	09/21/18 09:30
269557004	YGWC-44	Water	09/19/18 13:15	09/21/18 09:30
269557005	YGWC-45	Water	09/19/18 14:50	09/21/18 09:30
269557006	YGWC-46	Water	09/19/18 12:00	09/21/18 09:30
269557007	YGWC-49	Water	09/20/18 13:55	09/21/18 09:30
269557008	EB-1-9-20-18	Water	09/20/18 09:55	09/21/18 09:30
269557009	Dup-1	Water	09/20/18 00:00	09/21/18 09:30
269557010	FB-1-9-19-18	Water	09/19/18 14:20	09/21/18 09:30

SAMPLE ANALYTE COUNT

Project: Plant Yates Phase II

Pace Project No.: 269557

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
269557001	YGWA-47	EPA 9315		1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
269557002	YGWC-42	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
269557003	YGWC-43	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
269557004	YGWC-44	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
269557005	YGWC-45	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
269557006	YGWC-46	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
269557007	YGWC-49	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
269557008	EB-1-9-20-18	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
269557009	Dup-1	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
269557010	FB-1-9-19-18	EPA 9315	JJY	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

Project: Plant Yates Phase II

Pace Project No.: 269557

Sample: YGWA-47 Lab ID: 269557001 Collected: 09/19/18 10:35 Received: 09/21/18 09:30 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac CAS No. **Parameters** Units Analyzed Qual EPA 9315 0.343 ± 0.188 (0.282) Radium-226 pCi/L 10/01/18 09:24 13982-63-3 C:96% T:NA EPA 9320 $0.446 \pm 0.520 \quad (1.10)$ Radium-228 pCi/L 10/09/18 16:39 15262-20-1 C:72% T:71% Total Radium Total Radium $0.789 \pm 0.708 \quad (1.38)$ pCi/L 10/12/18 14:44 7440-14-4 Calculation

Project: Plant Yates Phase II

Pace Project No.: 269557

Sample: YGWC-42 Lab ID: 269557002 Collected: 09/20/18 12:30 Received: 09/21/18 09:30 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.918 ± 0.297 (0.264) Radium-226 pCi/L 10/01/18 09:24 13982-63-3 C:94% T:NA EPA 9320 1.02 ± 0.546 (0.986) Radium-228 pCi/L 10/09/18 16:39 15262-20-1 C:70% T:82% Total Radium Total Radium 1.94 ± 0.843 (1.25) pCi/L 10/12/18 14:44 7440-14-4 Calculation

Project: Plant Yates Phase II

Pace Project No.: 269557

Sample: YGWC-43 Lab ID: 269557003 Collected: 09/20/18 10:55 Received: 09/21/18 09:30 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac CAS No. **Parameters** Units Analyzed Qual EPA 9315 2.35 ± 0.550 (0.352) Radium-226 pCi/L 10/01/18 09:24 13982-63-3 C:93% T:NA EPA 9320 0.454 ± 0.447 (0.924) Radium-228 pCi/L 10/09/18 16:39 15262-20-1 C:77% T:81% Total Radium Total Radium 2.80 ± 0.997 (1.28) pCi/L 10/12/18 14:44 7440-14-4 Calculation

Project: Plant Yates Phase II

Pace Project No.: 269557

Sample: YGWC-44 Lab ID: 269557004 Collected: 09/19/18 13:15 Received: 09/21/18 09:30 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.180 ± 0.168 (0.329) Radium-226 pCi/L 10/01/18 09:24 13982-63-3 C:97% T:NA EPA 9320 0.206 ± 0.423 (0.932) Radium-228 pCi/L 10/09/18 16:39 15262-20-1 C:76% T:81% Total Radium Total Radium $0.386 \pm 0.591 \quad (1.26)$ pCi/L 10/12/18 14:44 7440-14-4 Calculation

Project: Plant Yates Phase II

Calculation

Pace Project No.: 269557

Sample: YGWC-45 Lab ID: 269557005 Collected: 09/19/18 14:50 Received: 09/21/18 09:30 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.822 ± 0.208 (0.147) Radium-226 pCi/L 10/01/18 11:05 13982-63-3 C:99% T:NA EPA 9320 0.0174 ± 0.479 (1.10) Radium-228 pCi/L 10/09/18 16:39 15262-20-1 C:72% T:79% Total Radium Total Radium $0.839 \pm 0.687 \quad (1.25)$ pCi/L 10/12/18 14:44 7440-14-4

Project: Plant Yates Phase II

Pace Project No.: 269557

Sample: YGWC-46 Lab ID: 269557006 Collected: 09/19/18 12:00 Received: 09/21/18 09:30 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.441 ± 0.147 (0.154) Radium-226 pCi/L 10/01/18 12:48 13982-63-3 C:95% T:NA 0.706 ± 0.601 (1.23) EPA 9320 Radium-228 pCi/L 10/09/18 16:40 15262-20-1 C:70% T:84% Total Radium Total Radium 1.15 ± 0.748 (1.38) pCi/L 10/12/18 14:44 7440-14-4 Calculation

Project: Plant Yates Phase II

Pace Project No.: 269557

Sample: YGWC-49 PWS:	Lab ID: 26955700 Site ID:	7 Collected: 09/20/18 13:55 Sample Type:	Received:	09/21/18 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.339 ± 0.125 (0.128) C:98% T:NA	pCi/L	10/01/18 12:48	13982-63-3	
Radium-228		0.797 ± 0.585 (1.16) C:78% T:69%	pCi/L	10/09/18 16:40	15262-20-1	
Total Radium	Total Radium Calculation	1.14 ± 0.710 (1.29)	pCi/L	10/12/18 14:44	1 7440-14-4	

Project: Plant Yates Phase II

Pace Project No.: 269557

Sample: EB-1-9-20-18 Lab ID: 269557008 Collected: 09/20/18 09:55 Received: 09/21/18 09:30 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.179 ± 0.104 (0.169) Radium-226 pCi/L 10/01/18 12:48 13982-63-3 C:89% T:NA EPA 9320 0.113 ± 0.556 (1.25) Radium-228 pCi/L 10/09/18 16:40 15262-20-1 C:77% T:79% Total Radium Total Radium 0.292 ± 0.660 (1.42) pCi/L 10/12/18 14:44 7440-14-4 Calculation

Project: Plant Yates Phase II

Pace Project No.: 269557

Sample: Dup-1 PWS:	Lab ID: 26955700 Site ID:	Collected: 09/20/18 00:00 Sample Type:	Received:	09/21/18 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.250 ± 0.113 (0.153) C:94% T:NA	pCi/L	10/01/18 15:56	13982-63-3	
Radium-228		0.807 ± 0.630 (1.27) C:75% T:72%	pCi/L	10/09/18 16:40	15262-20-1	
Total Radium	Total Radium Calculation	1.06 ± 0.743 (1.42)	pCi/L	10/12/18 14:44	7440-14-4	

Project: Plant Yates Phase II

Pace Project No.: 269557

Sample: FB-1-9-19-18 Lab ID: 269557010 Collected: 09/19/18 14:20 Received: 09/21/18 09:30 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.112 ± 0.0765 (0.123) Radium-226 pCi/L 10/01/18 15:56 13982-63-3 C:99% T:NA EPA 9320 0.234 ± 0.629 (1.40) Radium-228 pCi/L 10/09/18 16:40 15262-20-1 C:74% T:74% Total Radium Total Radium $0.346 \pm 0.706 \quad (1.52)$ pCi/L 10/12/18 14:44 7440-14-4 Calculation

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates Phase II

Pace Project No.: 269557

QC Batch: 314442 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 269557001, 269557002, 269557003, 269557004, 269557005, 269557006, 269557007, 269557008, 269557009,

269557010

METHOD BLANK: 1534836 Matrix: Water

Associated Lab Samples: 269557001, 269557002, 269557003, 269557004, 269557005, 269557006, 269557007, 269557008, 269557009,

269557010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.188 ± 0.137 (0.225) C:100% T:NA pCi/L 10/01/18 09:23

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates Phase II

Pace Project No.: 269557

Associated Lab Samples:

QC Batch: 314657 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228 269557001, 269557002, 269557003, 269557004, 269557005, 269557006, 269557007, 269557008, 269557009,

269557010

METHOD BLANK: 1535684 Matrix: Water

269557001, 269557002, 269557003, 269557004, 269557005, 269557006, 269557007, 269557008, 269557009, Associated Lab Samples:

269557010

Parameter Act ± Unc (MDC) Carr Trac Units Qualifiers Analyzed

Radium-228 0.758 ± 0.397 (0.700) C:79% T:81% pCi/L 10/09/18 12:59

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates Phase II

Pace Project No.: 269557

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 10/19/2018 01:30 PM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Phase II

Pace Project No.: 269557

Date: 10/19/2018 01:30 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
269557001	YGWA-47	EPA 9315	314442		
269557002	YGWC-42	EPA 9315	314442		
269557003	YGWC-43	EPA 9315	314442		
269557004	YGWC-44	EPA 9315	314442		
269557005	YGWC-45	EPA 9315	314442		
269557006	YGWC-46	EPA 9315	314442		
269557007	YGWC-49	EPA 9315	314442		
269557008	EB-1-9-20-18	EPA 9315	314442		
269557009	Dup-1	EPA 9315	314442		
269557010	FB-1-9-19-18	EPA 9315	314442		
269557001	YGWA-47	EPA 9320	314657		
269557002	YGWC-42	EPA 9320	314657		
269557003	YGWC-43	EPA 9320	314657		
269557004	YGWC-44	EPA 9320	314657		
269557005	YGWC-45	EPA 9320	314657		
269557006	YGWC-46	EPA 9320	314657		
269557007	YGWC-49	EPA 9320	314657		
269557008	EB-1-9-20-18	EPA 9320	314657		
269557009	Dup-1	EPA 9320	314657		
269557010	FB-1-9-19-18	EPA 9320	314657		
269557001	YGWA-47	Total Radium Calculation	316531		
269557002	YGWC-42	Total Radium Calculation	316531		
269557003	YGWC-43	Total Radium Calculation	316531		
269557004	YGWC-44	Total Radium Calculation	316531		
269557005	YGWC-45	Total Radium Calculation	316531		
269557006	YGWC-46	Total Radium Calculation	316531		
269557007	YGWC-49	Total Radium Calculation	316531		
269557008	EB-1-9-20-18	Total Radium Calculation	316531		
269557009	Dup-1	Total Radium Calculation	316531		
269557010	FB-1-9-19-18	Total Radium Calculation	316531		

Constitution of the Consti

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092. (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

OF

PAGE:

5 - NaOH/ZnAc, <6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen 2 - H₂SO₄, ≤6°C 4 - NaOH, <6°C REMARKS/ADDITIONAL INFORMATION P - PRODUCT PRESERVATION 1 - HCI, ≤6°C SL - SLUDGE SD - SOLID dinor-3 3 - HNO3 S - SOIL A - AIR FOR LAB USE ONLY *MATRIX CODES: JO#: 269557 Rose DRINKING WATER SURFACE WATER GROUNDWATER STORM WATER MW - WASTEWATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE Entered into LIMS: Tracking #: S - STERILE O - OTHER V - VOA VIAL P - PLASTIC W- WATER 日かけら LAB#: GW -DW-S 0932 BAL - 0 N D M B M C FS OTHER DATE/TIME: DATE/TIME: CLIENT CLIENT C ANALYSIS REQUESTED COURIER # of Coolers α 4 CW-846 9315/9320) 2 N ۵ Ţ 2 Radium 226 & 228 USPS EPA 300.0 & SM 2540C) ۵. CI, F, SQ, & TDS SAMPLE SHIPPED VIA UPS FED-EX Metals App. III & IV (EPA 6020/7470) RELINQUISHED BY: RELINQUISHED BY ۵. ONTAINER TYPE: و # of I J - Z H R S T T 7 J 7 1 J FB-1-9-19-18 laburch@southernco.com EB-1-9-12-18 1800 SAMPLE IDENTIFICATION 7600-42 16 WC- 43 45 46 WC - 44 16WA-47 どらいて - せし からつのつか Heath McCorkle 76W6-Dup-DATE/TIME: Maria Padilla Plant Yates - Phase 2 Facility Wells Phase 2 CCR DATE CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER PO# Z 2 $\alpha < \alpha$ 0 2 0 MATRIX CODE REQUESTED COMPLETION DATE: ? ? 3 3 3 G. 3 ₹ (3) BE ⋛ 241 Ralph McGill Blvd SE B10185 3 Joju Abraham SAMPLED BY AND TITLE PROJECT NAME/STATE: 1230 9-19-18 1450 2590 Poss 1355 02H Collection 9-19-18 1315 1035 9-19-18 1206 TIME Atlanta, GA 30308 CLIENT NAME Georgia Power 3-00-18 RECEIVED BY 404-506-7239 9-19-18 9.20-12 91-02-6 REPORT TO: 4-02-18 81-02-6 Collection DATE 9.19-18 PROJECT #

Sample Condition Upon Receipt . Pace Analytical Client Name: TA Project # WO#: 269557 Courier: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: Due Date: 10/19/18 Custody Seal on Cooler/Box Present: yes no Seals intact: yes CLIENT: GAPower-CCR Packing Material: Bubble Wrap Bubble Bags None Other Type of Ice: / Wet Samples on ice, cooling process has begun Thermometer Used Blue None Date and Initials of person examining contents: 2/2//8 Biological Tissue is Frozen: Yes No **Cooler Temperature** Temp should be above freezing to 6° Comments: es ONO ON/A 1 Chain of Custody Present: - □Yes □No □N/A 2 Chain of Custody Filled Out: EYES DNO DNA 3. Chain of Custody Relinquished: Tyes DNo DNA 4. Sampler Name & Signature on COC: Samples Arrived within Hold Time: -Dyes Ono On/A 5. □Yes □No □N/A 6. Short Hold Time Analysis (<72hr): Dyes DNo DNA 7. Rush Turn Around Time Requested: Eyes ONO ON/A 8. Sufficient Volume: -EYes □No Correct Containers Used: □N/A 9. -EYES DNO □N/A -Pace Containers Used: -DYES DNO DNA 10. Containers Intact: □Yes □No ☑NA 11. Filtered volume received for Dissolved tests - dyes □No □N/A 12. Sample Labels match COC: 614 -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. -EYÉS □NO □N/A All containers needing preservation are found to be in DYES DNO DNA compliance with EPA recommendation. Initial when Lot # of added TYPS DNO exceptions: VOA, coliform, TOC, O&G, WI-DRO (water) completed preservative □Yes □No ÆMA Samples checked for dechlorination: 14. TYPS THO PATA 15. Headspace in VOA Vials (>6mm): TYPS TO THE THE Trip Blank Present: DYES DNO -DN/A Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased):_ Client Notification/ Resolution: Field Data Required? Person Contacted: Date/Time: Comments/ Resolution: Project Manager Review: Date:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

April 07, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates- Pond A Pace Project No.: 2616762

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on March 29, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

CERTIFICATIONS

Project: Plant Yates- Pond A

Pace Project No.: 2616762

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

Georgia DW Microbiology Certification #: 812

North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Plant Yates- Pond A

Pace Project No.: 2616762

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2616762001	YGWC-49	Water	03/28/19 10:30	03/29/19 10:10

SAMPLE ANALYTE COUNT

Project: Plant Yates- Pond A

Pace Project No.: 2616762

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2616762001	YGWC-49	EPA 6020B	CSW	2
		SM 2540C	RLC	1
		EPA 300.0	RLC	3

ANALYTICAL RESULTS

Project: Plant Yates- Pond A

Pace Project No.: 2616762

Date: 04/07/2019 01:58 PM

Sample: YGWC-49	Lab ID:	2616762001	Collecte	d: 03/28/19	10:30	Received: 03/	29/19 10:10 Ma	atrix: Water		
			Report							
Parameters — — — — — — — — — — — — — — — — — — —	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A				
Boron	ND	mg/L	0.040	0.0039	1	04/03/19 11:25	04/04/19 22:43	7440-42-8		
Calcium	11.3J	mg/L	25.0	0.69	50	04/03/19 11:25	04/04/19 22:49	7440-70-2	D3	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C							
Total Dissolved Solids	164	mg/L	25.0	10.0	1		04/03/19 18:42			
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0							
Chloride	4.4	mg/L	0.25	0.024	1		04/05/19 03:15	16887-00-6		
Fluoride	ND	mg/L	0.30	0.029	1		04/05/19 03:15	16984-48-8		
Sulfate	82.8	mg/L	10.0	0.17	10		04/06/19 11:06	14808-79-8		

QUALITY CONTROL DATA

Project: Plant Yates- Pond A

Pace Project No.: 2616762

Date: 04/07/2019 01:58 PM

QC Batch: 25683 QC Batch Method: EPA 3005A

Associated Lab Samples: 2616762001

Analysis Method: EPA 6020B Analysis Description: 6020B MET

METHOD BLANK: 115845 Matrix: Water

Associated Lab Samples: 2616762001

Blank Reporting Limit MDL Parameter Units Result Qualifiers Analyzed Boron ND 0.040 0.0039 04/04/19 18:37 mg/L Calcium mg/L ND 0.50 0.014 04/04/19 18:37

LABORATORY CONTROL SAMPLE: 115846 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 1 1.0 100 80-120 mg/L Calcium mg/L 0.97 97 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 115847 115848 MSD MS 2616761004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 20 Boron mg/L 0.89 1.8 1.8 94 89 75-125 2 Calcium mg/L 54.2 1 1 58.6 54.4 439 16 75-125 7 20 M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Plant Yates- Pond A

Pace Project No.: 2616762

QC Batch: 25701 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 2616762001

LABORATORY CONTROL SAMPLE: 115944

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 400 399 100 84-108

SAMPLE DUPLICATE: 115945

Date: 04/07/2019 01:58 PM

2616761001 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** 170 167 2 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: Plant Yates- Pond A

Pace Project No.: 2616762

QC Batch: 25766 QC Batch Method: EPA 300.0 Analysis Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

Associated Lab Samples: 2616762001

METHOD BLANK: 116236

Matrix: Water

Associated Lab Samples:

Date: 04/07/2019 01:58 PM

2616762001

Parameter	Units	Blank Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.053J	0.25	0.024	04/04/19 18:36	
Fluoride	mg/L	ND	0.30	0.029	04/04/19 18:36	
Sulfate	mg/L	0.060J	1.0	0.017	04/04/19 18:36	

LABORATORY CONTROL SAMPLE:	116237				
		Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits

Chloride mg/L 10 10.1 101 90-110 Fluoride mg/L 10 10.1 101 90-110 Sulfate mg/L 10 9.9 99 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 116238 116239

Parameter	Units	2616760001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	1.4	10	10	11.2	11.4	99	100	90-110	1	15	
Fluoride	mg/L	ND	10	10	9.8	9.9	98	99	90-110	1	15	
Sulfate	mg/L	17.7	10	10	26.1	26.2	84	85	90-110	0	15	M1

MATRIX SPIKE SAMPLE:	116240						
		2616760002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	4.4	10	14.7	103	90-110	
Fluoride	mg/L	ND	10	10.1	101	90-110	
Sulfate	ma/L	34.3	10	41.3	69	90-110 M	11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates- Pond A

Pace Project No.: 2616762

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/07/2019 01:58 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates- Pond A

Pace Project No.: 2616762

Date: 04/07/2019 01:58 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2616762001	YGWC-49	EPA 3005A	25683	EPA 6020B	25758
2616762001	YGWC-49	SM 2540C	25701		
2616762001	YGWC-49	EPA 300.0	25766		

CHAIN OF CUSTODY RECORD / Pace Analytical

fical Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200: FAX (770) 734-4201

Р

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozer 2 - H₂SO_{4,} ≤6°C 3 - HNO₃ REMARKS/ADDITIONAL INFORMATION 4 - NaOH, ≤6°C **PRESERVATION** P. PRODUCT 1. HCl, ≤6°C SL - SLUDGE SD - SOLID L- LIQUID S-SOIL A- AIR *MATRIX CODES: FOR LAB USE ON! **JO#:2616762** DW - DRINKING WATER SW - SURFACE WATER GW - GROUNDWATER ST - STORM WATER MW - WASTEWATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE Entered into LIMS V - VOA VIAL S - STERILE P - PLASTIC 0 - OTHER MATER racking **LAB#**: 2616762 ≺ @ ZJEMWK -.0 1616 OTHER 3-29-19 DATE/TIME: CHENT ANALYSIS REQUESTED COURIER # of Coolens USPS **Not Present** (EPA 300.0 & SM 2540C) ٩ SO, & TDS SAMPLE SHIPPED VIA: UPS FED-EX CI, F, RELINGUISHED DY RELINQUISHED BY: Calcium Boron • Metals App. III (EPA 6020/7470) CONTAINER TYPE: ۲ jo# OOZHK **- 2 3 2 6 9** 000 DATECTIME: (Sec a bought SAMPLE IDENTIFICATION YGWC-49 6)[5]Xe CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER: Plant Yates - Pond A P0 # ပ္ပ < ∞ ¥ ≥ 0 REQUESTED COMPLETION DATE: MATRIX CODE 3 241 Ralph McGill Blvd SE B10185 Joju Abraham UNGLED BY AND TITLE PROJECT NAME/STATE: Collection TIME 1030 BYLAB Atlanta, GA 30308 CLIENT NAME Georgia Power 404-506-7239 REPORT TO: PROJECT # Collection DATE 3/28/19

2019-03 - Yates PH 2 - Blank COCs .xlsx

= **64**11 of 12 **64**

	Sa	mple	: Con	dition	Upon Receipt		1
Face Analy	<i>rtical</i> Client Name	e:	GLA	* <i>f</i>	owere	Project #	
Courier: Fed E	x 🗌 UPS 🗌 USPS 📈 Clie	ent [] Comn	nercial	Pace Other	WO#:26	
	ooler/Box Present: yes		no	Seals	intact:	PM: BM	Due Date: 04/05/1
1	☐ Bubble Wrap ☐ Bubble		l			CLIENT: GAPou	er-cor
Thermometer Use	D A				Blue None	Samples on ice. co	oling process has begun
Cooler Temperatu Temp should be abov	re <u>0.3</u>			_	is Frozen: Yes No Comments:		ls of person examining
Chain of Custody P	resent:	, <u>D</u> Y	es 🗆 No	□N/A	1.		,
Chain of Custody F	illed Out:	P	es ⊡No	DN/A	2.		
Chain of Custody R	elinquished:	2h	es □No	□N/A	3.	: !	
Sampler Name & S	ignature on COC:	£	es □No	□N/A	4.		
Samples Arrived wi	thin Hold Time:	JEN	es 🗆 No	DN/A	5.		
Short Hold Time A	nalysis (<72hr):		es ⊡ no	7 □N/A	6.		
Rush Turn Around	Time Requested:		es 🗗 No	□ N/A	7.		
Sufficient Volume:		, L	ës □No	DN/A	8.		
Correct Containers	Used:	Æ	es □No	DN/A	9.		
-Pace Container	s Used:	1	es 🗆 No	□N/A			
Containers Intact:		12	es □No	DN/A	10.		
Filtered volume rec	eived for Dissolved tests		es 🗆 No	-BMA	11.		
Sample Labels mat		المتلك	es Ond	DN/A	12.		
All containers needing	reservation have been checked.	_B1	es □No	□N/A	13.		
All containers needing compliance with EPA	preservation are found to be in ecommendation.	Æ	es □No	o □n/a			
exceptions: VOA, colifor	m, TOC, O&G, WI-DRO (water)		es 🔎)	Initial when completed	Lot # of added preservative	
Samples checked for	or dechlorination:		es □No		14.		
Headspace in VOA	Vials (>6mm):	<u></u>	es 🗆 No		15.		
Trip Blank Present:			es 🗆 No	⊿ N/A	16.		
Trip Blank Custody	Seals Present		es 🗆 No	DHA			
Pace Trip Blank Lot	# (if purchased):	 .			<u> </u>		
Client Notification	Resolution:					Field Data Require	d? Y / N
Person Cont	acted:			Date/	Time:		
Comments/ Reso	ution:						
		·					
Project Manage	Review:					Date:	
Note: Whenever then Certification Office (i.	e is a discrepancy affecting North e out of hold, incorrect preservati	Carolir ve, out	a compli of temp,	ance sar	nples, a copy of this for toontainers)	m will be sent to the Nor	th Carolina DEHNR

Page 12 of 12 F-ALLC003rev.3, 11September2006

APPENDIX B AP-A DATA SUMMARY TABLES

Plant Yates Ash Pond A Analytical Data Summary

						We	II ID			
	Substance	MCL/ (SMCL)	YGWC-49	YGWC-49	YGWC-49	YGWC-49	YGWC-49	YGWC-49	YGWC-49	YGWC-49
		(5.0.62)	9/1/2016	11/15/2016	2/27/2017	5/9/2017	7/13/2017	10/11/2017	4/4/2018	9/20/2018
	Boron	N/R	ND (0.0113 J)	ND (0.0074 J)	ND	ND	ND (0.0093 J)	ND	ND (0.0041 J)	ND (0.0042 J)
=	Calcium	N/R	13.9	13.5	12.5	14.4	14.1	12.4	ND	ND (12.0 J)
Σ	Chloride	(250)	5.3	5.8	4.6	5.3	4.7	5.8	4.3	4.8
APPENDIX III	Fluoride	4	ND (0.09 J)	ND (0.16 J)	ND (0.06 J)	ND (0.05 J)	ND	ND (0.14 J)	ND	ND
Α	Sulfate	(250)	95	94	84	91	88	86	76.5	84.1
	TDS	(500)	228	211	382	154	192	177	174	186
	Antimony	0.006	ND	ND	ND (0.0011 J)	ND	ND	ND	ND	ND
	Arsenic	0.01	ND	ND	ND	ND	ND	ND (0.0006 J)	ND	ND (0.0010 J)
	Barium	2	0.0770	0.0772	0.0888	0.0792	0.0839	0.0780	0.074	0.074
	Beryllium	0.004	ND (0.0001 J)	ND (0.0001 J)	ND (0.0001 J)	ND (0.0001 J)	ND (0.0001 J)	ND (0.0001 J)	ND	ND (0.00011 J)
	Cadmium	0.005	ND	ND	ND (0.00007 J)	ND	ND	ND	ND	ND
≥	Chromium	0.1	ND (0.0013 J)	ND (0.0014 J)	ND (0.0016 J)	ND (0.0017 J)	ND (0.0019 J)	ND (0.0014 J)	ND	ND (0.0017 J)
ΣI	Cobalt	N/R	ND	ND (0.0006 J)	ND (0.0008 J)	ND	ND (0.0005 J)	ND (0.0006 J)	ND	ND
APPENDIX IV	Lead	0.015	ND	ND	ND	ND	ND	ND	ND	ND
Α	Lithium	N/R	ND (0.0034 J)	ND (0.0044 J)	ND (0.0036 J)	ND (0.0038 J)	ND (0.0036 J)	ND (0.0036 J)	ND (0.0039 J)	ND (0.0036 J)
	Mercury	0.002	ND	ND	ND	ND	ND	ND	ND	ND (0.000061 J)
	Molybdenum	N/R	ND	ND	ND (0.0007 J)	ND	ND	ND	ND	ND
	Radium	5	1.20	0.645 U	0.244 U	0.519 U	0.500 U	1.41	0.442 U	1.14 U
	Selenium	0.05	ND (0.0086 J)	ND (0.0056 J)	ND (0.0098 J)	ND (0.0076 J)	ND (0.0093 J)	ND (0.0089 J)	ND	ND (0.0081 J)
	Thallium	0.002	ND	ND	ND (0.00009 J)	ND	ND	ND	ND	ND

Notes:

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Plant Yates Ash Pond A Analytical Data Summary

				Well ID									
	Substance MCL/ (SMCL)		YGWC-49										
		(552)	3/28/2019										
	Boron	N/R	ND										
=	Calcium	N/R	ND (11.3 J)										
PENDIX	Chloride	(250)	4.4										
PEN	Fluoride	4	ND										
API	Sulfate	(250)	82.8										
	TDS	(500)	164										

Notes:

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

APPENDIX C STATISTICAL ANALYSES

Page 1

AP-3, B-B' 100% ND

Date: 5/13/2019 2:18 PM

Plant Yates Client: Southern Company Data: Yates AP-3, B-B'

Antimony (mg/L)

YGWC-23S, YGWC-33S

Arsenic (mg/L)

YGWC-23S, YGWC-24S

Cadmium (mg/L)

YGWC-24S

Cobalt (mg/L)

YGWC-23S, YGWC-24S

Lead (mg/L)

YGWC-24S

Lithium (mg/L)

YGWC-24S

Mercury (mg/L)

YGWC-24S, YGWC-33S, YGWC-36

Molybdenum (mg/L)

YGWC-23S, YGWC-24S

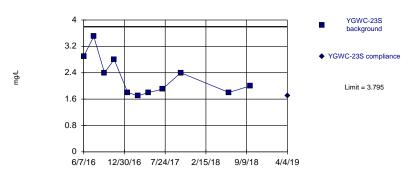
Selenium (mg/L)

YGWC-24S

Thallium (mg/L)

YGWC-23S, YGWC-24S, YGWC-36

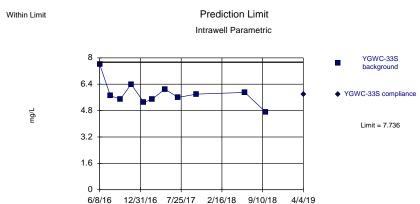
Tolerance Limit


		Plant Yates 0	Client: Southern Co	mpany Data: Y	'ates	Printed 6/	28/2019, 10:4	6 AM		
Constituent	<u>Well</u>	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.0015	n/a	n/a	n/a	88	93.18	n/a	0.01096	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.0025	n/a	n/a	n/a	104	84.62	n/a	0.004822	NP Inter(NDs)
Barium (mg/L)	n/a	0.0294	n/a	n/a	n/a	104	1.923	n/a	0.004822	NP Inter(normal
Beryllium (mg/L)	n/a	0.0015	n/a	n/a	n/a	104	87.5	n/a	0.004822	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.00125	n/a	n/a	n/a	104	96.15	n/a	0.004822	NP Inter(NDs)
Cobalt (mg/L)	n/a	0.013	n/a	n/a	n/a	104	77.88	n/a	0.004822	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	n/a	6.92	n/a	n/a	n/a	104	0	n/a	0.004822	NP Inter(normal
Fluoride (mg/L)	n/a	0.32	n/a	n/a	n/a	112	87.5	n/a	0.003199	NP Inter(NDs)
Lead (mg/L)	n/a	0.0025	n/a	n/a	n/a	88	93.18	n/a	0.01096	NP Inter(NDs)
Lithium (mg/L)	n/a	0.025	n/a	n/a	n/a	101	25.74	n/a	0.005625	NP Inter(normal
Selenium (mg/L)	n/a	0.005	n/a	n/a	n/a	104	90.38	n/a	0.004822	NP Inter(NDs)
Thallium (mg/L)	n/a	-0.0005	n/a	n/a	n/a	89	100	n/a	0.01041	NP Inter(NDs)

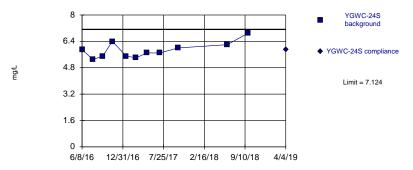
Intrawell Prediction Limit

		Plant Y	ates Client: So	uthern Company	Data:	Yates	Printed 6/28/	2019, 9:39 AM	М	
Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Trans	<u>Alpha</u>	Method
Chloride (mg/L)	YGWC-23S	3.795	4/4/2019	1.7	No	11	0	No	0.0009403	Param Intra 1 of 2
Chloride (mg/L)	YGWC-24S	7.124	4/4/2019	5.9	No	11	0	No	0.0009403	Param Intra 1 of 2
Chloride (mg/L)	YGWC-33S	7.736	4/4/2019	5.8	No	11	0	No	0.0009403	Param Intra 1 of 2
Chloride (mg/L)	YGWC-36	7.368	4/4/2019	5.4	No	11	0	No	0.0009403	Param Intra 1 of 2

Within Limit

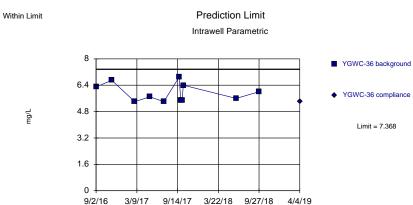


Background Data Summary: Mean=2.273, Std. Dev.=0.585, n=11. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8639, critical = 0.792. Kappa = 2.602 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.009403.


Constituent: Chloride Analysis Run 6/28/2019 9:39 AM View: AP-3, B-6' Intrawell PL
Plant Yates Client: Southern Company Data: Yates

Sanitas™ v.9.5.32 Sanitas software licensed to ACC. UG

Background Data Summary: Mean=5.827, Std. Dev.=0.7336, n=11. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8957, critical = 0.792. Kappa = 2.602 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=5.864, Std. Dev.=0.4843, n=11. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9228, critical = 0.792. Kappa = 2.602 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0099403.

Constituent: Chloride Analysis Run 6/28/2019 9:39 AM View: AP-3, B-B' Intrawell PL
Plant Yates Client: Southern Company Data: Yates

Sanitas™ v.9.5.32 Sanitas software licensed to ACC. UG

Background Data Summary: Mean=5.945, Std. Dev.=0.5466, n=11. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8749, critical = 0.792. Kappa = 2.602 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

Constituent: Chloride (mg/L) Analysis Run 6/28/2019 9:40 AM View: AP-3, B-B` Intrawell PL Plant Yates Client: Southern Company Data: Yates

	YGWC-23S	YGWC-23S
6/7/2016	2.9	
7/28/2016	3.5	
9/20/2016	2.4	
11/8/2016	2.8	
1/16/2017	1.8	
3/9/2017	1.7	
5/2/2017	1.8	
7/10/2017	1.9	
10/11/2017	2.4	
6/12/2018	1.8	
9/27/2018	2	
4/4/2019		1.7

Constituent: Chloride (mg/L) Analysis Run 6/28/2019 9:40 AM View: AP-3, B-B` Intrawell PL
Plant Yates Client: Southern Company Data: Yates

	YGWC-24S	YGWC-24S
6/8/2016	5.9	
8/1/2016	5.3	
9/20/2016	5.5	
11/8/2016	6.4	
1/17/2017	5.5	
3/8/2017	5.4	
5/2/2017	5.7	
7/7/2017	5.7	
10/5/2017	6	
6/12/2018	6.2	
9/26/2018	6.9	
4/4/2019		5.9

Constituent: Chloride (mg/L) Analysis Run 6/28/2019 9:40 AM View: AP-3, B-B` Intrawell PL Plant Yates Client: Southern Company Data: Yates

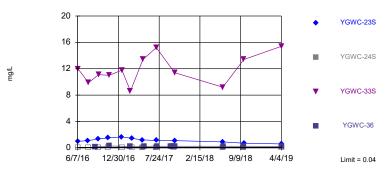
	YGWC-33S	YGWC-33S
6/8/2016	7.6	
8/1/2016	5.7	
9/21/2016	5.5	
11/14/2016	6.4	
1/17/2017	5.3	
3/1/2017	5.5	
5/3/2017	6.1	
7/10/2017	5.6	
10/11/2017	5.8	
6/12/2018	5.9	
9/26/2018	4.7	
4/4/2019		5.8

Constituent: Chloride (mg/L) Analysis Run 6/28/2019 9:40 AM View: AP-3, B-B` Intrawell PL Plant Yates Client: Southern Company Data: Yates

	YGWC-36	YGWC-36
9/2/2016	6.3	
11/14/2016	6.7	
2/28/2017	5.4	
5/9/2017	5.7	
7/13/2017	5.4	
9/22/2017	6.9	
9/29/2017	5.5	
10/6/2017	5.5	
10/11/2017	6.4	
6/13/2018	5.6	
9/26/2018	6	
4/4/2019		5.4

Interwell Prediction Limit

			Plant Yates CI	lient: Southern Co	mpany Data:	Yates	Printed	6/28/2019,	10:29 AM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Trans	<u>Alpha</u>	Method
Boron (mg/L)	YGWC-23S	0.05	n/a	4/4/2019	0.6	Yes	90	53.33	n/a	0.0002368	NP Inter (NDs) 1 of 2
Boron (mg/L)	YGWC-33S	0.05	n/a	4/4/2019	15.4	Yes	90	53.33	n/a	0.0002368	NP Inter (NDs) 1 of 2
Boron (mg/L)	YGWC-36	0.05	n/a	4/4/2019	0.22	Yes	90	53.33	n/a	0.0002368	NP Inter (NDs) 1 of 2
Calcium (mg/L)	YGWC-33S	37	n/a	4/4/2019	163	Yes	96	0	n/a	0.0002104	NP Inter (normality) 1 of 2
Fluoride (mg/L)	YGWC-33S	0.32	n/a	4/4/2019	0.57	Yes	112	87.5	n/a	0.000158	NP Inter (NDs) 1 of 2
pH (S.U.)	YGWC-33S	7.67	4.86	4/4/2019	3.88	Yes	112	0	n/a	0.000316	NP Inter (normality) 1 of 2
Sulfate (mg/L)	YGWC-23S	18.27	n/a	4/4/2019	27.9	Yes	96	10.42	x^(1/3)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	YGWC-33S	18.27	n/a	4/4/2019	847	Yes	96	10.42	x^(1/3)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	YGWC-36	18.27	n/a	4/4/2019	119	Yes	96	10.42	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (m	YGWC-33S	189.8	n/a	4/4/2019	1260	Yes	96	0	sqrt(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (m	YGWC-36	189.8	n/a	4/4/2019	240	Yes	96	0	sqrt(x)	0.0009403	Param Inter 1 of 2

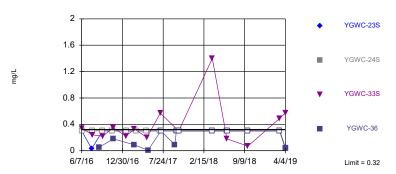

Interwell Prediction Limit

		Plant	Yates Client:	Southern Cor	mpany Data:	Yates	Printe	ed 5/13/20	19, 2:58 PM		
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Boron (mg/L)	YGWC-23S	0.04	n/a	4/4/2019	0.6	Yes	90	53.33	n/a	0.0002379	NP Inter (NDs) 1 of 2
Boron (mg/L)	YGWC-24S	0.04	n/a	4/4/2019	0.04ND	No	90	53.33	n/a	0.0002379	NP Inter (NDs) 1 of 2
Boron (mg/L)	YGWC-33S	0.04	n/a	4/4/2019	15.4	Yes	90	53.33	n/a	0.0002379	NP Inter (NDs) 1 of 2
Boron (mg/L)	YGWC-36	0.04	n/a	4/4/2019	0.22	Yes	90	53.33	n/a	0.0002379	NP Inter (NDs) 1 of 2
Calcium (mg/L)	YGWC-23S	37	n/a	4/4/2019	3.7	No	96	0	n/a	0.0002113	NP Inter (normality) 1 of 2
Calcium (mg/L)	YGWC-24S	37	n/a	4/4/2019	1.9	No	96	0	n/a	0.0002113	NP Inter (normality) 1 of 2
Calcium (mg/L)	YGWC-33S	37	n/a	4/4/2019	163	Yes	96	0	n/a	0.0002113	NP Inter (normality) 1 of 2
Calcium (mg/L)	YGWC-36	37	n/a	4/4/2019	16.9	No	96	0	n/a	0.0002113	NP Inter (normality) 1 of 2
Fluoride (mg/L)	YGWC-23S	0.32	n/a	4/4/2019	0.049	No	112	87.5	n/a	0.0001585	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	YGWC-24S	0.32	n/a	4/4/2019	0.033	No	112	87.5	n/a	0.0001585	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	YGWC-33S	0.32	n/a	4/4/2019	0.57	Yes	112	87.5	n/a	0.0001585	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	YGWC-36	0.32	n/a	4/4/2019	0.043	No	112	87.5	n/a	0.0001585	NP Inter (NDs) 1 of 2
pH (S.U.)	YGWC-23S	7.67	4.86	4/4/2019	5.64	No	112	0	n/a	0.000317	NP Inter (normality) 1 of 2
pH (S.U.)	YGWC-24S	7.67	4.86	4/4/2019	5.66	No	112	0	n/a	0.000317	NP Inter (normality) 1 of 2
pH (S.U.)	YGWC-33S	7.67	4.86	4/4/2019	3.88	Yes	112	0	n/a	0.000317	NP Inter (normality) 1 of 2
pH (S.U.)	YGWC-36	7.67	4.86	4/4/2019	5.74	No	112	0	n/a	0.000317	NP Inter (normality) 1 of 2
Sulfate (mg/L)	YGWC-23S	16.36	n/a	4/4/2019	27.9	Yes	96	10.42	x^(1/3)	0.00188	Param Inter 1 of 2
Sulfate (mg/L)	YGWC-24S	16.36	n/a	4/4/2019	0.29	No	96	10.42	x^(1/3)	0.00188	Param Inter 1 of 2
Sulfate (mg/L)	YGWC-33S	16.36	n/a	4/4/2019	847	Yes	96	10.42	x^(1/3)	0.00188	Param Inter 1 of 2
Sulfate (mg/L)	YGWC-36	16.36	n/a	4/4/2019	119	Yes	96	10.42	x^(1/3)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	YGWC-23S	179.8	n/a	4/4/2019	85	No	96	0	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	YGWC-24S	179.8	n/a	4/4/2019	63	No	96	0	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	YGWC-33S	179.8	n/a	4/4/2019	1260	Yes	96	0	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	YGWC-36	179.8	n/a	4/4/2019	240	Yes	96	0	sqrt(x)	0.00188	Param Inter 1 of 2

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Exceeds Limit: YGWC-23S, YGWC-33S, YGWC-36

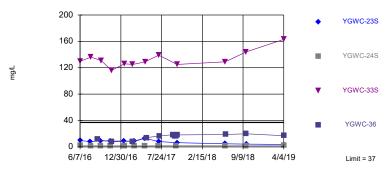
Prediction Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 90 background values. 53.33% NDs. Annual per-constituent alpha = 0.001902. Individual comparison alpha = 0.0002379 (1 of 2). Comparing 4 points to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 5/13/2019 2:56 PM View: AP-3, B-B` Interwell PL
Plant Yates Client: Southern Company Data: Yates

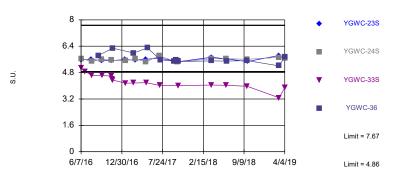
Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Exceeds Limit: YGWC-33S Prediction Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 112 background values. 87.5% NDs. Annual per-constituent alpha = 0.001267. Individual comparison alpha = 0.001585 (1 of 2). Comparing 4 points to limit. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

Exceeds Limit: YGWC-33S Prediction Limit
Interwell Non-parametric

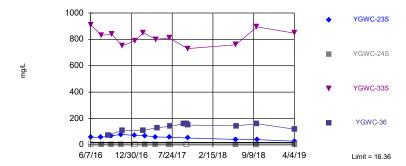


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 96 background values. Annual per-constituent alpha = 0.001689. Individual comparison alpha = 0.0002113 (1 of 2). Comparing 4 points to limit. Seasonality was not detected with 95% confidence.

Constituent: Calcium Analysis Run 5/13/2019 2:56 PM View: AP-3, B-B` Interwell PL
Plant Yates Client: Southern Company Data: Yates

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

Exceeds Limits: YGWC-33S Prediction Limit
Interwell Non-parametric

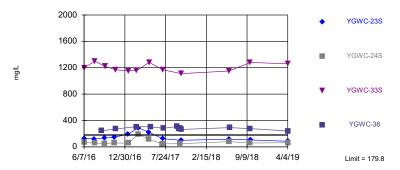


Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 112 background values. Annual perconstituent alpha = 0.002535. Individual comparison alpha = 0.000317 (1 of 2). Comparing 4 points to limit. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

Exceeds Limit: YGWC-23S, YGWC-33S, YGWC-36

Prediction Limit
Interwell Parametric



Background Data Summary (based on cube root transformation): Mean=1.5, Std. Dev.=0.5926, n=96, 10.42% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9692, critical = 0.965. Kappa = 1.752 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

Constituent: Sulfate Analysis Run 5/13/2019 2:57 PM View: AP-3, B-B` Interwell PL
Plant Yates Client: Southern Company Data: Yates

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

Exceeds Limit: YGWC-33S, YGWC-36 Prediction Limit
Interwell Parametric

Background Data Summary (based on square root transformation): Mean=9.549, Std. Dev.=2.202, n=96. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.98, critical = 0.965. Kappa = 1.752 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

Constituent: Total Dissolved Solids Analysis Run 5/13/2019 2:57 PM View: AP-3, B-B` Interwell PL
Plant Yates Client: Southern Company Data: Yates

Constituent: Boron (mg/L) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL

Plant Yates Client: Southern Company Data: Yates

6/2/2016	YGWA-5I (bg) <0.04	YGWA-4I (bg) <0.04	YGWA-18I (bg)	YGWC-23S	YGWA-21I (bg)	YGWA-20S (bg)	YGWC-33S	YGWC-24S	YGWA-5D (bg) <0.05 (o)
6/6/2016			<0.04						
6/7/2016				0.99	<0.04	<0.04			
6/8/2016							12	<0.04	
7/26/2016	<0.04	0.0047 (J)							0.0052 (J)
7/27/2016			<0.04			<0.04			
7/28/2016				1.09	<0.04 (*)				
8/1/2016							9.89	<0.04 (*)	
9/2/2016									
9/14/2016	0.01 (J)	<0.04							0.0071 (J)
9/16/2016									
9/19/2016			<0.04		<0.04	<0.04			
9/20/2016				1.35				<0.04 (*)	
9/21/2016							11.1		
11/2/2016		<0.04				<0.04			<0.1 (o)
11/3/2016			<0.04		<0.04				
11/4/2016	<0.04								
11/8/2016				1.5				<0.04 (*)	
11/14/2016							11		
1/11/2017			<0.04						
1/12/2017	<0.04								0.0076 (J)
1/13/2017		<0.04			<0.04	<0.04			
1/16/2017				1.67					
1/17/2017							11.8	<0.04 (*)	
2/28/2017									
3/1/2017			<0.04				8.61		
3/2/2017									
3/6/2017		<0.04			<0.04	<0.04			
3/7/2017	<0.04								0.0089 (J)
3/8/2017								<0.04	
3/9/2017				1.44					
4/26/2017			<0.04		<0.04	<0.04			
5/1/2017		<0.04							0.0061 (J)
5/2/2017	<0.04			1.2				0.0099 (J)	
5/3/2017							13.4		
5/9/2017									
6/27/2017	<0.04								0.0079 (J)
6/28/2017			<0.04						
6/29/2017		<0.04			<0.04	<0.04			
7/7/2017								0.0076 (J)	
7/10/2017				1.12			15.2		
7/13/2017									
9/22/2017									
9/29/2017									
10/3/2017	<0.04				<0.04				0.0094 (J)
10/4/2017						<0.04			
10/5/2017		<0.04	<0.04					<0.04	
10/6/2017									
10/11/2017				1.09			11.4		
6/5/2018					0.0092 (J)				
6/6/2018						0.0049 (J)			0.0098 (J)
6/7/2018	<0.04	0.0045 (J)	<0.04						

Constituent: Boron (mg/L) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL

Plant Yates Client: Southern Company Data: Yates

	YGWA-5I (bg)	YGWA-4I (bg)	YGWA-18I (bg)	YGWC-23S	YGWA-21I (bg)	YGWA-20S (bg)	YGWC-33S	YGWC-24S	YGWA-5D (bg)
6/11/2018									
6/12/2018				0.9			9.2	0.018 (J)	
6/13/2018									
9/25/2018			0.0046 (J)		0.0054 (J)	<0.04			
9/26/2018	0.0057 (J)	0.005 (J)					13.4	0.0055 (J)	0.01 (J)
9/27/2018				0.71					
4/2/2019					0.011 (J)				
4/3/2019	0.0044 (J)	0.0055 (J)	<0.04			<0.04			0.0076 (J)
4/4/2019				0.6			15.4	<0.04	

Constituent: Boron (mg/L) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL Plant Yates Client: Southern Company Data: Yates

				Flailt Tates	Ciletit. 300i	mem company	Data. Tates			
	YGWA-18S (bg)	YGWA-17S (bg)	YGWC-36							
6/2/2016										
6/6/2016	<0.05 (o)									
6/7/2016		<0.05 (o)								
6/8/2016		. ,								
7/26/2016										
7/27/2016	0.0059 (J)	0.008 (J)								
7/28/2016	0.0000 (0)	0.000 (0)								
8/1/2016										
9/2/2016			0.133							
			0.133							
9/14/2016	0.0070 (1)	0.0000 (1)								
9/16/2016	0.0079 (J)	0.0086 (J)								
9/19/2016										
9/20/2016										
9/21/2016										
11/2/2016										
11/3/2016	0.0082 (J)	0.0077 (J)								
11/4/2016										
11/8/2016										
11/14/2016			0.287							
1/11/2017	0.0096 (J)	0.0092 (J)								
1/12/2017										
1/13/2017										
1/16/2017										
1/17/2017										
2/28/2017			0.215							
3/1/2017	<0.04 (o)									
3/2/2017		0.0095 (J)								
3/6/2017										
3/7/2017										
3/8/2017										
3/9/2017										
4/26/2017	0.0091 (J)									
5/1/2017										
5/2/2017		<0.04 (o)								
5/3/2017										
5/9/2017			0.233							
6/27/2017										
6/28/2017	0.0079 (J)									
6/29/2017		0.0074 (J)								
7/7/2017										
7/10/2017										
7/13/2017			0.262							
9/22/2017			0.238							
9/29/2017			0.235							
10/3/2017										
10/4/2017	0.009 (J)	0.0077 (J)								
10/5/2017										
10/6/2017			0.256							
10/11/2017			0.245							
6/5/2018										
6/6/2018										
6/7/2018										

	YGWA-18S (bg)	YGWA-17S (bg)	YGWC-36
6/11/2018	0.0093 (J)	0.01 (J)	
6/12/2018			
6/13/2018			0.25
9/25/2018	0.007 (J)	0.0096 (J)	
9/26/2018			0.24
9/27/2018			
4/2/2019		0.0066 (J)	
4/3/2019	0.0053 (J)		
4/4/2019			0.22

Constituent: Calcium (mg/L) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL

Plant Yates Client: Southern Company Data: Yates

					,				
0/0/0010	YGWA-4I (bg)	YGWA-5D (bg)	YGWA-5I (bg)	YGWA-18S (bg)	YGWA-18I (bg)	YGWA-17S (bg)	YGWA-20S (bg)	YGWC-23S	YGWA-21I (bg)
6/2/2016	8.8	33	2.4						
6/6/2016				1.4	6.2				
6/7/2016						2.2	2.3	9.6	3.7
6/8/2016									
7/26/2016	7.69	32.3	2.12						
7/27/2016				1.19	4.73	2	2.08		
7/28/2016								7.87	3.15
8/1/2016									
9/2/2016									
9/14/2016	8.49	31	2.18						
9/16/2016				1.5		1.97			
9/19/2016					4.76		1.97		3.17
9/20/2016								9.28	
9/21/2016									
11/2/2016	7.83	30.9					2.13		
11/3/2016				1.31	5.25	1.99			3.4
11/4/2016			2.17 (J)						
11/8/2016			• •					8.6	
11/14/2016									
1/11/2017				1.25	4.74	2.28			
1/12/2017		35.7	2.37	20		2.20			
1/13/2017	8.08	33.7	2.37				2.45		4.98
1/16/2017	0.00						2.43	8.85	4.30
1/17/2017								0.03	
2/28/2017									
				1.06	F 27				
3/1/2017				1.26	5.37	0.45			
3/2/2017						2.15			
3/6/2017	8.64						2.48		6.28
3/7/2017		32.7	2.34						
3/8/2017									
3/9/2017								8.4	
4/26/2017				1.05	4.28		2.3		6.65
5/1/2017	13.4	37							
5/2/2017			2.17			1.95		12.9	
5/3/2017									
5/9/2017									
6/27/2017		36.5	2.13						
6/28/2017				1.06	4.95				
6/29/2017	8.81					2.02	2.54		6.04
7/7/2017									
7/10/2017								8.09	
7/13/2017									
9/22/2017									
9/29/2017									
10/3/2017		30.9	2.15						8.28
10/4/2017				1.1		2.03	2.25		
10/5/2017	9.29				5.28		-		
10/6/2017									
10/11/2017								6.36	
6/5/2018								5.50	9.1
6/6/2018		26.2					2.3		J. I
	0.2	۷۵.۷	2.2		4.0		۷.۵		
6/7/2018	8.2		2.3		4.8				

Constituent: Calcium (mg/L) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL

Plant Yates Client: Southern Company Data: Yates

	YGWA-4I (bg)	YGWA-5D (bg)	YGWA-5I (bg)	YGWA-18S (bg)	YGWA-18I (bg)	YGWA-17S (bg)	YGWA-20S (bg)	YGWC-23S	YGWA-21I (bg)
6/11/2018				1.4		2.1			
6/12/2018								4.7	
6/13/2018									
9/25/2018				1	4.6	2.1	2.3		10.4 (J)
9/26/2018	9.5 (J)	25.8	2.3						
9/27/2018								4.1	
4/2/2019						2.5			8.8
4/3/2019	8.4	24.7 (J)	2.8	1.2	5.3		2.9		
4/4/2019								3.7	

	YGWC-24S	YGWC-33S	YGWC-36
6/2/2016			
6/6/2016			
6/7/2016			
6/8/2016	1.9	130	
7/26/2016			
7/27/2016			
7/28/2016			
8/1/2016	1.83	136	
9/2/2016			11.2
9/14/2016			
9/16/2016			
9/19/2016			
9/20/2016	1.78		
9/21/2016	1.70	131	
11/2/2016		131	
11/3/2016			
11/4/2016			
	1 77		
11/8/2016 11/14/2016	1.77	116	7.79
		116	7.79
1/11/2017			
1/12/2017			
1/13/2017			
1/16/2017			
1/17/2017	1.7	126	
2/28/2017			8.37
3/1/2017		125	
3/2/2017			
3/6/2017			
3/7/2017			
3/8/2017	1.77		
3/9/2017			
4/26/2017			
5/1/2017			
5/2/2017	1.57		
5/3/2017		129	
5/9/2017			13.9
6/27/2017			
6/28/2017			
6/29/2017			
7/7/2017	1.8		
7/10/2017		139	
7/13/2017			16.6
9/22/2017			18.4
9/29/2017			16.1
10/3/2017			
10/4/2017			
10/5/2017	1.7		
10/6/2017			16.6
10/11/2017		125	18.1
6/5/2018			
6/6/2018			
6/7/2018			

	YGWC-24S	YGWC-33S	YGWC-36
6/11/2018			
6/12/2018	1.8	129	
6/13/2018			18.7 (J)
9/25/2018			
9/26/2018	1.7	144	19.8 (J)
9/27/2018			
4/2/2019			
4/3/2019			
4/4/2019	1.9	163	16.9 (J)

	YGWA-5D (bg)	YGWA-4I (bg)	YGWA-5I (bg)	YGWA-18S (bg)	YGWA-18I (bg)	YGWA-21I (bg)	YGWC-23S	YGWA-20S (bg)	YGWA-17S (bg)
6/2/2016	0.11 (J)	<0.3	<0.3						
6/6/2016				<0.3	<0.3				
6/7/2016						<0.3	<0.3	<0.3	<0.3
6/8/2016									
7/26/2016	0.05 (J)	<0.3	<0.3						
7/27/2016				<0.3	<0.3			<0.3	<0.3
7/28/2016						0.02 (J)	0.03 (J)		
8/1/2016									
9/2/2016									
9/14/2016	0.04 (J)	<0.3	<0.3						
9/16/2016				<0.3					<0.3
9/19/2016					<0.3	0.02 (J)		<0.3	
9/20/2016							<0.3		
9/21/2016									
11/2/2016	<0.3 (*)	<0.3 (*)						<0.3	
11/3/2016				<0.3	<0.3	<0.3 (*)			<0.3
11/4/2016			<0.3						
11/8/2016							<0.3		
11/14/2016									
1/11/2017				<0.3	<0.3				<0.3
1/12/2017	0.04 (J)		<0.3						
1/13/2017	0.04 (0)	<0.3	-0.0			<0.3		<0.3	
1/16/2017		10.5				40.5	<0.3	10.0	
1/17/2017							10.5		
2/28/2017									
3/1/2017				~0.2 (*)	~0 2 (*)				
				<0.3 (*)	<0.3 (*)				-0.2 (*)
3/2/2017		-0.2 (*)				-0.2 (*)		-0.2 (#)	<0.3 (*)
3/6/2017	.0.0 (4)	<0.3 (*)	.00(#)			<0.3 (*)		<0.3 (*)	
3/7/2017	<0.3 (*)		<0.3 (*)						
3/8/2017									
3/9/2017							<0.3 (*)		
4/26/2017				<0.3	<0.3	0.04 (J)		<0.3	
5/1/2017	<0.3 (*)	<0.3							
5/2/2017			<0.3				<0.3		<0.3
5/3/2017									
5/9/2017									
6/27/2017	<0.3 (*)		<0.3						
6/28/2017				<0.3	<0.3				
6/29/2017		<0.3 (*)				<0.3 (*)		<0.3 (*)	<0.3 (*)
7/7/2017									
7/10/2017							<0.3 (*)		
7/13/2017									
9/22/2017									
9/29/2017									
10/3/2017	<0.3 (*)		<0.3			<0.3 (*)			
10/4/2017				<0.3				<0.3	<0.3
10/5/2017		<0.3			<0.3				
10/6/2017									
10/11/2017							<0.3		
3/28/2018				<0.3	<0.3				<0.3
3/29/2018	<0.3	<0.3	<0.3			<0.3		<0.3	
3/30/2018							<0.3		

	YGWA-5D (bg)	YGWA-4I (bg)	YGWA-5I (bg)	YGWA-18S (bg)	YGWA-18I (bg)	YGWA-21I (bg)	YGWC-23S	YGWA-20S (bg)	YGWA-17S (bg)
6/5/2018						0.13 (J)			
6/6/2018	0.15 (J)							<0.3	
6/7/2018		<0.3	<0.3		<0.3				
6/11/2018				<0.3					<0.3
6/12/2018							<0.3		
6/13/2018									
9/25/2018				<0.3	<0.3	0 (J)		<0.3	<0.3
9/26/2018	<0.3	<0.3	<0.3						
9/27/2018							<0.3		
3/4/2019	0.19 (J)	<0.3	<0.3						
3/5/2019				<0.3		0.32		<0.3	<0.3
3/6/2019					<0.3		<0.3		
4/2/2019						0.12 (J)			<0.3
4/3/2019	0.047 (J)	<0.3	<0.3	<0.3	<0.3			<0.3	
4/4/2019							0.049 (J)		

					Flailt Tates	Client. Southern Company	Data. Tates		
		YGWC-24S	YGWC-33S	YGWC-36					
6	/2/2016								
	/6/2016								
	/7/2016								
	/8/2016	<0.3	0.34						
	/26/2016								
	/27/2016								
	/28/2016								
	/1/2016	<0.3	0.24 (J)						
	/2/2016			0.05 (J)					
	/14/2016			0.00 (0)					
	/16/2016								
	/19/2016								
	/20/2016	<0.3							
	/21/2016	~0.3	0.22 (J)						
			0.22 (3)						
	1/2/2016								
	1/3/2016								
	1/4/2016	-0.2 (*)							
	1/8/2016	<0.3 (*)	0.05	0.10 (1)					
	1/14/2016		0.35	0.18 (J)					
	/11/2017								
	/12/2017								
	/13/2017								
	/16/2017								
	/17/2017	<0.3	0.22 (J)						
	/28/2017			0.09 (J)					
	/1/2017		0.33						
	/2/2017								
	/6/2017								
	/7/2017								
	/8/2017	<0.3 (*)							
	/9/2017								
	/26/2017								
	/1/2017								
	/2/2017	<0.3							
	/3/2017		0.2 (J)						
	/9/2017			0.009 (J)					
	/27/2017								
	/28/2017								
	/29/2017								
	/7/2017	<0.3							
	/10/2017		0.57						
	/13/2017			<0.3					
	/22/2017			0.09 (J)					
	/29/2017			<0.3					
1	0/3/2017								
1	0/4/2017								
1	0/5/2017	<0.3							
1	0/6/2017			<0.3					
1	0/11/2017		<0.3 (*)	<0.3 (*)					
3	/28/2018								
3	/29/2018								
3	/30/2018	<0.3	1.4	<0.3					

	YGWC-24S	YGWC-33S	YGWC-36
6/5/2018			
6/6/2018			
6/7/2018			
6/11/2018			
6/12/2018	<0.3	0.18 (J)	
6/13/2018			<0.3
9/25/2018			
9/26/2018	<0.3	0.07 (J)	<0.3
9/27/2018			
3/4/2019			
3/5/2019	<0.3		
3/6/2019		0.49	<0.3
4/2/2019			
4/3/2019			
4/4/2019	0.033 (J)	0.57	0.043 (J)

Constituent: pH (S.U.) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL

Plant Yates Client: Southern Company Data: Yates

	YGWA-5I (bg)	YGWA-5D (bg)	YGWA-4I (bg)	YGWA-18S (bg)	YGWA-18I (bg)	YGWA-17S (bg)	YGWC-23S	YGWA-21I (bg)	YGWA-20S (bg)
6/2/2016	5.75	7.67	6.36						
6/6/2016				5.71	6.17				
6/7/2016						5.62	5.57	6.1	5.77
6/8/2016									
6/28/2016									
7/26/2016	5.72	7.66	6.22						
7/27/2016				5.46	6.14	5.59			5.79
7/28/2016							5.6	6.12	
8/1/2016									
9/2/2016									
9/14/2016	5.74	7.6	6.23						
9/16/2016						5.58			
9/19/2016				5.59	6.04			6.12	5.73
9/20/2016							5.53		
9/21/2016									
11/2/2016		7.35	6.08						5.67
11/3/2016				5.39	5.97	5.59		6.07	
11/4/2016	5.61								
11/8/2016							5.53		
11/10/2016									
11/14/2016									
1/11/2017				5.48	6.05	5.59			
1/12/2017	5.71	7.49							
1/13/2017			6.19					6.41	5.79
1/16/2017							5.59		
1/17/2017									
2/28/2017									
3/1/2017				5.41	5.94				
3/2/2017				· · · ·	0.0 1	5.54			
3/6/2017			6.2			0.04		6.34	5.63
3/7/2017	5.66	7.43	0.2					0.01	0.00
3/8/2017	0.00	7.10							
3/9/2017							5.56		
4/26/2017				5.4	5.99		0.00	6.32	5.66
5/1/2017		7.22	6.21	0.4	0.00			0.02	0.00
5/2/2017	5.65	7.22	0.21			5.47	5.61		
5/3/2017	3.03					3.47	3.01		
5/9/2017									
6/27/2017	5.7	7.32							
6/28/2017	5.7	7.32		5.36	6				
6/29/2017			6.21	5.30	O	5.56		6.47	5.85
7/7/2017			0.21			5.50		0.47	3.03
7/10/2017							5.68		
7/10/2017							5.06		
9/22/2017									
9/29/2017	F 70	7.40						6.56	
10/3/2017	5.79	7.48		F 22		E		6.56	E 02
10/4/2017			6.16	5.32	C 11	5.57			5.83
10/5/2017			6.16		6.11				
10/6/2017							F 40		
10/11/2017				5.24	0.1	F 50	5.46		
3/28/2018				5.34	6.1	5.59			

Constituent: pH (S.U.) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL

Plant Yates Client: Southern Company Data: Yates

3/29/2018	YGWA-5I (bg) 5.63	YGWA-5D (bg) 7.02	YGWA-4I (bg) 6.09	YGWA-18S (bg)	YGWA-18I (bg)	YGWA-17S (bg)	YGWC-23S	YGWA-21I (bg) 6.75	YGWA-20S (bg) 5.93
3/30/2018							5.73		
6/5/2018								6.09	
6/6/2018		7.43							5.86
6/7/2018	5.63		6.12		5.98				
6/11/2018				5.28		5.58			
6/12/2018							5.63		
6/13/2018									
9/25/2018				4.86	5.81	5.59		6.67	5.84
9/26/2018	5.63	7.13	5.84						
9/27/2018							5.47		
3/4/2019	5.75	7.46	6.18						
3/5/2019				5.26		5.48		7.22	6.07
3/6/2019					5.99		5.84		
4/2/2019						5.74		6.94	
4/3/2019	5.63	7.11	6.43	5.47	6.29				5.71
4/4/2019							5.64		

Constituent: pH (S.U.) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL Plant Yates Client: Southern Company Data: Yates

				T Idill Te	103 0110	int. Oddinem Company	Data. Tates		
		YGWC-33S	YGWC-24S	YGWC-36					
6/2/20	016								
6/6/20	016								
6/7/20	016								
6/8/20	016	5.07	5.65						
6/28/2		4.87							
7/26/2									
7/27/2									
7/28/2									
8/1/20		4.62	5.47						
9/2/20				5.84					
9/14/2									
9/16/2									
9/19/2									
9/20/2			5.61						
9/21/2		4.63	3.01						
11/2/2		4.03							
11/3/2									
11/4/2		4.50							
11/8/2		4.58	5.55						
	/2016	4.42		0.00					
	/2016	4.35		6.28					
1/11/2									
1/12/2									
1/13/2									
1/16/2									
1/17/2		4.16	5.53						
2/28/2				5.99					
3/1/20		4.17							
3/2/20									
3/6/20									
3/7/20	017								
3/8/20			5.62						
3/9/20									
4/26/2									
5/1/20	017								
5/2/20	017		5.46						
5/3/20	017	4.19							
5/9/20	017			6.3					
6/27/2	2017								
6/28/2	2017								
6/29/2	2017								
7/7/20	017		5.81						
7/10/2	2017	4.02							
7/13/2	2017			5.57					
9/22/2	2017			5.5					
9/29/2	2017			5.58					
10/3/2	2017								
10/4/2	2017								
10/5/2			5.45						
10/6/2				5.51					
	/2017	4.01		5.47					
3/28/2									

Constituent: pH (S.U.) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL Plant Yates Client: Southern Company Data: Yates

	YGWC-33S	YGWC-24S	YGWC-36
3/29/2018			
3/30/2018	4.05	5.64	5.51
6/5/2018			
6/6/2018			
6/7/2018			
6/11/2018			
6/12/2018	4.03	5.64	
6/13/2018			5.5
9/25/2018			
9/26/2018	3.97	5.61	5.53
9/27/2018			
3/4/2019			
3/5/2019		5.72	
3/6/2019	3.27		5.21
4/2/2019			
4/3/2019			
4/4/2019	3.88	5.66	5.74

Constituent: Sulfate (mg/L) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL

	YGWA-17S (bg)	YGWA-18I (bg)	YGWA-18S (bg)	YGWA-20S (bg)	YGWA-21I (bg)	YGWA-4I (bg)	YGWA-5D (bg)	YGWA-5I (bg)	YGWC-23S
6/2/2016						8	20	1.9	
6/6/2016		1.2	1.8						
6/7/2016	4.4			<1	5.2				56
6/8/2016									
7/26/2016						7.7	20	1.8	
7/27/2016	4.7	1.7	1.9	0.08 (J)					
7/28/2016					5.1				57
8/1/2016									
9/2/2016									
9/14/2016						7.5	19	1.8	
9/16/2016	4.8		1.7						
9/19/2016		1.8		0.08 (J)	4.8				
9/20/2016									68
9/21/2016									
11/2/2016				0.1 (J)		8.2	20		
11/3/2016	5.3	0.69 (J)	1.9	(-)	5				
11/4/2016	0.0	0.00 (0)						2	
11/8/2016								2	79
11/14/2016									19
	F 2	-1 (*)	17						
1/11/2017	5.2	<1 (*)	1.7				10	1.0	
1/12/2017				.4 (4)	4.0	0.4	19	1.9	
1/13/2017				<1 (*)	4.3	8.1			70
1/16/2017									72
1/17/2017									
2/28/2017									
3/1/2017		1.8	<1 (*)						
3/2/2017	5								
3/6/2017				<1	4.5	8			
3/7/2017							20	2.1	
3/8/2017									
3/9/2017									69
4/26/2017		1.6	1.9	<1	4.9				
5/1/2017						8.4	20		
5/2/2017	5							2	60
5/3/2017									
5/9/2017									
6/27/2017							18	2.1	
6/28/2017		<1 (*)	<1 (*)						
6/29/2017	5.2			<1 (*)	5.5	9.2			
7/7/2017									
7/10/2017									57
7/13/2017									
9/22/2017									
9/29/2017									
10/3/2017					5.8		16	2.3	
10/4/2017	5.3		1.7	<1 (*)					
10/5/2017		1.6				9.6			
10/6/2017									
10/11/2017									52
6/5/2018					6.1				
6/6/2018				0.049 (J)			8.3		
6/7/2018		0.68 (J)				8.5		2	
		• •							

Constituent: Sulfate (mg/L) Analysis Run 5/13/2019 2:58 PM View: AP-3, B-B` Interwell PL

Plant Yates Client: Southern Company Data: Yates

	YGWA-17S (bg)	YGWA-18I (bg)	YGWA-18S (bg)	YGWA-20S (bg)	YGWA-21I (bg)	YGWA-4I (bg)	YGWA-5D (bg)	YGWA-5I (bg)	YGWC-23S
6/11/2018	5.2		0.95 (J)						
6/12/2018									41.4
6/13/2018									
9/25/2018	6.1	1	1.5	0.13 (J)	7				
9/26/2018						10.2	7.9	2.3	
9/27/2018									39.6
4/2/2019	5.1				3.8				
4/3/2019		0.82 (J)	1.3	0.12 (J)		8.5	7	2.1	
4/4/2019									27.9

				riant rates	Client. Southern Company	Data. Tates		
	YGWC-24S	YGWC-33S	YGWC-36					
6/2/2016								
6/6/2016								
6/7/2016								
6/8/2016	<1	910						
7/26/2016								
7/27/2016								
7/28/2016								
8/1/2016	1.1	830						
9/2/2016			72					
9/14/2016								
9/16/2016								
9/19/2016								
9/20/2016	0.38 (J)							
9/21/2016	(-)	840						
11/2/2016		0.0						
11/3/2016								
11/4/2016								
11/8/2016	0.39 (J)							
11/14/2016	0.55 (5)	750	110					
1/11/2017		700	110					
1/12/2017								
1/13/2017								
1/16/2017								
1/17/2017	<1 (*)	790						
2/28/2017	-1()	750	110					
3/1/2017		850	110					
3/2/2017		650						
3/6/2017								
3/7/2017								
3/8/2017	0.29 (J)							
3/9/2017	0.29 (3)							
4/26/2017								
5/1/2017								
5/2/2017	0.29 (J)							
5/3/2017	0.23 (3)	800						
5/9/2017		800	130					
6/27/2017			130					
6/28/2017								
6/29/2017								
7/7/2017	0.37 (J)							
7/10/2017	0.57 (5)	810						
7/10/2017		310	140					
9/22/2017			160					
9/29/2017			160					
10/3/2017			100					
10/3/2017								
10/4/2017	<1 (*)							
10/5/2017	-1()		160					
10/6/2017		730	150					
6/5/2018		750	100					
6/6/2018								
6/7/2018								
3/1/2010								

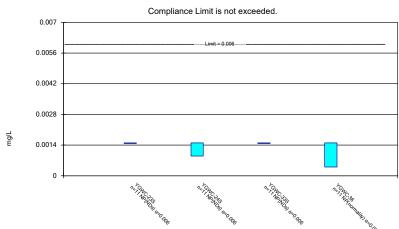
	YGWC-24S	YGWC-33S	YGWC-36
6/11/2018			
6/12/2018	0.35 (J)	759	
6/13/2018			144
9/25/2018			
9/26/2018	0.28 (J)	895	160
9/27/2018			
4/2/2019			
4/3/2019			
4/4/2019	0.29 (J)	847	119

	YGWA-17S (bg)	YGWA-18I (bg)	YGWA-18S (bg)	YGWA-20S (bg)	YGWA-21I (bg)	YGWA-4I (bg)	YGWA-5D (bg)	YGWA-5I (bg)	YGWC-23S
6/2/2016						96	160	66	
6/6/2016		120	58						
6/7/2016	28			38	60				130
6/8/2016									
7/26/2016						92	177	78	
7/27/2016	74	94	35	74					
7/28/2016					81				119
8/1/2016									
9/2/2016									
9/14/2016						102	187	73	
9/16/2016	67		35						
9/19/2016		92		45	68				
9/20/2016									132
9/21/2016									
11/2/2016				53		115	181		
11/3/2016	41	104	48		61				
11/4/2016								75	
11/8/2016									146
11/14/2016									
1/11/2017	104	133	95						
1/12/2017							202	86	
1/13/2017				46	76	67			
1/16/2017									194
1/17/2017									
2/28/2017									
3/1/2017		119	79						
3/2/2017	77								
3/6/2017				164	167	159			
3/7/2017							257	108	
3/8/2017									
3/9/2017									288
4/26/2017		162	36	34	50				
5/1/2017		.02		0.		107	165		
5/2/2017	142							103	221
5/3/2017									
5/9/2017									
6/27/2017							189	73	
6/28/2017		98	45				.00	, 0	
6/29/2017	53	50	40	68	94	79			
7/7/2017	33			00	5 4	75			
7/10/2017									123
7/13/2017									123
9/22/2017 9/29/2017									
					140		170	80	
10/3/2017	61		45	E4	149		170	89	
10/4/2017	U I	104	40	54		0E			
10/5/2017		104				95			
10/6/2017									100
10/11/2017					100				100
6/5/2018				70	109		151		
6/6/2018		00		79		00	151	140	
6/7/2018		68				90		142	

	YGWA-17S (bg)	YGWA-18I (bg)	YGWA-18S (bg)	YGWA-20S (bg)	YGWA-21I (bg)	YGWA-4I (bg)	YGWA-5D (bg)	YGWA-5I (bg)	YGWC-23S
6/11/2018	70		74						
6/12/2018									115
6/13/2018									
9/25/2018	86	109	63	73	122				
9/26/2018						116	144	86	
9/27/2018									105
4/2/2019	72				134				
4/3/2019		89	63	57		111	142	83	
4/4/2019									85

				FE Flaint Tates	Ciletti. Southe	erii Company	Data. Tates			
	YGWC-24S	YGWC-33S	YGWC-36							
6/2/2016										
6/6/2016										
6/7/2016										
6/8/2016	66	1200								
7/26/2016										
7/27/2016										
7/28/2016										
8/1/2016	56	1300								
9/2/2016			243							
9/14/2016										
9/16/2016										
9/19/2016										
9/20/2016	53									
9/21/2016	00	1220								
11/2/2016		1220								
11/3/2016										
11/4/2016										
11/8/2016	58									
11/14/2016	36	1170	272							
		1170	212							
1/11/2017										
1/12/2017										
1/13/2017 1/16/2017										
	50	1150								
1/17/2017	56	1150	000							
2/28/2017		1100	306							
3/1/2017		1160								
3/2/2017										
3/6/2017										
3/7/2017										
3/8/2017	192									
3/9/2017										
4/26/2017										
5/1/2017										
5/2/2017	113									
5/3/2017		1280								
5/9/2017			303							
6/27/2017										
6/28/2017										
6/29/2017										
7/7/2017	46									
7/10/2017		1170								
7/13/2017			282							
9/22/2017			309							
9/29/2017			273							
10/3/2017										
10/4/2017										
10/5/2017	48									
10/6/2017			287							
10/11/2017		1110	264							
6/5/2018										
6/6/2018										
6/7/2018										

	YGWC-24S	YGWC-33S	YGWC-36	
6/11/2018				
6/12/2018	79	1150		
6/13/2018			292	
9/25/2018				
9/26/2018	59	1280	277	
9/27/2018				
4/2/2019				
4/3/2019				
4/4/2019	63	1260	240	

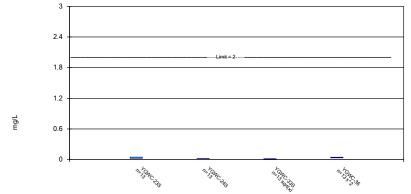

Plant Yates	Clien	t: Southern	Comp	any	Data: Ya	ates	Printed	J 6/28/2019	9, 10:00) AM	
 			_						_		

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Beryllium (mg/L)	YGWC-33S	0.023	0.0142	0.004	Yes	12	0	No	0.01	NP (normality)
Cobalt (mg/L)	YGWC-33S	0.02688	0.01358	0.013	Yes	13	0	No	0.01	Param.

		Plant Yate	s Client: Southe	ern Company D	ata: Yat	es Pri	inted 6/28/201	19, 10:00 AM		
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	YGWC-23S	0.0015	-0.0015	0.006	No	11	100	No	0.006	NP (NDs)
Antimony (mg/L)	YGWC-24S	0.0015	-0.0015	0.006	No	11	90.91	No	0.006	NP (NDs)
Antimony (mg/L)	YGWC-33S	0.0015	-0.0015	0.006	No	11	100	No	0.006	NP (NDs)
Antimony (mg/L)	YGWC-36	0.0015	0.0004	0.006	No	11	63.64	No	0.006	NP (normality)
Arsenic (mg/L)	YGWC-23S	0.0025	0.00065	0.01	No	13	100	No	0.01	NP (NDs)
Arsenic (mg/L)	YGWC-24S	0.0025	0.00065	0.01	No	13	100	No	0.01	NP (NDs)
Arsenic (mg/L)	YGWC-33S	0.004902	0.002698	0.01	No	13	7.692	No	0.01	Param.
Arsenic (mg/L)	YGWC-36	0.005	-0.0025	0.01	No	13	76.92	No	0.01	NP (NDs)
Barium (mg/L)	YGWC-23S	0.04905	0.0282	2	No	13	0	No	0.01	Param.
Barium (mg/L)	YGWC-24S	0.01984	0.01886	2	No	13	0	No	0.01	Param.
Barium (mg/L)	YGWC-33S	0.01845	0.01111	2	No	13	7.692	sqrt(x)	0.01	Param.
Barium (mg/L)	YGWC-36	0.04769	0.03521	2	No	13	0	x^2	0.01	Param.
Beryllium (mg/L)	YGWC-23S	0.0015	0.000072	0.004	No	13	38.46	No	0.01	NP (normality)
Beryllium (mg/L)	YGWC-24S	0.00125	0.0001	0.004	No	13	23.08	No	0.01	NP (normality)
Beryllium (mg/L)	YGWC-33S	0.023	0.0142	0.004	Yes	12	0	No	0.01	NP (normality)
Beryllium (mg/L)	YGWC-36	0.0003234	0.0002349	0.004	No	12	0	x^3	0.01	Param.
Cadmium (mg/L)	YGWC-23S	0.00125	0.00007	0.005	No	13	92.31	No	0.01	NP (NDs)
Cadmium (mg/L)	YGWC-24S	0.00125	-0.0005	0.005	No	13	100	No	0.01	NP (NDs)
Cadmium (mg/L)	YGWC-33S	0.003165	0.002214	0.005	No	13	0	x^2	0.01	Param.
Cadmium (mg/L)	YGWC-36	0.0002	0.00015	0.005	No	9	0	No	0.002	NP (normality)
Cobalt (mg/L)	YGWC-23S	0.005	0.00125	0.013	No	13	100	No	0.01	NP (NDs)
Cobalt (mg/L)	YGWC-24S	0.005	0.00125	0.013	No	13	100	No	0.01	NP (NDs)
Cobalt (mg/L)	YGWC-33S	0.02688	0.01358	0.013	Yes	13	0	No	0.01	Param.
Cobalt (mg/L)	YGWC-36	0.005	0.0006	0.013	No	13	92.31	No	0.01	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	YGWC-23S	0.8968	0.2629	6.92	No	13	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	YGWC-24S	0.8214	0.4161	6.92	No	13	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	YGWC-33S	1.445	0.6257	6.92	No	13	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	YGWC-36	1.112	0.4969	6.92	No	13	0	No	0.01	Param.
Fluoride (mg/L)	YGWC-23S	0.15	0.049	4	No	14	85.71	No	0.01	NP (NDs)
Fluoride (mg/L)	YGWC-24S	0.15	0.1	4	No	14	92.86	No	0.01	NP (NDs)
Fluoride (mg/L)	YGWC-33S	0.5426	0.1761	4	No	14	7.143	sqrt(x)	0.01	Param.
Fluoride (mg/L)	YGWC-36	0.18	0.043	4	No	14	57.14	No	0.01	NP (normality)
Lead (mg/L)	YGWC-23S	0.0025	-0.0025	0.015	No	11	90.91	No	0.006	NP (NDs)
Lead (mg/L)	YGWC-24S	0.0025	-0.0025	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	YGWC-33S	0.0025	0.0005	0.015	No	11	27.27	No	0.006	NP (Cohens/xfrm)
Lead (mg/L)	YGWC-36	0.0017	-0.0025	0.015	No	11	18.18	No	0.006	NP (normality)
Lithium (mg/L)	YGWC-23S	0.0025	0.0017	0.025	No	12	0	No	0.01	NP (normality)
Lithium (mg/L)	YGWC-24S	0.025	0.0025	0.025	No	13	100	No	0.01	NP (NDs)
Lithium (mg/L)	YGWC-33S	0.02904	0.01765	0.025	No	13	0	No	0.01	Param.
Lithium (mg/L)	YGWC-36	0.006542	0.004945	0.025	No	13	0	x^2	0.01	Param.
Selenium (mg/L)	YGWC-23S	0.04349	0.02662	0.05	No	13	0	No	0.01	Param.
Selenium (mg/L)	YGWC-24S	0.005	0.00065	0.05	No	13	100	No	0.01	NP (NDs)
Selenium (mg/L)	YGWC-33S	0.01501	0.007693	0.05	No	13	7.692	No	0.01	Param.
Selenium (mg/L)	YGWC-36	0.005	0.0017	0.05	No	13	23.08	No	0.01	NP (normality)
Thallium (mg/L)	YGWC-23S	0.0005	-0.0005	0.002	No	11	100	No	0.006	NP (NDs)
Thallium (mg/L)	YGWC-24S	0.0005	-0.0005	0.002	No	11	100	No	0.006	NP (NDs)
Thallium (mg/L)	YGWC-33S	0.0005	0.00006	0.002	No	11	36.36	No	0.006	NP (Cohens/xfrm)
Thallium (mg/L)	YGWC-36	0.0005	-0.0005	0.002	No	11	100	No	0.006	NP (NDs)

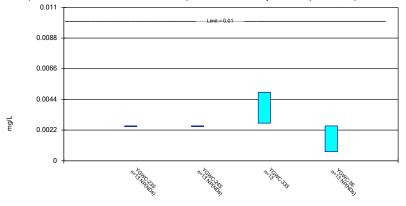
		Plant Yates Cl	ient: Southern Cor	mpany Data:	Yates	Printe	d 5/13/2019), 5:09 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	YGWC-23S	0.0015	0.0015	0.006	No	11	100	No	0.006	NP (NDs)
Antimony (mg/L)	YGWC-24S	0.0015	0.0009	0.006	No	11	90.91	No	0.006	NP (NDs)
Antimony (mg/L)	YGWC-33S	0.0015	0.0015	0.006	No	11	100	No	0.006	NP (NDs)
Antimony (mg/L)	YGWC-36	0.0015	0.0004	0.006	No	11	63.64	No	0.006	NP (normality)
Arsenic (mg/L)	YGWC-23S	0.0025	0.0025	0.01	No	13	100	No	0.01	NP (NDs)
Arsenic (mg/L)	YGWC-24S	0.0025	0.0025	0.01	No	13	100	No	0.01	NP (NDs)
Arsenic (mg/L)	YGWC-33S	0.004902	0.002698	0.01	No	13	7.692	No	0.01	Param.
Arsenic (mg/L)	YGWC-36	0.0025	0.00066	0.01	No	13	76.92	No	0.01	NP (NDs)
Barium (mg/L)	YGWC-23S	0.04905	0.0282	2	No	13	0	No	0.01	Param.
Barium (mg/L)	YGWC-24S	0.01984	0.01886	2	No	13	0	No	0.01	Param.
Barium (mg/L)	YGWC-33S	0.01845	0.01111	2	No	13	7.692	sqrt(x)	0.01	Param.
Barium (mg/L)	YGWC-36	0.04769	0.03521	2	No	13	0	x^2	0.01	Param.
Beryllium (mg/L)	YGWC-23S	0.0015	0.000072	0.004	No	13	38.46	No	0.01	NP (normality)
Beryllium (mg/L)	YGWC-24S	0.0015	0.0001	0.004	No	13	23.08	No	0.01	NP (normality)
Beryllium (mg/L)	YGWC-33S	0.023	0.0142	0.004	Yes	12	0	No	0.01	NP (normality)
Beryllium (mg/L)	YGWC-36	0.0003234	0.0002349	0.004	No	12	0	x^3	0.01	Param.
Cadmium (mg/L)	YGWC-23S	0.0005	0.00007	0.005	No	13	92.31	No	0.01	NP (NDs)
Cadmium (mg/L)	YGWC-24S	0.0005	0.0005	0.005	No	13	100	No	0.01	NP (NDs)
Cadmium (mg/L)	YGWC-33S	0.003165	0.002214	0.005	No	13	0	x^2	0.01	Param.
Cadmium (mg/L)	YGWC-36	0.0002	0.00015	0.005	No	9	0	No	0.002	NP (normality)
Cobalt (mg/L)	YGWC-23S	0.005	0.005	0.013	No	13	100	No	0.01	NP (NDs)
Cobalt (mg/L)	YGWC-24S	0.005	0.005	0.013	No	13	100	No	0.01	NP (NDs)
Cobalt (mg/L)	YGWC-33S	0.02688	0.01358	0.013	Yes	13	0	No	0.01	Param.
Cobalt (mg/L)	YGWC-36	0.005	0.0006	0.013	No	13	92.31	No	0.01	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	YGWC-23S	0.8968	0.2629	6.92	No	13	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	YGWC-24S	0.8214	0.4161	6.92	No	13	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	YGWC-33S	1.445	0.6257	6.92	No	13	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	YGWC-36	1.112	0.4969	6.92	No	13	0	No	0.01	Param.
Fluoride (mg/L)	YGWC-23S	0.15	0.049	4	No	14	85.71	No	0.01	NP (NDs)
Fluoride (mg/L)	YGWC-24S	0.15	0.033	4	No	14	92.86	No	0.01	NP (NDs)
Fluoride (mg/L)	YGWC-33S	0.5426	0.1761	4	No	14	7.143	sqrt(x)	0.01	Param.
Fluoride (mg/L)	YGWC-36	0.18	0.05	4	No	14	57.14	No	0.01	NP (normality)
Lead (mg/L)	YGWC-23S	0.0025	0.00044	0.015	No	11	90.91	No	0.006	NP (NDs)
Lead (mg/L)	YGWC-24S	0.0025	0.0025	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	YGWC-33S	0.004567	0.0007647	0.015	No	11	27.27	No	0.01	Param.
Lead (mg/L)	YGWC-36	0.0025	0.0002	0.015	No	11	18.18	No	0.006	NP (normality)
Lithium (mg/L)	YGWC-23S	0.0025	0.0017	0.025	No	12	0	No	0.01	NP (normality)
Lithium (mg/L)	YGWC-24S	0.025	0.025	0.025	No	13	100	No	0.01	NP (NDs)
Lithium (mg/L)	YGWC-33S	0.02904	0.01765	0.025	No	13	0	No	0.01	Param.
Lithium (mg/L)	YGWC-36	0.006542	0.004945	0.025	No	13	0	x^2	0.01	Param.
Selenium (mg/L)	YGWC-23S	0.04349	0.02662	0.05	No	13	0	No	0.01	Param.
Selenium (mg/L)	YGWC-24S	0.005	0.005	0.05	No	13	100	No	0.01	NP (NDs)
Selenium (mg/L)	YGWC-33S	0.01501	0.007693	0.05	No	13	7.692	No	0.01	Param.
Selenium (mg/L)	YGWC-36	0.007754	0.001566	0.05	No	13	23.08	No	0.01	Param.
Thallium (mg/L)	YGWC-23S	0.0005	0.0005	0.002	No	11	100	No	0.006	NP (NDs)
Thallium (mg/L)	YGWC-24S	0.0005	0.0005	0.002	No	11	100	No	0.006	NP (NDs)
Thallium (mg/L)	YGWC-33S	0.001114	0.0001451	0.002	No	11	36.36	No	0.000	Param.
Thallium (mg/L)	YGWC-36	0.0005	0.0005	0.002	No	11	100	No	0.006	NP (NDs)
manam (mg/L)	10110-00	0.0000	0.0000	0.002	140		100	. 10	0.000	· (14D3)

Non-Parametric Confidence Interval



Constituent: Antimony Analysis Run 5/13/2019 5:07 PM View: AP-3, B-B` Confidence Interval
Plant Yates Client: Southern Company Data: Yates

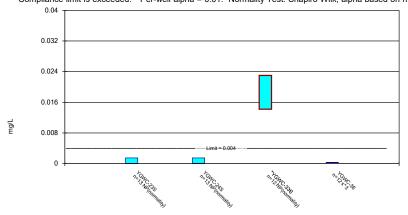
Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

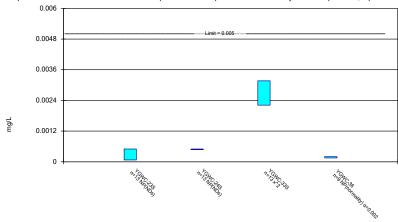
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Arsenic Analysis Run 5/13/2019 5:07 PM View: AP-3, B-B' Confidence Interval
Plant Yates Client: Southern Company Data: Yates

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

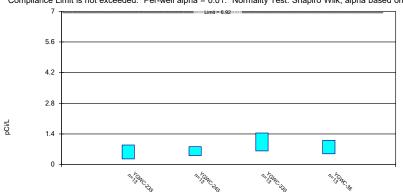
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

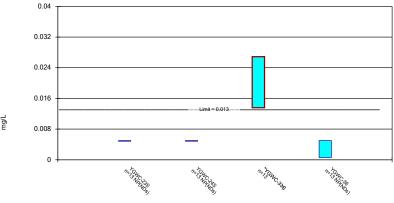
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cadmium Analysis Run 5/13/2019 5:07 PM View: AP-3, B-B` Confidence Interval
Plant Yates Client: Southern Company Data: Yates

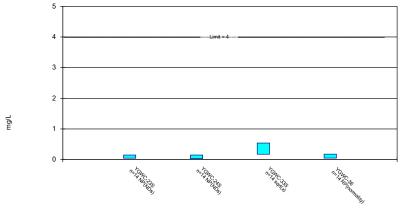
Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

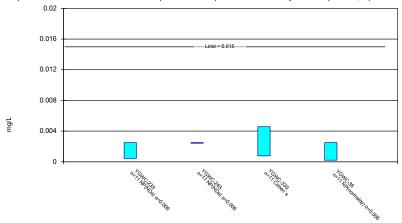
Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cobalt Analysis Run 5/13/2019 5:07 PM View: AP-3, B-B` Confidence Interval
Plant Yates Client: Southern Company Data: Yates

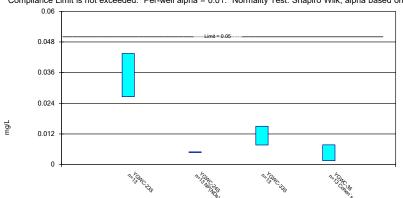
Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

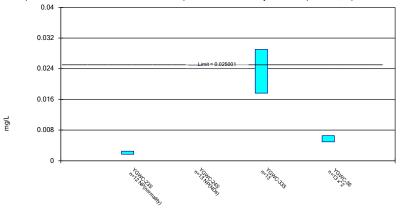
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lead Analysis Run 5/13/2019 5:07 PM View: AP-3, B-B` Confidence Interval

Plant Yates Client: Southern Company Data: Yates

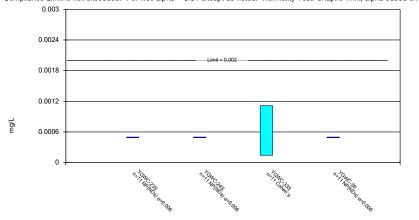
Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Lithium Analysis Run 5/13/2019 5:07 PM View: AP-3, B-B' Confidence Interval
Plant Yates Client: Southern Company Data: Yates

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Antimony (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval Plant Yates Client: Southern Company Data: Yates

			Interva	il Plant Yates	Client: Southern Company	Data: Yates
	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36		
6/7/2016	<0.003					
6/8/2016		<0.003	<0.003			
7/28/2016	<0.003					
8/1/2016		<0.003	<0.003 (*)			
9/2/2016				<0.003		
9/20/2016	<0.003	0.0009 (J)				
9/21/2016			<0.003			
11/8/2016	<0.003	<0.003				
11/14/2016			<0.003	0.0014 (J)		
1/16/2017	<0.003					
1/17/2017		<0.003	<0.003			
2/28/2017				0.0004 (J)		
3/1/2017			<0.003			
3/8/2017		<0.003				
3/9/2017	<0.003					
5/2/2017	<0.003	<0.003				
5/3/2017			<0.003			
5/9/2017				<0.003		
7/7/2017		<0.003				
7/10/2017	<0.003		<0.003			
7/13/2017				<0.003		
9/22/2017				<0.003		
9/29/2017				<0.003		
10/6/2017				<0.003		
3/30/2018	<0.003	<0.003	<0.003	<0.003		
3/5/2019		<0.003				
3/6/2019	<0.003		<0.003	0.0011 (J)		
4/4/2019	<0.003	<0.003	<0.003	0.0041		
Mean	0.0015	0.001445	0.0015	0.001591		
Std. Dev.	0	0.0001809	0	0.0008972		
Upper Lim.	0.0015	0.0015	0.0015	0.0015		
Lower Lim.	0.0015	0.0009	0.0015	0.0004		

Constituent: Arsenic (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval Plant Yates Client: Southern Company Data: Yates

				, , , , , , , , , , , , , , , , , , ,
	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	<0.005			
6/8/2016		<0.005	0.0033	
7/28/2016	<0.005			
8/1/2016		<0.005	0.007	
9/2/2016				<0.005
9/20/2016	<0.005	<0.005		
9/21/2016			0.0054	
11/8/2016	<0.005	<0.005		
11/14/2016			<0.005	<0.005
1/16/2017	<0.005			
1/17/2017		<0.005	0.0027 (J)	
2/28/2017				0.0006 (J)
3/1/2017			0.0041 (J)	
3/8/2017		<0.005		
3/9/2017	<0.005			
5/2/2017	<0.005 (*)	<0.005 (*)		
5/3/2017			0.0037 (J)	
5/9/2017				0.0006 (J)
7/7/2017		<0.005		
7/10/2017	<0.005		0.0044 (J)	
7/13/2017				<0.005
9/22/2017				<0.005
9/29/2017				<0.005
10/6/2017				<0.005
3/30/2018	<0.005	<0.005	0.0049 (J)	<0.005
6/12/2018	<0.005	<0.005	0.002 (J)	
6/13/2018				0.00066 (J)
9/26/2018		<0.005	0.0048 (J)	<0.005
9/27/2018	<0.005			
3/5/2019		<0.005		
3/6/2019	<0.005		0.0022 (J)	<0.005
4/4/2019	<0.005	<0.005	0.0024 (J)	<0.005
Mean	0.0025	0.0025	0.0038	0.002066
Std. Dev.	0	0	0.001483	0.0008246
Upper Lim.	0.0025	0.0025	0.004902	0.0025
Lower Lim.	0.0025	0.0025	0.002698	0.00066

Constituent: Barium (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval
Plant Yates Client: Southern Company Data: Yates

	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	0.045			
6/8/2016		0.02	0.029	
7/28/2016	0.0511			
8/1/2016		0.02	0.02	
9/2/2016				0.0409
9/20/2016	0.0561	0.0203		
9/21/2016			0.0183	
11/8/2016	0.054	0.0191		
11/14/2016			0.0149	0.0182
1/16/2017	0.0528			
1/17/2017		0.0192	<0.0139 (*)	
2/28/2017				0.023
3/1/2017			0.0142	
3/8/2017		0.0189		
3/9/2017	0.0469			
5/2/2017	0.0427	0.019		
5/3/2017			0.0151	
5/9/2017				0.0349
7/7/2017		0.019		
7/10/2017	0.0395		0.0137	
7/13/2017				0.0484
9/22/2017				0.0491
9/29/2017				0.0452
10/6/2017				0.0508
3/30/2018	0.03	0.02	0.012	0.043
6/12/2018	0.024	0.018	0.012	
6/13/2018				0.046
9/26/2018		0.019	0.012	0.048
9/27/2018	0.022			
3/5/2019		0.019		
3/6/2019	0.019		0.012	0.041
4/4/2019	0.019	0.02	0.014	0.042
Mean	0.03862	0.01935	0.01493	0.04081
Std. Dev.	0.01402	0.0006578	0.005291	0.009973
Upper Lim.	0.04905	0.01984	0.01845	0.04769
Lower Lim.	0.0282	0.01886	0.01111	0.03521

Constituent: Beryllium (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval Plant Yates Client: Southern Company Data: Yates

	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	<0.003			
6/8/2016		<0.003	0.012	
7/28/2016	<0.003			
8/1/2016		0.0001 (J)	0.0146	
9/2/2016				0.0003 (J)
9/20/2016	0.0001 (J)	0.0001 (J)		
9/21/2016			0.0149	
11/8/2016	<0.003 (*)	<0.003 (*)		
11/14/2016			0.0152	9E-05 (J)
1/16/2017	0.0001 (J)			
1/17/2017		0.0001 (J)	0.0142	
2/28/2017				0.0001 (J)
3/1/2017			0.015	
3/8/2017		0.0001 (J)		
3/9/2017	0.0001 (J)			
5/2/2017	9E-05 (J)	0.0001 (J)		
5/3/2017			0.0154	
5/9/2017				0.0002 (J)
7/7/2017		0.0001 (J)		
7/10/2017	<0.003		0.0143	
7/13/2017				0.0003 (J)
9/22/2017				0.0003 (J)
9/29/2017				0.0003 (J)
10/6/2017				0.0003 (J)
3/30/2018	<0.003	<0.003	0.018	<0.003 (o)
6/12/2018	8.1E-05 (J)	0.00012 (J)	0.016	
6/13/2018				0.00035 (J)
9/26/2018		0.00014 (J)	0.024 (o)	0.00032 (J)
9/27/2018	9E-05 (J)			
3/5/2019		0.00016 (J)		
3/6/2019	6.6E-05 (J)		0.023	0.00029 (J)
4/4/2019	7.2E-05 (J)	0.00015 (J)	0.025	0.00033 (J)
Mean	0.0006307	0.0004362	0.01647	0.000265
Std. Dev.	0.0007154	0.0006068	0.003798	8.702E-05
Upper Lim.	0.0015	0.0015	0.023	0.0003234
Lower Lim.	7.2E-05	0.0001	0.0142	0.0002349

Constituent: Cadmium (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval Plant Yates Client: Southern Company Data: Yates

	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	<0.001			
6/8/2016		<0.001	0.00098 (J)	
7/28/2016	<0.001			
8/1/2016		<0.001	0.0014	
9/2/2016				<0.001 (o)
9/20/2016	<0.001	<0.001		
9/21/2016			0.0017	
11/8/2016	7E-05 (J)	<0.001		
11/14/2016			0.0027	9E-05 (J,o)
1/16/2017	<0.001			
1/17/2017		<0.001	0.0033	
2/28/2017				0.0001 (J,o)
3/1/2017			0.0031	
3/8/2017		<0.001		
3/9/2017	<0.001			
5/2/2017	<0.001	<0.001		
5/3/2017			0.0031	
5/9/2017				0.0002 (J)
7/7/2017		<0.001		
7/10/2017	<0.001		0.0029	
7/13/2017				0.0002 (J)
9/22/2017				0.0002 (J)
9/29/2017				0.0002 (J)
10/6/2017				0.0002 (J)
3/30/2018	<0.001	<0.001	0.0028	<0.001 (o)
6/12/2018	<0.001	<0.001	0.0029	
6/13/2018				0.00019 (J)
9/26/2018		<0.001	0.0028	0.00018 (J)
9/27/2018	<0.001			
3/5/2019		<0.001		
3/6/2019	<0.001		0.003	0.00015 (J)
4/4/2019	<0.001	<0.001	0.0035	0.00019 (J)
Mean	0.0004669	0.0005	0.002629	0.00019
Std. Dev.	0.0001193	0	0.0007688	1.658E-05
Upper Lim.	0.0005	0.0005	0.003165	0.0002
Lower Lim.	7E-05	0.0005	0.002214	0.00015

Constituent: Cobalt (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval

Plant Yates Client: Southern Company Data: Yates

	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	<0.01			
6/8/2016		<0.01	0.037	
7/28/2016	<0.01			
8/1/2016		<0.01	0.0297	
9/2/2016				0.0006 (J)
9/20/2016	<0.01	<0.01		
9/21/2016			0.0237	
11/8/2016	<0.01	<0.01		
11/14/2016			0.0144	<0.01
1/16/2017	<0.01			
1/17/2017		<0.01	0.0095 (J)	
2/28/2017				<0.01
3/1/2017			0.0125	
3/8/2017		<0.01		
3/9/2017	<0.01			
5/2/2017	<0.01	<0.01		
5/3/2017			0.0151	
5/9/2017				<0.01
7/7/2017		<0.01		
7/10/2017	<0.01		0.0121	
7/13/2017				<0.01
9/22/2017				<0.01
9/29/2017				<0.01
10/6/2017				<0.01
3/30/2018	<0.01	<0.01	0.013	<0.01
6/12/2018	<0.01	<0.01	0.014	
6/13/2018				<0.01
9/26/2018		<0.01	0.023	<0.01
9/27/2018	<0.01			
3/5/2019		<0.01		
3/6/2019	<0.01		0.028	<0.01
4/4/2019	<0.01	<0.01	0.031	<0.01
Mean	0.005	0.005	0.02023	0.004662
Std. Dev.	0	0	0.008941	0.00122
Upper Lim.	0.005	0.005	0.02688	0.005
Lower Lim.	0.005	0.005	0.01358	0.0006

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B' Confidence Interval

Plant Yates Client: Southern Company Data: Yates

	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	0.303 (U)			
6/8/2016		1.06	0.384 (U)	
7/28/2016	0.386 (U)			
8/1/2016		0.467 (U)	1.55	
9/2/2016				0.873 (U)
9/20/2016	1.47	0.853 (U)		
9/21/2016			2.36	
9/22/2016				0.667 (U)
9/29/2016				1.63
10/6/2016				0.641 (U)
11/8/2016	0.22 (U)	0.433 (U)		
11/14/2016			0.851 (U)	0.0451 (U)
1/16/2017	0.147 (U)			
1/17/2017		0.0759 (U)	1.41 (U)	
2/28/2017				1.34 (U)
3/1/2017			1.13	
3/8/2017		0.479 (U)		
3/9/2017	0.0892 (U)			
5/2/2017	0.149 (U)	0.506 (U)		
5/3/2017			0.584 (U)	
5/9/2017				0.309 (U)
7/7/2017		0.713 (U)		
7/10/2017	0.815 (U)		0.46 (U)	
7/13/2017				0.618 (U)
3/30/2018	0.659 (U)	0.409 (U)	0.607 (U)	0.721 (U)
6/12/2018	1.03 (U)	0.728 (U)	0.633 (U)	
6/13/2018				1.04 (U)
9/26/2018		0.981	1.38	0.604 (U)
9/27/2018	1.06 (U)			
3/5/2019		0.837 (U)		
3/6/2019	0.736 (U)		0.97 (U)	0.919 (U)
4/4/2019	0.474 (U)		1.14	1.05 (U)
4/9/2019		0.502 (U)		
Mean	0.5799	0.6188	1.035	0.8044
Std. Dev.	0.4262	0.2725	0.5509	0.4135
Upper Lim.	0.8968	0.8214	1.445	1.112
Lower Lim.	0.2629	0.4161	0.6257	0.4969

Constituent: Fluoride (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval Plant Yates Client: Southern Company Data: Yates

			1 10	ant rates on
	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	<0.3			
6/8/2016		<0.3	0.34	
7/28/2016	0.03 (J)			
8/1/2016		<0.3	0.24 (J)	
9/2/2016				0.05 (J)
9/20/2016	<0.3	<0.3		
9/21/2016			0.22 (J)	
11/8/2016	<0.3	<0.3 (*)		
11/14/2016			0.35	0.18 (J)
1/16/2017	<0.3			
1/17/2017		<0.3	0.22 (J)	
2/28/2017				0.09 (J)
3/1/2017			0.33	
3/8/2017		<0.3 (*)		
3/9/2017	<0.3 (*)			
5/2/2017	<0.3	<0.3		
5/3/2017			0.2 (J)	
5/9/2017				0.009 (J)
7/7/2017		<0.3		
7/10/2017	<0.3 (*)		0.57	
7/13/2017				<0.3
9/22/2017				0.09 (J)
9/29/2017				<0.3
10/5/2017		<0.3		
10/6/2017				<0.3
10/11/2017	<0.3		<0.3 (*)	<0.3 (*)
3/30/2018	<0.3	<0.3	1.4	<0.3
6/12/2018	<0.3	<0.3	0.18 (J)	
6/13/2018				<0.3
9/26/2018		<0.3	0.07 (J)	<0.3
9/27/2018	<0.3			
3/5/2019		<0.3		
3/6/2019	<0.3		0.49	<0.3
4/4/2019	0.049 (J)	0.033 (J)	0.57	0.043 (J)
Mean	0.1342	0.1416	0.3807	0.1187
Std. Dev.	0.0403	0.03127	0.3307	0.05242
Upper Lim.	0.15	0.15	0.5426	0.18
Lower Lim.	0.049	0.033	0.1761	0.05

Constituent: Lead (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval

Plant Yates Client: Southern Company Data: Yates

	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	0.00044 (J)			
6/8/2016		<0.005	<0.005 (*)	
7/28/2016	<0.005			
8/1/2016		<0.005	0.0005 (J)	
9/2/2016				0.0017 (J)
9/20/2016	<0.005	<0.005		
9/21/2016			0.0006 (J)	
11/8/2016	<0.005	<0.005		
11/14/2016			0.0012 (J)	0.0002 (J)
1/16/2017	<0.005			
1/17/2017		<0.005	0.002 (J)	
2/28/2017				0.0003 (J)
3/1/2017			0.002 (J)	
3/8/2017		<0.005		
3/9/2017	<0.005			
5/2/2017	<0.005	<0.005		
5/3/2017			<0.005 (*)	
5/9/2017				0.0004 (J)
7/7/2017		<0.005		
7/10/2017	<0.005		0.0018 (J)	
7/13/2017				0.0004 (J)
9/22/2017				0.0003 (J)
9/29/2017				0.0002 (J)
10/6/2017				0.0002 (J)
3/30/2018	<0.005	<0.005	<0.005	<0.005
3/5/2019		<0.005		
3/6/2019	<0.005		0.0012 (J)	<0.005
4/4/2019	<0.005	<0.005	0.0014 (J)	0.00037 (J)
Mean	0.002313	0.0025	0.001655	0.0008245
Std. Dev.	0.0006211	0	0.0007299	0.000931
Upper Lim.	0.0025	0.0025	0.004567	0.0025
Lower Lim.	0.00044	0.0025	0.0007647	0.0002

Confidence Interval

Constituent: Lithium (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval
Plant Yates Client: Southern Company Data: Yates

	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	<0.005 (o)			
6/8/2016		<0.05	0.0099	
7/28/2016	0.0019 (J)			
8/1/2016		<0.05	0.0142 (J)	
9/2/2016				0.0029 (J)
9/20/2016	0.0021 (J)	<0.05		
9/21/2016			0.0145 (J)	
11/8/2016	0.0024 (J)	<0.05		
11/14/2016			0.0253 (J)	0.0044 (J)
1/16/2017	0.0022 (J)			
1/17/2017		<0.05	0.0256 (J)	
2/28/2017				0.0038 (J)
3/1/2017			0.0219 (J)	
3/8/2017		<0.05		
3/9/2017	0.0025 (J)			
5/2/2017	0.0019 (J)	<0.05		
5/3/2017			0.0217 (J)	
5/9/2017				0.0057 (J)
7/7/2017		<0.05		
7/10/2017	0.0018 (J)		0.0214 (J)	
7/13/2017				0.007 (J)
9/22/2017				0.0067 (J)
9/29/2017				0.0064 (J)
10/6/2017				0.0065 (J)
3/30/2018	0.0039 (J)	<0.05	0.024 (J)	0.0061 (J)
6/12/2018	0.0017 (J)	<0.05	0.023 (J)	
6/13/2018				0.0065 (J)
9/26/2018		<0.05	0.034 (J)	0.0063 (J)
9/27/2018	0.0017 (J)			
3/5/2019		<0.05		
3/6/2019	0.0025 (J)		0.033 (J)	0.0057 (J)
4/4/2019	0.0018 (J)	<0.05	0.035 (J)	0.0058 (J)
Mean	0.0022	0.025	0.02335	0.005677
Std. Dev.	0.000612	0	0.007655	0.001229
Upper Lim.	0.0025	0.025	0.02904	0.006542
Lower Lim.	0.0017	0.025	0.01765	0.004945

Confidence Interval

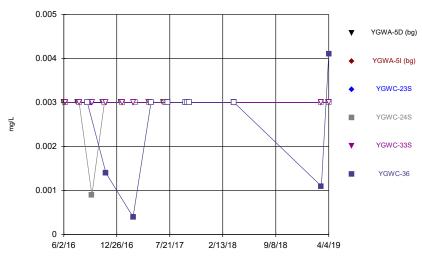
Constituent: Selenium (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval Plant Yates Client: Southern Company Data: Yates

	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	0.037			
6/8/2016		<0.01	0.0011 (J)	
7/28/2016	0.0385			
8/1/2016		<0.01	0.0192	
9/2/2016				0.0012 (J)
9/20/2016	0.0464	<0.01		
9/21/2016			0.0147	
11/8/2016	0.0521	<0.01		
11/14/2016			<0.01	<0.01
1/16/2017	0.0469			
1/17/2017		<0.01	0.0122	
2/28/2017				0.0017 (J)
3/1/2017			0.0151	
3/8/2017		<0.01		
3/9/2017	0.0437			
5/2/2017	0.0395	<0.01		
5/3/2017			0.012	
5/9/2017				0.0018 (J)
7/7/2017		<0.01		
7/10/2017	0.0386		0.0106	
7/13/2017				0.0031 (J)
9/22/2017				0.0024 (J)
9/29/2017				0.002 (J)
10/6/2017				<0.01
3/30/2018	0.028	<0.01	0.011	<0.01
6/12/2018	0.026	<0.01	0.0057 (J)	
6/13/2018				0.0024 (J)
9/26/2018		<0.01	0.016	0.0037 (J)
9/27/2018	0.023			
3/5/2019		<0.01		
3/6/2019	0.019		0.013	0.0033 (J)
4/4/2019	0.017	<0.01	0.012	0.0029 (J)
Mean	0.03505	0.005	0.01135	0.003038
Std. Dev.	0.01134	0	0.004923	0.001312
Upper Lim.	0.04349	0.005	0.01501	0.007754
Lower Lim.	0.02662	0.005	0.007693	0.001566

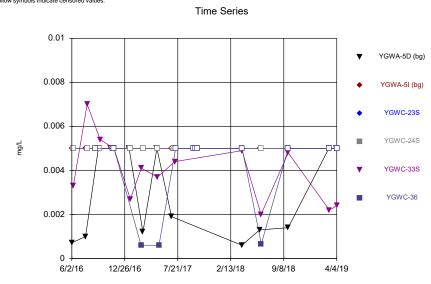
Confidence Interval

Constituent: Thallium (mg/L) Analysis Run 5/13/2019 5:09 PM View: AP-3, B-B` Confidence Interval
Plant Yates Client: Southern Company Data: Yates

	YGWC-23S	YGWC-24S	YGWC-33S	YGWC-36
6/7/2016	<0.001			
6/8/2016		<0.001	<0.001	
7/28/2016	<0.001			
8/1/2016		<0.001	6E-05 (J)	
9/2/2016				<0.001
9/20/2016	<0.001	<0.001		
9/21/2016			<0.001	
11/8/2016	<0.001	<0.001		
11/14/2016			<0.001	<0.001
1/16/2017	<0.001			
1/17/2017		<0.001	0.0004 (J)	
2/28/2017				<0.001
3/1/2017			0.0003 (J)	
3/8/2017		<0.001		
3/9/2017	<0.001			
5/2/2017	<0.001	<0.001		
5/3/2017			0.0002 (J)	
5/9/2017				<0.001
7/7/2017		<0.001		
7/10/2017	<0.001		0.0002 (J)	
7/13/2017				<0.001
9/22/2017				<0.001
9/29/2017				<0.001
10/6/2017				<0.001
3/30/2018	<0.001	<0.001	<0.001	<0.001
3/5/2019		<0.001		
3/6/2019	<0.001		0.00016 (J)	<0.001
4/4/2019	<0.001	<0.001	0.00018 (J)	<0.001
Mean	0.0005	0.0005	0.0003182	0.0005
Std. Dev.	0	0	0.0001667	0
Upper Lim.	0.0005	0.0005	0.001114	0.0005
Lower Lim.	0.0005	0.0005	0.0001451	0.0005

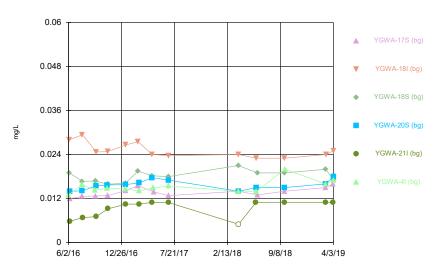


Constituent: Antimony Analysis Run 5/13/2019 2:19 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

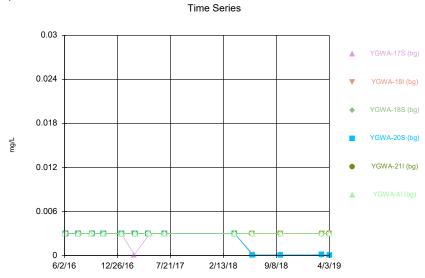

Time Series 0.01 YGWA-17S (bg) 0.008 YGWA-18I (bg) YGWA-18S (bg) 0.006 YGWA-20S (bg) 200 0.004 YGWA-21I (bg) 0.002 Ä 6/2/16 12/26/16 7/21/17 2/13/18 9/8/18 4/3/19

Constituent: Arsenic Analysis Run 5/13/2019 2:19 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

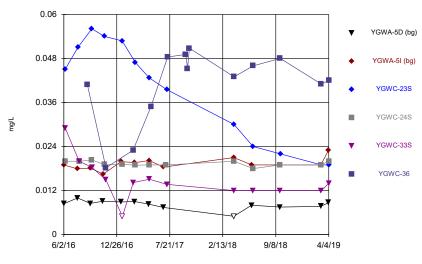
Time Series



Constituent: Antimony Analysis Run 5/13/2019 2:19 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates



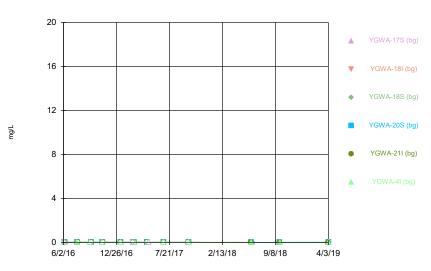
Constituent: Arsenic Analysis Run 5/13/2019 2:19 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates



Constituent: Barium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series Plant Yates Client: Southern Company Data: Yates

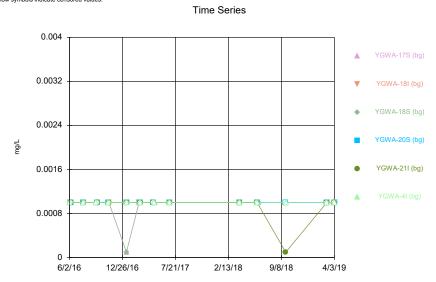
Constituent: Beryllium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

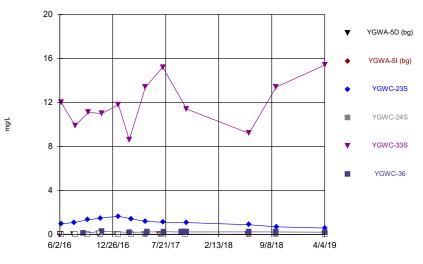
Time Series


Constituent: Barium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

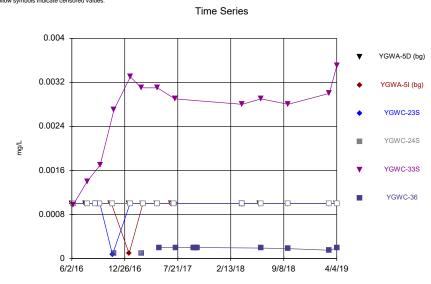
Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Time Series 0.03 YGWA-5D (bg) 0.024 YGWA-5I (bg) YGWC-23S 0.018 YGWC-24S 0.012 YGWC-33S YGWC-36 0.006 6/2/16 12/26/16 7/21/17 2/13/18 9/8/18 4/4/19


Constituent: Beryllium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

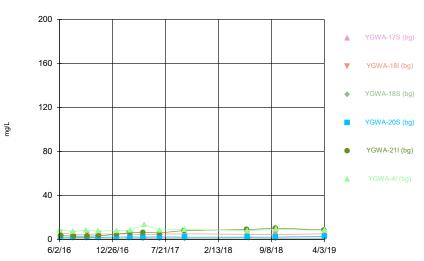

Constituent: Boron Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series

Plant Yates Client: Southern Company Data: Yates



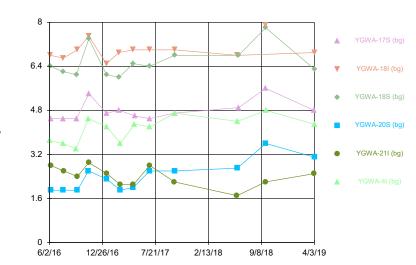
Constituent: Cadmium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

Time Series

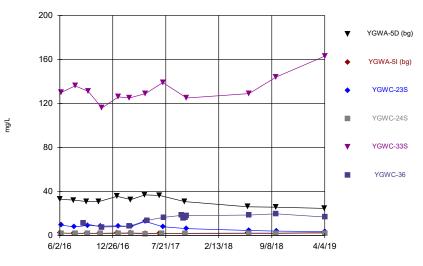

Constituent: Boron Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

Constituent: Cadmium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

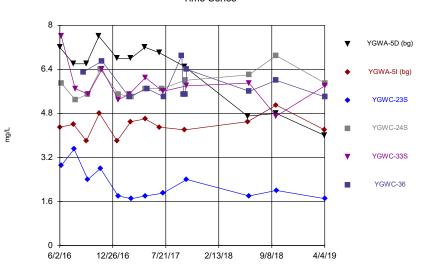


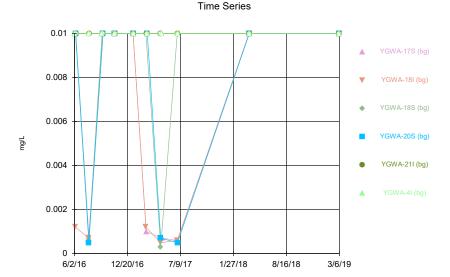
Constituent: Calcium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates


Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

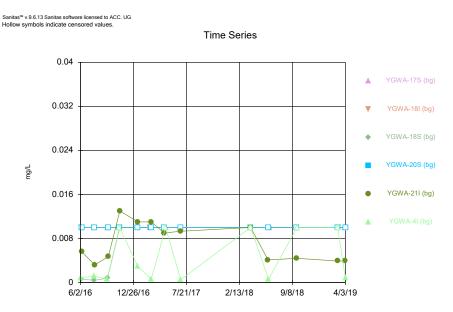
Time Series

Constituent: Chloride Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

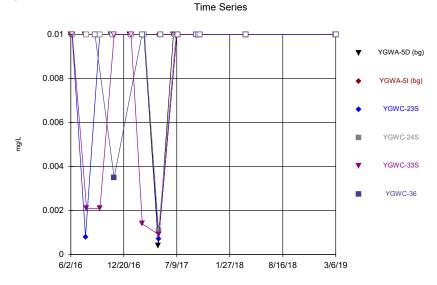

Time Series


Constituent: Calcium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

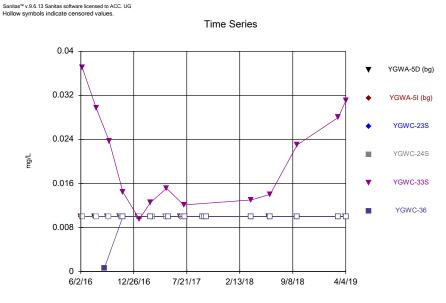
Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG


Time Series

Constituent: Chloride Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

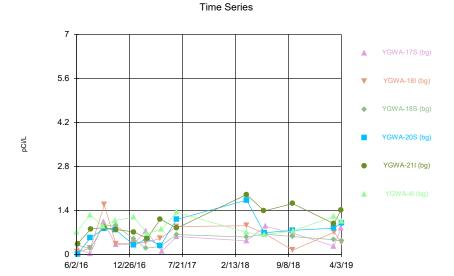


Constituent: Chromium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

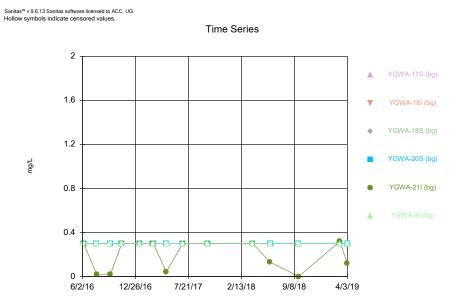


Constituent: Cobalt Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series

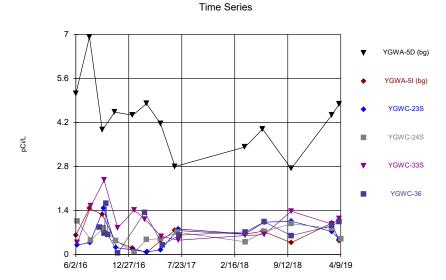
Plant Yates Client: Southern Company Data: Yates


Constituent: Chromium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

Constituent: Cobalt Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series

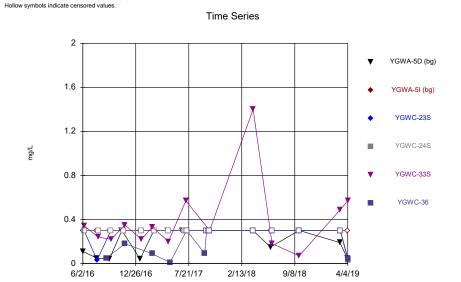

Plant Yates Client: Southern Company Data: Yates

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG



Constituent: Combined Radium 226 + 228 Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series

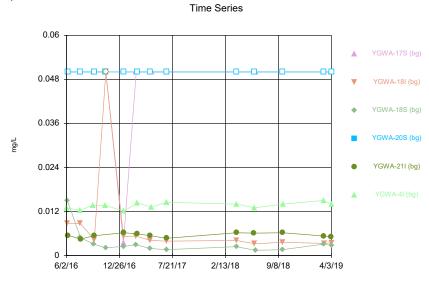
Plant Yates Client: Southern Company Data: Yates



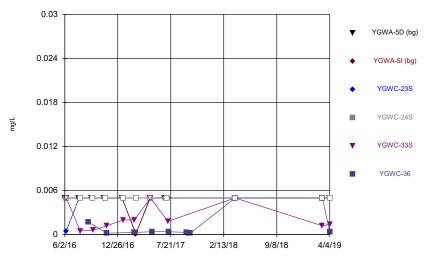
Constituent: Fluoride Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

Constituent: Combined Radium 226 + 228 Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series

Plant Yates Client: Southern Company Data: Yates



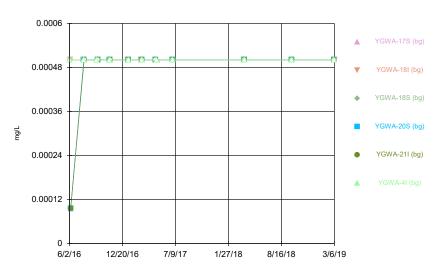
Constituent: Fluoride Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates



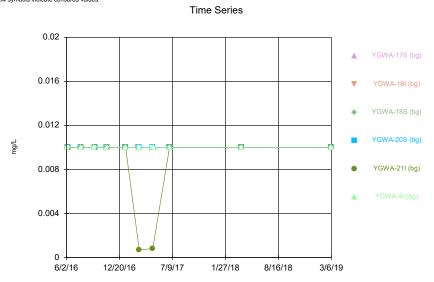
Constituent: Lead Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

Constituent: Lithium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

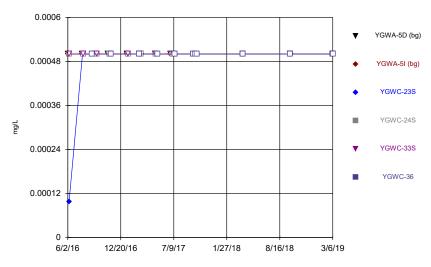
Time Series


Constituent: Lead Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

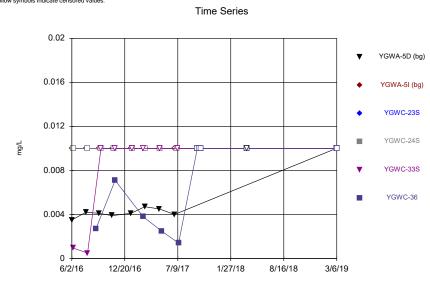
Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Time Series 0.06 YGWA-5D (bg) 0-0-0-0.048 YGWA-5I (bg) YGWC-23S 0.036 YGWC-24S mg/L 0.024 YGWC-33S YGWC-36 0.012 6/2/16 12/26/16 7/21/17 2/13/18 9/8/18 4/4/19

Constituent: Lithium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

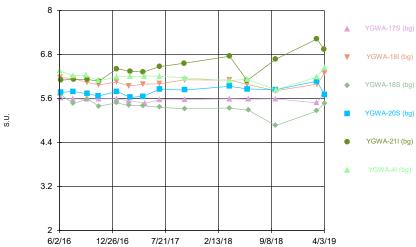


Constituent: Mercury Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

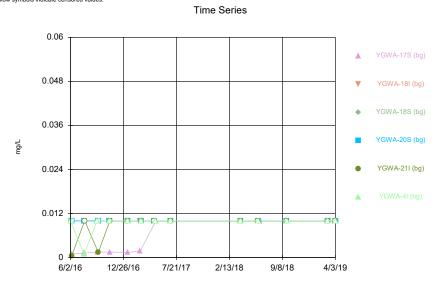


Constituent: Molybdenum Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

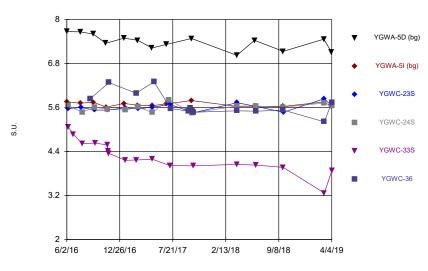

Time Series



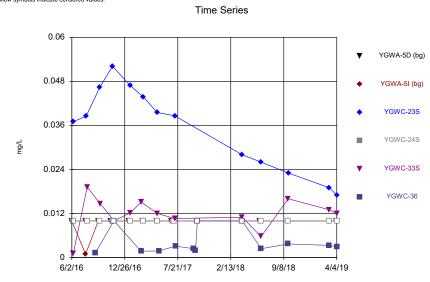
Constituent: Mercury Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates



Constituent: Molybdenum Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

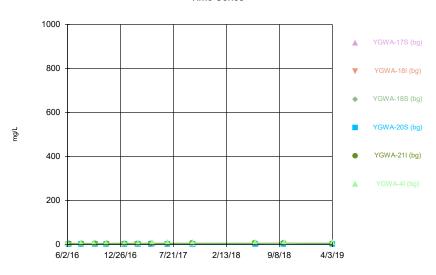


Constituent: pH Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

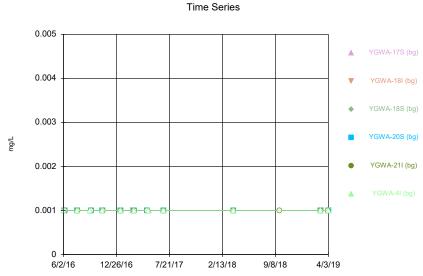


Constituent: Selenium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

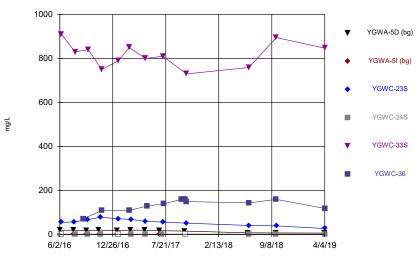
Time Series



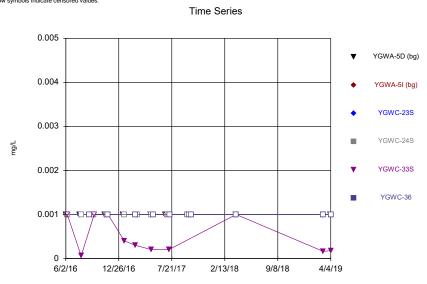
Constituent: pH Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates



Constituent: Selenium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

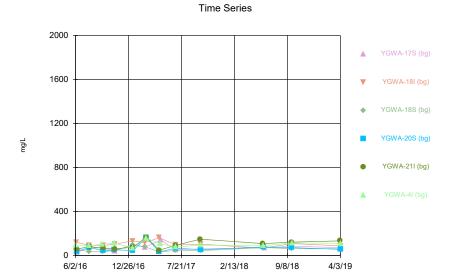


Constituent: Sulfate Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B' Time Series
Plant Yates Client: Southern Company Data: Yates



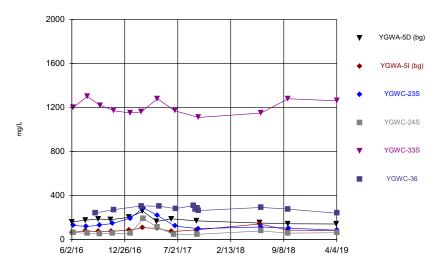
Constituent: Thallium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

Time Series



Constituent: Sulfate Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

Constituent: Thallium Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates


Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

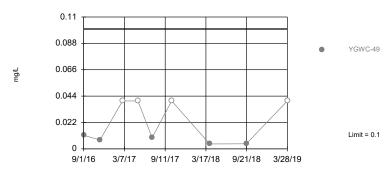
Constituent: Total Dissolved Solids Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

Sanitas™ v.9.6.13 Sanitas software licensed to ACC. UG

Time Series

Constituent: Total Dissolved Solids Analysis Run 5/13/2019 2:20 PM View: AP-3, B-B` Time Series
Plant Yates Client: Southern Company Data: Yates

Interwell Prediction Limit


Plant Yates Client: Southern Company Data: Yates AP-A Printed 4/18/2019, 4:55 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Sulfate (mg/L)	YGWC-49	17.42	n/a	3/28/2019	82.8	Yes	88	11.36	x^(1/3)	0.001504	Param Inter 1 of 2

Interwell Prediction Limit

		Plar	nt Yates Client:	Southern Comp	any Data: `	Yates AM	IA, R6	Printed 4	/18/2019, 4:55	PM	
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Boron (mg/L)	YGWC-49	0.1	n/a	3/28/2019	0.04ND	No	82	56.1	n/a	0.0002869	NP Inter (NDs) 1 of 2
Calcium (mg/L)	YGWC-49	37	n/a	3/28/2019	11.3	No	88	0	n/a	0.00025	NP Inter (normality)
Fluoride (mg/L)	YGWC-49	0.32	n/a	3/28/2019	0.3ND	No	104	88.46	n/a	0.0001817	NP Inter (NDs) 1 of 2
pH (S.U.)	YGWC-49	7.67	4.86	3/28/2019	5.86	No	104	0	n/a	0.0003634	NP Inter (normality)
Sulfate (mg/L)	YGWC-49	17.42	n/a	3/28/2019	82.8	Yes	88	11.36	x^(1/3)	0.001504	Param Inter 1 of 2
Total Dissolved Solids	YGWC-49	185.7	n/a	3/28/2019	164	No	88	0	sqrt(x)	0.001504	Param Inter 1 of 2

Within Limit Prediction Limit Interwell Non-parametric

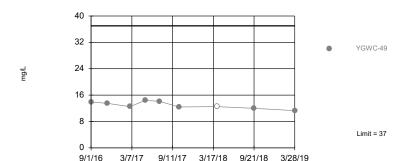
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 82 background values. 56.1% NDs. Annual per-constituent alpha = 0.002865. Individual comparison alpha = 0.0002869 (1 of 2). Assumes 4 future values. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 4/18/2019 4:53 PM View: AP-A Interwell PL
Plant Yates Client: Southern Company Data: Yates AMA, R6

 $\mbox{Sanitas} \mbox{\ensuremath{^{\text{IV}}}} \mbox{\ensuremath{^{\text{IV}}}}.9.6.05 \mbox{\ensuremath{^{\text{Sanitas}}}} \mbox{\ensuremath{^{\text{Soliton}}}} \mbox{\ensuremath{^{\text{IV}}}} \mbox{\ensu$

9/1/16

3/7/17

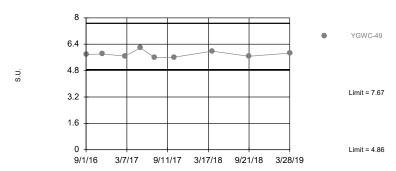

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 104 background values. 88.46% NDs. Annual per-constituent alpha = 0.001816. Individual comparison alpha = 0.0001817 (1 of 2). Assumes 4 future values. Seasonality was not detected with 95% confidence.

9/11/17 3/17/18 9/21/18 3/28/19

 $\label{eq:Sanitas} \mbox{Sanitas software licensed to ACC. UG} \\ \mbox{Hollow symbols indicate censored values}.$

Within Limit

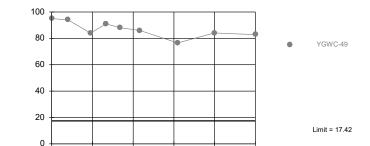
Prediction Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 88 background values. Annual per-constituent alpha = 0.002497. Individual comparison alpha = 0.00025 (1 of 2). Assumes 4 future values. Seasonality was not detected with 95% confidence.

Constituent: Calcium Analysis Run 4/18/2019 4:53 PM View: AP-A Interwell PL
Plant Yates Client: Southern Company Data: Yates AMA, R6

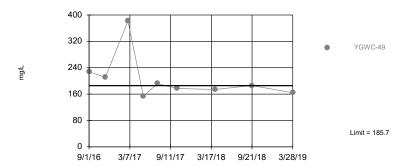
Sanitas™ v.9.6.05 Sanitas software licensed to ACC. UG


Within Limits Prediction Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 104 background values. Annual perconstituent alpha = 0.003631. Individual comparison alpha = 0.0003634 (1 of 2). Assumes 4 future values. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.05 Sanitas software licensed to ACC. U

Exceeds Limit: YGWC-49 Prediction Limit
Interwell Parametric


Background Data Summary (based on cube root transformation): Mean=1.516, Std. Dev.=0.5946, n=88, 11.36% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.967, critical = 0.961. Kappa = 1.81 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Assumes 4 future values.

9/1/16 3/7/17 9/11/17 3/17/18 9/21/18 3/28/19

Constituent: Sulfate Analysis Run 4/18/2019 4:53 PM View: AP-A Interwell PL
Plant Yates Client: Southern Company Data: Yates AMA, R6

Sanitas™ v.9.6.05 Sanitas software licensed to ACC. UG

Background Data Summary (based on square root transformation): Mean=9.548, Std. Dev.=2.254, n=88. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9781, critical = 0.961. Kappa = 1.81 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Assumes 4 future values.

Constituent: Total Dissolved Solids Analysis Run 4/18/2019 4:53 PM View: AP-A Interwell PL Plant Yates Client: Southern Company Data: Yates AMA, R6

Constituent: Boron (mg/L) Analysis Run 4/18/2019 4:55 PM View: AP-A Interwell PL Plant Yates Client: Southern Company Data: Yates AMA, R6

6/2/2016	YGWA-4I (bg) <0.05	YGWA-5I (bg) <0.05	YGWA-18I (bg)	YGWA-21I (bg)	YGWA-20S (bg)	YGWA-5D (bg) <0.05 (o)	YGWA-18S (bg)	YGWA-17S (bg)	YGWC-49
6/6/2016	~0.03	~ 0.03	<0.05			~0.03 (0)	<0.05 (o)		
6/7/2016			~ 0.03	<0.05	<0.05		<0.03 (0)	<0.05 (a)	
	0.0047 (1)	<0.1		<0.05	~ 0.05	0.0052 (J)		<0.05 (o)	
7/26/2016 7/27/2016	0.0047 (J)	<0.1	<0.1		<0.1	0.0052 (3)	0.0059 (J)	0.008 (J)	
7/28/2016			~ 0.1	<0.1 (*)	~ 0.1		0.0059 (3)	0.008 (3)	
9/1/2016				<0.1 (*)					0.0112 (1)
9/1/2016	<0.1	0.01 (1)				0.0071 (1)			0.0113 (J)
9/16/2016	<0.1	0.01 (J)				0.0071 (J)	0.0070 (1)	0.0006 (1)	
			-0.1	-0.1	-0.1		0.0079 (J)	0.0086 (J)	
9/19/2016			<0.1	<0.1	<0.1	.0.1 ()			
11/2/2016	<0.1		.0.1	.0.1	<0.1	<0.1 (o)	0.0000 (1)	0.0077 (1)	
11/3/2016			<0.1	<0.1			0.0082 (J)	0.0077 (J)	
11/4/2016		<0.1							
11/15/2016									0.0074 (J)
1/11/2017			<0.04				0.0096 (J)	0.0092 (J)	
1/12/2017		<0.04				0.0076 (J)			
1/13/2017	<0.04			<0.04	<0.04				
2/27/2017									<0.04
3/1/2017			<0.04				<0.04 (o)		
3/2/2017								0.0095 (J)	
3/6/2017	<0.04			<0.04	<0.04				
3/7/2017		<0.04				0.0089 (J)			
4/26/2017			<0.04	<0.04	<0.04		0.0091 (J)		
5/1/2017	<0.04					0.0061 (J)			
5/2/2017		<0.04						<0.04 (o)	
5/9/2017									<0.04
6/27/2017		<0.04				0.0079 (J)			
6/28/2017			<0.04				0.0079 (J)		
6/29/2017	<0.04			<0.04	<0.04			0.0074 (J)	
7/13/2017									0.0093 (J)
10/3/2017		<0.04		<0.04		0.0094 (J)			
10/4/2017					<0.04		0.009 (J)	0.0077 (J)	
10/5/2017	<0.04		<0.04						
10/11/2017									<0.04
4/4/2018									0.0041 (J)
6/5/2018				0.0092 (J)					
6/6/2018					0.0049 (J)	0.0098 (J)			
6/7/2018	0.0045 (J)	<0.04	<0.04						
6/11/2018							0.0093 (J)	0.01 (J)	
9/20/2018									0.0042 (J)
9/25/2018			0.0046 (J)	0.0054 (J)	<0.04		0.007 (J)	0.0096 (J)	
9/26/2018	0.005 (J)	0.0057 (J)				0.01 (J)			
3/28/2019									<0.04

Constituent: Calcium (mg/L) Analysis Run 4/18/2019 4:55 PM View: AP-A Interwell PL Plant Yates Client: Southern Company Data: Yates AMA, R6

	YGWA-4I (bg)	YGWA-5I (bg)	YGWA-5D (bg)	YGWA-18S (bg)	YGWA-18I (bg)	YGWA-21I (bg)	YGWA-20S (bg)	YGWA-17S (bg)	YGWC-49
6/2/2016	8.8	2.4	33						
6/6/2016				1.4	6.2				
6/7/2016						3.7	2.3	2.2	
7/26/2016	7.69	2.12	32.3						
7/27/2016				1.19	4.73		2.08	2	
7/28/2016						3.15			
9/1/2016									13.9
9/14/2016	8.49	2.18	31						
9/16/2016				1.5				1.97	
9/19/2016					4.76	3.17	1.97		
11/2/2016	7.83		30.9				2.13		
11/3/2016				1.31	5.25	3.4		1.99	
11/4/2016		2.17 (J)							
11/15/2016									13.5
1/11/2017				1.25	4.74			2.28	
1/12/2017		2.37	35.7						
1/13/2017	8.08					4.98	2.45		
2/27/2017									12.5
3/1/2017				1.26	5.37				
3/2/2017								2.15	
3/6/2017	8.64					6.28	2.48		
3/7/2017		2.34	32.7						
4/26/2017				1.05	4.28	6.65	2.3		
5/1/2017	13.4		37						
5/2/2017		2.17						1.95	
5/9/2017									14.4
6/27/2017		2.13	36.5						
6/28/2017				1.06	4.95				
6/29/2017	8.81					6.04	2.54	2.02	
7/13/2017									14.1
10/3/2017		2.15	30.9			8.28			
10/4/2017				1.1			2.25	2.03	
10/5/2017	9.29				5.28				
10/11/2017									12.4
4/4/2018									<25
6/5/2018						9.1			
6/6/2018			26.2				2.3		
6/7/2018	8.2	2.3			4.8				
6/11/2018				1.4				2.1	
9/20/2018									12 (J)
9/25/2018				1	4.6	10.4 (J)	2.3	2.1	• •
9/26/2018	9.5 (J)	2.3	25.8			. ,			
3/28/2019	` '								11.3 (J)
- · · · ·									- \-/

Constituent: Fluoride (mg/L) Analysis Run 4/18/2019 4:55 PM View: AP-A Interwell PL Plant Yates Client: Southern Company Data: Yates AMA, R6

6/2/2016	YGWA-4I (bg) <0.2	YGWA-5D (bg) 0.11 (J)	YGWA-5I (bg) <0.2	YGWA-18I (bg)	YGWA-18S (bg)	YGWA-17S (bg)	YGWA-21I (bg)	YGWA-20S (bg)	YGWC-49
6/6/2016	~0.2	0.11 (3)	~0.2	<0.2	<0.2				
6/7/2016				~ 0.2	~ 0.2	<0.2	<0.2	<0.2	
7/26/2016	<0.3	0.05 (1)	<0.3			~0.2	~0.2	~0.2	
7/27/2016	<0.3	0.05 (J)	<0.3	<0.3	<0.3	<0.3		<0.3	
7/28/2016				~0.3	~0.5	~0.5	0.02 (J)	~0.3	
9/1/2016							0.02 (3)		0.09 (J)
9/14/2016	<0.3	0.04 (J)	<0.3						0.03 (3)
9/16/2016	-0.0	0.04 (0)	-0.0		<0.3	<0.3			
9/19/2016				<0.3	-0.0	-0.0	0.02 (J)	<0.3	
11/2/2016	<0.3 (*)	<0.3 (*)		-0.0			0.02 (0)	<0.3	
11/3/2016	-0.0 ()	10.0 ()		<0.3	<0.3	<0.3	<0.3 (*)	-0.0	
11/4/2016			<0.3	0.0	0.0	0.0	0.0 ()		
11/15/2016			0.0						0.16 (J)
1/11/2017				<0.3	<0.3	<0.3			0.10 (0)
1/12/2017		0.04 (J)	<0.3	-0.0	-0.0	-0.0			
1/13/2017	<0.3	0.0 1 (0)	0.0				<0.3	<0.3	
2/27/2017	0.0						0.0		0.06 (J)
3/1/2017				<0.3 (*)	<0.3 (*)				(5)
3/2/2017				,	,	<0.3 (*)			
3/6/2017	<0.3 (*)					,	<0.3 (*)	<0.3 (*)	
3/7/2017	,	<0.3 (*)	<0.3 (*)				,	,	
4/26/2017		,	,	<0.3	<0.3		0.04 (J)	<0.3	
5/1/2017	<0.3	<0.3 (*)					()		
5/2/2017		,	<0.3			<0.3			
5/9/2017									0.05 (J)
6/27/2017		<0.3 (*)	<0.3						
6/28/2017				<0.3	<0.3				
6/29/2017	<0.3 (*)					<0.3 (*)	<0.3 (*)	<0.3 (*)	
7/13/2017									<0.3
10/3/2017		<0.3 (*)	<0.3				<0.3 (*)		
10/4/2017					<0.3	<0.3		<0.3	
10/5/2017	<0.3			<0.3					
10/11/2017									0.14 (J)
3/28/2018				<0.3	<0.3	<0.3			
3/29/2018	<0.3	<0.3	<0.3				<0.3	<0.3	
4/4/2018									<0.3
6/5/2018							0.13 (J)		
6/6/2018		0.15 (J)						<0.3	
6/7/2018	<0.3		<0.3	<0.3					
6/11/2018					<0.3	<0.3			
9/20/2018									<0.3
9/25/2018				<0.3	<0.3	<0.3	0 (J)	<0.3	
9/26/2018	<0.3	<0.3	<0.3						
3/4/2019	<0.3	0.19 (J)	<0.3						
3/5/2019					<0.3	<0.3	0.32	<0.3	
3/6/2019				<0.3					
3/28/2019									<0.3

Constituent: pH (S.U.) Analysis Run 4/18/2019 4:55 PM View: AP-A Interwell PL

Plant Yates Client: Southern Company Data: Yates AMA, R6

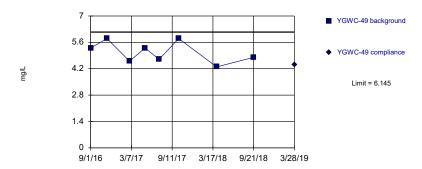
		YGWA-4I (bg)	YGWA-5D (bg)	YGWA-5I (bg)	YGWA-18I (bg)	YGWA-18S (bg)	YGWA-17S (bg)	YGWA-21I (bg)	YGWA-20S (bg)	YGWC-49
6	6/2/2016	6.36	7.67	5.75						
6	6/6/2016				6.17	5.71				
6	6/7/2016						5.62	6.1	5.77	
7	7/26/2016	6.22	7.66	5.72						
7	7/27/2016				6.14	5.46	5.59		5.79	
7	7/28/2016							6.12		
9	9/1/2016									5.78
g	9/14/2016	6.23	7.6	5.74						
g	9/16/2016						5.58			
g	9/19/2016				6.04	5.59		6.12	5.73	
1	1/2/2016	6.08	7.35						5.67	
1	11/3/2016				5.97	5.39	5.59	6.07		
1	1/4/2016			5.61						
1	1/15/2016									5.81
1	1/11/2017				6.05	5.48	5.59			
1	/12/2017		7.49	5.71						
1	1/13/2017	6.19						6.41	5.79	
2	2/27/2017									5.68
3	3/1/2017				5.94	5.41				
3	3/2/2017						5.54			
3	3/6/2017	6.2						6.34	5.63	
3	3/7/2017		7.43	5.66						
4	1/26/2017				5.99	5.4		6.32	5.66	
5	5/1/2017	6.21	7.22							
5	5/2/2017			5.65			5.47			
5	5/9/2017									6.18
6	6/27/2017		7.32	5.7						
6	6/28/2017				6	5.36				
6	6/29/2017	6.21					5.56	6.47	5.85	
7	7/13/2017									5.6
1	10/3/2017		7.48	5.79				6.56		
1	10/4/2017					5.32	5.57		5.83	
1	10/5/2017	6.16			6.11					
1	10/11/2017									5.61
4	1/4/2018									5.98
6	6/5/2018							6.09		
6	6/6/2018		7.43						5.86	
6	6/7/2018	6.12		5.63	5.98					
	6/11/2018					5.28	5.58			
9	9/20/2018									5.67
g	9/25/2018				5.81	4.86	5.59	6.67	5.84	
g	9/26/2018	5.84	7.13	5.63						
	3/4/2019	6.18	7.46	5.75						
	3/5/2019					5.26	5.48	7.22	6.07	
3	3/6/2019				5.99					
3	3/28/2019									5.86
	1/2/2019						5.74	6.94		
4	1/3/2019	6.43	7.11	5.63	6.29	5.47			5.71	

Constituent: Sulfate (mg/L) Analysis Run 4/18/2019 4:55 PM View: AP-A Interwell PL Plant Yates Client: Southern Company Data: Yates AMA, R6

6/2/2016	YGWC-49	YGWA-17S (bg)	YGWA-18I (bg)	YGWA-18S (bg)	YGWA-20S (bg)	YGWA-21I (bg)	YGWA-4I (bg) 8	YGWA-5D (bg) 20	YGWA-5I (bg) 1.9
6/6/2016			1.2	1.8			-		
6/7/2016		4.4			<1	5.2			
7/26/2016					•	0.2	7.7	20	1.8
7/27/2016		4.7	1.7	1.9	0.08 (J)			20	
7/28/2016					(5)	5.1			
9/1/2016	95								
9/14/2016							7.5	19	1.8
9/16/2016		4.8		1.7					
9/19/2016			1.8		0.08 (J)	4.8			
11/2/2016					0.1 (J)		8.2	20	
11/3/2016		5.3	0.69 (J)	1.9	(-)	5			
11/4/2016			,						2
11/15/2016	94								
1/11/2017		5.2	<1 (*)	1.7					
1/12/2017			()					19	1.9
1/13/2017					<1 (*)	4.3	8.1		
2/27/2017	84								
3/1/2017			1.8	<1.6 (*)					
3/2/2017		5							
3/6/2017					<1	4.5	8		
3/7/2017								20	2.1
4/26/2017			1.6	1.9	<1	4.9			
5/1/2017							8.4	20	
5/2/2017		5							2
5/9/2017	91								
6/27/2017								18	2.1
6/28/2017			<1.7 (*)	<1.5 (*)					
6/29/2017		5.2			<1 (*)	5.5	9.2		
7/13/2017	88								
10/3/2017						5.8		16	2.3
10/4/2017		5.3		1.7	<1 (*)				
10/5/2017			1.6				9.6		
10/11/2017	86								
4/4/2018	76.5								
6/5/2018						6.1			
6/6/2018					0.049 (J)			8.3	
6/7/2018			0.68 (J)				8.5		2
6/11/2018		5.2		0.95 (J)					
9/20/2018	84.1								
9/25/2018		6.1	1	1.5	0.13 (J)	7			
9/26/2018							10.2	7.9	2.3
3/28/2019	82.8								

Constituent: Total Dissolved Solids (mg/L) Analysis Run 4/18/2019 4:55 PM View: AP-A Interwell PL Plant Yates Client: Southern Company Data: Yates AMA, R6

6/2/2016	YGWC-49	YGWA-17S (bg)	YGWA-18I (bg)	YGWA-18S (bg)	YGWA-20S (bg)	YGWA-21I (bg)	YGWA-4I (bg) 96	YGWA-5D (bg) 160	YGWA-5I (bg) 66
6/6/2016			120	58			90	100	00
		20	120	36	20	60			
6/7/2016 7/26/2016		28			38	60	92	177	78
7/20/2016		74	94	35	74		92	177	70
7/28/2016		74	94	33	74	81			
9/1/2016	228					01			
9/1/2016	220						102	187	73
9/16/2016		67		35			102	107	73
9/19/2016		07	92	33	45	68			
11/2/2016			32		53	00	115	181	
11/3/2016		41	104	48	33	61	115	101	
11/4/2016		7.	104	40		01			75
11/15/2016	211								70
1/11/2017	2	104	133	95					
1/12/2017			.00					202	86
1/13/2017					46	76	67		
2/27/2017	382								
3/1/2017			119	79					
3/2/2017		77							
3/6/2017					164	167	159		
3/7/2017								257	108
4/26/2017			162	36	34	50			
5/1/2017							107	165	
5/2/2017		142							103
5/9/2017	154								
6/27/2017								189	73
6/28/2017			98	45					
6/29/2017		53			68	94	79		
7/13/2017	192								
10/3/2017						149		170	89
10/4/2017		61		45	54				
10/5/2017			104				95		
10/11/2017	177								
4/4/2018	174								
6/5/2018						109			
6/6/2018					79			151	
6/7/2018			68				90		142
6/11/2018		70		74					
9/20/2018	186								
9/25/2018		86	109	63	73	122			
9/26/2018							116	144	86
3/28/2019	164								


Intrawell Prediction Limit

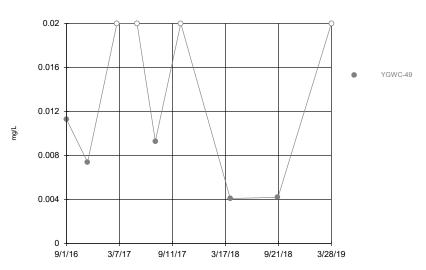
Plant Yates Client: Southern Company Data: Yates AMA, R6 Printed 4/18/2019, 4:57 PM

Constituent Well Upper Lim. <u>Date</u> Observ. Sig. Bg N %NDs <u>Transform</u> <u>Alpha</u> Method YGWC-49 No Param Intra 1 of 3 Chloride (mg/L) 6.145 3/28/2019 4.4 8 0 No 0.001504

Within Limit

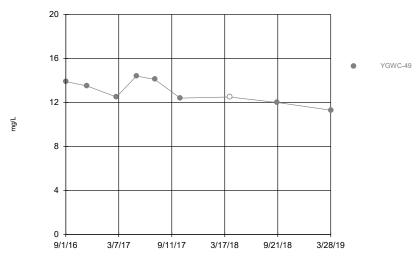
Prediction Limit Intrawell Parametric

Background Data Summary: Mean=5.075, Std. Dev.=0.56, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9188, critical = 0.749. Kappa = 1.91 (c=7, w=5, 1 of 3, event alpha = 0.05132). Report alpha = 0.001504.


Constituent: Chloride Analysis Run 4/18/2019 4:56 PM View: AP-A Intrawell PL
Plant Yates Client: Southern Company Data: Yates AMA, R6

Constituent: Chloride (mg/L) Analysis Run 4/18/2019 4:57 PM View: AP-A Intrawell PL Plant Yates Client: Southern Company Data: Yates AMA, R6

	YGWC-49	YGWC-49
9/1/2016	5.3	
11/15/2016	5.8	
2/27/2017	4.6	
5/9/2017	5.3	
7/13/2017	4.7	
10/11/2017	5.8	
4/4/2018	4.3	
9/20/2018	4.8	
3/28/2019		4.4


Constituent: Boron Analysis Run 4/18/2019 4:06 PM View: AP-A Time Series
Plant Yates Client: Southern Company Data: Yates AMA, R6

Sanitas™ v.9.6.05 Sanitas software licensed to ACC. UG

Time Series 4.8 3.6 2.4 1.2 0 9/1/16 3/7/17 9/11/17 3/17/18 9/21/18 3/28/19

Constituent: Chloride Analysis Run 4/18/2019 4:06 PM View: AP-A Time Series
Plant Yates Client: Southern Company Data: Yates AMA, R6

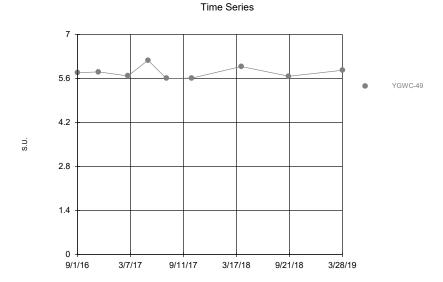
Time Series

Constituent: Calcium Analysis Run 4/18/2019 4:06 PM View: AP-A Time Series
Plant Yates Client: Southern Company Data: Yates AMA, R6

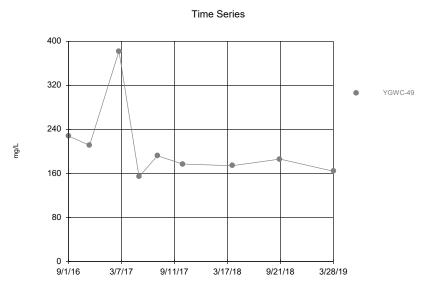
Sanitas™ v.9.6.05 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

0.2 0.16 0.12 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.07/17 9/11/17 3/17/18 9/21/18 3/28/19

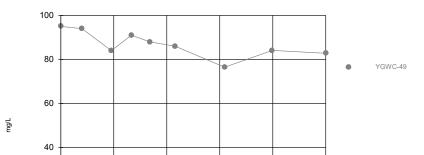
Constituent: Fluoride Analysis Run 4/18/2019 4:06 PM View: AP-A Time Series
Plant Yates Client: Southern Company Data: Yates AMA, R6


Sanitas™ v.9.6.05 Sanitas software licensed to ACC. UG

20


9/1/16

3/7/17



Constituent: pH Analysis Run 4/18/2019 4:06 PM View: AP-A Time Series
Plant Yates Client: Southern Company Data: Yates AMA, R6

Sanitas™ v.9.6.05 Sanitas software licensed to ACC. UG

Constituent: Total Dissolved Solids Analysis Run 4/18/2019 4:06 PM View: AP-A Time Series
Plant Yates Client: Southern Company Data: Yates AMA, R6

Time Series

Constituent: Sulfate Analysis Run 4/18/2019 4:06 PM View: AP-A Time Series
Plant Yates Client: Southern Company Data: Yates AMA, R6

3/17/18

9/21/18

3/28/19

9/11/17