Georgia Power Company Plant Yates – Gypsum Stack Landfill

Newnan, Georgia PERMIT #: 038-014D(I) Coweta County

SUPPLEMENTAL 2019 FIRST SEMIANNUAL GROUNDWATER MONITORING REPORT

PROFESSIONAL CERTIFICATION

Evan B. Perry, Project Manager PROFESS

ATLANTIC CG

This Supplemental 2019 First Semiannual Groundwater Monitoring & Corrective Action Report, Georgia Power Company - Plant Yates Gypsum Stack Landfill has been prepared in compliance with the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10 and 391-3-4-.14 by a qualified groundwater scientist or engineer with Atlantic Coast Consulting, Inc (ACC).

ACC certifies that all site constituents were below the applicable Georgia maximum contaminant levels (MCL).

> Chris A. Klamke, P.G. Vice-President

TABLE OF CONTENTS

<u>Secti</u>	on		Page No.
1.0	INTF	RODUCTION	1
1.:	1 :	Site Description and Background	1
1.2	2	Regional Geology and Hydrogeologic Setting	1
1.3	3	Groundwater Monitoring Well Network and CCR Unit Description	2
2.0	GRO	DUNDWATER MONITORING ACTIVITIES	2
2.3	1	Monitoring Well Installation/Maintenance	2
2.2	2	Detection Monitoring Program	2
	2.2.1	Background Monitoring for CCR Analytes	2
	2.2.2	Initial Detection Monitoring for CCR Analytes	3
	2.2.3	Monitoring for Existing Approved Analytes	3
3.0	SAM	IPLE METHODOLOGY AND ANALYSIS	3
3.3	1	Groundwater Flow Direction, Gradient, and Velocity	3
3.2	2	Groundwater Sampling	4
3.3	3	Laboratory Analyses	4
3.4	4	Quality Assurance and Quality Control	4
4.0	STA	TISTICAL ANALYSIS	5
4.:	1	Statistical Methods	5
	4.1.1	Appendix III Constituents	5
	4.1.2	EPD Permit-Required Metals	5
4.2	2	Statistical Analyses Results	6
	4.2.1	First Semiannual Detection Monitoring Event	6
	4.4.2	Appendix IV Background Data	6
4.3	3	Statistical Analyses Results for Parameters Required by Existing Permit	6
5.0	MON	NITORING PROGRAM STATUS	6
6.0	CON	ICLUSIONS AND FUTURE ACTIONS	7
7.0	REF	ERENCES	7
Table	es		
	Table	1 – Monitoring Network Well Summary	
	Table	2 – Groundwater Sampling Event Summary	
	Table	3 - Summary of Groundwater Elevations	
	Table	4 - Groundwater Flow Velocity Calculations - June 2019	
	Table	5A – Summary of Background Groundwater Analytical Data – 2016-201	.8

Table 5B – Summary of Groundwater Analytical Data – June 2019

Table 5C – Summary of Groundwater Analytical Data – February 2019

Table 6 - Statistical Method Summary - June 2019

Figures

Figure 1 - Site Location Map

Figure 2 - Well Location Map

Figure 3 – June 2019 Water Table Contour Map

Appendices

Appendix A - Laboratory Analytical and Field Sampling Reports

Appendix B - Statistical Analyses

1.0 INTRODUCTION

In accordance with the Georgia Environmental Protection Division (GA EPD) Rules of Solid Waste Management 391-3-4-.10(6)(a)-(c), Atlantic Coast Consulting, Inc. (ACC) has prepared this Semiannual Groundwater Monitoring Report to document groundwater monitoring activities conducted during the first half of 2019 at Georgia Power Company's (GPC's) Plant Yates Gypsum Stack Landfill (Site). To specify groundwater monitoring requirements, GA EPD rule 391-3-4-.10(6)(a) incorporates by reference the United States Environmental Protection Agency (US EPA) Coal Combustion Residuals (CCR) Rule 40 Code of Federal Regulations (CFR) § 257 Subpart D.

The Site ceased accepting CCR prior to October 19, 2015 and is therefore not subject to Federal monitoring requirements. The Site was closed following the removal of all gypsum and liner material, and a closure certification report was submitted to GA EPD in January 2017. To comply with GA EPD's 391-3-4-.10, a permit application package for Plant Yates Gypsum Stack Landfill was submitted to GA EPD in November 2018 and is currently under review. The list of analytes included in the groundwater monitoring program has been modified to meet the requirements of 40 CFR § 257 (i.e. incorporation of Appendix III and IV constituents into the routine monitoring program). This report includes the background data and the initial detection monitoring data for the Site.

1.1 Site Description and Background

Plant Yates is located at 708 Dyer Road, on the east bank of the Chattahoochee River in Coweta County, Georgia near the Coweta and Carroll County line, approximately 8 miles northwest of the city of Newnan and 13 miles southeast of the city of Carrollton. Plant Yates occupies approximately 2,400 acres. Figure 1, Site Location Map, depicts the site location relative to the surrounding area.

1.2 Regional Geology and Hydrogeologic Setting

Plant Yates is located in the Inner Piedmont Physiographic Province of western Georgia, immediately southeast of the regional zone of deformation referred to as the Brevard Zone. Rock units at Plant Yates are primarily interlayered gneiss and schists. The rocks in the area have been subjected to several episodes of metamorphism and intrusion by igneous bodies. Extensive jointing occurs in the area. Surface expressions of the joints are observed on topographic maps and aerial photos of the Plant Yates area.

A thin layer of soil from one to two feet thick overlies a thick layer of saprolite. The saprolite, which extends to typical depths of 20-40 feet below ground surface, was formed in-place by the physical and chemical weathering of the underlying metamorphic rocks. There is typically a zone of variable thickness (approximately 5-20 feet) of transitionally weathered rock between the saprolite and competent bedrock. Localized alluvial soils consisting of generally coarser material (silty-sand, clayey silt, and silty clay with well-rounded gravel and cobbles) than that observed in saprolite may be related to historical river channel migration.

At Plant Yates, groundwater is typically encountered slightly above the saprolite/weathered rock interface. Groundwater flow in the saprolite zone is through interconnected pores and relict textures and fractures. As the rock becomes increasing competent with depth groundwater flow occurs mainly through joints and fractures (i.e. secondary porosity). Recharge to the water-bearing zones in fractured bedrock takes place by seepage through the overlying mantle of

soil/saprolite, or by direct entrance through openings in outcrops. The average depth of the water table at Plant Yates varies with topography, ranging from approximately 5 to 50 feet below ground surface. The water table occurs in the saprolite and in the transitionally weathered zone, at least several feet above the top of rock.

In-situ slug tests were performed in saprolite and weathered bedrock at multiple locations on the site. The average hydraulic conductivity for the unit is 2.3 x 10⁻⁴ centimeters per second, based on multiple rising-head and falling-head slug tests (SCS, 1992). The testing indicates a fairly uniform medium across the saprolite and weathered rock horizon. The values from the field testing fall within the standard range of hydraulic conductivity values associated with a silty sand.

1.3 Groundwater Monitoring Well Network and CCR Unit Description

A groundwater monitoring system was installed within the uppermost aquifer at the Site. The monitoring system is designed to monitor groundwater passing the unit boundary within the uppermost aquifer. Figure 2, Well Location Map, shows the monitoring well locations. Wells were located to serve as upgradient and downgradient monitoring points based on groundwater flow direction (Table 1, Monitoring Network Well Summary).

2.0 GROUNDWATER MONITORING ACTIVITIES

The following describes monitoring-related activities performed in the first half of 2019 and discusses any status changes of the monitoring program. Samples were collected from each well in the certified monitoring system shown on Figure 2. Table 2, Groundwater Sampling Event Summary, presents a summary of groundwater sampling events completed at the Site.

2.1 Monitoring Well Installation/Maintenance

A groundwater monitoring system was installed within the uppermost aquifer to monitor groundwater passing the waste boundary of the former Gypsum Landfill. Wells are located to serve as upgradient and downgradient wells based on characterization of site-specific hydrogeologic conditions as determined by a qualified groundwater scientist.

A network of seven monitoring wells were installed for groundwater monitoring at the Site. Table 1, Monitoring Well Network Summary presents the pertinent construction details for the monitoring wells.

2.2 Detection Monitoring Program

A routine semiannual sampling event was conducted in February 2019 and the data were reported to Georgia EPD in June 2019. To realign future sampling schedules, an additional sampling event was conducted in June 2019. This report provides data for the June 2019 monitoring event and reports it as the Supplemental 2019 First Groundwater Monitoring Report. Based on this revised schedule, a third sampling event for 2019 will be performed in September and the data will be reported in the 2019 second semiannual groundwater monitoring report.

2.2.1 Background Monitoring for CCR Analytes

A minimum of eight (8) independent samples were collected from the network and analyzed for the constituents listed in Appendix III and IV. A ninth event was completed in February 2019. A

table summarizing the results is included in Table 5A, Summary of Background Groundwater Analytical Data – 2016 - 2018. Data reports for each sampling event are included in Appendix A, Laboratory Analytical and Field Sampling Reports.

2.2.2 Initial Detection Monitoring for CCR Analytes

Following completion of the nine independent sampling events for constituents listed in Appendix III or IV, groundwater samples were collected June 12-13, 2019 and analyzed for Appendix III constituents as part of the supplemental first semiannual detection monitoring event. A table summarizing the results is included in Table 5B, Summary of Groundwater Analytical Data – June 2019. Data reports for the June 2019 sampling event are included in Appendix A.

2.2.3 Monitoring for Existing Approved Analytes

Groundwater samples collected on June 12-13, 2019 were also analyzed for the existing EPD specified parameters. A table summarizing the results for the well is included in Table 5B, Summary of Groundwater Analytical Data – June 2019. Data reports for the June 2019 sampling event are included in Appendix A.

3.0 SAMPLE METHODOLOGY AND ANALYSIS

The following sections describe the methods used to conduct groundwater monitoring at the Site.

3.1 Groundwater Flow Direction, Gradient, and Velocity

Prior to each sampling event, groundwater elevations are recorded from the certified well network at the Site. Groundwater elevations recorded during the monitoring events are summarized in Table 3, Summary of Groundwater Elevations. Groundwater elevation data was used to develop Figure 3, June 2019 Water Table Contour Map. The general direction of groundwater flow across the site is towards the west. The groundwater flow patterns observed during the June 2019 monitoring event is consistent with historical patterns.

The groundwater flow velocity at Plant Yates was calculated using a derivation of Darcy's Law. Specifically:

Equation

$$v = K (dh/dl)$$
 where: $v =$ ground water velocity
$$R = \frac{K (dh/dl)}{P_e}$$

$$K = \text{hydraulic conductivity}$$

$$dh/dl = \text{hydraulic gradient}$$

$$P_e = \text{effective porosity}$$

Groundwater flow velocities were calculated for the site based on hydraulic gradients, average permeability based on previous slug test data, and an estimated effective porosity of 0.20 (based on a review of several sources, including Driscoll, 1986; US EPA, 1989; Freeze and Cherry, 1979). An alternate effective porosity value of 0.48 (SCS, 1992) is also used to define the range of groundwater flow velocities. Groundwater flow velocities have been calculated and are tabulated on Table 4, Groundwater Flow Velocity Calculations. The calculated flow velocity is 0.043 to 0.104 feet per day or 16 to 38 feet per year for the most recent sampling event.

3.2 Groundwater Sampling

Groundwater samples were collected using low-flow sampling procedures. For sampling completed with non-dedicated bladder pumps, the pumps were lowered into the well so that the intake was at the midpoint of the well screen (or as appropriate determined by the water level). Peristaltic pump samples are collected using new disposable polyethylene tubing. All non-disposable equipment was decontaminated before use and between well locations.

Monitoring wells were purged and sampled using low-flow sampling procedures. A SmarTroll (In-Situ field instrument) was used to monitor and record field water quality parameters (pH, conductivity, oxidation-reduction potential, dissolved oxygen, and temperature) during well purging prior to sampling. Turbidity was measured using a Hach 2100Q portable turbidimeter. Groundwater samples were collected when the following stabilization criteria were met:

- ± 0.1 standard units for pH
- ± 10% for specific conductance
- ± 10% for DO where DO > 0.5 mg/L. No criterion applies if DO < 0.5 mg/L.
- Turbidity measurements less than 10 nephelometric turbidity units (NTU)

Once stabilization was achieved, samples were collected directly into appropriately-preserved laboratory-supplied sample containers. Sample bottles were placed in ice-packed coolers and submitted to Pace Analytical Services, LLC (Pace) of Peachtree Corners, Georgia and Greensburg, Pennsylvania following chain-of-custody protocol. Stabilization logs for each well during each monitoring event are included in Appendix A.

3.3 Laboratory Analyses

Groundwater samples collected in June 2019 for detection monitoring event were analyzed for Appendix III monitoring parameters and additional parameters required by the existing permit. Analytical methods used for groundwater monitoring parameters are provided in laboratory reports in Appendix A.

Laboratory analyses were performed by Pace. Pace is accredited by the National Environmental Laboratory Accreditation Program (NELAP) and maintains a NELAP certification for all parameters analyzed for this project. In addition, Pace is certified to perform analysis by the State of Georgia. Laboratory reports and chain-of-custody records for the monitoring events are presented in Appendix A.

3.4 Quality Assurance and Quality Control

During each sampling event, quality assurance/quality control (QA/QC) samples are collected at a rate of one QA/QC sample per every 10 groundwater assessment samples. Equipment blanks (where non-dedicated sampling equipment is used) and duplicate samples were collected during each sampling event. QA/QC sample data were evaluated during data validation and are included in Appendix A.

Groundwater quality data in this report was validated in accordance with US EPA guidance (US EPA, 2011) and the analytical methods. Data validation generally consisted of reviewing sample integrity, holding times, laboratory method blanks, laboratory control samples, matrix spikes/matrix spike duplicate recoveries and relative percent differences, post digestions

spikes, laboratory and field duplicate RPDs, field and equipment blanks, and reporting limits. Where appropriate, validation qualifiers and flags are applied to the data using US EPA procedures as guidance (US EPA, 2017).

Values followed by a "J" flag indicate that the value is an estimated analyte concentration detected between the method detection limit (MDL) and the laboratory reporting limit (PQL). The estimated value is positively identified but is below the lowest level that can be reliably achieved within specified limits of precision and accuracy under routine laboratory operating conditions. "J" flagged data are used to establish background statistical limits but are not used when performing statistical analyses.

4.0 STATISTICAL ANALYSIS

Statistical analysis of groundwater monitoring data was performed following the appropriate certified statistical methodology.

4.1 Statistical Methods

The statistical method used at the site was developed by Groundwater Stats Consulting, LLC (GSC), using methodology presented in *Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance*, March 2009, US EPA 530/ R-09-007 (US EPA, 2009). To develop the statistical method, analytical data collected during the background period were evaluated and used to develop statistical limits for each Appendix III parameter. All screened historical background data through August 2018 were used to construct statistical limits for the EPD permit-required metals. Sanitas groundwater statistical software was used to perform the statistical analyses. Sanitas is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by US EPA regulations.

4.1.1 Appendix III Constituents

Statistical tests used to evaluate the groundwater monitoring data consist of interwell prediction limits combined with a 1-of-2 verification resample plan for Appendix III parameters boron, calcium, chloride, sulfate, and total dissolved solids (TDS). Monitoring results for fluoride and pH were evaluated using intrawell prediction limits combined with a 1-of-2 verification resample plan. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent, and the most recent sample from each downgradient well is compared to the same limit for each parameter. Intrawell prediction limits are constructed from historical data within a given well, and the most recent sample is compared to background. If the most recent sample exceeds its respective background statistical limit, an initial statistically significant increase (SSI) is identified. A summary of the statistical methodology used at the Site for routine groundwater monitoring is provided in Table 6, Summary of Statistical Methods.

4.1.2 EPD Permit-Required Metals

Statistical tests used to evaluate the groundwater monitoring data consist of intrawell prediction limits combined with a 1-of-2 verification resample plan for all required metals, except for barium at GWC-6R. The occurrence of barium at GWC-6R is evaluated by a trend test. Intrawell prediction limits are constructed from historical data within a given well, and the most recent sample is compared to background. If the most recent sample exceeds its respective background statistical limit, an initial statistically significant increase (SSI) is identified. Table 6 includes a summary of the metals included in the EPD permit and the statistical method.

4.2 Statistical Analyses Results

Analytical data from the initial CCR detection monitoring event in June 2019 at the Site was statistically analyzed in accordance with the statistical methods.

Resampling to confirm SSIs was not performed; therefore, initial SSIs are treated as verified. The statistical analysis and comparison to prediction limits are included as Appendix B, Statistical Analyses.

4.2.1 First Semiannual Detection Monitoring Event

Based on the statistical results presented in Appendix B, the following summarizes parameters exhibiting SSIs as follows:

• Boron: GWC-1R, GWC-4R

Calcium: GWC-1R, GWC-2R, GWC-4R, GWC-5R, GWC-6R

Chloride: GWC-1R, GWC-2R, GWC-3R, GWC-4R, GWC-5R, GWC-6R

Fluoride: GWC-2R, GWC-3R

pH: GWC-1R

Sulfate: GWC-1R, GWC-2R, GWC-5R, GWC-6R

TDS: GWC-1R, GWC-2R, GWC-4R, GWC-5R, GWC-6R

Within 90 days from determining an SSI, GPC will either (1) prepare a demonstration that a source other than the Site was the cause, or (2) implement assessment monitoring per §257.95.

4.4.2 Appendix IV Background Data

Appendix IV groundwater data from downgradient wells will be compared to groundwater protection standards if assessment monitoring is implemented. Plant Yates Gypsum Landfill is currently performing detection monitoring and has not implemented assessment monitoring. Therefore, statistical analysis of the Appendix IV data has not been performed.

4.3 Statistical Analyses Results for Parameters Required by Existing Permit

Analytes required by the existing state permit were analyzed during this event. Wells and analytes with all data below the reporting limit do not require statistical analysis. A summary of wells exhibiting 100% non-detects is included in Appendix B.

Concentrations of target metals were within their respective intrawell prediction limits during the June 2019 sampling event. The cobalt concentration in the sample from GWC-3R equaled the reporting limit of 0.01 mg/L, but did not exceed the prediction limit of 0.01 mg/L. Additionally, a GA EPD-approved Alternate Source Demonstration identified cobalt as naturally occurring at the facility (SCS, 2016).

5.0 MONITORING PROGRAM STATUS

Plant Yates – Gypsum Stack is in detection monitoring. SSIs of Appendix III parameters have been identified. Plant Yates has 90 days from the date of determination to either (1) prepare a

demonstration that a source other than the Site was the cause, or (2) implement assessment monitoring per.

6.0 CONCLUSIONS AND FUTURE ACTIONS

Statistical evaluations of the groundwater monitoring data for Gypsum Stack identified SSIs of Appendix III groundwater monitoring parameters. GPC will prepare an alternate source demonstration or initiate assessment monitoring program within 90 days.

The next monitoring event is planned for the second half of 2019.

7.0 REFERENCES

Driscoll, Fletcher G., 1986 *Groundwater and Wells*, Johnson Screens, Saint Paul, Minnesota, 1089 pp.

EPRI, 2015 Technical Report, Groundwater Monitoring Guidance for the Coal Combustion Residuals Rule.

Freeze, R.A. and Cherry, J.A. 1979, *Groundwater*, Prentice-Hall, Englewood Cliffs, New Jersey, 604 pp.

Groundwater Stats Consulting, LLC, Statistical Analysis Plan – Plant Yates Ash Pond 1 (AP-1), 2019.

Southern Company Services, Inc., 1992. The Geology and Hydrogeology of the Plant Yates CT-121 Project Gypsum Stacking Area.

Southern Company Services, Inc., 2016. Alternate Source Demonstration – Plant Yates Industrial Solid Waste Landfill – Gypsum Stack.

State Waste Management Board. 2016. State Solid Waste Management Regulations – (9VAC20 81 et seq.). January.

US EPA, 1989 Risk Assessment Guidance for Superfund (RAGS), Vol. I: Human Health Evaluation Manual (Part A) (540-1-89-002).

US EPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery – Program Implementation and Information Division. March.

US EPA. 2011. *Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Region IV. Athens, GA. September.

US EPA. 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January.

TABLES

Table 1
Monitoring Network Well Summary

Well	Installation Date (mm/dd/yyyy)	Bottom Depth (ft BTOC)	Bottom Elevation (ft MSL)	Depth to Top of Screen (ft BTOC)	Top of Screen Elevation (ft MSL)	Purpose
GWA-2	2007	52.13	753.18	42.10	763.21	Upgradient
GWC-1R	5/12/2011	36.34	736.94	26.35	746.93	Downgradient
GWC-2R	10/19/2010	43.80	725.61	33.80	735.61	Downgradient
GWC-3R	5/11/2011	38.34	736.94	28.34	746.94	Downgradient
GWC-4R	10/20/2010	31.05	725.97	21.08	735.94	Downgradient
GWC-5R	5/11/2011	42.82	739.72	32.81	749.73	Downgradient
GWC-6R	8/11/2009	51.87	736.73	41.88	746.72	Downgradient

- 1. ft BTOC indicates feet below top of casing.
- 2. ft MSL indicates feet mean sea level.
- 3. Northings and Eastings are GA State Plane West (NAD83).

Table 2
Groundwater Sampling Event Summary

Well	Hydraulic Location	Aug. 31 - Sept. 1, 2016	Nov. 28 - Dec. 1, 2016	Feb. 22-24, 2017	May 8-10, 2017	Jul. 17-18, 2017	Oct. 16-18, 2017	Feb. 19-21, 2018	Aug. 6-8, 2018	Feb. 25-26, 2019	Jun. 12-13, 2019
	Purpose of Sampling Event			Background	Background	Background	Background	Background	Background	Background	Detection
GWA-2	Upgradient	BG-01	BG-02	BG-03	BG-04	BG-05	BG-06	BG-07	BG-08	BG-09	D-01
GWC-1R	Downgradient	BG-01	BG-02	BG-03	BG-04	BG-05	BG-06	BG-07	BG-08	BG-09	D-01
GWC-2R	Downgradient	BG-01	BG-02	BG-03	BG-04	BG-05	BG-06	BG-07	BG-08	BG-09	D-01
GWC-3R	Downgradient	BG-01	BG-02	BG-03	BG-04	BG-05	BG-06	BG-07	BG-08	BG-09	D-01
GWC-4R	Downgradient	BG-01	BG-02	BG-03	BG-04	BG-05	BG-06	BG-07	BG-08	BG-09	D-01
GWC-5R			BG-02	BG-03	BG-04	BG-05	BG-06	BG-07	BG-08	BG-09	D-01
GWC-6R	Downgradient	BG-01	BG-02	BG-03	BG-04	BG-05	BG-06	BG-07	BG-08	BG-09	D-01

- 1. Events shown represent CCR monitoring only. Ongoing monitoring for previously permitted analytes has occurred semi-annually.
- 2. BG-XX = Background Event (Appendix III and Appendix IV).
- 3. D-XX = Detection Event (Appendix III).

Table 3 Summary of Groundwater Elevations

Well	Hydraulic Location	Aug. 31 - Sept. 1, 2016	Nov. 28 - Dec. 1, 2016	Feb. 22-24, 2017	May 8-10, 2017	Jul. 17-18, 2017	Oct. 16-18, 2017	Feb. 19-21, 2018	Aug. 6-8, 2018	Feb. 25-26, 2019	Jun. 12-13, 2019
1	Purpose of Sampling Event		Background	Background	Background	Background	Background	Background	Background	Detection	Detection
GWA-2	Upgradient	766.85	766.03	765.04	764.46	764.27	764.79	764.63	766.16	767.44	769.23
GWC-1R	Downgradient	747.50	745.13	745.48	747.13	747.42	747.71	748.00	749.54	752.10	752.06
GWC-2R	Downgradient	739.76	738.12	738.37	738.75	739.01	739.63	739.38	740.22	741.93	742.03
GWC-3R	GWC-3R Downgradient		742.96	742.64	743.48	743.84	745.33	744.61	745.93	747.31	748.05
GWC-4R	GWC-4R Downgradient		737.60	738.50	738.50	739.21	739.09	739.64	740.27	741.97	741.99
GWC-5R	Downgradient	749.89	747.47	747.26	748.04	748.90	751.64	751.14	752.99	754.97	755.11
GWC-6R	GWC-6R Downgradient		749.43	748.67	748.90	748.87	749.32	749.08	750.97	753.07	754.50

^{1.} Groundwater elevations are recorded in feet above mean sea level (ft MSL).

Table 4 **Groundwater Flow Velocity Calculations** June 2019

Equation

v = K (dh/dl) where: v = ground water velocity K = hydraulic conductivity K = hydraulic conductivity

dh/dl = hydraulic gradient P_e = effective porosity

Values Used in Calculation

	Value		Source
K =	2.3E-04 0.66	cm/sec ft/day	See note 1.
i =	0.031	unitless	Hydraulic gradient from GWA-2 to GWC-4R
P _e =	0.48	unitless	See note 1.
P _e =	0.20	unitless	See note 2.

Site-Specific Calculation Using Porosity Value of 0.48

$$v = \frac{(0.66)(0.031)}{0.48}$$

 $v = 0.043 \text{ ft/day}$

Literature Calculation Using Porosity Value of 0.20

$$v = \frac{(0.66)(0.031)}{0.20}$$

$$v = 0.104 \text{ ft/day}$$

- (1) The Geology & Hydrogeology of the Plant Yates CT-121 Project Gypsum Stacking Area (SCS, 1992)
- (2) Default value for silty sands from Interim Final RCRA Investigation (EPA, 1989)

Table 5A
Summary of Background Groundwater Analytical Data - 2016-2018

						We	II ID			
	Substance	MCL/ (SMCL)	GWA-2	GWA-2	GWA-2	GWA-2	GWA-2	GWA-2	GWA-2	GWA-2
		(SIVICE)	8/31/2016	11/28/2016	2/22/2017	5/8/2017	7/17/2017	10/16/2017	2/19/2018	8/6/2018
	Boron	N/R	ND (0.0315 J)	ND (0.0095 J)	ND	ND (0.0084 J)	ND (0.0092 J)	ND	ND	ND
=	Calcium	N/R	9.31	9.47	10.4	14.2	14.1	13.6	ND	ND (11.4 J)
DIX	Chloride	(250)	4.0	4.2	3.7	4.2	3.8	4.2	4.3	3.8
APPENDIX III	Fluoride	4	ND (0.14 J)	ND (0.12 J)	ND (0.09 J)	ND (0.05 J)	ND (0.14 J)	ND (0.12 J)	0.17	ND (0.087 J)
ΑF	Sulfate	(250)	29	36	43	60	63	62	64.6	42.1
	TDS	(500)	209	102	164	145	185	218	173	158
	Antimony	0.006	ND	ND (0.0014 J)	ND	ND	ND	ND	ND	ND
	Arsenic	0.01	ND	ND	ND	ND	ND	ND	ND	ND
	Barium	2	0.0542	0.0529	0.0607	0.0650	0.0600	0.0542	0.0533	0.044
	Beryllium	0.004	ND	ND	ND	ND	ND	ND	ND	ND
	Cadmium	0.005	ND	ND	ND	ND	ND	ND	ND	ND
≥	Chromium	0.1	ND	ND	ND	ND	ND	ND	ND	ND
APPENDIX IV	Cobalt	N/R	ND (0.0053 J)	ND (0.0036 J)	ND (0.0049 J)	ND (0.0059 J)	ND (0.0046 J)	ND (0.0034 J)	ND	ND (0.0030 J)
PEN	Lead	0.015	ND	ND	ND	ND	ND	ND	ND	ND
ΑF	Lithium	N/R	ND	ND	ND	ND (0.0014 J)	ND	ND (0.0016 J)	ND	ND
	Mercury	0.002	ND	ND	ND	ND	ND	ND	ND	ND
	Molybdenum	N/R	ND	ND	ND	ND	ND	ND	ND	ND
	Radium	5	1.20	0.264 U	1.06 U	0.187 U	1.42	1.17	1.58	0.196 U
	Selenium	0.05	ND	ND	ND	ND	ND	ND	ND	ND
	Thallium	0.002	ND	ND	ND	ND (0.00006 J)	ND (0.00006 J)	ND (0.00007 J)	ND	ND

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5A
Summary of Background Groundwater Analytical Data - 2016-2018

						We	II ID			
	Substance	MCL/ (SMCL)	GWC-1R	GWC-1R	GWC-1R	GWC-1R	GWC-1R	GWC-1R	GWC-1R	GWC-1R
		(SIVICE)	8/31/2016	11/29/2016	2/23/2017	5/9/2017	7/18/2017	10/17/2017	2/21/2018	8/7/2018
	Boron	N/R	ND (0.0553 J)	ND (0.0149 J)	ND (0.0082 J)	ND (0.0097 J)	ND (0.0123 J)	0.0513	ND (0.0378 J)	0.043
≡	Calcium	N/R	69.4	70.6	62.4	47.4	33.2	38.7	34.3	26.2
DIX	Chloride	(250)	7.6	5.8	6.2	16	18	31	27	35.4
APPENDIX III	Fluoride	4	ND (0.05 J)	ND (0.04 J)	ND (0.06 J)	ND (0.06 J)	ND	ND	ND	ND
Ą	Sulfate	(250)	410	450	390	280	200	180	146	100
	TDS	(500)	616	594	581	410	322	381	285	242
	Antimony	0.006	ND	ND	ND	ND	ND	ND	ND	ND
	Arsenic	0.01	ND	ND	ND	ND (0.0005 J)	ND	ND (0.0009 J)	ND	ND
	Barium	2	0.0711	0.0754	0.0646	0.0463	0.0390	0.0349	0.0322	0.025
	Beryllium	0.004	ND (0.0001 J)	ND	ND	ND (0.00008 J)	ND	ND (0.0001 J)	ND	ND (0.000074 J)
	Cadmium	0.005	ND	ND (0.00008 J)	ND	ND	ND	ND	ND	ND
≥	Chromium	0.1	ND (0.0012 J)	ND (0.0009 J)	ND (0.001 J)	ND (0.0011 J)	ND (0.0008 J)	ND (0.001 J)	ND	ND
DIX	Cobalt	N/R	ND (0.0006 J)	ND	ND (0.0009 J)	ND (0.0008 J)	ND (0.0032 J)	ND (0.0007 J)	ND	ND
APPENDIX IV	Lead	0.015	ND	ND	ND	ND	ND	ND	ND	ND
Ą	Lithium	N/R	ND (0.0024 J)	ND	ND	ND (0.0020 J)	ND	ND (0.0016 J)	ND (0.0014 J)	ND (0.0010 J)
	Mercury	0.002	ND	ND	ND	ND	ND	ND	ND	ND
	Molybdenum	N/R	ND	ND	ND	ND	ND	ND	ND	ND
	Radium	5	1.08	0.551 U	0.504 U	0.434 U	1.37	0.937 U	0.817 U	0.578 U
	Selenium	0.05	ND (0.0039 J)	ND (0.0033 J)	ND (0.0097 J)	ND (0.0066 J)	ND (0.0021 J)	ND (0.003 J)	ND	ND
	Thallium	0.002	ND	ND	ND	ND	ND	ND	ND	ND

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5A
Summary of Background Groundwater Analytical Data - 2016-2018

						We	II ID			
	Substance	MCL/ (SMCL)	GWC-2R	GWC-2R	GWC-2R	GWC-2R	GWC-2R	GWC-2R	GWC-2R	GWC-2R
		(SIVICE)	8/31/2016	11/28/2016	2/22/2017	5/10/2017	7/18/2017	10/17/2017	2/20/2018	8/8/2018
	Boron	N/R	ND (0.0305 J)	ND (0.0206 J)	ND (0.0192 J)	ND (0.0179 J)	ND (0.0169 J)	ND (0.0168 J)	ND	ND (0.017 J)
=	Calcium	N/R	19.9	17.7	16.2	11.8	8.69	9.77	ND	ND (13.4 J)
DIX	Chloride	(250)	6.3	6.7	5.7	7.1	6.0	6.1	5.8	4.7
APPENDIX III	Fluoride	4	ND (0.08 J)	ND (0.03 J)	ND (0.04 J)	ND (0.05 J)	ND	ND	ND	ND
ΑF	Sulfate	(250)	140	120	100	80	57	59	55.9	81.1
	TDS	(500)	257	177	240	149	122	214	131	166
	Antimony	0.006	ND	ND	ND	ND	ND	ND	ND	ND
	Arsenic	0.01	ND	ND	ND	ND	ND	ND	ND	ND
	Barium	2	0.0601	0.0562	0.0481	0.0563	0.0490	0.0470	0.0467	0.049
	Beryllium	0.004	ND	ND	ND	ND	ND	ND	ND	ND (0.000070 J)
	Cadmium	0.005	ND (0.0001 J)	ND (0.0001 J)	ND	ND	ND	ND	ND	ND
≥	Chromium	0.1	ND	ND	ND	ND (0.0008 J)	ND	ND	ND	ND
APPENDIX IV	Cobalt	N/R	0.0239	0.0189	0.0184	0.0213	0.0261	0.0182	ND	0.014
PEN	Lead	0.015	ND	ND	ND	ND (0.0001 J)	ND (0.00007 J)	ND	ND	ND
ΑF	Lithium	N/R	ND	ND	ND (0.0036 J)	ND (0.0035 J)	ND (0.0035 J)	ND (0.0035 J)	ND	ND (0.0031 J)
	Mercury	0.002	ND	ND	ND	ND	ND	ND	ND	ND
	Molybdenum	N/R	ND	ND	ND	ND	ND	ND	ND	ND
	Radium	5	0.250 U	0.387 U	0.739 U	0.458 U	0.708 U	0.402 U	1.64	2.01
	Selenium	0.05	ND (0.0029 J)	ND (0.0019 J)	ND (0.0015 J)	ND (0.0016 J)	ND (0.0024 J)	ND (0.0028 J)	ND	ND (0.0025 J)
	Thallium	0.002	ND	ND	ND	ND	ND	ND	ND	ND

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5A
Summary of Background Groundwater Analytical Data - 2016-2018

						We	II ID			
	Substance	MCL/ (SMCL)	GWC-3R	GWC-3R	GWC-3R	GWC-3R	GWC-3R	GWC-3R	GWC-3R	GWC-3R
		(SIVICE)	8/31/2016	11/30/2016	2/23/2017	5/9/2017	7/18/2017	10/18/2017	2/21/2018	8/7/2018
	Boron	N/R	ND (0.0315 J)	ND (0.0089 J)	ND	ND (0.0077 J)	ND (0.0073 J)	ND	ND (0.0399 J)	ND (0.0049 J)
≡	Calcium	N/R	7.23	6.43	4.25	3.56	4.16	5.67	4.76	4.7
DIX	Chloride	(250)	6.7	7.8	6.5	7.2	7.7	6.5	6.7	6.3
APPENDIX III	Fluoride	4	ND (0.07 J)	ND (0.03 J)	ND (0.04 J)	ND	ND	ND (0.22 J)	ND	ND
ΑF	Sulfate	(250)	87	76	47	41	44	53	46.7	38.8
	TDS	(500)	216	177	105	77	89	166	105	99
	Antimony	0.006	ND	ND	ND	ND	ND	ND	ND	ND
	Arsenic	0.01	ND	ND	ND	ND	ND	ND	ND	ND
	Barium	2	0.0286	0.0258	0.0278	0.0308	0.0407	0.0490	0.0285	0.029
	Beryllium	0.004	ND (0.0003 J)	ND (0.0004 J)	ND (0.0003 J)	ND (0.0002 J)	ND (0.0002 J)	ND (0.0004 J)	ND	ND (0.00026 J)
	Cadmium	0.005	ND	ND	ND	ND	ND	ND	ND	ND
≥	Chromium	0.1	ND (0.0013 J)	ND (0.0010 J)	ND (0.0012 J)	ND (0.0016 J)	ND (0.0009 J)	ND (0.0010 J)	ND	ND
APPENDIX IV	Cobalt	N/R	ND	ND	ND	ND	ND	ND	ND	ND
PEN	Lead	0.015	ND (0.0001 J)	ND	ND	ND	ND	ND (0.00008 J)	ND	ND
ΑF	Lithium	N/R	ND	ND	ND	ND	ND	ND	ND	ND
	Mercury	0.002	ND	ND	ND	ND	ND	ND	ND	ND
	Molybdenum	N/R	ND	ND	ND	ND	ND	ND	ND	ND
	Radium	5	0.461 U	0.0236 U	0.728 U	0.0367 U	0.237 U	0.706 U	0.526 U	0.376 U
	Selenium	0.05	ND (0.0038 J)	ND (0.0054 J)	ND (0.0020 J)	ND	ND (0.0027 J)	ND (0.0047 J)	ND	ND (0.0016 J)
	Thallium	0.002	ND	ND	ND	ND	ND	ND	ND	ND

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5A
Summary of Background Groundwater Analytical Data - 2016-2018

						We	II ID			
	Substance	MCL/ (SMCL)	GWC-4R	GWC-4R	GWC-4R	GWC-4R	GWC-4R	GWC-4R	GWC-4R	GWC-4R
		(SIVICE)	9/1/2016	11/30/2016	2/24/2017	5/10/2017	7/18/2017	10/17/2017	2/20/2018	8/8/2018
	Boron	N/R	3.25	0.813	2.53	1.22	0.970	0.804	1.010	1.3
=	Calcium	N/R	37.1	13.4	29.5	17.0	16.8	14.3	ND	ND (22.1 J)
DIX	Chloride	(250)	190	48	130	71	46	50	53.1	69.3
APPENDIX III	Fluoride	4	ND (0.15 J)	ND (0.11 J)	ND (0.08 J)	ND (0.04 J)	ND	ND	ND	ND
ΑF	Sulfate	(250)	150	50	110	70	50	58	64.6	79.5
	TDS	(500)	553	247	414	251	179	256	233	292
	Antimony	0.006	ND (0.0014 J)	ND	ND	ND	ND	ND	ND	ND
	Arsenic	0.01	ND	ND	ND	ND	ND	ND	ND	ND
	Barium	2	0.0377	0.0148	0.0290	0.0182	0.0187	0.0157	0.0151	0.019
	Beryllium	0.004	ND	ND	ND	ND	ND	ND	ND	ND
	Cadmium	0.005	ND (0.0001 J)	ND	ND	ND	ND	ND	ND	ND
≥	Chromium	0.1	ND	ND (0.0013 J)	ND	ND (0.0007 J)	ND (0.0011 J)	ND	ND	ND
APPENDIX IV	Cobalt	N/R	ND (0.0023 J)	ND (0.0008 J)	ND (0.0025 J)	ND	ND (0.0005 J)	ND (0.0006 J)	ND	ND (0.0010 J)
PEN	Lead	0.015	ND	ND	ND	ND	ND	ND	ND	ND
ΑF	Lithium	N/R	ND	ND	ND	ND	ND	ND	ND	ND
	Mercury	0.002	ND	ND	ND	ND	ND	ND	ND	ND
	Molybdenum	N/R	ND	ND	ND	ND	ND	ND	ND	ND
	Radium	5	1.58	0.477 U	0.305 U	0.0659 U	0.199 U	0.294 U	1.03 U	0.0378 U
	Selenium	0.05	0.0132	ND (0.0046 J)	0.0108	ND (0.0054 J)	ND (0.0047 J)	ND (0.004 J)	ND	ND (0.0041 J)
	Thallium	0.002	ND	ND	ND	ND	ND	ND	ND	ND

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5A
Summary of Background Groundwater Analytical Data - 2016-2018

						We	II ID			
	Substance	MCL/ (SMCL)	GWC-5R	GWC-5R						
		(511162)	9/1/2016	12/1/2016	2/24/2017	5/10/2017	7/17/2017	10/16/2017	2/21/2018	8/7/2018
	Boron	N/R	ND (0.0191 J)	ND (0.0088 J)	ND (0.0067 J)	ND (0.0068 J)	ND (0.0102 J)	ND (0.0066 J)	ND (0.0268 J)	ND (0.012 J)
≡	Calcium	N/R	113	141	118	136	125	78.2	64.0	83
DIX	Chloride	(250)	6.6	6.0	3.4	4.5	3.2	9.0	5.6	4.7
APPENDIX III	Fluoride	4	ND (0.03 J)	ND	ND (0.03 J)	ND	0.37	ND	ND	ND
ΑF	Sulfate	(250)	990	1100	850	1000	830	720	533	784
	TDS	(500)	1400	1610	1200	1360	1340	1080	830	1180
	Antimony	0.006	ND	ND						
	Arsenic	0.01	ND	ND	ND	ND (0.0011 J)	ND (0.0013 J)	ND (0.0011 J)	ND (0.00091 J)	ND (0.0021 J)
	Barium	2	0.0345	0.0342	0.0347	0.0363	0.0274	0.0151	0.0174	0.015
	Beryllium	0.004	ND (0.0005 J)	ND (0.0003 J)	ND (0.0002 J)	ND (0.0003 J)	ND (0.0004 J)	ND (0.0006 J)	ND	ND (0.00096 J)
	Cadmium	0.005	ND (0.0005 J)	ND (0.0004 J)	ND (0.0003 J)	ND (0.0003 J)	ND (0.0004 J)	ND (0.0006 J)	ND	ND (0.00083 J)
≥	Chromium	0.1	ND (0.0021 J)	ND (0.0017 J)	ND (0.0018 J)	ND (0.0024 J)	ND (0.0017 J)	ND (0.0023 J)	ND	ND (0.0024 J)
APPENDIX IV	Cobalt	N/R	ND	ND						
PEN	Lead	0.015	ND	ND						
Α	Lithium	N/R	ND	ND						
	Mercury	0.002	ND	ND						
	Molybdenum	N/R	ND	ND						
	Radium	5	1.47	0.0588 U	0.487 U	0.289 U	0.528 U	0.558 U	1.13 U	0.510 U
	Selenium	0.05	0.0212	0.0234	0.0154	0.0152	0.0136	0.0242	0.0127	0.021
	Thallium	0.002	ND	ND						

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value.

 Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5A
Summary of Background Groundwater Analytical Data - 2016-2018

						We	II ID			
	Substance	MCL/ (SMCL)	GWC-6R	GWC-6R	GWC-6R	GWC-6R	GWC-6R	GWC-6R	GWC-6R	GWC-6R
		(SIVICE)	9/1/2016	11/29/2016	2/23/2017	5/10/2017	7/18/2017	10/18/2017	2/19/2018	8/6/2018
	Boron	N/R	ND (0.0108 J)	ND	ND	ND	ND (0.0061 J)	ND	ND	ND
I≡	Calcium	N/R	56.8	50.7	63.5	105	157	118	124	173
ΣIQ	Chloride	(250)	4.4	4.8	4.4	3.9	4.0	4.1	4.4	3.9
APPENDIX III	Fluoride	4	ND (0.28 J)	ND (0.05 J)	ND (0.07 J)	ND (0.02 J)	ND	ND	ND	ND
¥	Sulfate	(250)	360	320	380	660	880	760	718	797
	TDS	(500)	578	455	614	955	1270	1150	1070	1260
	Antimony	0.006	ND	ND	ND	ND	ND	ND	ND	ND
	Arsenic	0.01	ND	ND	ND	ND (0.0007 J)	ND (0.0010 J)	ND (0.0011 J)	ND	ND (0.0023 J)
	Barium	2	0.0536	0.0459	0.0581	0.0873	0.0994	0.0757	0.0703	0.076
	Beryllium	0.004	ND	ND	ND	ND	ND	ND	ND	ND
	Cadmium	0.005	ND	ND	ND	ND	ND	ND	ND	ND
≥	Chromium	0.1	ND (0.0015 J)	ND (0.0014 J)	ND (0.0017 J)	ND (0.0015 J)	ND (0.0012 J)	ND (0.0012 J)	ND	ND
APPENDIX IV	Cobalt	N/R	ND	ND	ND	ND	ND	ND	ND	ND
PEN	Lead	0.015	ND	ND	ND	ND	ND	ND	ND	ND
¥	Lithium	N/R	ND	ND	ND (0.0028 J)	ND (0.0054 J)	ND (0.0020 J)	ND (0.0026 J)	ND	ND
	Mercury	0.002	ND	ND	ND	ND	ND	ND	ND	ND
	Molybdenum	N/R	ND	ND	ND	ND	ND	ND	ND	ND
	Radium	5	1.42	0.232 U	1.18 U	0.658 U	0.797 U	0.239 U	0.973	0.866 U
	Selenium	0.05	ND (0.0020 J)	ND (0.0017 J)	ND (0.0018 J)	ND (0.0023 J)	ND (0.0046 J)	ND (0.0037 J)	ND	ND (0.0047 J)
	Thallium	0.002	ND	ND	ND	ND	ND	ND	ND	ND

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5B
Summary of Groundwater Analytical Data - June 2019

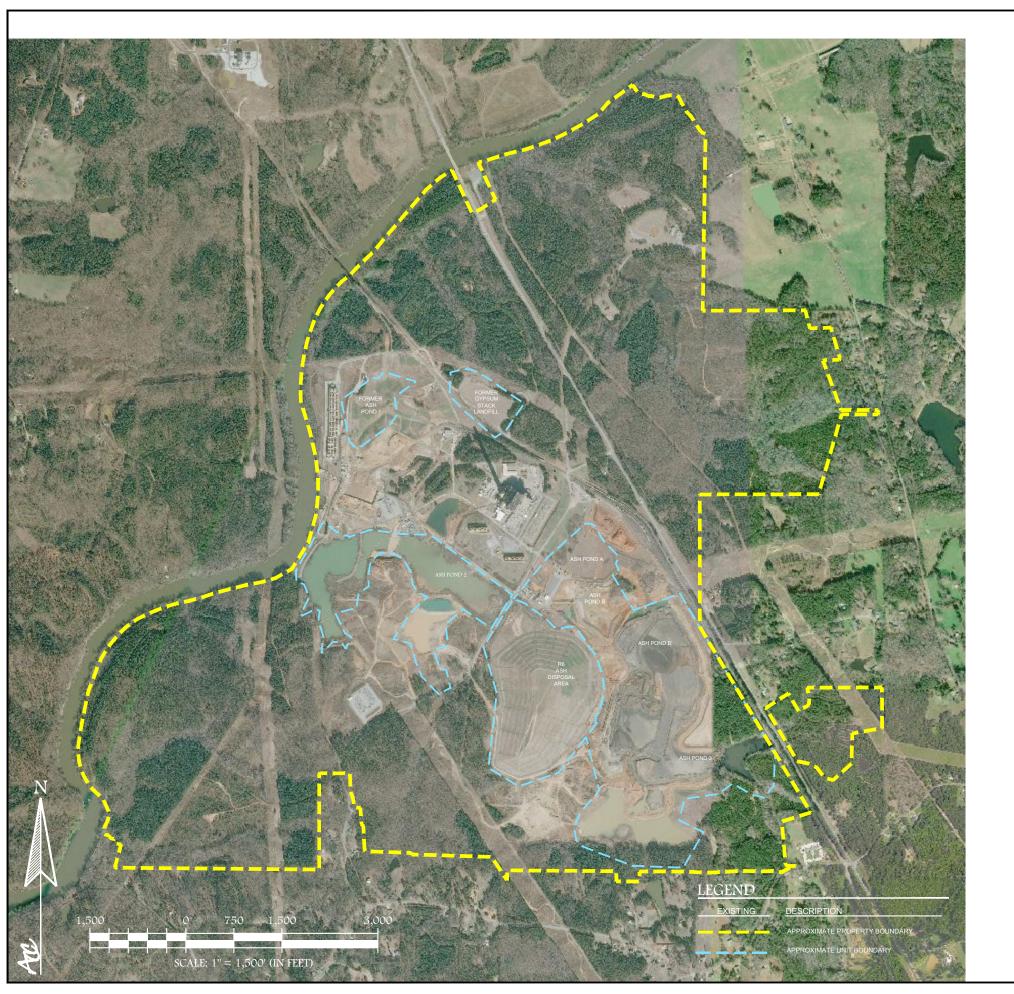
Substance Boron Calcium Chloride Fluoride Sulfate TDS Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Cobalt Copper Lead Mercury			Well ID									
	Substance	MCL/ (SMCL)	GWA-2	GWC-1R	GWC-2R	GWC-3R	GWC-4R	GWC-5R	GWC-6R			
		(5.0.62)	6/12/2019	6/13/2019	6/12/2019	6/13/2019	6/12/2019	6/13/2019	6/13/2019			
	Boron	N/R	ND	0.057	ND (0.013 J)	ND	1.5	ND (0.030 J)	ND			
=	Calcium	N/R	18.9	33.8	26.6	15.7	24.2	127	146			
DIX	Chloride	(250)	4.7	16.4	9.1	5.0	69.5	5.5	6.2			
PEN	Fluoride	4	ND (0.12 J)	ND	0.58	0.58	ND	ND	ND			
Α	Sulfate	(250)	83.4	163	180	77.1	92.8	976	918			
	TDS	(500)	226	301	391	136	298 1410		1310			
	Antimony	0.006	ND	ND	ND	ND	ND (0.00028 J)	ND	ND			
	Arsenic	0.01	ND (0.00038 J)	ND	ND	ND (0.0016 J)	ND (0.00037 J)	ND (0.0012 J)	ND (0.00068 J)			
	Barium	2	0.063	0.033	0.046	0.021	0.017	0.014	0.062			
	Beryllium	0.004	ND	ND	ND	ND (0.00051 J)	ND	ND (0.0015 J)	ND			
	Cadmium	0.005	ND	ND	ND	ND (0.00021 J)	ND	ND (0.00073 J)	ND			
Ь	Chromium	0.1	ND	ND (0.00090 J)	ND	ND (0.00073 J)	ND	ND (0.0018 J)	ND (0.00089 J)			
ΜM	Cobalt	N/R	ND (0.0030 J)	ND (0.00033 J)	0.013	0.010	ND (0.00078 J)	ND	ND			
by G	Copper	1.3	ND (0.00034 J)	ND	ND	ND	ND (0.00025 J)	ND (0.00049 J)	ND (0.0011 J)			
red	Lead	0.015	ND									
equi	Mercury	0.002	ND									
~	Nickel	0.1	ND (0.0038 J)	ND (0.00072 J)	ND (0.00043 J)	ND	ND (0.00082 J)	ND (0.0019 J)	ND (0.0037 J)			
	Selenium	0.05	ND	ND	ND (0.0034 J)	ND (0.0089 J)	ND (0.0029 J)	0.027	ND (0.0048 J)			
	Silver	N/A	ND									
	Thallium	0.002	ND									
	Vanadium	N/A	ND (0.0032 J)	ND	ND (0.00079 J)	ND (0.0021 J)	ND (0.00088 J)	ND	ND			
	Zinc	(5)	ND	ND	ND (0.0019 J)	ND (0.0069 J)	ND	0.015	ND			

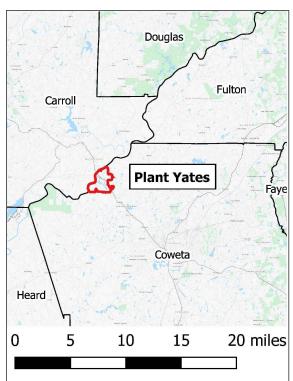
- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.

Table 5C
Summary of Groundwater Analytical Data - February 2019

Substance Boron Calcium Chloride Fluoride Sulfate TDS Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Cobalt Copper Lead Mercury			Well ID									
	Substance	MCL/ (SMCL)	GWA-2	GWC-1R	GWC-2R	GWC-3R	GWC-4R	GWC-5R	GWC-6R			
		(Siviez)	2/25/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/25/2019			
	Boron	N/R	ND	0.062	ND (0.017 J)	ND (0.0053 J)	0.75	ND (0.033 J)	ND			
=	Calcium	N/R	ND (12.7 J)	ND (24.7 J)	ND (20.9 J)	7.1	ND (15.1 J)	94.4	143			
DIX	Chloride	(250)	4.1	20.0	5.7	5.7	42.2	4.2	4.4			
PEN	Fluoride	4	ND (0.14 J)	ND	ND	ND	ND	ND (0.035 J)	ND			
ΑŁ	Sulfate	(250)	42.1	118	129	49.3	55.8	742	763			
	TDS	(500)	92.0	69.0	293	109	226	1010	1160			
	Antimony	0.006	ND									
	Arsenic	0.01	ND	ND	ND	ND	ND	ND (0.00069 J)	ND (0.00073 J)			
	Barium	2	0.045	0.028	0.056	0.026	0.017	0.014	0.045			
	Beryllium	0.004	ND	ND (0.000075 J)	ND (0.000053 J)	ND (0.00038 J)	ND	ND (0.0015 J)	ND			
	Cadmium	0.005	ND	ND	ND	ND (0.00011 J)	ND	ND (0.00081 J)	ND			
Ь	Chromium	0.1	ND	ND	ND	ND	ND	ND (0.0019 J)	ND			
WM	Cobalt	N/R	ND (0.0010 J)	ND	0.029	ND	ND	ND	ND			
by G	Copper	1.3	ND	ND	ND	ND	ND	ND	ND (0.0016 J)			
red	Lead	0.015	ND									
equi	Mercury	0.002	ND (0.000074 J)	ND (0.000059 J)	ND (0.000071 J)	ND (0.000064 J)	ND (0.000058 J)	ND (0.000060 J)	ND (0.000067 J)			
~	Nickel	0.1	ND (0.0026 J)	ND	ND (0.0068 J)	ND	ND	ND (0.0023 J)	ND (0.0023 J)			
	Selenium	0.05	ND	ND (0.0014 J)	ND (0.0030 J)	ND (0.0020 J)	ND (0.0027 J)	0.024	ND (0.0051 J)			
	Silver	N/A	ND									
	Thallium	0.002	ND									
	Vanadium	N/A	ND									
	Zinc	(5)	0.013	ND (0.0022 J)	ND (0.0030 J)	ND (0.0033 J)	ND	0.015	ND (0.0028 J)			

- 1. MCL indicates Environmental Protection Agency (EPA) and Georgia Environmental Protection Division (EPD) maximum contaminant level.
- 2. (SMCL) indicates a secondary MCL that is established by EPA as a general guideline only (not enforced).
- 3. Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L).
- 4. ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL).
- 5. ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 6. N/R indicates a substance does not have an MCL or SMCL, but will be further evaluated statistically at the conclusion of all the background sampling events, as required by EPA's CCR rule.
- 7. TDS indicates total dissolved solids.
- 8. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.
- 9. Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring.




Table 6 Statistical Method Summary June 2019

Statistical Method Summary								
Manitaring Mall	Upgradient Wells	GWA-2						
Monitoring Well Network	Downgradient Wells	GWC-1R, GWC-2R, GWC-3R, GWC-4R, GWC-5R, GWC-6R						
	Appendix III (Detection Monitoring)	Boron, Calcium, Chloride, Fluoride, pH, Sulfate, TDS						
CCR Monitoring Parameters	Appendix IV (Assessment Monitoring)	Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Combined Radium 226 + 228, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium						
	Data Screening Proposed Background	Evaluate outliers, trends, and seasonality when sufficient data are available						
Statistical Methodology	Statistical Limits	Interwell (boron, calcium, chloride, sulfate, and TDS) or intrawell (fluoride and pH) statistical limits are on constituent-specific basis, depending on the appropriateness of the method as determined by the Analysis of Variance						

FIGURES

ATLANTIC COAST CONSULTING, INC.

1150 Northmeadow Pkwy. Suite 100 Roswell, GA 30076 770.594.5998 www.atlcc.net

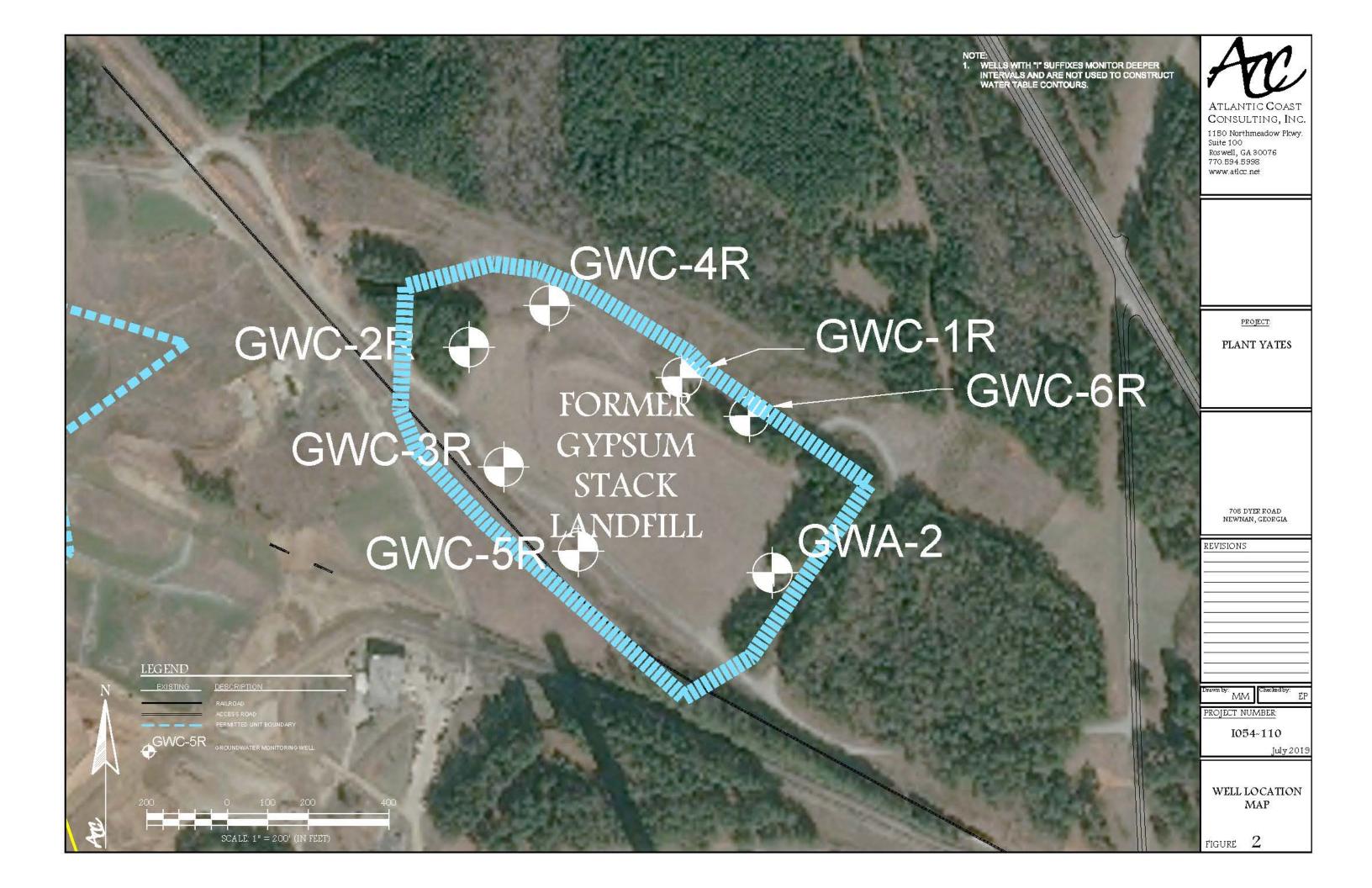
PROJECT:

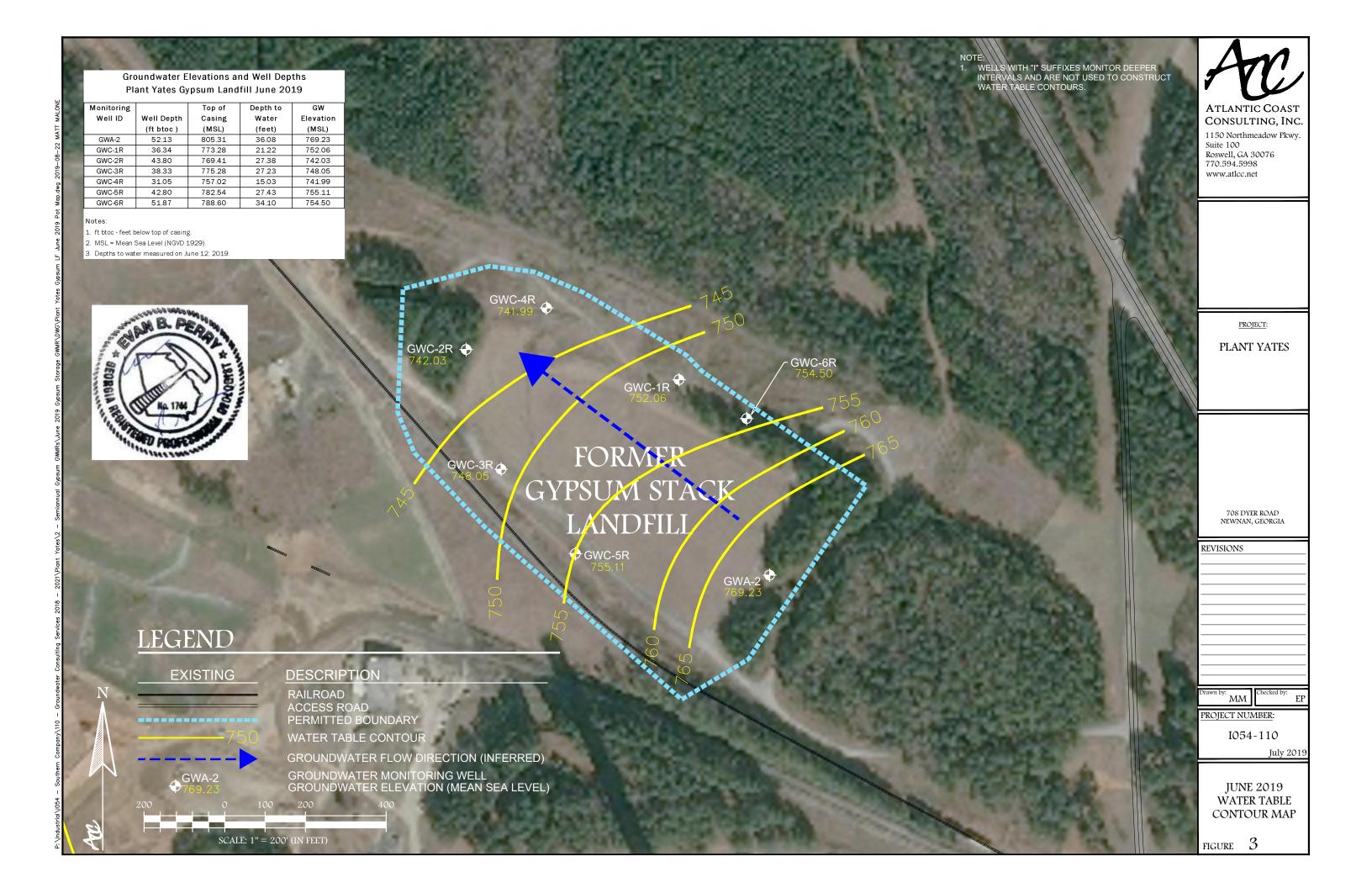
PLANT YATES

708 DYER ROAD NEWNAN, GEORGIA

REVISIONS

awn by: MM Checked by:


PROJECT NUMBER:


I054~110

July 2019

SITE LOCATION MAP

figure 1

APPENDICES

APPENDIX A

LABORATORY ANALYTICAL AND FIELD SAMPLING REPORTS

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AZI0020

September 12, 2016

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, Inc.

All test results relate only to the samples analyzed.

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GWC-1R	AZI0020-01	Ground Water	08/31/16 11:38	09/01/16 09:00
GWC-3R	AZI0020-02	Ground Water	08/31/16 16:01	09/01/16 09:00
GWA-2	AZI0020-03	Ground Water	08/31/16 10:53	09/01/16 09:00
GWC-2R	AZI0020-04	Ground Water	08/31/16 14:20	09/01/16 09:00

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0020 Client ID: GWC-1R

Date/Time Sampled: 8/31/2016 11:38:00AM

Matrix: Ground Water

September 12, 2016

Project: CCR Event

Lab Number ID: AZI0020-01

Date/Time Received: 9/1/2016 9:00:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	616	25	10	mg/L	SM 2540 C		1	09/06/16 19:00	09/06/16 19:00	6090102	JPT
Inorganic Anions											
Chloride	7.6	0.25	0.01	mg/L	EPA 300.0		1	09/03/16 09:59	09/04/16 05:48	6090083	RLC
Fluoride	0.05	0.30	0.02	mg/L	EPA 300.0	J	1	09/03/16 09:59	09/04/16 05:48	6090083	RLC
Sulfate	410	20	1.0	mg/L	EPA 300.0		20	09/03/16 09:59	09/05/16 17:16	6090083	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Barium	0.0711	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Beryllium	0.0001	0.0030	0.00008	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Boron	0.0553	0.100	0.0064	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Calcium	69.4	5.00	0.311	mg/L	EPA 6020B		10	09/06/16 09:45	09/08/16 15:49	6090081	CSW
Chromium	0.0012	0.0100	0.0009	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Cobalt	0.0006	0.0100	0.0005	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Selenium	0.0039	0.0100	0.0010	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Lithium	0.0024	0.0500	0.0021	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:27	6090081	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 09:10	09/06/16 14:39	6090077	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0020 Client ID: GWC-3R

Date/Time Sampled: 8/31/2016 4:01:00PM

Matrix: Ground Water

September 12, 2016

Project: CCR Event

Lab Number ID: AZI0020-02

Date/Time Received: 9/1/2016 9:00:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	216	25	10	mg/L	SM 2540 C		1	09/06/16 19:00	09/06/16 19:00	6090102	JPT
Inorganic Anions											
Chloride	6.7	0.25	0.01	mg/L	EPA 300.0		1	09/03/16 09:59	09/04/16 06:10	6090083	RLC
Fluoride	0.07	0.30	0.02	mg/L	EPA 300.0	J	1	09/03/16 09:59	09/04/16 06:10	6090083	RLC
Sulfate	87	5.0	0.26	mg/L	EPA 300.0		5	09/03/16 09:59	09/05/16 17:37	6090083	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Barium	0.0286	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Beryllium	0.0003	0.0030	0.00008	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Boron	0.0315	0.100	0.0064	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/07/16 17:48	6090081	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Calcium	7.23	0.500	0.0311	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Chromium	0.0013	0.0100	0.0009	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Lead	0.0001	0.0050	0.0001	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Selenium	0.0038	0.0100	0.0010	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:32	6090081	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 09:10	09/06/16 14:41	6090077	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0020 Client ID: GWA-2

Date/Time Sampled: 8/31/2016 10:53:00AM

Matrix: Ground Water

September 12, 2016

Project: CCR Event
Lab Number ID: AZI0020-03

Date/Time Received: 9/1/2016 9:00:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	209	25	10	mg/L	SM 2540 C		1	09/06/16 19:00	09/06/16 19:00	6090102	JPT
Inorganic Anions											
Chloride	4.0	0.25	0.01	mg/L	EPA 300.0		1	09/03/16 09:59	09/04/16 06:52	6090083	RLC
Fluoride	0.14	0.30	0.02	mg/L	EPA 300.0	J	1	09/03/16 09:59	09/04/16 06:52	6090083	RLC
Sulfate	29	1.0	0.05	mg/L	EPA 300.0		1	09/03/16 09:59	09/04/16 06:52	6090083	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:38	6090081	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:38	6090081	CSW
Barium	0.0542	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:38	6090081	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	09/06/16 09:45	09/07/16 17:48	6090081	CSW
Boron	0.0315	0.100	0.0064	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/09/16 17:48	6090081	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:38	6090081	CSW
Calcium	9.31	2.50	0.155	mg/L	EPA 6020B		5	09/06/16 09:45	09/08/16 13:27	6090081	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:38	6090081	CSW
Cobalt	0.0053	0.0100	0.0005	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:38	6090081	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:38	6090081	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:38	6090081	CSW
Selenium	ND	0.0100	0.0010	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:38	6090081	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:38	6090081	CSW
Lithium	ND	0.0500	0.0103	mg/L	EPA 6020B		5	09/06/16 09:45	09/08/16 13:27	6090081	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 09:10	09/06/16 14:44	6090077	MTC

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0020 Client ID: GWC-2R

Date/Time Sampled: 8/31/2016 2:20:00PM

Matrix: Ground Water

September 12, 2016

Project: CCR Event
Lab Number ID: AZI0020-04

Date/Time Received: 9/1/2016 9:00:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	257	25	10	mg/L	SM 2540 C		1	09/06/16 19:00	09/06/16 19:00	6090102	JPT
Inorganic Anions											
Chloride	6.3	0.25	0.01	mg/L	EPA 300.0		1	09/03/16 09:59	09/04/16 07:13	6090083	RLC
Fluoride	0.08	0.30	0.02	mg/L	EPA 300.0	J	1	09/03/16 09:59	09/04/16 07:13	6090083	RLC
Sulfate	140	5.0	0.26	mg/L	EPA 300.0		5	09/03/16 09:59	09/05/16 17:57	6090083	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:56	6090081	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:56	6090081	CSW
Barium	0.0601	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:56	6090081	CSW
Beryllium	ND	0.0030	80000.0	mg/L	EPA 6020B		1	09/06/16 09:45	09/07/16 17:53	6090081	CSW
Boron	0.0305	0.100	0.0064	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/07/16 17:53	6090081	CSW
Cadmium	0.0001	0.0010	0.00007	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:56	6090081	CSW
Calcium	19.9	2.50	0.155	mg/L	EPA 6020B		5	09/06/16 09:45	09/08/16 13:33	6090081	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:56	6090081	CSW
Cobalt	0.0239	0.0100	0.0005	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:56	6090081	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:56	6090081	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:56	6090081	CSW
Selenium	0.0029	0.0100	0.0010	mg/L	EPA 6020B	J	1	09/06/16 09:45	09/06/16 18:56	6090081	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 09:45	09/06/16 18:56	6090081	CSW
Lithium	ND	0.0500	0.0103	mg/L	EPA 6020B		5	09/06/16 09:45	09/08/16 13:33	6090081	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 09:10	09/06/16 14:46	6090077	MTC

Attention: Mr. Joju Abraham

Report No.: AZI0020

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090102 - SM 2540 C											
Blank (6090102-BLK1)						Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (6090102-BS1)						Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	398	25	10	mg/L	400.00		100	84-108			
Duplicate (6090102-DUP1)		Sou	ırce: AZI00	19-08		Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	366	25	10	mg/L		389			6	10	
Duplicate (6090102-DUP2)		Sou	ırce: AZI00	22-01		Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	3490	25	10	mg/L		3460		-	0.9	10	

Attention: Mr. Joju Abraham

Report No.: AZI0020

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090083 - EPA 300.0											
Blank (6090083-BLK1)						Prepare	ed & Analy	yzed: 09/03	3/16		
Chloride	ND	0.25	0.01	mg/L							
Fluoride	ND	0.30	0.02	mg/L							
Sulfate	ND	1.0	0.05	mg/L							
LCS (6090083-BS1)						Prepare	ed & Analy	yzed: 09/0	3/16		
Chloride	10.1	0.25	0.01	mg/L	10.010		100	90-110			
Fluoride	10.3	0.30	0.02	mg/L	10.010		103	90-110			
Sulfate	10.2	1.0	0.05	mg/L	10.010		101	90-110			
Matrix Spike (6090083-MS1)		Sou	ırce: AZI00	19-06		Prepare	ed: 09/03/	16 Analyz	ed: 09/04/	/16	
Chloride	13.6	0.25	0.01	mg/L	10.010	3.52	100	90-110			
Fluoride	10.9	0.30	0.02	mg/L	10.010	0.65	103	90-110			
Sulfate	207	1.0	0.05	mg/L	10.010	217	NR	90-110			QM-02
Matrix Spike (6090083-MS2)		Sou	ırce: AZI00	20-02		Prepare	ed: 09/03/	16 Analyz	ed: 09/04/	/16	
Chloride	17.1	0.25	0.01	mg/L	10.010	6.74	103	90-110			
Fluoride	11.1	0.30	0.02	mg/L	10.010	0.07	110	90-110			
Sulfate	85.3	1.0	0.05	mg/L	10.010	84.2	11	90-110			QM-05
Matrix Spike Dup (6090083-MSD1)		Sou	ırce: AZI00	19-06		Prepare	ed: 09/03/	16 Analyz	ed: 09/04/	/16	
Chloride	13.7	0.25	0.01	mg/L	10.010	3.52	101	90-110	0.6	15	
Fluoride	11.0	0.30	0.02	mg/L	10.010	0.65	103	90-110	8.0	15	
Sulfate	207	1.0	0.05	mg/L	10.010	217	NR	90-110	0.09	15	QM-02

Attention: Mr. Joju Abraham Report No.: AZI0020

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090077 - EPA 7470A											
Blank (6090077-BLK1)						Prepare	ed & Analy	yzed: 09/06	6/16		
Mercury	ND	0.00050	0.000041	mg/L							
LCS (6090077-BS1)						Prepare	ed & Analy	yzed: 09/06	6/16		
Mercury	0.00240	0.00050	0.000041	mg/L	2.5000E-3	-	96	80-120			
Matrix Spike (6090077-MS1)		Sou	urce: AZI002	1-02		Prepare	ed & Anal	yzed: 09/06	6/16		
Mercury	0.00235	0.00050	0.000041	mg/L	2.5000E-3	ND	94	75-125	-		
Matrix Spike Dup (6090077-MSD1)		Sou	urce: AZI002	1-02		Prepare	ed & Anal	yzed: 09/06	6/16		
Mercury	0.00234	0.00050	0.000041	mg/L	2.5000E-3	ND	93	75-125	0.5	20	
Post Spike (6090077-PS1)		Soi	urce: AZI002	1-02		Prepare	ed & Analy	yzed: 09/06	3/16		
Mercury	1.67			ug/L	1.6667	0.00498	100	80-120	<u> </u>		
Batch 6090081 - EPA 3005A											
Blank (6090081-BLK1)	ND	0.0020	0.0000			Prepare	ed & Analy	yzed: 09/06	6/16		
Antimony		0.0030	0.0008	mg/L							
Arsenic	ND ND	0.0050 0.0100	0.0016	mg/L							
Barium	ND	0.0100	0.0004 0.00008	mg/L							
Beryllium				mg/L							
Boron	ND	0.100	0.0064	mg/L							
Cadmium	ND	0.0010	0.00007	mg/L							
Calcium	ND	0.500	0.0311	mg/L							
Chromium	ND	0.0100	0.0009	mg/L							
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0050	0.0005	mg/L							
Lead	ND	0.0050	0.0001	mg/L							
Molybdenum	ND	0.0100	0.0017	mg/L							
Nickel	ND	0.0050	0.0006	mg/L							
Selenium	ND	0.0100	0.0010	mg/L							
Silver	ND	0.0050	0.0005	mg/L							
Thallium	ND	0.0010	0.0002	mg/L							
Vanadium	ND	0.0100	0.0071	mg/L							
Zinc	ND	0.0100	0.0021	mg/L							
	ND	0.0500									

Attention: Mr. Joju Abraham

Report No.: AZI0020

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Spike

Source

September 12, 2016

RPD

%REC

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch 6090081 - EPA 3005A											
LCS (6090081-BS1)						Prepare	ed & Analy	yzed: 09/06	6/16		
Antimony	0.0970	0.0030	0.0008	mg/L	0.10000		97	80-120			
Arsenic	0.0990	0.0050	0.0016	mg/L	0.10000		99	80-120			
Barium	0.0955	0.0100	0.0004	mg/L	0.10000		96	80-120			
Beryllium	0.0976	0.0030	0.00008	mg/L	0.10000		98	80-120			
Boron	1.02	0.100	0.0064	mg/L	1.0000		102	80-120			
Cadmium	0.0949	0.0010	0.00007	mg/L	0.10000		95	80-120			
Calcium	0.972	0.500	0.0311	mg/L	1.0000		97	80-120			
Chromium	0.104	0.0100	0.0009	mg/L	0.10000		104	80-120			
Cobalt	0.0993	0.0100	0.0005	mg/L	0.10000		99	80-120			
Copper	0.100	0.0050	0.0005	mg/L	0.10000		100	80-120			
Lead	0.0967	0.0050	0.0001	mg/L	0.10000		97	80-120			
Molybdenum	0.0997	0.0100	0.0017	mg/L	0.10000		100	80-120			
Nickel	0.0986	0.0050	0.0006	mg/L	0.10000		99	80-120			
Selenium	0.0997	0.0100	0.0010	mg/L	0.10000		100	80-120			
Silver	0.0965	0.0050	0.0005	mg/L	0.10000		96	80-120			
Thallium	0.0975	0.0010	0.0002	mg/L	0.10000		97	80-120			
Vanadium	0.112	0.0100	0.0071	mg/L	0.10000		112	80-120			
Zinc	0.112	0.0100	0.0021	mg/L	0.10000		112	80-120			
Lithium	0.0988	0.0500	0.0021	mg/L	0.10000		99	80-120			
Matrix Spike (6090081-MS1)		Soi	urce: AZI002	2-01		Prepare	ed & Analy	yzed: 09/06	6/16		
Antimony	0.0998	0.0030	0.0008	mg/L	0.10000	0.0014	98	75-125			
Arsenic	0.116	0.0050	0.0016	mg/L	0.10000	0.0144	102	75-125			
Barium	0.161	0.0100	0.0004	mg/L	0.10000	0.0627	98	75-125			
Beryllium	0.0842	0.0030	0.00008	mg/L	0.10000	0.0004	84	75-125			
Boron	25.9	5.00	0.321	mg/L	1.0000	24.1	179	75-125			QM-02
Cadmium	0.0937	0.0010	0.00007	mg/L	0.10000	ND	94	75-125			
Calcium	261	25.0	1.55	mg/L	1.0000	250	NR	75-125			QM-02
Chromium	0.110	0.0100	0.0009	mg/L	0.10000	0.0021	108	75-125			
Cobalt	0.109	0.0100	0.0005	mg/L	0.10000	0.0089	100	75-125			
Copper	0.0954	0.0050	0.0005	mg/L	0.10000	0.0006	95	75-125			
Lead	0.0996	0.0050	0.0001	mg/L	0.10000	0.0113	88	75-125			
Molybdenum	0.108	0.0100	0.0017	mg/L	0.10000	ND	108	75-125			
Nickel	0.0995	0.0050	0.0006	mg/L	0.10000	0.0037	96	75-125			
Selenium	0.109	0.0100	0.0010	mg/L	0.10000	0.0023	106	75-125			
Silver	0.0892	0.0050	0.0005	mg/L	0.10000	ND	89	75-125			
Thallium	0.0921	0.0010	0.0002	mg/L	0.10000	ND	92	75-125			
Vanadium	0.121	0.0100	0.0071	mg/L	0.10000	ND	121	75-125			
Zinc	5.05	0.0100	0.0021	mg/L	0.10000	4.92	131	75-125			
Lithium	0.0898	0.0500	0.0021	mg/L	0.10000	ND	90	75-125			

Georgia Power

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092

PACE ANALYTICAL SERVICES, INC.

(770) 734-4200 FAX (770) 734-4201

Attention: Mr. Joju Abraham

Report No.: AZI0020

2480 Maner Road Atlanta GA, 30339

Metals, Total - Quality Control

September 12, 2016

					Spike	Source		%REC		RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6090081 - EPA 3005A											
Matrix Spike Dup (6090081-MSD1)		Soi	urce: AZI002	22-01		Prepar	ed & Analy	yzed: 09/0	6/16		
Antimony	0.0987	0.0030	0.0008	mg/L	0.10000	0.0014	97	75-125	1	20	
Arsenic	0.118	0.0050	0.0016	mg/L	0.10000	0.0144	104	75-125	2	20	
Barium	0.159	0.0100	0.0004	mg/L	0.10000	0.0627	96	75-125	1	20	
Beryllium	0.0882	0.0030	0.00008	mg/L	0.10000	0.0004	88	75-125	5	20	
Boron	24.3	5.00	0.321	mg/L	1.0000	24.1	13	75-125	7	20	QM-02
Cadmium	0.0909	0.0010	0.00007	mg/L	0.10000	ND	91	75-125	3	20	
Calcium	249	25.0	1.55	mg/L	1.0000	250	NR	75-125	5	20	QM-02
Chromium	0.104	0.0100	0.0009	mg/L	0.10000	0.0021	102	75-125	6	20	
Cobalt	0.105	0.0100	0.0005	mg/L	0.10000	0.0089	97	75-125	4	20	
Copper	0.0890	0.0050	0.0005	mg/L	0.10000	0.0006	88	75-125	7	20	
Lead	0.101	0.0050	0.0001	mg/L	0.10000	0.0113	90	75-125	1	20	
Molybdenum	0.106	0.0100	0.0017	mg/L	0.10000	ND	106	75-125	2	20	
Nickel	0.0967	0.0050	0.0006	mg/L	0.10000	0.0037	93	75-125	3	20	
Selenium	0.105	0.0100	0.0010	mg/L	0.10000	0.0023	102	75-125	4	20	
Silver	0.0874	0.0050	0.0005	mg/L	0.10000	ND	87	75-125	2	20	
Thallium	0.0943	0.0010	0.0002	mg/L	0.10000	ND	94	75-125	2	20	
Vanadium	0.118	0.0100	0.0071	mg/L	0.10000	ND	118	75-125	3	20	
Zinc	4.91	0.0100	0.0021	mg/L	0.10000	4.92	NR	75-125	3	20	
Lithium	0.0956	0.0500	0.0021	mg/L	0.10000	ND	96	75-125	6	20	
Post Spike (6090081-PS1)		Soi	urce: AZI002	22-01		Prepar	ed & Anal	yzed: 09/0	6/16		
Antimony	99.1			ug/L	100.00	1.42	98	80-120			
Arsenic	115			ug/L	100.00	14.4	101	80-120			
Barium	158			ug/L	100.00	62.7	95	80-120			
Beryllium	85.8			ug/L	100.00	0.382	85	80-120			
Boron	24500			ug/L	1000.0	24100	36	80-120			QM-02
Cadmium	89.6			ug/L	100.00	0.0388	90	80-120			
Calcium	243000			ug/L	1000.0	250000	NR	80-120			QM-02
Chromium	105			ug/L	100.00	2.07	103	80-120			
Cobalt	106			ug/L	100.00	8.86	97	80-120			
Copper	89.8			ug/L	100.00	0.564	89	80-120			
Lead	100			ug/L	100.00	11.3	89	80-120			
Molybdenum	104			ug/L	100.00	0.165	103	80-120			
Nickel	96.1			ug/L	100.00	3.70	92	80-120			
Selenium	104			ug/L	100.00	2.29	102	80-120			
Silver	86.3			ug/L	100.00	0.0004	86	80-120			
Thallium	91.4			ug/L	100.00	0.141	91	80-120			
Vanadium	118			ug/L	100.00	4.37	114	80-120			
Zinc	4920			ug/L	100.00	4920	NR	80-120			
Lithium	99.7			ug/L	100.00	1.36	98	80-120			
					-						

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham September 12, 2016

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QM-05** The spike recovery was outside acceptance limits for the MS and/or MSD and/or PDS due to suspected matrix interference. Sample results for the QC batch were accepted based on acceptable LCS recoveries.
- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).

Note: Unless otherwise noted, all results are reported on an as received basis.

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.ssHab.com

8

PAGE:

SOPHONE RUMBER FAX MARGER: Reservoir on the S.E. B10195 Reservoi	CLIENT NAME:			200	Southern Company Services				ANA	ANALYSIS REQUESTED	Q	П	CONTAINER TYPE	PRESERVATION
CC MRPADILL@outhance com				3	control fundament	CONTAINER	TYPE	п	a	0.		A	P - PLASTIC	1 - HCI, 36°C
TO SE SAMPLE IDENTIFICATION WE SAMPLE IDENT	CLIENT ADDRE	ESS/PHO	NE NUMBE	R/FA	X NUMBER:	PRESERVA	DON	3	7	3		8	A - AMBER GLASS	2 - H-SO, s6°C
C.C. MRPADILL@worthermono.com	241 Ralph McG Atlanta, GA 303	all Blvd. SI 308	E. B10185			jo #						-	G - CLEAR GLASS V - VOA VIAL S - STERILE	3 - HNO, 4 - NaOH, ≤6°C 5 - NaOH/ZnAc, ≤6°C
SAMPLE IDENTIFICATION X (-W.C1R) X (-W.C	REPORT TO: JABRA!	Jo HAM@sou	iju Abraham ithermoo cor	. E	CC: MRPADILL@southernce.com CHMCCORK@southernce.com LLMILLET@southernce.com	υοz						٥	O · OTHER	6 - Na ₂ S ₂ O ₃ , s8*C 7 - s6°C not frozen
SAMPLE IDENTIFICATION A CLUC - 1R A CLUC - 2R A CLUC -	REQUESTED	STANDA	ION DATE		PO#	⊢ ∢			00			z o	-WATRE	X CODES:
S	PROJECT NAM	ME/STATE VG	8	2 2	ium Stories Physe 2 CCR	- z w		ΛΙ				2 @ W	DW - DRINKING WATER WW - WASTEWATER	
A C.W.C. 1R SAMPLE IDENTIFICATION X C.W.C. 3R 3 Notation Approximately a country of the supplementary of the su	PROJECT #:					oc vi		0272	SOT ,			œ	GW - GROUNDWATER SW - SURFACE WATER	S
A C-W.C-1R 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100	Collection	MATRIX CODE:			_		/0Z09 Vc	0.00£ Ac			-		L - LIQUID P - PRODUCT
DATETIVE: A C-W.C-3R 3	_	1120	7.1.7	a.		▶ ~		13	13			-	KEMARKS/ADDIT	ONAL INFORMATION
DATE/TIME: A CAUCASE DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME: CAUCASE DATE/TIME: CAUCASE DATE/TIME: CAUCASE	-	001	3	T		, ,		-				-		
DATETINE: DATETINE: DATETINE: DATETINE: DATETINE: DATETINE: DATETINE: A 7 1 7 1 C C C C C C C C C C C C C C C C		109/	3			2		-	_	-		1		
DATETIME: 1/1/2 RELINQUISHED BY: DATETIME: G103 LAB#: DATETIME:							\Box		\forall					
DATE/TIME: 1/1/L DATE/TIME: 0703 RELINQUISHED BY: DATE/TIME: 0703 RELINQUISHED BY: DATE/TIME: 0703 LAB#: 67/1/1/C CARGO Entered into LIMS DATE/TIME: 0703 RELINQUISHED BY: DATE/TIME: 0703 LAB#: 67/1/1/C CARGO Entered into LIMS Tracking #: Tracking #: 6/1/1/C CARGO Entered into LIMS Tracking #: 6/1/1/C CARGO EntereD BY: 6/1/1/C CARGO Entered into LIMS Tracking #: 6/1/1/C CARGO EntereD BY: 6/1/1/C CARGO Entered into LIMS Tracking #: 6/1/1/C CARGO EntereD BY: 6/1/1/C CARGO Entered into LIMS Tracking #: 6/1/1/C CARGO EntereD BY: 6/1/1/C CARGO Entered into LIMS Tracking #: 6/1/1/C CARGO ENTERED BY: 6/1/CARGO ENTERE								\top	\forall					
DATE/TIME: 1/1/6 DATE/TIME: 0703 LAB#: 071/1/6 (0703 LAB#: 071/1/6 (071/1/6									+					
DATE/TIME: (3703) LAB#: DATE/TIME: (3703) LAB#: DATE/TIME: 9+0/ Tracking #: Tracking #:														
PROPERTY HAVE HAVE DATESTINE OF CO. UPS FEDEX USPS COURSER CIEDAT OTHER FS CHOSEN NA 1923 NO NA 192	SAMPLED BY	ESS S	Chon Con		1/16	RELING	MSH SH	D BY:			- 7	6 3	LAB#: FOR LA	BUSE ONLY TEOLOGICA
The same of the sa	見ず	NA PAR	11/2		DATESTALLE CO	36	Seal Seal	PED V	A. USP	0 H	0	E .	Tracking #:	

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. Pace Analytical "

110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 . www.ssi-lab.com

6

PAGE:

5 - NaOH/ZnAc, s6°C 6 - Na₂S₂O₃, s6°C 7 - s6°C not frozen 2 - H₂SO₄, ±6°C REMARKS/ADDITIONAL INFORMATION 4 - NaOH, <6°C P. PRODUCT PRESERVATION 1. HCl, 56°C SL. SLUDGE T- LIQUID sp. soup 3 - HNO 8 - SOIL A- AIR FOR LAB USE ONLY MATRIX CODES: DRINKING WATER SURFACE WATER GROUNDWATER STORM WATER WASTEWATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE Entered into LIMS: V - VOA VIAL S - STERILE O - OTHER P - PLASTIC WATER racking #: LAB# . X WW. GW. SW. 3.6 J K B N M B B C S - 0 5000 ANALYSIS REQUESTED CVV-846 9315/9320 Radium 226 & 226 TDS SM 2540C EPA 300.0, ۵. IC (CI' E' 204) EPA 6020/7470 a. RELINQUISHED BY: RELINQUISHED BY Metals App. III & IV CONTAINER TYPE PRESERVATION # of 002-4-2mms W 3 9 0703 CC: MRPADILL@southernes.com SAMPLE IDENTIFICATION CHMCCORK@southernco.com LLMILLET@southernco.com 4900 Southern Company Services 8 51/14 d aMC-2R Phose GWA-2 DATE/TIME: DATE/TIME: n CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER # Q Staronge X × 0 0 × 0 ž OOM かか Gypson JABRAHAM@southernco.com Joju Abraham 2 REQUESTED COMPLETION DATE: Tra 241 Ralph McGill Blvd. SE, B10185 MATRIX CODE. 文の SX STANDARD AMPLED BY AND TITLE PROJECT NAME/STATE 8 ± 5501 Collection TIME Atlanta, GA 30308 Yalo SEINED BY CLIENT NAME 8/31/16 REPORT TO: PROJECT # A13416 Collection DATE

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

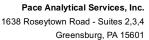
Printed: 9/12/2016 3:11:31PM

Attn: Mr. Joju Abraham

Client: Georgia Power

Project: CCR EventWork Order:AZI0020Date Received:09/01/16 09:00Logged In By:Charles Hawks

OBSERVATIONS


#Samples: 4 **#Containers:** 12

Minimum Temp(C): 3.0 Maximum Temp(C): 3.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

YES
YES

Comments:

(724)850-5600

October 03, 2016

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195004

Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on September 02, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins

Legalylellin

jacquelyn.collins@pacelabs.com

Project Manager

Enclosures

Pace Analytical Services, Inc.

Pace Analytical®

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195004

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification

Hawaii Certification

Idaho Certification

Illinois Certification

Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Rentucky Certification #. 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification

Missouri Certification #: 235

Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14

Nevada Certification #: PA014572015-1

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification #: PA01457

New York/TNI Certification #: 10888

New Tork/Tini Certification #. 10000

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8

Utah/TNI Certification #: PA014572015-5

USDA Soil Permit #: P330-14-00213

Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 460198

Washington Certification #: C868

West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C Wisconsin Certification

Wyoming Certification #: 8TMS-L

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

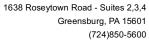
SAMPLE SUMMARY

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195004

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30195004001	GWC-1R	Water	08/31/16 11:38	09/02/16 10:20
30195004002	GWC-3R	Water	08/31/16 16:01	09/02/16 10:20

REPORT OF LABORATORY ANALYSIS


1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE ANALYTE COUNT

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195004

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30195004001	GWC-1R	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	JAL	1
30195004002	GWC-3R	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	JAL	1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195004

Sample: GWC-1R	Lab ID: 301950	004001 Collected: 08/31/16 11:38	Received:	09/02/16 10:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0702 ± 0.147 (0.329) C:88% T:NA	pCi/L	09/14/16 11:29	13982-63-3	
Radium-228	EPA 9320	1.01 ± 0.412 (0.618) C:76% T:84%	pCi/L	09/22/16 21:46	5 15262-20-1	
Total Radium	Total Radium Calculation	1.08 ± 0.559 (0.947)	pCi/L	09/23/16 13:04	1 7440-14-4	
Sample: GWC-3R	Lab ID: 301950	004002 Collected: 08/31/16 16:01	Received:	09/02/16 10:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0837 ± 0.114 (0.238) C:88% T:NA	pCi/L	09/14/16 11:29	13982-63-3	
Radium-228	EPA 9320	0.377 ± 0.351 (0.711) C:81% T:77%	pCi/L	09/22/16 21:46	5 15262-20-1	
Total Radium	Total Radium Calculation	0.461 ± 0.465 (0.949)	pCi/L	09/23/16 13:04	7440-14-4	

REPORT OF LABORATORY ANALYSIS

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

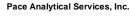
Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195004

QC Batch: 232409 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30195004001, 30195004002


METHOD BLANK: 1138994 Matrix: Water

Associated Lab Samples: 30195004001, 30195004002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.716 ± 0.356 (0.609) C:84% T:86%
 pCi/L
 09/22/16 21:46

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

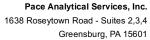
Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195004

QC Batch: 232408 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30195004001, 30195004002


METHOD BLANK: 1138993 Matrix: Water

Associated Lab Samples: 30195004001, 30195004002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0402 ± 0.0839 (0.189) C:94% T:NA
 pCi/L
 09/14/16 11:05

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(724)850-5600

QUALIFIERS

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195004

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 10/03/2016 10:45 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WO#:30195004

Pace Analytical Pe

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, C (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

301050004

	PE PR			ASS		ш	O - OTHER 6 - Na ₂ S ₂ O ₃ , ≤6°C 7 - ≤6°C not frozen			MAIRIX CODES:	DW - DRINKING WATER S - SOIL	WASTEWATER SL-	GW - GROUNDWATER SD - SOLID SW - SLIRFACE WATER A - AIR		WATER P-	REMARKS/ADDITIONAL INFORMATION	<u> </u>	607.								FOR LAB USE ONLY	LAB#	Entered into LIMS:	Tracking #:			
ନୁମୟ ପଳନ୍ଦନ		A	m				Ω		Z) 2	m	Ш	C													٦	٦	41116 Y: 2	CENT OTHER FS	Cooler ID:		
	칽	a. (7 3		10.1				0	240		827 828	T ,	.0.C	Cl, F	EP/							-					- Ann and annua - Anna Anna Anna Anna Anna Anna Anna A	USPS	Not Present	file file	
	ŀ		PRESERVATION: 3	₹ #		T	υ Ο	Z	+ <	(–	Z	ш 0 /1 8		50\.	sls (els)	-	3	3								RELINQUISHED BY:	RELINQUISHED BY:	1	SAMPLE SHIPPED VIA	Custody Seal. Miact Broken No)	
	southern company services	- Gadwin	NOMBER			0	CHMCCORK@southernco.com	LLMILLET@southernco.com	PO#	.,					SAMPLE IDENTIFICATION		6-UC-1R	(CWC-3R		Aprill		The state of the s				DATE/TIME: 1,2. / 1.	3,//6	5010 BILL	JOHN 16 (700)	3 < Min. 3 C Max.	0791 91-2-6	
		CHENT ANDRESS/BHONE NIMBER/EAX NIMBER	OLIENI ADDRESS/FROME NOMBER/FAX 1	GIII DIVU. SE, BIUIOS	2000	City Attended	4HAM@s		REQUESTED COMPLETION DATE: STANDARD	ME/STATE	Vator Current	1		0	Collection MATRIX O R)) 1	1138 GW X	1601 FW X								نننا	V: (1) July SWI		67.	NA Pes No NA	13	
OLIENT NAME		CHENT ADDR	241 Boloh Mad	Atlanta CA 20	Atlanta, GA 30308	DEBOOT TO	NEFONT TO. JABRA		REQUESTED	PROJECT NAME/STATE		PROJECT #	#.	T	Collection		थिया।	9/31/16			·					SAMPLED BY AND TITL	RECEIVED BY		Separate H	OV S	9 of 1	2

Sample Condition Upon Recei	ipt P	ittsb	urgh	30195
Face Analytical Client Name:	_			
Custody Sear of Cooler Box 1 resonar 12	Type	no	Seals Wet	Date and Initials of person examining contents: 1.
Chain of Custody Relinquished: Sampler Name & Signature on COC: Sample Labels match COC:		1	~/+	3. 4. No Signature 5.
-Includes date/time/ID/Analysis Matrix: Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested:		/		6. 7. 8.
Sufficient Volume: Correct Containers Used: -Pace Containers Used:				9. 10.
Containers Intact: Filtered volume received for Dissolved tests All containers needing preservation have been checked. All containers needing preservation are found to be in		21		13. all below 2 PH
compliance with EPA recommendation. exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when Date/time of completed preservation Date/time of preservation Date/time of preservation
Headspace in VOA Vials (>6mm): Trip Blank Present: Trip Blank Custody Seals Present		/	/	14. 15. Initial when M 1 Date: 0 - 2 - 16
Rad Aqueous Samples Screened > 0.5 mrem/hr Client Notification/ Resolution:			<u> </u>	completed: /// Date: J. J. J. Date: Contacted BV:

Client Notification/ Resolution: Person Contacted:	Date/Time:	Contacted By:
Comments/ Resolution:		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Face Analytical"

Quality Control Sample Performance Assessment

Ra-226 WRR 9/21/2016 Test: Analyst: Date:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Worklist: 31292 Matrix: DW		MB Sample ID 1138993	MB concentration: 0.040	M/B Counting Uncertainty: 0.084	MB MDC: 0.189	MB Numerical Performance Indicator: 0.94	MB Status vs Numerical Indicator: N/A	
	Method Blank Assessment			J/M		MB Numerical	MB Status	

Sample Matrix Spike Control Assessment Sample Collection Date:
Sample I.D. Sample MS I.D.
Sample MSD I.D.
Spike I.O.: MS/MSD Decay Corrected Spike Concentration (PCI/m1):
Spike Volume Used in MS (mL.):
Spike Volume Used in MSD (mt.);
MS Aliquot (L, g, F);
MS Target Conc.(pCi/l., g, F):
MSD Aliquot (L, g, F):
MSD Target Conc. (pCi/L, g, F):
Spike uncertainty (calculated):
Sample Result
Sample Result Counting Uncertainty (pCi/L, g, F):
Sample Matrix Spike Result:
Matrix Spike Result Counting Uncertainty (pCi/l., g, F):
Sample Matrix Spike Duplicate Result:
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):
MS Numerical Performance Indicator:
MSD Numerical Performance Indicator:
MS Percent Recovery:
MSD Percent Recovery:
MS Status vs Numerical Indicator:
MSD Status vs Numerical Indicator:
MS Status vs Recovery:
MSD Status vs Recovery:

,			
Laboratory Control Sample Assessment	LCSD (Y or N)?	z	
	LCS31292	LCSD31292	
Count Date:	9/14/2016		
Spike I.D.:	16-026		
Spike Concentration (pCi/mL):	44.678		
Volume Used (mL):	0,10		
Aliquot Volume (L, g, F):	0.514		Matrix
Target Conc. (pCi/L, g, F):	8.685		
Uncertainty (Calculated):	0.409		
Result (pCi/l., g, F):	7,435		
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.631	-	
Numerical Performance Indicator:	-3.26		
Percent Recovery:	85.61%		
Status vs Numerical Indicator;	N/A		
Status vs Recovery:	Pass		
Dinlinate Sample Accessment			Mateix Cat
The December of the December o			אומנו לו חשוא

Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD 1.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	1407 March 2000 Conference Confer

other than LCS/LCSD in the space below. Enter Duplicate sample IDs if

See Below ## 0.819 18.76%

Duplicate RPD:

Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator:

N/A Pass

Duplicate Status vs RPD:

Sample I.D.: 30195008001

Duplicate Sample I.D.: 30195006001Dup
Sample Result (pci/l., g, F): 1.011
Sample Result Counting Uncertainty (pci/l., g, F): 0.282
Sample Duplicate Result (pci/l., g, F): 0.285
Are sample and/or duplicate results below MDC? See Below ##

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

TAR DW QC Printed: 9/30/2016 9:06 AM

Face Analytical*

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample I.D. Sample MS I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Spike I.D.:

Sample MSD I.D.

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL.): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F):

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F):

MSD Target Conc. (pCi/L, g, F): Spike uncertainty (calculated): Sample Result:

Sample Result Counting Uncertainty (pCl/L., g, F): Sample Matrix Spike Result

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCif., g. F): MS Numerical Performance Indicator:

MSD Numerical Performance Indicator:

MSD Percent Recovery:

MS Status vs Numerical Indicator. MSD Status vs Numerical Indicator.

-0.55 96.04%

Percent Recovery:

Status vs Numerical Indicator:

Status vs Recovery

Duplicate Sample Assessmen

Result (pCi/L, g, F):

LCS/LCSD Counting Uncertainty (pCl/L, g, F): Numerical Performance Indicator:

MS Percent Recovery:

JLW 9/12/2016 Ra-228 Test: Analyst: Date:

31293 DW

Worklist: Matrix:

0.332 0.609 4.22 N/A See Comment* MB Sample ID MB concentration: MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: M/B Counting Uncertainty Method Blank Assessmen

LCSD31293 SD (Y or N)? LCS31293 9/22/2016 16-025 25.604 0.20 0.811 6.316 0.455 6.066 Spike Concentration (pCi/mL): Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated): Count Date Spike I.D. Laboratory Control Sample Assessment

MS Status vs Recovery MSD Status vs Recover Matrix Spike/Matrix Spike Duplicate Sample Assessment

Sample I.D. Sample MS I.D.

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result

Sample MSD I.D.

other than LCS/LCSD in the space below.

1.460 0.455 2.259 0.522

Sample Result (pCifu, g, F):
Sample Result Counting Uncertaintly (pCifu, g, F):
Sample Duplicate Result (pCifu, g, F):
Sample Duplicate Result Counting Uncertainty (pCifu, g, F):
Are sample and/or duplicate results below MDC?

See Below ##

-2.261 42.96%

Duplicate RPD:

Duplicate Status vs Numerical Indicator:

Duplicate Numerical Performance Indicator;

ΧX

Enter Duplicate

sample IDs if

30195006001DUP

Sample I.D.: Duplicate Sample I.D.

30195006001

Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplidate(Pstus are below the MDC.

Duplicate Status vs RPD:

"The method blank result is below the reporting limit for this analysis and is acceptable.

***Batch must be re-prepped due to unacceptable precision.

Comments:

Ra-228 NELAC DW2 Printed: 9/30/2016 9:08 AM

September 28, 2016

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195002

Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on September 02, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins

Sugarly Cellins

jacquelyn.collins@pacelabs.com

Project Manager

Enclosures

Pace Analytical Services, Inc.

Pace Analytical *

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195002

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590

Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification

Hawaii Certification

Idaho Certification

Illinois Certification

illinois Certification

Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008

Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14

Nevada Certification #: PA014572015-1

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification #: PA01457

New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Carolina Octunication #. 42700

North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8

Utah/TNI Certification #: PA014572015-5

USDA Soil Permit #: P330-14-00213

Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 460198

Washington Certification #: C868

West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C Wisconsin Certification

Wyoming Certification #: 8TMS-L

Pace Analytical Services, Inc.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

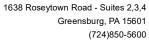
SAMPLE SUMMARY

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195002

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30195002001	GWA-2	Water	08/31/16 10:53	09/02/16 10:20
30195002002	GWA-2R	Water	08/31/16 14:20	09/02/16 10:20

REPORT OF LABORATORY ANALYSIS


1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE ANALYTE COUNT

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195002

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30195002001	GWA-2	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	JAL	1
30195002002	GWA-2R	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	JAL	1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Yates Gypsum Storage Phase 2 C Project:

Pace Project No.: 30195002	2					
Sample: GWA-2	Lab ID: 3019500		Received:	09/02/16 10:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.332 ± 0.146 (0.178) C:79% T:NA	pCi/L	09/14/16 12:50	13982-63-3	
Radium-228	EPA 9320	0.869 ± 0.406 (0.661) C:77% T:82%	pCi/L	09/22/16 22:12	2 15262-20-1	
Total Radium	Total Radium Calculation	1.20 ± 0.552 (0.839)	pCi/L	09/26/16 14:07	7440-14-4	
Sample: GWA-2R	Lab ID: 3019500	2002 Collected: 08/31/16 14:20	Received:	09/02/16 10:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.179 ± 0.118 (0.190) C:75% T:NA	pCi/L	09/14/16 12:50	13982-63-3	
Radium-228	EPA 9320	0.0706 ± 0.337 (0.771) C:73% T:85%	pCi/L	09/22/16 22:12	2 15262-20-1	
Total Radium	Total Radium Calculation	0.250 ± 0.455 (0.961)	pCi/L	09/26/16 14:07	7440-14-4	

REPORT OF LABORATORY ANALYSIS

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195002

QC Batch: 232405 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30195002001, 30195002002

METHOD BLANK: 1138990 Matrix: Water

Associated Lab Samples: 30195002001, 30195002002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0580 ± 0.0928 (0.200) C:77% T:NA
 pCi/L
 09/14/16 09:38

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195002

QC Batch: 232402 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30195002001, 30195002002

METHOD BLANK: 1138986 Matrix: Water

Associated Lab Samples: 30195002001, 30195002002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.673 ± 0.390 (0.724) C:85% T:84%
 pCi/L
 09/22/16 21:43

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Yates Gypsum Storage Phase 2 C

Pace Project No.: 30195002

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 09/28/2016 05:19 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WO#:30195002

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, G (770) 734-4200 : FAX (770) 734-4201 : www.gsi-lab.com

CHAIN OF CUSTODY RECORD

CHENT NAME:		-			
Southern Company Services		ANALYSIS REQUESTED		CONTAINER TYPE PRES	PRESERVATION
	۵.	a.	A	P - PLASTIC 1 -	1 - HCl, ≤6°C
CLIEN ADDRESS/PHONE NUMBER/FAX NUMBER: 1241 Rainh McGill Rive of Batara	VATION:	8	8		2 - H ₂ SO ₄ , ≤6°C
Atlanta, GA 30308				G - CLEAR GLASS 3 - V - VOA VIAL 4 -	3 - HNO ₃ 4 - NaOH <6°C
					5 - NaOH/ZnAc, ≤6°C
	0		Δ		6 - Na ₂ S ₂ O ₃ , ≤6°C
JABRAHAW@southernco.com CHWCCORK@southernco.com LLMILLET@southernco.com	0 2				7 - ≤6°C not frozen
DATE:	Program Transfer		Z		
PROJECT NAME/STATE	4 -		Э : -	*MATRIX CODES:	·Š
			E 00	DW - DRINKING WATER S-	SOIL
٦	ΛIΣ	82	·m	WASTEWATER	SL - SLUDGE
	0747 0747	882	£.	GW - GROUNDWATER SD - SW - SURFACE WATER A -	SD - SOLID A - AIR
Collection	la Appt 6020\ 3, F, 8	25 mu 346 93		STORM WATER	L - LIQUID P - PROPIICT
∢ @	A93 D) OI	Radi	>	KS/ADDITIONA	HOPMATION
8/3/16 1053 GW K GWA-3		<u> -</u>			
8/2/1/6 1420 GH X GHC-2R	<i>ω</i>			200	
L 11.15 C174					
FEET BY AND THE BATETTIME.	RELINQUISHED BY:	NEEK	8/3///6 6103	FOR LAB USE ONLY	ILY
SED COSCILLATION	RELINQUISHED BY:	Ŷ.	PATERINE 4.CO	Entered into LIMS:	•
Chille 5900	IPPED VI∰	USPS COURIER	CLENT OTHER FS	Tracking #:	
A No NA Res No NA S Win 3 C Max	Custody Seat Mart Broken Not Present	# of Coolers ent	Comfort ID;		
) e 9 of	I'm	12 75 9-	0201 91-2-6		

CONTRACT OF CONTRACTOR OF CONT

of 12

Sample Condition Upon Recei	pt Pi	ttsbu	ırgh	301950	02
				Power Project #	
Courier: Fed Ex UPS USPS Client				<u>_</u>	
Custody Seal on Cooler/Box Present: yes	∠Ø n			intact: yes no	
Thermometer Used	Type o			Blue (None) °C	
Cooler Temperature Observed Temp		° C	Corre	ction Factor °C Final Temp:	
Temp should be above freezing to 6°C				Date and Initials of person examining	
			NII A	contents: M 9-2-16	
Comments:	Yes	No	N/A		
Chain of Custody Present:				1.	
Chain of Custody Filled Out:				2	
Chain of Custody Relinquished:				3.	1 -
Sampler Name & Signature on COC:	V			4. At Signature maries	
a I - I - bein match COC:				5. cs and OC, the	- shed
-Includes date/time/ID/Analysis Matrix:	1, L	۷ , ۲	√+ <u> </u>	les sampler un	40/16
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):	Ī			7.	
Rush Turn Around Time Requested:				8.	i i
				9.	
Sufficient Volume:				10.	
Correct Containers Used:					
-Pace Containers Used:	17			11.	:
Containers Intact:				12.	
Filtered volume received for Dissolved tests All containers needing preservation have been checked.	+	 		13. all below 2 PH	
All containers needing preservation are found to be in compliance with EPA recommendation.	7			all below 2 16	
	· · ·			Initial when Date/time of preservation	ļ
exceptions: VOA, coliform, TOC, O&G, Phenolics				completed / Pt preservation	
				preservative	1
Headspace in VOA Vials (>6mm):				14.	
Trip Blank Present:				<u>.</u> 15.	
Trip Blank Custody Seals Present					
Rad Aqueous Samples Screened > 0.5 mrem/hr				completed: ML Date: 0-2-16	
Client Notification/ Resolution:				·	
Person Contacted:			Date	/Time:Contacted By:	-
Comments/ Resolution:					-
					-
					-
					-
					-

Policy Constitution and Internative exercity - Professional Section of Constitution - Constituti

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Analyst Must Manually Enter All Fields Highlighted in Yellow. **Quality Control Sample Performance Assessment**

Ra-228

Face Analytical"

JLW 9/12/2016 31286 DW 0.673 0.371 0.724 3.55 N/A Analyst: Date: Worklist: Matrix: Test MB Sample ID MB concentration: M/B Counting Uncertainty: Method Blank Assessment

MB MDC:

MB Numerical Performance Indicator:

Sample I.D. Sample MS I.D. Sample MSD I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F):

MSD Target Conc. (pCi/L, g, F): Spike uncertainty (calculated): Sample Result:

Sample Result Counting Uncertainty (pCI/L, g, F): Sample Matrix Spike Result.

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result

Matrix Spike Duplicate Result Counting Uncertainty (pCitL, g, F): MS Numerical Performance Indicator:

MSD Numerical Performance Indicator:

MS Percent Recovery:

MSD Percent Recovery:

MB Status vs Numerical Indicator:	N/A	
MB Status vs. MDC:	Pass	
aboratory Control Sample Assessment	LCSD (Y or N)?	Z
	LCS31286	LCSD31286
Count Date:	9/22/2016	
Spike I.D.:	16-025	
Spike Concentration (pCi/mL):	25.604	
Volume Used (mL):	0.20	
Aliguot Volume (L, g, F):	0.801	
Target Conc. (pCi/L, g, F):	6.393	
Uncertainty (Calculated):	0.460	
Result (pCi/L, g, F):	8.562	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.792	
Numerical Performance Indicator:	4.64	
Percent Recovery:	133.93%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	Matrix Spike/Matrix Spike Duplicate Sample Assessment
			//atrix Spike/Matri

30194996003

Sample I.D.:

Duplicate Sample Assessment

Duplicate Sample I.D. 30194996003DUP
Sample Result (pCi/L, g, F): 1.218
Sample Duplicate Nesult (pCi/L, g, F): 0.440
Sample Duplicate Nesult (pCi/L, g, F): 0.494
Are sample and/or duplicate results below MDC? See Below ##
Duplicate Numerical Performance Indicator: -2.517

Sample I.D.	Sample MS I.D.	Sample MSD 1.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result.	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	_	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Dunificate Status vs RPD
Enter Duplicate	sample IDs if	other than	LCS/LCSD in	the space below.			30194996003	30194996003DUP		

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

-2.517 51.73%

Duplicate RPD:

Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD:

N/A Fail***

Comments:

***Batch must be re-prepped due to unacceptable precision.

Ra-228 NELAC DW2 Printed: 9/26/2016 3:33 PM

www.com

Pace Analytical"

Quality Control Sample Performance Assessment

WRR 9/9/2016 31289 Analyst: Test: Date: Worklist: Matrix:

Sample Matrix Spike Control Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Collection Date: Sample I.D. Sample MS I.D. Sample MSD I.D. MS/MSD Decay Corrected Spike Concentration (pCl/mL):

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL): MS Target Conc.(pCi/L, g, F):

MS Aliquot (L, g, F):

Spike I.D.:

0.058 0.092 0.200 1.23 N/A Pass MB MDC: MB Sample ID MB concentration: MB Numerical Performance Indicator: M/B Counting Uncertainty. MB Status vs Numerical Indicator: MB Status vs. MDC:

Method Blank Assessment

D (Y or N)? LCS31289 9/14/2016 16-026

aboratory Control Sample Assessment

Count Date Spike I.D. Volume Used (mL):

44.678

Spike Concentration (pCi/mL):

0.10 0.503 8.882 0.418 7.333 0.556

Uncertainty (Calculated):

Aliquot Volume (L, g, F): arget Conc. (pCi/L, g, F): 82.56%

Percent Recovery:

Status vs Numerical Indicator:

4.37 N/A Pass

Result (pCI/L, g, F):
LCS/LCSD Counting Uncertainty (pCI/L, g, F):
Numerical Performance Indicator:

MSD Aliquot (L, g, F): Spike uncertainty (calculated): Sample Result: Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result: MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Target Conc. (pCi/L, g, F): Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator: MSD Numerical Performance Indicator: MS Percent Recovery: MSD Percent Recovery: MS Status vs Recovery: LCSD31289

Sample I.D. MSD Status vs Recovery Matrix Spike/Matrix Spike Duplicate Sample Assessment

Sample MS I.D. Sample MSD I.D.

CS/LCSD in the

space below other than

See Below 排

0.171

Sample Result Counting Uncertainty (pCl/I., g, F):
Sample Duplicate Result (pCl/I., g, F):
Sample Duplicate Result Counting Uncertainty (pCl/I., g, F):
Are sample and/or duplicate results below MDC?

-0.916 74.55% N/A

Duplicate RPD:

Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator:

Enter Duplicate

sample IDs if

30195003003DUP

0.079 0.107

Sample Result (pCi/L, g, F):

30195003003

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessment

Sample Matrix Spike Result: Sample Matrix Spike Duplicate Result: MS/ MSD Duplicate RPD; Matrix Spike Result Counting Uncertainty (pCI/L, g, F): Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator. MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs RPD:

Comments:

***Batch must be re-prepped due to unacceptable precision.

Printed: 9/26/2016 3:31 PM TAR DW QC

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AZI0048

September 12, 2016

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, Inc.

All test results relate only to the samples analyzed.

Attention: Mr. Joju Abraham

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GWC-4R	AZI0048-01	Ground Water	09/01/16 08:49	09/02/16 08:35
FB-2	AZI0048-02	DI Water	09/01/16 11:17	09/02/16 08:35
GWC-6R	AZI0048-03	Ground Water	09/01/16 11:27	09/02/16 08:35
Dup-2	AZI0048-04	Ground Water	09/01/16 00:00	09/02/16 08:35
GWC-5R	AZI0048-05	Ground Water	09/01/16 12:59	09/02/16 08:35
EQB-2	AZI0048-06	DI Water	09/01/16 14:15	09/02/16 08:35

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0048
Client ID: GWC-4R

Date/Time Sampled: 9/1/2016 8:49:00AM

Matrix: Ground Water

September 12, 2016

Project: CCR Event
Lab Number ID: AZI0048-01

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	553	25	10	mg/L	SM 2540 C		1	09/06/16 19:55	09/06/16 19:55	6090125	JPT
Inorganic Anions											
Chloride	190	2.5	0.14	mg/L	EPA 300.0		10	09/04/16 10:35	09/06/16 22:07	6090086	RLC
Fluoride	0.15	0.30	0.02	mg/L	EPA 300.0	J	1	09/04/16 10:35	09/04/16 20:19	6090086	RLC
Sulfate	150	10	0.51	mg/L	EPA 300.0		10	09/04/16 10:35	09/06/16 22:07	6090086	RLC
Metals, Total											
Antimony	0.0014	0.0030	0.0008	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Barium	0.0377	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Boron	3.25	0.500	0.0321	mg/L	EPA 6020B		5	09/06/16 10:15	09/08/16 17:13	6090062	CSW
Cadmium	0.0001	0.0010	0.00007	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Calcium	37.1	2.50	0.155	mg/L	EPA 6020B		5	09/06/16 10:15	09/08/16 17:13	6090062	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Cobalt	0.0023	0.0100	0.0005	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Selenium	0.0132	0.0100	0.0010	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:48	6090062	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 11:30	09/06/16 15:57	6090078	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0048
Client ID: FB-2

Date/Time Sampled: 9/1/2016 11:17:00AM

Matrix: DI Water

September 12, 2016

Project: CCR Event

Lab Number ID: AZI0048-02

Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
22	25	10	mg/L	SM 2540 C	J	1	09/06/16 19:55	09/06/16 19:55	6090125	JPT
0.09	0.25	0.01	mg/L	EPA 300.0	J	1	09/04/16 10:35	09/04/16 21:02	6090086	RLC
0.03	0.30	0.02	mg/L	EPA 300.0	J	1	09/04/16 10:35	09/04/16 21:02	6090086	RLC
0.05	1.0	0.05	mg/L	EPA 300.0	J	1	09/04/16 10:35	09/04/16 21:02	6090086	RLC
ND	0.0030	0.0008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0030	0.00008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
0.0145	0.100	0.0064	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0010	0.00007	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.500	0.0311	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0100	0.0009	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0100	0.0005	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0100	0.0010	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.0500	0.0021	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:54	6090062	CSW
ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 11:30	09/06/16 16:00	6090078	MTC
	22 0.09 0.03 0.05 ND	22 25 0.09 0.25 0.03 0.30 0.05 1.0 ND 0.0030 ND 0.0050 ND 0.0100 ND 0.0010 ND 0.0100 ND 0.0500	Description of the control of the co	22 25 10 mg/L 0.09 0.25 0.01 mg/L 0.03 0.30 0.02 mg/L 0.05 1.0 0.05 mg/L ND 0.0030 0.0008 mg/L ND 0.0050 0.0016 mg/L ND 0.0100 0.0004 mg/L ND 0.0030 0.0008 mg/L ND 0.0100 0.0004 mg/L ND 0.0100 0.0004 mg/L ND 0.0100 0.0007 mg/L ND 0.500 0.0311 mg/L ND 0.0100 0.0009 mg/L ND 0.0100 0.0005 mg/L ND 0.0100 0.0005 mg/L ND 0.0100 0.0001 mg/L ND 0.0100 0.0017 mg/L ND 0.0100 0.0017 mg/L ND 0.0100 0.0017 mg/L ND 0.0100 0.0017 mg/L ND 0.0100 0.0010 mg/L ND 0.0100 0.0002 mg/L ND 0.0500 0.0001 mg/L ND 0.0500 0.0001 mg/L	22 25 10 mg/L SM 2540 C 0.09 0.25 0.01 mg/L EPA 300.0 0.03 0.30 0.02 mg/L EPA 300.0 0.05 1.0 0.05 mg/L EPA 300.0 ND 0.0050 0.0016 mg/L EPA 6020B ND 0.0050 0.0016 mg/L EPA 6020B ND 0.0030 0.00008 mg/L EPA 6020B ND 0.0100 0.0004 mg/L EPA 6020B ND 0.0100 0.0004 mg/L EPA 6020B ND 0.0145 0.100 0.0064 mg/L EPA 6020B ND 0.0010 0.00007 mg/L EPA 6020B ND 0.500 0.0311 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0005 mg/L EPA 6020B ND 0.0100 0.0005 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0100 0.0017 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B ND 0.0100 0.0011 mg/L EPA 6020B ND 0.0100 0.0011 mg/L EPA 6020B ND 0.0100 0.0012 mg/L EPA 6020B	22 25 10 mg/L SM 2540 C J 0.09 0.25 0.01 mg/L EPA 300.0 J 0.03 0.30 0.02 mg/L EPA 300.0 J 0.05 1.0 0.05 mg/L EPA 300.0 J ND 0.0050 0.0016 mg/L EPA 6020B ND 0.0050 0.0004 mg/L EPA 6020B ND 0.0030 0.0008 mg/L EPA 6020B ND 0.0030 0.0008 mg/L EPA 6020B ND 0.0100 0.0004 mg/L EPA 6020B ND 0.0100 0.0004 mg/L EPA 6020B ND 0.0145 0.100 0.0064 mg/L EPA 6020B ND 0.0100 0.0007 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0100 0.0017 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B ND 0.0100 0.0002 mg/L EPA 6020B ND 0.0500 0.0021 mg/L EPA 6020B	22 25 10 mg/L SM 2540 C J 1 0.09 0.25 0.01 mg/L EPA 300.0 J 1 0.03 0.30 0.02 mg/L EPA 300.0 J 1 0.05 1.0 0.05 mg/L EPA 300.0 J 1 ND 0.0050 0.0016 mg/L EPA 6020B 1 ND 0.0030 0.0008 mg/L EPA 6020B 1 ND 0.0100 0.0004 mg/L EPA 6020B 1 ND 0.0100 0.0008 mg/L EPA 6020B 1 ND 0.0145 0.100 0.0064 mg/L EPA 6020B J 1 ND 0.0010 0.00007 mg/L EPA 6020B J 1 ND 0.500 0.0311 mg/L EPA 6020B 1 ND 0.500 0.0311 mg/L EPA 6020B 1 ND 0.0100 0.0009 mg/L EPA 6020B 1 ND 0.0100 0.0005 mg/L EPA 6020B 1 ND 0.0100 0.0005 mg/L EPA 6020B 1 ND 0.0100 0.0005 mg/L EPA 6020B 1 ND 0.0100 0.0001 mg/L EPA 6020B 1 ND 0.0100 0.0017 mg/L EPA 6020B 1 ND 0.0100 0.0010 mg/L EPA 6020B 1	Result RL MDL Units Method Qual. DF Date 22 25 10 mg/L SM 2540 C J 1 09/06/16 19:55 0.09 0.25 0.01 mg/L EPA 300.0 J 1 09/04/16 10:35 0.03 0.30 0.02 mg/L EPA 300.0 J 1 09/04/16 10:35 ND 0.05 1.0 0.05 mg/L EPA 300.0 J 1 09/06/16 10:35 ND 0.050 0.0016 mg/L EPA 6020B 1 09/06/16 10:15 ND 0.0050 0.0016 mg/L EPA 6020B 1 09/06/16 10:15 ND 0.0100 0.0004 mg/L EPA 6020B 1 09/06/16 10:15 ND 0.0030 0.0008 mg/L EPA 6020B 1 09/06/16 10:15 ND 0.0100 0.00064 mg/L EPA 6020B 1 09/06/16 10:15 ND 0.0010 0.00007	Result RL MDL Units Method Qual. DF Date Date 22 25 10 mg/L SM 2540 C J 1 09/06/16 19:55 09/06/16 19:55 0.09 0.25 0.01 mg/L EPA 300.0 J 1 09/04/16 10:35 09/04/16 21:02 0.03 0.30 0.02 mg/L EPA 300.0 J 1 09/04/16 10:35 09/04/16 21:02 ND 0.005 ng/L EPA 300.0 J 1 09/06/16 10:15 09/07/16 17:54 ND 0.0030 0.0008 mg/L EPA 6020B 1 09/06/16 10:15 09/07/16 17:54 ND 0.0100 0.0004 mg/L EPA 6020B 1 09/06/16 10:15 09/07/16 17:54 ND 0.0300 0.0008 mg/L EPA 6020B 1 09/06/16 10:15 09/07/16 17:54 ND 0.0100 0.00007 mg/L EPA 6020B 1 09/06/16 10:15 09/07/16 17:54 ND	Result RL MDL Units Method Qual. DF Date Date Batch 22 25 10 mg/L SM 2540 C J 1 09/06/16 19:55 09/06/16 19:55 6090125 0.09 0.25 0.01 mg/L EPA 300.0 J 1 09/04/16 10:35 09/04/16 21:02 6090086 0.03 0.30 0.02 mg/L EPA 300.0 J 1 09/04/16 10:35 09/04/16 21:02 6090086 ND 0.05 1.0 0.05 mg/L EPA 300.0 J 1 09/04/16 10:35 09/04/16 21:02 6090086 ND 0.050 0.0016 mg/L EPA 6020B 1 09/06/16 10:15 09/07/16 17:54 6090062 ND 0.0100 0.0004 mg/L EPA 6020B 1 09/06/16 10:15 09/07/16 17:54 6090062 ND 0.0100 0.0004 mg/L EPA 6020B 1 09/06/16 10:15 09/07/16 17:54 6090062

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0048
Client ID: GWC-6R

Date/Time Sampled: 9/1/2016 11:27:00AM

Matrix: Ground Water

September 12, 2016

Project: CCR Event
Lab Number ID: AZI0048-03

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	578	25	10	mg/L	SM 2540 C		1	09/06/16 19:55	09/06/16 19:55	6090125	JPT
Inorganic Anions											
Chloride	4.4	0.25	0.01	mg/L	EPA 300.0		1	09/04/16 10:35	09/04/16 21:24	6090086	RLC
Fluoride	0.28	0.30	0.02	mg/L	EPA 300.0	J	1	09/04/16 10:35	09/04/16 21:24	6090086	RLC
Sulfate	360	10	0.51	mg/L	EPA 300.0		10	09/04/16 10:35	09/06/16 22:48	6090086	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Barium	0.0536	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Boron	0.0108	0.100	0.0064	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Calcium	56.8	5.00	0.311	mg/L	EPA 6020B		10	09/06/16 10:15	09/08/16 17:19	6090062	CSW
Chromium	0.0015	0.0100	0.0009	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Selenium	0.0020	0.0100	0.0010	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 17:59	6090062	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 11:30	09/06/16 16:02	6090078	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0048
Client ID: Dup-2

Date/Time Sampled: 9/1/2016 12:00:00AM

Matrix: Ground Water

September 12, 2016

Project: CCR Event

Lab Number ID: AZI0048-04

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	488	25	10	mg/L	SM 2540 C		1	09/06/16 19:55	09/06/16 19:55	6090125	JPT
Inorganic Anions											
Chloride	170	2.5	0.14	mg/L	EPA 300.0		10	09/04/16 10:35	09/06/16 23:09	6090086	RLC
Fluoride	0.16	0.30	0.02	mg/L	EPA 300.0	J	1	09/04/16 10:35	09/04/16 23:34	6090086	RLC
Sulfate	150	10	0.51	mg/L	EPA 300.0		10	09/04/16 10:35	09/06/16 23:09	6090086	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Barium	0.0375	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Boron	3.42	0.500	0.0321	mg/L	EPA 6020B		5	09/06/16 10:15	09/08/16 17:25	6090062	CSW
Cadmium	0.00009	0.0010	0.00007	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Calcium	37.3	2.50	0.155	mg/L	EPA 6020B		5	09/06/16 10:15	09/08/16 17:25	6090062	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Cobalt	0.0023	0.0100	0.0005	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Selenium	0.0117	0.0100	0.0010	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:05	6090062	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 11:30	09/06/16 16:04	6090078	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0048
Client ID: GWC-5R

Date/Time Sampled: 9/1/2016 12:59:00PM

Matrix: Ground Water

September 12, 2016

Project: CCR Event
Lab Number ID: AZI0048-05

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1400	25	10	mg/L	SM 2540 C		1	09/06/16 19:55	09/06/16 19:55	6090125	JPT
Inorganic Anions											
Chloride	6.6	0.25	0.01	mg/L	EPA 300.0		1	09/04/16 10:35	09/04/16 23:56	6090086	RLC
Fluoride	0.03	0.30	0.02	mg/L	EPA 300.0	J	1	09/04/16 10:35	09/04/16 23:56	6090086	RLC
Sulfate	990	50	2.6	mg/L	EPA 300.0		50	09/04/16 10:35	09/06/16 23:29	6090086	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Barium	0.0345	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Beryllium	0.0005	0.0030	0.00008	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Boron	0.0191	0.100	0.0064	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Cadmium	0.0005	0.0010	0.00007	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Calcium	113	25.0	1.55	mg/L	EPA 6020B		50	09/06/16 10:15	09/08/16 17:30	6090062	CSW
Chromium	0.0021	0.0100	0.0009	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Selenium	0.0212	0.0100	0.0010	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:11	6090062	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 11:30	09/06/16 16:07	6090078	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZI0048
Client ID: EQB-2

Date/Time Sampled: 9/1/2016 2:15:00PM

Matrix: DI Water

September 12, 2016

Project: CCR Event

Lab Number ID: AZI0048-06

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	18	25	10	mg/L	SM 2540 C	J	1	09/06/16 19:55	09/06/16 19:55	6090125	JPT
Inorganic Anions											
Chloride	0.06	0.25	0.01	mg/L	EPA 300.0	J	1	09/04/16 10:35	09/05/16 00:18	6090086	RLC
Fluoride	ND	0.30	0.02	mg/L	EPA 300.0		1	09/04/16 10:35	09/05/16 00:18	6090086	RLC
Sulfate	0.42	1.0	0.05	mg/L	EPA 300.0	J	1	09/04/16 10:35	09/05/16 00:18	6090086	RLC
Metals, Total											
Antimony	0.0014	0.0030	0.0008	mg/L	EPA 6020B	J	1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Barium	ND	0.0100	0.0004	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Boron	ND	0.100	0.0064	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Calcium	ND	0.500	0.0311	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Selenium	ND	0.0100	0.0010	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	09/06/16 10:15	09/07/16 18:57	6090062	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	09/06/16 11:30	09/06/16 16:09	6090078	MTC

Attention: Mr. Joju Abraham

Report No.: AZI0048

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090125 - SM 2540 C											
Blank (6090125-BLK1)						Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (6090125-BS1)						Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	402	25	10	mg/L	400.00		100	84-108			
Duplicate (6090125-DUP1)		Sou	ırce: AZI002	22-04		Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	77	25	10	mg/L		190			85	10	QR-03
Duplicate (6090125-DUP2)		Sou	ırce: AZI002	22-09		Prepare	ed & Anal	yzed: 09/0	6/16		
Total Dissolved Solids	429	25	10	mg/L		406			6	10	

Attention: Mr. Joju Abraham

Report No.: AZI0048

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090086 - EPA 300.0											
Blank (6090086-BLK1)						Prepare	ed & Anal	yzed: 09/0/	4/16		
Chloride	ND	0.25	0.01	mg/L							
Fluoride	ND	0.30	0.02	mg/L							
Sulfate	ND	1.0	0.05	mg/L							
LCS (6090086-BS1)						Prepare	ed & Anal	yzed: 09/0/	4/16		
Chloride	10.2	0.25	0.01	mg/L	10.010		102	90-110			
Fluoride	10.3	0.30	0.02	mg/L	10.010		103	90-110			
Sulfate	10.2	1.0	0.05	mg/L	10.010		102	90-110			
Matrix Spike (6090086-MS1)		Sou	ırce: AZI00	22-06		Prepare	ed & Anal	yzed: 09/0/	4/16		
Chloride	207	0.25	0.01	mg/L	10.010	217	NR	90-110			QM-02
Fluoride	12.0	0.30	0.02	mg/L	10.010	0.04	119	90-110			QM-05
Sulfate	376	1.0	0.05	mg/L	10.010	400	NR	90-110			QM-02
Matrix Spike (6090086-MS2)		Sou	ırce: AZI004	48-01		Prepare	ed & Anal	yzed: 09/0	4/16		
Chloride	133	0.25	0.01	mg/L	10.010	137	NR	90-110			QM-02
Fluoride	11.7	0.30	0.02	mg/L	10.010	0.15	115	90-110			QM-05
Sulfate	126	1.0	0.05	mg/L	10.010	130	NR	90-110			QM-02
Matrix Spike Dup (6090086-MSD1)		Sou	ırce: AZI00	22-06		Prepare	ed & Anal	yzed: 09/0	4/16		
Chloride	207	0.25	0.01	mg/L	10.010	217	NR	90-110	0.02	15	QM-02
Fluoride	12.3	0.30	0.02	mg/L	10.010	0.04	123	90-110	3	15	QM-05
Sulfate	376	1.0	0.05	mg/L	10.010	400	NR	90-110	0.08	15	QM-02

Attention: Mr. Joju Abraham September 12, 2016

Report No.: AZI0048

Metals, Total - Quality Control

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090062 - EPA 3005A											
Blank (6090062-BLK1)						Prepare	ed: 09/06/	16 Analyz	ed: 09/07/	16	
Antimony	ND	0.0030	0.0008	mg/L							
Arsenic	ND	0.0050	0.0016	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00008	mg/L							
Boron	ND	0.100	0.0064	mg/L							
Cadmium	ND	0.0010	0.00007	mg/L							
Calcium	ND	0.500	0.0311	mg/L							
Chromium	ND	0.0100	0.0009	mg/L							
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0050	0.0005	mg/L							
Lead	ND	0.0050	0.0001	mg/L							
Molybdenum	ND	0.0100	0.0017	mg/L							
Nickel	ND	0.0050	0.0006	mg/L							
Selenium	ND	0.0100	0.0010	mg/L							
Silver	ND	0.0050	0.0005	mg/L							
Thallium	ND	0.0010	0.0002	mg/L							
Vanadium	ND	0.0100	0.0071	mg/L							
Zinc	ND	0.0100	0.0021	mg/L							
Lithium	ND	0.0500	0.0021	mg/L							
Littliain			0.0021	mg/L							
LCS (6090062-BS1)						Prepare	ed: 09/06/	16 Analyz	ed: 09/07/	16	
Antimony	0.111	0.0030	0.0008	mg/L	0.10000		111	80-120			
Arsenic	0.101	0.0050	0.0016	mg/L	0.10000		101	80-120			
Barium	0.100	0.0100	0.0004	mg/L	0.10000		100	80-120			
Beryllium	0.104	0.0030	0.00008	mg/L	0.10000		104	80-120			
Boron	1.04	0.100	0.0064	mg/L	1.0000		104	80-120			
Cadmium	0.105	0.0010	0.00007	mg/L	0.10000		105	80-120			
Calcium	1.00	0.500	0.0311	mg/L	1.0000		100	80-120			
Chromium	0.104	0.0100	0.0009	mg/L	0.10000		104	80-120			
Cobalt	0.101	0.0100	0.0005	mg/L	0.10000		101	80-120			
Copper	0.101	0.0050	0.0005	mg/L	0.10000		101	80-120			
Lead	0.100	0.0050	0.0001	mg/L	0.10000		100	80-120			
Molybdenum	0.105	0.0100	0.0017	mg/L	0.10000		105	80-120			
Nickel	0.102	0.0050	0.0006	mg/L	0.10000		102	80-120			
Selenium	0.107	0.0100	0.0010	mg/L	0.10000		107	80-120			
Silver	0.101	0.0050	0.0005	mg/L	0.10000		101	80-120			
Thallium	0.101	0.0010	0.0002	mg/L	0.10000		101	80-120			
Vanadium	0.103	0.0100	0.0071	mg/L	0.10000		103	80-120			
Zinc	0.105	0.0100	0.0021	mg/L	0.10000		105	80-120			
		0.0500	0.0021	·3· =							

September 12, 2016

Attention: Mr. Joju Abraham Report No.: AZI0048

Metals, Total - Quality Control

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090062 - EPA 3005A											
Matrix Spike (6090062-MS1)		Sou	ırce: AZI005	0-04		Prepare	ed: 09/06/	16 Analyz	ed: 09/07/	/16	
Antimony	0.106	0.0030	0.0008	mg/L	0.10000	ND	106	75-125			
Arsenic	0.111	0.0050	0.0016	mg/L	0.10000	0.0095	102	75-125			
Barium	0.157	0.0100	0.0004	mg/L	0.10000	0.0666	91	75-125			
Beryllium	0.0934	0.0030	0.00008	mg/L	0.10000	ND	93	75-125			
Boron	1.14	0.100	0.0064	mg/L	1.0000	0.349	79	75-125			
Cadmium	0.102	0.0010	0.00007	mg/L	0.10000	ND	102	75-125			
Calcium	9.88	0.500	0.0311	mg/L	1.0000	8.90	97	75-125			
Chromium	0.101	0.0100	0.0009	mg/L	0.10000	ND	101	75-125			
Cobalt	0.0950	0.0100	0.0005	mg/L	0.10000	ND	95	75-125			
Copper	0.0995	0.0050	0.0005	mg/L	0.10000	ND	99	75-125			
Lead	0.0961	0.0050	0.0001	mg/L	0.10000	ND	96	75-125			
Molybdenum	0.102	0.0100	0.0017	mg/L	0.10000	ND	102	75-125			
Nickel	0.104	0.0050	0.0006	mg/L	0.10000	0.0042	99	75-125			
Selenium	0.100	0.0100	0.0010	mg/L	0.10000	ND	100	75-125			
Silver	0.0927	0.0050	0.0005	mg/L	0.10000	ND	93	75-125			
Thallium	0.0952	0.0010	0.0002	mg/L	0.10000	ND	95	75-125			
Vanadium	0.104	0.0100	0.0071	mg/L	0.10000	ND	104	75-125			
Zinc	0.108	0.0100	0.0021	mg/L	0.10000	0.0026	105	75-125			
Lithium	0.102	0.0500	0.0021	mg/L	0.10000	0.0044	98	75-125			
Matrix Spike Dup (6090062-MSD1)	•	Sou	ırce: AZI005	0-04		Prenare	-d· 00/06/	16 Analyz	ed: 09/07/	16	
Antimony	0.107	0.0030	0.0008	mg/L	0.10000	ND	107	75-125	0.8	20	
Arsenic	0.111	0.0050	0.0016	mg/L	0.10000	0.0095	102	75-125	0.003	20	
Barium	0.143	0.0100	0.0004	mg/L	0.10000	0.0666	77	75-125	9	20	
Beryllium	0.0897	0.0030	0.00008	mg/L	0.10000	ND	90	75-125	4	20	
Boron	1.05	0.100	0.0064	mg/L	1.0000	0.349	70	75-125	8	20	QM-02
Cadmium	0.101	0.0010	0.00007	mg/L	0.10000	ND	101	75-125	1	20	Q 02
Calcium	7.88	0.500	0.0311	mg/L	1.0000	8.90	NR	75-125	22	20	QM-02, QR-03
Chromium	0.102	0.0100	0.0009	mg/L	0.10000	ND	102	75-125	0.6	20	QIN-UC
Cobalt	0.0984	0.0100	0.0005	mg/L	0.10000	ND	98	75-125	3	20	
Copper	0.0997	0.0050	0.0005	mg/L	0.10000	ND	100	75-125	0.3	20	
Lead	0.0959	0.0050	0.0001	mg/L	0.10000	ND	96	75-125	0.2	20	
Molybdenum	0.0991	0.0100	0.0017	mg/L	0.10000	ND	99	75-125	3	20	
Nickel	0.103	0.0050	0.0006	mg/L	0.10000	0.0042	99	75-125	0.6	20	
Selenium	0.104	0.0100	0.0010	mg/L	0.10000	ND	104	75-125	4	20	
Silver	0.0963	0.0050	0.0005	mg/L	0.10000	ND	96	75-125	4	20	
Thallium	0.0952	0.0010	0.0002	mg/L	0.10000	ND	95	75-125	0.06	20	
Vanadium	0.103	0.0100	0.0071	mg/L	0.10000	ND	103	75-125	0.6	20	

Attention: Mr. Joju Abraham

Report No.: AZI0048

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090062 - EPA 3005A											
Matrix Spike Dup (6090062-MSD1)		Sou	ırce: AZI005	0-04		Prepare	ed: 09/06/	16 Analyz	ed: 09/07	/16	
Lithium	0.0974	0.0500	0.0021	mg/L	0.10000	0.0044	93	75-125	5	20	
Post Spike (6090062-PS1)		Sou	ırce: AZI005	0-04		Prepare	ed: 09/06/	16 Analyz	ed: 09/07	/16	
Antimony	99.5			ug/L	100.00	0.100	99	80-120			
Arsenic	112			ug/L	100.00	9.50	102	80-120			
Barium	159			ug/L	100.00	66.6	92	80-120			
Beryllium	91.8			ug/L	100.00	0.0195	92	80-120			
Boron	1120			ug/L	1000.0	349	77	80-120			QM-02
Cadmium	101			ug/L	100.00	-0.0066	101	80-120			
Calcium	9570			ug/L	1000.0	8900	67	80-120			QM-02
Chromium	104			ug/L	100.00	0.586	104	80-120			
Cobalt	100			ug/L	100.00	0.0381	100	80-120			
Copper	101			ug/L	100.00	0.224	101	80-120			
Lead	93.7			ug/L	100.00	0.0558	94	80-120			
Molybdenum	101			ug/L	100.00	0.0984	101	80-120			
Nickel	104			ug/L	100.00	4.21	100	80-120			
Selenium	104			ug/L	100.00	0.394	103	80-120			
Silver	94.0			ug/L	100.00	-0.000050	94	80-120			
Thallium	93.2			ug/L	100.00	0.0002	93	80-120			
Vanadium	107			ug/L	100.00	2.25	104	80-120			
Zinc	104			ug/L	100.00	2.61	102	80-120			
Lithium	97.5			ug/L	100.00	4.38	93	80-120			
Batch 6090078 - EPA 7470A											
Blank (6090078-BLK1)						Prepare	ed & Anal	yzed: 09/0	6/16		
Mercury	ND	0.00050	0.000041	mg/L							

Attention: Mr. Joju Abraham

Report No.: AZI0048

PACE ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 12, 2016

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6090078 - EPA 7470A											
LCS (6090078-BS1)						Prepare	ed & Analy	yzed: 09/06	6/16		
Mercury	0.00241	0.00050	0.000041	mg/L	2.5000E-3		96	80-120			
Matrix Spike (6090078-MS1)		Sou	ırce: AZI003	8-05		Prepare	ed & Analy	yzed: 09/06	6/16		
Mercury	0.00241	0.00050	0.000041	mg/L	2.5000E-3	ND	96	75-125			
Matrix Spike Dup (6090078-MSD1)		Sou	ırce: AZI003	8-05		Prepare	ed & Analy	yzed: 09/06	6/16		
Mercury	0.00234	0.00050	0.000041	mg/L	2.5000E-3	ND	93	75-125	3	20	
Post Spike (6090078-PS1)		Sou	ırce: AZI003	8-05		Prepare	ed & Analy	yzed: 09/06	6/16		
Mercury	1.69			ug/L	1.6667	0.00587	101	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham September 12, 2016

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QR-03** The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to suspected matrix interference and/or non-homogeneous sample matrix.
- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD and/or PDS due to suspected matrix interference. Sample results for the QC batch were accepted based on acceptable LCS recoveries.
- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).

Note: Unless otherwise noted, all results are reported on an as received basis.

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc.
Pace Analytical 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200: FAX (770) 734-4201: www.asi-lab.com

P

		CONTAINER T	<u>ال</u>	┞					-	<u>.</u> .	CONTAINER TYPE	PRESERVATION
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:		PRESERVATION-	L	3	╀	\dagger	+		+	< 1	715511	
241 Raiph McGill Bivd. SE, B10185 Atlenta CA 2000s		jo#			·		+		1	<u> </u>	A - AMBER GLASS G - CLEAR GLASS	2 - H ₂ SO ₄ , s6°C 3 - HNO,
		. 34									V - VOA VIAL	4 - NaOH, s6°C
Joju Abraham	CC: MRPADILL@southernco.com	O								- 6	O-SIERIE	5 - NaOH/ZnAc, <6°C
JABRAHAM@southernco.com	CHMCCORK@southernco.com	0 2		-)	F 10 - 0	6 - Na ₂ >2O ₃ , ≤6°C 7 - ≤6°C not frazen
REQUESTED COMPLETION DATE:	PO#:	z								Z		
PROJECT NAME/STATE		⋖ -			70-					Э:	-MA	MATRIX CODES:
SAN CAS	Circand Chrand Charle	· 2 t	^							2 0	DW - DRINKING WATER	ER S- SOIL
	(100 7) (m.) (c.	U @ 6	18 11	(þ(8 <u>22</u> 8					шк		SL - SLUDGE R SD - SOLID
MATRIX O R	G R SAMPLE IDENTIFICATION	, <u> </u>	qqA eli	7, F, SC	300.0, 300.0, 346 931					_	SW - SURFACE WATER ST - STORM WATER W - WATER	ER A- AIR L-LIQUID B. BRONIST
Σ α_		→	steM	EPA	ibeA					→		REMARKS/ADDITIONAL INFOOMATION
08:49 Cm	x GWC-4R	3			_					\		NOT WE DESCRIPTION
×	K FB-2	3	_	<u> </u>	_				_	7		
X 0.5	K GWC-19R	જ	-	-					-	2		
SE X		3	-	~	-	-				4		
										_		
									igdash			
									_			
1			+			$\mid \cdot \mid$						
		+	- -	\perp		+		_	-			
TILE	DATE/TIME: 9 // //_	RELINGUISHED BY	SHEDB	1/2	1300	00	- 1	DATE/TIME:	_			FOR LAB USE ONLY
		RELINQUI	LINQUISHED BY:	1	3	1/2	9/	DATE/TIME	ůi		IAB# Ch	70048
unan	5880 9	SAMPLE SHIPPED VIA. UPS FED.EX	HIPPEI FEDEX		USPS	COURIER	12	CLIENT	OTHER FS		Entered into Lins: Tracking #:	
	Temperature.		Jess 1			# J. C. edits	J	CONFERIOR				

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical 9

Pace Anatytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

P

PAGE:

5 - NaOH/ZnAc, s6°C 6 - Na₂S₂O₃, s6°C 7 - s6°C not frozen 2- H₂SO4, ≤6°C 4 - NaOH, ≤6°C REMARKS/ADDITIONAL INFORMATION 1 - HCI, 58°C P - PRODUCT 840 SL - SLUDGE 3- HNO3 L- LIQUID SD- SOLD S- SOIL A- AIR MATRIX CODES: FOR LAB USE ON DRINKING WATER SW - SURFACE WATER GW - GROUNDWATER WW - WASTEWATER ST - STORM WATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE V - VOA VIAL S - STERILE O - OTHER Intered into LIMS P - PLASTIC W- WATER Fracking #: AB#: 1 < B **-** 0 Z D Z O U C Q S OTHER PATE/TIME: DATE/TIME ANALYSIS REQUESTED COURIER of Coefers OSE6/9156 998-MS Radium 226 & 228 Sesti Mot Present EPA 300.0, TDS SM 2540C IC (CT E' 804) SAMPLE SHIPPED VIA: UPS FED-EX EPA 6020/7470 RELINGUISHED BY: RELINQUISHED BY: 60 Wetels App. III & IV FED-EX Broken CONTAINER TYPE: PRESERVATION: # Of Intact (1992) 00Z-4-2EE% 7 3 J CC: MRPADILL@southernco.com CHMCCORK@southernco.com SAMPLE IDENTIFICATION Southern Company Services LLMILLET@southernco.com TORS CYPSIN STORESK PLOSE OF **グルハー5** R EQ8-2 DAJESTIME: 16 femperature: DATE/TIME CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER × **0 K < 0** U O ≌ a JABRAHAM@southernco.com Joju Abraham MES) No REQUESTED COMPLETION DATE: 241 Raiph McGill Bivd. SE, B10185 Atlanta, GA 30308 MATRIX CODE* ٤ કુ Tinan SAMPLED BY AND TITLE: Z.K. Gries watson RECEIVED BY: STANDARD PROJECT NAME/STATE Collection TIME 12:59 14:15 SECENTED BY LAB. ž CLIENT NAME: REPORT TO: ROJECT #: 21/1/6 911116 Collection DATE

- 🔨

of 17

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 9/12/2016 5:37:38PM

Attn: Mr. Joju Abraham

Client: Georgia Power

Project: CCR Event Work Order: AZI0048

Date Received: 09/02/16 08:35 Logged In By: Mohammad M. Rahman

OBSERVATIONS

#Samples: 6 **#Containers:** 19

Minimum Temp(C): 1.0 Maximum Temp(C): 1.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

October 04, 2016

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195132

Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on September 06, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins

Sugarly Cellins

jacquelyn.collins@pacelabs.com

Project Manager

Enclosures

Pace Analytical Services, LLC

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Yates Gypsum Storage Phase 2 Project:

Pace Project No.: 30195132

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590

Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification

Hawaii Certification

Idaho Certification

Illinois Certification

Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008

Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification

Missouri Certification #: 235

Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14

Nevada Certification #: PA014572015-1

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification #: PA01457

New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8

Utah/TNI Certification #: PA014572015-5

USDA Soil Permit #: P330-14-00213

Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 460198

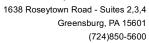
Washington Certification #: C868

West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Certification

Wyoming Certification #: 8TMS-L

Pace Analytical Services, LLC

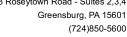

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE SUMMARY

Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195132

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30195131001	GWC-4R	Water	09/01/16 08:49	09/06/16 08:50
30195132002	FB-2	Water	09/01/16 11:17	09/06/16 08:50
30195132003	GWC-6R	Water	09/01/16 11:27	09/06/16 08:50
30195132004	DUP-2	Water	09/01/16 00:01	09/06/16 08:50



SAMPLE ANALYTE COUNT

Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195132

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30195131001	GWC-4R	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30195132002	FB-2	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30195132003	GWC-6R	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30195132004	DUP-2	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Yates Gypsum Storage Phase 2 Project:

Calculation

Pace Project No.: 30195132

Sample: GWC-4R Lab ID: 30195131001 Collected: 09/01/16 08:49 Received: 09/06/16 08:50 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 9315 $0.0664 \pm 0.152 \quad (0.360)$ Radium-226 09/28/16 11:35 13982-63-3 pCi/L C:77% T:NA 1.51 ± 0.556 (0.831) EPA 9320 Radium-228 pCi/L 09/23/16 22:07 15262-20-1 C:80% T:79% Total Radium Total Radium 1.58 ± 0.708 (1.19) pCi/L 10/04/16 15:39 7440-14-4 Calculation Sample: FB-2 Lab ID: 30195132002 Collected: 09/01/16 11:17 Received: 09/06/16 08:50 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Act ± Unc (MDC) Carr Trac Method Units Analyzed CAS No. Qual EPA 9315 0.00531 ± 0.118 (0.319) Radium-226 pCi/L 09/28/16 11:35 13982-63-3 C:88% T:NA EPA 9320 $0.675 \pm 0.434 \quad (0.800)$ Radium-228 09/28/16 12:22 15262-20-1 pCi/L C:72% T:70% Total Radium Total Radium 0.680 ± 0.552 (1.12) pCi/L 10/04/16 15:39 7440-14-4 Calculation Sample: GWC-6R Lab ID: 30195132003 Collected: 09/01/16 11:27 Received: 09/06/16 08:50 PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units CAS No. Qual Analyzed Radium-226 EPA 9315 0.146 ± 0.163 (0.331) pCi/L 09/28/16 11:35 13982-63-3 C:84% T:NA Radium-228 EPA 9320 1.27 ± 0.555 (0.909) pCi/L 09/23/16 22:34 15262-20-1 C:71% T:80% Total Radium Total Radium 1.42 ± 0.718 (1.24) pCi/L 10/04/16 15:39 7440-14-4 Calculation Sample: DUP-2 Lab ID: 30195132004 Collected: 09/01/16 00:01 Received: 09/06/16 08:50 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 9315 0.0964 ± 0.130 (0.269) Radium-226 pCi/L 09/28/16 11:35 13982-63-3 C:81% T:NA EPA 9320 Radium-228 $0.576 \pm 0.506 \quad (1.03)$ pCi/L 09/23/16 22:34 15262-20-1 C:71% T:76% Total Radium Total Radium 0.672 ± 0.636 (1.30) pCi/L 10/04/16 15:39 7440-14-4

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL - RADIOCHEMISTRY

Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195132

QC Batch: 232981 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30195131001, 30195132002, 30195132003, 30195132004

METHOD BLANK: 1141806 Matrix: Water

Associated Lab Samples: 30195131001, 30195132002, 30195132003, 30195132004

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0211 ± 0.0919 (0.290) C:86% T:NA
 pCi/L
 09/28/16 11:34

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

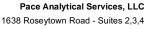
QUALITY CONTROL - RADIOCHEMISTRY

Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195132

QC Batch: 232987 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30195131001, 30195132002, 30195132003, 30195132004


METHOD BLANK: 1141823 Matrix: Water

Associated Lab Samples: 30195131001, 30195132002, 30195132003, 30195132004

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.450 ± 0.440 (0.907) C:80% T:77%
 pCi/L
 09/23/16 22:33

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195132

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 10/04/2016 04:59 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

CHAIN OF CUSTODY RECORD

Face Analytical"

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-iab.com

Ь

۲-

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen 2 - H₂SO₄, ≤6°C 4 - NaOH, ≤6°C REMARKS/ADDITIONAL INFORMATION P - PRODUCT 1 - HCI, ≤6°C PRESERVATION SL - SLUDGE 600 800 L. LIQUID SD- SOLID 3 3- HNO3 A - AIR FOR LAB USE ONLY *MATRIX CODES SW - SURFACE WATER ST - STORM WATER DRINKING WATER GW - GROUNDWATER WW - WASTEWATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE V - VOA VIAL S - STERILE O - OTHER Entered into LIMS: P - PLASTIC W - WATER Tracking #: LAB# WO#:30195132 **1 < 0 -** Ω $Z \supset Z \cap U \cap C$ CISS. OTHER DATE/TIME DATE/TIME Cooler CHENT ANALYSIS REQUESTED COURIER B of Coclera _O SW-846 9315/9320 Ω. Radium 226 & 228 SdSn EPA 300.0, TDS SM 2540C ۵. IC (CI, F, SO4) RELINQUISHED BY EPA 6020/7470 RELINQUISHED BY: ۵. VI & III & IV CONTAINER TYPE: PRESERVATION: # of 002-4-2m20 (f) 3 C 6.53 CC: MRPADILL@southernco.com SAMPLE IDENTIFICATION CHMCCORK@southernco.com Southern Company Services LLMILLET@southernco.com GWC-4R 9wc-64 DATE/TIME: 4/1/16 DATE/TIME: 12/14 2~570 FB-2 DATE/TIME: emperature; CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER: PO#: Gypsum Shower © K < W \times × \times 0020 JABRAHAM@southernco.com Joju Abraham REQUESTED COMPLETION DATE: 241 Ralph McGill Blvd. SE, B10185 (2 MATRIX CODE* 3 3 3 3 STANDARD PROJECT NAME/STATE SAMPLED BY AND TITLE 5000 Collection TIME 1:27 11:12 Vales Atlanta, GA 30308 RECEIVED BY CLIENT NAME REPORT TO: PROJECT#: <u>و</u> ا ا 2775 <u>ء</u> 5 Collection DATE

age 9 of 12

Sample Condition Upon Receipt Pittsburgh Client Name: <u>Pace GA</u> Project # 30 1 9 5 1 3 2 Pace Analytical Courier: Fed Ex \square UPS \square USPS \square Client \square Commercial \square Pace Other Tracking #: 6812 5098 8849Custody Seal on Cooler/Box Present: yes Seals intact: ☐ yes ☐ no Type of Ice: Wet Blue None Thermometer Used Final Temp: °C Correction Factor: Cooler Temperature Temp should be above freezing to 6°C Date and Initials of person examining contents: (19) (19) N/A No Comments: Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: Sampler Name & Signature on COC: Sample Labels match COC: Matrix: 1/ -Includes date/time/ID/Analysis Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used: 11. Containers Intact: 12. Filtered volume received for Dissolved tests All containers needing preservation have been checked. pHL2 All containers needing preservation are found to be in compliance with EPA recommendation. Date/time of completed preservation exceptions: VOA, coliform, TOC, O&G, Phenolics Lot # of added preservative 14. Headspace in VOA Vials (>6mm): 15. Trip Blank Present: Trip Blank Custody Seals Present Rad Aqueous Samples Screened > 0.5 mrem/hr Client Notification/ Resolution: Contacted By: Person Contacted: Comments/ Resolution: _

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Pace Analytical

Analyst Must Manually Enter All Fields Highlighted in Yellow

Sample Collection Date:

Sample MS I.D. Sample MSD I.D. Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L. g. F):

Sample Matrix Spike Control Assessment 3/26/2016 31362 DW WRR Worklist: Matrix: Test: Analyst: Date:

0.092 0.290 -0.45 N/A Pass MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Sample ID MB concentration: M/B Counting Uncertainty: MB Status vs. MDC. Method Blank Assessment

LCSD (Y or N)? LCS31362 Count Date: Laboratory Control Sample Assessment

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F):

Spike uncertainty (calculated):

MSD Target Conc. (pCi/L, g, F);

Sample Result

Sample Result Counting Uncertainty (pCI/L, g, F):

Sample Matrix Spike Result:

LCSD31362 9/28/2016 15-026 44.677 0.10 0.504 8.870 7.482 Target Conc. (pOi/L, g, F): Uncertainty (Calculated): Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Numerical Performance Indicator: Percent Recovery: Spike Concentration (pCi/mL): Aliquot Volume (L, g, F); Status vs Numerical Indicator: Spike I.D. Volume Used (mL)

Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MSD Numerical Performance Indicator:

MS Numerical Performance Indicator:

MS Percent Recovery:

MSD Percent Recovery:

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery:

MSD Status vs Recoven

Matrix Spike/Matrix Spike Duplicate Sample Assessment

Enter Duplicate Status vs Recovery

Duplicate Sample Assessment

Sample I.D. Sample MS I.D.

Sample MSD I.D. Sample Matrix Spike Result:

LCS/LCSD in the sample IDs if space below. other than Sample I.D.: 30195128008 Duplicate Sample I.D. 30195128008DUP See Below ## 1.384 54.21% 0.359 0.359 0.228 Sample Result (pCift., g, F):
Sample Result Counting Uncertainty (pCift., g, F):
Sample Duplicate Result (pCift., g, F):
Sample Duplicate Result Counting Uncertainty (pCift., g, F):
Are sample and/or duplicate results below MDC? Duplicate RPD: Duplicate Numerical Performance Indicator.

Sample Matrix Spike Duplicate Result Matrix Spike Duplicate Result Matrix Spike Duplicate Result Counting Uncertainty (pCif., g. F):

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

MS/ MSD Duplicate RPD:

Duplicate Numerical Performance Indicator.

MS/ MSD Duplicate Status vs Numerical Indicator:

MS/ MSD Duplicate Status vs RPD

Ϋ́ Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD

Evaluation of duplicate precision is not applicable if either the sample or duplicate

Reard below the MDC.

Comments:

***Batch must be re-prepped due to unacceptable precision,

1 of 1

Printed: 10/4/2016 4:08 PM

TAR DW QC

Analyst Must Manually Enter All Fields Highlighted in Yellow.

face Analytical"

Quality Control Sample Performance Assessment

9/15/2016 31367 DW Test: Analyst: Date: Worklist: Matrix:

_							
	1141823	0.450	0.432	0.907	2.04	N/A	Pass
Method Blank Assessment	CI Sample ID	MB concentration:	M/B Counting Uncertainty:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs. MDC:

-aboratory

MS Target Conc. (PCI., g. F):
MSD Aliquot (L. g. F):
MSD Target Conc. (PCI., g, F):
Spike uncertainty (calculated):

MS Aliquot (L, g, F):

Sample Result

Sample MSD 1.D. Spike 1.D.:

MS/MSD Decay Corrected Spike Concentration (pGi/mL);
Spike Volume Used in MS (mL);
Spike Volume Used in MSD (mL);

Sample I.D. Sample MS I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

z	LCSD31367	•	-		-									
LCSD (7 or N)?	LCS31367	9/23/2016	16-025	25.595	0.20	0.813	6.293	0.453	7.559	0.863	2.55	120.12%	ΝΆ	Pass
y Control Sample Assessment		Count Date:	Spike I.D.:	Spike Concentration (pCi/mL):	. Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCI/L, g, F):	LCS/LCSD Counting Uncertainty (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:

Duplicate Sample Assessment		,
Sample I.D.: 3019	30195128008	Enter Duplicate
Duplicate Sample I.D. 30195128008DUP	128008DUP	sample IDs if
Sample Result (pCi/L, g, F):	1.816	other than
	0.475	LCS/LCSD in
Sample Duplicate Result (pOi/L, g, F):	1,232	the space below.
	0.428	
Are sample and/or duplicate results below MDC? See	See Below 排	
Dupticate Numerical Performance Indicator:	1.791	30195128008
Duplicate RPD: 38	38.33% 月	30195128008DUP
Duplicate Status vs Numerical Indicator:	۲ V	
Duplicate Status vs RPD:	Fail**	

Sample I.D. Sample MS I.D.	Sample MSD I.D. Sample Matrix Spike Result.	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:

MSD Status vs Numerical Indicator:
MSD Status vs Numerical Indicator:
MS Status vs Recovery:
MSD Status vs Recovery:

Matrix Spike/Matrix Spike Duplicate Sample Assessment

Matrix Spike Duplicate Result Counting Uncertainty (p.CM., g. F):
MS Numerical Performance Indicator:
MSD Numerical Performance Indicator:
MSD Numerical Performance Indicator:
MSD Percent Recovery:
MSD Percent Recovery:

Sample Result Counting Uncertainly (p.Cl., g, F):
Sample Matrix Spike Result:
Matrix Spike Result Counting Uncertainly (pCifl, g, F):
Sample Matrix Spike Duplicate Result:

Evaluation of duplicate precision is not applicable if either the sample or duplicate

Comments:

***Batch must be re-prepped due to unacceptable precision.

Ra-228 NELAC DW2 Printed: 10/4/2016 4:12 PM

1 of 1

October 04, 2016

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195133

Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on September 06, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins

Sugarly Cellins

jacquelyn.collins@pacelabs.com

Project Manager

Enclosures

Pace Analytical Services, LLC

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Yates Gypsum Storage Phase 2 Project:

Pace Project No.: 30195133

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590

Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification

Hawaii Certification

Idaho Certification

Illinois Certification

Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification

Missouri Certification #: 235

Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14

Nevada Certification #: PA014572015-1

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification #: PA01457

New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8

Utah/TNI Certification #: PA014572015-5

USDA Soil Permit #: P330-14-00213

Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 460198

Washington Certification #: C868

West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Certification

Wyoming Certification #: 8TMS-L

Pace Analytical Services, LLC

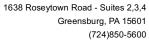
1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE SUMMARY

Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195133

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30195133001	GWC-5R	Water	09/01/16 12:59	09/06/16 08:50
30195133002	EQB-2	Water	09/01/16 14:15	09/06/16 08:50



SAMPLE ANALYTE COUNT

Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195133

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30195133001	GWC-5R	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30195133002	EQB-2	EPA 9315	WRR	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195133

Sample: GWC-5R	Lab ID: 30195	133001 Collected: 09/01/16 12:59	Received:	09/06/16 08:50	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.183 ± 0.150 (0.256) C:90% T:NA	pCi/L	09/28/16 11:35	13982-63-3	
Radium-228	EPA 9320	1.29 ± 0.594 (1.02) C:73% T:78%	pCi/L	09/23/16 22:08	3 15262-20-1	
Total Radium	Total Radium Calculation	1.47 ± 0.744 (1.28)	pCi/L	10/04/16 15:39	7440-14-4	
Sample: EQB-2	Lab ID: 30195	133002 Collected: 09/01/16 14:15	Received:	09/06/16 08:50	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	-0.0176 ± 0.143 (0.395) C:84% T:NA	pCi/L	09/28/16 11:36	13982-63-3	
Radium-228	EPA 9320	1.28 ± 0.546 (0.863) C:73% T:68%	pCi/L	09/28/16 12:22	2 15262-20-1	
Total Radium	Total Radium Calculation	1.28 ± 0.689 (1.26)	pCi/L	10/04/16 15:39	7440-14-4	

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL - RADIOCHEMISTRY

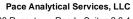
Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195133

QC Batch: 232981 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30195133001, 30195133002


METHOD BLANK: 1141806 Matrix: Water

Associated Lab Samples: 30195133001, 30195133002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0211 ± 0.0919 (0.290) C:86% T:NA
 pCi/L
 09/28/16 11:34

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

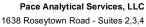
Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195133

QC Batch: 232987 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30195133001, 30195133002


METHOD BLANK: 1141823 Matrix: Water

Associated Lab Samples: 30195133001, 30195133002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.450 ± 0.440 (0.907) C:80% T:77%
 pCi/L
 09/23/16 22:33

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Yates Gypsum Storage Phase 2

Pace Project No.: 30195133

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 10/04/2016 05:00 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

CHAIN OF CUSTODY RECORD

Face Analytical "

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

Р

4--

PAGE:

3 - HNO3 4 - NaOH, ≤6°C 5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen 2 - H₂SO₄, ≤6°C REMARKS/ADDITIONAL INFORMATION 1 - HCI, ≤6°C P. PRODUCT SL - SLUDGE L - LIQUID SD - SOLID A - AIR *MATRIX CODES FOR LAB USE ONLY DRINKING WATER SW - SURFACE WATER GW - GROUNDWATER ST - STORM WATER WW - WASTEWATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE S - STERILE O - OTHER Entered into LIMS: Tracking #: V - VOA VIAL P - PLASTIC W - WATER WO#:30195133 LAB# 1 4 0 <u>م</u> – Z D Z D W R 6657 OTHER DATE/TIME: 30195133 DATE/TIME: Cooler CLIENT ANALYSIS REQUESTED COURIE of Coolers 6W-846 9315/9320 $^{\sim}$ Radium 226 & 228 EPA 300.0, TDS SM 2540C a. IC (CI' E' 204) EPA 6020/7470 REI INQUISHED BY: RELINQUISHED BY: Δ. LE SAIPPED Metals App. III & IV CONTAINER TYPE: PRESERVATION Sustody Seaf **₩** O O Z F A - Z E C O n I (0) とじじ CC: MRPADILL@southernco.com 6:53 SAMPLE IDENTIFICATION CHMCCORK@southernco.com LLMILLET@southernco.com Southern Company Services Gypton Storage phase 2 $\mathcal{C}_{\mathcal{A}}$ のあっち 1 DAJE/TIME: DESFITAMEN 日のあ DATE/TIME: CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER: PO # O K < W × X ş 0020 JABRAHAM@southernco.com Joju Abraham 2 REQUESTED COMPLETION DATE: 241 Ralph McGill Blvd. SE, B10185 MATRIX CODE* 3 Ĝ STANDARD PROJECT NAME/STATE SAMPLED BY AND TITLE Collection 12:59 4:15 TIME とる場合の である Atlanta, GA 30308 CLIENT NAME REPORT TO: PROJECT #: 21/1/6 311118 용 Collection DATE opecked: Page 9 of 12

Sample Condition Upon Rece	Sample Condition Upon Receipt Pittsburgh								
Pace Analytical Client Name:		F	20	e, GA	Pro	ject#	381	39	
Courier: # Fed Ex UPS USPS Clie Tracking #: 6812 5098 885	nt 🗆	Comm	nercial	☐ Pace Other	-			<i>,</i>	
Custody Seal on Cooler/Box Present:	ø	по	Sea	s intact: 🔲 yes	no 🗆 no				
Thermometer Used	Type	of Ice	: We	et Blue None					_
Cooler Temperature Observed Temp		°°C	Cor	rection Factor <u>:</u>	··· (Final	Temp:		°C
Temp should be above freezing to 6°C						Date and	nitials of pe	wson exam	inina .
	L. V	T NI=	T N1/A	٦		contents	(19)7	9-6	2-16
Comments:	Yes	No	N/A						
Chain of Custody Present:				1.					
Chain of Custody Filled Out:			 	2.					
Chain of Custody Relinquished:	\ <u>\</u>	<u> </u>		3.					
Sampler Name & Signature on COC:	X		ļ	4.					
Sample Labels match COC:	\mathbb{X}	l	<u> </u>	5.					
-Includes date/time/ID/Analysis Matrix: 1	1		-						
Samples Arrived within Hold Time:	X			6.					
Short Hold Time Analysis (<72hr remaining):		X		7.					
Rush Turn Around Time Requested:		X		8.					
Sufficient Volume:	X			9.					
Correct Containers Used:	X			10.					
-Pace Containers Used:		X							
Containers Intact:	X			11.					
Filtered volume received for Dissolved tests			X	12.					
All containers needing preservation have been checked.	X			13.	9				
All containers needing preservation are found to be in compliance with EPA recommendation.	X			PHE	/				
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when of a	1.29	/time of ervation			
				Lot # of added preservative					
Unadanas in VOA Viola (>6mm):			X	14.					
Headspace in VOA Vials (>6mm):		X		15.					
Trip Blank Present:			X	10.					
Trip Blank Custody Seals Present Rad Aqueous Samples Screened > 0.5 mrem/hr		X		Initial when (197)	R Date:	9-6	-/K		
Client Notification/ Resolution:					V				
Person Contacted:			Date/	Гіте:		_ Contact	ed B <u>y:</u>		
Comments/ Resolution:									

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Pace Analytical"

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment 3/26/2016 31362 DW WRR -0.021 0.092 0.290 -0,45 Analyst: Worklist: Matrix: Date: MB Sample ID MB concentration: Method Blank Assessment

MB MDC:

M/B Counting Uncertainty:

MB Numerical Performance Indicator;

Sample I.D. Sample MS I.D.

Sample MSD I.D. Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL) MS Aliquot (L. g, F);

Sample Collection Date:

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F):

Spike uncertainty (calculated):

MSD Target Conc. (pCi/L, g, F):

Sample Result

Sample Matrix Spike Result:

Matrix Spike Result Counting Uncertainty (pCift_, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): LCSD31362 9/28/2016 16-026 44.677 LCS31362 0.10 0.504 8.870 0.849 N/A Pass 7.482 Target Conc. (pCi/L, g, F): Uncertainty (Calculated): MB Status vs Numerical Indicator: Count Date: Spike Concentration (pCi/mL): Aliquot Volume (L, g, F): Numerical Performance Indicator: MB Status vs. MDC: Volume Used (mL) Spike 1.D. Laboratory Control Sample Assessment

84.36% Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Percent Recovery: Status vs Numerical Indicator Status vs Recovery

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery:

MSD Status vs Recoven

MS Numerical Performance Indicator: MSD Numerical Performance Indicator:

MS Percent Recovery:

MSD Percent Recovery

Sample MS I.D.

Sample MSD I.D.

Sample Matrix Spike Result:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

MS/ MSD Duplicate RPD:

Duplicate Numerical Performance Indicator:

MS/ MSD Duplicate Status vs Numerical Indicator:

MS/ MSD Duplicate Status vs RPD

Sample Matrix Spike Duplicate Result. Matrix Spike Duplicate Result. Matrix Spike Duplicate Result Counling Uncertainty (pCi/L, g, F): Matrix Spike/Matrix Spike Duplicate Sample Assessment LCS/LCSD in the Enter Duplicate sample IDs if space below. other than 30195128008DUP 30195128008 See Below 排 1.384 54.21% 0.625 0.301 0.359 0.228 N/A Fail* Sample I.D.: Duplicate Sample I.D. Sample Result (DCIIL, 9, F):
Sample Result Counting Uncertainty (DCIIL, 9, F):
Sample Duplicate Result (DCIIL, 9, F):
Sample Duplicate Result Counting Uncertainty (DCIIL, 9, F):
Are sample and/or duplicate results below MDC? Duplicate RPD: Duplicate Status vs Numerical Indicator; Duplicate Numerical Performance Indicator: Duplicate Status vs RPD Duplicate Sample Assessment

suffit and below the MDC. ## Evaluation of duplicate precision is not applicable if either the sample or duplicate

Comments:

***Batch must be re-prepped due to unacceptable precision.

TAR DW QC Printed: 10/4/2016 4:08 PM

10[1

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample I.D. Sample MS I.D.

Sample MSD I.D. Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):

Sample Collection Date:

Sample Matrix Spike Control Assessment

MS Target Conc.(pCi/L, g, F):

MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): Sample Result

Spike uncertainty (calculated):

Sample Result Counting Uncertainty (pC//L, g, F):

Sample Matrix Spike Result Sample Matrix Spike Duplicate Result:

9/15/2016 31367 DW ΣK Test: Date: Worklist: Matrix: Analyst:

Face Analytical

0.450 0.432 0.907 2.04 N/A Pass M/B Counting Uncertainty: MB MDC: MB concentration: MB Numerical Performance Indicator: MB Sample ID MB Status vs Numerical Indicator; MB Status vs. MDC: Method Blank Assessment

LCSD31367 SD (Y or N)7 1.CS31367 9/23/2016 16-025 25.595 0.20 0.813 6.293 0.453 7.559 0.863 Result (pCi/l., g, F): LCS/LCSD Counting Uncertainty (pCi/l., g, F): Count Date: Spike Concentration (pCI/mL): Percent Recovery: Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated): Numerical Performance Indicator: Status vs Numerical Indicator: Status vs Recovery: Spike I.D. Volume Used (mi. Laboratory Control Sample Assessment

Matrix Spike Duplicate Result Counting Uncertainty (pCifl., g. F):
MS Numerical Performance Indicator:
MSD Numerical Performance Indicator:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery

MSD Status vs Recovery

Matrix Spike/Matrix Spike Duplicate Sample Assessment

Duplicate Sample Assessment

MS Percent Recovery: MSD Percent Recovery:

> LCS/LCSD in the space below. Enter Duplicate sample IDs if other than Duplicate Sample I.D. 30195128008DUP
> Sample Result (pCil., g, F): 1.816
> Sample Result Counting Uncertainty (pCil., g, F): 0.475
> Sample Duplicate Result (pCil., g, F): 1.222
> Sample Duplicate Result (pCil., g, F): 0.428 30195128008 See Below ## 1.791 38.33% AN HEL Sample 1.D.: Are sample and/or duplicate results below MDC? Duplicate Numerical Performance Indicator: Duplicate RPD: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD:

Sample I.D. Sample MS I.D.

Sample Matrix Spike Result:

Sample MSD I.D.

Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): (Based on the Percent Recoveries) MS/ MSD Duplicate RPD;

MS/ MSD Duplicate Status vs Numerical Indicator.

MS/ MSD Duplicate Status vs RPD

Duplicate Numerical Performance Indicator

Evaluation of duplicate precision is not applicable if either the sample or duplicate

Comments:

***Batch must be re-prepped due to unacceptable precision.

Ra-228 NELAC DW2 Printed: 10/4/2016 4:12 PM

Date: 2016-08-31 10:48:44

Pump Information:

Pump Model/Type

Tubing Diameter

Pump placement from TOC

Tubing Length

Tubing Type

Project Information:

Well Information:

Operator Name R. Hilliard
Company Name AECOM
Project Name Plant Yates
Site Name GWA-2
Latitude 33° 27' 46.37"

Latitude 33° 27' 46.37"

Longitude -84° -53' -54.87"

Sonde SN 463068

Turbidity Make/Model LaMotte 2020we

Well ID GWA-2
Well diameter 2 in
Well Total Depth 52.16 ft
Screen Length 10 ft
Depth to Water 38.46 ft

Pumping Information:
Final Pumping Rate 100 mL/min
Total System Volume 0.422098 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 17.04 in
Total Volume Pumped 9.8 L

bladder

0.17 in

52 ft

5 ft

polyethylene

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.5	+/- 0.1	+/- 5%	+/- 5		+/- 0.2	+/- 20
Last 5	10:27:03	4200.42	20.88	6.31	168.52	0.16	39.83	0.22	29.48
Last 5	10:32:03	4500.42	20.88	6.32	168.38	0.07	39.84	0.44	29.62
Last 5	10:37:03	4800.38	20.85	6.31	168.27	0.05	39.85	0.24	30.26
Last 5	10:42:03	5100.36	20.87	6.32	168.14	0.09	39.87	0.22	29.64
Last 5	10:47:03	5400.36	20.94	6.32	168.15	0.05	39.88	0.22	29.87
Variance 0			-0.03	-0.01	-0.10			-0.20	0.65
Variance 1			0.02	0.01	-0.13			-0.02	-0.62
Variance 2			0.07	-0.00	0.01			-0.00	0.23

Notes

Clear, breezy, dry, 75F

Grab Samples GWA-2

Sample Time: 10:53

Date: 2016-08-31 11:38:44

Pump placement from TOC

31 ft

Project Information:		Pump Information:	
Operator Name	Charles Watson	Pump Model/Type	bladder
Company Name	AECOM	Tubing Type	poly
Project Name	Plant Yates	Tubing Diameter	0.17 in
Site Name	GWC-1R	Tubing Length	45 ft
Latitude	33º 28' 0.82"		
Longitude	-84º -53' -56.12"		
Sonde SN	449471		

Turbidity Make/Model LaMotte 2020we

Well Information:		Pumping Information:	
Well ID	GWC-1R	Final Pumping Rate	200 mL/min
Well diameter	2 in	Total System Volume	0.390854 L
Well Total Depth	36.34 ft	Calculated Sample Rate	300 sec
Screen Length	10 ft	Stabilization Drawdown	21.24 in
Depth to Water	25.78 ft	Total Volume Pumped	21.45 L

Low-Flow S	Sampling Stabiliz	zation Summary	/						
	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilizatio	n		+/- 0.5	+/- 0.1	+/- 5%	+/- 5		+/- 0.2	+/- 20
Last 5	11:14:42	5099.98	18.48	5.36	796.07	6.94	27.55	6.85	159.56
Last 5	11:19:42	5399.98	18.46	5.36	793.66	5.73	27.55	6.87	159.82
Last 5	11:24:42	5699.98	18.53	5.37	791.85	4.33	27.54	6.90	159.94
Last 5	11:29:42	5999.98	18.57	5.37	788.47	3.81	27.55	6.86	160.83
Last 5	11:34:42	6299.98	18.61	5.37	786.97	2.85	27.55	6.85	161.20
Variance 0			0.07	0.00	-1.82			0.03	0.12
Variance 1			0.05	0.00	-3.38			-0.04	0.90
Variance 2			0.04	-0.00	-1.51			-0.01	0.36

Notes

Sunny, 85F, light breeze. Constant construction traffic on south side of well. Static WL <1' above top of screen -- 3 well volume purge No rate changes. Sampling started at 11:38.

Grab Samples GWC-1R

Sample time 11:38

Date: 2016-08-31 14:16:44

Tubing Length

Project Information:

Operator Name R. Hilliard Company Name AECOM Project Name Plant Yates Site Name GWC-2R Latitude 33° 27' 46.37" Longitude -840 -53' -54.87"

Pump Information: Pump Model/Type **Tubing Type** Tubing Diameter

bladder polyethylene 0.17 in 45 ft

Sonde SN 463068

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

38 ft

Well Information:

Well ID GWC-2R Well diameter 2 in Well Total Depth 43.80 ft Screen Length 10 ft Depth to Water 29.65 ft

Pumping Information:

Final Pumping Rate 100 mL/min Total System Volume 0.390854 L Calculated Sample Rate 300 sec Stabilization Drawdown 0 in **Total Volume Pumped** 0 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.5	+/- 0.1	+/- 5%	+/- 5		+/- 0.2	+/- 20
Last 5	13:55:01	3300.22	20.53	5.56	309.55	5.39	29.84	4.77	62.52
Last 5	14:00:01	3600.22	20.41	5.56	314.80	5.25	29.84	4.78	62.26
Last 5	14:05:01	3900.15	20.52	5.55	320.07	4.25	29.84	4.78	61.64
Last 5	14:10:01	4200.16	20.76	5.54	326.15	3.34	29.84	4.82	61.73
Last 5	14:15:01	4500.16	20.93	5.54	327.09	3.47	29.84	4.76	62.09
Variance 0			0.11	-0.01	5.27			-0.01	-0.62
Variance 1			0.24	-0.00	6.08			0.05	0.09
Variance 2			0.17	-0.01	0.94			-0.06	0.36

Notes

Clear, breezy, 85F

Active excavation and grading in gypsum storage area.

Grab Samples GWC-2R

Sample Time: 14:20

Date: 2016-08-31 16:03:24

Project Information:		Pump Information:	
Operator Name	Charles Watson	Pump Model/Type	bladder
Company Name	AECOM	Tubing Type	poly
Project Name	Plant Yates	Tubing Diameter	0.17 in
Site Name	GWC-3R	Tubing Length	45 ft
Latitude	33º 27' 58.58"		
Longitude	-84° -54' -1.28"		
Sonde SN	449471		
Turbidity Make/Model	LaMotte 2020we	Pump placement from TOC	34 ft
Well Information:		Pumping Information:	
Well ID	GWC-3R	Final Pumping Rate	250 mL/min
Well diameter	2 in	Total System Volume	0.390854 L
Well Total Depth	38.34 ft	Calculated Sample Rate	300 sec
Screen Length	10 ft	Stabilization Drawdown	5.16 in
Depth to Water	30.33 ft	Total Volume Pumped	34.15 L

Low-Flow S	ampling Stabiliz	ation Summary	1						
	Time	Elapsed	Temp C	рН	SpCond µS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0.5	+/- 0.1	+/- 5%	+/- 5		+/- 0.2	+/- 20
Last 5	15:38:23	6899.90	20.81	5.58	230.88	6.07	30.76	8.44	190.73
Last 5	15:43:23	7199.89	20.64	5.59	229.36	6.40	30.76	8.42	191.70
Last 5	15:48:23	7499.89	20.53	5.61	233.25	4.69	30.76	8.52	190.42
Last 5	15:53:23	7799.89	20.35	5.61	232.99	4.59	30.76	8.51	188.48
Last 5	15:58:23	8099.89	20.50	5.60	231.04	4.33	30.76	8.44	184.84
Variance 0			-0.11	0.02	3.89			0.10	-1.28
Variance 1			-0.18	-0.00	-0.26			-0.01	-1.94
Variance 2			0.15	-0.01	-1.96			-0.07	-3.64

Notes

Sunny 92F. Construction traffic constant on road directly next to GWC-3R.

No rate changes. Sample time 16:01. Volume purge--water level less than 1' above top of screen.

Grab Samples GWC-3R

Sample time 16:01

Date: 2016-09-01 08:46:09

Project Information:

Operator Name R. Hilliard
Company Name AECOM
Project Name Plant Yates
Site Name GWC-4R
Latitude 33° 27' 45.72"

Latitude 35° 27' 45.72 Longitude -84° -53' -55.94"

Sonde SN 463068

Turbidity Make/Model LaMotte 2020we

Well Information:

Well ID GWC-4R
Well diameter 2 in
Well Total Depth 31.05 ft
Screen Length 10 ft
Depth to Water 18.11 ft

Pump Information:

Pump Model/Type peristaltic
Tubing Type polyethylene
Tubing Diameter 0.17 in
Tubing Length 35 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 140 mL/min
Total System Volume 0.2462198 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 3 in
Total Volume Pumped 4.8 L

25 ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS/	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0.5	+/- 0.1	+/- 5%	+/- 5		+/- 0.2	+/- 20
Last 5	08:22:03	900.45	20.57	5.60	1101.38	0.81	18.37	0.32	45.62
Last 5	08:27:03	1200.45	20.62	5.62	1037.57	0.88	18.36	0.39	41.51
Last 5	08:32:03	1500.45	20.61	5.63	1002.34	0.69	18.36	0.44	41.36
Last 5	08:37:03	1800.39	20.84	5.64	1001.05	1.44	18.35	0.50	40.28
Last 5	08:42:03	2100.38	20.93	5.64	1002.01	1.08	18.36	0.53	39.13
Variance 0			-0.00	0.01	-35.23			0.05	-0.15
Variance 1			0.22	0.01	-1.29			0.06	-1.08
Variance 2			0.09	0.00	0.96			0.03	-1.14

Notes

Clear, 75F, light breeze

Well located on shoulder of access road used by dump trucks. 08:13 - increased flow rate from 0.11 LPM to 0.14 LPM.

Grab Samples GWC-4R

Sample Time: 08:49

DUP-2

QC: field duplicate

Date: 2016-09-01 13:03:34

Project Information:		Pump Information:	
Operator Name	Charles Watson	Pump Model/Type	bladder
Company Name	AECOM	Tubing Type	poly
Project Name	Plant Yates	Tubing Diameter	0.17 in
Site Name	GWC-5R	Tubing Length	50 ft
Latitude	33° 27' 56.55"		
Longitude	-84° -53' -59.07"		
Sonde SN	449471		
Turbidity Make/Model	LaMotte 2020we	Pump placement from TOC	37.5 ft

Well Information:		Pumping Information:	
Well ID	GWC-5R	Final Pumping Rate	150 mL/min
Well diameter	2 in	Total System Volume	0.4131711 L
Well Total Depth	42.8 ft	Calculated Sample Rate	300 sec
Screen Length	10 ft	Stabilization Drawdown	15.48 in
Depth to Water	32.65 ft	Total Volume Pumped	33.45 L

Low-Flow Sa	mpling Stabiliz	ation Summary							
	Time	Elapsed	Temp C	рН	SpCond μS/	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.5	+/- 0.1	+/- 5%	+/- 5		+/- 0.2	+/- 20
Last 5	12:35:45	12601.92	21.11	5.18	1619.54	3.03	33.94	5.70	179.91
Last 5	12:40:45	12901.92	21.24	5.18	1620.20	3.68	33.94	5.70	179.01
Last 5	12:45:45	13201.92	21.11	5.18	1618.28	3.14	33.94	5.75	178.15
Last 5	12:50:45	13501.92	21.33	5.18	1617.74	3.04	33.94	5.65	178.34
Last 5	12:55:45	13801.92	20.84	5.18	1610.59	2.65	33.94	5.71	177.74
Variance 0			-0.14	0.00	-1.92			0.05	-0.86
Variance 1			0.22	0.00	-0.54			-0.10	0.19
Variance 2			-0.49	0.00	-7.14			0.05	-0.60

Notes

Sunny, clear, 72F. Constant construction traffic on road.
Rate change at 9:35 0.1 to 0.15L/min. Wind blowing at 5-10mph kicking up dust. Sampling started at 12:59. EQB-2 collected of bladder. Lab QC collected for radiological.

Date: 2016-09-01 11:23:38

Project Information:

Operator Name R. Hilliard
Company Name AECOM
Project Name Plant Yates
Site Name GWC-6R
Latitude 33° 27' 45.72"

Latitude 33° 27' 45.72" Longitude -84° -53' -55.94"

Sonde SN 463068

Turbidity Make/Model LaMotte 2020we

Well Information:

Well ID GWC-6R
Well diameter 2 in
Well Total Depth 51.91 ft
Screen Length 10 ft
Depth to Water 37.53 ft

Pump Information:

Pump Model/Type bladder
Tubing Type polyethylene
Tubing Diameter 0.17 in
Tubing Length 55 ft

46 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 140 mL/min
Total System Volume 0.4354883 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 4.44 in
Total Volume Pumped 4.9 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.5	+/- 0.1	+/- 5%	+/- 5		+/- 0.2	+/- 20
Last 5	11:00:01	900.62	19.77	6.04	750.44	0.12	37.89	6.25	76.11
Last 5	11:05:01	1200.62	19.72	6.02	757.83	0.11	37.89	6.19	75.92
Last 5	11:10:01	1500.62	19.68	6.00	761.45	0.02	37.90	6.12	76.59
Last 5	11:15:01	1800.58	19.86	6.00	758.41	0.06	37.90	6.02	75.77
Last 5	11:20:01	2100.58	19.63	5.99	751.83	0.13	37.90	5.94	78.08
Variance 0			-0.04	-0.01	3.61			-0.07	0.67
Variance 1			0.18	-0.01	-3.03			-0.10	-0.82
Variance 2			-0.22	-0.00	-6.58			-0.08	2.31

Notes

Clear, breezy, 85F. Well is located approximately 100 feet from active excavation and grading, and down wind.

Grab Samples

FB-2 Sample Time: 11:17

GWC-6R

Sample Time: 11:27

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AZK0850

December 08, 2016

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, LLC.

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 08, 2016

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GWA-2	AZK0850-01	Ground Water	11/28/16 12:35	11/29/16 16:45
GWC-2R	AZK0850-02	Ground Water	11/28/16 15:40	11/29/16 16:45
FB-1-11-29-16	AZK0850-03	Water	11/29/16 10:35	11/29/16 16:45
GWC-1R	AZK0850-04	Ground Water	11/29/16 12:25	11/29/16 16:45
GWC-6R	AZK0850-05	Ground Water	11/29/16 13:50	11/29/16 16:45
EB-1-11-29-16	AZK0850-06	Water	11/29/16 14:30	11/29/16 16:45

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Lab Number ID: AZK0850-01

Date/Time Received: 11/29/2016 4:45:00PM

December 08, 2016

Report No.: AZK0850 Client ID: GWA-2

Date/Time Sampled: 11/28/2016 12:35:00PM

Matrix: Ground Water

General Chemistry Total Dissolved Solids 102 25 10 mg/L SM 2540 C Inorganic Anions Chloride 4.2 0.25 0.01 mg/L EPA 300.0 Fluoride 0.12 0.30 0.02 mg/L EPA 300.0 Culfatte 0.00 4.0 0.05 mg/L EPA 300.0	J	1 1 1 1	11/30/16 11:01 11/30/16 08:54 11/30/16 08:54 11/30/16 08:54	11/30/16 11:01 11/30/16 11:01 11/30/16 11:01 11/30/16 11:01	6110705 6110695 6110695	RLC
Inorganic Anions Chloride 4.2 0.25 0.01 mg/L EPA 300.0 Fluoride 0.12 0.30 0.02 mg/L EPA 300.0	J	1	11/30/16 08:54 11/30/16 08:54	11/30/16 11:01 11/30/16 11:01	6110695 6110695	RLC
Chloride 4.2 0.25 0.01 mg/L EPA 300.0 Fluoride 0.12 0.30 0.02 mg/L EPA 300.0	J	1	11/30/16 08:54	11/30/16 11:01	6110695	
Fluoride 0.12 0.30 0.02 mg/L EPA 300.0	J	1	11/30/16 08:54	11/30/16 11:01	6110695	
	J					RLC
Culfete 00 4.0 0.05 mm/l EDA 200.0		1	11/30/16 08:54	11/30/16 11:01	0440005	
Sulfate 36 1.0 0.05 mg/L EPA 300.0					6110695	RLC
Metals, Total						
Antimony 0.0014 0.0030 0.0008 mg/L EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Arsenic ND 0.0050 0.0016 mg/L EPA 6020B		1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Barium 0.0529 0.0100 0.0004 mg/L EPA 6020B		1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Beryllium ND 0.0030 0.00008 mg/L EPA 6020B		1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Boron 0.0095 0.0400 0.0064 mg/L EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Cadmium ND 0.0010 0.00007 mg/L EPA 6020B		1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Calcium 9.47 2.50 0.155 mg/L EPA 6020B	B-01	5	12/02/16 08:55	12/06/16 11:44	6120022	CSW
Chromium ND 0.0100 0.0009 mg/L EPA 6020B		1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Cobalt 0.0036 0.0100 0.0005 mg/L EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Lead ND 0.0050 0.0001 mg/L EPA 6020B		1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Molybdenum ND 0.0100 0.0017 mg/L EPA 6020B		1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Selenium ND 0.0100 0.0010 mg/L EPA 6020B		1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Thallium ND 0.0010 0.0002 mg/L EPA 6020B		1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Lithium ND 0.0500 0.0021 mg/L EPA 6020B		1	12/02/16 08:55	12/05/16 14:27	6120022	CSW
Mercury ND 0.00050 0.000041 mg/L EPA 7470A		1	12/02/16 09:20	12/02/16 12:51	6120036	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Lab Number ID: AZK0850-02

Date/Time Received: 11/29/2016 4:45:00PM

December 08, 2016

Report No.: AZK0850
Client ID: GWC-2R

Date/Time Sampled: 11/28/2016 3:40:00PM

Matrix: Ground Water

Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
177	25	10	mg/L	SM 2540 C		1	11/30/16 11:01	11/30/16 11:01	6110705	JPT
6.7	0.25	0.01	mg/L	EPA 300.0		1	11/30/16 08:54	11/30/16 11:22	6110695	RLC
0.03	0.30	0.02	mg/L	EPA 300.0	J	1	11/30/16 08:54	11/30/16 11:22	6110695	RLC
120	10	0.51	mg/L	EPA 300.0		10	11/30/16 08:54	11/30/16 18:15	6110695	RLC
ND	0.0030	0.0008	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
ND	0.0050	0.0016	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
0.0562	0.0100	0.0004	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
ND	0.0030	0.00008	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
0.0206	0.0400	0.0064	mg/L	EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
0.0001	0.0010	0.00007	mg/L	EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
17.7	5.00	0.311	mg/L	EPA 6020B	B-01	10	12/02/16 08:55	12/06/16 11:49	6120022	CSW
ND	0.0100	0.0009	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
0.0189	0.0100	0.0005	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
ND	0.0050	0.0001	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
ND	0.0100	0.0017	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
0.0019	0.0100	0.0010	mg/L	EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
ND	0.0010	0.0002	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
ND	0.0500	0.0021	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:33	6120022	CSW
ND	0.00050	0.000041	mg/L	EPA 7470A		1	12/02/16 09:20	12/02/16 12:53	6120036	MTC
	177 6.7 0.03 120 ND ND 0.0562 ND 0.0206 0.0001 17.7 ND 0.0189 ND ND ND ND ND ND ND ND ND N	177 25 6.7 0.25 0.03 0.30 120 10 ND 0.0030 ND 0.0050 0.0562 0.0100 ND 0.0030 0.0206 0.0400 0.0001 0.0010 17.7 5.00 ND 0.0100 ND 0.0100 ND 0.0050 ND 0.0100 ND 0.0500	177 25 10 6.7 0.25 0.01 0.03 0.30 0.02 120 10 0.51 ND 0.0030 0.0008 ND 0.0050 0.0016 0.0562 0.0100 0.0004 ND 0.0030 0.00008 0.0206 0.0400 0.0004 0.0001 0.0010 0.00007 17.7 5.00 0.311 ND 0.0100 0.0009 0.0189 0.0100 0.0005 ND 0.0050 0.0001 ND 0.0100 0.0017 0.0019 0.0100 0.0010 ND 0.0100 0.0002 ND 0.0500 0.0021	177 25 10 mg/L 6.7 0.25 0.01 mg/L 0.03 0.30 0.02 mg/L 120 10 0.51 mg/L ND 0.0030 0.0008 mg/L ND 0.0050 0.0016 mg/L ND 0.0030 0.0004 mg/L ND 0.0030 0.00008 mg/L ND 0.0030 0.00008 mg/L ND 0.0030 0.00008 mg/L ND 0.0030 0.00008 mg/L ND 0.0010 0.00007 mg/L 17.7 5.00 0.311 mg/L ND 0.0100 0.0009 mg/L ND 0.0100 0.0005 mg/L ND 0.0100 0.0005 mg/L ND 0.0100 0.0001 mg/L ND 0.0100 0.0017 mg/L ND 0.0100 0.0017 mg/L ND 0.0100 0.0010 mg/L ND 0.0100 0.0010 mg/L ND 0.0010 0.0002 mg/L ND 0.0010 0.0002 mg/L ND 0.00500 0.0001 mg/L	177 25 10 mg/L SM 2540 C 6.7 0.25 0.01 mg/L EPA 300.0 0.03 0.30 0.02 mg/L EPA 300.0 120 10 0.51 mg/L EPA 300.0 ND 0.0030 0.0008 mg/L EPA 6020B ND 0.0050 0.0016 mg/L EPA 6020B ND 0.0030 0.0008 mg/L EPA 6020B ND 0.0030 0.0008 mg/L EPA 6020B ND 0.0030 0.00008 mg/L EPA 6020B 0.0206 0.0400 0.0004 mg/L EPA 6020B 0.0001 0.0010 0.00007 mg/L EPA 6020B 17.7 5.00 0.311 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0005 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0010 0.0002 mg/L EPA 6020B ND 0.0500 0.0001 mg/L EPA 6020B	177 25 10 mg/L SM 2540 C 6.7 0.25 0.01 mg/L EPA 300.0 0.03 0.30 0.02 mg/L EPA 300.0 120 10 0.51 mg/L EPA 300.0 ND 0.0030 0.0008 mg/L EPA 6020B ND 0.0050 0.0016 mg/L EPA 6020B ND 0.0030 0.00008 mg/L EPA 6020B 10.0206 0.0400 0.0064 mg/L EPA 6020B 17.7 5.00 0.311 mg/L EPA 6020B 17.7 5.00 0.311 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B 0.0189 0.0100 0.0005 mg/L EPA 6020B ND 0.0050 0.0001 mg/L EPA 6020B ND 0.0050 0.0001 mg/L EPA 6020B ND 0.0100 0.0017 mg/L EPA 6020B ND 0.0100 0.0017 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B ND 0.0100 0.0011 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0010 0.0001 mg/L EPA 6020B ND 0.0500 0.0001 mg/L EPA 6020B	177	Result RL MDL Units Method Qual. DF Date 177 25 10 mg/L SM 2540 C 1 11/30/16 11:01 6.7 0.25 0.01 mg/L EPA 300.0 1 11/30/16 08:54 0.03 0.30 0.02 mg/L EPA 300.0 J 1 11/30/16 08:54 ND 0.0030 0.51 mg/L EPA 6020B 1 12/02/16 08:55 ND 0.0050 0.0016 mg/L EPA 6020B 1 12/02/16 08:55 ND 0.0030 0.0004 mg/L EPA 6020B 1 12/02/16 08:55 ND 0.0562 0.0100 0.0004 mg/L EPA 6020B 1 12/02/16 08:55 ND 0.0030 0.0008 mg/L EPA 6020B 1 12/02/16 08:55 0.0206 0.0400 0.0064 mg/L EPA 6020B J 1 12/02/16 08:55 0.0010 0.0010 0.00007 mg/L <	Result RL MDL Units Method Qual. DF Date Date	Result RL MDL Units Method Qual. DF Date Date Date Batch

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Report No.: AZK0850

Client ID: FB-1-11-29-16

Lab Number ID: AZK0850-03

Client ID: FB-1-11-29-16

Date/Time Received: 11/29/2016 4:45:00PM

December 08, 2016

Date/Time Sampled: 11/29/2016 10:35:00AM

Matrix: Water

Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
ND	25	10	mg/L	SM 2540 C		1	11/30/16 11:01	11/30/16 11:01	6110705	JPT
0.07	0.25	0.01	mg/L	EPA 300.0	J	1	11/30/16 08:54	11/30/16 12:23	6110695	RLC
0.02	0.30	0.02	mg/L	EPA 300.0	J	1	11/30/16 08:54	11/30/16 12:23	6110695	RLC
0.06	1.0	0.05	mg/L	EPA 300.0	J	1	11/30/16 08:54	11/30/16 12:23	6110695	RLC
ND	0.0030	0.0008	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0050	0.0016	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0100	0.0004	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
0.0006	0.0030	0.00008	mg/L	EPA 6020B	B-01, J	1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0400	0.0064	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0010	0.00007	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.500	0.0311	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0100	0.0009	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0100	0.0005	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0050	0.0001	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0100	0.0017	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0100	0.0010	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0010	0.0002	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.0500	0.0021	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:39	6120022	CSW
ND	0.00050	0.000041	mg/L	EPA 7470A		1	12/02/16 09:20	12/02/16 13:00	6120036	MTC
	ND 0.07 0.02 0.06 ND ND ND ND ND ND ND ND ND N	ND 25 0.07 0.25 0.02 0.30 0.06 1.0 ND 0.0030 ND 0.0050 ND 0.0100 ND 0.0010 ND 0.0100 ND 0.00500	ND 25 10 0.07 0.25 0.01 0.02 0.30 0.02 0.06 1.0 0.055 ND 0.0030 0.0008 ND 0.0050 0.0016 ND 0.0100 0.0004 0.0006 0.0030 0.00008 ND 0.0400 0.0004 ND 0.0400 0.0007 ND 0.500 0.0311 ND 0.0100 0.0009 ND 0.0100 0.0005 ND 0.0100 0.0005 ND 0.0100 0.0001 ND 0.0100 0.0017 ND 0.0100 0.0017 ND 0.0100 0.0010 ND 0.0100 0.0002 ND 0.0500 0.0021	ND 25 10 mg/L 0.07 0.25 0.01 mg/L 0.02 0.30 0.02 mg/L 0.06 1.0 0.05 mg/L ND 0.0050 0.0016 mg/L ND 0.0100 0.0004 mg/L ND 0.0400 0.0004 mg/L ND 0.0400 0.0004 mg/L ND 0.0010 0.00007 mg/L ND 0.500 0.0311 mg/L ND 0.0100 0.0009 mg/L ND 0.0100 0.0005 mg/L ND 0.0100 0.0005 mg/L ND 0.0100 0.0005 mg/L ND 0.0100 0.0005 mg/L ND 0.0100 0.0001 mg/L ND 0.0100 0.0001 mg/L ND 0.0100 0.0010 mg/L ND 0.0100 0.0017 mg/L ND 0.0100 0.0010 mg/L ND 0.0100 0.0002 mg/L ND 0.0010 0.0002 mg/L ND 0.00500 0.0001 mg/L	ND 25 10 mg/L SM 2540 C 0.07 0.25 0.01 mg/L EPA 300.0 0.02 0.30 0.02 mg/L EPA 300.0 0.06 1.0 0.05 mg/L EPA 6020B ND 0.0050 0.0016 mg/L EPA 6020B ND 0.0100 0.0004 mg/L EPA 6020B ND 0.0400 0.0004 mg/L EPA 6020B ND 0.0400 0.0064 mg/L EPA 6020B ND 0.0010 0.00007 mg/L EPA 6020B ND 0.500 0.0311 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0005 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B <t< td=""><td>ND 25 10 mg/L SM 2540 C 0.07 0.25 0.01 mg/L EPA 300.0 J 0.02 0.30 0.02 mg/L EPA 300.0 J 0.06 1.0 0.05 mg/L EPA 300.0 J ND 0.0050 0.0016 mg/L EPA 6020B ND 0.0100 0.0004 mg/L EPA 6020B ND 0.0400 0.0064 mg/L EPA 6020B ND 0.0010 0.0007 mg/L EPA 6020B ND 0.0010 0.0007 mg/L EPA 6020B ND 0.500 0.0311 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0005 mg/L EPA 6020B ND 0.0100 0.0005 mg/L EPA 6020B ND 0.0100 0.0005 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0100 0.0002 mg/L EPA 6020B ND 0.0010 0.0002 mg/L EPA 6020B</td><td>ND 25 10 mg/L SM 2540 C 1 0.07 0.25 0.01 mg/L EPA 300.0 J 1 0.02 0.30 0.02 mg/L EPA 300.0 J 1 0.06 1.0 0.05 mg/L EPA 300.0 J 1 ND 0.0050 0.0016 mg/L EPA 6020B 1 ND 0.00100 0.0004 mg/L EPA 6020B 1 ND 0.00400 0.0004 mg/L EPA 6020B 1 ND 0.0010 0.0004 mg/L EPA 6020B 1 ND 0.0010 0.0004 mg/L EPA 6020B 1 ND 0.0010 0.00007 mg/L EPA 6020B 1 ND 0.0010 0.00007 mg/L EPA 6020B 1 ND 0.0100 0.0009 mg/L EPA 6020B 1 ND 0.0100 0.0005 mg/L EPA 6020B 1 ND 0.0100 0.0005 mg/L EPA 6020B 1 ND 0.0100 0.0005 mg/L EPA 6020B 1 ND 0.0100 0.0001 mg/L EPA 6020B 1 ND 0.0100 0.0017 mg/L EPA 6020B 1 ND 0.0100 0.0010 mg/L EPA 6020B 1 ND 0.0100 0.0010 mg/L EPA 6020B 1 ND 0.0100 0.0010 mg/L EPA 6020B 1 ND 0.0100 0.0001 mg/L EPA 6020B 1</td><td>Result RL MDL Units Method Qual. DF Date ND 25 10 mg/L SM 2540 C 1 11/30/16 11:01 0.07 0.25 0.01 mg/L EPA 300.0 J 1 11/30/16 08:54 0.02 0.30 0.02 mg/L EPA 300.0 J 1 11/30/16 08:54 ND 0.06 1.0 0.05 mg/L EPA 300.0 J 1 11/30/16 08:54 ND 0.06 1.0 0.05 mg/L EPA 6020B J 1 12/02/16 08:55 ND 0.0050 0.0016 mg/L EPA 6020B J 1 12/02/16 08:55 ND 0.0100 0.0004 mg/L EPA 6020B J 1 12/02/16 08:55 ND 0.0040 0.0064 mg/L EPA 6020B J 1 12/02/16 08:55 ND 0.0400 0.0064 mg/L EPA 6020B J 1 12/02/16 08:55</td><td> ND</td><td>Result RL MDL Units Method Qual. DF Date Date Batch ND 25 10 mg/L SM 2540 C 1 11/30/16 11:01 11/30/16 11:01 6110705 0.07 0.25 0.01 mg/L EPA 300.0 J 1 11/30/16 08:54 11/30/16 12:23 6110695 0.02 0.30 0.02 mg/L EPA 300.0 J 1 11/30/16 08:54 11/30/16 12:23 6110695 ND 0.06 1.0 0.05 mg/L EPA 300.0 J 1 11/30/16 08:54 11/30/16 12:23 6110695 ND 0.06 1.0 0.05 mg/L EPA 6020B 1 12/02/16 08:55 12/05/16 14:39 6120022 ND 0.0050 0.0016 mg/L EPA 6020B 1 12/02/16 08:55 12/05/16 14:39 6120022 ND 0.0100 0.0004 mg/L EPA 6020B 1 12/02/16 08:55 12/05/16 14:39 6120022</td></t<>	ND 25 10 mg/L SM 2540 C 0.07 0.25 0.01 mg/L EPA 300.0 J 0.02 0.30 0.02 mg/L EPA 300.0 J 0.06 1.0 0.05 mg/L EPA 300.0 J ND 0.0050 0.0016 mg/L EPA 6020B ND 0.0100 0.0004 mg/L EPA 6020B ND 0.0400 0.0064 mg/L EPA 6020B ND 0.0010 0.0007 mg/L EPA 6020B ND 0.0010 0.0007 mg/L EPA 6020B ND 0.500 0.0311 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0009 mg/L EPA 6020B ND 0.0100 0.0005 mg/L EPA 6020B ND 0.0100 0.0005 mg/L EPA 6020B ND 0.0100 0.0005 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B ND 0.0100 0.0010 mg/L EPA 6020B ND 0.0100 0.0001 mg/L EPA 6020B ND 0.0100 0.0002 mg/L EPA 6020B ND 0.0010 0.0002 mg/L EPA 6020B	ND 25 10 mg/L SM 2540 C 1 0.07 0.25 0.01 mg/L EPA 300.0 J 1 0.02 0.30 0.02 mg/L EPA 300.0 J 1 0.06 1.0 0.05 mg/L EPA 300.0 J 1 ND 0.0050 0.0016 mg/L EPA 6020B 1 ND 0.00100 0.0004 mg/L EPA 6020B 1 ND 0.00400 0.0004 mg/L EPA 6020B 1 ND 0.0010 0.0004 mg/L EPA 6020B 1 ND 0.0010 0.0004 mg/L EPA 6020B 1 ND 0.0010 0.00007 mg/L EPA 6020B 1 ND 0.0010 0.00007 mg/L EPA 6020B 1 ND 0.0100 0.0009 mg/L EPA 6020B 1 ND 0.0100 0.0005 mg/L EPA 6020B 1 ND 0.0100 0.0005 mg/L EPA 6020B 1 ND 0.0100 0.0005 mg/L EPA 6020B 1 ND 0.0100 0.0001 mg/L EPA 6020B 1 ND 0.0100 0.0017 mg/L EPA 6020B 1 ND 0.0100 0.0010 mg/L EPA 6020B 1 ND 0.0100 0.0010 mg/L EPA 6020B 1 ND 0.0100 0.0010 mg/L EPA 6020B 1 ND 0.0100 0.0001 mg/L EPA 6020B 1	Result RL MDL Units Method Qual. DF Date ND 25 10 mg/L SM 2540 C 1 11/30/16 11:01 0.07 0.25 0.01 mg/L EPA 300.0 J 1 11/30/16 08:54 0.02 0.30 0.02 mg/L EPA 300.0 J 1 11/30/16 08:54 ND 0.06 1.0 0.05 mg/L EPA 300.0 J 1 11/30/16 08:54 ND 0.06 1.0 0.05 mg/L EPA 6020B J 1 12/02/16 08:55 ND 0.0050 0.0016 mg/L EPA 6020B J 1 12/02/16 08:55 ND 0.0100 0.0004 mg/L EPA 6020B J 1 12/02/16 08:55 ND 0.0040 0.0064 mg/L EPA 6020B J 1 12/02/16 08:55 ND 0.0400 0.0064 mg/L EPA 6020B J 1 12/02/16 08:55	ND	Result RL MDL Units Method Qual. DF Date Date Batch ND 25 10 mg/L SM 2540 C 1 11/30/16 11:01 11/30/16 11:01 6110705 0.07 0.25 0.01 mg/L EPA 300.0 J 1 11/30/16 08:54 11/30/16 12:23 6110695 0.02 0.30 0.02 mg/L EPA 300.0 J 1 11/30/16 08:54 11/30/16 12:23 6110695 ND 0.06 1.0 0.05 mg/L EPA 300.0 J 1 11/30/16 08:54 11/30/16 12:23 6110695 ND 0.06 1.0 0.05 mg/L EPA 6020B 1 12/02/16 08:55 12/05/16 14:39 6120022 ND 0.0050 0.0016 mg/L EPA 6020B 1 12/02/16 08:55 12/05/16 14:39 6120022 ND 0.0100 0.0004 mg/L EPA 6020B 1 12/02/16 08:55 12/05/16 14:39 6120022

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0850

Client ID: GWC-1R

Date/Time Sampled: 11/29/2016 12:25:00PM

Matrix: Ground Water

December 08, 2016

Project: CCR Event

Lab Number ID: AZK0850-04

Date/Time Received: 11/29/2016 4:45:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	594	25	10	mg/L	SM 2540 C		1	11/30/16 11:01	11/30/16 11:01	6110705	JPT
Inorganic Anions											
Chloride	5.8	0.25	0.01	mg/L	EPA 300.0		1	11/30/16 08:54	11/30/16 12:44	6110695	RLC
Fluoride	0.04	0.30	0.02	mg/L	EPA 300.0	J	1	11/30/16 08:54	11/30/16 12:44	6110695	RLC
Sulfate	450	10	0.51	mg/L	EPA 300.0		10	11/30/16 08:54	11/30/16 18:35	6110695	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Barium	0.0754	0.0100	0.0004	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Boron	0.0149	0.0400	0.0064	mg/L	EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Cadmium	0.00008	0.0010	0.00007	mg/L	EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Calcium	70.6	25.0	1.55	mg/L	EPA 6020B	B-01	50	12/02/16 08:55	12/06/16 11:55	6120022	CSW
Chromium	0.0009	0.0100	0.0009	mg/L	EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Selenium	0.0033	0.0100	0.0010	mg/L	EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:44	6120022	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	12/02/16 09:20	12/02/16 13:03	6120036	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Report No.: AZK0850
Client ID: GWC-6R

Lab Number ID: AZK0850-05

Date/Time Sampled: 11/29/2016 1:50:00PM

Date/Time Received: 11/29/2016 4:45:00PM

December 08, 2016

Matrix: Ground Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	455	25	10	mg/L	SM 2540 C		1	11/30/16 11:01	11/30/16 11:01	6110705	JPT
Inorganic Anions											
Chloride	4.8	0.25	0.01	mg/L	EPA 300.0		1	11/30/16 08:54	11/30/16 13:05	6110695	RLC
Fluoride	0.05	0.30	0.02	mg/L	EPA 300.0	J	1	11/30/16 08:54	11/30/16 13:05	6110695	RLC
Sulfate	320	20	1.0	mg/L	EPA 300.0		20	11/30/16 08:54	12/06/16 11:43	6110695	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Barium	0.0459	0.0100	0.0004	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Boron	ND	0.0400	0.0064	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Calcium	50.7	5.00	0.311	mg/L	EPA 6020B	B-01	10	12/02/16 08:55	12/06/16 12:00	6120022	CSW
Chromium	0.0014	0.0100	0.0009	mg/L	EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Selenium	0.0017	0.0100	0.0010	mg/L	EPA 6020B	J	1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 14:50	6120022	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	12/02/16 09:20	12/02/16 13:05	6120036	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham Report No.: AZK0850

Project: **CCR Event**

Client ID: EB-1-11-29-16

Lab Number ID: AZK0850-06

Date/Time Received: 11/29/2016 4:45:00PM

December 08, 2016

Date/Time Sampled: 11/29/2016 2:30:00PM

Matrix: Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	11/30/16 11:01	11/30/16 11:01	6110705	JPT
Inorganic Anions											
Chloride	0.07	0.25	0.01	mg/L	EPA 300.0	J	1	11/30/16 08:54	11/30/16 13:25	6110695	RLC
Fluoride	0.03	0.30	0.02	mg/L	EPA 300.0	J	1	11/30/16 08:54	11/30/16 13:25	6110695	RLC
Sulfate	0.14	1.0	0.05	mg/L	EPA 300.0	J	1	11/30/16 08:54	11/30/16 13:25	6110695	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Barium	ND	0.0100	0.0004	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Boron	ND	0.0400	0.0064	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Calcium	ND	0.500	0.0311	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Selenium	ND	0.0100	0.0010	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	12/02/16 08:55	12/05/16 15:10	6120022	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	12/02/16 09:20	12/02/16 13:08	6120036	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 08, 2016

Report No.: AZK0850

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110705 - SM 2540 C											
Blank (6110705-BLK1)						Prepar	ed & Analy	/zed: 11/30)/16		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (6110705-BS1)						Prepar	ed & Analy	/zed: 11/30)/16		
Total Dissolved Solids	371	25	10	mg/L	400.00		93	84-108			
Duplicate (6110705-DUP1)		Sou	ırce: AZK07	'82-01		Prepar	ed & Analy	/zed: 11/30)/16		
Total Dissolved Solids	118	25	10	mg/L		116			2	10	
Duplicate (6110705-DUP2)		Sou	ırce: AZK08	50-03		Prepar	ed & Analy	/zed: 11/30)/16		
Total Dissolved Solids	ND	25	10	mg/L		ND	•			10	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0850

December 08, 2016

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110695 - EPA 300.0											
Blank (6110695-BLK1)						Prepar	ed & Analy	yzed: 11/30	0/16		
Chloride	ND	0.25	0.01	mg/L							
Fluoride	ND	0.30	0.02	mg/L							
Sulfate	ND	1.0	0.05	mg/L							
LCS (6110695-BS1)						Prepar	ed & Analy	yzed: 11/30	0/16		
Chloride	10.4	0.25	0.01	mg/L	10.010		104	90-110			
Fluoride	10.1	0.30	0.02	mg/L	10.020		101	90-110			
Sulfate	10.2	1.0	0.05	mg/L	10.020		102	90-110			
Matrix Spike (6110695-MS1)		Sou	ırce: AZK08	350-02		Prepar	ed & Analy	yzed: 11/30	0/16		
Chloride	16.8	0.25	0.01	mg/L	10.010	6.68	101	90-110			
Fluoride	10.5	0.30	0.02	mg/L	10.020	0.03	104	90-110			
Sulfate	111	1.0	0.05	mg/L	10.020	113	NR	90-110			QM-02
Matrix Spike (6110695-MS2)		Sou	ırce: AZK08	355-01		Prepar	ed & Analy	yzed: 11/30	0/16		
Chloride	13.1	0.25	0.01	mg/L	10.010	2.56	105	90-110			_
Fluoride	10.7	0.30	0.02	mg/L	10.020	0.11	106	90-110			
Sulfate	15.1	1.0	0.05	mg/L	10.020	5.18	99	90-110			
Matrix Spike Dup (6110695-MSD1)		Sou	ırce: AZK08	350-02		Prepar	ed & Analy	yzed: 11/30	0/16		
Chloride	16.9	0.25	0.01	mg/L	10.010	6.68	102	90-110	0.7	15	
Fluoride	10.6	0.30	0.02	mg/L	10.020	0.03	106	90-110	2	15	
Sulfate	111	1.0	0.05	mg/L	10.020	113	NR	90-110	0.3	15	QM-02

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0850

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6120022 - EPA 3005A	1										
Blank (6120022-BLK1)						Prepare	ed: 12/02/	16 Analyz	ed: 12/05/	16	
Antimony	ND	0.0030	0.0008	mg/L							
Arsenic	ND	0.0050	0.0016	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	0.0002	0.0030	0.00008	mg/L							
Boron	ND	0.0400	0.0064	mg/L							
Cadmium	ND	0.0010	0.00007	mg/L							
Calcium	0.0350	0.500	0.0311	mg/L							,
Chromium	ND	0.0100	0.0009	mg/L							
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0250	0.0005	mg/L							
Lead	0.0008	0.0050	0.0001	mg/L							,
Molybdenum	ND	0.0100	0.0017	mg/L							
Nickel	ND	0.0100	0.0006	mg/L							
Selenium	ND	0.0100	0.0010	mg/L							
Silver	ND	0.0100	0.0005	mg/L							
Thallium	ND	0.0010	0.0002	mg/L							
Vanadium	ND	0.0100	0.0071	mg/L							
Zinc	0.0023	0.0100	0.0021	mg/L							
Lithium	ND	0.0500	0.0021	mg/L							
LCS (6120022-BS1)						Prepare	ed: 12/02/	16 Analyz	ed: 12/05/	16	
Antimony	0.103	0.0030	0.0008	mg/L	0.10000		103	80-120			
Arsenic	0.0985	0.0050	0.0016	mg/L	0.10000		98	80-120			
Barium	0.0983	0.0100	0.0004	mg/L	0.10000		98	80-120			
Beryllium	0.100	0.0030	0.00008	mg/L	0.10000		100	80-120			
Boron	1.00	0.0400	0.0064	mg/L	1.0000		100	80-120			
Cadmium	0.101	0.0010	0.00007	mg/L	0.10000		101	80-120			
Calcium	1.00	0.500	0.0311	mg/L	1.0000		100	80-120			
Chromium	0.0977	0.0100	0.0009	mg/L	0.10000		98	80-120			
Cobalt	0.0950	0.0100	0.0005	mg/L	0.10000		95	80-120			
Copper	0.0985	0.0250	0.0005	mg/L	0.10000		99	80-120			
Lead	0.0978	0.0050	0.0001	mg/L	0.10000		98	80-120			
Molybdenum	0.0996	0.0100	0.0017	mg/L	0.10000		100	80-120			
Nickel	0.0995	0.0100	0.0006	mg/L	0.10000		99	80-120			
Selenium	0.102	0.0100	0.0010	mg/L	0.10000		102	80-120			
Silver	0.0999	0.0100	0.0005	mg/L	0.10000		100	80-120			
Thallium	0.0979	0.0010	0.0002	mg/L	0.10000		98	80-120			
Vanadium	0.0977	0.0100	0.0071	mg/L	0.10000		98	80-120			
Zinc	0.103	0.0100	0.0021	mg/L	0.10000		103	80-120			
Lithium	0.101	0.0500	0.0021	mg/L	0.10000		101	80-120			

December 08, 2016

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 08, 2016

Report No.: AZK0850

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6120022 - EPA 3005A											
Matrix Spike (6120022-MS1)		Sou	ırce: AZK08	50-01		Prepar	ed: 12/02/	16 Analyz	ed: 12/05/	16	
Antimony	0.106	0.0030	0.0008	mg/L	0.10000	0.0014	105	75-125			
Arsenic	0.102	0.0050	0.0016	mg/L	0.10000	ND	102	75-125			
Barium	0.150	0.0500	0.0022	mg/L	0.10000	0.0529	98	75-125			
Beryllium	0.0942	0.0030	0.00008	mg/L	0.10000	ND	94	75-125			
Boron	0.948	0.0400	0.0064	mg/L	1.0000	0.0095	94	75-125			
Cadmium	0.100	0.0010	0.00007	mg/L	0.10000	ND	100	75-125			
Calcium	10.8	2.50	0.155	mg/L	1.0000	9.47	134	75-125			QM-02
Chromium	0.104	0.0100	0.0009	mg/L	0.10000	ND	104	75-125			
Cobalt	0.103	0.0100	0.0005	mg/L	0.10000	0.0036	99	75-125			
Copper	0.100	0.0250	0.0005	mg/L	0.10000	0.0010	99	75-125			
Lead	0.0987	0.0050	0.0001	mg/L	0.10000	ND	99	75-125			
Molybdenum	0.104	0.0100	0.0017	mg/L	0.10000	ND	104	75-125			
Nickel	0.106	0.0100	0.0006	mg/L	0.10000	0.0039	102	75-125			
Selenium	0.105	0.0100	0.0010	mg/L	0.10000	ND	105	75-125			
Silver	0.101	0.0100	0.0005	mg/L	0.10000	ND	101	75-125			
Thallium	0.0997	0.0010	0.0002	mg/L	0.10000	ND	100	75-125			
Vanadium	0.106	0.0100	0.0071	mg/L	0.10000	ND	106	75-125			
Zinc	0.103	0.0100	0.0021	mg/L	0.10000	0.0028	100	75-125			
Lithium	0.0962	0.0500	0.0021	mg/L	0.10000	ND	96	75-125			
Matrix Spike Dup (6120022-MSD1)		Sou	ırce: AZK08	50-01		Prepar	ed: 12/02/	16 Analyz	ed: 12/05/	16	
Antimony	0.103	0.0030	0.0008	mg/L	0.10000	0.0014	102	75-125	3	20	
Arsenic	0.102	0.0050	0.0016	mg/L	0.10000	ND	102	75-125	0.2	20	
Barium	0.148	0.0500	0.0022	mg/L	0.10000	0.0529	95	75-125	2	20	
Beryllium	0.0888	0.0030	0.00008	mg/L	0.10000	ND	89	75-125	6	20	
Boron	0.915	0.0400	0.0064	mg/L	1.0000	0.0095	91	75-125	3	20	
Cadmium	0.101	0.0010	0.00007	mg/L	0.10000	ND	101	75-125	1	20	
Calcium	10.7	2.50	0.155	mg/L	1.0000	9.47	121	75-125	1	20	
Chromium	0.104	0.0100	0.0009	mg/L	0.10000	ND	104	75-125	0.08	20	
Cobalt	0.102	0.0100	0.0005	mg/L	0.10000	0.0036	98	75-125	0.5	20	
Copper	0.103	0.0250	0.0005	mg/L	0.10000	0.0010	102	75-125	3	20	
Lead	0.100	0.0050	0.0001	mg/L	0.10000	ND	100	75-125	1	20	
Molybdenum	0.102	0.0100	0.0017	mg/L	0.10000	ND	102	75-125	2	20	
Nickel	0.105	0.0100	0.0006	mg/L	0.10000	0.0039	101	75-125	0.6	20	
Selenium	0.102	0.0100	0.0010	mg/L	0.10000	ND	102	75-125	3	20	
Silver	0.0995	0.0100	0.0005	mg/L	0.10000	ND	100	75-125	1	20	
Thallium	0.101	0.0010	0.0002	mg/L	0.10000	ND	101	75-125	1	20	
Vanadium	0.105	0.0100	0.0071	mg/L	0.10000	ND	105	75-125	1	20	
Zinc	0.104	0.0100	0.0021	mg/L	0.10000	0.0028	101	75-125	0.9	20	
Lithium	0.0897	0.0500	0.0021	mg/L	0.10000	ND	90	75-125	7	20	
				-							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZK0850

December 08, 2016

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6120022 - EPA 3005A											
Post Spike (6120022-PS1)		Sou	urce: AZK08	50-01		Prepare	ed: 12/02/	16 Analyz	ed: 12/05	/16	
Antimony	97.8			ug/L	100.00	1.41	96	80-120			
Arsenic	99.3			ug/L	100.00	0.0639	99	80-120			
Barium	150			ug/L	100.00	52.9	97	80-120			
Beryllium	84.9			ug/L	100.00	-1.84	85	80-120			
Boron	927			ug/L	1000.0	9.46	92	80-120			
Cadmium	99.8			ug/L	100.00	0.0137	100	80-120			
Calcium	10700			ug/L	1000.0	9470	121	80-120			QM-02
Chromium	101			ug/L	100.00	0.145	101	80-120			
Cobalt	99.6			ug/L	100.00	3.64	96	80-120			
Copper	99.3			ug/L	100.00	1.03	98	80-120			
Lead	100			ug/L	100.00	-0.502	100	80-120			
Molybdenum	101			ug/L	100.00	0.757	101	80-120			
Nickel	101			ug/L	100.00	3.92	97	80-120			
Selenium	105			ug/L	100.00	-0.0591	105	80-120			
Silver	96.9			ug/L	100.00	0.0123	97	80-120			
Thallium	99.0			ug/L	100.00	-0.295	99	80-120			
Vanadium	102			ug/L	100.00	0.167	102	80-120			
Zinc	104			ug/L	100.00	2.81	101	80-120			
Lithium	88.3			ug/L	100.00	-0.426	88	80-120			
Batch 6120036 - EPA 7470A											
Blank (6120036-BLK1)						Prepare	ed & Anal	yzed: 12/02	2/16		
Mercury	ND	0.00050	0.000041	mg/L							
LCS (6120036-BS1)						Prepare	ed & Anal	yzed: 12/02	2/16		
Mercury	0.00245	0.00050	0.000041	mg/L	2.5000E-3		98	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 08, 2016

Report No.: AZK0850

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6120036 - EPA 7470A											
Matrix Spike (6120036-MS1)		Sou	urce: AZK07	82-01		Prepar	ed & Analy	/zed: 12/02	2/16		
Mercury	0.00249	0.00050	0.000041	mg/L	2.5000E-3	ND	99	75-125			
Matrix Spike Dup (6120036-MSD1)		Sou	urce: AZK07	82-01		Prepar	ed & Analy	/zed: 12/02	2/16		
Mercury	0.00248	0.00050	0.000041	mg/L	2.5000E-3	ND	99	75-125	0.4	20	
Post Spike (6120036-PS1)		Sou	urce: AZK07	82-01		Prepar	ed & Analy	/zed: 12/02	2/16		
Mercury	1.73		·	ug/L	1.6667	0.0118	103	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham December 08, 2016

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).
 - **B-01** Analyte was detected in the associated method blank at an estimated level equal to or greater than the MDL. Sample values reported as greater than the MDL and less than 10x the method blank value are reported as estimated values.

Note: Unless otherwise noted, all results are reported on an as received basis.

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

PF

PAGE:

CLIENT NAME:						AN	ALYSIS F	ANALYSIS REQUESTED	LED	1	CONTAINER TYPE	PRESERVATION
Georgia Power				CONTAINER TYPE	H	H	۵				D DI ACTIO	1 HCl <6°C
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER	HONE NUMBER	R/FAX N	NUMBER	PRESERVATION	3	+		-		((1)	A - AMBER GLASS	7 - H-SO. <6°C
241 Ralph McGill Blvd SE B10185	SE B10185		F	# of	\vdash					T	G - CI FAR GI ASS	3 - HNO-
Atlanta, GA 30308				50 de con 150 de con 1	-						V - VOA VIAI	4 - NaOH, <6°C
404-506-7239				υ	-					_	S - STERILE	5 - NaOH/ZnAc. <6°C
REPORT TO:			ICC: Maria Padilla	c							OOTHED	0 0 0 N 9
	Lauren Petty			z	-					2	0.0125	7 - <6°C not frozen
REOLIESTED COMPLETION DATE	ETION DATE		# Od	- Τ						2		
יייי ביייייייייייייייייייייייייייייייי			l laburch@southernco.com	٠ ٧						z =	"MATRI	*MATRIX CODES
PROJECT NAME/STATE	TE			_ _		()				Σ		
	Plant Yate	es Gyps	Plant Yates Gypsum Storage	z	/	0193				m	DW - DRINKING WATER	S - SOIL
				ш	\I .	S	82			ш		Sr - SLUDGE
PROJECT #.		Semi-A	Semi-Annual Monitoring	α v	3 111	at,	2.8.8			œ	GW - GROUNDWATER	SD - SOLID
	-	-		, - T	ddy	8 ,0	526					A- AIR
Collection Collection	on MATRIX	0 2	SAMPLE IDENTIFICATION		A SIS	08 A 08 A 08 A	muil 948-7			-		P - PRODUCT
7				>	teM	Cl' I	Rad			->	REMARKS/ADDITIC	REMARKS/ADDITIONAL INFORMATION
11-28-16 1235	5 GW	7	16WA-2	3	_	-	-			_		
ahs1 91-82-11	W2 0		6WC-2R	5	_	_	_			ч		
11-29-16 1035	-	7	FB-1-11-29-16	~	_	-	_			u		
11-29-16 1225	W 7 3	7		7		_				4		
11-29-16 1350	_	7	GW 6-6R	Ŋ	_	_	_			6		
11-29-16 1430		7	_	3		-	_			e		
										_		
				5		0						
SAMBLED BY AND TITLE		100	DATE/TIME: 1500	RELINGU	RELINQUISHED BY	Sel	0		DATE/TIME	164	FOR LAB USE	I USE ONLY
RECEIVED BY:		1		RELINGU	RELINQUISHED BY:	>	1		бателтіме		1	1000
RECEIVED BY LAB	Mon	\	DATE/TIME a/1 6 164	SAMPLE SHI	SHIPPED VIA	VIA	J SOSII	GOLIBIED	CLIENT	0 10	Tracking #:	+
ecked:	Co.	δ.	Temperature:	dy S	eal:	d solv	#	# of Coolers	ler ID:			
001	2	CAL	Ì		Officerosts	TWOM FIRMON	24					

ob nt Yates State constituents: Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, NPRat #gte8, &O&nGypsum Storage.xlsx

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST Printed: 12/8/2016 3:13:08PM

Attn: Mr. Joju Abraham

Client: Georgia Power

Project:CCR EventWork Order:AZK0850Date Received:11/29/16 16:45Logged In By:Charles Hawks

OBSERVATIONS

#Samples: 6 **#Containers:** 18

Minimum Temp(C): 2.0 Maximum Temp(C): 2.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

(724)850-5600

January 05, 2017

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: Plant Yates

Pace Project No.: 30204009

Dear Maria Padilla:

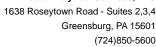
Enclosed are the analytical results for sample(s) received by the laboratory on December 01, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Report replaces the December 4, 2017 report. Reissued 12/5/17 to reflect the change of character spaces of results for Ra-228 for Sample 30204009006 as per client request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins


Suguely Sellins

jacquelyn.collins@pacelabs.com

Project Manager

Enclosures

CERTIFICATIONS

Project: Plant Yates
Pace Project No.: 30204009

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

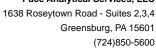
Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082
Nebraska Certification #: NE-05-29-14
Nevada Certification #: PA014572015-1
New Hampshire/TNI Certification #: 2976
New Jersey/TNI Certification #: PA 051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

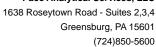

South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8
Utah/TNI Certification #: PA014572015-5
USDA Soil Permit #: P330-14-00213
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Certification

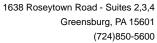
Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: Plant Yates
Pace Project No.: 30204009

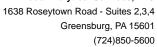
Lab ID	Sample ID	Matrix	Date Collected	Date Received
30204009001	GWA-2	Water	11/28/16 12:35	12/01/16 10:20
30204009002	GWC-2R	Water	11/28/16 15:40	12/01/16 10:20
30204009003	FB-1-11-29-16	Water	11/29/16 10:35	12/01/16 10:20
30204009004	GWC-1R	Water	11/29/16 12:25	12/01/16 10:20
30204009005	GWC-6R	Water	11/29/16 13:50	12/01/16 10:20
30204009006	EB-1-11-29-16	Water	11/29/16 14:30	12/01/16 10:20



SAMPLE ANALYTE COUNT

Project: Plant Yates
Pace Project No.: 30204009

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30204009001	GWA-2	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30204009002	GWC-2R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30204009003	FB-1-11-29-16	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30204009004	GWC-1R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30204009005	GWC-6R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30204009006	EB-1-11-29-16	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:	Plant Yates
Pace Project No.:	30204009

Pace Project No.: 30204009						
Sample: GWA-2 PWS:	Lab ID: 302040 0 Site ID:	D9001 Collected: 11/28/16 12:35 Sample Type:	Received:	12/01/16 10:20 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.164 ± 0.143 (0.258)	pCi/L	12/12/16 07:57	13982-63-3	
Radium-228	EPA 9320	C:88% T:NA 0.100 ± 0.359 (0.810) C:72% T:83%	pCi/L	12/30/16 11:19	15262-20-1	
Total Radium	Total Radium Calculation	$0.264 \pm 0.502 $ (1.07)	pCi/L	01/04/17 15:23	7440-14-4	
Sample: GWC-2R	Lab ID: 3020400		Received:	12/01/16 10:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.323 ± 0.172 (0.220) C:95% T:NA	pCi/L	12/12/16 07:58	13982-63-3	
Radium-228	EPA 9320	0.0643 ± 0.394 (0.901)	pCi/L	12/30/16 11:19	15262-20-1	
Total Radium	Total Radium Calculation	C:64% T:80% 0.387 ± 0.566 (1.12)	pCi/L	01/04/17 15:23	7440-14-4	
Sample: FB-1-11-29-16 PWS:	Lab ID: 302040 (Site ID:	09003 Collected: 11/29/16 10:35 Sample Type:	Received:	12/01/16 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.000756 ± 0.139 (0.367)	pCi/L	12/12/16 09:38	13982-63-3	
Radium-228	EPA 9320	C:82% T:NA 0.133 ± 0.327 (0.731)	pCi/L	12/30/16 11:19	15262-20-1	
Total Radium	Total Radium Calculation	C:63% T:89% 0.134 ± 0.466 (1.10)	pCi/L	01/04/17 15:23	7440-14-4	
Sample: GWC-1R PWS:	Lab ID: 302040 0 Site ID:	09004 Collected: 11/29/16 12:25 Sample Type:	Received:	12/01/16 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.161 ± 0.125 (0.197)	pCi/L	12/12/16 09:38	13982-63-3	
Radium-228	EPA 9320	C:93% T:NA 0.390 ± 0.450 (0.949)	pCi/L	12/30/16 11:20	15262-20-1	
Total Radium	Total Radium Calculation	C:65% T:81% 0.551 ± 0.575 (1.15)	pCi/L	01/04/17 15:23	7440-14-4	
Sample: GWC-6R PWS:	Lab ID: 302040 0 Site ID:	09005 Collected: 11/29/16 13:50 Sample Type:	Received:	12/01/16 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.188 ± 0.145 (0.255) C:99% T:NA	pCi/L	12/12/16 09:38	13982-63-3	
Radium-228	EPA 9320	0.0439 ± 0.351 (0.809) C:61% T:86%	pCi/L	12/30/16 11:20	15262-20-1	

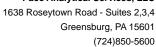
ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Yates
Pace Project No.: 30204009

Sample: GWC-6R Lab ID: 30204009005Collected: 11/29/16 13:50 Received: 12/01/16 10:20 Matrix: Water

PWS: Site ID: Sample Type:

 Parameters
 Method
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 CAS No.
 Qual


 Total Radium
 Total Radium
 0.232 ± 0.496 (1.06)
 pCi/L
 01/04/17 15:23 7440-14-4

Calculation

Sample: EB-1-11-29-16 Lab ID: 30204009006 Collected: 11/29/16 14:30 Received: 12/01/16 10:20 Matrix: Water

PWS: Site ID: Sample Type:

Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.0249 \pm 0.100 \quad (0.255)$ Radium-226 pCi/L 12/12/16 09:38 13982-63-3 C:89% T:NA EPA 9320 Radium-228 $0.000 \pm 0.364 \quad (0.847)$ pCi/L 12/30/16 11:20 15262-20-1 C:64% T:85% Total Radium Total Radium 0.0249 ± 0.464 (1.10) pCi/L 01/04/17 15:23 7440-14-4 Calculation

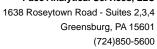
QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates
Pace Project No.: 30204009

QC Batch: 242578 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30204009003, 30204009004, 30204009005, 30204009006


METHOD BLANK: 1192329 Matrix: Water

Associated Lab Samples: 30204009003, 30204009004, 30204009005, 30204009006

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.00382 ± 0.0709 (0.204) C:90% T:NA pCi/L 12/12/16 09:38

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates
Pace Project No.: 30204009

1 400 1 10,000 140... 00204000

QC Batch: 242577

Analysis Method: Analysis Description:

Matrix: Water

EPA 9315

QC Batch Method: EPA 9315

Analysis Descripti

9315 Total Radium

Associated Lab Samples: 30204009001, 30204009002

METHOD BLANK: 1192328

Associated Lab Samples:

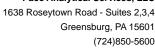
1192320

30204009001, 30204009002

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed


Qualifiers

Radium-226

0.0984 ± 0.107 (0.203) C:96% T:NA

12/12/16 08:25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates
Pace Project No.: 30204009

QC Batch: 242766 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30204009001, 30204009002, 30204009003, 30204009004, 30204009005, 30204009006

METHOD BLANK: 1193275 Matrix: Water

Associated Lab Samples: 30204009001, 30204009002, 30204009003, 30204009004, 30204009005, 30204009006

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 $0.289 \pm 0.348 \quad (0.734) \text{ C:}64\% \text{ T:}88\% \quad \text{pCi/L} \quad 12/30/16 \ 11:18$

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(724)850-5600

QUALIFIERS

Project: Plant Yates Pace Project No.: 30204009

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Date: 01/05/2017 10:19 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WO#:30204009

Chain of Custody

Face Analytical

LAB USE ONLY Results Requested By: 12/30/2016 000 000 000 000 000 800 8 3 Requested Analysis Radium 226, 228, Total × × Owner Received Date: Preserved Containers ЕОИН CHARS SMS SMS Matrix Ø <u></u>8 Ø **∂** AZK0850-02 AZK0850-03 AZK0850-04 AZK0850-05 AZK0850-06 AZK0850-01 Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Plant Yates Collect Date/Time Lab ID Pace - Pittsburgh Subcontract To: 11/28/2016 12:35 11/28/2016 15:40 11/29/2016 10:35 11/29/2016 12:25 11/29/2016 14:30 11/29/2016 13:50 Stes. 2,3,4 Workorder Name: Type ပ ပ g G G G Peachtree Corners, GA 30092 Workorder: AZK0850 110 Technology Parkway Pace Analytical Atlanta Phone (770)-734-4200 EB-1-11-29-16 FB-1-11-29-16 **Betsy McDaniel** Item Sample ID **GWC-1R GWC-6R GWC-2R** GWA-2 Report To: 9

Cooler Temperature on Receipt Cooler	Custody Seal Y or (N)	Received on Ice Y or N	Sample Intact Yor N
***In order to maintain client confidentiality, loc	location/name of the sampling site, sampler	e of the sampling site, sampler's name and signature may not be provided on this COC	ided on this COC
This chain of custody is considered complete as is since this i	is since this information is available in the owner laboratory.	owner laboratory.	

Comments

Date/Time

Received By

Date/Time

Transfers | Released By

10

 ∞ 6

<u>त</u> इ < 177

Friday, June 17, 2016 11:01:34 AM

Base 11:01:34 AM

10:00 11:01:34 AM

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

30204009

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

P

PAGE:

CLENT NAME		Ą	ANALYSIS REQUESTED	TED	Г	CONTAINED TYDE	MOLLWARE
הפסופום אסאיפי	このは 本い 西米 マッチョ	\vdash	a.			CITACIO	00% CH +
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	PRESERVATION	3	m		(m	A - AMRER GLASS	2. H. O. K.
241 Ralph McGill Blvd SE B10185	Jo#					G - CI FAP GI ASS	3 - HNO.
Atlanta, GA 30308	(V - VOA VIAL	4 - NaOH, 56°C
	υ ,				-	S - STERILE	5 - NaOH/ZnAc, ≤6°C
Seria Facilia Con La Caria Facilia Fac	0:				٥	O - OTHER	6 - Na ₂ S ₂ O _{3, ≤} 6°C
DATE: PO#	2 1-						7 - ≤6°C not frazen
	- 4				z:		
PROJECT NAME/STATE:	;) <u>\$</u>	MAIN	MAIRIX CODES
Plant Yates Gypsum Storage		•			E 00	DW - DRINKING WATER	S. SOIL
# 101 DAG		S	82			WW - WASTEWATER	SL - SLUDGE
General Montonia		747 QT 3	8.2			GW - GROUNDWATER	SD - SOLID
0	-	702 3 *(922		E	SW - SURFACE WATER	A - AIR
Collection Collection MATRIX O R SAMPLE IDENTIFICATION		PA 60: PA 60: PA 30:	348-W			ST - STORM WATER W - WATER	L - LIQUID P - PRODUCT
1.		CI (E	³₽		>	REMARKS/ADDITI	REMARKS/ADDITIONAL INFORMATION
11-28-16 1235 GW V GWA-2	3	_					
11-28-16 1540 GW 1 GWC-2R	™	-			1		
11-24-16 1035 W FB-1-11-29-16	r~	_			2		
11-29-16 1225 /JW V GWC-1R	2	-			-4		
11-29-16 1350 GW V GW C-6R	n	-			(-	***************************************	THE RESERVE THE PROPERTY OF TH
11-29-16 1430 W & EB-1-11-29-16	3	_			9		

			. (AND THE REAL PROPERTY OF THE P
aite AC	RELINQUISHED BY	BY. BY.	1111	DATE/TIME	1640	FOR LAB USE O	USE ONLY
CEIVED BY: DATE/TIME:	RELINOUISHED BY	BY:		DATE/TIME	(1	Entered into I WS: 14	らなり
Man Daterine // 6	6 4 Supple Shipped VIA CHES FED.EX	ED VIR.	USPS COURIER	OLIENT OTHER	r.S	Tracking #:	
Yes No NA Yes No NA I NO MAN I ON MAKE	(mtact) Broken	Not Present					
))			÷			

Plant Yates State constituents: Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, NP局et 浓gtel, 以CCnGypsum Storage.xlsx

Sample Condition Upon Receipt Pittsburgh 3020400 Pace GA Pace Analytical Client Name: Courier: N Fed Ex □ UPS □ USPS □ Client □ Commercial □ Pace Other Tracking #: <u>6812.5106</u> 6829 Custody Seal on Cooler/Box Present: yes no Seals intact: ☐ yes ☐ no Type of Ice: Wet Blue None Thermometer Used Correction Factor: C Final Temp: Observed Temp Cooler Temperature Temp should be above freezing to 6°C Date and initials of person examining contents: 1/1 (1)-(1-11. N/A Yes No Comments: Chain of Custody Present: 2. Chain of Custody Filled Out: 3. Chain of Custody Relinquished: Sampler Name & Signature on COC: 4. 5. Sample Labels match COC: Matrix: -Includes date/time/ID/Analysis Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): 8. Rush Turn Around Time Requested: 9. Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used: 11. Containers Intact: 12. Filtered volume received for Dissolved tests All containers needing preservation have been checked. 13. All containers needing preservation are found to be in compliance with EPA recommendation. Date/time of Initial when exceptions: VOA, coliform, TOC, O&G, Phenolics preservation completed Lot # of added preservative Headspace in VOA Vials (>6mm): 14. 15. Trip Blank Present: Trip Blank Custody Seals Present Initial when Rad Aqueous Samples Screened > 0.5 mrem/hr completed:

Client Notification/ Resolution:			
Person Contacted:	Date/Time:	Contacted By:	
Comments/ Resolution:			
	·		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

^{*}PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Face Analytical

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment

Sample I.D. Sample MS I.D. Sample Collection Date:

Sample MSD I.D. Spike LD.: MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL) Spike Volume Used in MSD (mL) MS Aliquot (L, g, F)

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F):

MSD Target Conc. (pCi/L, g, F):

Ra-226 LAL 12/9/2016 32847 DW	
Test Analyst Date: Worklist Matrix:	

	_						
	1192328	0.098	0.106	0.203	1.83	A/A	Pass
Method Blank Assessment	MB Sample ID	MB concentration:	M/B Counting Uncertainty:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs, MDC:

Laboratory Control Sample

1. (6 (mod) :: 100 m8 in : 00 m	or N)? N Spike uncertainty (calculated):	LCS32847 LCSD32847 Sample Result:	2/12/2016 Sample Result Counting Uncertainty (pCi/l, g, F):	16-026 Sample Matrix Spike Result:	44.673 Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	.10 Sample Matrix Spike Duplicate Result:	1.501 Matrix Spike Duplicate Result Counting Uncertainty (pCifl., g, F):	909 MS Numerical Performance Indicator:	0.419 MSD Numerical Performance Indicator.	7.414 MS Percent Recovery:	.730 MSD Percent Recovery:	-3.48 MS Status vs Numerical Indicator:	83.22% MSD Status vs Numerical Indicator:	N/A MS Status vs Recovery:	
	Sample Assessment LCSD (Y or N)?		Count Date: 12/1	Spike I.D.: 16	Spike Concentration (pCi/mL): 44	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F): 8	Uncertainty (Calculated): 0	Result (pCI/L, g, F): 7	LCS/LCSD Counting Uncertainty (pCi/L, g, F): 0	Numerical Performance Indicator:	Percent Recovery: 83	Status vs Numerical Indicator:	

MSD Status vs Numerical Indicator: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: Matrix Spike/Matrix Spike Duplicate Sample Assessment
--

Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/l., g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCI/L, g, F):	Duplicate Numerical Performance Indicator:	MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Direlicate Status vs RPD:
Enter Duplicate	sample IDs if	other than	LCS/LCSD in the	space below.			30204007002	30204007002DUP		

0.725 0.234 0.561 0.221

Sample Result Counting Uncertainty (pC/I/L, g, F):
Sample Duplicate Result (pC/I/L, g, F):
Sample Duplicate Result (pC/I/L, g, F):
Are sample and/or duplicate results below MDC?

See Below ##

0.997 25.45%

Duplicate RPD:

Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator:

N/A Fail***

Duplicate Status vs RPD:

30204007002 30204007002DUP

Duplicate Sample I.D.

Sample I.D.:

Duplicate Sample Assessment

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC. ***Batch must be re-prepped due to unacceptable precision.

Comments:

TAR DW QC Printed: 1/4/2017 3:58 PM

Face Analytical

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment

Sample I.D.
Sample MS I.D.
Sample MSD I.D.
Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL.):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MSD Aliquot (L, g, F): MSD Target Conc. (pC//L, g, F): Spike uncertainty (calculated):

MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): Sample Result:

Sample Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Result:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result

Sample Collection Date:

Test: Ra-226
Analyst: LAL
Date: 12/9/2016
Worklist: 32848
Matrix: DW

	1192329	0.004	0.071	0.204	0.11	A/N	Pass
Assessment	MB Sample ID	MB concentration:	M/B Counting Uncertainty:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs. MDC:

Method Blank

_	_	_	_											
> -	LCSD32848	12/12/2016	16-026	44.673	0.10	0.509	8.785	0.413	7.617	0.688	-2.85	86.71%	N/A	Pass
LCSD (Y or N)?	LCS32848	12/12/2016	16-026	44.673	0.10	0.506	8.825	0.415	8.177	0.718	-1.53	92.66%	NA	Pass
Laboratory Control Sample Assessment		Count Date:	Spike LD.:	Spike Concentration (pCi/mL):	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCi/L, g, F):	LCS/LCSD Counting Uncertainty (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:

Matrix Spike Duplicate Result Counting Uncertainty (pCifL, g, F):
MS Numerical Performance Indicator:
MSD Numerical Performance Indicator:

MS Percent Recovery: MSD Percent Recovery:

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MS Status vs Recovery;

MSD Status vs Recover

Duplicate Sample Assessment		
Sample I.D.:	LCS32848	Enter Duplicate
Duplicate Sample I.D.	LCSD32848	samble IDs if
Sample Result (pCi/L, g, F):	8.177	other than
Sample Result Counting Uncertainty (pCi/L, g, F):	0.718	LCS/LCSD in the
Sample Duplicate Result (pCi/L, g, F):	7.617	space below.
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.688	
Are sample and/or duplicate results below MDC?	<u>0</u>	
Duplicate Numerical Performance Indicator:	1.105	
Duplicate RPD:	7.10%	
Duplicate Status vs Numerical Indicator:	N/A	
Duplicate Status vs RPD:	Pass	

rix Spike/Matrix Spike Duplicate Sample Assessment Sample I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample MSD I.D. Sample Mstrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/l., g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result: Matrix Spike Duplicate Result: MSP MSD Duplicate RPD: MSP MSD Duplicate RPD:
--

MS/ MSD Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

TAR DW QC Printed: 1/4/2017 3:58 PM

1 of 1

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Collection Date: Sample MS I.D. Sample MSD I.D.

Sample Matrix Spike Control Assessment

12/13/2016 Ra-228 Test: Analyst: Date:

32881 DW Worklist: Matrix:

0.344 0.734 1.64 N/A MB Sample ID MB concentration: M/B Counting Uncertainty: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: MB MDC Method Blank Assessment

12/30/2016 3D (Y or N) LCS32881 Count Date: Laboratory Control Sample Assessment

MS Target Conc.(pCl/L, g, F): MSD Aliquot (L, g, F):

MSD Target Conc. (pCi/L, g, F): Spike uncertainty (calculated):

Sample Result

Sample Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Result:

Sample Matrix Spike Duplicate Result

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Spike Volume Used in MSD (mL): MS Aliquot (L, g, F):

Spike Volume Used in MS (ml..);

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike I.D.:

LCSD32881 25.690 -1.51 90.02% 16-027 0.802 6.403 0.461 5.764 0.691 Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated): Percent Recovery: Status vs Numerical Indicator: Spike I.D.: Spike Concentration (pCi/mL): Volume Used (mL): Aliquot Volume (L, g, F): Numerical Performance Indicator: Status vs Recovery

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):
MS Numerical Performance Indicator:
MSD Numerical Performance Indicator:

MS Percent Recovery:

MSD Percent Recovery

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator. MS Status vs Recovery: MSD Status vs Recover Matrix Spike/Matrix Spike Duplicate Sample Assessment

Matrix Spike Result Counting Uncertainty (PCi/L, g, F): Sample Matrix Spike Duplicate Result: Sample Matrix Spike Result: Sample MSD I.D.

he space below. LCS/LCSD in sample IDs if

0.278 0.830 0.472

Sample Result (pCirl., g. F):
Sample Result Counting Uncertainty (pCirl., g. F):
Sample Duplicate Result (pCirl., g. F):
Sample Duplicate Result Counting Uncertainty (pCirl., g. F):
Are sample and/or duplicate results below MDC?

See Below #

-2.258 122.84%

Duplicate RPD:

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD

Duplicate Numerical Performance Indicator:

Ϋ́Z

other than

0.198

Sample MS I.D.

Enter Duplicate

30204007002

Sample I.D.:

Duplicate Sample Assessmen

Duplicate Sample I.D. 30204007002DUP

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:

MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

***Batch must be re-prepped due to unacceptable precision.

Comments:

1 of 1

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AZL0037

December 21, 2016

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, LLC.

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 21, 2016

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GWC-4R	AZL0037-01	Ground Water	11/30/16 12:15	12/01/16 16:40
GWC-3R	AZL0037-02	Ground Water	11/30/16 15:10	12/01/16 16:40
Dup-1	AZL0037-03	Ground Water	11/30/16 00:00	12/01/16 16:40
GWC-5R	AZL0037-04	Ground Water	12/01/16 13:05	12/01/16 16:40

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 21, 2016

Case Narrative

Plant Yates Gypsum Storage Report AZL0037 12/21/2016 Report revised to correct previously-reported sulfate value on GWC-5R (AZL0037-04).

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 21, 2016

Report No.: AZL0037 Client ID: GWC-4R

Date/Time Sampled: 11/30/2016 12:15:00PM

Matrix: Ground Water

Project:	CCR Event
Lab Numb	oer ID: AZL0037-01

Date/Time Received: 12/1/2016 4:40:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	247	25	10	mg/L	SM 2540 C	B-01	1	12/02/16 12:35	12/02/16 12:35	6120057	JPT
Inorganic Anions											
Chloride	48	0.25	0.01	mg/L	EPA 300.0		1	12/02/16 16:34	12/03/16 05:07	6120091	RNB
Fluoride	0.11	0.30	0.02	mg/L	EPA 300.0	J	1	12/02/16 16:34	12/10/16 15:10	6120091	RNB
Sulfate	50	1.0	0.05	mg/L	EPA 300.0		1	12/02/16 16:34	12/10/16 15:10	6120091	RNB
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Barium	0.0148	0.0100	0.0004	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Boron	0.813	0.0400	0.0064	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Calcium	13.4	2.50	0.155	mg/L	EPA 6020B	B-01	5	12/06/16 09:50	12/08/16 15:13	6120087	CSW
Chromium	0.0013	0.0100	0.0009	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Cobalt	0.0008	0.0100	0.0005	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Selenium	0.0046	0.0100	0.0010	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:38	6120087	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	12/07/16 11:20	12/07/16 14:43	6120161	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Report No.: AZL0037
Client ID: GWC-3R

Lab Number ID: AZL0037-02

Date/Time Sampled: 11/30/2016 3:10:00PM

Date/Time Received: 12/1/2016 4:40:00PM

December 21, 2016

Matrix: Ground Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	177	25	10	mg/L	SM 2540 C	B-01	1	12/02/16 12:35	12/02/16 12:35	6120057	JPT
Inorganic Anions											
Chloride	7.8	0.25	0.01	mg/L	EPA 300.0		1	12/02/16 16:34	12/03/16 05:50	6120091	RNB
Fluoride	0.03	0.30	0.02	mg/L	EPA 300.0	J	1	12/02/16 16:34	12/10/16 15:52	6120091	RNB
Sulfate	76	2.0	0.10	mg/L	EPA 300.0		2	12/02/16 16:34	12/10/16 15:31	6120091	RNB
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Barium	0.0258	0.0100	0.0004	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Beryllium	0.0004	0.0030	0.00008	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Boron	0.0089	0.0400	0.0064	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Calcium	6.43	2.50	0.155	mg/L	EPA 6020B	B-01	5	12/06/16 09:50	12/08/16 15:20	6120087	CSW
Chromium	0.0010	0.0100	0.0009	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Selenium	0.0054	0.0100	0.0010	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:44	6120087	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	12/07/16 11:20	12/07/16 14:45	6120161	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

December 21, 2016

Report No.: AZL0037

Lab Number ID: AZL0037-03

Client ID: Dup-1

Date/Time Received: 12/1/2016 4:40:00PM

Date/Time Sampled: 11/30/2016 12:00:00AM

Matrix: Ground Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	240	25	10	mg/L	SM 2540 C	B-01	1	12/02/16 12:35	12/02/16 12:35	6120057	JPT
norganic Anions											
Chloride	49	0.25	0.01	mg/L	EPA 300.0		1	12/02/16 16:34	12/03/16 07:39	6120091	RNB
Fluoride	0.04	0.30	0.02	mg/L	EPA 300.0	J	1	12/02/16 16:34	12/03/16 07:39	6120091	RNB
Sulfate	53	2.0	0.10	mg/L	EPA 300.0		2	12/02/16 16:34	12/10/16 16:13	6120091	RNB
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Barium	0.0154	0.0100	0.0004	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Boron	0.822	0.0400	0.0064	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Cadmium	0.00009	0.0010	0.00007	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Calcium	13.7	2.50	0.155	mg/L	EPA 6020B	B-01	5	12/06/16 09:50	12/08/16 15:26	6120087	CSW
Chromium	0.0012	0.0100	0.0009	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Cobalt	0.0009	0.0100	0.0005	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Selenium	0.0045	0.0100	0.0010	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:50	6120087	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	12/07/16 11:20	12/07/16 14:47	6120161	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Report No.: AZL0037
Client ID: GWC-5R

Lab Number ID: AZL0037-04

Date/Time Sampled: 12/1/2016 1:05:00PM

Date/Time Received: 12/1/2016 4:40:00PM

December 21, 2016

Matrix: Ground Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1610	25	10	mg/L	SM 2540 C	B-01	1	12/02/16 12:35	12/02/16 12:35	6120057	JPT
Inorganic Anions											
Chloride	6.0	0.25	0.01	mg/L	EPA 300.0		1	12/02/16 16:34	12/03/16 08:01	6120091	RNB
Fluoride	ND	0.30	0.02	mg/L	EPA 300.0		1	12/02/16 16:34	12/03/16 08:01	6120091	RNB
Sulfate	1100	50	2.6	mg/L	EPA 300.0		50	12/02/16 16:34	12/20/16 05:58	6120091	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Barium	0.0342	0.0100	0.0004	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Beryllium	0.0003	0.0030	0.00008	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Boron	0.0088	0.0400	0.0064	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Cadmium	0.0004	0.0010	0.00007	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Calcium	141	25.0	1.55	mg/L	EPA 6020B	B-01	50	12/06/16 09:50	12/08/16 15:32	6120087	CSW
Chromium	0.0017	0.0100	0.0009	mg/L	EPA 6020B	J	1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Selenium	0.0234	0.0100	0.0010	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	12/06/16 09:50	12/08/16 01:55	6120087	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	12/07/16 11:20	12/07/16 14:50	6120161	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 21, 2016

Report No.: AZL0037

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6120057 - SM 2540 C											
Blank (6120057-BLK1)						Prepar	ed & Anal	yzed: 12/0	2/16		
Total Dissolved Solids	16	25	10	mg/L							B-01, J
LCS (6120057-BS1)						Prepar	ed & Anal	yzed: 12/0:	2/16		
Total Dissolved Solids	419	25	10	mg/L	400.00		105	84-108			
Duplicate (6120057-DUP1)		Soi	ırce: AZL00	33-04		Prepar	ed & Anal	yzed: 12/0:	2/16		
Total Dissolved Solids	4020	25	10	mg/L		3970			1	10	B-01
Duplicate (6120057-DUP2)		Soi	ırce: AZL00	33-06		Prepar	ed & Anal	yzed: 12/0:	2/16		
Total Dissolved Solids	37	25	10	mg/L		66			56	10	B-01, QR-03

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 21, 2016

Report No.: AZL0037

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6120091 - EPA 300.0											
Blank (6120091-BLK1)						Prepare	ed & Analy	yzed: 12/02	2/16		
Chloride	ND	0.25	0.01	mg/L							
Fluoride	ND	0.30	0.02	mg/L							
Sulfate	ND	1.0	0.05	mg/L							
LCS (6120091-BS1)						Prepare	ed & Analy	yzed: 12/02	2/16		
Chloride	9.94	0.25	0.01	mg/L	10.010		99	90-110			
Fluoride	10.3	0.30	0.02	mg/L	10.020		102	90-110			
Sulfate	9.90	1.0	0.05	mg/L	10.020		99	90-110			
Duplicate (6120091-DUP1)		Sou	ırce: AZL00	37-04RE2		Prepare	ed: 12/02/	16 Analyz	ed: 12/20	/16	
Chloride	9.10	12	0.70	mg/L		10.2			11	15	J
Fluoride	ND	15	0.95	mg/L		1.25				15	
Sulfate	1070	50	2.6	mg/L		1070			0.8	15	
Matrix Spike (6120091-MS1)		Sou	ırce: AZL00	002-02		Prepare	ed & Analy	yzed: 12/02	2/16		
Chloride	171	0.25	0.01	mg/L	10.010	178	NR	90-110			QM-02
Fluoride	10.3	0.30	0.02	mg/L	10.020	0.04	103	90-110			
Sulfate	136	1.0	0.05	mg/L	10.020	140	NR	90-110			QM-02
Matrix Spike (6120091-MS2)		Sou	ırce: AZL00	37-01		Prepare	ed: 12/02/	16 Analyz	ed: 12/03	/16	
Chloride	51.6	0.25	0.01	mg/L	10.010	47.8	39	90-110			QM-02
Fluoride	9.95	0.30	0.02	mg/L	10.020	0.04	99	90-110			
Sulfate	57.9	1.0	0.05	mg/L	10.020	53.6	43	90-110			QM-02
Matrix Spike Dup (6120091-MSD1)		Sou	ırce: AZL00	002-02		Prepare	ed & Analy	yzed: 12/02	2/16		
Chloride	170	0.25	0.01	mg/L	10.010	178	NR	90-110	0.2	15	QM-02
Fluoride	11.0	0.30	0.02	mg/L	10.020	0.04	110	90-110	6	15	
Sulfate	136	1.0	0.05	mg/L	10.020	140	NR	90-110	0.3	15	QM-02

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZL0037

December 21, 2016

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6120087 - EPA 3005A											
Blank (6120087-BLK1)						Prepare	ed: 12/06/	16 Analyz	ed: 12/08/	16	
Antimony	ND	0.0030	0.0008	mg/L				•			
Arsenic	ND	0.0050	0.0016	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00008	mg/L							
Boron	ND	0.0400	0.0064	mg/L							
Cadmium	ND	0.0010	0.00007	mg/L							
Calcium	0.0311	0.500	0.0311	mg/L							
Chromium	ND	0.0100	0.0009	mg/L							
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0250	0.0005	mg/L							
Lead	ND	0.0050	0.0001	mg/L							
Molybdenum	ND	0.0100	0.0017	mg/L							
Nickel	ND	0.0100	0.0006	mg/L							
Selenium	ND	0.0100	0.0010	mg/L							
Silver	ND	0.0100	0.0005	mg/L							
Thallium	ND	0.0010	0.0002	mg/L							
Vanadium	ND	0.0100	0.0071	mg/L							
Zinc	ND	0.0100	0.0021	mg/L							
Lithium	ND	0.0500	0.0021	mg/L							
LCS (6120087-BS1)						Prenar	ad: 12/06/	16 Analyz	ad: 12/08/	16	
Antimony	0.109	0.0030	0.0008	mg/L	0.10000	1 Topan	109	80-120	54. 12/00/	10	
Arsenic	0.101	0.0050	0.0016	mg/L	0.10000		101	80-120			
Barium	0.106	0.0100	0.0004	mg/L	0.10000		106	80-120			
Beryllium	0.101	0.0030	0.00008	mg/L	0.10000		101	80-120			
Boron	1.04	0.0400	0.0064	mg/L	1.0000		104	80-120			
Cadmium	0.107	0.0010	0.00007	mg/L	0.10000		107	80-120			
Calcium	1.04	0.500	0.0311	mg/L	1.0000		104	80-120			
Chromium	0.110	0.0100	0.0009	mg/L	0.10000		110	80-120			
Cobalt	0.108	0.0100	0.0005	mg/L	0.10000		108	80-120			
Copper	0.108	0.0250	0.0005	mg/L	0.10000		108	80-120			
Lead	0.104	0.0050	0.0001	mg/L	0.10000		104	80-120			
Molybdenum	0.109	0.0100	0.0017	mg/L	0.10000		109	80-120			
Nickel	0.109	0.0100	0.0006	mg/L	0.10000		109	80-120			
Selenium	0.103	0.0100	0.0010	mg/L	0.10000		103	80-120			
Silver	0.106	0.0100	0.0005	mg/L	0.10000		106	80-120			
Thallium	0.103	0.0010	0.0002	mg/L	0.10000		103	80-120			
Vanadium	0.112	0.0100	0.0071	mg/L	0.10000		112	80-120			
Zinc	0.112	0.0100	0.0021	mg/L	0.10000		111	80-120			
Lithium	0.102	0.0500	0.0021	mg/L	0.10000		102	80-120			
Liununi	0.102	0.0000	0.0021	mg/L	0.10000		102	00-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AZL0037

December 21, 2016

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6120087 - EPA 3005A											
Matrix Spike (6120087-MS1)		Sou	ırce: AZL003	37-01		Prepar	ed: 12/06/	16 Analyz	ed: 12/08/	16	
Antimony	0.107	0.0030	0.0008	mg/L	0.10000	ND	107	75-125			
Arsenic	0.102	0.0050	0.0016	mg/L	0.10000	ND	102	75-125			
Barium	0.116	0.0100	0.0004	mg/L	0.10000	0.0148	101	75-125			
Beryllium	0.102	0.0030	0.00008	mg/L	0.10000	ND	102	75-125			
Boron	1.84	0.200	0.0321	mg/L	1.0000	0.813	102	75-125			
Cadmium	0.105	0.0010	0.00007	mg/L	0.10000	ND	105	75-125			
Calcium	14.4	2.50	0.155	mg/L	1.0000	13.4	102	75-125			QM-02
Chromium	0.111	0.0100	0.0009	mg/L	0.10000	0.0013	110	75-125			
Cobalt	0.104	0.0100	0.0005	mg/L	0.10000	0.0008	103	75-125			
Copper	0.103	0.0250	0.0005	mg/L	0.10000	ND	103	75-125			
Lead	0.103	0.0050	0.0001	mg/L	0.10000	ND	103	75-125			
Molybdenum	0.107	0.0100	0.0017	mg/L	0.10000	ND	107	75-125			
Nickel	0.106	0.0100	0.0006	mg/L	0.10000	0.0022	104	75-125			
Selenium	0.106	0.0100	0.0010	mg/L	0.10000	0.0046	101	75-125			
Silver	0.101	0.0100	0.0005	mg/L	0.10000	ND	101	75-125			
Thallium	0.102	0.0010	0.0002	mg/L	0.10000	ND	102	75-125			
Vanadium	0.111	0.0100	0.0071	mg/L	0.10000	ND	111	75-125			
Zinc	0.101	0.0100	0.0021	mg/L	0.10000	ND	101	75-125			
Lithium	0.101	0.0500	0.0021	mg/L	0.10000	ND	101	75-125			
Matrix Spike Dup (6120087-MSD1)		Soi	ırce: AZL003	37-01		Prepar	ed: 12/06/	16 Analyz	ed: 12/08/	16	
Antimony	0.113	0.0030	0.0008	mg/L	0.10000	ND.	113	75-125	5	20	
Arsenic	0.101	0.0050	0.0016	mg/L	0.10000	ND	101	75-125	1	20	
Barium	0.121	0.0100	0.0004	mg/L	0.10000	0.0148	106	75-125	4	20	
Beryllium	0.105	0.0030	0.00008	mg/L	0.10000	ND	105	75-125	2	20	
Boron	1.85	0.200	0.0321	mg/L	1.0000	0.813	104	75-125	0.8	20	
Cadmium	0.109	0.0010	0.00007	mg/L	0.10000	ND	109	75-125	3	20	
Calcium	14.4	2.50	0.155	mg/L	1.0000	13.4	103	75-125	0.02	20	QM-02
Chromium	0.110	0.0100	0.0009	mg/L	0.10000	0.0013	109	75-125	0.4	20	
Cobalt	0.107	0.0100	0.0005	mg/L	0.10000	0.0008	106	75-125	2	20	
Copper	0.104	0.0250	0.0005	mg/L	0.10000	ND	104	75-125	1	20	
Lead	0.105	0.0050	0.0001	mg/L	0.10000	ND	105	75-125	2	20	
Molybdenum	0.112	0.0100	0.0017	mg/L	0.10000	ND	112	75-125	5	20	
Nickel	0.106	0.0100	0.0006	mg/L	0.10000	0.0022	103	75-125	0.3	20	
Selenium	0.107	0.0100	0.0010	mg/L	0.10000	0.0046	102	75-125	0.9	20	
Silver	0.108	0.0100	0.0005	mg/L	0.10000	ND	108	75-125	6	20	
Thallium	0.106	0.0010	0.0002	mg/L	0.10000	ND	106	75-125	3	20	
Vanadium	0.112	0.0100	0.0071	mg/L	0.10000	ND	112	75-125	1	20	
Zinc	0.105	0.0100	0.0021	mg/L	0.10000	ND	105	75-125 75-125	3	20	
Lithium	0.106	0.0500	0.0021	mg/L	0.10000	ND	106	75-125 75-125	4	20	
Liunani	300	0.0000	0.0021	mg/L	0.10000	יאט	100	10 120	-7	20	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 21, 2016

Report No.: AZL0037

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6120087 - EPA 3005A											
Post Spike (6120087-PS1)		Soi	urce: AZL003	37-01		Prepare	ed: 12/06/	16 Analyz	ed: 12/08/	16	
Antimony	104			ug/L	100.00	0.0777	104	80-120			
Arsenic	103			ug/L	100.00	0.883	102	80-120			
Barium	120			ug/L	100.00	14.8	105	80-120			
Beryllium	101			ug/L	100.00	0.0120	101	80-120			
Boron	1880			ug/L	1000.0	813	106	80-120			
Cadmium	107			ug/L	100.00	0.0456	107	80-120			
Calcium	14200			ug/L	1000.0	13400	77	80-120			QM-02
Chromium	113			ug/L	100.00	1.25	112	80-120			
Cobalt	108			ug/L	100.00	0.832	107	80-120			
Copper	108			ug/L	100.00	0.250	107	80-120			
Lead	103			ug/L	100.00	0.0154	103	80-120			
Molybdenum	109			ug/L	100.00	0.0644	109	80-120			
Nickel	111			ug/L	100.00	2.16	109	80-120			
Selenium	109			ug/L	100.00	4.63	105	80-120			
Silver	105			ug/L	100.00	0.0030	105	80-120			
Thallium	104			ug/L	100.00	0.0519	104	80-120			
Vanadium	113			ug/L	100.00	1.73	112	80-120			
Zinc	105			ug/L	100.00	1.76	103	80-120			
Lithium	102			ug/L	100.00	0.977	101	80-120			
Batch 6120161 - EPA 7470A											
Blank (6120161-BLK1)						Prepare	ed & Analy	yzed: 12/07	7/16		
Mercury	ND	0.00050	0.000041	mg/L							
LCS (6120161-BS1)						Prepare	ed & Analy	yzed: 12/07	7/16		
Mercury	0.00239	0.00050	0.000041	mg/L	2.5000E-3		95	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 21, 2016

Report No.: AZL0037

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6120161 - EPA 7470A											
Matrix Spike (6120161-MS1)		Sou	urce: AZL00	33-05		Prepare	ed & Analy	zed: 12/07	7/16		
Mercury	0.00226	0.00050	0.000041	mg/L	2.5000E-3	ND	91	75-125			
Matrix Spike Dup (6120161-MSD1)		Sou	urce: AZL00	33-05		Prepare	ed & Analy	/zed: 12/07	7/16		
Mercury	0.00233	0.00050	0.000041	mg/L	2.5000E-3	ND	93	75-125	3	20	
Post Spike (6120161-PS1)		Sou	urce: AZL00	33-05		Prepare	ed & Analy	/zed: 12/07	7/16		
Mercury	1.61			ug/L	1.6667	0.00663	96	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham December 21, 2016

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QR-03** The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to suspected matrix interference and/or non-homogeneous sample matrix.
- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).
 - **B-01** Analyte was detected in the associated method blank at an estimated level equal to or greater than the MDL. Sample values reported as greater than the MDL and less than 10x the method blank value are reported as estimated values.

Note: Unless otherwise noted, all results are reported on an as received basis.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

December 21, 2016

Report Notes

Per client request 12/15/2016, GWC-5R (AZL0037-04) data for sulfate was reassessed. BMcD

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

Ь

PAGE:

5 - NaOH/ZnAc, ≤6°C 7 - ≤6°C not frozen 6 - Na₂S₂O₃, ≤6°C 2 - H₂SO₄, ≤6°C 3 - HNO₃ REMARKS/ADDITIONAL INFORMATION 4 - NaOH, ≤6°C P - PRODUCT 1- HCl. ≤6°C SLUDGE L- LIQUID SD - SOLID A- AIR *MATRIX CODES ŝ **DRINKING WATER** SW - SURFACE WATER GW - GROUNDWATER AW - WASTEWATER ST - STORM WATER A - AMBER GLASS G - CLEAR GLASS Entered into LIMS: V - VOA VIAL S - STERILE P - PLASTIC O - OTHER W- WATER Tracking # LAB#: 97 3 **__ < 0** - 0 OTHER DATE/TIME: 12-1-16 DATE/TIME: OLENT / ANALYSIS REQUESTED COURIER # of Coolers (0ZE6/91E6 9#8-MS) 4 Radium 226 & 228 USPS Broken Not Present (EPA 300.0 & SM 2540C) CI, F, 50, & TDS SAMPLE SHIPPED VIA: UPS FED-EX (OTAT\0S08 A93) RELINQUISHED BY: RELINQUISHED BY: ۵ VI & III .qqA alateM CONTAINER TYPE PRESERVATION. ф # 5 TM M STORAGE PHASE & CCR laburch@southernco.com SAMPLE IDENTIFICATION 1406 Heath McCorkle GWC-3R クシークスク GWC-5R Maria Padilla DATE/TIME: 16 Dup-Semi-Annual Monitoring DATE/TIME: Plant Yates Gypsum Storage CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER PO#. ပ္ပ 0 K K E 6 7 psu m Acc 0 2 0 REQUESTED COMPLETION DATE: MATRIX CODE* <u>ა</u> 241 Ralph McGill Blvd SE B10185 3 3 カラ Lauren Petty SAMPLED BY AND TITLE PROJECT NAME/STATE 72.15 YAFES Collection 1810 1305 Atlanta, GA 30308 **CLIENT NAME** Georgia Power EIVED BY 404-506-7239 REPORT TO PROJECT #: 4-0-W 11-20-16 37-02-11 11-30-16 11-1-11 Collection DATE Page 16 of 17

(,-,

l Yates State constituents: Sb. As. Ba, Be, Cd. Gr. Co. Cu. Pb. Hg. NPBat 水町eB. 以OCOCypsum Storage.xtsx

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 12/21/2016 1:41:47PM

Attn: Mr. Joju Abraham

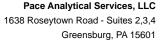
Client: Georgia Power

Project: CCR Event Work Order: AZL0037

Date Received: 12/01/16 16:40 Logged In By: Mohammad M. Rahman

OBSERVATIONS

#Samples: 4 **#Containers:** 13


Minimum Temp(C): 1.0 Maximum Temp(C): 1.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

Per client request 12/15/2016, GWC-5R (AZL0037-04) data for sulfate was reassessed. BMcD

(724)850-5600

January 11, 2017

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: Plant Yates

Pace Project No.: 30204306

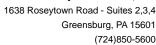
Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on December 05, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins


Sugnely Sellins

jacquelyn.collins@pacelabs.com

Project Manager

Enclosures

CERTIFICATIONS

Project: Plant Yates
Pace Project No.: 30204306

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

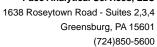
Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082
Nebraska Certification #: NE-05-29-14
Nevada Certification #: PA014572015-1
New Hampshire/TNI Certification #: 2976
New Jersey/TNI Certification #: PA 051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Oregon/TNI Certification #: PA200002
Pennsylvania/TNI Certification #: 65-00282


Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213

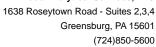
Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Certification

Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

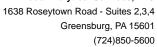
Project: Plant Yates
Pace Project No.: 30204306


Lab ID	Sample ID	Matrix	Date Collected	Date Received
30204306001	GWC-4R	Water	11/30/16 12:15	12/05/16 09:45
30204306002	GWC-3R	Water	11/30/16 15:10	12/05/16 09:45
30204306003	Dup-1	Water	11/30/16 00:00	12/05/16 09:45
30204306004	GWC-5R	Water	12/01/16 13:05	12/05/16 09:45

SAMPLE ANALYTE COUNT

Project: Plant Yates
Pace Project No.: 30204306

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30204306001	GWC-4R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30204306002	GWC-3R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30204306003	Dup-1	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30204306004	GWC-5R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Yates
Pace Project No.: 30204306

Sample: GWC-4R	Lab ID: 3020430	6001 Collected: 11/30/16 12:15	Received:	12/05/16 09:45 Matrix: Water	
PWS:	Site ID:	Sample Type:			
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed CAS No.	Qual
Radium-226	EPA 9315	0.0305 ± 0.116 (0.287) C:106% T:NA	pCi/L	12/12/16 09:39 13982-63-3	
Radium-228	EPA 9320	0.446 ± 0.450 (0.932) C:67% T:82%	pCi/L	01/08/17 13:26 15262-20-1	
Total Radium	Total Radium Calculation	0.477 ± 0.566 (1.22)	pCi/L	01/11/17 15:36 7440-14-4	
Sample: GWC-3R	Lab ID: 3020430	6002 Collected: 11/30/16 15:10	Received:	12/05/16 09:45 Matrix: Water	
PWS:	Site ID:	Sample Type:			
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed CAS No.	Qual
Radium-226	EPA 9315	0.0236 ± 0.100 (0.254) C:100% T:NA	pCi/L	12/12/16 09:39 13982-63-3	
Radium-228	EPA 9320	-0.467 ± 0.365 (0.951) C:65% T:77%	pCi/L	01/08/17 13:27 15262-20-1	
Total Radium	Total Radium Calculation	0.0236 ± 0.465 (1.21)	pCi/L	01/11/17 15:36 7440-14-4	
Sample: Dup-1	Lab ID: 3020430	6003 Collected: 11/30/16 00:00	Received:	12/05/16 09:45 Matrix: Water	
PWS:	Site ID:	Sample Type:			
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed CAS No.	Qual
Radium-226	EPA 9315	-0.0198 ± 0.134 (0.368) C:83% T:NA	pCi/L	12/19/16 09:55 13982-63-3	
Radium-228	EPA 9320	0.0739 ± 0.389 (0.890) C:70% T:73%	pCi/L	01/08/17 13:27 15262-20-1	
Total Radium	Total Radium Calculation	0.0739 ± 0.523 (1.26)	pCi/L	01/11/17 15:36 7440-14-4	
Sample: GWC-5R	Lab ID: 3020430	6004 Collected: 12/01/16 13:05	Received:	12/05/16 09:45 Matrix: Water	
PWS:	Site ID:	Sample Type:			
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed CAS No.	Qual
Radium-226	EPA 9315	0.0210 ± 0.0911 (0.235) C:95% T:NA	pCi/L	12/19/16 10:14 13982-63-3	
Radium-228	EPA 9320	0.0378 ± 0.364 (0.840) C:72% T:78%	pCi/L	01/08/17 13:27 15262-20-1	
Total Radium	Total Radium Calculation	0.0588 ± 0.455 (1.08)	pCi/L	01/11/17 15:36 7440-14-4	

Project: Plant Yates
Pace Project No.: 30204306

_____*·*

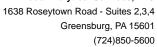
QC Batch Method:

QC Batch: 242578 Analysis Method:

Analysis Description: 9315 Total Radium

EPA 9315

Associated Lab Samples: 30204306001, 30204306002


EPA 9315

METHOD BLANK: 1192329 Matrix: Water

Associated Lab Samples: 30204306001, 30204306002

ParameterAct \pm Unc (MDC) Carr TracUnitsAnalyzedQualifiersRadium-2260.00382 \pm 0.0709 (0.204) C:90% T:NApCi/L12/12/16 09:38

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Pace Project No.: 30204306

QC Batch:

243000

Analysis Method:

EPA 9315

QC Batch Method:

EPA 9315

Analysis Description:

9315 Total Radium

Associated Lab Samples:

METHOD BLANK: 1195272

30204306003, 30204306004

Matrix: Water

Associated Lab Samples:

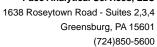
30204306003, 30204306004

Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed


Qualifiers

Radium-226

0.0698 ± 0.0862 (0.168) C:97% T:NA

pCi/L 12/19/16 09:55

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates
Pace Project No.: 30204306

QC Batch: 243002 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30204306001, 30204306002, 30204306003, 30204306004

METHOD BLANK: 1195278 Matrix: Water
Associated Lab Samples: 30204306001, 30204306002, 30204306003, 30204306004

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.184 ± 0.381 (0.841) C:71% T:77%
 pCi/L
 01/08/17 13:26

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: Plant Yates
Pace Project No.: 30204306

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 01/11/2017 05:21 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WO#:30204306

Owner Received Date:

Plant Yates

Workorder Name:

Workorder: AZL0037

Chain of Custody

Pace Analytical "

LAB USE ONLY T 000 8 002 Results Requested By: 1/3/2017 8 Comments Requested Analysis Date/Time Radium 226, 228, Total Preserved Containers EONH Matrix 8€ 8€ MΘ Ø Received By AZL0037-03 AZL0037-04 AZL0037-02 AZL0037-01 Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Collect Date/Time Lab ID Date/Time Pace - Pittsburgh Subcontract To: 11/30/2016 12:15 11/30/2016 15:10 11/30/2016 0:00 12/1/2016 13:05 Stes. 2,3,4 Sample Туре G Ō G Peachtree Corners, GA 30092 110 Technology Parkway Pace Analytical Atlanta Transfers | Released By Phone (770)-734-4200 Betsy McDaniel Item Sample ID **GWC-4R** GWC-3R **GWC-5R** Dup-1 Report To: 10 4 9 ∞

Received on Ice Y or W Sample Intact Y or N	name of the sampling site, sampler's name and signature may not be provided on this COC	the owner laboratory.
Cooler lemperature on Receipt Coloredy Seal Y or (N)	***In order to maintain client confidentiality, location/name of the sampling site, samp	This chain of custody is considered complete as is since this information is available in the owner laboratory.

125-13 0245

\$652 43

Friday, June 17, 2016 11:01:34 AM est of the second of the

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

0 3020430

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092

Face Analytical °

CHAIN OF CUSTODY RECORD

CLIENT NAME

(770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

P

PAGE:

5 - NaOH/ZnAc, <6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen 3 - HNO₃ 4 - NaOH, ≤6°C REMARKS/ADDITIONAL INFORMATION 2 - H₂SO₄, ≤6°C P- PRODUCT PRESERVATION 1 - HCl, ≤6°C St. SLUDGE L- UQUID SD - SOLID A- AIR "MATRIX CODES; OR LAB USE ON 'n DW - DRINKING WATER SW - SURFACE WATER GW - GROUNDWATER ST - STORM WATER MW - WASTEWATER A - AMBER GLASS G - CLEAR GLASS V - VOA VIAL CONTAINER TYPE Enferred Into LIMS: S - STERILE O - OTHER P - PLASTIC W- WATER Tracking #: LAB#: 9 60 -0 NUMBER OTHER DATE/TIME: 12~1-16 DATE/TIME: SIENT SIENT ANALYSIS REQUESTED COURIER # of Coolers (0ZE6/91E6 9F8-MS) N Redlum 226 & 228 USPS Custody Seat. ۵. (EPA 300.0 & SM 2540C) CI, F, 50, & TDS SAMPLE SHIPPED VIA UPS FED-EX RELINQUISHED BY: RELINQUISHED BY: (EPA 6020/7470) ۵. VI & III .qqA alateM CONTAINER TYPE PRESERVATION. # ₩ OOZH 3 <-ZWQO M MI STOUR DE PHASE & CCR laburch@southemco.com SAMPLE IDENTIFICATION 1406 Heath McCorkle 08C-3R 5WC-4R 2 Maria Padilla DATE/TIME: 16 Dap-らるの PATE/NE DATEMIME Plant Yates Gypsum Storage CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER PO# ပ္ပ B A A G GYPSUM ACC O Σ Φ REQUESTED COMPLETION DATE: MATRIX CODE 3 3 E 3 241 Ralph McGill Blvd SE B10185 Lauren Petty PROJECT NAME/STATE: YAFES Collection 72.15 15/10 5.00 P HWE! SAMPLED BY AND Manta, GA 30308 404-506-7239 REPORT TO: ÆD BY: Georgia Powe PROJECT # 44-0-W 11-20-16 Callection 71-1-21 39-02-11 11-30-16 DATE

Plant Vates State constituents. Sb. As. Ba. Be. Cd. Gr. Co. Cu. Pb. Ap. NRBat. Agrag. 1000 Cypsum Storage. Asx

1,0

Page 11 of 15

Sample Condition Upon Receipt Pittsburgh

30204306

Dample Condition open 1100	، عجر، ت	,	J 4.1. E	, .			v
Pace Analytical Client Name:	<u></u> j	Pace	Ga	evej a	Project#_	302043	12-5-11 16 3 KEH
Courier: 🗹 Fed Ex 🗆 UPS 🗆 USPS 🗆 Clie Tracking #: 少か2 ち100 7063	ent 🗆	Comm	nercial	Pace Other	······	A STATE OF THE STA	1
Custody Seal on Cooler/Box Present:		no	Sea	ls intact:	□ no	1,300	•
Thermometer Used		of Ice	: We	et Blue (None)			
	NA	. C	Cor	rection Factor <u>: WA</u>	°C Final 7	emp: NA °C	
Temp should be above freezing to 6°C		_					
				<u></u>	Date and Ir contents:	nitials of person examining イタチー 12-5-14	
Comments:	Yes	No	N/A	1			
Chain of Custody Present:	/		ļ	1.			_
Chain of Custody Filled Out:	1	`		2.			
Chain of Custody Relinquished:	1			3.			
Sampler Name & Signature on COC:	1/	<u> </u>		4.			_
Sample Labels match COC:	/	<u> </u>		5.			
-includes date/time/ID/Analysis Matrix:_ 从	<u> </u>	,	-				_
Samples Arrived within Hold Time:				6.			
Short Hold Time Analysis (<72hr remaining):		1		7.			
Rush Turn Around Time Requested:		1		8.			
Sufficient Volume:	/			9.			_
Correct Containers Used:	/			10.			
-Pace Containers Used:		/					
Containers Intact:				11.			_
Filtered volume received for Dissolved tests			V	12.			_
All containers needing preservation have been checked,	/		_	13. pH LZ			
All containers needing preservation are found to be in compliance with EPA recommendation.	\checkmark						
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when completed	Date/time of preservation		
exceptions. VOA, collidini, roo, oad, rinenoics				Lot # of added	12.000		
	1 . 1			preservative			_
Headspace in VOA Vials (>6mm):			V	14.			-
Trip Blank Present:		-	V	15.			
Trip Blank Custody Seals Present	1		V	Initial when			4
Rad Aqueous Samples Screened > 0.5 mrem/hr				Initial when completed:	Date: 12~5~/	16	
Client Notification/ Resolution: Person Contacted:		i	Դate/I	Гime:	Contacte	d By:	
Comments/ Resolution:		·	- 4.01				_
Commence (Cooldier)							_ _
							_

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Face Analytical"

Analyst Must Manually Enter All Fields Highlighted in Yellow.

		Sample Matrix Spike Control Assessment	Sample Collection Date:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	Spike uncertainty (calculated):	Sample Result:	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:
		٠												•		LCSD32848	12/12/2016	16-026	44.673	0.10	0.509	8.785	0.413	7.617	0.688	-2.85	86.71%	N/A	Pass
Ra-226	[AL	12/9/2016	32848	MO			1192329	0.004	0.071	0.204	0.11	A/N	Pass		LCSD (Y or N)?	LCS32848	12/12/2016	16-026	44.673	0.10	0.506	8.825	0.415	8.177	0.718	-1.53	92.66%	N/A	Pass
www.pacelabs.com Test:	Analyst	Date:	Worklist	Xatrix		Method Blank Assessment	MB Sample ID	MB concentration:	M/B Counting Uncertainty:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs. MDC:	The state of the s	Laboratory Control Sample Assessment		Count Date:	Spike I.D.:	Spike Concentration (pCi/mL):	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCI/L, g, F):	LCS/LCSD Counting Uncertainty (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:

Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:
ate	<u>*=</u>		‡	· >'	_		ļ]	
Enter Duplicate	sample IDs if	other than	LCS/LCSD in the	space below.						

Matrix Spike/Matrix Spike Duplicate Sample Assessment

_CSD32848 LCS32848

Sample I.D.:

Duplicate Sample Assessment

Duplicate Sample I.D.

8.177 0.718 7.617

Sample Result Counting Uncertainty (pC/I/L, g, F):
Sample Duplicate Result (pC/I/L, g, F):
Sample Duplicate Result (pC/I/L, g, F):
Are sample and/or duplicate results below MDC?

NO 1.105 7.10% 0.688

ΑX

Duplicate RPD:

Duplicate Status vs Numerical Indicator: Duplicate Numerical Performance Indicator:

Duplicate Status vs RPD;

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

1 of 1

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Sample MS I.D. Sample MSD I.D. Spike 1.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):

12/16/2016 Ra-226 Test Analyst

Face Analytical"

32909 DW Date: Worklist: Matrix:

0.085 0.168 1.60 N/A Pass MB Sample ID MB concentration: M/B Counting Uncertainty: MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

Method Blank Assessmen

Laboratory Control Sample Assessment

LCSD (Y or N

LCSD32909 12/19/2016 LCS32909 16-026 44.672 0,10 Count Date: Spike Concentration (pCi/mL): Spike I.D.: Volume Used (mL)

Sample Matrix Spike Result

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MS Numerical Performance Indicator: MSD Numerical Performance Indicator.

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

MS Percent Recovery.

MSD Percent Recovery

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery

MSD Status vs Recover

Matrix Spike/Matrix Spike Duplicate Sample Assessment

Sample Result Counting Uncertainty (pCi/L, g, F):

Sample Result

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): Spike uncertainty (calculated):

MS Aliquot (L, g, F)

0.506 0.415 LCS/LCSD Counting Uncertainty (pCi/L, g, F): Uncertainty (Calculated): Result (pCI/L, g, F): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F):

Percent Recovery: Numerical Performance Indicator: Status vs Numerical Indicator: Status vs Recovery

Matrix Spike Duplicate Result Counting Uncertainty (pCI/L, g, F): Matrix Spike Result Counting Uncertainty (pCi/L., g, F): CS/LCSD in the **Enter Duplicate** sample IDs if space below. other than 30204306004DUP 30204306004 0.091 0.129 0.143 0.021

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessmen

Sample Result (pCi/L, g, F):

Sample Result Counting Uncertainty (pCi/L., g, F):

See Below ## -1.252 144.06% N/A Fail*** Duplicate RPD: Sample Duplicate Result (pCl/L, g, F): Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): Are sample and/or duplicate results below MDC? Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD:

MS/ MSD Duplicate RPD:

MS/ MSD Duplicate Status vs RPD

Sample Matrix Spike Duplicate Result Duplicate Numerical Performance Indicator MS/ MSD Duplicate Status vs Numerical Indicator:

Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Result:

> "are below the MDC. ## Evaluation of duplicate precision is not applicable if either the sample or duplicate res

Comments:

***Batch must be re-prepped due to unacceptable precision.

Printed: 1/11/2017 4:46 PM TAR DW QC

Quality Control Sample Performance Assessment

Pace Analytical

Ra-228

Test:

JLW

Analyst:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD Decay Corrected Spike Concentration (pCi/mL): Sample Matrix Spike Control Assessment 2/28/2016 32911 DW 0.379 0.841 0.95 0.184 N/A Pass Date: Worklist: Matrix: MB concentration: M/B Counting Uncertainty: MB Sample ID MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: Method Blank Assessment

Sample MSD I.D.

Sample Collection Date: Sample I.D. Sample MS I.D. Spike I.D.:

Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MS Status vs Recovery: Spike Volume Used in MS (mL): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L. g. F): MSD Target Conc. (pCi/L, g, F): Spike uncertainty (calculated): Sample Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator: MSD Numerical Performance Indicator: MS Percent Recovery: MSD Percent Recovery: Spike Volume Used in MSD (mL): MS Aliquot (L, g, F); MSD Status vs Recovery N LCSD32911

3D (Y or N); LCS32911

Laboratory Control Sample Assessment

1/8/2017

Count Date: Spike 1.D.:

25.614 0.20 0.820 6.247 0.450 5.528 0.698

Aliquot Volume (L, g, F): Target Conc. (pCI/L, g, F): Uncertainty (Calculated): Result (pCi/L, g, F):

Spike Concentration (pCi/mL): Volume Used (mL): LCS/LCSD Counting Uncertainty (pCi/L, g, F):

Numerical Performance Indicator Status vs Numerical Indicator Status vs Recovery

88.48%

Percent Recovery.

Matrix Spike/Matrix Spike Duplicate Sample Assessment ## Evaluation of duplicate precision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable if either the sample or duplicate recision is not applicable recision is not applicable recision reci Enter Duplicate the space below LCS/LCSD in sample IDs if other than 30204292009DUP 30204292009 See Below ## 4.855 98.30% N/A Fail* 0.749 1.084 Sample I.D.: Sample Result (pC/I/L, g, F):
Sample Result Counting Uncertainty (pC/I/L, g, F):
Sample Duplicate Result (pC/I/L, g, F): Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Sample I.D. Duplicate Numerical Performance Indicator: Duplicate RPD: Duplicate Status vs Numerical Indicator: Are sample and/or duplicate results below MDC? Duplicate Sample Assessmen

(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:
MS/ MSD Duplicate Status vs Numerical Indicator:
MS/ MSD Duplicate Status vs RPD:

Sample Matrix Spike Result:

Sample I.D. Sample MS I.D. Sample MSD I.D. Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

Duplicate Numerical Performance Indicator:

***Batch must be re-prepped due to unacceptable precision.

Comments:

1 of 1

Printed: 1/11/2017 4:47 PM Ra-228 NELAC DW2

Date: 2016-11-28 12:35:37

Project Information: Operator Name Company Name Project Name Site Name Latitude Longitude Sonde SN	Chris Parker Atlantic Coast Consulting, Inc. Plant Yates Gypsum Storage P lant Yates - Gysum Storage 0° 0' 0" 0° 0' 0" 466058	Pump Information: Pump Model/Type Tubing Type Tubing Diameter Tubing Length	Bladder Poly .375 in 55 ft
Turbidity Make/Model	Hach 2100Q	Pump placement from TOC	48 ft
Well Information: Well ID Well diameter Well Total Depth Screen Length Depth to Water	GWA-2 2 in 52.13 ft 10 ft 39.28 ft	Pumping Information: Final Pumping Rate Total System Volume Calculated Sample Rate Stabilization Drawdown Total Volume Pumped	150 mL/min 1.679525 L 300 sec 12 in 3.9 L

Low-Flow	Sampling	Stabilization	Summary
	- :		

LOW 1 10W OC	Time a	•		m I I	Cm CanalC	DTW #	DDO == = //	ORP mV	
	Time	Elapsed	Temp C	рН	spcona µs	/cmTurb NTU	DTW ft	RDO mg/L	ORP MV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	12:12:09	600.02	17.81	6.34	196.46	1.08	40.20	0.78	-19.32
Last 5	12:17:09	900.02	17.81	6.28	189.52	1.43	40.20	0.77	-2.18
Last 5	12:22:09	1200.02	17.90	6.29	185.23	0.93	40.30	0.68	15.16
Last 5	12:27:09	1500.02	17.98	6.26	184.01	0.68	40.30	0.61	31.42
Last 5	12:32:09	1800.02	18.02	6.23	184.14	0.61	40.30	0.55	46.28
Variance 0			0.09	0.01	-4.29			-0.09	17.34
Variance 1			0.08	-0.03	-1.22			-0.07	16.26
Variance 2			0.04	-0.03	0.13			-0.05	14.86

Notes

Collected at 12:35. Cloudy 60s

Date: 2016-11-29 12:25:28

Project Information:

Operator Name

Chris Parker

Pump Information:

Pump Model/Type

Operator NameChris ParkerPump Model/Typeperi pumpCompany NameAtlantic Coast Consulting, Inc.Tubing TypePolyProject NamePlant Yates Gypsum StorageTubing Diameter.17 inSite NamePlant Yates-Gypsum StorageTubing Length40 ft

Latitude 33° 27' 55.94" Longitude -84° -53' -53.56"

Sonde SN 466058

Turbidity Make/Model Hach 2100Q Pump placement from TOC 32 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-1R 150 mL/min Well diameter Total System Volume 0.2685369 L 2 in Calculated Sample Rate Well Total Depth 36.33 ft 300 sec Stabilization Drawdown Screen Length 10 ft 17 in Depth to Water 28.15 ft **Total Volume Pumped** 15.5 L

Low-Flow Sampling Stabilization Summary

Time		Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	11:59:30	5399.90	17.13	5.37	882.27	0.90	29.70	6.51	106.95
Last 5	12:04:30	5699.90	17.19	5.37	879.92	0.88	29.70	6.51	106.67
Last 5	12:09:30	5999.90	17.20	5.37	877.43	1.33	29.70	6.49	106.43
Last 5	12:14:30	6299.90	17.19	5.37	875.78	1.59	29.70	6.48	106.17
Last 5	12:19:30	6599.90	17.28	5.37	875.04	1.38	29.70	6.49	106.03
Variance 0			0.01	0.00	-2.49			-0.02	-0.25
Variance 1			-0.01	0.00	-1.66			-0.00	-0.26
Variance 2			0.09	0.00	-0.74			0.01	-0.14

Notes

Grab Samples

Collected at 15:40; Cloudy 60s

Date: 2016-11-28 15:39:41

Stabilization Drawdown Total Volume Pumped 2 in

12 L

Project Information: Operator Name Company Name Project Name Site Name Latitude Longitude	Chris Parker Atlantic Coast Consulting, Inc. Plant Yates Gypsum Storage Plant Yates - Ash Ponds 0° 0' 0" 0° 0' 0"	Pump Information: Pump Model/Type Tubing Type Tubing Diameter Tubing Length	Bladder Poly .375 in 45 ft
Sonde SN Turbidity Make/Model	466058 Hach 2100Q	Pump placement from TOC	37.5 ft
Well Information: Well ID Well diameter Well Total Depth	GWC-2R 2 in 43.8 ft	Pumping Information: Final Pumping Rate Total System Volume Calculated Sample Rate	125 mL/min 1.462339 L 300 sec

10 ft 31.29 ft

Low-Flow Sa	ampling Stabiliz	zation Summary	1						
	Time	Elapsed	Temp C	рН	SpCond µS/	cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	15:15:01	5702.95	17.81	5.46	308.05	11.00	31.40	5.06	87.96
Last 5	15:20:01	6002.96	17.81	5.48	311.56	7.95	31.40	5.08	87.14
Last 5	15:25:01	6302.91	17.82	5.47	314.43	6.61	31.40	5.09	87.36
Last 5	15:30:01	6602.91	17.90	5.46	314.98	5.12	31.40	5.08	87.89
Last 5	15:35:01	6902.91	17.98	5.47	316.45	4.67	31.40	5.09	87.45
Variance 0			0.00	-0.01	2.87			0.01	0.22
Variance 1			0.08	-0.01	0.55			-0.00	0.53
Variance 2			0.08	0.01	1.47			0.01	-0.45

Notes

Collected at 13:40. Cloudy 60s

Grab Samples

Screen Length Depth to Water

Date: 2016-11-30 15:10:23

Operator Name Company Name Project Name Site Name Latitude Tubing TypePlant Yates Gypsum Storage Plant Yates-Gypsum Storage Plant Yates-Gypsum Storage Tubing Diameter Tubing Diameter Tubing Diameter Tubing Diameter Tubing Length45 ftLatitude Longitude Sonde SN Turbidity Make/Model-84° -53' -53.56" -84° -53' -53.56"Turbidity Make/ModelPump placement from TOC34 ftWell Information: Well ID Well diameter Well diameter Well Total Depth Screen Length Depth to WaterGWC-3R 2 in 38.34 ft 38.34 ft 38.34 ft Calculated Sample Rate Stabilization Drawdown 32.32 ft12 L	Project Information:		Pump Information:	
Project Name Site Name Plant Yates Gypsum Storage Site Name Latitude Longitude Sonde SN Turbidity Make/Model Well Information: Well ID Well diameter Well Gameter Well Total Depth Screen Length Plant Yates Gypsum Storage Plant Yates-Gypsum Storage Tubing Length 45 ft Turbing Length Pumping Length 45 ft Well Information: Pumping Information: Pumping Rate 120 mL/min Total System Volume 1.367339 L Calculated Sample Rate Stabilization Drawdown 4 in	Operator Name	Chris Parker	Pump Model/Type	Bladder
Site Name Plant Yates-Gypsum Storage Tubing Length 45 ft Latitude 33° 27' 55.94" Longitude -84° -53' -53.56" Sonde SN 466058 Turbidity Make/Model Hach 2100Q Pump placement from TOC 34 ft Well Information: Well ID GWC-3R Final Pumping Rate 120 mL/min Well diameter 2 in Total System Volume 1.367339 L Well Total Depth 38.34 ft Calculated Sample Rate 300 sec Screen Length 10 ft Stabilization Drawdown 4 in	Company Name	Atlantic Coast Consulting, Inc.	Tubing Type	Poly
Latitude 33° 27' 55.94" Longitude -84° -53' -53.56" Sonde SN 466058 Turbidity Make/Model Hach 2100Q Pump placement from TOC 34 ft Well Information: Well ID GWC-3R Final Pumping Rate 120 mL/min Well diameter 2 in Total System Volume 1.367339 L Well Total Depth 38.34 ft Calculated Sample Rate 300 sec Screen Length 10 ft Stabilization Drawdown 4 in	Project Name			.375 in
Longitude -84° -53' -53.56" Sonde SN 466058 Turbidity Make/Model Hach 2100Q Pump placement from TOC 34 ft Well Information: Pumping Information: Well ID GWC-3R Final Pumping Rate 120 mL/min Well diameter 2 in Total System Volume 1.367339 L Well Total Depth 38.34 ft Calculated Sample Rate 300 sec Screen Length 10 ft Stabilization Drawdown 4 in	Site Name	Plant Yates-Gypsum Storage	Tubing Length	45 ft
Sonde SN Turbidity Make/Model Hach 2100Q Pump placement from TOC 34 ft Well Information: Well ID GWC-3R Final Pumping Rate 120 mL/min Well diameter 2 in Total System Volume 1.367339 L Well Total Depth 38.34 ft Calculated Sample Rate 300 sec Screen Length 10 ft Stabilization Drawdown 4 in	Latitude	33° 27' 55.94"		
Turbidity Make/Model Hach 2100Q Pump placement from TOC 34 ft Well Information: Well ID GWC-3R Final Pumping Rate 120 mL/min Well diameter 2 in Total System Volume 1.367339 L Well Total Depth 38.34 ft Calculated Sample Rate 300 sec Screen Length 10 ft Stabilization Drawdown 4 in	Longitude	-84° -53' -53.56"		
Well Information: Well ID GWC-3R Final Pumping Rate 120 mL/min Well diameter 2 in Total System Volume 1.367339 L Well Total Depth 38.34 ft Calculated Sample Rate Screen Length 10 ft Stabilization Drawdown 4 in	Sonde SN	466058		
Well IDGWC-3RFinal Pumping Rate120 mL/minWell diameter2 inTotal System Volume1.367339 LWell Total Depth38.34 ftCalculated Sample Rate300 secScreen Length10 ftStabilization Drawdown4 in	Turbidity Make/Model	Hach 2100Q	Pump placement from TOC	34 ft
Well diameter2 inTotal System Volume1.367339 LWell Total Depth38.34 ftCalculated Sample Rate300 secScreen Length10 ftStabilization Drawdown4 in	Well Information:		Pumping Information:	
Well Total Depth38.34 ftCalculated Sample Rate300 secScreen Length10 ftStabilization Drawdown4 in	Well ID	GWC-3R	Final Pumping Rate	120 mL/min
Screen Length 10 ft Stabilization Drawdown 4 in	Well diameter	2 in	Total System Volume	1.367339 L
	Well Total Depth	38.34 ft	Calculated Sample Rate	300 sec
Depth to Water 32.32 ft Total Volume Pumped 12 L	Screen Length	10 ft	Stabilization Drawdown	4 in
	Depth to Water	32.32 ft	Total Volume Pumped	12 L

	Time	Elapsed	Temp C	рН	SpCond µS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	14:44:31	4799.94	17.68	5.12	231.34	2.68	32.60	6.97	105.65
Last 5	14:49:31	5099.92	17.71	5.14	229.68	2.78	32.60	6.96	105.18
Last 5	14:54:31	5399.93	17.71	5.13	227.31	2.51	32.60	6.96	104.61
Last 5	14:59:31	5699.92	17.68	5.14	226.77	1.87	32.60	6.96	104.41
Last 5	15:04:31	5999.92	17.72	5.13	225.82	1.95	32.60	6.95	103.98
Variance 0			-0.00	-0.00	-2.36			-0.00	-0.57
Variance 1			-0.03	0.01	-0.54			-0.01	-0.20
Variance 2			0.04	-0.01	-0.95			-0.01	-0.43

Notes Collected at 15:10. Rain, 60s.

Date: 2016-11-30 12:14:19

Project Information:

Operator Name

Chris Parker

Pump Information:

Pump Model/Type

Operator NameChris ParkerPump Model/Typeperi pumpCompany NameAtlantic Coast Consulting, Inc.Tubing TypepolyProject NamePlant Yates Gypsum StorageTubing Diameter.17 inSite NamePlant Yates-Gypsum StorageTubing Length35 ft

Latitude 33° 27' 55.94" Longitude -84° -53' -53.56"

Sonde SN 466058

Turbidity Make/Model Hach 2100Q Pump placement from TOC 26 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-4R 125 mL/min Well diameter Total System Volume 0.2462198 L 2 in Calculated Sample Rate Well Total Depth 31.02 ft 300 sec Stabilization Drawdown Screen Length 10 ft 4 in Depth to Water 19.42 ft **Total Volume Pumped** 15 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	11:50:37	5102.94	20.57	5.61	500.19	1.46	19.70	2.72	103.35
Last 5	11:55:41	5406.92	20.59	5.60	457.94	1.29	19.70	2.81	104.54
Last 5	12:00:41	5706.93	20.84	5.60	415.11	1.40	19.70	3.14	105.11
Last 5	12:05:44	6009.93	20.86	5.60	426.95	1.29	19.70	3.05	105.51
Last 5	12:10:45	6310.91	20.94	5.61	432.29	1.35	19.70	3.13	105.74
Variance 0			0.25	0.00	-42.83			0.33	0.56
Variance 1			0.02	-0.00	11.84			-0.10	0.40
Variance 2			0.08	0.01	5.33			0.08	0.23

Notes

Collected at 12:15. Cloudy 70s. DUP 1 here

Date: 2016-12-01 13:03:16

Project Information:		Pump Information:	
Operator Name	Chris Parker	Pump Model/Type	Bladder
Company Name	Atlantic Coast Consulting, Inc.	Tubing Type	Poly
Project Name	Plant Yates Gypsum Storage	Tubing Diameter	.375 in
Site Name	Plant Yates-Gypsum Storage	Tubing Length	47 ft
Latitude	33° 27' 55.94"		
Longitude	-84° -53' -53.56"		

Sonde SN 466058

Turbidity Make/Model Hach 2100Q Pump placement from TOC 37 ft

Well Information: Pumping Information:

Well ID GWC-5R Final Pumping Rate 120 mL/min Total System Volume Calculated Sample Rate Well diameter 2 in 1.410776 L Well Total Depth 42.78 ft 300 sec Screen Length 10 ft Stabilization Drawdown 15 in Depth to Water 35.07 ft **Total Volume Pumped** 17 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS/	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	12:40:19	7501.10	16.11	5.24	1792.60	6.08	36.50	6.49	104.98
Last 5	12:45:19	7800.89	16.56	5.24	1801.74	5.45	36.50	6.43	106.30
Last 5	12:50:19	8100.88	16.56	5.25	1792.24	5.04	36.50	6.40	106.20
Last 5	12:55:19	8400.87	16.43	5.24	1803.79	4.95	36.50	6.45	106.47
Last 5	13:00:19	8700.87	16.74	5.24	1795.48	4.59	36.60	6.43	106.45
Variance 0			-0.00	0.01	-9.50			-0.04	-0.10
Variance 1			-0.13	-0.01	11.56			0.05	0.27
Variance 2			0.32	0.00	-8.32			-0.01	-0.02

Notes

Collected at 13:05. Sunny 50s

Date: 2016-11-29 13:50:51

Project Information: Pump Information: Operator Name Chris Parker Pump Model/Type Company Name Atlantic Coast Consulting, Inc. Tubing Type Project Name Plant Yates Gypsum Storage Tubing Diameter Plant Yates-Gypsum Storage Tubing Length

Latitude 33° 27' 55.94"

-840 -53' -53.56" Longitude

Sonde SN 466058 Turbidity Make/Model Hach 2100Q

Pump placement from TOC 46 ft

Bladder

.375 in

Poly

55 ft

Pumping Information: Well Information:

Final Pumping Rate Well ID GWC-6R 110 mL/min Well diameter Total System Volume 1.584525 L 2 in Calculated Sample Rate Well Total Depth 51.87 ft 300 sec Stabilization Drawdown Screen Length 10 ft 5 in Depth to Water 3.8 L 39.17 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	13:27:04	600.03	17.34	5.93	686.40	1.75	39.50	5.83	100.37
Last 5	13:32:04	900.02	17.28	5.93	694.61	3.15	39.50	5.87	99.32
Last 5	13:37:04	1200.02	17.23	5.92	702.12	1.91	39.50	5.88	98.83
Last 5	13:42:04	1499.99	17.23	5.92	702.53	1.24	39.50	5.86	98.04
Last 5	13:47:04	1799.99	17.23	5.92	701.40	1.85	39.50	5.87	97.78
Variance 0			-0.05	-0.01	7.50			0.01	-0.50
Variance 1			0.00	0.01	0.41			-0.01	-0.79
Variance 2			-0.00	-0.00	-1.13			0.01	-0.26

Notes

Site Name

Collected at 13:50. Cloudy 60s

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AAB0887

March 07, 2017

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, LLC.

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

March 07, 2017

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GWA-2	AAB0887-01	Ground Water	02/22/17 11:20	02/24/17 15:30
GWC-2R	AAB0887-02	Ground Water	02/22/17 14:25	02/24/17 15:30
EB-1-2-22-17	AAB0887-03	Water	02/22/17 15:05	02/24/17 15:30
GWC-6R	AAB0887-04	Ground Water	02/23/17 10:40	02/24/17 15:30
FB-1-2-23-17	AAB0887-05	Water	02/23/17 12:30	02/24/17 15:30
GWC-3R	AAB0887-06	Ground Water	02/23/17 13:30	02/24/17 15:30
GWC-1R	AAB0887-07	Ground Water	02/23/17 13:55	02/24/17 15:30
GWC-4R	AAB0887-08	Ground Water	02/24/17 10:00	02/24/17 15:30
GWC-5R	AAB0887-09	Ground Water	02/24/17 11:50	02/24/17 15:30
Dup-1	AAB0887-10	Ground Water	02/23/17 00:00	02/24/17 15:30

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

Client ID: GWA-2

Date/Time Sampled: 2/22/2017 11:20:00AM

Matrix: Ground Water

March 07, 2017

Project: CCR Event

Lab Number ID: AAB0887-01

Date/Time Received: 2/24/2017 3:30:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	164	25	10	mg/L	SM 2540 C		1	02/27/17 15:40	02/27/17 15:40	7020794	JPT
Inorganic Anions											
Chloride	3.7	0.25	0.01	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 02:11	7030131	RLC
Fluoride	0.09	0.30	0.004	mg/L	EPA 300.0	J	1	03/03/17 17:21	03/04/17 02:11	7030131	RLC
Sulfate	43	1.0	0.09	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 02:11	7030131	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Barium	0.0607	0.0100	0.0004	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Boron	ND	0.0400	0.0064	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Calcium	10.4	2.50	0.155	mg/L	EPA 6020B		5	02/27/17 16:00	03/03/17 16:50	7020811	KLH
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Cobalt	0.0049	0.0100	0.0005	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Copper	0.0011	0.0250	0.0005	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Nickel	0.0051	0.0100	0.0006	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Selenium	ND	0.0100	0.0010	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Silver	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Vanadium	ND	0.0100	0.0071	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Zinc	0.0042	0.0100	0.0021	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:04	7020811	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	02/28/17 10:00	02/28/17 16:14	7020822	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Report No.: AAB0887 Client ID: GWC-2R

Lab Number ID: AAB0887-02

Date/Time Sampled: 2/22/2017 2:25:00PM

Date/Time Received: 2/24/2017 3:30:00PM

March 07, 2017

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	240	25	10	mg/L	SM 2540 C		1	02/27/17 15:40	02/27/17 15:40	7020794	JPT
Inorganic Anions											
Chloride	5.7	0.25	0.01	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 02:32	7030131	RLC
Fluoride	0.04	0.30	0.004	mg/L	EPA 300.0	J	1	03/03/17 17:21	03/04/17 02:32	7030131	RLC
Sulfate	100	5.0	0.46	mg/L	EPA 300.0		5	03/03/17 17:21	03/06/17 01:55	7030131	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Barium	0.0481	0.0100	0.0004	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Boron	0.0192	0.0400	0.0064	mg/L	EPA 6020B	J	1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Calcium	16.2	2.50	0.155	mg/L	EPA 6020B		5	03/01/17 09:10	03/06/17 18:42	7020867	CSW
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Cobalt	0.0184	0.0100	0.0005	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Copper	ND	0.0250	0.0005	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Nickel	0.0009	0.0100	0.0006	mg/L	EPA 6020B	J	1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Selenium	0.0015	0.0100	0.0010	mg/L	EPA 6020B	J	1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Silver	ND	0.0100	0.0005	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Vanadium	ND	0.0100	0.0071	mg/L	EPA 6020B		1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Zinc	0.0024	0.0100	0.0021	mg/L	EPA 6020B	J	1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Lithium	0.0036	0.0500	0.0021	mg/L	EPA 6020B	J	1	03/01/17 09:10	03/03/17 19:40	7020867	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	02/28/17 10:00	02/28/17 16:16	7020822	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

Client ID: EB-1-2-22-17

Date/Time Sampled: 2/22/2017 3:05:00PM

Matrix: Water

March 07, 2017

Project: CCR Event

Lab Number ID: AAB0887-03

Date/Time Received: 2/24/2017 3:30:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	03/01/17 11:45	03/01/17 11:45	7030016	JPT
Inorganic Anions											
Chloride	ND	0.25	0.01	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 02:52	7030131	RLC
Fluoride	0.04	0.30	0.004	mg/L	EPA 300.0	J	1	03/03/17 17:21	03/04/17 02:52	7030131	RLC
Sulfate	ND	1.0	0.09	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 02:52	7030131	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Barium	ND	0.0100	0.0004	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Boron	ND	0.0400	0.0064	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Calcium	ND	0.500	0.0311	mg/L	EPA 6020B		1	02/27/17 16:00	03/03/17 16:55	7020811	KLH
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Copper	ND	0.0250	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Nickel	ND	0.0100	0.0006	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Selenium	ND	0.0100	0.0010	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Silver	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Vanadium	ND	0.0100	0.0071	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Zinc	ND	0.0100	0.0021	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:16	7020811	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	02/28/17 10:00	02/28/17 16:19	7020822	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Lab Number ID: AAB0887-04

Date/Time Received: 2/24/2017 3:30:00PM

March 07, 2017

Report No.: AAB0887 Client ID: GWC-6R

Date/Time Sampled: 2/23/2017 10:40:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	614	25	10	mg/L	SM 2540 C		1	02/28/17 17:10	02/28/17 17:10	7020841	JPT
Inorganic Anions											
Chloride	4.4	0.25	0.01	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 03:13	7030131	RLC
Fluoride	0.07	0.30	0.004	mg/L	EPA 300.0	J	1	03/03/17 17:21	03/04/17 03:13	7030131	RLC
Sulfate	380	10	0.92	mg/L	EPA 300.0		10	03/03/17 17:21	03/06/17 02:15	7030131	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Barium	0.0581	0.0100	0.0004	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Boron	ND	0.0400	0.0064	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Calcium	63.5	5.00	0.311	mg/L	EPA 6020B		10	02/27/17 16:00	03/03/17 17:01	7020811	KLH
Chromium	0.0017	0.0100	0.0009	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Copper	0.0018	0.0250	0.0005	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Nickel	0.0015	0.0100	0.0006	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Selenium	0.0018	0.0100	0.0010	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Silver	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Vanadium	ND	0.0100	0.0071	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Zinc	0.0038	0.0100	0.0021	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Lithium	0.0028	0.0500	0.0021	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:21	7020811	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	02/28/17 10:00	02/28/17 16:21	7020822	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

Client ID: FB-1-2-23-17

Date/Time Sampled: 2/23/2017 12:30:00PM

Matrix: Water

March 07, 2017

Project: CCR Event

Lab Number ID: AAB0887-05

Date/Time Received: 2/24/2017 3:30:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	02/28/17 17:10	02/28/17 17:10	7020841	JPT
Inorganic Anions											
Chloride	ND	0.25	0.01	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 03:34	7030131	RLC
Fluoride	0.04	0.30	0.004	mg/L	EPA 300.0	J	1	03/03/17 17:21	03/04/17 03:34	7030131	RLC
Sulfate	ND	1.0	0.09	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 03:34	7030131	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Barium	ND	0.0100	0.0004	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Boron	ND	0.0400	0.0064	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Calcium	0.0390	0.500	0.0311	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/03/17 17:07	7020811	KLH
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Copper	ND	0.0250	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Nickel	ND	0.0100	0.0006	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Selenium	ND	0.0100	0.0010	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Silver	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Vanadium	ND	0.0100	0.0071	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Zinc	ND	0.0100	0.0021	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:33	7020811	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	02/28/17 10:00	02/28/17 16:24	7020822	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

Client ID: GWC-3R

Date/Time Sampled: 2/23/2017 1:30:00PM

Matrix: Ground Water

March 07, 2017

Project: CCR Event

Lab Number ID: AAB0887-06

Date/Time Received: 2/24/2017 3:30:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	105	25	10	mg/L	SM 2540 C		1	02/28/17 17:10	02/28/17 17:10	7020841	JPT
Inorganic Anions											
Chloride	6.5	0.25	0.01	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 03:54	7030131	RLC
Fluoride	0.04	0.30	0.004	mg/L	EPA 300.0	J	1	03/03/17 17:21	03/04/17 03:54	7030131	RLC
Sulfate	47	1.0	0.09	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 03:54	7030131	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Barium	0.0278	0.0100	0.0004	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Beryllium	0.0003	0.0030	0.00008	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Boron	ND	0.0400	0.0064	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Calcium	4.25	0.500	0.0311	mg/L	EPA 6020B		1	02/27/17 16:00	03/03/17 17:12	7020811	KLH
Chromium	0.0012	0.0100	0.0009	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Copper	ND	0.0250	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Nickel	ND	0.0100	0.0006	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Selenium	0.0020	0.0100	0.0010	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Silver	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Vanadium	ND	0.0100	0.0071	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Zinc	0.0031	0.0100	0.0021	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 21:50	7020811	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	02/28/17 10:00	02/28/17 16:26	7020822	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Report No.: AAB0887 Client ID: GWC-1R

Lab Number ID: AAB0887-07

Date/Time Sampled: 2/23/2017 1:55:00PM

Date/Time Received: 2/24/2017 3:30:00PM

March 07, 2017

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	581	25	10	mg/L	SM 2540 C		1	02/28/17 17:10	02/28/17 17:10	7020841	JPT
Inorganic Anions											
Chloride	6.2	0.25	0.01	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 04:56	7030131	RLC
Fluoride	0.06	0.30	0.004	mg/L	EPA 300.0	J	1	03/03/17 17:21	03/04/17 04:56	7030131	RLC
Sulfate	390	10	0.92	mg/L	EPA 300.0		10	03/03/17 17:21	03/06/17 04:19	7030131	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Barium	0.0646	0.0100	0.0004	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Boron	0.0082	0.0400	0.0064	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Calcium	62.4	5.00	0.311	mg/L	EPA 6020B		10	02/27/17 16:00	03/03/17 17:18	7020811	KLH
Chromium	0.0010	0.0100	0.0009	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Cobalt	0.0009	0.0100	0.0005	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Copper	ND	0.0250	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Nickel	0.0026	0.0100	0.0006	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Selenium	0.0097	0.0100	0.0010	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Silver	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Vanadium	ND	0.0100	0.0071	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Zinc	0.0024	0.0100	0.0021	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:01	7020811	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	02/28/17 10:00	02/28/17 16:33	7020822	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Report No.: AAB0887 Client ID: GWC-4R

Lab Number ID: AAB0887-08

Date/Time Sampled: 2/24/2017 10:00:00AM

Date/Time Received: 2/24/2017 3:30:00PM

March 07, 2017

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	414	25	10	mg/L	SM 2540 C		1	02/28/17 17:10	02/28/17 17:10	7020841	JPT
Inorganic Anions											
Chloride	130	1.2	0.06	mg/L	EPA 300.0		5	03/03/17 17:21	03/06/17 04:40	7030131	RLC
Fluoride	0.08	0.30	0.004	mg/L	EPA 300.0	J	1	03/03/17 17:21	03/04/17 05:17	7030131	RLC
Sulfate	110	5.0	0.46	mg/L	EPA 300.0		5	03/03/17 17:21	03/06/17 04:40	7030131	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Barium	0.0290	0.0100	0.0004	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Boron	2.53	0.0400	0.0064	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Calcium	29.5	5.00	0.311	mg/L	EPA 6020B		10	02/27/17 16:00	03/03/17 17:34	7020811	KLH
Chromium	ND	0.0100	0.0009	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Cobalt	0.0025	0.0100	0.0005	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Copper	ND	0.0250	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Nickel	0.0021	0.0100	0.0006	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Selenium	0.0108	0.0100	0.0010	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Silver	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Vanadium	ND	0.0100	0.0071	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Zinc	0.0028	0.0100	0.0021	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:13	7020811	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	02/28/17 10:00	02/28/17 16:35	7020822	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Lab Number ID: AAB0887-09

Date/Time Received: 2/24/2017 3:30:00PM

March 07, 2017

Report No.: AAB0887 Client ID: GWC-5R

Date/Time Sampled: 2/24/2017 11:50:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1200	25	10	mg/L	SM 2540 C		1	02/28/17 17:10	02/28/17 17:10	7020841	JPT
Inorganic Anions											
Chloride	3.4	0.25	0.01	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 07:00	7030131	RLC
Fluoride	0.03	0.30	0.004	mg/L	EPA 300.0	J	1	03/03/17 17:21	03/04/17 07:00	7030131	RLC
Sulfate	850	50	4.6	mg/L	EPA 300.0		50	03/03/17 17:21	03/07/17 12:56	7030131	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Barium	0.0347	0.0100	0.0004	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Beryllium	0.0002	0.0030	0.00008	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Boron	0.0067	0.0400	0.0064	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Cadmium	0.0003	0.0010	0.00007	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Calcium	118	25.0	1.55	mg/L	EPA 6020B		50	02/27/17 16:00	03/03/17 17:40	7020811	KLH
Chromium	0.0018	0.0100	0.0009	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Copper	ND	0.0250	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Nickel	0.0019	0.0100	0.0006	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Selenium	0.0154	0.0100	0.0010	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Silver	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Vanadium	ND	0.0100	0.0071	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Zinc	0.0043	0.0100	0.0021	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:24	7020811	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	02/28/17 10:00	02/28/17 16:38	7020822	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

Client ID: Dup-1

Date/Time Sampled: 2/23/2017 12:00:00AM

Matrix: Ground Water

March 07, 2017

Project: CCR Event

Lab Number ID: AAB0887-10

Date/Time Received: 2/24/2017 3:30:00PM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	599	25	10	mg/L	SM 2540 C		1	02/28/17 17:10	02/28/17 17:10	7020841	JPT
Inorganic Anions											
Chloride	6.0	0.25	0.01	mg/L	EPA 300.0		1	03/03/17 17:21	03/04/17 07:21	7030131	RLC
Fluoride	0.06	0.30	0.004	mg/L	EPA 300.0	J	1	03/03/17 17:21	03/04/17 07:21	7030131	RLC
Sulfate	370	10	0.92	mg/L	EPA 300.0		10	03/03/17 17:21	03/06/17 05:21	7030131	RLC
Metals, Total											
Antimony	ND	0.0030	0.0008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Arsenic	ND	0.0050	0.0016	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Barium	0.0660	0.0100	0.0004	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Beryllium	ND	0.0030	0.00008	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Boron	0.0079	0.0400	0.0064	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Cadmium	ND	0.0010	0.00007	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Calcium	62.7	5.00	0.311	mg/L	EPA 6020B		10	02/27/17 16:00	03/03/17 17:46	7020811	KLH
Chromium	0.0010	0.0100	0.0009	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Cobalt	0.0010	0.0100	0.0005	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Copper	ND	0.0250	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Lead	ND	0.0050	0.0001	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Molybdenum	ND	0.0100	0.0017	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Nickel	0.0025	0.0100	0.0006	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Selenium	0.0095	0.0100	0.0010	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Silver	ND	0.0100	0.0005	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Thallium	ND	0.0010	0.0002	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Vanadium	ND	0.0100	0.0071	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Zinc	0.0025	0.0100	0.0021	mg/L	EPA 6020B	J	1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Lithium	ND	0.0500	0.0021	mg/L	EPA 6020B		1	02/27/17 16:00	03/02/17 22:36	7020811	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	02/28/17 10:00	02/28/17 16:40	7020822	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7020794 - SM 2540 C											
Blank (7020794-BLK1)						Prepare	ed & Analy	yzed: 02/2	7/17		
Total Dissolved Solids	ND	25	10	mg/L		•					
LCS (7020794-BS1)						Prepare	ed & Analy	yzed: 02/2	7/17		
Total Dissolved Solids	418	25	10	mg/L	400.00		104	84-108			
Duplicate (7020794-DUP1)		Soi	urce: AAB08	838-02		Prepare	ed & Analy	yzed: 02/2	7/17		
Total Dissolved Solids	520	25	10	mg/L		504	 	,	3	10	
Duplicate (7020794-DUP2)		Soi	urce: AAB08	838-08		Prepare	ed & Analy	yzed: 02/2	7/17		
Total Dissolved Solids	20	25	10	mg/L		22	ou a r inai	y20a. 02/2	10	10	J
Batch 7020841 - SM 2540 C											
Blank (7020841-BLK1)						Prepare	ed & Anal	yzed: 02/28	8/17		
Total Dissolved Solids	ND	25	10	mg/L				,			
LCS (7020841-BS1)						Prepare	ed & Analy	yzed: 02/28	8/17		
Total Dissolved Solids	396	25	10	mg/L	400.00	- 1	99	84-108			
Duplicate (7020841-DUP1)		Soi	urce: AAB08	884-02		Prepare	ed & Analy	yzed: 02/28	3/17		
Total Dissolved Solids	772	25	10	mg/L		733	<u> </u>	<u>,</u>	5	10	
Duplicate (7020841-DUP2)		Soi	urce: AAB08	887-05		Prepare	ed & Analy	yzed: 02/28	8/17		
Total Dissolved Solids	ND	25	10	mg/L		ND	 	<u>,</u>	<u> </u>	10	
Batch 7030016 - SM 2540 C											
Blank (7030016-BLK1)						Prepare	ed & Analy	yzed: 03/0	1/17		
Total Dissolved Solids	ND	25	10	mg/L				,_30. 00/0	····		

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham March 07, 2017

Report No.: AAB0887

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030016 - SM 2540 C											
LCS (7030016-BS1)						Prepar	ed & Analy	yzed: 03/0	1/17		
Total Dissolved Solids	348	25	10	mg/L	400.00		87	84-108			
Duplicate (7030016-DUP1)		So	urce: AAB08	887-03RE1		Prepar	ed & Analy	yzed: 03/0	1/17		
Total Dissolved Solids	ND	25	10	mg/L		ND				10	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

March 07, 2017

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030131 - EPA 300.0											
Blank (7030131-BLK1)						Prepare	ed: 03/03/	17 Analyz	ed: 03/04/	17	
Chloride	ND	0.25	0.01	mg/L							
Fluoride	ND	0.30	0.004	mg/L							
Sulfate	ND	1.0	0.09	mg/L							
LCS (7030131-BS1)						Prepare	ed: 03/03/	17 Analyz	ed: 03/04/	17	
Chloride	9.70	0.25	0.01	mg/L	10.010		97	90-110			
Fluoride	10.1	0.30	0.004	mg/L	10.020		101	90-110			
Sulfate	9.86	1.0	0.09	mg/L	10.020		98	90-110			
Matrix Spike (7030131-MS1)		Soi	urce: AAB08	387-06		Prepare	ed: 03/03/	17 Analyz	ed: 03/04/	17	
Chloride	16.2	0.25	0.01	mg/L	10.010	6.48	97	90-110			
Fluoride	10.2	0.30	0.004	mg/L	10.020	0.04	102	90-110			
Sulfate	51.8	1.0	0.09	mg/L	10.020	47.3	44	90-110			QM-02
Matrix Spike Dup (7030131-MSD1)		Soi	urce: AAB08	387-06		Prepare	ed: 03/03/	17 Analyz	ed: 03/04/	17	
Chloride	16.2	0.25	0.01	mg/L	10.010	6.48	97	90-110	0	15	
Fluoride	10.2	0.30	0.004	mg/L	10.020	0.04	102	90-110	0.05	15	
Sulfate	51.8	1.0	0.09	mg/L	10.020	47.3	44	90-110	0.004	15	QM-02

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

Metals, Total - Quality Control

			MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7020811 - EPA 3005A											
Blank (7020811-BLK1)						Prepare	ed: 02/27/	17 Analyz	ed: 03/02/	17	
Antimony	ND	0.0030	0.0008	mg/L							
Arsenic	ND	0.0050	0.0016	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00008	mg/L							
Boron	ND	0.0400	0.0064	mg/L							
Cadmium	ND	0.0010	0.00007	mg/L							
Calcium	ND	0.500	0.0311	mg/L							
Chromium	ND	0.0100	0.0009	mg/L							
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0250	0.0005	mg/L							
Lead	ND	0.0050	0.0001	mg/L							
Molybdenum	ND	0.0100	0.0017	mg/L							
Nickel	ND	0.0100	0.0006	mg/L							
Selenium	ND	0.0100	0.0010	mg/L							
Silver	ND	0.0100	0.0005	mg/L							
Thallium	ND	0.0010	0.0002	mg/L							
Vanadium	ND	0.0100	0.0071	mg/L							
Zinc	ND	0.0100	0.0021	mg/L							
Lithium	ND	0.0500	0.0021	mg/L							
LCS (7020811-BS1)						Prepare	ed: 02/27/	17 Analyz	ed: 03/02/	17	
Antimony	0.111	0.0030	0.0008	mg/L	0.10000		111	80-120			
Arsenic	0.100	0.0050	0.0016	mg/L	0.10000		100	80-120			
Barium	0.104	0.0100	0.0004	mg/L	0.10000		104	80-120			
Beryllium	0.104	0.0030	0.00008	mg/L	0.10000		104	80-120			
Boron	1.07	0.0400	0.0064	mg/L	1.0000		107	80-120			
Cadmium	0.106	0.0010	0.00007	mg/L	0.10000		106	80-120			
Calcium	0.944	0.500	0.0311	mg/L	1.0000		94	80-120			
Chromium	0.103	0.0100	0.0009	mg/L	0.10000		103	80-120			
Cobalt	0.0998	0.0100	0.0005	mg/L	0.10000		100	80-120			
Copper	0.102	0.0250	0.0005	mg/L	0.10000		102	80-120			
Lead	0.101	0.0050	0.0001	mg/L	0.10000		101	80-120			
Molybdenum	0.105	0.0100	0.0017	mg/L	0.10000		105	80-120			
Nickel	0.103	0.0100	0.0006	mg/L	0.10000		103	80-120			
Selenium	0.0967	0.0100	0.0010	mg/L	0.10000		97	80-120			
Silver	0.101	0.0100	0.0005	mg/L	0.10000		101	80-120			
Thallium	0.105	0.0010	0.0002	mg/L	0.10000		105	80-120			
Vanadium	0.103	0.0100	0.0071	mg/L	0.10000		103	80-120			
Zinc	0.104	0.0100	0.0021	mg/L	0.10000		104	80-120			
Lithium	0.104	0.0500	0.0021	mg/L	0.10000		104	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

March 07, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7020811 - EPA 3005A											
Matrix Spike (7020811-MS1)		Sou	ırce: AAB08	87-01		Prepar	ed: 02/27/	17 Analyz	ed: 03/02/	17	
Antimony	0.112	0.0030	0.0008	mg/L	0.10000	ND	112	75-125			
Arsenic	0.0984	0.0050	0.0016	mg/L	0.10000	ND	98	75-125			
Barium	0.163	0.0100	0.0004	mg/L	0.10000	0.0607	102	75-125			
Beryllium	0.0962	0.0030	0.00008	mg/L	0.10000	ND	96	75-125			
Boron	0.987	0.0400	0.0064	mg/L	1.0000	ND	99	75-125			
Cadmium	0.106	0.0010	0.00007	mg/L	0.10000	ND	106	75-125			
Calcium	12.2	2.50	0.155	mg/L	1.0000	10.4	182	75-125			QM-02
Chromium	0.107	0.0100	0.0009	mg/L	0.10000	ND	107	75-125			
Cobalt	0.107	0.0100	0.0005	mg/L	0.10000	0.0049	102	75-125			
Copper	0.105	0.0250	0.0005	mg/L	0.10000	0.0011	104	75-125			
Lead	0.102	0.0050	0.0001	mg/L	0.10000	ND	102	75-125			
Molybdenum	0.105	0.0100	0.0017	mg/L	0.10000	ND	105	75-125			
Nickel	0.111	0.0100	0.0006	mg/L	0.10000	0.0051	106	75-125			
Selenium	0.0995	0.0100	0.0010	mg/L	0.10000	ND	99	75-125			
Silver	0.102	0.0100	0.0005	mg/L	0.10000	ND	102	75-125			
Thallium	0.104	0.0010	0.0002	mg/L	0.10000	ND	104	75-125			
Vanadium	0.107	0.0100	0.0071	mg/L	0.10000	ND	107	75-125			
Zinc	0.106	0.0100	0.0021	mg/L	0.10000	0.0042	102	75-125			
Lithium	0.0941	0.0500	0.0021	mg/L	0.10000	ND	94	75-125			
Matrix Spike Dup (7020811-MSD1)		Sou	ırce: AAB08	87-01		Prepar	ed: 02/27/	17 Analyz	ed: 03/02/	17	
Antimony	0.109	0.0030	0.0008	mg/L	0.10000	ND	109	75-125	3	20	
Arsenic	0.102	0.0050	0.0016	mg/L	0.10000	ND	102	75-125	4	20	
Barium	0.158	0.0100	0.0004	mg/L	0.10000	0.0607	97	75-125	3	20	
Beryllium	0.103	0.0030	0.00008	mg/L	0.10000	ND	103	75-125	7	20	
Boron	0.990	0.0400	0.0064	mg/L	1.0000	ND	99	75-125	0.3	20	
Cadmium	0.104	0.0010	0.00007	mg/L	0.10000	ND	104	75-125	2	20	
Calcium	11.6	2.50	0.155	mg/L	1.0000	10.4	121	75-125	5	20	
Chromium	0.101	0.0100	0.0009	mg/L	0.10000	ND	101	75-125	5	20	
Cobalt	0.105	0.0100	0.0005	mg/L	0.10000	0.0049	100	75-125	2	20	
Copper	0.106	0.0250	0.0005	mg/L	0.10000	0.0011	105	75-125	1	20	
Lead	0.103	0.0050	0.0001	mg/L	0.10000	ND	103	75-125	0.2	20	
Molybdenum	0.104	0.0100	0.0017	mg/L	0.10000	ND	104	75-125	1	20	
Nickel	0.107	0.0100	0.0006	mg/L	0.10000	0.0051	102	75-125	3	20	
Selenium	0.100	0.0100	0.0010	mg/L	0.10000	ND	100	75-125	0.6	20	
Silver	0.0985	0.0100	0.0005	mg/L	0.10000	ND	99	75-125	4	20	
Thallium	0.104	0.0010	0.0002	mg/L	0.10000	ND	104	75-125	0.6	20	
Vanadium	0.103	0.0100	0.0071	mg/L	0.10000	ND	103	75-125	4	20	
Zinc	0.105	0.0100	0.0021	mg/L	0.10000	0.0042	101	75-125	0.5	20	
Lithium	0.0979	0.0500	0.0021	mg/L	0.10000	ND	98	75-125	4	20	
									•		

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7020811 - EPA 3005A											
Post Spike (7020811-PS1)		Sou	urce: AAB08	87-01		Prepare	ed: 02/27/	17 Analyz	ed: 03/02/	′ 17	
Antimony	108			ug/L	100.00	0.0232	108	80-120			
Arsenic	108			ug/L	100.00	0.317	108	80-120			
Barium	166			ug/L	100.00	60.7	105	80-120			
Beryllium	104			ug/L	100.00	0.0030	104	80-120			
Boron	1020			ug/L	1000.0	3.84	102	80-120			
Cadmium	106			ug/L	100.00	0.0155	105	80-120			
Calcium	19300			ug/L	1000.0	10400	889	80-120			QM-02
Chromium	105			ug/L	100.00	0.517	105	80-120			
Cobalt	107			ug/L	100.00	4.88	102	80-120			
Copper	109			ug/L	100.00	1.11	108	80-120			
Lead	105			ug/L	100.00	0.0384	105	80-120			
Molybdenum	110			ug/L	100.00	0.474	109	80-120			
Nickel	111			ug/L	100.00	5.12	106	80-120			
Selenium	105			ug/L	100.00	0.256	105	80-120			
Silver	104			ug/L	100.00	0.0008	104	80-120			
Thallium	106			ug/L	100.00	0.0613	106	80-120			
Vanadium	110			ug/L	100.00	2.49	108	80-120			
Zinc	114			ug/L	100.00	4.24	109	80-120			
Lithium	102			ug/L	100.00	1.34	101	80-120			
Batch 7020822 - EPA 7470A											
Blank (7020822-BLK1)						Prepare	ed & Analy	zed: 02/28	3/17		
Mercury	ND	0.00050	0.000041	mg/L							
LCS (7020822-BS1)						Prepare	ed & Analy	zed: 02/28	3/17		
Mercury	0.00247	0.00050	0.000041	mg/L	2.5000E-3		99	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Lithium

Attention: Mr. Joju Abraham

ND

0.0500

0.0021

Report No.: AAB0887

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7020822 - EPA 7470A											
Matrix Spike (7020822-MS1)		Sou	ırce: AAB08	85-01		Prepare	ed & Analy	/zed: 02/28	3/17		
Mercury	0.00242	0.00050	0.000041	mg/L	2.5000E-3	ND	97	75-125			
Matrix Spike Dup (7020822-MSD1)		Sou	ırce: AAB08	85-01		Prepare	ed & Analy	/zed: 02/28	3/17		
Mercury	0.00236	0.00050	0.000041	mg/L	2.5000E-3	ND	94	75-125	2	20	
Post Spike (7020822-PS1)		Sou	ırce: AAB08	85-01		Prepare	ed & Analy	/zed: 02/28	3/17		
Mercury	1.76			ug/L	1.6667	-0.00567	106	80-120			
Batch 7020867 - EPA 3005A											
Blank (7020867-BLK1)	N.D.	0.000				Prepare	ed: 03/01/	17 Analyz	ed: 03/03/	/17	
Antimony	ND	0.0030	0.0008	mg/L							
Arsenic	ND	0.0050	0.0016	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium -	ND	0.0030	0.00008	mg/L							
Boron	ND	0.0400	0.0064	mg/L							
Cadmium	ND	0.0010	0.00007	mg/L							
Calcium	ND	0.500	0.0311	mg/L							
Chromium	ND	0.0100	0.0009	mg/L							
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0250	0.0005	mg/L							
Lead	ND	0.0050	0.0001	mg/L							
Molybdenum	ND	0.0100	0.0017	mg/L							
Nickel	ND	0.0100	0.0006	mg/L							
Selenium	ND	0.0100	0.0010	mg/L							
Silver	ND	0.0100	0.0005	mg/L							
Thallium	ND	0.0010	0.0002	mg/L							
Vanadium	ND	0.0100	0.0071	mg/L							
Zinc	ND	0.0100	0.0021	mg/L							

mg/L

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7020867 - EPA 3005A											
LCS (7020867-BS1)						Prepare	ed: 03/01/	17 Analyz	ed: 03/03/	17	
Antimony	0.112	0.0030	0.0008	mg/L	0.10000		112	80-120			
Arsenic	0.105	0.0050	0.0016	mg/L	0.10000		105	80-120			
Barium	0.107	0.0100	0.0004	mg/L	0.10000		107	80-120			
Beryllium	0.0972	0.0030	0.00008	mg/L	0.10000		97	80-120			
Boron	1.00	0.0400	0.0064	mg/L	1.0000		100	80-120			
Cadmium	0.105	0.0010	0.00007	mg/L	0.10000		105	80-120			
Calcium	1.00	0.500	0.0311	mg/L	1.0000		100	80-120			
Chromium	0.0948	0.0100	0.0009	mg/L	0.10000		95	80-120			
Cobalt	0.0949	0.0100	0.0005	mg/L	0.10000		95	80-120			
Copper	0.0948	0.0250	0.0005	mg/L	0.10000		95	80-120			
Lead	0.105	0.0050	0.0001	mg/L	0.10000		105	80-120			
Molybdenum	0.104	0.0100	0.0017	mg/L	0.10000		104	80-120			
Nickel	0.0946	0.0100	0.0006	mg/L	0.10000		95	80-120			
Selenium	0.109	0.0100	0.0010	mg/L	0.10000		109	80-120			
Silver	0.106	0.0100	0.0005	mg/L	0.10000		106	80-120			
Thallium	0.104	0.0010	0.0002	mg/L	0.10000		104	80-120			
Vanadium	0.0975	0.0100	0.0071	mg/L	0.10000		98	80-120			
Zinc	0.0982	0.0100	0.0021	mg/L	0.10000		98	80-120			
Lithium	0.0924	0.0500	0.0021	mg/L	0.10000		92	80-120			
Matrix Spike (7020867-MS1)		Soi	urce: AAB08	87-02		Prepare	ed: 03/01/	17 Analyzo	ed: 03/03/	17	
Antimony	0.111	0.0030	0.0008	mg/L	0.10000	ND.	111	75-125			
Arsenic	0.106	0.0050	0.0016	mg/L	0.10000	ND	106	75-125			
Barium	0.155	0.0100	0.0004	mg/L	0.10000	0.0481	107	75-125			
Beryllium	0.101	0.0030	0.00008	mg/L	0.10000	ND	101	75-125			
Boron	1.01	0.0400	0.0064	mg/L	1.0000	0.0192	99	75-125			
Cadmium	0.102	0.0010	0.00007	mg/L	0.10000	ND	102	75-125			
Calcium	17.1	2.50	0.155	mg/L	1.0000	16.2	91	75-125			
Chromium	0.0999	0.0100	0.0009	mg/L	0.10000	ND	100	75-125			
Cobalt	0.116	0.0100	0.0005	mg/L	0.10000	0.0184	98	75-125			
Copper	0.0938	0.0250	0.0005	mg/L	0.10000	ND	94	75-125			
Lead	0.104	0.0050	0.0001	mg/L	0.10000	ND	104	75-125			
Molybdenum	0.103	0.0100	0.0017	mg/L	0.10000	ND	103	75-125			
Nickel	0.0983	0.0100	0.0006	mg/L	0.10000	0.0009	97	75-125			
Selenium	0.111	0.0100	0.0010	mg/L	0.10000	0.0015	109	75-125			
Silver	0.102	0.0100	0.0005	mg/L	0.10000	ND	102	75-125			
Thallium	0.104	0.0010	0.0002	mg/L	0.10000	ND	104	75-125			
Vanadium	0.103	0.0100	0.0071	mg/L	0.10000	ND	103	75-125			
Zinc	0.100	0.0100	0.0021	mg/L	0.10000	0.0024	98	75-125			
Lithium	0.0908	0.0500	0.0021	mg/L	0.10000	0.0036	87	75-125			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAB0887

March 07, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7020867 - EPA 3005A											
Matrix Spike Dup (7020867-MSD1)		Soi	urce: AAB08	87-02		Prepar	ed: 03/01/	17 Analyz	ed: 03/03	/17	
Antimony	0.109	0.0030	0.0008	mg/L	0.10000	ND.	109	75-125	2	20	
Arsenic	0.103	0.0050	0.0016	mg/L	0.10000	ND	103	75-125	3	20	
Barium	0.152	0.0100	0.0004	mg/L	0.10000	0.0481	104	75-125	2	20	
Beryllium	0.0985	0.0030	0.00008	mg/L	0.10000	ND	99	75-125	3	20	
Boron	0.956	0.0400	0.0064	mg/L	1.0000	0.0192	94	75-125	6	20	
Cadmium	0.103	0.0010	0.00007	mg/L	0.10000	ND	103	75-125	0.4	20	
Calcium	16.6	2.50	0.155	mg/L	1.0000	16.2	43	75-125	3	20	QM-02
Chromium	0.101	0.0100	0.0009	mg/L	0.10000	ND	101	75-125	1	20	
Cobalt	0.118	0.0100	0.0005	mg/L	0.10000	0.0184	99	75-125	1	20	
Copper	0.0995	0.0250	0.0005	mg/L	0.10000	ND	100	75-125	6	20	
Lead	0.104	0.0050	0.0001	mg/L	0.10000	ND	104	75-125	0.4	20	
Molybdenum	0.103	0.0100	0.0017	mg/L	0.10000	ND	103	75-125	0.7	20	
Nickel	0.100	0.0100	0.0006	mg/L	0.10000	0.0009	100	75-125	2	20	
Selenium	0.108	0.0100	0.0010	mg/L	0.10000	0.0015	107	75-125	2	20	
Silver	0.102	0.0100	0.0005	mg/L	0.10000	ND	102	75-125	0.09	20	
Thallium	0.103	0.0010	0.0002	mg/L	0.10000	ND	103	75-125	0.9	20	
Vanadium	0.103	0.0100	0.0071	mg/L	0.10000	ND	103	75-125	0.1	20	
Zinc	0.103	0.0100	0.0021	mg/L	0.10000	0.0024	100	75-125	3	20	
Lithium	0.0973	0.0500	0.0021	mg/L	0.10000	0.0036	94	75-125	7	20	
Post Spike (7020867-PS1)		Soi	urce: AAB08	87-02		Prepar	ed: 03/01/	17 Analyz	ed: 03/03/	/17	
Antimony	104			ug/L	100.00	0.275	104	80-120			
Arsenic	103			ug/L	100.00	0.126	103	80-120			
Barium	156			ug/L	100.00	48.1	108	80-120			
Beryllium	98.8			ug/L	100.00	0.0636	99	80-120			
Boron	983			ug/L	1000.0	19.2	96	80-120			
Cadmium	101			ug/L	100.00	0.0628	100	80-120			
Calcium	16500			ug/L	1000.0	16200	33	80-120			QM-02
Chromium	100			ug/L	100.00	0.425	100	80-120			
Cobalt	117			ug/L	100.00	18.4	98	80-120			
Copper	97.2			ug/L	100.00	0.447	97	80-120			
Lead	103			ug/L	100.00	0.0773	103	80-120			
Molybdenum	105			ug/L	100.00	0.148	105	80-120			
Nickel	96.2			ug/L	100.00	0.867	95	80-120			
Selenium	107			ug/L	100.00	1.45	106	80-120			
Silver	105			ug/L	100.00	0.0205	105	80-120			
Thallium	103			ug/L	100.00	0.0214	103	80-120			
Vanadium	102			ug/L	100.00	1.40	101	80-120			
Zinc	99.1			ug/L	100.00	2.39	97	80-120			
Lithium	101			ug/L	100.00	3.59	97	80-120			
				3							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham March 07, 2017

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

QM-02 The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.

J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).

Note: Unless otherwise noted, all results are reported on an as received basis.

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com Pace Analytical "

Р

PAGE:

5 - NaOH/ZnAc, ≤6°C 7 - ≤6°C not frozen 6 - Na₂S₂O₃, ≤6°C 2 - H₂SO₄, ≤6°C 4 - NaOH, ≤6°C REMARKS/ADDITIONAL INFORMATION P - PRODUCT PRESERVATION 1 . HCl, ട6°C SL - SLUDGE SD - SOLID T- LIQUID 3 - HNO3 A- AIR *MATRIX CODES: က် を DRINKING WATER SURFACE WATER GW - GROUNDWATER STORM WATER WASTEWATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE چ ک Entered into LIMS V - VOA VIAL S - STERILE P - PLASTIC O - OTHER WATER racking #: exten LAB# SW-ST. Ś 1-90/2 かし e ら _ _ $Z \supset \Sigma \cap U \cap C$ < m FS OTHER DATE/TIME: 2-24-1 DATE/TIME: CLIENY Looker ID: <u>ANALYSIS REQUESTED</u> COURIER For Coolers と (0ZE6/91E6 918-MS) 4 4 ٥. N 4 Radium 226 & 228 USPS (EPA 300.0 & SM 2540C) ٥. CI, F, 50, & TDS SAMPLE SHIPPED VIA: RELINQUISHED BY: FED-EX Charles Seat: RELINQUISHED BY (DOD to mottod is is leistem euld) ۵. Metals App. III & IV (EPA 6020/7470) CONTAINER TYPE **5**0# 7 ZШ EL W I 7 7 ュ 1 530 Yates Gypsum Storage Phase 2 CCR & Semi-Annual Monitoring laburch@southernco.com 0421 SAMPLE IDENTIFICATION FB-1-2-23-17 EB-1-2-22-17 Heath McCorkle **ふいこ-5R** 6WC-2R 60C-4R GWC-6R 6WC-1R 6WC-3R 5WA-2 DATE/TIME: 2-24-1 DATE/TIME: Maria Padilla DUP-827万 4/ Plant Yates Gypsum Storage CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER PO # ö **9 24 4 8** 73 E υο**Σ** Δ REQUESTED COMPLETION DATE: MATRIX CODE* SAMPLED BY AND TITLE: ると ĠW 241 Ralph McGill Blvd SE B10185 **≥**9 *€*. ĜΣ ક્રે βW ⋛ Lauren Petty PROJECT NAME/STATE: 1000 Collection TIME 1330 1040 1230 1505 1355 150 S2H1 35 Vifanta, GA 30308 SPEDBY L CLIENT NAME ECEIVED BY Georgia Power 104-506-7239 1-42-2 1-23-17 £1-€2-2 REPORT TO: L(-h2-Z (1-52-2 PROJECT #: 6-23-17 T1-52-2 Collection FI-22-2 11-22-5 A-00-14 2-2-17 DATE

Plant Yates COC Gypsum Storage.xlsx Yates State constituents: Sb./As. Ba, Be, Cd. Cr. Co. Cu, Pb, Hg, Nr. Se, Ag, Tl. V, Zn

Page 23 of 24

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 2/27/2017 10:27:23AM

Attn: Mr. Joju Abraham

Client: Georgia Power

Project: CCR Event Work Order: AAB0887

Date Received: 02/24/17 15:30 **Logged In By:** Mohammad M. Rahman

OBSERVATIONS

#Samples: 10 **#Containers:** 42

Minimum Temp(C): 4.0 Maximum Temp(C): 4.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

Greensburg, PA 15601 (724)850-5600

March 21, 2017

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

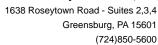
RE: Project: AAB0887 Plant Yates Pace Project No.: 30211898

Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on February 27, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Jacquelyn Collins jacquelyn.collins@pacelabs.com

(724)850-5612 Project Manager

Sugnely Sellins

Enclosures

CERTIFICATIONS

Project: AAB0887 Plant Yates

Pace Project No.: 30211898

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

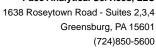
Rhode Island Certification #: 65-00282 South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8
Utah/TNI Certification #: PA014572015-5
USDA Soil Permit #: P330-14-00213
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Certification

Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: AAB0887 Plant Yates

Pace Project No.: 30211898

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30211898001	GWA-2	Water	02/22/17 11:20	02/27/17 09:40
30211898002	GWC-2R	Water	02/22/17 14:25	02/27/17 09:40
30211898003	EB-1-2-22-17	Water	02/22/17 15:05	02/27/17 09:40
30211898004	GWC-6R	Water	02/23/17 10:40	02/27/17 09:40
30211898005	FB-1-2-23-17	Water	02/23/17 12:30	02/27/17 09:40
30211898006	GWC-3R	Water	02/23/17 13:30	02/27/17 09:40
30211898007	GWC-1R	Water	02/23/17 13:55	02/27/17 09:40
30211898008	GWC-4R	Water	02/24/17 10:00	02/27/17 09:40
30211898009	GWC-5R	Water	02/24/17 11:50	02/27/17 09:40
30211898010	Dup-1	Water	02/23/17 00:00	02/27/17 09:40

SAMPLE ANALYTE COUNT

Project: AAB0887 Plant Yates

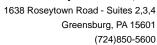
Pace Project No.: 30211898

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30211898001	GWA-2	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30211898002	GWC-2R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30211898003	EB-1-2-22-17	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30211898004	GWC-6R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30211898005	FB-1-2-23-17	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30211898006	GWC-3R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30211898007	GWC-1R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30211898008	GWC-4R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30211898009	GWC-5R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1
30211898010	Dup-1	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	RMK	1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAB0887 Plant Yates

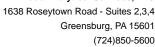
Pace Project No.: 30211898


Sample: GWA-2 PWS:	Lab ID: 302118 Site ID:	98001 Collected: 02/22/17 11:20 Sample Type:	Received:	02/27/17 09:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.207 ± 0.133 (0.207)	pCi/L	03/20/17 08:34		
Radium-228	EPA 9320	C:86% T:NA 0.850 ± 0.729 (1.47)	pCi/L	03/17/17 17:04	15262-20-1	1c
Total Radium	Total Radium Calculation	C:37% T:86% 1.06 ± 0.862 (1.68)	pCi/L	03/21/17 16:35	5 7440-14-4	
Sample: GWC-2R PWS:	Lab ID: 302118 Site ID:	98002 Collected: 02/22/17 14:25 Sample Type:	Received:	02/27/17 09:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.256 ± 0.137 (0.189)	pCi/L	03/20/17 08:34	13982-63-3	
Radium-228	EPA 9320	C:97% T:NA 0.483 ± 0.814 (1.77)	pCi/L	03/17/17 17:04	15262-20-1	1c
Total Radium	Total Radium Calculation	C:38% T:70% 0.739 ± 0.951 (1.96)	pCi/L	03/21/17 16:35	5 7440-14-4	
Sample: EB-1-2-22-17 PWS:	Lab ID: 302118 Site ID:	98003 Collected: 02/22/17 15:05 Sample Type:	Received:	02/27/17 09:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0593 ± 0.0813 (0.170) C:95% T:NA	pCi/L	03/20/17 08:35	13982-63-3	
Radium-228	EPA 9320	0.258 ± 0.829 (1.87) C:32% T:79%	pCi/L	03/17/17 17:04	15262-20-1	1c
Total Radium	Total Radium Calculation	0.317 ± 0.910 (2.04)	pCi/L	03/21/17 16:35	5 7440-14-4	
Sample: GWC-6R PWS:	Lab ID: 302118 Site ID:	98004 Collected: 02/23/17 10:40 Sample Type:	Received:	02/27/17 09:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0686 ± 0.0965 (0.207) C:99% T:NA	pCi/L	03/20/17 08:35	13982-63-3	
Radium-228	EPA 9320	1.11 ± 0.996 (2.02) C:30% T:79%	pCi/L	03/17/17 17:04	15262-20-1	1c
Total Radium	Total Radium Calculation	1.18 ± 1.09 (2.23)	pCi/L	03/21/17 16:35	5 7440-14-4	
Sample: FB-1-2-23-17 PWS:	Lab ID: 302118 Site ID:	98005 Collected: 02/23/17 12:30 Sample Type:	Received:	02/27/17 09:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0144 ± 0.0747 (0.197) C:89% T:NA	pCi/L	03/20/17 08:35	13982-63-3	
Radium-228	EPA 9320	0.220 ± 0.754 (1.71) C:34% T:75%	pCi/L	03/17/17 17:04	15262-20-1	1c

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAB0887 Plant Yates

Pace Project No.: 30211898 Sample: FB-1-2-23-17 Lab ID: 30211898005 Collected: 02/23/17 12:30 Received: 02/27/17 09:40 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Total Radium Total Radium 0.234 ± 0.829 (1.91) pCi/L 03/21/17 16:35 7440-14-4 Calculation Sample: GWC-3R Lab ID: 30211898006 Collected: 02/23/17 13:30 Received: 02/27/17 09:40 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 9315 $0.0563 \pm 0.102 \quad (0.233)$ Radium-226 pCi/L 03/20/17 08:35 13982-63-3 C:74% T:NA Radium-228 EPA 9320 0.672 ± 0.682 (1.40) pCi/L 03/17/17 17:02 15262-20-1 C:36% T:81% Total Radium Total Radium 0.728 ± 0.784 (1.63) pCi/L 03/21/17 16:35 7440-14-4 Calculation Sample: GWC-1R Lab ID: 30211898007 Collected: 02/23/17 13:55 Received: 02/27/17 09:40 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.0430 \pm 0.0840 \quad (0.194)$ Radium-226 03/20/17 08:35 13982-63-3 pCi/L C:97% T:NA Radium-228 EPA 9320 0.461 ± 0.638 (1.37) pCi/L 03/17/17 17:03 15262-20-1 C:46% T:76% Total Radium Total Radium 0.504 ± 0.722 (1.56) pCi/L 03/21/17 16:35 7440-14-4 Calculation Lab ID: 30211898008 Sample: GWC-4R Collected: 02/24/17 10:00 Received: 02/27/17 09:40 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.141 ± 0.137 (0.273) Radium-226 pCi/L 03/20/17 08:35 13982-63-3 C:90% T:NA EPA 9320 0.164 ± 0.589 (1.34) Radium-228 pCi/L 03/17/17 17:02 15262-20-1 C:38% T:76% Total Radium Total Radium 0.305 ± 0.726 (1.61) pCi/L 03/21/17 16:35 7440-14-4 Calculation Sample: GWC-5R Lab ID: 30211898009 Collected: 02/24/17 11:50 Received: 02/27/17 09:40 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Radium-226 EPA 9315 $0.0978 \pm 0.102 \quad (0.200)$ pCi/L 03/20/17 08:35 13982-63-3 C:94% T:NA EPA 9320 0.389 ± 0.598 (1.29) Radium-228 pCi/L 03/17/17 17:02 15262-20-1 C:40% T:85% Total Radium 0.487 ± 0.700 (1.49) Total Radium pCi/L 03/21/17 16:35 7440-14-4 Calculation



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAB0887 Plant Yates

Pace Project No.: 30211898

Sample: Dup-1 PWS:	Lab ID: 302118 Site ID:	98010 Collected: 02/23/17 00:00 Sample Type:	Received:	02/27/17 09:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.150 ± 0.107 (0.170) C:100% T:NA	pCi/L	03/20/17 08:3	5 13982-63-3	
Radium-228	EPA 9320	1.01 ± 0.773 (1.50) C:35% T:81%	pCi/L	03/17/17 17:14	4 15262-20-1	1c
Total Radium	Total Radium Calculation	1.16 ± 0.880 (1.67)	pCi/L	03/21/17 16:3	5 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: AAB0887 Plant Yates

Pace Project No.: 30211898

QC Batch: 251730 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30211898001, 30211898002, 30211898003, 30211898004, 30211898005, 30211898006, 30211898007,

30211898008, 30211898009, 30211898010

METHOD BLANK: 1238368 Matrix: Water

Associated Lab Samples: 30211898001, 30211898002, 30211898003, 30211898004, 30211898005, 30211898006, 30211898007,

30211898008, 30211898009, 30211898010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.0746 ± 0.0820 (0.155) C:90% T:NA pCi/L 03/20/17 08:53

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

Project: AAB0887 Plant Yates

Pace Project No.: 30211898

QC Batch: 251826 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30211898001, 30211898002, 30211898003, 30211898004, 30211898005, 30211898006, 30211898007,

30211898008, 30211898009, 30211898010

METHOD BLANK: 1238972 Matrix: Water

Associated Lab Samples: 30211898001, 30211898002, 30211898003, 30211898004, 30211898005, 30211898006, 30211898007,

30211898008, 30211898009, 30211898010

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 1.30 ± 0.578 (0.877) C:37% T:82%
 pCi/L
 03/17/17 16:51 1c,2c

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AAB0887 Plant Yates

Pace Project No.: 30211898

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 251826

[1] The Ra-228 LCS recovery is high and outside of the default acceptance limit for LCS recovery at 136.77%. The upper limit for Ra-228 LCS recovery is 136%. Samples with results below their associated MDC are reportable without qualification.

ANALYTE QUALIFIERS

Date: 03/21/2017 07:17 PM

- The Ra-228 LCS recovery is high and outside of the default acceptance limit for LCS recovery at 136.77%. The upper limit for Ra-228 LCS recovery is 136%. Samples with results below their associated MDC are reportable without qualification.
- The Ra-228 MB result is above the associated MDC and RL of 1.0 pCi/L. Sample results are reportable without qualification if they are below their associated MDC. The MB is has been re-ingrowthed and is being re-analyzed on 3/22/2017, along with samples with results greater than their associated MDC.

Workorder: AAB0887 Workorder Name: Plant Branch (Les S Owner Received Date: Results Requested By: 3/20/2017 Report To: Subcontract To: Requested Analysis Betsy McDaniel Pace - Pittsburgh Pace Analytical Atlanta 1638 Roseytown Road 110 Technology Parkway Stes. 2,3,4 Peachtree Corners, GA 30092 Greensburg, PA 15601 Phone (770)-734-4200 Phone (724) 850-5600	
Betsy McDaniel Pace - Pittsburgh Pace Analytical Atlanta 1638 Roseytown Road 110 Technology Parkway Stes. 2,3,4 Peachtree Corpers GA 30092 Greensburg PA 15601	
Pace Analytical Atlanta 1638 Roseytown Road 110 Technology Parkway Stes. 2,3,4 Peachtree Corners GA 30092 Greensburg PA 15601	
110 Technology Parkway Stes. 2,3,4 Peachtree Corners GA 30092 Greensburg PA 15601	
110 Technology Parkway Stes. 2,3,4 Peachtree Corners GA 30092 Greensburg PA 15601	
Phone (774) 950 E600	
Phone (770)-734-4200 Phone (724) 850-5600	
Preserved Containers E 30211898	
Preserved Containers Sample Sample	
	NLY
1 GWA-2 G 2/22/2017 11:20 AAB0887-01 GW 2 X	2)
2 GWC-2R G 2/22/2017 14:25 AAB0887-02 GW 2 X X X	00
3 EB-1-2-22-17 G 2/22/2017 15:05 AAB0887-03 W 2 X X	03
	DI
5 FB-1-2-23-17 G 2/23/2017 12:30 AAB0887-05 W 2 X X	05
	06
7 GWC-1R G 2/23/2017 13:55 AAB0887-07 GW 2 X X	10
	08
	799
10 Dup-1 G 2/23/2017 0:00 AAB0887-10 GW 2 X	110
Transfers Released By Date/Time Received By Date/Time Comments	
1 RB-1 Pace 2/27/17 0940	
2	
3	

Cooler Temperature on Receipt _____OC Custody Seal Y or N Received on Ice Y or N Sample Intact Y or N

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC

This chain of custody is considered complete as is since this information is available in the owner laboratory.

FMT-ALL-C-002rev.00 24March2009

Sample Condition Upon Recei	pt Pi	ttsbı	urgh	7001100 BB
Face Analytical Client Name:		Po	ace	30 2 1 1 8 9 8 RG Project #
Courier: 凶 Fed Ex ロ UPS ロ USPS ロ Clien Tracking #: 6 812 5io2 6o5i	ı 🗆	Comm	ercial	Pace Other
Custody Seal on Cooler/Box Present: yes	X	no	Seals	intact: yes no
- 1/A	Type	of Ice:	Wet	Blue None
	'À	°C	Corre	ection Factor: A °C Final Temp: N/A °C
Cooler Temperature Observed Temp				
Temp should be above to				Date and Initials of person examining contents: RTC 2/27/17
Comments:	Yes	No	N/A	
Chain of Custody Present:	×			1.
Chain of Custody Filled Out:	×			2.
Chain of Custody Relinquished:	X·	X		3. pe 2/28/17
Sampler Name & Signature on COC:	×			A.)
Sample Labels match COC:	×			5.
	W	T		
-Includes date/time/ie	×			6.
Samples Arrived within Hold Time:		X		7.
Short Hold Time Analysis (<72hr remaining):		X		8.
Rush Turn Around Time Requested:	X			9.
Sufficient Volume:	-			10.
Correct Containers Used:	×			
-Pace Containers Used:				11.
Containers Intact:	X		Se	12.
Orthophosphate field filtered			×	13.
Organic Samples checked for dechlorination:				
Filtered volume received for Dissolved tests All containers have been checked for preservation.			X	14.
	X			15. pH (2
All containers needing preservation are found to be in	X	}		
compliance with EPA recommendation.				Initial when 2/17/17 Date/time of
exceptions: VOA, coliform, TOC, O&G, Phenolics				completed ATB preservation Lot # of added
				preservative
Headspace in VOA Vials (>6mm):			X	16.
Trip Blank Present:			×	17.
Trip Blank Custody Seals Present			×	
Rad Aqueous Samples Screened > 0.5 mrem/hr		x		Initial when completed: RTB Date: 2/27/17
				The state of the s
Client Notification/ Resolution:			Date/	Time: Contacted By:
Person Contacted:				and the second s
Comments/ Resolution:				
☐ A check in this box indicates that add	itiona	Linfo	rmatio	on has been stored in ereports.
A CHECK III LIIIS DOX III LICALES LITAL ACC		2 0		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

^{*}PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

QQ (C) (C) (T)

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

유 PAGE:

Comparison						ŀ	C. C.			7		
SESPHONE NUMBER PARTIES STEPHINE NUMBER ST	CLIENT NAME:							NECOUES I ED		1.5	CONTAINER LYPE	PRESERVATION
A	Georgia Power			CONTABLER TO		-	4			4	P - PLASTIC	1- HC, s6'C
CC Meria Padilla CC CC CC CC CC CC CC	CLIENT ADDRESS/PHONE NUMBER/	FAX NU		PRESERVATION	Ц	7	3			(1)	A - AMBER GLASS	2 - H₂SO4, ≤6°C
1	241 Ralph McGill Blvd SE 810185			# Of						, , , , , , , , , , , , , , , , , , ,	G - CLEAR GLASS	3- HNO
1	Atfanta, GA 30308										V - VOA VIAL	4 - NaOH, <6°C
Part Vales Opposite CC Maria Positive CC Maria Positive CC Maria Positive CC Maria Positive CC CC CC CC CC CC CC	404-506-7239			ပ							S - STERILE	5 - NaOH/ZnAc, ≤6°C
Paint Value Ope	REPORT TO:	۲	ı	0	(0				,	0	O - OTHER	6 - Na ₂ S ₂ O ₃ , ≤6°C
Paint Yales Orpsum Storage Property Paint Yales		<u> </u>		. z	171	(2	-					7 - s6°C not frozen
Paur Yales Oppsum Sumage Paur Yales Oppsum Y	REOUESTED COMPLETION DATE:	ľ		: }-	<i>1</i> 0	<u></u>						
Part Yales Oppum Sunge Part Yales Oppum		<u> </u>	lahirah@corthemen	· •	305	01 (-WA	RIX CODES:
Part Yales Oppour Storage Part Yales Oppour Yales Oppour Storage Part Yales Oppour Yales	PROJECT NAME/STATE	1	ianuralization and interesting	· –	∀<		·			.		
12.0 CW V CWA-2 V V CWA-2 V V V CWA-2 V V V V V V V V V	. –	a Gunetin	S COSTO	. 2)3)		_			Œ	DW - DRINKING WAT	S SOIL
Vales Orgacum Storage Phase 2 COR & Semi-Annual Manitaring R	ב אמויור ז מוויני	o orpos	- URBONO III	2 W	۸۱		8) W	WW - WASTEWATER	v
12.0 CM CMA-2 4 1 2 2 3 3 3 3 3 3 3 3		appage ar	2 CCR & Semi-Annual Monitoring	; (C	8	SC	22			ď		•••
Collection MATRIX C. G. C. C. C. C. C. C.				: 07	101	Πź	8.8					œ
12.0 GW V GWG-2R V V V V CWG-6R V V V V CWG-6R V V V V V V V V V		-		, -	ddy	' 'C	22					
1120 5W V 6WA-2 4 1 1 2 2 2 2 2 2 2 2	Collection MATRIX		SAMPLE IDENTIFICATION		/ Sļi	s '	wn			74. 14.		
1120 6W V 6WA-2-2 4 1 1 2 2 2 2 2 3 3 3 3 3	TIME CODE			<u>→</u>	stoM	CI' E	Radi				GCA/S/ACA	THONAL INFORMATION
1505 W V 6WC-2R 4 1 1 2 2 2 4 4 1 1 2 2 2 4 4 1 1 2 2 2 4 4 1 1 2 2 2 4 4 1 1 1 2 2 2 4 4 1 1 1 2 2 2 4 4 1 1 1 2 2 2 4 4 1 1 1 2 2 2 4 4 1 1 1 2 2 2 4 4 1 1 1 2 2 2 4 4 1 1 1 2 2 4 4 1 1 1 1	37.0	>	6WA-2	7		<u> </u>	7					
V EB-1-2-22-17 4 1 1 2 5 5 V CWC-6R 4 1 1 2 5 5 V CWC-1R 4 1 1 2 5 V CWC-1R 4 1 1 2 5 V CWC-1R 5 5 5 5 5 V CWC-1R 5 5 5 V CWC-1R 5 5 5 V CWC-1R 5 5 V CWC-1R 5 5 5 V CWC-1R 5 V V V V V V V V V	SZHI	>	6WC-2R	7		-	4			7		
V CWC-6R 4 1 1 2 S Stranger S Stranger S S Stranger S S Stranger S S S S S S S S S	1505	Z	ER-1-2-22-17	7	-	_	N			Ð		
Y FB-1-2-23-17	10110	>	GWC-6R	7			7			7		
V & W.C 3R	1230	Z		7		-	1			S		
V & W.C IR	1220	7		22		-	A			9		hue
V	1355	7		7	_	-	7			*		
V	1000	>	GUC-4R	7		-	7			80		
V Du D-1	1150	>	4WC-5R	1			7			9		
V DUP-1										***		
DATE/TIME: 1 /2 40 RELINQUISHED BY: 2 /2 / 1 /5 50 LAB #: DATE/TIME: DATE/TIME: DATE/TIME: Enlored into LIBM DATE/TIME: Enlored into LIBM DATE/TIME: Enlored into LIBM DATE/TIME: Enlored into LIBM Temperature: DATE/TIME: Enlored into LIBM Tracking #: Trac	1	Z	DUP-1	4	<u> </u>	~	7			0		
DATE/TIME PRELINQUISHED BY DATE/TIME SALE		<u> </u>			_							
DATE/TIME:	Ι.			RELINGE	SHED	5			DATE/TIME	15/2/		AB USE ONLY
NED BY LUB TO AN AND THE COURT COURT COURT COURT COURT COURT FIST COURT	-1			RELINOL	SHED	Ž	1		DATE/TIME:	3		このとのこと
NED BY LAW AND AND COLUMN COLU											Entered into LIMS:	1/4
cheet. We how the loss the loss that the house the broken had breezen to breezen the broken the bro	12		1七//	SAMPLE	発品	X X	i Varidia	7	<u>~</u>	11.	racking #:	
	Cheed View Tope		TO THE	S C	tat:	Not Pre	(1) (2) (2)	# of Coolers	Lower ID:			
	5											

Plant Yafes COC Gypsum Storage.xlsx
Plant Yafes COC Gypsum Storage.xlsx
Bab Be Cot Co. Cu. Pb. Hg. N. Se. Ag all N. Zn.

to to the contract of the contract of

1 of 1

CHARACTER COLOR

A CONTRACTOR OF THE PROPERTY O

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow. Ra-226

Face Analytical"

3/15/2017 ¥ Analyst Test: Date:

34494 DW **Norklist**: Matrix:

Sample MS I.D. Sample MSD I.D. Spike I.D.:

Sample Collection Date: Sample I.D.

Sample Matrix Spike Control Assessment

MB Sample ID MB concentration:

Method Blank Assessment

0.081 0.155 1.80 N/A Pass MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: M/B Counting Uncertainty:

Spike uncertainty (calculated):

MS Aliquot (L, g, F):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL) MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): Sample Result:

Sample Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Result:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MS Numerical Performance Indicator: MSD Numerical Performance Indicator:

MS Percent Recovery: MSD Percent Recovery: MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery:

MSD Status vs Recover

Matrix Spike/Matrix Spike Duplicate Sample Assessment

LCSD34494 LCSD (Y or N)? LCS34494 3/20/2017 0.883 15.336 0.861 -5.45 81.74% 17-003 38.230 0.25 0.509 18.761 Aliquot Volume (L, g, F): Uncertainty (Calculated): Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Numerical Performance Indicator: Count Date Spike Concentration (pCi/mL.): Volume Used (mL): Target Conc. (pCi/L., g, F): Spike I.D. Laboratory Control Sample Assessment

Percent Recovery: Status vs Numerical Indicator: Status vs Recovery

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessmen

Enter Duplicate sample IDs if CS/LCSD in the space below. other than 30211896002DUP 30211896002 See Below 排 13.76% 0.511 0.154 0.382 0.152 0.438 Ϋ́ Sample Result (DG/IL, g, F):
Sample Result Counting Uncertainty (pC/IL, g, F):
Sample Duplicate Result (pC/IL, g, F):
Sample Duplicate Result Counting Uncertainty (pC/IL, g, F):
Are sample and/or duplicate results below MDC?

Sample Matrix Spike Result: Sample Matrix Spike Duplicate Result Sample MSD I.D. Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS/ MSD Duplicate RPD: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD

Sample MS I.D.

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate RPD:

Duplicate Numerical Performance Indicator:

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD

Comments:

Printed: 3/21/2017 6:55 PM TAR DW QC

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

JLW 3/14/2017 Ra-228 Analyst: Test: Date:

Face Analytical"

34512 DW Worklist: Matrix:

1.303 0.529 0.877 4.83 N/A Fail* MB Sample ID MB Numerical Performance Indicator: MB concentration: M/B Counting Uncertainty: MB MDC: MB Status vs Numerical Indicator: MB Status vs. MDC Method Blank Assessment

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F):

Spike uncertainty (calculated):

Sample Result:

MS Aliquot (L, g, F):

Sample MS I.D. Sample MSD 1.D.

Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL) Spike Volume Used in MSD (mL)

Sample Collection Date: Sample I.D.

Sample Matrix Spike Control Assessment

Sample Result Counting Uncertainty (pCi/L, g, F): Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Result

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result

MSD Numerical Performance Indicator:

MS Numerical Performance Indicator

MS Percent Recovery: MSD Percent Recovery:

aboratory Control Sample Assessment	LCSD (Y or N)?	>
	LCS34512	CCSD3
Count Date:	3/17/2017	3/17/2
Spike I.D.:	17-005	17-0
Spike Concentration (pCi/mL):	25:015	25.0
Volume Used (mL):	0.20	0.2
Alignot Volume (L. g. F):	0.811	0.83
(i) (i) (ii) (iii)	8 187	803

LCSD34512	3/17/2017	17-005	25.015	0.20	0.830	6.029	0.434	6.718	1.109	1.13	111.43%	A/N	Pass	
 LCS34512	3/17/2017	17-005	25.015	0.20	0.811	6.167	0.444	8.435	1.366	3.09	136.77%	NIA	Fail High**	
	Count Date:	Spike I.D.:	Spike Concentration (pCi/mL):	Volume Used (mL):	Alignot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCi/L, g, F):	LCS/LCSD Counting Uncertainty (pCI/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:	

(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	Duplicate Numerical Performance Indicator:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	. Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Result:	Sample MSD I.D.	Sample MS I.D.	Sample I.D.	Matrix Spike/Matrix Spike Duplicate Sample Assessment	
--	--	---	---------------------------------------	---	-----------------------------	-----------------	----------------	-------------	---	--

he space below.

8.435 1.366 6.718 1.109

Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F):

Sample Duplicate Result (pCi/L, g, F):

Sample Duplicate Result Counting Uncertainty (pCi/L, 9, F): Are sample and/or duplicate results below MDC? Duplicate Numerical Performance Indicator:

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD

1.913 20.42%

9

٨

Enter Duplicate sample IDs if LCS/LCSD in

LCS34512 LCSD34512

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessment

other than

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MS Status vs Recovery:

MSD Status vs Recovery

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

If the lowest activity sample in this batch is greater than ten times the blank value, the blank is acceptable; otherwise this batch must be re-prepped.

**If all sample results are below MDC, the batch is acceptable, otherwise this batch must be reprepped due to LCS fall he.

Ra-228 NELAC DW2 Printed: 3/21/2017 6:54 PM

1 of 1

Date: 2017-02-22 11:20:02

Project Information:
Operator Name
Chris Parker

Company Name Atlantic Coast Consulting
Project Name Plant Yates Gypsum
Site Name Plant Yates Gypsum

Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pu

Well Information:

Well ID GWA-2
Well diameter 2 in
Well Total Depth 52.13 ft
Screen Length 10 ft
Depth to Water 40.30 ft

Pump Information:

Pump Model/Type Bladder Pump Tubing Type Poly

47 ft

Tubing TypePolyTubing Diameter.375 inTubing Length53 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 100 mL/min
Total System Volume 1.636088 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 11 in
Total Volume Pumped 4.5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	10:56:42	900.00	17.32	6.36	197.61	2.11	40.90	1.70	36.55
Last 5	11:01:42	1200.00	17.32	6.29	198.26	1.95	41.00	1.13	44.73
Last 5	11:06:42	1500.00	17.32	6.25	198.08	1.83	41.10	0.72	49.63
Last 5	11:11:42	1800.00	17.36	6.23	197.81	1.52	41.20	0.60	53.39
Last 5	11:16:42	2099.99	17.36	6.21	198.23	1.47	41.20	0.57	59.34
Variance 0			0.00	-0.04	-0.17			-0.40	4.90
Variance 1			0.04	-0.01	-0.27			-0.13	3.76
Variance 2			0.00	-0.02	0.41			-0.03	5.95

Notes

Collected at11:20. Cloudy 60s

Date: 2017-02-23 13:51:02

Tubing Type

Tubing Diameter

Tubing Length

Peristaltic

teflon

.17 in

41 ft

Project Information:

Operator Name

Pump Information:

Pump Model/Type

Company Name
Project Name
Plant Yates AP - Phase 2 CCR
Site Name
Plant Yates-Gypsum Storage

Latitude 33° 27' 55.94"

Longitude -84° -53' -53.56"

Sonde SN 466058
Turbidity Make/Model Hach 2100

Turbidity Make/Model Hach 2100Q Pump placement from TOC 3 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-1R 125 mL/min Total System Volume Well diameter 2 in 0.2730004 L Calculated Sample Rate Well Total Depth 36.34 ft 300 sec Screen Length 10 ft Stabilization Drawdown 13.44 in Depth to Water Total Volume Pumped 16.25 L 27.52 ft

Low-Flow Sampling Stabilization Summary
Time Elapsed

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	13:28:47	6300.93	19.45	5.50	769.70	0.87	28.70	6.54	128.90
Last 5	13:33:47	6600.93	18.79	5.49	771.35	0.87	28.70	6.56	128.91
Last 5	13:38:47	6900.92	18.84	5.49	776.14	0.86	28.70	6.52	128.30
Last 5	13:43:47	7200.92	19.06	5.49	774.99	0.72	28.70	6.56	127.86
Last 5	13:48:47	7500.90	18.83	5.50	776.34	0.92	28.70	6.68	127.36
Variance 0			0.05	-0.00	4.80			-0.04	-0.61
Variance 1			0.22	-0.00	-1.16			0.03	-0.44
Variance 2			-0.23	0.01	1.35			0.12	-0.50

Notes

Sunny 70's. Sampled at 13:55.

Date: 2017-02-22 14:21:46

Bladder Pump

Project Information:
Operator Name
Chris Parker
Pump Information:
Pump Model/Type

Company NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length44 ft

Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 38.5 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-2R 125 mL/min Well diameter Total System Volume 0.6813906 L 2 in Calculated Sample Rate Well Total Depth 43.80 ft 300 sec Stabilization Drawdown Screen Length 10 ft 1 in Depth to Water 31.00 ft **Total Volume Pumped** 14 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	13:58:56	5103.94	17.51	5.48	275.29	5.45	31.20	5.16	110.60
Last 5	14:03:57	5404.94	17.49	5.48	276.40	5.25	31.20	5.17	111.12
Last 5	14:08:57	5704.94	17.47	5.48	277.41	5.11	31.20	5.18	111.28
Last 5	14:13:57	6004.92	17.49	5.48	277.89	4.98	31.20	5.18	111.68
Last 5	14:18:57	6304.92	17.47	5.48	276.99	4.90	31.20	5.18	111.75
Variance 0			-0.02	-0.00	1.01			0.01	0.16
Variance 1			0.02	-0.00	0.49			-0.00	0.40
Variance 2			-0.02	0.00	-0.90			0.00	0.07

Notes

Collected at 14:25. Cloudy 60s. EB-1 here.

Date: 2017-02-23 13:27:20

Pump Information:

Pump Model/Type

Bladder Pump

Project Information:
Operator Name Chris Parker

Company NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length39 ft

Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 35 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-3R 150 mL/min Well diameter Total System Volume 0.6590735 L 2 in Calculated Sample Rate Well Total Depth 38.33 ft 300 sec Stabilization Drawdown Screen Length 10 ft 12 in Depth to Water 17 L 32.6 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	13:05:57	3899.98	19.50	5.32	164.81	6.24	33.50	6.62	150.94
Last 5	13:10:57	4199.97	19.50	5.28	163.07	5.43	33.50	6.62	151.36
Last 5	13:15:57	4499.97	19.50	5.27	162.91	5.15	33.50	6.63	152.29
Last 5	13:20:57	4799.97	19.43	5.28	160.42	4.92	33.50	6.60	152.37
Last 5	13:25:57	5099.97	19.28	5.28	159.25	4.15	33.50	6.59	152.24
Variance 0			-0.00	-0.01	-0.16			0.01	0.93
Variance 1			-0.08	0.01	-2.49			-0.03	0.08
Variance 2			-0.15	0.00	-1.17			-0.01	-0.13

Notes

Collected at 13:30. Sunny 60s. FB-1 here at 12:30

Date: 2017-02-24 09:55:45

Project Information:
Operator Name Ryan Walker

Company Name Atlantic Coast Consulting, Inc.
Project Name Plant Yates AP - Phase 2 CCR
Site Name Plant Yates-Gypsum Storage

Latitude 33° 28' 2.65" Longitude -84° -54' -0.27"

Sonde SN 466058

Turbidity Make/Model Hach 2100Q

Pump Information:

Pump Model/Type Peristaltic
Tubing Type teflon
Tubing Diameter .17 in
Tubing Length 36 ft

Pump placement from TOC 3 ft

Well Information:

Well ID GWC-4R
Well diameter 2 in
Well Total Depth 31.05 ft
Screen Length 10 ft
Depth to Water 18.39 ft

Pumping Information:

Final Pumping Rate 135 mL/min
Total System Volume 0.2506832 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 3.72 in
Total Volume Pumped 4.05 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	09:33:35	300.03	19.50	5.48	875.58	3.79	18.70	0.46	112.35
Last 5	09:38:35	600.02	19.28	5.47	845.73	3.47	18.70	0.44	111.98
Last 5	09:43:35	900.00	19.46	5.47	796.91	3.00	18.70	0.41	113.34
Last 5	09:48:35	1200.00	19.55	5.46	796.06	2.23	18.70	0.38	115.14
Last 5	09:53:35	1500.00	19.68	5.47	786.24	2.03	18.70	0.36	116.86
Variance 0			0.18	-0.00	-48.82			-0.03	1.35
Variance 1			0.09	-0.00	-0.85			-0.02	1.80
Variance 2			0.13	0.00	-9.82			-0.03	1.73

Notes

Sunny 60's. Sampled at 10:00.

Date: 2017-02-24 11:52:00

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Bladder Pump

Poly

.17 in

43 ft

Project Information:
Operator Name Chris Parker

Company Name Atlantic Coast Consulting
Project Name Plant Yates Gypsum
Site Name Plant Yates Gypsum

Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 39 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-5R 65 mL/min Well diameter Total System Volume 0.6769272 L 2 in Calculated Sample Rate Well Total Depth 42.8 ft 300 sec Stabilization Drawdown Screen Length 10 ft 5 in Depth to Water 35.25 ft **Total Volume Pumped** 10 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS/	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	11:27:57	7499.92	24.49	5.37	1419.43	6.12	35.70	6.72	135.03
Last 5	11:32:57	7799.92	24.80	5.37	1413.23	5.49	35.70	6.68	134.97
Last 5	11:37:57	8099.92	24.98	5.37	1420.26	5.08	35.70	6.65	135.32
Last 5	11:42:57	8399.89	25.01	5.37	1420.51	4.67	35.70	6.76	135.43
Last 5	11:47:57	8699.89	25.13	5.37	1414.70	4.42	35.70	6.72	135.90
Variance 0			0.18	-0.00	7.03			-0.03	0.35
Variance 1			0.02	-0.00	0.25			0.11	0.10
Variance 2			0.12	0.00	-5.81			-0.04	0.47

Notes

Collected at 11:50. Sunny 60s.

Date: 2017-02-23 10:43:38

Project Information: Operator Name Chris Parker

Company Name Atlantic Coast Consulting Project Name Plant Yates Gypsum Plant Yates Gypsum Site Name

00 0' 0" Latitude 00 0' 0" Longitude Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump Information:

Pump Model/Type Bladder Pump **Tubing Type** Poly

Tubing Diameter .17 in Tubing Length 52 ft

Pump placement from TOC

47 ft

Well Information:

Well ID GWC-6R Well diameter 2 in Well Total Depth 51.87 ft Screen Length 10 ft Depth to Water 39.93 ft

Pumping Information:

Final Pumping Rate 115 mL/min Total System Volume 0.717098 L Calculated Sample Rate 300 sec Stabilization Drawdown 3 in 3.5 L **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	10:17:34	300.12	16.27	6.21	780.19	4.30	40.20	5.64	113.00
Last 5	10:22:34	600.03	16.31	6.04	787.09	4.54	40.30	5.63	106.29
Last 5	10:27:34	900.01	16.43	5.99	803.30	4.25	40.30	5.71	103.34
Last 5	10:32:34	1200.01	16.47	5.98	810.14	3.85	40.30	5.72	101.76
Last 5	10:37:34	1500.02	16.47	5.97	814.79	3.12	40.30	5.75	101.11
Variance 0			0.12	-0.05	16.20			0.07	-2.95
Variance 1			0.04	-0.02	6.85			0.01	-1.58
Variance 2			-0.01	-0.01	4.65			0.03	-0.65

Notes

Collected at 10:40. M. cloudy 60s

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AAE0388

May 22, 2017

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, LLC.

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

May 22, 2017

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GWA-2	AAE0388-01	Ground Water	05/08/17 14:35	05/11/17 09:50
GWC-3R	AAE0388-02	Ground Water	05/09/17 11:25	05/11/17 09:50
EB-1-5-9-17	AAE0388-03	Water	05/09/17 13:40	05/11/17 09:50
GWC-1R	AAE0388-04	Ground Water	05/09/17 14:15	05/11/17 09:50
Dup-1	AAE0388-05	Ground Water	05/09/17 00:00	05/11/17 09:50
GWC-5R	AAE0388-06	Ground Water	05/10/17 13:10	05/11/17 09:50
GWC-2R	AAE0388-07	Ground Water	05/10/17 16:15	05/11/17 09:50
GWC-4R	AAE0388-08	Ground Water	05/10/17 18:40	05/11/17 09:50
GWC-6R	AAE0388-09	Ground Water	05/10/17 15:30	05/11/17 09:50
FB-1-5-10-17	AAE0388-10	Water	05/10/17 15:15	05/11/17 09:50

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

May 22, 2017

Case Narrative

The Radium analysis by methods EPA 9315/9320 was performed by Pace-Pittsburgh, 1638 Roseytown Road - Suites 2, 3, 4, Greensburg PA 15601. The Pace-Pittsburgh lab contact is Jacquelyn Collins at 724-850-5612.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0388

Client ID: GWA-2

Date/Time Sampled: 5/8/2017 2:35:00PM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0388-01

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	145	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	4.2	0.25	0.01	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 13:08	7050484	RLC
Fluoride	0.05	0.30	0.004	mg/L	EPA 300.0	J	1	05/15/17 09:58	05/15/17 13:08	7050484	RLC
Sulfate	60	2.0	0.18	mg/L	EPA 300.0		2	05/15/17 09:58	05/18/17 19:52	7050484	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Barium	0.0650	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Boron	0.0084	0.0400	0.0060	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Calcium	14.2	5.00	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/16/17 00:10	7050449	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Cobalt	0.0059	0.0100	0.0005	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Thallium	0.00006	0.0010	0.00005	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Vanadium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Zinc	0.0025	0.0100	0.0013	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Lithium	0.0014	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:04	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 10:15	05/15/17 15:50	7050418	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Client ID: GWC-3R

Report No.: AAE0388

Date/Time Sampled: 5/9/2017 11:25:00AM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0388-02

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	77	25	10	mg/L	SM 2540 C		1	05/12/17 11:45	05/12/17 11:45	7050407	JPT
Inorganic Anions											
Chloride	7.2	0.25	0.01	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 14:10	7050484	RLC
Fluoride	ND	0.30	0.004	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 14:10	7050484	RLC
Sulfate	41	1.0	0.09	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 14:10	7050484	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Barium	0.0308	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Beryllium	0.0002	0.0030	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Boron	0.0077	0.0400	0.0060	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Calcium	3.56	0.500	0.0104	mg/L	EPA 6020B	B-01	1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Chromium	0.0016	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Vanadium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Zinc	0.0025	0.0100	0.0013	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Lithium	ND	0.0500	0.0011	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:16	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 12:20	05/15/17 17:30	7050419	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0388 Client ID: EB-1-5-9-17

Date/Time Sampled: 5/9/2017 1:40:00PM

Matrix: Water

Project: CCR Event

May 22, 2017

Lab Number ID: AAE0388-03

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	05/15/17 18:30	05/15/17 18:30	7050492	JPT
Inorganic Anions											
Chloride	ND	0.25	0.01	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 14:31	7050484	RLC
Fluoride	ND	0.30	0.004	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 14:31	7050484	RLC
Sulfate	ND	1.0	0.09	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 14:31	7050484	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Barium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Calcium	0.0574	0.500	0.0104	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Chromium	0.0003	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Vanadium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Zinc	ND	0.0100	0.0013	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Lithium	ND	0.0500	0.0011	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:39	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 12:20	05/15/17 17:32	7050419	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0388
Client ID: GWC-1R

Date/Time Sampled: 5/9/2017 2:15:00PM

Matrix: Ground Water

Project: CCR Event

Lab Number ID: AAE0388-04

Date/Time Received: 5/11/2017 9:50:00AM

May 22, 2017

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	410	25	10	mg/L	SM 2540 C		1	05/15/17 18:30	05/15/17 18:30	7050492	JPT
Inorganic Anions											
Chloride	16	0.25	0.01	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 14:52	7050484	RLC
Fluoride	0.06	0.30	0.004	mg/L	EPA 300.0	J	1	05/15/17 09:58	05/15/17 14:52	7050484	RLC
Sulfate	280	20	1.8	mg/L	EPA 300.0		20	05/15/17 09:58	05/18/17 21:35	7050484	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Arsenic	0.0005	0.0050	0.0004	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Barium	0.0463	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Beryllium	0.00008	0.0030	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Boron	0.0097	0.0400	0.0060	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Calcium	47.4	25.0	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/19/17 17:24	7050449	CSW
Chromium	0.0011	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Cobalt	0.0008	0.0100	0.0005	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Selenium	0.0066	0.0100	0.0014	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Vanadium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Zinc	0.0016	0.0100	0.0013	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Lithium	0.0020	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 00:50	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 12:20	05/15/17 17:34	7050419	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0388

Client ID: Dup-1

Date/Time Sampled: 5/9/2017 12:00:00AM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0388-05

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	65	25	10	mg/L	SM 2540 C		1	05/15/17 18:30	05/15/17 18:30	7050492	JPT
Inorganic Anions											
Chloride	7.5	0.25	0.01	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 15:12	7050484	RLC
Fluoride	ND	0.30	0.004	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 15:12	7050484	RLC
Sulfate	42	1.0	0.09	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 15:12	7050484	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Barium	0.0298	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Beryllium	0.0002	0.0030	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Calcium	3.47	0.500	0.0104	mg/L	EPA 6020B	B-01	1	05/12/17 12:00	05/19/17 17:29	7050449	CSW
Chromium	0.0013	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Selenium	0.0018	0.0100	0.0014	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Vanadium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Zinc	0.0019	0.0100	0.0013	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Lithium	ND	0.0500	0.0011	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:02	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 12:20	05/15/17 17:37	7050419	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0388

Client ID: GWC-5R

Date/Time Sampled: 5/10/2017 1:10:00PM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0388-06

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1360	25	10	mg/L	SM 2540 C		1	05/15/17 18:30	05/15/17 18:30	7050492	JPT
Inorganic Anions											
Chloride	4.5	0.25	0.01	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 15:33	7050484	RLC
Fluoride	ND	0.30	0.004	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 15:33	7050484	RLC
Sulfate	1000	50	4.6	mg/L	EPA 300.0		50	05/15/17 09:58	05/18/17 21:56	7050484	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Arsenic	0.0011	0.0050	0.0004	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Barium	0.0363	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Beryllium	0.0003	0.0030	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Boron	0.0068	0.0400	0.0060	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Cadmium	0.0003	0.0010	0.00006	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Calcium	136	25.0	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/19/17 17:35	7050449	CSW
Chromium	0.0024	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Selenium	0.0152	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Vanadium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Zinc	0.0042	0.0100	0.0013	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Lithium	ND	0.0500	0.0011	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:13	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 12:20	05/15/17 17:39	7050419	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0388

Client ID: GWC-2R

Date/Time Sampled: 5/10/2017 4:15:00PM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0388-07

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	149	25	10	mg/L	SM 2540 C		1	05/15/17 18:30	05/15/17 18:30	7050492	JPT
Inorganic Anions											
Chloride	7.1	0.25	0.01	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 15:54	7050484	RLC
Fluoride	0.05	0.30	0.004	mg/L	EPA 300.0	J	1	05/15/17 09:58	05/15/17 15:54	7050484	RLC
Sulfate	80	5.0	0.46	mg/L	EPA 300.0		5	05/15/17 09:58	05/18/17 22:17	7050484	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Barium	0.0563	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Boron	0.0179	0.0400	0.0060	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Calcium	11.8	5.00	0.104	mg/L	EPA 6020B	B-01	10	05/12/17 12:00	05/19/17 17:41	7050449	CSW
Chromium	0.0008	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Cobalt	0.0213	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Lead	0.0001	0.0050	0.00007	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Selenium	0.0016	0.0100	0.0014	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Vanadium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Zinc	0.0022	0.0100	0.0013	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Lithium	0.0035	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:24	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 12:20	05/15/17 17:42	7050419	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0388

Client ID: GWC-4R

Date/Time Sampled: 5/10/2017 6:40:00PM

Matrix: Ground Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0388-08

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	251	25	10	mg/L	SM 2540 C		1	05/15/17 18:30	05/15/17 18:30	7050492	JPT
Inorganic Anions											
Chloride	71	1.2	0.06	mg/L	EPA 300.0		5	05/15/17 09:58	05/18/17 22:37	7050484	RLC
Fluoride	0.04	0.30	0.004	mg/L	EPA 300.0	J	1	05/15/17 09:58	05/15/17 17:58	7050484	RLC
Sulfate	70	5.0	0.46	mg/L	EPA 300.0		5	05/15/17 09:58	05/18/17 22:37	7050484	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Barium	0.0182	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/19/17 17:52	7050449	CSW
Boron	1.22	0.400	0.0604	mg/L	EPA 6020B		10	05/12/17 12:00	05/19/17 17:47	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Calcium	17.0	5.00	0.104	mg/L	EPA 6020B	B-01	10	05/12/17 12:00	05/19/17 17:47	7050449	CSW
Chromium	0.0007	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Selenium	0.0054	0.0100	0.0014	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Vanadium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Zinc	0.0014	0.0100	0.0013	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Lithium	ND	0.0500	0.0011	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:47	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 12:20	05/15/17 17:44	7050419	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0388 Project: CCR Event

Client ID: GWC-6R Lab Number ID: AAE0388-09

Date/Time Sampled: 5/10/2017 3:30:00PM Date/Time Received: 5/11/2017 9:50:00AM

Matrix: Ground Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	955	25	10	mg/L	SM 2540 C		1	05/15/17 18:30	05/15/17 18:30	7050492	JPT
Inorganic Anions											
Chloride	3.9	0.25	0.01	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 18:18	7050484	RLC
Fluoride	0.02	0.30	0.004	mg/L	EPA 300.0	J	1	05/15/17 09:58	05/15/17 18:18	7050484	RLC
Sulfate	660	50	4.6	mg/L	EPA 300.0		50	05/15/17 09:58	05/18/17 22:58	7050484	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Arsenic	0.0007	0.0050	0.0004	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Barium	0.0873	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/19/17 18:09	7050449	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Calcium	105	25.0	0.522	mg/L	EPA 6020B	B-01	50	05/12/17 12:00	05/19/17 18:15	7050449	CSW
Chromium	0.0015	0.0100	0.0003	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Selenium	0.0023	0.0100	0.0014	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Vanadium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Zinc	0.0027	0.0100	0.0013	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Lithium	0.0054	0.0500	0.0011	mg/L	EPA 6020B	J	1	05/12/17 12:00	05/16/17 01:59	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 12:20	05/15/17 17:51	7050419	MTC

May 22, 2017

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0388

Client ID: FB-1-5-10-17

Date/Time Sampled: 5/10/2017 3:15:00PM

Matrix: Water

May 22, 2017

Project: CCR Event

Lab Number ID: AAE0388-10

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	05/15/17 18:30	05/15/17 18:30	7050492	JPT
Inorganic Anions											
Chloride	0.07	0.25	0.01	mg/L	EPA 300.0	J	1	05/15/17 09:58	05/15/17 18:39	7050484	RLC
Fluoride	ND	0.30	0.004	mg/L	EPA 300.0		1	05/15/17 09:58	05/15/17 18:39	7050484	RLC
Sulfate	0.17	1.0	0.09	mg/L	EPA 300.0	J	1	05/15/17 09:58	05/15/17 18:39	7050484	RLC
Metals, Total											
Antimony	ND	0.0030	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Arsenic	ND	0.0050	0.0004	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Barium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Beryllium	ND	0.0030	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/19/17 18:21	7050449	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Cadmium	ND	0.0010	0.00006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Calcium	0.0551	0.500	0.0104	mg/L	EPA 6020B	B-01, J	1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Chromium	ND	0.0100	0.0003	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Cobalt	ND	0.0100	0.0005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Molybdenum	ND	0.0100	0.0006	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Selenium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Vanadium	ND	0.0100	0.0014	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Zinc	ND	0.0100	0.0013	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Lithium	ND	0.0500	0.0011	mg/L	EPA 6020B		1	05/12/17 12:00	05/16/17 02:10	7050449	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	05/15/17 12:20	05/15/17 17:53	7050419	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

May 22, 2017

Report No.: AAE0388

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 7050407 - SM 2540 C												
Blank (7050407-BLK1)						Prepare	d & Analy	/zed: 05/12	2/17			
Total Dissolved Solids	ND	25	10	mg/L								
LCS (7050407-BS1)						Prepare	d & Analy	/zed: 05/12	2/17			
Total Dissolved Solids	378	25	10	mg/L	400.00		94	84-108				
Duplicate (7050407-DUP1)		So	urce: AAE03	313-05		Prepare	d & Anal	/zed: 05/12	2/17			
Total Dissolved Solids	ND	25	10	mg/L		ND				10		
Duplicate (7050407-DUP2)		So	urce: AAE03	387-09		Prepared & Analyzed: 05/12/17						
Total Dissolved Solids	218	25	10	mg/L		203			7	10		
Batch 7050492 - SM 2540 C												
Blank (7050492-BLK1)						Prepared & Analyzed: 05/15/17						
Total Dissolved Solids	ND	25	10	mg/L		•						
LCS (7050492-BS1)						Prepared & Analyzed: 05/15/17						
Total Dissolved Solids	406	25	10	mg/L	400.00	•	102	84-108				
Duplicate (7050492-DUP1)		So	urce: AAE03	388-06		Prepare	d & Analy	/zed: 05/15	5/17			
Total Dissolved Solids	1390	25	10	mg/L		1360			3	10		

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

May 22, 2017

Report No.: AAE0388

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 7050484 - EPA 300.0												
Blank (7050484-BLK1)						Prepare	ed & Analy	/zed: 05/1	5/17			
Chloride	ND	0.25	0.01	mg/L								
Fluoride	ND	0.30	0.004	mg/L								
Sulfate	ND	1.0	0.09	mg/L								
LCS (7050484-BS1)						Prepare	ed & Analy	/zed: 05/1	5/17			
Chloride	9.82	0.25	0.01	mg/L	10.020		98	90-110				
Fluoride	9.76	0.30	0.004	mg/L	10.020		97	90-110				
Sulfate	10.0	1.0	0.09	mg/L	10.050		100	90-110				
Matrix Spike (7050484-MS1)		Sou	urce: AAE03	88-01		Prepared & Analyzed: 05/15/17						
Chloride	13.9	0.25	0.01	mg/L	10.020	4.17	97	90-110				
Fluoride	10.1	0.30	0.004	mg/L	10.020	0.05	100	90-110				
Sulfate	60.9	1.0	0.09	mg/L	10.050	56.4	44	90-110			QM-02	
Matrix Spike (7050484-MS2)		Sou	ırce: AAE03	88-07		Prepare	ed & Analy	/zed: 05/1	5/17			
Chloride	16.2	0.25	0.01	mg/L	10.020	7.14	91	90-110				
Fluoride	10.2	0.30	0.004	mg/L	10.020	0.05	101	90-110				
Sulfate	80.2	1.0	0.09	mg/L	10.050	78.3	19	90-110			QM-02	
Matrix Spike Dup (7050484-MSD1)		Sou	urce: AAE03	88-01		Prepare	ed & Analy	/zed: 05/1	5/17			
Chloride	13.9	0.25	0.01	mg/L	10.020	4.17	97	90-110	0.2	15		
Fluoride	9.97	0.30	0.004	mg/L	10.020	0.05	99	90-110	1	15		

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

May 22, 2017

Report No.: AAE0388

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050418 - EPA 7470A											
Blank (7050418-BLK1)						Prepare	ed & Analy	zed: 05/15	/17		
Mercury	ND	0.00050	0.000041	mg/L							
LCS (7050418-BS1)						Prepare	ed & Analy	zed: 05/15	/17		
Mercury	0.00218	0.00050	0.000041	mg/L	2.5000E-3		87	80-120			
Matrix Spike (7050418-MS1)		Sou	ırce: AAE031	13-03		Prepare	ed & Analy	zed: 05/15	/17		
Mercury	0.00217	0.00050	0.000041	mg/L	2.5000E-3	ND	87	75-125			
Matrix Spike Dup (7050418-MSD1)		Sou	urce: AAE031	3-03		Prepare	ed & Analy	zed: 05/15	/17		
Mercury	0.00215	0.00050	0.000041	mg/L	2.5000E-3	ND	86	75-125	1	20	
Post Spike (7050418-PS1)		Sou	ırce: AAE031	3-03		Prepare	ed & Analy	zed: 05/15	/17		
Post Spike (7050418-PS1) Mercury	1.78	Sou	urce: AAE031	ug/L	1.6667	Prepare -0.00823	ed & Analy 107	vzed: 05/15 80-120	5/17		
	1.78	Sou	urce: AAE031		1.6667				5/17		
Mercury	1.78	Sou	urce: AAE031		1.6667	-0.00823	107	80-120			
Mercury Batch 7050419 - EPA 7470A	1.78 ND	0.00050	0.000041		1.6667	-0.00823	107				
Mercury Batch 7050419 - EPA 7470A Blank (7050419-BLK1)				ug/L	1.6667	-0.00823 Prepare	107 ed & Analy	80-120 /zed: 05/15	5/17		
Mercury Batch 7050419 - EPA 7470A Blank (7050419-BLK1) Mercury				ug/L	1.6667 2.5000E-3	-0.00823 Prepare	107 ed & Analy	80-120	5/17		
Mercury Batch 7050419 - EPA 7470A Blank (7050419-BLK1) Mercury LCS (7050419-BS1)	ND	0.00050	0.000041	mg/L		Prepare	107 ed & Analy ed & Analy 98	80-120 /zed: 05/15 /zed: 05/15	5/17		
Mercury Batch 7050419 - EPA 7470A Blank (7050419-BLK1) Mercury LCS (7050419-BS1) Mercury	ND	0.00050	0.000041	mg/L		Prepare	107 ed & Analy ed & Analy 98	zed: 05/15 zed: 05/15 zed: 05/15 80-120	5/17		
Mercury Batch 7050419 - EPA 7470A Blank (7050419-BLK1) Mercury LCS (7050419-BS1) Mercury Matrix Spike (7050419-MS1)	ND 0.00246	0.00050 0.00050 Sot 0.00050	0.000041 0.000041 urce: AAE038	mg/L mg/L mg/L mg/L mg/L	2.5000E-3	Prepare Prepare ND	ed & Analy ed & Analy 98 ed & Analy 98 ed & Analy 96	80-120 /zed: 05/15 /zed: 05/15 80-120 /zed: 05/15	5/17 5/17 5/17		

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham May 22, 2017

Report No.: AAE0388

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050419 - EPA 7470A											
Post Spike (7050419-PS1)		So	urce: AAE03	88-07		Prepar	ed & Analy	/zed: 05/1	5/17		
Mercury	1.74			ug/L	1.6667	-0.0138	104	80-120			
Batch 7050449 - EPA 3005A											
Blank (7050449-BLK1)						Prepar	ed: 05/12/	17 Analyz	ed: 05/15	/17	
Antimony	ND	0.0030	0.0003	mg/L							
Arsenic	ND	0.0050	0.0004	mg/L							
Barium	ND	0.0100	0.0003	mg/L							
Beryllium	ND	0.0030	0.00007	mg/L							
Boron	ND	0.0400	0.0060	mg/L							
Cadmium	ND	0.0010	0.00006	mg/L							
Calcium	0.0319	0.500	0.0104	mg/L							
Chromium	0.0006	0.0100	0.0003	mg/L							
Cobalt	ND	0.0100	0.0005	mg/L							
Copper	ND	0.0250	0.0003	mg/L							
Lead	ND	0.0050	0.00007	mg/L							
Molybdenum	ND	0.0100	0.0006	mg/L							
Nickel	ND	0.0100	0.0003	mg/L							
Selenium	ND	0.0100	0.0014	mg/L							
Silver	ND	0.0100	0.0003	mg/L							
Thallium	ND	0.0010	0.00005	mg/L							
Vanadium	ND	0.0100	0.0014	mg/L							
Zinc	ND	0.0100	0.0013	mg/L							
Lithium	ND	0.0500	0.0011	mg/L							
LCS (7050449-BS1)						Prepar	ed: 05/12/	17 Analyz	ed: 05/15	/17	
Antimony	0.116	0.0030	0.0003	mg/L	0.10000		116	80-120			
Arsenic	0.102	0.0050	0.0004	mg/L	0.10000		102	80-120			
Barium	0.105	0.0100	0.0003	mg/L	0.10000		105	80-120			
Beryllium	0.108	0.0030	0.00007	mg/L	0.10000		108	80-120			
Boron	1.17	0.0400	0.0060	mg/L	1.0000		117	80-120			
Cadmium	0.104	0.0010	0.00006	mg/L	0.10000		104	80-120			
Calcium	1.05	0.500	0.0104	mg/L	1.0000		105	80-120			
Chromium	0.102	0.0100	0.0003	mg/L	0.10000		102	80-120			
Cobalt	0.103	0.0100	0.0005	mg/L	0.10000		103	80-120			
Copper	0.103	0.0250	0.0003	mg/L	0.10000		103	80-120			
Lead	0.106	0.0050	0.00007	mg/L	0.10000		106	80-120			
Molybdenum	0.106	0.0100	0.0006	mg/L	0.10000		106	80-120			
Nickel	0.103	0.0100	0.0003	mg/L	0.10000		103	80-120			
Selenium	0.108	0.0100	0.0014	mg/L	0.10000		108	80-120			
Silver	0.110	0.0100	0.0003	mg/L	0.10000		110	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAE0388

Metals, Total - Quality Control

May 22, 2017

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050449 - EPA 3005A											
LCS (7050449-BS1)						Prepare	ed: 05/12/	17 Analyz	ed: 05/15/	17	
Thallium	0.107	0.0010	0.00005	mg/L	0.10000		107	80-120			
Vanadium	0.0978	0.0100	0.0014	mg/L	0.10000		98	80-120			
Zinc	0.102	0.0100	0.0013	mg/L	0.10000		102	80-120			
Lithium	0.113	0.0500	0.0011	mg/L	0.10000		113	80-120			
Matrix Spike (7050449-MS1)		Sou	ırce: AAE03	87-02		Prepare	ed: 05/12/	17 Analyz	ed: 05/15/	17	
Antimony	0.111	0.0030	0.0003	mg/L	0.10000	ND.	111	75-125			
Arsenic	0.107	0.0050	0.0004	mg/L	0.10000	0.0006	106	75-125			
Barium	0.240	0.0100	0.0003	mg/L	0.10000	0.125	115	75-125			
Beryllium	0.0991	0.0030	0.00007	mg/L	0.10000	ND	99	75-125			
Boron	2.08	0.0400	0.0060	mg/L	1.0000	0.690	139	75-125			QM-02
Cadmium	0.104	0.0010	0.00006	mg/L	0.10000	ND	104	75-125			
Calcium	30.2	25.0	0.522	mg/L	1.0000	29.9	33	75-125			QM-02
Chromium	0.102	0.0100	0.0003	mg/L	0.10000	ND	102	75-125			
Cobalt	0.0999	0.0100	0.0005	mg/L	0.10000	0.0018	98	75-125			
Copper	0.0966	0.0250	0.0003	mg/L	0.10000	ND	97	75-125			
Lead	0.0976	0.0050	0.00007	mg/L	0.10000	ND	98	75-125			
Molybdenum	0.102	0.0100	0.0006	mg/L	0.10000	ND	102	75-125			
Nickel	0.102	0.0100	0.0003	mg/L	0.10000	0.0016	101	75-125			
Selenium	0.104	0.0100	0.0014	mg/L	0.10000	ND	104	75-125			
Silver	0.101	0.0100	0.0003	mg/L	0.10000	ND	101	75-125			
Thallium	0.100	0.0010	0.00005	mg/L	0.10000	ND	100	75-125			
Vanadium	0.100	0.0100	0.0014	mg/L	0.10000	ND	100	75-125			
Zinc	0.0970	0.0100	0.0013	mg/L	0.10000	0.0013	96	75-125			
Lithium	0.113	0.0500	0.0011	mg/L	0.10000	0.0132	100	75-125			
Matrix Spike Dup (7050449-MSD1)		Soi	ırce: AAE03	87-02		Prenar	ed: 05/12/	17 Analyz	ed: 05/15/	17	
Antimony	0.115	0.0030	0.0003	mg/L	0.10000	ND	115	75-125	3	20	
Arsenic	0.107	0.0050	0.0004	mg/L	0.10000	0.0006	106	75-125	0.2	20	
Barium	0.249	0.0100	0.0003	mg/L	0.10000	0.125	124	75-125	3	20	
Beryllium	0.106	0.0030	0.00007	mg/L	0.10000	ND	106	75-125	7	20	
Boron	2.11	0.0400	0.0060	mg/L	1.0000	0.690	142	75-125	1	20	QM-02
Cadmium	0.102	0.0010	0.00006	mg/L	0.10000	ND	102	75-125	1	20	
Calcium	30.2	25.0	0.522	mg/L	1.0000	29.9	32	75-125	0.03	20	QM-02
Chromium	0.104	0.0100	0.0003	mg/L	0.10000	ND	104	75-125	2	20	
Cobalt	0.103	0.0100	0.0005	mg/L	0.10000	0.0018	101	75-125	3	20	
Copper	0.0993	0.0250	0.0003	mg/L	0.10000	ND	99	75-125	3	20	
Lead	0.102	0.0050	0.00007	mg/L	0.10000	ND	102	75-125	5	20	
Molybdenum	0.105	0.0100	0.0006	mg/L	0.10000	ND	105	75-125	3	20	
Nickel	0.102	0.0100	0.0003	mg/L	0.10000	0.0016	100	75-125	0.5	20	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

May 22, 2017

Report No.: AAE0388

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7050449 - EPA 3005A											
Matrix Spike Dup (7050449-MSD1)		Sou	urce: AAE03	87-02		Prepare	ed: 05/12/	17 Analyz	ed: 05/15	/17	
Selenium	0.109	0.0100	0.0014	mg/L	0.10000	ND	109	75-125	4	20	
Silver	0.102	0.0100	0.0003	mg/L	0.10000	ND	102	75-125	0.2	20	
Thallium	0.106	0.0010	0.00005	mg/L	0.10000	ND	106	75-125	5	20	
Vanadium	0.107	0.0100	0.0014	mg/L	0.10000	ND	107	75-125	6	20	
Zinc	0.104	0.0100	0.0013	mg/L	0.10000	0.0013	102	75-125	7	20	
Lithium	0.121	0.0500	0.0011	mg/L	0.10000	0.0132	108	75-125	7	20	
Post Spike (7050449-PS1)		Sou	ırce: AAE03	87-02		Prepare	ed: 05/12/	17 Analyz	ed: 05/15	/17	
Antimony	113			ug/L	100.00	0.177	113	80-120			
Arsenic	105			ug/L	100.00	0.577	105	80-120			
Barium	245			ug/L	100.00	125	120	80-120			
Beryllium	99.0			ug/L	100.00	0.0141	99	80-120			
Boron	2110			ug/L	1000.0	690	142	80-120			QM-02
Cadmium	104			ug/L	100.00	-0.0077	104	80-120			
Calcium	28800			ug/L	1000.0	29900	NR	80-120			QM-02
Chromium	104			ug/L	100.00	0.154	104	80-120			
Cobalt	104			ug/L	100.00	1.80	102	80-120			
Copper	97.2			ug/L	100.00	0.173	97	80-120			
Lead	100			ug/L	100.00	0.0257	100	80-120			
Molybdenum	105			ug/L	100.00	0.375	105	80-120			
Nickel	101			ug/L	100.00	1.58	99	80-120			
Selenium	105			ug/L	100.00	0.504	105	80-120			
Silver	104			ug/L	100.00	0.0031	104	80-120			
Thallium	104			ug/L	100.00	0.0152	104	80-120			
Vanadium	105			ug/L	100.00	0.464	105	80-120			
Zinc	101			ug/L	100.00	1.26	99	80-120			
Lithium	115			ug/L	100.00	13.2	102	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham May 22, 2017

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).
 - **B-01** Analyte was detected in the associated method blank at an estimated level equal to or greater than the MDL. Sample values reported as greater than the MDL and less than 10x the method blank value are reported as estimated values.

Note: Unless otherwise noted, all results are reported on an as received basis.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

May 22, 2017

Report Notes

No containers labeled GWC-1R were present in the cooler. However, there was 1 extra sample present without ID on the labels. The 1000ml unpreserved plastic container had 14:15 as collection time on the label and the other 3-HNO3 preserved containers had 11:25 as collection time on them. All 4 of these containers were the in same bag. These unidentified containers were logged in as GWC-1R by default. MMR

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

ö

PAGE:

5 - NaOHZnAc, s6'C 7. ≤6°C not frozen 4 - NaOH, S6°C . 6- Na₂S₂O₃, ≤6°C 2- H₂SO4, s6°C 3- HNO3 REMARKS/ADDITIONAL INFORMATION P- PRODUCT PRESERVATION 1 - HCL SOC SL- SLUDGE arios -as L- LIQUID A- AIR *MATRIX CODES DW - DRINKING WATER SW - SURFACE WATER GW - GROUNDWATER STORM WATER AW- WASTEWATER A - AMBER GLASS G- CLEAR GLASS CONTAINER TYPE S. STERILE O. OTHER V- VOA VIAL P. PLASTIC W- WATER exta ST. 0550 DATE/TIME: S / 11 / 17 DATE/TIME: ANALYSIS REQUESTED (0266/3166 348/MS) 'n S b ഗ ८, ۵ 822 & 822 mulbs/7 (EPA 300.0 & SM 2540C) a. ÇI, F, SO, & TDS RELINQUISHED BY: (plus metals list at bottom of COC) RELINQUISHED BY: ₾ ന Metals App. III & IV (EPA 6020/7470) CONTAINER TYPE PRESERVATION #of 0 00 \mathbf{z} CL (A 7 T Z 2 7 7 7 J 7 Yates Gypsum Storage Phase 2 CCR & Semi-Annual Monitoring laburch@southernco.com SAMPLE IDENTIFICATION 0161 ER-1-5-9-1 F13-1-5-10-17 4 13C- 3R 6WC-5R Heath McCorlde , WG - Z. R প্র 2WC-4R 6WA-2 6WC-6R -dna Marta Padilla **ら**いに-DATE/TIME: S / 1/0 / 1/7 DATE/TIME: Plant Yates Gypsum Storage CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER: 8 ä 0 24 4 d 0 O E 4 SAMPLED BY AND TITLE: C. Pack C. J. Becrs Ford MATRIX CODE* REQUESTED COMPLETION DATE: 12 N 3 241 Ralph McGill Blvd SE B10185 7 Z (2) らら Lauren Petty Collection 1530 1840 H35 PROJECT NAME/STATE 1340 1125 1615 1310 7415 1515 Manta, GA 30308 CLIENT NAME RECEIVED BY **Georgia Power** 404-506-7239 riloits PROJECT #: Sholis REPORT TO: Flolis C1/6/2 110117 2/10/12 2/8/17 2/6/1 2/4/17 Collection 2/6/17 DATE

Plant Yates COC Gypsum Storage

Page 22 of 23

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 5/12/2017 11:08:14AM

Attn: Mr. Joju Abraham

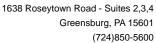
Client: Georgia Power

Project: CCR Event Work Order: AAE0388

Date Received: 05/11/17 09:50 **Logged In By:** Mohammad M. Rahman

OBSERVATIONS

#Samples: 10 #Containers: 42


Minimum Temp(C): 4.0 Maximum Temp(C): 4.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	NO
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

No containers labeled GWC-1R were present in the cooler. However, there was 1 extra sample present without ID on the labels. The 1000ml unpreserved plastic container had 14:15 as collection time on the label and the other 3-HNO3 preserved containers had 11:25 as collection time on them. All 4 of these containers were the in same bag. These unidentified containers were logged in as GWC-1R by default. MMR

June 06, 2017

Maria Padilla GA Power 2480 Maner Rd Atlanta, GA 30339

RE: Project: AAE0388 Plant Yates

Pace Project No.: 30218700

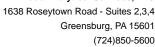
Dear Maria Padilla:

Enclosed are the analytical results for sample(s) received by the laboratory on May 12, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins


Sugnely Sellins

jacquelyn.collins@pacelabs.com

, (724)850-5612 Project Manager

Enclosures

CERTIFICATIONS

Project: AAE0388 Plant Yates

Pace Project No.: 30218700

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

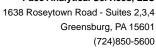
Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706

North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282 South Dakota Certification

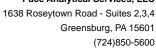

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Certification

Wyoming Certification #: 8TMS-L

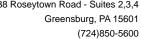


SAMPLE SUMMARY

Project: AAE0388 Plant Yates

Pace Project No.: 30218700

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30218700001	GWA-2	Water	05/08/17 14:35	05/12/17 10:20
30218700002	GWC-3R	Water	05/09/17 11:25	05/12/17 10:20
30218700003	EB-1-5-9-17	Water	05/09/17 13:40	05/12/17 10:20
30218700004	GWC-1R	Water	05/09/17 14:15	05/12/17 10:20
30218700005	Dup-1	Water	05/09/17 00:00	05/12/17 10:20
30218700006	GWC-5R	Water	05/10/17 13:10	05/12/17 10:20
30218700007	GWC-2R	Water	05/10/17 16:15	05/12/17 10:20
30218700008	GWC-4R	Water	05/10/17 18:40	05/12/17 10:20
30218700009	GWC-6R	Water	05/10/17 15:30	05/12/17 10:20
30218700010	FB-1-5-10-17	Water	05/10/17 15:15	05/12/17 10:20



SAMPLE ANALYTE COUNT

Project: AAE0388 Plant Yates

Pace Project No.: 30218700

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30218700001	GWA-2	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218700002	GWC-3R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218700003	EB-1-5-9-17	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218700004	GWC-1R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218700005	Dup-1	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218700006	GWC-5R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218700007	GWC-2R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218700008	GWC-4R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218700009	GWC-6R	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1
30218700010	FB-1-5-10-17	EPA 9315	LAL	1
		EPA 9320	JLW	1
		Total Radium Calculation	CMC	1

Matrix: Water

Matrix: Water

Sample: GWA-2

Sample: GWC-1R

PWS:

ANALYTICAL RESULTS - RADIOCHEMISTRY

Sample Type:

Lab ID: 30218700001

Lab ID: 30218700004

Site ID:

Collected: 05/08/17 14:35

Received: 05/12/17 10:20

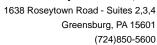
Received: 05/12/17 10:20

Project: AAE0388 Plant Yates
Pace Project No.: 30218700

Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 9315 0.172 ± 0.126 (0.220) Radium-226 pCi/L 05/26/17 08:31 13982-63-3 C:82% T:NA EPA 9320 $0.0149 \pm 0.327 \quad (0.758)$ 05/31/17 11:47 15262-20-1 Radium-228 pCi/L C:76% T:81% Total Radium Total Radium 0.187 ± 0.453 (0.978) pCi/L 06/05/17 14:39 7440-14-4 Calculation Lab ID: 30218700002 Collected: 05/09/17 11:25 Sample: GWC-3R Received: 05/12/17 10:20 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Qual Units Analyzed CAS No. EPA 9315 $0.0106 \pm 0.0607 \quad (0.161)$ Radium-226 pCi/L 05/26/17 08:31 13982-63-3 C:92% T:NA EPA 9320 0.0261 ± 0.348 Radium-228 (0.804)pCi/L 05/31/17 11:47 15262-20-1 C:81% T:79% Total Radium Total Radium $0.0367 \pm 0.409 \quad (0.965)$ pCi/L 06/05/17 14:39 7440-14-4 Calculation Received: 05/12/17 10:20 Sample: EB-1-5-9-17 Lab ID: 30218700003 Collected: 05/09/17 13:40 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.0351 ± 0.0654 (0.149) Radium-226 05/26/17 08:31 13982-63-3 pCi/L C:90% T:NA EPA 9320 0.926 ± 0.534 (1.01) Radium-228 pCi/L 05/31/17 11:48 15262-20-1 C:78% T:78% Total Radium Total Radium 0.961 ± 0.599 (1.16) pCi/L 06/05/17 14:39 7440-14-4 Calculation

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.105 ± 0.0959 (0.173) C:85% T:NA	pCi/L	05/26/17 08:31	13982-63-3	
Radium-228	EPA 9320	0.329 ± 0.489 (1.06) C:82% T:78%	pCi/L	05/31/17 15:36	15262-20-1	
Total Radium	Total Radium Calculation	0.434 ± 0.585 (1.23)	pCi/L	06/05/17 14:39	7440-14-4	

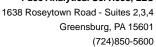
Collected: 05/09/17 14:15


Sample: Dup-1 PWS:	Lab ID: 30218 Site ID:	700005 Collected: 05/09/17 00:00 Sample Type:	Received:	05/12/17 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0893 ± 0.0981 (0.196) C:86% T:NA	pCi/L	05/26/17 08:25	13982-63-3	
Radium-228	EPA 9320	0.126 ± 0.429 (0.963) C:75% T:78%	pCi/L	05/31/17 15:36	6 15262-20-1	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAE0388 Plant Yates

Pace Project No.: 30218700 Sample: Dup-1 Lab ID: 30218700005 Collected: 05/09/17 00:00 Received: 05/12/17 10:20 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Total Radium Total Radium 06/05/17 14:39 0.215 ± 0.527 (1.16) pCi/L 7440-14-4 Calculation Sample: GWC-5R Lab ID: 30218700006 Collected: 05/10/17 13:10 Received: 05/12/17 10:20 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 9315 $0.0530 \pm 0.0766 \quad (0.164)$ Radium-226 pCi/L 05/26/17 08:25 13982-63-3 C:90% T:NA Radium-228 EPA 9320 0.236 ± 0.479 (1.05) pCi/L 05/31/17 15:36 15262-20-1 C:75% T:76% Total Radium Total Radium 0.289 ± 0.556 (1.21) pCi/L 06/05/17 14:39 7440-14-4 Calculation Sample: GWC-2R Lab ID: 30218700007 Collected: 05/10/17 16:15 Received: 05/12/17 10:20 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.458 \pm 0.188 \quad (0.243)$ 05/26/17 08:33 13982-63-3 Radium-226 pCi/L C:88% T:NA Radium-228 EPA 9320 -0.0303 ± 0.467 (1.08) pCi/L 05/31/17 15:36 15262-20-1 C:75% T:77% Total Radium Total Radium 0.458 ± 0.655 (1.32) pCi/L 06/05/17 14:39 7440-14-4 Calculation Lab ID: 30218700008 Sample: GWC-4R Collected: 05/10/17 18:40 Received: 05/12/17 10:20 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.0656 \pm 0.0868 \quad (0.182)$ Radium-226 pCi/L 05/26/17 08:24 13982-63-3 C:85% T:NA EPA 9320 $0.000313 \pm 0.404 \quad (0.930)$ Radium-228 pCi/L 05/31/17 15:36 15262-20-1 C:77% T:84% Total Radium Total Radium 0.0659 ± 0.491 (1.11) pCi/L 06/05/17 14:39 7440-14-4 Calculation Sample: GWC-6R Lab ID: 30218700009 Collected: 05/10/17 15:30 Received: 05/12/17 10:20 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units CAS No. Qual Analyzed Radium-226 EPA 9315 $0.165 \pm 0.120 \quad (0.203)$ 05/26/17 08:24 13982-63-3 pCi/L C:87% T:NA EPA 9320 0.493 ± 0.359 Radium-228 (0.703)pCi/L 05/31/17 11:48 15262-20-1 C:78% T:88% Total Radium Total Radium $0.658 \pm 0.479 \quad (0.906)$ pCi/L 06/05/17 14:39 7440-14-4 Calculation



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAE0388 Plant Yates

Pace Project No.: 30218700

Sample: FB-1-5-10-17 PWS:	Lab ID: 302187 Site ID:	700010 Collected: 05/10/17 15:15 Sample Type:	Received:	05/12/17 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.0622 ± 0.0772 (0.157) C:90% T:NA	pCi/L	05/26/17 08:24	13982-63-3	
Radium-228	EPA 9320	0.232 ± 0.328 (0.704) C:79% T:84%	pCi/L	05/31/17 15:3	1 15262-20-1	
Total Radium	Total Radium Calculation	0.294 ± 0.405 (0.861)	pCi/L	06/05/17 14:39	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: AAE0388 Plant Yates

Pace Project No.: 30218700

QC Batch: 258875 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30218700001, 30218700002, 30218700003, 30218700004, 30218700005, 30218700006, 30218700007,

30218700008, 30218700009, 30218700010

METHOD BLANK: 1275038 Matrix: Water

Associated Lab Samples: 30218700001, 30218700002, 30218700003, 30218700004, 30218700005, 30218700006, 30218700007,

30218700008, 30218700009, 30218700010

 Parameter
 Act \pm Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.621 \pm 0.402 (0.762) C:76% T:80%
 pCi/L
 05/31/17 11:47

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

Project: AAE0388 Plant Yates

Pace Project No.: 30218700

QC Batch: 258653 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30218700001, 30218700002, 30218700003, 30218700004, 30218700005, 30218700006, 30218700007,

30218700008, 30218700009, 30218700010

METHOD BLANK: 1274144 Matrix: Water

Associated Lab Samples: 30218700001, 30218700002, 30218700003, 30218700004, 30218700005, 30218700006, 30218700007,

30218700008, 30218700009, 30218700010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.0369 ± 0.0667 (0.151) C:89% T:NA pCi/L 05/26/17 08:31

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: AAE0388 Plant Yates

Pace Project No.: 30218700

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 06/06/2017 09:21 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Face Analytical "

Chain of Custody

LAB USE ONLY 300 000 003 900 60 8 <u></u> S 007 ទ Results Requested By: 6/5/2017 Client labels for -04 not correct. MO#:30218700 Requested Analysis 5-12-7/1420 Date/Time Radium 226, 228, Total × × × × × × × \times Owner Received Date: Preserved Containers 4 ЕОИН Matrix <u>₹</u> Ø₩ 8 <u>≷</u> <u>≷</u> <u>≷</u> ĕ Ø ≥ ≥ Received By AAE0388-08 AAE0388-09 AAE0388-05 AAE0388-06 AAE0388-10 AAE0388-01 AAE0388-02 AAE0388-03 AAE0388-04 AAE0388-07 Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Plant Yates Collect Date/Time | Lab ID | Date/Тітре Pace - Pittsburgh Subcontract To: 5/10/2017 15:15 5/10/2017 13:10 5/10/2017 16:15 5/10/2017 15:30 5/10/2017 18:40 Stes. 2,3,4 5/8/2017 14:35 5/9/2017 11:25 5/9/2017 13:40 5/9/2017 14:15 5/9/2017 0:00 Workorder Name: 4年54 Sample Туре Φ G G G Ġ G G G G Peachtree Corners, GA 30092 Workorder: AAE0388 110 Technology Parkway Pace Analytical Atlanta Phone (770)-734-4200 Transfers | Released By FB-1-5-10-17 EB-1-5-9-17 Item Sample ID **Betsy McDaniel** GWC-6R GWC-3R **GWC-1R GWC-5R GWC-2R GWC-4R** GWA-2 Dup-1 Report To: 10

Sample Intack Y or N ***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC Received on Ice Y of N This chain of custody is considered complete as is since this information is available in the owner laboratory. Custody Seal Y or/N Ç Cooler Temperature on Receipt

Friday, June 17, 2016 11:01:34 AM

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

PAGE:

CHAIN OF CUSTODY RECORD

C IENT NAME:									
Georgia Power				`}	NALYSIS I	ANALYSIS REQUESTED		LONTAINER TYPE PRESERVATION	Camara
THE PERSON OF THE PERSON AND PROPERTY OF THE PERSON OF THE			CONTAINER TYPE:	<u>а</u>	a.			D- PI ASTIC	/ 45000
CLENI AUUKESS/PRONE NUMBER/FAX NUMBER:	BERFAXI	IUMBER:	PRESERVATION	3 7	ဗ			Acc	Oktoment,
241 Kaiph McGill Blvd SE B10185			#of						
August 64 30305			(V - VOA VIAL	NI Medice
REPORT TO:		CC: Maria Padilla	٠ (ui	ပ္
Lauren Petty) Z	(OZ1					
REQUESTED COMPLETION DATE:	υÜ	PO#:	: -)(<u>1</u>			17000	·	-
		laburch@southernco.com	· «	020 01 C				****	
PROJECT NAME/STATE:			_	u	(5			MATRIX CODES:	essine.
Plan	t Yates Gyp:	Plant Yates Gypsum Storage	Z I	phod				B DW - DRINKING WATER S - SOL	e produktiva politika
PROJECT #: Yates Gypsum	Storage Ph	Yates Gypsum Storage Phase 2 CCR & Semi-Annual Monitoring	n G	la le SC	228			MW - WASTEWATER	of College House Street
			v	i) el	8 8		27170 2220 2220 2220 2220 2220 2220 2220	ON CHOCKATER O	ara <u>r</u> yeesh
Collection Collection MATRIX DATE TIME CODE*	v v o z o o u č	SAMPLE IDENTIFICATION		qqA ala siem et 5,08,7	0,006 A Mun 22 V-846 93	tation o			
	a.	The state of the s	→	Cl'I	Red			KSADDITION	/*************************************
W9 SEH L1/8/5	_	1 (0WA-2	2	جين مان	7				
V19 1251 6W	7	72-287	7		-				
4/17 (340 W	2	عا ر	2	-	,				
7777			1;		7				es especial
(1/2/	<u> </u>	(1000-1K	7		7				
M9	<u> </u>	Dup-1	4		2				
Shotiz 1310 GW	7	6WC-5R	4	1	7				
5/10/12 1615 6W	7	640-2R	ط		7)				
S/10/11 1840 6W	7	CWC-4R	4	,	9				
5/10/17 1530 6W		GWC-6R	9		jj			7700	
5/10/17 1515 W		F13-1-5-17	4	† -	7				
			-	Crimera	·			. A WAY	
SAMPLED BY AND TITLE: C. Parker, J. Bros ford	<i>प</i>	DATE/TIME:	RELINQUISHED BY:	YB C:			DATE/TIME: OCCU		100 100 100 100 100 100 100 100 100 100
RECEIVED BY:			RELINQUISHED BY:	D BY:	The second second		DATE/HME: 775K	3 ,	
REFERENCE WAS // m.		1500 E 111/14K	IDAS ET LIVES K	ESFUEPEDAMA				Enteredinto IMS	
				2	3	Strong St	LOWER FS		
				17.00 (17	**************************************				
		•	1						

Plant Yates State constituents Sb As Ba Be 6d or co ou Pb Hg Ni Se Ag III V Zh Storage to be to be seen to be the seen of the

:

Sample Condition Upon Receipt Pittsburgh Pace GA Project #_302 Client Name: Courier: Fed Ex UPS USPS Client Commercial Pace Other Custody Seal on Cooler/Box Present: yes Seals intact: ☐ ves ☐ no Thermometer Used Type of Ice: Wet Blue Final Temp: Observed Temp Correction Factor: " Cooler Temperature Temp should be above freezing to 6°C Date and Initials of person examining N/A No Comments: Yes Chain of Custody Present: Chain of Custody Filled Out: 2. 3. Chain of Custody Relinquished: Sampler Name & Signature on COC: 5. Sample Labels match COC: -Includes date/time/ID Matrix: Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: 8. 9. Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used: Containers Intact: 11. 12 Orthophosphate field filtered 13. Organic Samples checked for dechlorination: 14. Filtered volume received for Dissolved tests All containers have been checked for preservation. All containers needing preservation are found to be in compliance with EPA recommendation. Date/time of initial when exceptions: VOA, coliform, TOC, O&G, Phenolics preservation completed Lot # of added preservative Headspace in VOA Vials (>6mm): 16 17. Trip Blank Present: Trip Blank Custody Seals Present Initial when Rad Aqueous Samples Screened > 0.5 mrem/hr

Client Notification/ Resolution:

Person Contacted: _____ Date/Time: ____ Contacted By: ______ Comments/ Resolution: ______

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Ra_228_35720_W.xls Ra-228 (R086-7 12Aug2016).xls

Quality Control Sample Performance Assessment

5/24/2017 35720 DW Ra-228 Test: Analyst: Date: Worklist: Matrix:

Face Analytical

0.621 0.386 0.762 3.15

MB MDC:

MB Numerical Performance Indicator: MB Status vs Numerical Indicator:

MB Sample ID

Method Blank Assessment

MB concentration: M/B Counting Uncertainty: N/A Pass

MB Status vs. MDC

Laboratory Control Sample Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): Sample Result Counting Uncertainty (pCI/L, g, F): Sample Matrix Spike Result. MS/MSD Decay Corrected Spike Concentration (pCi/mL): Sample Result: Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator: MSD Numerical Performance Indicator: MS Percent Recovery: MSD Percent Recovery: Sample Collection Date: Sample I.D. Sample MS I.D. Sample MSD I.D. Spike I.D.: Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): Spike uncertainty (calculated): Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Spike Volume Used in MS (mL) Sample Matrix Spike Control Assessment LCSD35720

MSD Status vs Numerical Indicator:
MSD Status vs Numerical Indicator:
MS Status vs Recovery:
MSD Status vs Recovery:

SD (Y or N)7 LCS35720 5/31/2017 17-005 -3.81 75.23% 24.405 0.801 6.097 0.439 4.587 0.641 0.20 Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Percent Recovery: Spike Concentration (pCi/mL): Volume Used (mL): Aliquot Volume (L. g. F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated): Numerical Performance Indicator: Status vs Numerical Indicator: Count Date: Spike I.D.: Status vs Recovery

Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Duplicate Result: Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD

Matrix Spike/Matrix Spike Duplicate Sample Assessment

Enter Duplicate

30218700009DUP

0.493

30218700009

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessment

other than

he space below LCS/LCSD in sample IDs if

0.348 0.199 0.337

Sample Result (pCifL, g, F):
Sample Result Counting Uncertainty (pCifL, g, F):
Sample Duplicate Result (pCifL, g, F):
Sample Duplicate Result (pCifL, g, F):

See Below 排

Are sample and/or duplicate results below MDC?

Duplicate Numerical Performance Indicator:

85.07%

Duplicate RPD:

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD:

ΚŽ

1.191

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

M

Comments:

***Batch must be re-prepped due to unacceptable precision.

Face Analytical"

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Collection Date: Sample I.D. Sample MSD I.D. Spike I.D.:

Sample Matrix Spike Control Assessment

Sample MS I.D.

Ra-226 Z Test Analyst:

5/22/2017 35671 DW Date: Worklist: Matrix:

Method Blank Assessment

0.037 0.066 0.151 1.09 N/A Pass MB concentration: M/B Counting Uncertainty: MB MDC MB Numerical Performance Indicator: MB Status vs Numerical Indicator:

MB Status vs. MDC;

Spike uncertainty (calculated):

MSD Target Conc. (pCi/L, g, F):

MS Target Conc.(pCi/L, g, F); MSD Aliquot (L. g, F):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Sample Result:

Sample Matrix Spike Result:

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

Sample Result Counting Uncertainty (pCi/L, g, F): Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

N LCSD35671 LCSD (Y or N)? LCS35671 5/26/2017 13-033 19.848 0.501 0.501 15.854 0.772 0.772 0.772 N/A N/A Count Date: Spike I.D.: Spike Concentration (pCi/mL): Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated): Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Numerical Performance Indicator: Percent Recovery: Status vs Numerical Indicator: Status vs Recovery: Laboratory Control Sample Assessment

MSD Numerical Performance Indicator: MS Percent Recovery:

MS Numerical Performance Indicator:

MSD Percent Recovery: MS Status vs Numerical Indicator. MSD Status vs Numerical Indicator.

MS Status vs Recovery:

MSD Status vs Recover

Sample I.D. Matrix Spike/Matrix Spike Duplicate Sample Assessment

Sample MS I.D.

Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result:

LCS/LCSD in the

space below. other than

0.117 0.206 0.112 0.165

Sample Result (pCi/L, g, F):
Sample Result Counting Uncertainty (pCi/L, g, F):
Sample Duplicate Result (pCi/L, g, F):
Sample Duplicate Result (pCi/L, g, F):

Enter Duplicate

sample IDs if

30218700009 30218700009DUP

Sample I.D.:

Duplicate Sample Assessment

Duplicate Sample I.D.

Matrix Spike Duplicate Result Counting Uncertainty (pOi/L, g, F): MS/ MSD Duplicate RPD: Duplicate Numerical Performance Indicator:

1218700009DUP

30218700009

See Below 排

Are sample and/or duplicate results below MDC? Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator:

-0.498 22.23%

Duplicate RPD:

N/A Pass

MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Duplicate Status vs RPD

1 of 1

TAR_35671_W.xls Total Alpha Radium (R104-2 17Mar2014).xls

Date: 2017-05-08 14:33:33

Tubing Diameter

Tubing Length

Project Information: Pump Information: Operator Name Chris Parker Pump Model/Type Tubing Type

Company Name Atlantic Coast Consulting Project Name Plant Yates Gypsum Plant Yates Gypsum Site Name

00 0' 0" Latitude 00 0' 0" Longitude Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC

47.1 ft

Bladder Pump

Poly

54 ft

.375 in

Pumping Information: Well Information:

Final Pumping Rate 70 mL/min Well ID GWA-2 Well diameter Total System Volume 1.657807 L 2 in Calculated Sample Rate Well Total Depth 52.13 ft 300 sec Stabilization Drawdown Screen Length 10 ft 10 in Depth to Water 3.5 L 40.85 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	14:04:50	900.01	21.40	6.24	226.82	1.75	41.40	1.77	-48.68
Last 5	14:14:50	1500.00	21.42	6.18	227.88	1.43	41.50	0.89	-32.83
Last 5	14:19:50	1800.00	21.48	6.16	228.48	1.20	41.50	0.74	-26.22
Last 5	14:24:50	2100.00	21.43	6.13	229.92	1.05	41.60	0.70	-20.09
Last 5	14:29:50	2399.99	21.60	6.12	230.72	0.89	41.60	0.68	-15.11
Variance 0			0.06	-0.02	0.60			-0.15	6.61
Variance 1			-0.06	-0.02	1.44			-0.03	6.13
Variance 2			0.17	-0.01	0.80			-0.02	4.98

Notes

Collected at 14:35. Sunny 70s

Date: 2017-05-09 14:17:56

Project Information:		Pump Information:	
Operator Name	Chris Parker	Pump Model/Type	peri Pump
Company Name	Atlantic Coast Consulting	Tubing Type	Poly
Project Name	Plant Yates Gypsum	Tubing Diameter	.17 in
Site Name	Plant Yates Gypsum	Tubing Length	39 ft

Site Name 00 0' 0" Latitude 00 0' 0" Longitude 466086 Sonde SN

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 33.0 ft

Well Information: Pumping Information:

Well ID Final Pumping Rate 200 mL/min GWC-1R Well diameter 2 in Total System Volume 0.2640735 L Calculated Sample Rate Well Total Depth 36.34 ft 300 sec 17 in Screen Length 10 ft Stabilization Drawdown Depth to Water **Total Volume Pumped** 19.5 L 26.15 ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	13:53:13	4199.97	20.84	5.42	654.14	6.87	27.60	7.13	68.37
Last 5	13:58:13	4499.97	20.92	5.42	642.24	6.01	27.60	7.14	69.10
Last 5	14:03:13	4799.96	20.87	5.43	649.74	5.39	27.60	7.14	68.22
Last 5	14:08:13	5099.97	20.98	5.42	648.93	5.08	27.60	7.15	68.69
Last 5	14:13:13	5399.95	21.14	5.41	651.88	4.91	27.60	7.14	68.58
Variance 0			-0.05	0.01	7.50			-0.01	-0.88
Variance 1			0.11	-0.00	-0.81			0.01	0.47
Variance 2			0.16	-0.01	2.95			-0.01	-0.11

Notes

Collected at 14:15. Sunny 80s. EB 1 here

Date: 2017-05-10 16:16:02

Project Information: Pump Information: Operator Name J Berisford Pump Model/Type Peristaltic Company Name Atlantic Coast Consulting, Inc. **Tubing Type** Poly Project Name Plant Yates Gypsum Storage Tubing Diameter .17 in Plant Yates-Gypsum Storage Tubing Length Site Name 43 ft

Latitude 33° 28' 1.59"

Longitude -84° -54' -2.28"

Sonde SN 466058 Turbidity Make/Model Hach 21000

Turbidity Make/Model Hach 2100Q Pump placement from TOC 38.8 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-2R 160 mL/min Well diameter Total System Volume 0.2819272 L 2 in Calculated Sample Rate Well Total Depth 43.80 ft 300 sec Stabilization Drawdown Screen Length 10 ft 4 in Depth to Water 30.66 ft **Total Volume Pumped** 29 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	15:55:18	9606.87	23.09	5.60	227.37	9.40	30.90	3.54	152.28
Last 5	16:00:18	9906.87	23.42	5.60	228.41	8.75	30.90	3.72	152.98
Last 5	16:05:18	10206.85	23.62	5.61	226.85	7.99	30.90	3.51	153.22
Last 5	16:10:18	10506.85	23.43	5.59	230.04	7.95	30.90	3.54	154.49
Last 5	16:15:18	10806.82	23.30	5.60	229.44	8.21	30.90	3.46	155.20
Variance 0			0.20	0.00	-1.57			-0.21	0.24
Variance 1			-0.18	-0.01	3.19			0.03	1.27
Variance 2			-0.14	0.01	-0.60			-0.08	0.71

Notes

Sunny, sample time-1615

Date: 2017-05-09 11:22:28

Tubing Diameter

Tubing Length

Project Information: Pump Information: Operator Name Chris Parker Pump Model/Type Tubing Type

Company Name Atlantic Coast Consulting Project Name Plant Yates Gypsum Site Name Plant Yates Gypsum

00 0' 0" Latitude 00 0' 0" Longitude Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC

34.0 ft

Bladder Pump

Poly

.17 in

40 ft

Well Information:

Well ID GWC-3R Well diameter 2 in Well Total Depth 38.34 ft Screen Length 10 ft Depth to Water 31.80 ft

Pumping Information: Final Pumping Rate 190 mL/min Total System Volume 0.6635369 L Calculated Sample Rate 300 sec

Stabilization Drawdown 7 in **Total Volume Pumped** 12 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	10:59:44	2399.99	20.43	5.08	167.69	6.09	32.40	6.75	128.44
Last 5	11:04:44	2699.98	20.31	5.12	165.32	4.39	32.40	6.78	126.70
Last 5	11:09:45	3000.97	20.48	5.13	162.69	3.96	32.40	6.79	126.30
Last 5	11:14:45	3300.98	20.57	5.11	161.33	3.55	32.40	6.79	126.92
Last 5	11:19:45	3600.97	20.50	5.12	160.04	3.38	32.40	6.78	124.90
Variance 0			0.17	0.01	-2.63			0.01	-0.40
Variance 1			0.09	-0.01	-1.36			-0.00	0.62
Variance 2			-0.07	0.01	-1.29			-0.00	-2.03

Notes

Collected at 11:25. Sunny 70s. DUP 1 here

Date: 2017-05-10 18:39:38

Project Information: Pump
Operator Name J Berisford Pump

Company Name Atlantic Coast Consulting, Inc.
Project Name Plant Yates Gypsum Storage
Site Name Plant Yates-Gypsum Storage

Latitude 33° 28' 2.79" Longitude -84° -54' -0.21"

Sonde SN 466058

Turbidity Make/Model Hach 2100Q

Pump Information:

Pump Model/Type Peristaltic
Tubing Type Poly
Tubing Diameter .17 in
Tubing Length 31 ft

Pump placement from TOC 26.05 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-4R 135 mL/min Well diameter Total System Volume 0.2283661 L 2 in Well Total Depth 31.05 ft Calculated Sample Rate 300 sec Stabilization Drawdown Screen Length 10 ft 4 in Depth to Water 18.52 ft **Total Volume Pumped** 13.5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- O	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- O
Last 5	18:15:16	4205.96	21.00	5.65	648.39	2.01	18.80	2.22	168.14
Last 5	18:20:18	4507.96	21.61	5.71	478.08	1.75	18.80	2.27	161.23
Last 5	18:25:23	4812.95	21.02	5.68	413.70	1.67	18.80	3.07	161.28
Last 5	18:30:24	5113.96	20.70	5.68	423.51	2.07	18.80	3.11	158.99
Last 5	18:35:24	5413.94	20.49	5.68	423.10	1.82	18.80	3.13	158.11
Variance 0			-0.59	-0.03	-64.38			0.81	0.04
Variance 1			-0.31	-0.00	9.81			0.04	-2.29
Variance 2			-0.22	0.00	-0.41			0.02	-0.88

Notes

Collected at 18:40. Sunny 80s

Date: 2017-05-10 13:10:16

Pump Information:

Pump Model/Type

Tubing Diameter

Pump placement from TOC

Tubing Length

Tubing Type

Bladder Pump

poly

.17 in

45 ft

39 ft

Project Information:
Operator Name
Chris Parker

Company Name Atlantic Coast Consulting
Project Name Plant Yates Gypsum
Site Name Plant Yates Gypsum

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 466086

Turbidity Make/Model Hach 2100 Q

Well Information: Pumping Information:

Final Pumping Rate 90 mL/min Well ID GWC-5R Well diameter Total System Volume 0.290854 L 2 in Calculated Sample Rate Well Total Depth 42.82 ft 300 sec Stabilization Drawdown Screen Length 10 ft 12 in Depth to Water 34.50 ft **Total Volume Pumped** 30 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS/	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	12:47:10	12013.85	22.61	5.21	1712.49	6.69	35.50	7.14	78.34
Last 5	12:52:10	12313.85	22.57	5.21	1712.13	6.26	35.50	7.04	78.41
Last 5	12:57:10	12613.84	22.28	5.21	1716.69	5.97	35.50	7.14	78.24
Last 5	13:02:10	12913.83	22.45	5.21	1716.00	5.13	35.50	7.14	78.33
Last 5	13:07:11	13214.83	22.70	5.20	1724.80	4.90	35.50	7.18	79.36
Variance 0			-0.29	-0.00	4.56			0.10	-0.17
Variance 1			0.16	-0.00	-0.69			-0.01	0.08
Variance 2			0.26	-0.00	8.80			0.05	1.03

Notes

Collected at 13:10. Sunny 80s

Date: 2017-05-10 15:28:27

Pump Information:

Pump Model/Type

Bladder Pump

Project Information:
Operator Name
Chris Parker

Company NameAtlantic Coast ConsultingTubing TypepolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length54 ft

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 48 ft

Well Information: Pumping Information:

Final Pumping Rate 90 mL/min Well ID GWC-6R Well diameter Total System Volume 0.3310249 L 2 in Calculated Sample Rate Well Total Depth 51.87 ft 300 sec Stabilization Drawdown Screen Length 10 ft 2 in Depth to Water 3.6 L 39.7 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS/	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	15:03:06	900.01	22.82	5.81	1284.99	3.95	39.80	5.96	53.72
Last 5	15:08:06	1200.00	22.53	5.81	1271.95	3.19	39.80	5.89	52.20
Last 5	15:13:06	1500.00	22.58	5.82	1272.67	3.76	39.80	5.91	50.97
Last 5	15:18:06	1800.00	22.36	5.83	1273.94	3.04	39.80	5.92	49.83
Last 5	15:23:06	2100.05	22.22	5.82	1279.32	2.55	39.80	5.94	49.43
Variance 0			0.05	0.01	0.71			0.02	-1.24
Variance 1			-0.22	0.00	1.27			0.01	-1.14
Variance 2			-0.14	-0.01	5.38			0.02	-0.40

Notes

Collected at 15:30. Sunny 80s. FB 1 here

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AAG0537

August 11, 2017

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, LLC.

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

August 11, 2017

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GWA-2	AAG0537-01	Ground Water	07/17/17 10:45	07/19/17 09:25
GWC-5R	AAG0537-02	Ground Water	07/17/17 14:50	07/19/17 09:25
FB-1-7-17-17	AAG0537-03	Water	07/17/17 15:20	07/19/17 09:25
GWC-6R	AAG0537-04	Ground Water	07/18/17 10:45	07/19/17 09:25
EB-1-7-18-17	AAG0537-05	Water	07/18/17 09:45	07/19/17 09:25
GWC-3R	AAG0537-06	Ground Water	07/18/17 13:50	07/19/17 09:25
GWC-2R	AAG0537-07	Ground Water	07/18/17 15:50	07/19/17 09:25
GWC-1R	AAG0537-08	Ground Water	07/18/17 14:15	07/19/17 09:25
GWC-4R	AAG0537-09	Ground Water	07/18/17 12:45	07/19/17 09:25
Dup-1	AAG0537-10	Ground Water	07/18/17 00:00	07/19/17 09:25

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

August 11, 2017

Case Narrative

Plant Yates Gypsum Storage Phase 2 Report AAG0537 8/11/2017

This revised report replaces the original report submitted on 7/28/2017.

The consultant requested data for copper, nickel, and silver that were not provided in the original report submittal. The following changes were made: copper, nickel, and silver results were added to all samples. No other changes were made to this report.

The Radium analysis by methods EPA 9315/9320 was performed by Pace-Pittsburgh, 1638 Roseytown Road - Suites 2, 3, 4, Greensburg PA 15601. The Pace-Pittsburgh lab contact is Jacquelyn Collins at 724-850-5612.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Client ID: GWA-2

Report No.: AAG0537

Date/Time Sampled: 7/17/2017 10:45:00AM

Matrix: Ground Water

August 11, 2017

Project: CCR Event

Lab Number ID: AAG0537-01

Date/Time Received: 7/19/2017 9:25:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	185	25	10	mg/L	SM 2540 C		1	07/21/17 19:20	07/21/17 19:20	7070536	JPT
Inorganic Anions											
Chloride	3.8	0.25	0.02	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 13:56	7070573	RLC
Fluoride	0.14	0.30	0.03	mg/L	EPA 300.0	J	1	07/24/17 11:21	07/24/17 13:56	7070573	RLC
Sulfate	63	5.0	0.08	mg/L	EPA 300.0		5	07/24/17 11:21	07/26/17 02:35	7070573	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Barium	0.0600	0.0100	0.0004	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/24/17 15:20	07/26/17 14:55	7070582	CSW
Boron	0.0092	0.0400	0.0060	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/26/17 14:55	7070582	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Calcium	14.1	5.00	2.02	mg/L	EPA 6020B		50	07/24/17 15:20	07/25/17 21:38	7070582	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Cobalt	0.0046	0.0100	0.0003	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Copper	0.0003	0.0250	0.0003	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Nickel	0.0049	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Silver	ND	0.0100	0.0002	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Thallium	0.00006	0.0010	0.00005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Vanadium	ND	0.0100	0.0012	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Zinc	0.0032	0.0100	0.0012	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:33	7070582	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/25/17 08:45	07/25/17 12:23	7070599	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537 Client ID: GWC-5R

Date/Time Sampled: 7/17/2017 2:50:00PM

Matrix: Ground Water

August 11, 2017

Project: CCR Event

Lab Number ID: AAG0537-02

Date/Time Received: 7/19/2017 9:25:00AM

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1340	25	10	mg/L	SM 2540 C		1	07/21/17 19:20	07/21/17 19:20	7070536	JPT
Inorganic Anions											
Chloride	3.2	0.25	0.02	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 14:17	7070573	RLC
Fluoride	0.37	0.30	0.03	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 14:17	7070573	RLC
Sulfate	830	50	0.85	mg/L	EPA 300.0		50	07/24/17 11:21	07/26/17 02:56	7070573	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Arsenic	0.0013	0.0050	0.0005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Barium	0.0274	0.0100	0.0004	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Beryllium	0.0004	0.0030	0.00009	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/26/17 15:01	7070582	CSW
Boron	0.0102	0.0400	0.0060	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/26/17 15:01	7070582	CSW
Cadmium	0.0004	0.0010	0.0001	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Calcium	125	25.0	2.02	mg/L	EPA 6020B		50	07/24/17 15:20	07/25/17 21:50	7070582	CSW
Chromium	0.0017	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Copper	0.0004	0.0250	0.0003	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Nickel	0.0015	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Selenium	0.0136	0.0100	0.0018	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Silver	ND	0.0100	0.0002	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Vanadium	ND	0.0100	0.0012	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Zinc	0.0055	0.0100	0.0012	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:44	7070582	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/25/17 08:45	07/25/17 12:26	7070599	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

Client ID: FB-1-7-17-17

Date/Time Sampled: 7/17/2017 3:20:00PM

Matrix: Water

August 11, 2017

Project: CCR Event

Lab Number ID: AAG0537-03

Date/Time Received: 7/19/2017 9:25:00AM

Total Dissolved Solids ND Inorganic Anions Chloride 0.09 Fluoride ND Sulfate 0.35	25 0.25 0.30 1.0	10 0.02 0.03 0.02	mg/L mg/L mg/L	SM 2540 C EPA 300.0 EPA 300.0 EPA 300.0	J	1 1 1 1	07/21/17 19:20 07/24/17 11:21 07/24/17 11:21 07/24/17 11:21	07/21/17 19:20 07/24/17 14:37 07/24/17 14:37	7070536 7070573 7070573	RLC
Inorganic Anions Chloride 0.09 Fluoride ND	0.25 0.30 1.0	0.02 0.03	mg/L mg/L	EPA 300.0 EPA 300.0		1	07/24/17 11:21 07/24/17 11:21	07/24/17 14:37 07/24/17 14:37	7070573	RLC
Chloride 0.09 Fluoride ND	0.30 1.0	0.03	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 14:37		
Fluoride ND	0.30 1.0	0.03	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 14:37		
·	1.0		_		J				7070573	RLC
Sulfate 0.35		0.02	mg/L	EPA 300.0	J	1	07/24/17 11:21			
	0.0030							07/24/17 14:37	7070573	RLC
Metals, Total	0.0030									
Antimony	0.000	0.0006	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Arsenic ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Barium ND	0.0100	0.0004	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Beryllium ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/24/17 15:20	07/26/17 15:06	7070582	CSW
Boron ND	0.0400	0.0060	mg/L	EPA 6020B		1	07/24/17 15:20	07/26/17 15:06	7070582	CSW
Cadmium ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Calcium ND	0.500	0.0404	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Chromium ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Cobalt ND	0.0100	0.0003	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Copper ND	0.0250	0.0003	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Lead ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Molybdenum ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Nickel ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Selenium ND	0.0100	0.0018	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Silver ND	0.0100	0.0002	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Thallium ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Vanadium ND	0.0100	0.0012	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Zinc ND	0.0100	0.0012	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	csw
Lithium	0.0500	0.0015	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 21:56	7070582	CSW
Mercury ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/25/17 08:45	07/25/17 12:28	7070599	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537 Client ID: GWC-6R

Date/Time Sampled: 7/18/2017 10:45:00AM

Matrix: Ground Water

August 11, 2017

Project: CCR Event

Lab Number ID: AAG0537-04

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1270	25	10	mg/L	SM 2540 C		1	07/24/17 18:15	07/24/17 18:15	7070574	JPT
Inorganic Anions											
Chloride	4.0	0.25	0.02	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 14:58	7070573	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 14:58	7070573	RLC
Sulfate	880	50	0.85	mg/L	EPA 300.0		50	07/24/17 11:21	07/26/17 03:17	7070573	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Arsenic	0.0010	0.0050	0.0005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Barium	0.0994	0.0100	0.0004	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/24/17 15:20	07/26/17 15:12	7070582	CSW
Boron	0.0061	0.0400	0.0060	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/26/17 15:12	7070582	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Calcium	157	25.0	2.02	mg/L	EPA 6020B		50	07/24/17 15:20	07/25/17 22:07	7070582	CSW
Chromium	0.0012	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Copper	0.0017	0.0250	0.0003	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Nickel	0.0024	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Selenium	0.0046	0.0100	0.0018	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Silver	ND	0.0100	0.0002	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Vanadium	ND	0.0100	0.0012	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Zinc	0.0024	0.0100	0.0012	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Lithium	0.0020	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:01	7070582	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/25/17 08:45	07/25/17 12:30	7070599	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

Client ID: EB-1-7-18-17

Date/Time Sampled: 7/18/2017 9:45:00AM

Matrix: Water

August 11, 2017

Project: CCR Event

Lab Number ID: AAG0537-05

Fluoride ND 0.30 0.03 mg/L EPA 300.0 1 07/24/17 11:21 07/24/17 15:19 7 Sulfate 0.27 1.0 0.02 mg/L EPA 300.0 J 1 07/24/17 11:21 07/24/17 15:19 7 Metals, Total Antimony ND 0.0030 0.0006 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Barium ND 0.0100 0.0004 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Beryllium ND 0.0030 0.0009 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Boron ND 0.0400 0.0000 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 15:29 7 Cadmium ND 0.0400 0.0060 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0010 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0010 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0010 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Cadmium ND 0.0010 0.0001 mg/L EPA 602	7070574 7070573 7070573 7070573	RLC RLC
Chloride	7070573 I	RLC RLC
Chloride 0.07 0.25 0.02 mg/L EPA 300.0 J 1 07/24/17 11:21 07/24/17 15:19 7 Fluoride ND 0.30 0.03 mg/L EPA 300.0 J 07/24/17 11:21 07/24/17 15:19 7 Sulfate 0.27 1.0 0.02 mg/L EPA 300.0 J 07/24/17 11:21 07/24/17 15:19 7 Metals, Total Antimony ND 0.0030 0.0006 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Barium ND 0.0100 0.0004 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Beryllium ND 0.0030 0.0009 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Boron ND 0.0400 0.0060 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7	7070573	RLC
Fluoride ND 0.30 0.03 mg/L EPA 300.0 1 07/24/17 11:21 07/24/17 15:19 7 Sulfate 0.27 1.0 0.02 mg/L EPA 300.0 J 1 07/24/17 11:21 07/24/17 15:19 7 Metals, Total Antimony ND 0.0030 0.0006 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Barium ND 0.0100 0.0004 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Boron ND 0.0400 0.0060 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0010 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070573	RLC
Sulfate 0.27 1.0 0.02 mg/L EPA 300.0 J 1 07/24/17 11:21 07/24/17 15:19 7 Metals, Total Antimony ND 0.0030 0.0006 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Barium ND 0.0100 0.0004 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Boron ND 0.0400 0.0060 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7		
Metals, Total ND 0.0030 0.0006 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Barium ND 0.0100 0.0004 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Boron ND 0.0400 0.0060 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070573	RLC
Antimony ND 0.0030 0.0006 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Barium ND 0.0100 0.0004 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Boron ND 0.0400 0.0060 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7		
Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Barium ND 0.0100 0.0004 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Boron ND 0.0400 0.0060 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7		
Barium ND 0.0100 0.0004 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Boron ND 0.0400 0.0060 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Boron ND 0.0400 0.0060 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Boron ND 0.0400 0.0060 mg/L EPA 6020B 1 07/24/17 15:20 07/26/17 15:29 7 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
•••••	7070582	CSW
Calcium ND 0.500 0.0404 mg/l EPA 6020R 1 0.7/24/17.15:20 0.7/25/17.22:13.7	7070582	CSW
Calcium 1 07724717 13.20 07725177 22.13 7	7070582	CSW
Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Cobalt ND 0.0100 0.0003 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Copper ND 0.0250 0.0003 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Lead ND 0.0050 0.00007 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Molybdenum ND 0.0100 0.0010 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Nickel ND 0.0100 0.0005 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Selenium ND 0.0100 0.0018 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Silver ND 0.0100 0.0002 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Thallium ND 0.0010 0.00005 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Vanadium ND 0.0100 0.0012 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Zinc ND 0.0100 0.0012 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Lithium ND 0.0500 0.0015 mg/L EPA 6020B 1 07/24/17 15:20 07/25/17 22:13 7	7070582	CSW
Mercury ND 0.00050 0.000041 mg/L EPA 7470A 1 07/25/17 08:45 07/25/17 12:33 7	7070599 I	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

Client ID: GWC-3R

Date/Time Sampled: 7/18/2017 1:50:00PM

Matrix: Ground Water

August 11, 2017

Project: CCR Event

Lab Number ID: AAG0537-06

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	89	25	10	mg/L	SM 2540 C		1	07/24/17 18:15	07/24/17 18:15	7070574	JPT
Inorganic Anions											
Chloride	7.7	0.25	0.02	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 15:39	7070573	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 15:39	7070573	RLC
Sulfate	44	1.0	0.02	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 15:39	7070573	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Barium	0.0407	0.0100	0.0004	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Beryllium	0.0002	0.0030	0.00009	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/26/17 15:35	7070582	CSW
Boron	0.0073	0.0400	0.0060	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/26/17 15:35	7070582	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Calcium	4.16	0.500	0.0404	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Chromium	0.0009	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Copper	ND	0.0250	0.0003	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Nickel	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Selenium	0.0027	0.0100	0.0018	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Silver	ND	0.0100	0.0002	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Vanadium	ND	0.0100	0.0012	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Zinc	0.0028	0.0100	0.0012	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:19	7070582	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/25/17 08:45	07/25/17 12:35	7070599	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537 Client ID: GWC-2R

Date/Time Sampled: 7/18/2017 3:50:00PM

Matrix: Ground Water

August 11, 2017

Project: CCR Event

Lab Number ID: AAG0537-07

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	122	25	10	mg/L	SM 2540 C		1	07/24/17 18:15	07/24/17 18:15	7070574	JPT
Inorganic Anions											
Chloride	6.0	0.25	0.02	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 16:00	7070573	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 16:00	7070573	RLC
Sulfate	57	5.0	80.0	mg/L	EPA 300.0		5	07/24/17 11:21	07/26/17 03:37	7070573	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Barium	0.0490	0.0100	0.0004	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/24/17 15:20	07/26/17 15:41	7070582	CSW
Boron	0.0169	0.0400	0.0060	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/26/17 15:41	7070582	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Calcium	8.69	0.500	0.0404	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Cobalt	0.0261	0.0100	0.0003	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Copper	ND	0.0250	0.0003	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Lead	0.00007	0.0050	0.00007	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Nickel	ND	0.0100	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Selenium	0.0024	0.0100	0.0018	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Silver	ND	0.0100	0.0002	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Vanadium	ND	0.0100	0.0012	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Zinc	0.0017	0.0100	0.0012	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:41	7070582	CSW
Lithium	0.0035	0.0500	0.0015	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/26/17 15:41	7070582	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/25/17 08:45	07/25/17 12:37	7070599	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537 Client ID: GWC-1R

Date/Time Sampled: 7/18/2017 2:15:00PM

Matrix: Ground Water

August 11, 2017

Project: CCR Event

Lab Number ID: AAG0537-08

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	322	25	10	mg/L	SM 2540 C		1	07/24/17 18:15	07/24/17 18:15	7070574	JPT
Inorganic Anions											
Chloride	18	0.25	0.02	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 16:21	7070573	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 16:21	7070573	RLC
Sulfate	200	20	0.34	mg/L	EPA 300.0		20	07/24/17 11:21	07/26/17 03:58	7070573	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Barium	0.0390	0.0100	0.0004	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/24/17 15:20	07/26/17 15:46	7070582	CSW
Boron	0.0123	0.0400	0.0060	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/26/17 15:46	7070582	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Calcium	33.2	2.50	0.202	mg/L	EPA 6020B		5	07/24/17 15:20	07/25/17 23:04	7070582	CSW
Chromium	0.0008	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Cobalt	0.0032	0.0100	0.0003	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Copper	0.0004	0.0250	0.0003	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Nickel	0.0010	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Selenium	0.0021	0.0100	0.0018	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Silver	ND	0.0100	0.0002	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Vanadium	ND	0.0100	0.0012	mg/L	EPA 6020B		1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Zinc	0.0015	0.0100	0.0012	mg/L	EPA 6020B	J	1	07/24/17 15:20	07/25/17 22:53	7070582	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	07/24/17 15:20	07/26/17 15:46	7070582	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/25/17 08:45	07/25/17 12:40	7070599	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Client ID: GWC-4R

Report No.: AAG0537

Date/Time Sampled: 7/18/2017 12:45:00PM

Matrix: Ground Water

August 11, 2017

Project: CCR Event

Lab Number ID: AAG0537-09

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	179	25	10	mg/L	SM 2540 C		1	07/24/17 18:15	07/24/17 18:15	7070574	JPT
norganic Anions											
Chloride	46	0.25	0.02	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 16:41	7070573	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 16:41	7070573	RLC
Sulfate	50	5.0	0.08	mg/L	EPA 300.0		5	07/24/17 11:21	07/26/17 04:19	7070573	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Barium	0.0187	0.0100	0.0004	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Boron	0.970	0.0400	0.0060	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Calcium	16.8	5.00	2.02	mg/L	EPA 6020B		50	07/25/17 14:50	07/26/17 19:09	7070592	CSW
Chromium	0.0011	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Cobalt	0.0005	0.0100	0.0003	mg/L	EPA 6020B	J	1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Copper	ND	0.0250	0.0003	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Nickel	0.0015	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Selenium	0.0047	0.0100	0.0018	mg/L	EPA 6020B	J	1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Silver	ND	0.0100	0.0002	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Vanadium	ND	0.0100	0.0012	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Zinc	0.0015	0.0100	0.0012	mg/L	EPA 6020B	J	1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:03	7070592	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/25/17 08:45	07/25/17 12:47	7070599	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

Client ID: Dup-1

Date/Time Sampled: 7/18/2017 12:00:00AM

Matrix: Ground Water

August 11, 2017

Project: CCR Event

Lab Number ID: AAG0537-10

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	217	25	10	mg/L	SM 2540 C		1	07/24/17 18:15	07/24/17 18:15	7070574	JPT
Inorganic Anions											
Chloride	53	1.2	0.12	mg/L	EPA 300.0		5	07/24/17 11:21	07/26/17 06:02	7070573	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	07/24/17 11:21	07/24/17 17:02	7070573	RLC
Sulfate	55	5.0	0.08	mg/L	EPA 300.0		5	07/24/17 11:21	07/26/17 06:02	7070573	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Barium	0.0182	0.0100	0.0004	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Boron	0.972	0.400	0.0595	mg/L	EPA 6020B		10	07/25/17 14:50	07/28/17 11:39	7070592	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Calcium	16.8	5.00	2.02	mg/L	EPA 6020B		50	07/25/17 14:50	07/26/17 19:32	7070592	CSW
Chromium	0.0011	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Cobalt	0.0005	0.0100	0.0003	mg/L	EPA 6020B	J	1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Copper	0.0003	0.0250	0.0003	mg/L	EPA 6020B	B-01, J	1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Nickel	0.0014	0.0100	0.0005	mg/L	EPA 6020B	J	1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Selenium	0.0052	0.0100	0.0018	mg/L	EPA 6020B	J	1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Silver	ND	0.0100	0.0002	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Vanadium	ND	0.0100	0.0012	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Zinc	0.0016	0.0100	0.0012	mg/L	EPA 6020B	J	1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	07/25/17 14:50	07/26/17 19:26	7070592	CSW
Mercury	ND	0.00050	0.000041	mg/L	EPA 7470A		1	07/25/17 08:45	07/25/17 12:49	7070599	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070536 - SM 2540 C											
Blank (7070536-BLK1)						Prepare	ed & Analy	yzed: 07/2	1/17		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (7070536-BS1)						Prepare	ed & Analy	yzed: 07/2	1/17		
Total Dissolved Solids	382	25	10	mg/L	400.00		96	84-108			
Duplicate (7070536-DUP1)		So	urce: AAG0	338-15RE1		Prepare	ed & Anal	yzed: 07/2	1/17		
Total Dissolved Solids	ND	25	10	mg/L		ND		,		10	
Duplicate (7070536-DUP2)		So	urce: AAG0	505-04		Prepare	ed & Anal	yzed: 07/2	1/17		
Total Dissolved Solids	11	25	10	mg/L		13			17	10	QR-03, J
Batch 7070574 - SM 2540 C											
Blank (7070574-BLK1)						Prepare	ed & Anal	yzed: 07/24	4/17		
Total Dissolved Solids	ND	25	10	mg/L		•	•				
LCS (7070574-BS1)						Prepare	ed & Anal	yzed: 07/24	4/17		
Total Dissolved Solids	368	25	10	mg/L	400.00		92	84-108			
Duplicate (7070574-DUP1)		So	urce: AAG0	537-04		Prepare	ed & Analy	yzed: 07/24	4/17		
Total Dissolved Solids	1260	25	10	mg/L		1270		-	0.9	10	
Duplicate (7070574-DUP2)		So	urce: AAG0	537-05		Prepare	ed & Anal	yzed: 07/24	4/17		
Total Dissolved Solids	ND	25	10	mg/L		ND		,		10	

August 11, 2017

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

August 11, 2017

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070573 - EPA 300.0											
Blank (7070573-BLK1)						Prepare	ed & Analy	yzed: 07/24	4/17		
Chloride	ND	0.25	0.02	mg/L							
Fluoride	ND	0.30	0.03	mg/L							
Sulfate	ND	1.0	0.02	mg/L							
LCS (7070573-BS1)						Prepare	ed & Analy	yzed: 07/24	4/17		
Chloride	10.2	0.25	0.02	mg/L	10.020		102	90-110			
Fluoride	9.92	0.30	0.03	mg/L	10.020		99	90-110			
Sulfate	10.4	1.0	0.02	mg/L	10.050		104	90-110			
Matrix Spike (7070573-MS1)		Sou	ırce: AAG0	595-01		Prepare	ed & Analy	yzed: 07/24	4/17		
Chloride	16.9	0.25	0.02	mg/L	10.020	7.37	95	90-110			
Fluoride	12.0	0.30	0.03	mg/L	10.020	0.21	118	90-110			QM-05
Sulfate	47.7	1.0	0.02	mg/L	10.050	48.3	NR	90-110			QM-02
Matrix Spike (7070573-MS2)		Sou	ırce: AAG0	596-04		Prepare	ed & Analy	yzed: 07/24	4/17		
Chloride	41.9	0.25	0.02	mg/L	10.020	35.5	64	90-110			QM-05
Fluoride	10.6	0.30	0.03	mg/L	10.020	0.18	104	90-110			QM-02
Sulfate	178	1.0	0.02	mg/L	10.050	186	NR	90-110			
Matrix Spike Dup (7070573-MSD1)		Sou	ırce: AAG0	595-01		Prepare	ed & Analy	yzed: 07/24	4/17		
Chloride	16.9	0.25	0.02	mg/L	10.020	7.37	95	90-110	0.04	15	
Fluoride	12.0	0.30	0.03	mg/L	10.020	0.21	117	90-110	0.7	15	QM-05
Sulfate	47.2	1.0	0.02	mg/L	10.050	48.3	NR	90-110	1	15	QM-02

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070582 - EPA 3005A											
Blank (7070582-BLK1)						Prepare	ed: 07/24/	17 Analyz	ed: 07/25/	17	
Antimony	ND	0.0030	0.0006	mg/L		•		•			
Arsenic	ND	0.0050	0.0005	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00009	mg/L							
Boron	ND	0.0400	0.0060	mg/L							
Cadmium	ND	0.0010	0.0001	mg/L							
Calcium	ND	0.500	0.0404	mg/L							
Chromium	ND	0.0100	0.0005	mg/L							
Cobalt	ND	0.0100	0.0003	mg/L							
Copper	ND	0.0250	0.0003	mg/L							
Lead	ND	0.0050	0.00007	mg/L							
Molybdenum	ND	0.0100	0.0010	mg/L							
Nickel	ND	0.0100	0.0005	mg/L							
Selenium	ND	0.0100	0.0018	mg/L							
Silver	ND	0.0100	0.0002	mg/L							
Thallium	ND	0.0010	0.00005	mg/L							
Vanadium	ND	0.0100	0.0012	mg/L							
Zinc	ND	0.0100	0.0012	mg/L							
Lithium	ND	0.0500	0.0015	mg/L							
LCS (7070582-BS1)						Prepare	ed: 07/24/	17 Analyz	ed: 07/25/	17	
Antimony	0.109	0.0030	0.0006	mg/L	0.10000		109	80-120			
Arsenic	0.0976	0.0050	0.0005	mg/L	0.10000		98	80-120			
Barium	0.101	0.0100	0.0004	mg/L	0.10000		101	80-120			
Beryllium	0.104	0.0030	0.00009	mg/L	0.10000		104	80-120			
Boron	0.989	0.0400	0.0060	mg/L	1.0000		99	80-120			
Cadmium	0.107	0.0010	0.0001	mg/L	0.10000		107	80-120			
Calcium	1.01	0.500	0.0404	mg/L	1.0000		101	80-120			
Chromium	0.103	0.0100	0.0005	mg/L	0.10000		103	80-120			
Cobalt	0.0977	0.0100	0.0003	mg/L	0.10000		98	80-120			
Copper	0.101	0.0250	0.0003	mg/L	0.10000		101	80-120			
Lead	0.100	0.0050	0.00007	mg/L	0.10000		100	80-120			
Molybdenum	0.104	0.0100	0.0010	mg/L	0.10000		104	80-120			
Nickel	0.101	0.0100	0.0005	mg/L	0.10000		101	80-120			
Selenium	0.101	0.0100	0.0018	mg/L	0.10000		101	80-120			
Silver	0.0982	0.0100	0.0002	mg/L	0.10000		98	80-120			
Thallium	0.105	0.0010	0.00005	mg/L	0.10000		105	80-120			
Vanadium	0.104	0.0100	0.0012	mg/L	0.10000		104	80-120			
Zinc	0.101	0.0100	0.0012	mg/L	0.10000		101	80-120			
Lithium	0.105	0.0500	0.0015	mg/L	0.10000		105	80-120			

August 11, 2017

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

August 11, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070582 - EPA 3005A											
Matrix Spike (7070582-MS1)		Sou	ırce: AAG04	35-01		Prepare	ed: 07/24/	17 Analyz	ed: 07/25/	17	
Antimony	0.109	0.0030	0.0006	mg/L	0.10000	0.0008	108	75-125			
Arsenic	0.102	0.0050	0.0005	mg/L	0.10000	0.0029	99	75-125			
Barium	0.122	0.0100	0.0004	mg/L	0.10000	0.0245	98	75-125			
Beryllium	0.101	0.0030	0.00009	mg/L	0.10000	ND	101	75-125			
Boron	0.978	0.0400	0.0060	mg/L	1.0000	0.0070	97	75-125			
Cadmium	0.106	0.0010	0.0001	mg/L	0.10000	ND	106	75-125			
Calcium	25.0	25.0	2.02	mg/L	1.0000	24.8	22	75-125			QM-02, J
Chromium	0.104	0.0100	0.0005	mg/L	0.10000	ND	104	75-125			
Cobalt	0.103	0.0100	0.0003	mg/L	0.10000	0.0005	103	75-125			
Copper	0.102	0.0250	0.0003	mg/L	0.10000	ND	102	75-125			
Lead	0.0985	0.0050	0.00007	mg/L	0.10000	ND	98	75-125			
Molybdenum	0.106	0.0100	0.0010	mg/L	0.10000	0.0027	104	75-125			
Nickel	0.103	0.0100	0.0005	mg/L	0.10000	ND	103	75-125			
Selenium	0.104	0.0100	0.0018	mg/L	0.10000	ND	104	75-125			
Silver	0.0988	0.0100	0.0002	mg/L	0.10000	ND	99	75-125			
Thallium	0.101	0.0010	0.00005	mg/L	0.10000	ND	101	75-125			
Vanadium	0.101	0.0100	0.0012	mg/L	0.10000	ND	101	75-125			
Zinc	0.102	0.0100	0.0012	mg/L	0.10000	ND	102	75-125			
Lithium	0.102	0.0500	0.0015	mg/L	0.10000	ND	102	75-125			
Matrix Spike Dup (7070582-MSD1)		Sou	ırce: AAG04	35-01		Prepare	ed: 07/24/	17 Analyz	ed: 07/25/	17	
Antimony	0.110	0.0030	0.0006	mg/L	0.10000	0.0008	109	75-125	0.8	20	
Arsenic	0.104	0.0050	0.0005	mg/L	0.10000	0.0029	101	75-125	2	20	
Barium	0.122	0.0100	0.0004	mg/L	0.10000	0.0245	98	75-125	0.2	20	
Beryllium	0.102	0.0030	0.00009	mg/L	0.10000	ND	102	75-125	1	20	
Boron	0.979	0.0400	0.0060	mg/L	1.0000	0.0070	97	75-125	0.05	20	
Cadmium	0.107	0.0010	0.0001	mg/L	0.10000	ND	107	75-125	2	20	
Calcium	27.8	25.0	2.02	mg/L	1.0000	24.8	304	75-125	11	20	QM-02
Chromium	0.108	0.0100	0.0005	mg/L	0.10000	ND	108	75-125	4	20	
Cobalt	0.105	0.0100	0.0003	mg/L	0.10000	0.0005	105	75-125	2	20	
Copper	0.104	0.0250	0.0003	mg/L	0.10000	ND	104	75-125	2	20	
Lead	0.0967	0.0050	0.00007	mg/L	0.10000	ND	97	75-125	2	20	
Molybdenum	0.107	0.0100	0.0010	mg/L	0.10000	0.0027	104	75-125	0.7	20	
Nickel	0.107	0.0100	0.0005	mg/L	0.10000	ND	107	75-125	4	20	
Selenium	0.103	0.0100	0.0018	mg/L	0.10000	ND	103	75-125	0.5	20	
Silver	0.0999	0.0100	0.0002	mg/L	0.10000	ND	100	75-125	1	20	
Thallium	0.0993	0.0010	0.00005	mg/L	0.10000	ND	99	75-125	2	20	
Vanadium	0.105	0.0100	0.0012	mg/L	0.10000	ND	105	75-125	4	20	
Zinc	0.102	0.0100	0.0012	mg/L	0.10000	ND	102	75-125	0.02	20	
Lithium	0.103	0.0500	0.0015	mg/L	0.10000	ND	103	75-125	0.8	20	
			0.0010	9, L	0.10000	.,,,	. 30	10 120	0.0	_0	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Spike

Source

%REC

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch 7070582 - EPA 3005A	1										
Post Spike (7070582-PS1)		Sou	ırce: AAG04	135-01		Prepare	ed: 07/24/	17 Analyze	ed: 07/25	/17	
Antimony	102			ug/L	100.00	0.765	101	80-120			
Arsenic	98.7			ug/L	100.00	2.90	96	80-120			
Barium	121			ug/L	100.00	24.5	96	80-120			
Beryllium	96.7			ug/L	100.00	0.0123	97	80-120			
Boron	983			ug/L	1000.0	7.02	98	80-120			
Cadmium	104			ug/L	100.00	0.0302	104	80-120			
Calcium	25100			ug/L	1000.0	24800	33	80-120			QM-02
Chromium	97.5			ug/L	100.00	0.225	97	80-120			
Cobalt	96.1			ug/L	100.00	0.503	96	80-120			
Copper	98.4			ug/L	100.00	0.119	98	80-120			
Lead	95.3			ug/L	100.00	0.0125	95	80-120			
Molybdenum	106			ug/L	100.00	2.71	103	80-120			
Nickel	95.7			ug/L	100.00	0.455	95	80-120			
Selenium	101			ug/L	100.00	0.481	100	80-120			
Silver	94.2			ug/L	100.00	0.0001	94	80-120			
Thallium	96.7			ug/L	100.00	0.0241	97	80-120			
Vanadium	97.6			ug/L	100.00	-0.912	98	80-120			
Zinc	97.6			ug/L	100.00	1.04	97	80-120			
Lithium	100			ug/L	100.00	0.698	100	80-120			
Batch 7070592 - EPA 3005A	1										
Blank (7070592-BLK1)						Prepare	ed: 07/25/	17 Analyze	ed: 07/26	/17	
Antimony	ND	0.0030	0.0006	mg/L							
Arsenic	ND	0.0050	0.0005	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00009	mg/L							
Boron	ND	0.0400	0.0060	mg/L							
Cadmium	ND	0.0010	0.0001	mg/L							
Calcium	ND	0.500	0.0404	mg/L							
Chromium	ND	0.0100	0.0005	mg/L							
Cobalt	ND	0.0100	0.0003	mg/L							
Copper	0.0004	0.0250	0.0003	mg/L							
Lead	ND	0.0050	0.00007	mg/L							
Molybdenum	ND	0.0100	0.0010	mg/L							
Nickel	ND	0.0100	0.0005	mg/L							
Selenium	ND	0.0100	0.0018	mg/L							
Silver	ND	0.0100	0.0002	mg/L							
Olivei	IND										
Thallium	ND	0.0010	0.00005	mg/L							

August 11, 2017

RPD

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

August 11, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070592 - EPA 3005A											
Blank (7070592-BLK1)						Prepare	ed: 07/25/	17 Analyz	ed: 07/26/	17	
Zinc	ND	0.0100	0.0012	mg/L				•			
Lithium	ND	0.0500	0.0015	mg/L							
LCS (7070592-BS1)						Prepare	ed: 07/25/	17 Analyzo	ed: 07/26/	17	
Antimony	0.110	0.0030	0.0006	mg/L	0.10000		110	80-120			
Arsenic	0.104	0.0050	0.0005	mg/L	0.10000		104	80-120			
Barium	0.104	0.0100	0.0004	mg/L	0.10000		104	80-120			
Beryllium	0.100	0.0030	0.00009	mg/L	0.10000		100	80-120			
Boron	1.05	0.0400	0.0060	mg/L	1.0000		105	80-120			
Cadmium	0.108	0.0010	0.0001	mg/L	0.10000		108	80-120			
Calcium	1.03	0.500	0.0404	mg/L	1.0000		103	80-120			
Chromium	0.103	0.0100	0.0005	mg/L	0.10000		103	80-120			
Cobalt	0.103	0.0100	0.0003	mg/L	0.10000		103	80-120			
Copper	0.104	0.0250	0.0003	mg/L	0.10000		104	80-120			
Lead	0.104	0.0050	0.00007	mg/L	0.10000		104	80-120			
Molybdenum	0.109	0.0100	0.0010	mg/L	0.10000		109	80-120			
Nickel	0.103	0.0100	0.0005	mg/L	0.10000		103	80-120			
Selenium	0.108	0.0100	0.0018	mg/L	0.10000		108	80-120			
Silver	0.101	0.0100	0.0002	mg/L	0.10000		101	80-120			
Thallium	0.106	0.0010	0.00005	mg/L	0.10000		106	80-120			
Vanadium	0.103	0.0100	0.0012	mg/L	0.10000		103	80-120			
Zinc	0.109	0.0100	0.0012	mg/L	0.10000		109	80-120			
Lithium	0.0993	0.0500	0.0015	mg/L	0.10000		99	80-120			
Matrix Spike (7070592-MS1)		Soi	urce: AAG05	93-01		Prepare	ed: 07/25/	17 Analyz	ed: 07/26/	17	
Antimony	0.109	0.0030	0.0006	mg/L	0.10000	ND.	109	75-125			
Arsenic	0.108	0.0050	0.0005	mg/L	0.10000	0.0009	107	75-125			
Barium	0.126	0.0100	0.0004	mg/L	0.10000	0.0304	95	75-125			
Beryllium	0.102	0.0030	0.00009	mg/L	0.10000	ND	102	75-125			
Boron	1.06	0.0400	0.0060	mg/L	1.0000	0.0091	105	75-125			
Cadmium	0.107	0.0010	0.0001	mg/L	0.10000	ND	107	75-125			
Calcium	49.8	25.0	2.02	mg/L	1.0000	47.5	236	75-125			QM-0
Chromium	0.104	0.0100	0.0005	mg/L	0.10000	ND	104	75-125			
Cobalt	0.114	0.0100	0.0003	mg/L	0.10000	0.0109	103	75-125			
Copper	0.103	0.0250	0.0003	mg/L	0.10000	ND	103	75-125			
Lead	0.104	0.0050	0.00007	mg/L	0.10000	ND	104	75-125			
Molybdenum	0.112	0.0100	0.0010	mg/L	0.10000	0.0028	110	75-125			
Nickel	0.104	0.0100	0.0005	mg/L	0.10000	ND	104	75-125			
Selenium	0.108	0.0100	0.0018	mg/L	0.10000	ND	108	75-125			
Silver	0.0984	0.0100	0.0002	mg/L	0.10000	ND	98	75-125			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

August 11, 2017

Metals, Total - Quality Control

Batch 7070592 - EPA 3005A Matrix Spike (7070592-MS1) Source: AAG0593-01 Prepared: 07/25/17 Analyzed: 07/26/17 Thallium 0.106 0.0010 0.00005 mg/L 0.10000 ND 106 75-125 Vanadium 0.105 0.0100 0.0012 mg/L 0.10000 ND 105 75-125 Zinc 0.111 0.0100 0.0012 mg/L 0.10000 ND 100 75-125 Lithium 0.0997 0.0500 0.0015 mg/L 0.10000 ND 100 75-125 Matrix Spike Dup (7070592-MSD1) Source: AAG0593-UT Prepared: 07/25/17 Analyzed: 07/26/17 Antimony 0.107 0.0030 0.0006 mg/L 0.10000 ND 107 75-125 2 20 Arsenic 0.105 0.0050 0.0006 mg/L 0.10000 ND 104 75-125 3 20 Beryllium 0.0986 0.0030 0.0000 mg/L	Notes
Thallium 0.106 0.0010 0.00005 mg/L 0.10000 ND 106 75-125 Vanadium 0.105 0.0100 0.0012 mg/L 0.10000 ND 105 75-125 Zinc 0.111 0.0100 0.0012 mg/L 0.10000 0.0025 108 75-125 Lithium 0.0997 0.0500 0.0015 mg/L 0.10000 ND 100 75-125 Matrix Spike Dup (7070592-MSD1) Source: AAG0593-01 Prepared: 07/25/17 Analyzed: 07/26/17 Antimony 0.107 0.0030 0.0006 mg/L 0.10000 ND 107 75-125 2 20 Arsenic 0.105 0.0050 0.0005 mg/L 0.10000 ND 107 75-125 3 20 Barium 0.125 0.0100 0.0004 mg/L 0.10000 0.0304 95 75-125 0.5 20 Beryllium 0.0986 0.0030 0.0000 mg/L	
Vanadium 0.105 0.0100 0.012 mg/L 0.10000 ND 105 75-125 Zinc 0.111 0.0100 0.0012 mg/L 0.10000 0.0025 108 75-125 Lithium 0.0997 0.0500 0.0015 mg/L 0.10000 ND 100 75-125 Matrix Spike Dup (7070592-MSD1) Source: AAG0593-01 Prepared: 07/25/17 Analyzed: 07/26/17 Antimony 0.107 0.0030 0.0006 mg/L 0.10000 ND 107 75-125 2 20 Arsenic 0.105 0.0050 0.0005 mg/L 0.10000 0.0004 95 75-125 3 20 Berjulium 0.0986 0.0030 0.00009 mg/L 0.10000 0.004 95 75-125 0.5 20 Beryllium 0.0986 0.0030 0.0000 mg/L 0.10000 ND 99 75-125 3 20 Beryllium 0.0986 0.0010	
Zinc 0.111 0.0100 0.0012 mg/L 0.10000 0.0025 108 75-125 Lithium 0.0997 0.0500 0.0015 mg/L 0.10000 ND 100 75-125 Matrix Spike Dup (7070592-MSD1) Source: AAG0593-01 Prepared: 07/25/17 Analyzed: 07/26/17 Antimony 0.107 0.0030 0.0006 mg/L 0.10000 ND 107 75-125 2 20 Arsenic 0.105 0.0050 0.0005 mg/L 0.10000 0.0009 104 75-125 3 20 Beryllium 0.125 0.0100 0.0004 mg/L 0.10000 ND 99 75-125 0.5 20 Boron 1.03 0.0400 0.0000 mg/L 0.10000 ND 109 75-125 4 20 Cadmium 0.106 0.0010 0.0001 mg/L 0.10000 ND 106 75-125 1 20 Calcium 48.7 2	
Matrix Spike Dup (7070592-MSD1) Source: AAG0593-01 Prepared: 07/25/17 Analyzed: 07/26/17 Antimony 0.107 0.0030 0.0006 mg/L 0.10000 ND 107 75-125 2 20 Arsenic 0.105 0.0050 0.0005 mg/L 0.10000 0.0099 104 75-125 2 20 Barium 0.125 0.0100 0.0004 mg/L 0.10000 0.0304 95 75-125 0.5 20 Beryllium 0.0986 0.0030 0.00009 mg/L 0.10000 ND 102 75-125 0.5 20 Beryllium 0.0986 0.0030 0.00009 mg/L 0.10000 ND 99 75-125 0.5 20 Boron 1.03 0.0400 0.0060 mg/L 1.0000 ND 106 75-125 3 20 Cadmium 0.1106 0.0010 0.0001 mg/L 0.10000 ND 106 75-125 1 20 <t< td=""><td></td></t<>	
Matrix Spike Dup (7070592-MSD1) Source: AAG0593-01 Prepared: 07/25/17 Analyzed: 07/26/17 Antimony 0.107 0.0030 0.0006 mg/L 0.10000 ND 107 75-125 2 20 Arsenic 0.105 0.0050 0.0005 mg/L 0.10000 0.0009 104 75-125 3 20 Barium 0.125 0.0100 0.0004 mg/L 0.10000 0.0304 95 75-125 0.5 20 Beryllium 0.0986 0.0030 0.0009 mg/L 0.10000 ND 99 75-125 4 20 Boron 1.03 0.0400 0.0060 mg/L 1.0000 0.0091 102 75-125 3 20 Cadmium 0.106 0.0010 0.0001 mg/L 0.10000 ND 106 75-125 1 20 Calcium 48.7 25.0 2.02 mg/L 1.0000 47.5 119 75-125 2 20	
Antimony 0.107 0.0030 0.0006 mg/L 0.10000 ND 107 75-125 2 20 Arsenic 0.105 0.0050 0.0005 mg/L 0.10000 0.0009 104 75-125 3 20 Barium 0.125 0.0100 0.0004 mg/L 0.10000 0.0304 95 75-125 0.5 20 Beryllium 0.0986 0.0030 0.00009 mg/L 0.10000 ND 99 75-125 4 20 Boron 1.03 0.0400 0.0060 mg/L 1.0000 0.0091 102 75-125 3 20 Cadmium 0.106 0.0010 0.0001 mg/L 0.10000 ND 106 75-125 3 20 Calcium 48.7 25.0 2.02 mg/L 1.0000 47.5 119 75-125 2 20 Chromium 0.102 0.0100 0.0005 mg/L 0.10000 ND	
Arsenic 0.105 0.0050 0.0005 mg/L 0.10000 0.0009 104 75-125 3 20 Barium 0.125 0.0100 0.0004 mg/L 0.10000 0.0304 95 75-125 0.5 20 Beryllium 0.0986 0.0030 0.00009 mg/L 0.10000 ND 99 75-125 4 20 Boron 1.03 0.0400 0.0060 mg/L 1.0000 0.0091 102 75-125 3 20 Cadmium 0.106 0.0010 0.0001 mg/L 0.10000 ND 106 75-125 3 20 Calcium 48.7 25.0 2.02 mg/L 1.0000 47.5 119 75-125 2 20 Chromium 0.102 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 2 20 Cobalt 0.112 0.0100 0.0003 mg/L 0.10000 ND	
Barium 0.125 0.0100 0.0004 mg/L 0.10000 0.0304 95 75-125 0.5 20 Beryllium 0.0986 0.0030 0.00009 mg/L 0.10000 ND 99 75-125 4 20 Boron 1.03 0.0400 0.0060 mg/L 1.0000 0.0991 102 75-125 3 20 Cadmium 0.106 0.0010 0.0001 mg/L 0.10000 ND 106 75-125 1 20 Calcium 48.7 25.0 2.02 mg/L 1.0000 47.5 119 75-125 2 20 Chromium 0.102 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 2 20 Cobalt 0.112 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Copper 0.101 0.0250 0.0003 mg/L 0.10000 ND	
Beryllium 0.0986 0.0030 0.00009 mg/L 0.10000 ND 99 75-125 4 20 Boron 1.03 0.0400 0.0060 mg/L 1.0000 0.0091 102 75-125 3 20 Cadmium 0.106 0.0010 0.0001 mg/L 0.10000 ND 106 75-125 1 20 Calcium 48.7 25.0 2.02 mg/L 1.0000 47.5 119 75-125 2 20 Chromium 0.102 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 2 20 Cobalt 0.112 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Copper 0.101 0.0250 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Lead 0.101 0.0050 0.00007 mg/L 0.10000 ND 10	
Boron 1.03 0.0400 0.0600 mg/L 1.0000 0.0091 102 75-125 3 20 Cadmium 0.106 0.0010 0.0001 mg/L 0.10000 ND 106 75-125 1 20 Calcium 48.7 25.0 2.02 mg/L 1.0000 47.5 119 75-125 2 20 Chromium 0.102 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 2 20 Cobalt 0.112 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Copper 0.101 0.0250 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Lead 0.101 0.0050 0.00007 mg/L 0.10000 ND 101 75-125 1 20 Molybdenum 0.111 0.0100 0.0010 mg/L 0.10000 ND 10	
Cadmium 0.106 0.0010 0.0001 mg/L 0.10000 ND 106 75-125 1 20 Calcium 48.7 25.0 2.02 mg/L 1.0000 47.5 119 75-125 2 20 Chromium 0.102 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 2 20 Cobalt 0.112 0.0100 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Copper 0.101 0.0250 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Lead 0.101 0.0050 0.00007 mg/L 0.10000 ND 101 75-125 1 20 Molybdenum 0.111 0.0100 0.0010 mg/L 0.10000 ND 103 75-125 1 20 Nickel 0.103 0.0100 0.0018 mg/L 0.10000 ND 103	
Calcium 48.7 25.0 2.02 mg/L 1.0000 47.5 119 75-125 2 20 Chromium 0.102 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 2 20 Cobalt 0.112 0.0100 0.0003 mg/L 0.10000 0.0109 101 75-125 1 20 Copper 0.101 0.0250 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Lead 0.101 0.0050 0.00007 mg/L 0.10000 ND 101 75-125 1 20 Molybdenum 0.111 0.0100 0.0010 mg/L 0.10000 ND 101 75-125 1 20 Nickel 0.103 0.0100 0.0005 mg/L 0.10000 ND 103 75-125 1 20 Selenium 0.108 0.0100 0.0018 mg/L 0.10000 ND <t< td=""><td></td></t<>	
Chromium 0.102 0.0100 0.0005 mg/L 0.10000 ND 102 75-125 2 20 Cobalt 0.112 0.0100 0.0003 mg/L 0.10000 0.0109 101 75-125 1 20 Copper 0.101 0.0250 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Lead 0.101 0.0050 0.00007 mg/L 0.10000 ND 101 75-125 3 20 Molybdenum 0.111 0.0100 0.0010 mg/L 0.10000 0.0028 108 75-125 1 20 Nickel 0.103 0.0100 0.0005 mg/L 0.10000 ND 103 75-125 1 20 Selenium 0.108 0.0100 0.0018 mg/L 0.10000 ND 103 75-125 0.08 20 Silver 0.0966 0.0100 0.0002 mg/L 0.10000 ND	
Cobalt 0.112 0.0100 0.0003 mg/L 0.10000 0.0109 101 75-125 1 20 Copper 0.101 0.0250 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Lead 0.101 0.0050 0.00007 mg/L 0.10000 ND 101 75-125 3 20 Molybdenum 0.111 0.0100 0.0010 mg/L 0.10000 0.0028 108 75-125 1 20 Nickel 0.103 0.0100 0.0005 mg/L 0.10000 ND 103 75-125 1 20 Selenium 0.108 0.0100 0.0018 mg/L 0.10000 ND 103 75-125 1 20 Silver 0.0966 0.0100 0.0002 mg/L 0.10000 ND 108 75-125 2 20	
Copper 0.101 0.0250 0.0003 mg/L 0.10000 ND 101 75-125 1 20 Lead 0.101 0.0050 0.00007 mg/L 0.10000 ND 101 75-125 3 20 Molybdenum 0.111 0.0100 0.0010 mg/L 0.10000 0.0028 108 75-125 1 20 Nickel 0.103 0.0100 0.0005 mg/L 0.10000 ND 103 75-125 1 20 Selenium 0.108 0.0100 0.0018 mg/L 0.10000 ND 108 75-125 0.08 20 Silver 0.0966 0.0100 0.0002 mg/L 0.10000 ND 97 75-125 2 20	
Lead 0.101 0.0050 0.00007 mg/L 0.10000 ND 101 75-125 3 20 Molybdenum 0.111 0.0100 0.0010 mg/L 0.10000 0.0028 108 75-125 1 20 Nickel 0.103 0.0100 0.0005 mg/L 0.10000 ND 103 75-125 1 20 Selenium 0.108 0.0100 0.0018 mg/L 0.10000 ND 108 75-125 0.08 20 Silver 0.0966 0.0100 0.0002 mg/L 0.10000 ND 97 75-125 2 20	
Molybdenum 0.111 0.0100 0.0010 mg/L 0.10000 0.0028 108 75-125 1 20 Nickel 0.103 0.0100 0.0005 mg/L 0.10000 ND 103 75-125 1 20 Selenium 0.108 0.0100 0.0018 mg/L 0.10000 ND 108 75-125 0.08 20 Silver 0.0966 0.0100 0.0002 mg/L 0.10000 ND 97 75-125 2 20	
Nickel 0.103 0.0100 0.0005 mg/L 0.10000 ND 103 75-125 1 20 Selenium 0.108 0.0100 0.0018 mg/L 0.10000 ND 108 75-125 0.08 20 Silver 0.0966 0.0100 0.0002 mg/L 0.10000 ND 97 75-125 2 20	
Selenium 0.108 0.0100 0.0018 mg/L 0.10000 ND 108 75-125 0.08 20 Silver 0.0966 0.0100 0.0002 mg/L 0.10000 ND 97 75-125 2 20	
Silver 0.0966 0.0100 0.0002 mg/L 0.10000 ND 97 75-125 2 20	
Thallium 0.102 0.0010 0.00005 mg/L 0.10000 ND 102 75-125 4 20	
Vanadium 0.105 0.0100 0.0012 mg/L 0.10000 ND 105 75-125 0.4 20	
Zinc 0.109 0.0100 0.0012 mg/L 0.10000 0.0025 106 75-125 2 20	
Lithium 0.0953 0.0500 0.0015 mg/L 0.10000 ND 95 75-125 5 20	
Post Spike (7070592-PS1) Source: AAG0593-01 Prepared: 07/25/17 Analyzed: 07/26/17	
Antimony 105 ug/L 100.00 0.379 105 80-120	
Arsenic 105 ug/L 100.00 0.902 104 80-120	
Barium 123 ug/L 100.00 30.4 93 80-120	
Beryllium 98.8 ug/L 100.00 0.0017 99 80-120	
Boron 1050 ug/L 1000.0 9.06 104 80-120	
Cadmium 103 ug/L 100.00 0.0156 103 80-120	
Calcium 48300 ug/L 1000.0 47500 85 80-120	
Chromium 102 ug/L 100.00 0.187 102 80-120	
Cobalt 112 ug/L 100.00 10.9 101 80-120	
Copper 102 ug/L 100.00 0.266 102 80-120	
Lead 101 ug/L 100.00 0.0221 101 80-120	
Molybdenum 112 ug/L 100.00 2.81 109 80-120	
Nickel 101 ug/L 100.00 0.223 101 80-120	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAG0537

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070592 - EPA 3005A											
Post Spike (7070592-PS1)		Sou	ırce: AAG05	93-01		Prepare	ed: 07/25/	17 Analyz	ed: 07/26/	17	
Selenium	103			ug/L	100.00	1.10	102	80-120			
Silver	98.6			ug/L	100.00	0.0014	99	80-120			
Thallium	102			ug/L	100.00	0.0060	102	80-120			
Vanadium	104			ug/L	100.00	0.537	104	80-120			
Zinc	109			ug/L	100.00	2.49	106	80-120			
Lithium	98.0			ug/L	100.00	0.0451	98	80-120			
Batch 7070599 - EPA 7470A											
Blank (7070599-BLK1)						Prepare	ed & Analy	zed: 07/2	5/17		
Mercury	ND	0.00050	0.000041	mg/L							
LCS (7070599-BS1)						Prepare	ed & Analy	/zed: 07/2	5/17		
Mercury	0.00233	0.00050	0.000041	mg/L	2.5000E-3		93	80-120			
Matrix Spike (7070599-MS1)		Sou	ırce: AAG05	05-01		Prepare	ed & Analy	/zed: 07/2	5/17		
Mercury	0.00215	0.00050	0.000041	mg/L	2.5000E-3		81	75-125			
Matrix Spike Dup (7070599-MSD1)		Sou	ırce: AAG05	05-01		Prepare	ed & Analy	/zed: 07/2	5/17		
Mercury	0.00206	0.00050	0.000041	mg/L	2.5000E-3	0.00013	77	75-125	4	20	
Post Spike (7070599-PS1)		Sou	ırce: AAG05	05-01		Prepare	ed & Analy	/zed: 07/2	5/17		
Mercury	1.51			ug/L	1.6667	0.0851	85	80-120			

August 11, 2017

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham August 11, 2017

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QR-03** The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to suspected matrix interference and/or non-homogeneous sample matrix.
- **QM-05** The spike recovery was outside acceptance limits for the MS and/or MSD and/or PDS due to suspected matrix interference. Sample results for the QC batch were accepted based on acceptable LCS recoveries.
- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).
 - **B-01** Analyte was detected in the associated method blank at an estimated level equal to or greater than the MDL. Sample values reported as greater than the MDL and less than 10x the method blank value are reported as estimated values.

Note: Unless otherwise noted, all results are reported on an as received basis.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

August 11, 2017

Report Notes

Report reissued 8/11/2017 to provide data for additional analytes per consultant request. BMcD

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

P

PAGE:

CLIENT NAME:								ANAL	YSIS.	REOL	ANALYSIS REQUESTED	0			CON	CONTAINER TYPE	14d	PRESERVATION	Γ
Georgia Power					CONTAINER TYPE	1 TYPE:	Ь	_	-	-		L				P - PLASTIC	1	1 - HCl <6°C	
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	SS/PHONE	E NUMBER	YFAX.	NUMBER:	PRESERVATION:	TION:	က	7	3	-	_			X	∞	A - AMBER GLASS		2- H-SO. <6°C	_
241 Ralph McGill Blvd SE B10185	1 Blvd SE E	310185			# of			\vdash	 	-					ပ	G - CLEAR GLASS		3- HNO.	
Atlanta, GA 30308	8														>	V - VOA VIAL		4 - NaOH <6°C	
404-506-7239					ပ	-									<i>(</i>)	S - STERILE	4	5 - NaOH/ZnAc <6°C	
REPORT TO:				CC: Maria Padilla	0		(0.		<u>-</u>						C	O - OTHER	, «c	Na.S.O. Can	_
	Lauren Petty	ŧ		Heath McCorkle	z		(D)								one.		, ~	7 - <6°C not frozen	
REQUESTED COMPLETION DATE:	DMPLETIC	N DATE:		PO#:	۲		CC 707			-							-		
				l laburch@southernco.com	۷		09. 10 r								5	AM.	"MATRIX CODES:	JES:	Т
PROJECT NAME/STATE:	=/STATE:				_		Aq mo:	(၁							<u>.</u>				
		Plant Yate	s Gyp.	Plant Yates Gypsum Storage	z		a) bot	240	((9 W-	DRINKING WATER		S- SOIL	_
					ш		16	2 N							₹			SL - SLUDGE	_
PROJECT #:	Yates Gyt	som Stora	ge Ph	Yates Gypsum Storage Phase 2 CCR & Semi-Annual Monitoring	œ	- "	181	NS :							R GW-		œ	SD - SOLID	-
			}		Ø	• •	SIE	8 0							SW.	SURFACE WATER		A - AIR	
					_		ijəu	.00					-		ST.	STORM WATER		L. UQUID	
Collection	Collection	MATRIX	0 2	SAMPLE IDENTIFICATION		•	u sr	F, S	muil 4-8-1					*(*)	`	W - WATER	ď	P - PRODUCT	
7		7000			→			43)								REMARKS/ADDITIONAL INFORMATION	JITIONAL	INFORMATION	
<u> </u>	Shol	35	- <u>`</u>	1 6WA-2	4		_	-	7	\vdash	_								
7-17-17	1450	13.7	<u>د</u>	1.30 - KB	J		-	_	7	_	-			552	ก				Т
╁	十		+		1	\dagger	†	+	1	+	+	\prod	1	•					Т
1-11-1	230	≯	-	LI-U-L-1-94	7		_	_	7	_			i	1	G				_
7-18-17 10	1045	6W	<u>,</u>	6wc-6R	4		_	-	الم					7	4				ī
0 11-81-F	Sh60	3		7	4		_	1	2						l/v				T
1-18-17	1350	12W	7	\vdash	7		7		7						20		:	l L	T
1-81-2	1550	6 W		1 GWC-2R	8			1	4						th.	extra Rad 1	here		Τ.
1 (7-81-6	1415	6 W	7	160c-1R	7		-	1	2					90	۸۸				
1-18-17	1245	6W	7	60c-4R	7		+	 	7		-			9					T
7-18-17	7	6w	7	1 - Dup - 1	2		_	•	2						9				-
							_			 									Т.
	 									<u> </u>				32	s ansa.				7
SAMPLED BY AND TITLE:	NO TITLE:	200	_	DATE/TIME: / 08/5	RELING	RELINQUISHED BY:) BY:	1	1/2	{ }		DATE	DATE/TIME:	39.7.6	# 4	FORLAB	ABUSE	ONLY	(TW
RECEIVED BY:		'			RELINQUISI	UISHE	HED BY:					DATE/TIME	TIME			\ !	ر پرولار	ろろろ	
REGENACO BY I	₩	Sinter Contraction of the Contra	1		SAMPLE SH	ESHIP!	SHIPPED VIA: FED.EX	Sdell		COHREE			OTWER	00	Tracking #:	ing #:			
pH onecked.			47	Tempelalure 2 / / Max	Custody Seaf	Seat	Kroa	Na December	17/1	R of Coolers			1.7					/	
								T COURT	}	4			* 1. Table 1. Sept.	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	Water Reserved				71

Bant Yates State constituents. Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Ti, V, Zn.

Sam	ple	Cond	lition	Upon Receipt		
Pace Analytical Client Name:		al Nr	aia	Power	Project #	AAG0537
	-4		9.14	, ,		
Courler: Fed Ex UPS USPS Client		Comme	ercial	Pace Other _	Proj 1	na 20e Date:
Custody Seal on Cooler/Box Present: yes		no	Seals	intact: yes [no	Vame all 100 file of 100 file.
Packing Material: Bubble Wrap Bubble E	Bags	PIN	lone	Other		
		of Ice:	~		Samples on ice, of	ooling process has begun
Cooler Temperature 3-6	* 1		_	is Frozen: Yes No		als of person examining
Temp should be above freezing to 6°C		-		Comments:	contents:_	111117
Chain of Custody Present:	¥∆ _{Ye} s	□No	□n/a	1.		
Chain of Custody Filled Out:	Ø Υes	□No	□n/a	2.		
Chain of Custody Relinquished:	ØYes	□No	□n/a	3.		
Sampler Name & Signature on COC:	YZY 95	□No	□n/a	4.		
Samples Arrived within Hold Time:	EZYes	□No	. □N/A	5.		
Short Hold Time Analysis (<72hr):	□Yes	□N₀	□N⁄A	6.		
Rush Turn Around Time Requested:	□Yes	ØN0	□n/a	7.	,	
Sufficient Volume:	□ //es	□No	□N/A	8.		
Correct Containers Used:	Ø Yes	□No	□n/a	9.		
-Pace Containers Used:	☑ Yes	□No	□n/a			·
Containers Intact:	∑ Yes	□No	□n/a	10.		
Filtered volume received for Dissolved tests	□Yes	□No	12KVA	11.		
Sample Labels match COC:	Ū√es	□No	□n/a	12.		
-Includes date/time/ID/Analysis Matrix:			_			
All containers needing preservation have been checked.	☑ Yes	□No	□n/a	13.		
All containers needing preservation are found to be in compliance with EPA recommendation.	22 Y = 5	□No	□N/A			
exceptions: VOA, coliform, TOC, O&G, W -DRO (water)	□Yes	E No		Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	□Yes	□No	12N/A	 -		
Headspace in VOA Vials (>6mm):		□No	ŬN∕A	 		
Trip Blank Present:		□No	G∃KI/A			
Trip Blank Custody Seals Present	- 1	□No	Ø N/A			
Pace Trip Blank Lot # (if purchased):						
	_					
Client Notification/ Resolution:			Deter	Timo:	Field Data Requir	ed? Y / N
Person Contacted: Comments/ Resolution:			_Date/			
Comments resolution.	\dashv					
Project Manager Review:					Date:	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 8/11/2017 8:44:35AM

Attn: Mr. Joju Abraham

Client: Georgia Power

Project: CCR Event Work Order: AAG0537

Date Received: 07/19/17 09:25 Logged In By: Mohammad M. Rahman

OBSERVATIONS

#Samples: 10 **#Containers:** 42

Minimum Temp(C): 3.6 Maximum Temp(C): 3.6 Custody Seal(s) Used: N/A

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	N/A
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

Report reissued 8/11/2017 to provide data for additional analytes per consultant request. BMcD

(724)850-5600

August 11, 2017

Ms. Lauren Petty GA Power 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: AAG0537 Plant Yates Pace Project No.: 30224715

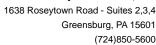
Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on July 20, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins


Suguely allins

jacquelyn.collins@pacelabs.com

, (724)850-5612 Project Manager

Enclosures

CERTIFICATIONS

Project: AAG0537 Plant Yates

Pace Project No.: 30224715

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

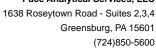
Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282
South Dakota Certification


Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8

Iexas/TNI Certification #: 1104/04188-14-8
Utah/TNI Certification #: PA014572015-5
USDA Soil Permit #: P330-14-00213
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Certification

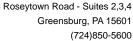
Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: AAG0537 Plant Yates

Pace Project No.: 30224715

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30224715001	GWA-2	Water	07/17/17 10:45	07/20/17 10:05
30224715002	GWC-5R	Water	07/17/17 14:50	07/20/17 10:05
30224715003	FB-1-7-17-17	Water	07/17/17 15:20	07/20/17 10:05
30224715004	GWC-6R	Water	07/18/17 10:45	07/20/17 10:05
30224715005	EB-1-7-18-17	Water	07/18/17 09:45	07/20/17 10:05
30224715006	GWC-3R	Water	07/18/17 13:50	07/20/17 10:05
30224715007	GWC-2R	Water	07/18/17 15:50	07/20/17 10:05
30224715008	GWC-1R	Water	07/18/17 14:15	07/20/17 10:05
30224715009	GWC-4R	Water	07/18/17 12:45	07/20/17 10:05
30224715010	Dup-1	Water	07/18/17 00:00	07/20/17 10:05



SAMPLE ANALYTE COUNT

Project: AAG0537 Plant Yates

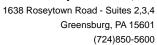
Pace Project No.: 30224715

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30224715001	GWA-2	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	RMK	1
30224715002	GWC-5R	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	RMK	1
30224715003	FB-1-7-17-17	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	RMK	1
30224715004	GWC-6R	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	RMK	1
30224715005	EB-1-7-18-17	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	RMK	1
30224715006	GWC-3R	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	RMK	1
30224715007	GWC-2R	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	RMK	1
30224715008	GWC-1R	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	RMK	1
30224715009	GWC-4R	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	RMK	1
30224715010	Dup-1	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	RMK	1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAG0537 Plant Yates

Pace Project No.: 30224715


Pace Project No.: 30224715		45004 Oallandad 07/47/47 40 45	Description	07/00/47 40 05 N	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Sample: GWA-2 PWS:	Lab ID: 302247 Site ID:	15001 Collected: 07/17/17 10:45 Sample Type:	Received:	07/20/17 10:05 M	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.635 ± 0.273 (0.299) C:77% T:NA	pCi/L	08/06/17 10:32	13982-63-3	
Radium-228	EPA 9320	0.785 ± 0.434 (0.787) C:76% T:79%	pCi/L	08/09/17 16:30	15262-20-1	
Total Radium	Total Radium Calculation	1.42 ± 0.707 (1.09)	pCi/L	08/10/17 17:26	7440-14-4	
Sample: GWC-5R	Lab ID: 302247	15002 Collected: 07/17/17 14:50	Received:	07/20/17 10:05 M	latrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.301 ± 0.187 (0.269) C:86% T:NA	pCi/L	08/06/17 10:32	13982-63-3	
Radium-228	EPA 9320	0.227 ± 0.327 (0.704) C:80% T:82%	pCi/L	08/09/17 16:30	15262-20-1	
Total Radium	Total Radium Calculation	0.528 ± 0.514 (0.973)	pCi/L	08/10/17 17:26	7440-14-4	
Sample: FB-1-7-17-17 PWS:	Lab ID: 302247 Site ID:	15003 Collected: 07/17/17 15:20 Sample Type:	Received:	07/20/17 10:05 N	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.252 ± 0.164 (0.221)	pCi/L	08/06/17 10:32	13982-63-3	
Radium-228	EPA 9320	C:84% T:NA -0.0396 ± 0.330 (0.773)	pCi/L	08/09/17 16:30	15262-20-1	
Total Radium	Total Radium Calculation	C:81% T:85% 0.252 ± 0.494 (0.994)	pCi/L	08/10/17 17:26	7440-14-4	
Sample: GWC-6R PWS:	Lab ID: 302247 Site ID:	15004 Collected: 07/18/17 10:45 Sample Type:	Received:	07/20/17 10:05 M	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.341 ± 0.199 (0.300)	pCi/L	08/06/17 10:32	13982-63-3	
Radium-228	EPA 9320	C:93% T:NA 0.456 ± 0.372 (0.741)	pCi/L	08/09/17 16:30	15262-20-1	
Total Radium	Total Radium Calculation	C:79% T:77% 0.797 ± 0.571 (1.04)	pCi/L	08/10/17 17:26	7440-14-4	
Sample: EB-1-7-18-17 PWS:	Lab ID: 302247 Site ID:	15005 Collected: 07/18/17 09:45 Sample Type:	Received:	07/20/17 10:05 M	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.229 ± 0.145 (0.195) C:85% T:NA	pCi/L	08/07/17 08:37	13982-63-3	
Radium-228	EPA 9320	0.303 ± 0.502 (1.09) C:80% T:76%	pCi/L	08/09/17 19:46	15262-20-1	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAG0537 Plant Yates

Pace Project No.: 30224715 Sample: EB-1-7-18-17 Lab ID: 30224715005 Collected: 07/18/17 09:45 Received: 07/20/17 10:05 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Total Radium Total Radium 0.532 ± 0.647 (1.29) pCi/L 08/10/17 17:26 7440-14-4 Calculation Sample: GWC-3R Lab ID: 30224715006 Collected: 07/18/17 13:50 Received: 07/20/17 10:05 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 9315 $0.237 \pm 0.189 \quad (0.328)$ Radium-226 pCi/L 08/06/17 10:32 13982-63-3 C:79% T:NA Radium-228 EPA 9320 -0.132 ± 0.437 (1.05) pCi/L 08/09/17 19:46 15262-20-1 C:79% T:81% Total Radium Total Radium 0.237 ± 0.626 (1.38) pCi/L 08/10/17 17:26 7440-14-4 Calculation Sample: GWC-2R Lab ID: 30224715007 Collected: 07/18/17 15:50 Received: 07/20/17 10:05 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.681 \pm 0.279 \quad (0.284)$ 08/06/17 10:32 13982-63-3 Radium-226 pCi/L C:81% T:NA Radium-228 EPA 9320 $0.0270 \pm 0.309 \quad (0.724)$ pCi/L 08/09/17 18:22 15262-20-1 C:82% T:80% Total Radium 0.708 ± 0.588 (1.01) Total Radium pCi/L 08/10/17 17:26 7440-14-4 Calculation Lab ID: 30224715008 Sample: GWC-1R Collected: 07/18/17 14:15 Received: 07/20/17 10:05 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.409 \pm 0.200 \quad (0.212)$ Radium-226 pCi/L 08/06/17 12:22 13982-63-3 C:90% T:NA EPA 9320 $0.960 \pm 0.476 \quad (0.812)$ Radium-228 pCi/L 08/09/17 18:22 15262-20-1 C:80% T:82% Total Radium Total Radium 1.37 ± 0.676 (1.02) pCi/L 08/10/17 17:26 7440-14-4 Calculation Sample: GWC-4R Lab ID: 30224715009 Collected: 07/18/17 12:45 Received: 07/20/17 10:05 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units CAS No. Qual Analyzed Radium-226 EPA 9315 $0.199 \pm 0.157 \quad (0.247)$ pCi/L 08/06/17 12:22 13982-63-3 C:77% T:NA EPA 9320 -0.221 ± 0.416 (1.03) Radium-228 pCi/L 08/09/17 18:22 15262-20-1 C:78% T:66% Total Radium pCi/L Total Radium 0.199 ± 0.573 (1.28) 08/10/17 17:26 7440-14-4 Calculation

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAG0537 Plant Yates

Pace Project No.: 30224715

Sample: Dup-1 PWS:	Lab ID: 302247 Site ID:	715010 Collected: 07/18/17 00:00 Sample Type:	Received:	07/20/17 10:05	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.152 ± 0.154 (0.287) C:74% T:NA	pCi/L	08/06/17 12:22	13982-63-3	
Radium-228	EPA 9320	-0.240 ± 0.288 (0.760) C:76% T:79%	pCi/L	08/09/17 18:22	2 15262-20-1	
Total Radium	Total Radium Calculation	0.152 ± 0.442 (1.05)	pCi/L	08/10/17 17:26	7440-14-4	

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

pCi/L

08/09/17 16:30

Project: AAG0537 Plant Yates

Pace Project No.: 30224715

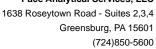
Radium-228

QC Batch: 267090 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30224715001, 30224715002, 30224715003, 30224715004, 30224715005, 30224715006, 30224715007,

-0.0648 ± 0.279 (0.664) C:81% T:91%

30224715008, 30224715009, 30224715010


METHOD BLANK: 1314904 Matrix: Water

Associated Lab Samples: 30224715001, 30224715002, 30224715003, 30224715004, 30224715005, 30224715006, 30224715007,

30224715008, 30224715009, 30224715010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: AAG0537 Plant Yates

Pace Project No.: 30224715

QC Batch: 267089 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30224715001, 30224715002, 30224715003, 30224715004, 30224715005, 30224715006, 30224715007,

30224715008, 30224715009, 30224715010

METHOD BLANK: 1314903 Matrix: Water

Associated Lab Samples: 30224715001, 30224715002, 30224715003, 30224715004, 30224715005, 30224715006, 30224715007,

30224715008, 30224715009, 30224715010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.382 ± 0.192 (0.208) C:93% T:NA pCi/L 08/06/17 10:32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: AAG0537 Plant Yates

Pace Project No.: 30224715

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 08/11/2017 02:13 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Face Analytical "

LAB USE ONLY $\frac{2}{0}$ Results Requested By: 8/11/2017 WO#:30224715 Comments Requested Analysis (400% Date/Time Y12017 Radium 226, 228, Total Owner Received Date: Preserved Containers 4 2 2 ONH Matrix 8€ _გ 8 <u>≷</u> 8 ĞΜ <u></u>8 Ø₩ ≥ ≥ Received By AAG0537-08 AAG0537-09 AAG0537-10 AAG0537-06 AAG0537-01 AAG0537-02 AAG0537-03 AAG0537-04 AAG0537-05 AAG0537-07 Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Plant Yates Collect Date/Time Lab ID Date//Tme Pace - Pittsburgh Subcontract To: 7/18/2017 14:15 7/17/2017 15:20 7/18/2017 15:50 7/18/2017 12:45 7/17/2017 10:45 7/17/2017 14:50 7/18/2017 10:45 7/18/2017 13:50 7/18/2017 0:00 7/18/2017 9:45 Stes. 2,3,4 Workorder Name: Sample G G G G G Ó G G G G Peachtree Corners, GA 30092 Workorder: AAG0537 110 Technology Parkway Pace Analytical Atlanta Phone (770)-734-4200 Transfers | Released By EB-1-7-18-17 FB-1-7-17-17 Betsy McDaniel Sample ID **GWC-5R** GWC-6R GWC-3R **GWC-2R GWC-1R GWC-4R** GWA-2 Dup-1 Report To: tem ∞

Sample Intact Y on ***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC Received on Ice Y or N This chain of custody is considered complete as is since this information is available in the owner laboratory.

Custody Seal Y for N

ر ا د

Cooler Temperature on Receipt

Friday, June 17, 2016 11:01:34 AM

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

Page 11 of 16

CHAIN OF CUSTODY RECORD

Face Analytical Pace Analytical Services, Inc.

110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092
(770) 734-4200: FAX (770) 734-4201: www.asi-lab.com

Ö

PAGE

200 12500				CONTABER TYP	EL 23	Δ.	Д					ROSE TO SERVICE	P - PLASTIC		1. HCl <6°C
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	HONE NUMBE	ZFAX.		PRESERVATIONS	3	7	3					ω	A - AMBER GLASS	SS	2. H.SD. 68°C
241 Raiph McGill Blvd SE B10185	1 SE B10185			å									G - CLEAR GLASS	SS	3- HNO.
Allama, 64 30306 404-506-7239				و				•					V - VOA VIAL		4 - NaOH, SS°C
REPORT TO:			CC: Maria Padilla	· c	(0										5 - NaOH/ZnAc, 26°C
Laur	Lauren Petty			, z	747	6						3			6 - Na ₂ S ₂ O ₃ , ≤6°C
REQUESTED COMPLETION DATE:	ETION DATE:		PO#:	- J	702	~~						12			/ - ≤a C not trozen
			laburch@southernco.com	⋖	09									MATRIX CODES	ODES
PROJECT NAME/STATE	l				A9		14.) (2)	•		75-67
	Plant Yat	es Gyp	Plant Yates Gypsum Storage	z u	3) V		<u> </u>						- DRINKING WATER	띮	S- SOIL
PROJECT#. Yate	s Gypsum Ston	age Ph	Yates Gypsum Storage Phase 2 CCR & Semi-Annual Monitoring	120	1.8 II) 1.8 III	SOT	8 22			.,		R GW-	- WASTEWATER 1- GROUNDWATER	04	SC - SCUDGE SD - SCUD
		ŀ		n	.q	8	97		**********			- 88 -	1- SURFACE WATER		A- AIR
Collection Collection DATE TIME	fon MATRIX	20円 20円	SAMPLE IDENTIFICATION		qA etat	F, SO.	2 mulb 846					'S >	ST - STORM WATER W - WATER		L- LIQUID P- PRODUCT
400-x				-	9W	Cl'	면	-					REMARKSU	ADDITIONA	REMARKS/ADDITIONAL INFORMATION
Shol Warti-L	S (SW)	7	1 GWA-2	7			7			-					
7-17-17 1450		د	1 GWC-5R	<u>ਹ</u>	_	_	7					X	-	C	E F
0851 CI-LI-L	N.	_	T-U-1-1-1	H			2		_					,	eki Rit
248-17 1045	W5 3	>	600-6R	đ	*	*	7					t [×]		Bi-QCHILLIANO	
7-18-17 094S	ž		[EB-1-7-18-17	5	_	•	2					\v			Charles on the Control of the Contro
7-18-17 1350	M5 0	7	1 GWC-3R	J	-	٠-	لا					120			
9551 1-81-2	0,0		1 GWC-2R	વ	/	1000	4						extra Rad	Resor	
2141 CJ-81-C	S GW	7	160C-1R	ว	*	~	7					Š			
7-18-17 1245	15 6W	3		f-7		<u> </u>	N					/W	754 WWW.		10 To Constitution of the
7-18-17	MS	3	/ Dup-1	5		جده .	2								
		\exists		٠											The second secon
C. Parker J. Born Good	T. Bersh	78	DATE/TIME /08/5	RELINGUISHED BY:	SHED 8	5	1	7		DATE/TIME	[2016		FOR LABIUSE ONLY	FONITY
i i i	, ,		IME: ,	RELINQUISHED BY:	SHED B	<u>خ</u>				DATE/TIME		Acceptanted and the second		S. A.	ののショナ
REPUISO BY WAB.	ALL.C.		5660 2/JAI/2m	Savipie Si	SASII XGGEB	* VIIA:	SA O	COMPLET		New York		2	Tracking		
H Greeked) M		Temperature	Costody Sect		77.		Same of the same	200						

Plant Vales, State constituents, Sb, As, Ba, Be, Cd, Cr, Co, Ctr, Pb; Hg, Nr, Se, Ag, Ar V, Zr,

i

12 of 16

Samp	le Cond	lition	n Upon Receipt	30224715
Pace Analytical Client Name: _	Geor	910	Power	Project # AAG(0537
Courler: Fed Ex UPS USPS Client Tracking #:	Comm	ercial	Pace Other	Optional Public Control of the Contr
Custody Seal on Cooler/Box Present:	I no	Seals	intact: yes [no troi Name viet in the state of the state
Packing Material: Bubble Wrap Bubble Ba	18 2 1	lone	C Other	nonem metalehirik dapitan respunyan gapun metamatak
The state of the s	pe of ice	Wei	Blue None	Samples on ice, cooling process has begun
Cooler Temperature 3.6 B Temp should be above freezing to 6°C	ological '	Tissue	is Frozen: Yes No Comments:	Date and initials of person examining contents:
	Yes ONo	□n/a	11.	
	Yes DNo	ΩN/A		
	Vds □No			
**************************************	Yes ONo		1	AND THE RESERVE OF THE PROPERTY OF THE PROPERT
	Yes DNo		7	
	Yes Cilvo			
	Yes ENO	□N/A		
	Pes □No		1	
	Yes □No	□n/a		
•	Yes DNo	□n/a	-	
	148 DNo	□N/A	10.	
	Yes ONo	DAVA	And the second s	
		□N/A		Control Contro
-includes date/time/ID/Analysis Matrix:		_		
All containers pending programation have been shorted	res 🗆 No	□N⁄A	13.	en e
All containers needing preservation are found to be in compliance with EPA recommendation.	ONo	□N/A		
exceptions: VOA, coliform, TOC, O&G, Wj-DRO (water)	res Elno		Initial when completed	Lot # of added preservative
· · · · · · · · · · · · · · · · · · ·	/es □No	EN/A		
	 	ŬN/A	· · · · · · · · · · · · · · · · · · ·	
		ŒΚί⁄Α		
·	es ONo	[Z]N/A	10.	***************************************
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted:		Date/T	in o	Field Data Required? Y / N
Comments/ Resolution:	 	Dale/ i	IIIIa.	DUMOSP, COMMERCIAL D
Optimization (1000) Optimi				
TO A RESIDENT AND A SECOND CONTRACT OF THE SE				·
	<u> </u>			
Project Manager Review:		moderne sprage		Date:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Sample Condition Up	ion Rece	npt	1-111	.SDL	пуп							(1) (2)	g (= ¥ £1
, Pace Analytical		00							_	walaa aalaw	ι т М	ben ken	le '	/ 1
: Client N	lame:	DACE-GA							- P	rojec	ι <i>#</i> _			
out This Out Dies	ná Flor		- ₁ .		. ,		0.0						bei C	A
Courler: Fed Ex DUPS DUSF			_Dom	merc	lal	Pace	e Olhe	∋r			, ,	ட்க MS Log		M
Tracking #: 7413665			- Ino	_			$\overline{}$				<u>L1</u>	WS LO	in it	سلالا
Custody Seal on Cooler/Box Present	: [_]yes				eals Ir	,	Y	*****	no					
Thermometer Used		-				`	None	/		c		-		• (
Cooler Temperature Observed Te	emp	-	_ ' (C	ottec	ion Fa	actor:			C Fir	iai Tei	mp:		
Temp should be above freezing to 6°C									-52.00	Dale a	nd Initi	als of po	rson e	kaminin つ(パ
Comments;	į	Yes	s N	0 N	//A]					conte	nts:	-/-t	717	<u>:0((-</u>
Chain of Cuslody Present:			-		1.				J					
Chain of Custody Filled Oul:	İ		-	-	2.						-	•		
Chain of Cusiody Reilinguished:			1		3,							•		
Sampler Name & Signature on COC:			-	1	4,									
Sample Labels match COC:		_			5.									
	atrix: U	<u></u>	-											
Samples Arrived within Hold Time:				T	6.						_			
Short Hold Time Analysis (<72hr remai	olng):			1	7.									
Rush Turn Around Time Requested:	a/r		_	 	8.									
Sufficient Volume:			,		9.			····						
Correct Containers Used;					10.									
-Pace Containers Used:		7												
Containers Intact:					11.									
Orihophosphate fleld filtered		\neg			12.									
Organic Samples checked for dechlorli	nation:			-	13,						_			
iliered volume received for Dissojved tests					14.									
ill containers have been checked for preservation		一			15.	$\overline{}$		-		- · · · · · · · · · · · · · · · · · · ·				
Il containers needing preservation are found to	be in	7			1	1	HL	(
ompliance with EPA recommendation.	<u></u>				ļ <u>.</u>				,					
cceptions: VOA, collform, TOC, O&G, Phenofics					Initial r compl		74		Date/ilr preserv					
technology for a comonal 1991 occión menolog					Loi# c	f added	ł		- !					
					preser	/alive				<u> </u>				
eadspace In VOA Viais (>6mm):		+	- -		16.				.					
p Blank Present:		╬	-		17.									
ip Blank Custody Seals Present Id Aqueous Samples Screened > 0,5 mr	em/hr	+	+	-	nitial w	hел								
	5111/111				omple	ed:	24		Date:	`7	120	5/15	7-	
lent Notification/ Resolution:														
Person Contacted:											d B <u>y:</u>			
omments/ Resolution:														

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNi Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Ra-226 Test:

Face Analytical"

K

Analyst:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Collection Date: Sample I.D. Sample MS I.D. Sample MSD I.D. Spike I.D.:

Sample Matrix Spike Control Assessment

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): Spike uncertainty (calculated):

8/4/2017 Date:

1314903 0.382 0.184 0.208 4.07 N/A See Comment* 37010 DW Worklist: Matrix: MB concentration: M/B Counting Uncertainty: MB Sample ID MB MDC: MB Numerical Performance Indicator: Method Blank Assessment

MB Status vs Numerical Indicator:

MB Status vs. MDC:

LCSD37010 LCS37010 8/7/2017 17-030 0.10 0.500 16.035 1.477 -2.84 84.16% 13.495 0.946 Result (pCi/L, g, F): Aliquot Volume (L, g, F): Farget Conc. (pCi/L, g, F): Uncertainty (Calculated): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Percent Recovery: Count Date Spike I.D.: Spike Concentration (pCi/mL): Volume Used (mL): Numerical Performance Indicator; Status vs Numerical Indicator: Status vs Recovery Laboratory Control Sample Assessment

Sample Result:

Sample Matrix Spike Result:

Sample Result Counting Uncertainty (pCi/L, g, F):

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MS Numerical Performance Indicator: MSD Numerical Performance Indicator:

MS Percent Recovery:

MSD Percent Recovery: MS Status vs Numerical Indicator:

MSD Status vs Numerical Indicator;

MS Status vs Recovery

MSD Status vs Recover

Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS/ MSD Duplicate RPD: Duplicate Numerical Performance Indicator: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD Matrix Spike/Matrix Spike Duplicate Sample Assessment 30224715001 0224715001DUP LCS/LCSD in the Enter Duplicate sample IDs if space below. other than

30224715001DUP

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessment

30224715001

0.635 0.257 0.366 0.481 \$ Below ##

Sample Result (pCi/L, g, F):
Sample Result Counting Uncertainty (pCi/L, g, F):
Sample Duplicate Result (pCi/L, g, F):
Are sample and/or duplicate results below MDC?

1.679 53.85%

Duplicate RPD:

Duplicate Status vs RPD:

Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator

N/A

Sample I.D. Sample MS I.D. Sample MSD I.D.

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

*The method blank result is below the reporting limit for this analysis and is acceptable.

***Batch must be re-prepped due to unacceptable precision

Printed: 8/11/2017 10:48 AM TAR DW QC

Quality Control Sample Performance Assessment

Ra-228 Test:

Face Analytical"

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample I.D. Sample MS I.D. Sample MSD I.D.

Spike I.D.:

Sample Collection Date:

Sample Matrix Spike Control Assessment

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F):

Sample Result:

3/6/2017 37011 VAL Worklist: Matrix: Date: **Analyst**:

-0.065 0.279 0.664 -0.46 N/A Pass MB Sample ID MB concentration: M/B Counting Uncertainty: MB MDC MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: Method Blank Assessment

Laboratory Control Sample Assessment

Count Date Spike I.D.

MS Target Conc.(pCi/L, g, F):
MSD Aliquot (L, g, F):
MSD Target Conc. (pCi/L, g, F): Sample Matrix Spike Duplicate Result Matrix Spike Duplicate Result Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator: MS Percent Recovery: Spike uncertainty (calculated): Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): MSD Numerical Performance Indicator: SD (Y or N)7 LCS37011 8/9/2017

R9/2017 8/9/2017 17-005 23.847 0.20 0.805 5.923 0.426 6.578 0.651 1.65 111.06% NA Pass 1.41 17-005 23.847 0.20 0.803 5.942 0.428 6.542 0.717 Spike Concentration (pCi/mL): Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Result (pCi/L, g, F): Uncertainty (Calculated); LCS/LCSD Counting Uncertainty (pCi/L, g, F): Numerical Performance Indicator: Percent Recovery: Status vs Numerical Indicator: Status vs Recovery

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery:

MSD Status vs Recovery

Sample I.D.

MSD Percent Recovery:

Matrix Spike/Matrix Spike Duplicate Sample Assessment Enter Duplicate sample IDs if LCS/LCSD in the space below other than CSD37011 CS37011 6.578 0.651 NO -0.072 6.542 0.717 N/A Pass Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result Counting Uncertainty (pCi/l., g, F): Are sample and/or duplicate results below MDC? Sample I.D.: Duplicate Sample I.D. Sample Duplicate Result (pCi/L, g, F): (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs RPD: Duplicate Numerical Performance Indicator Duplicate Status vs Numerical Indicator

Duplicate Sample Assessment

Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, 9, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments

Printed: 8/11/2017 10:49 AM Ra-228 NELAC DW2

Date: 2017-07-17 10:43:42

Bladder Pump

Project Information:

Operator Name

Chris Parker

Company Name

Atlantic Coast Consulting

Pump Information:

Pump Model/Type

Tubing Type

Company NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.375 inSite NamePlant Yates GypsumTubing Length51.0 ft

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 47.1 ft

Well Information: Pumping Information:

Final Pumping Rate 70 mL/min Well ID GWA-2 Well diameter Total System Volume 1.592651 L 2 in Calculated Sample Rate Well Total Depth 52.13 ft 300 sec Stabilization Drawdown Screen Length 10 ft 8 in Depth to Water 4.2 L 41.04 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	10:17:03	1800.00	20.75	6.09	238.87	2.28	41.60	1.24	22.98
Last 5	10:22:03	2099.97	20.78	6.07	239.90	1.44	41.70	1.00	27.38
Last 5	10:27:03	2400.03	20.63	6.06	241.55	1.50	41.70	0.81	30.54
Last 5	10:32:03	2699.97	20.20	6.05	243.25	1.75	41.70	0.74	34.14
Last 5	10:37:03	2999.97	20.12	6.03	245.33	0.88	41.80	0.76	36.72
Variance 0			-0.14	-0.01	1.65			-0.19	3.16
Variance 1			-0.43	-0.01	1.70			-0.07	3.60
Variance 2			-0.09	-0.02	2.08			0.02	2.57

Notes

Collected at 10:45. Sunny 70s.

Date: 2017-07-18 14:16:03

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Peristaltic

Poly

.17 in

35 ft

Project Information: Operator Name J Berisford

Company Name Atlantic Coast Consulting, Inc. Project Name Plant Yates Gypsum Storage Plant Yates-Gypsum Storage Site Name

Latitude 330 28' 0.93"

-840 -53' -56.01" Longitude Sonde SN 466058

Turbidity Make/Model

Hach 2100Q Pump placement from TOC 31.3 ft

Pumping Information: Well Information:

Final Pumping Rate Well ID GWC-1R 150 mL/min Well diameter Total System Volume 0.2462198 L 2 in Calculated Sample Rate Well Total Depth 36.34 ft 300 sec Stabilization Drawdown Screen Length 10 ft 12 in Depth to Water 4.5 L 24.5 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	13:55:05	600.02	23.39	5.49	485.90	3.81	25.20	7.25	173.47
Last 5	14:00:05	900.02	21.36	5.49	514.44	2.52	25.50	7.71	176.39
Last 5	14:05:05	1200.01	22.11	5.50	511.86	1.29	25.50	7.64	178.01
Last 5	14:10:05	1500.00	22.13	5.51	506.38	1.83	25.50	7.70	179.49
Last 5	14:15:05	1800.00	21.86	5.50	497.50	0.84	25.50	7.70	181.25
Variance 0			0.75	0.01	-2.57			-0.07	1.62
Variance 1			0.03	0.01	-5.49			0.07	1.48
Variance 2			-0.27	-0.00	-8.88			-0.00	1.75

Notes

Sunny, sample time-1415

Date: 2017-07-18 15:50:07

peri Pump

Project Information:

Operator Name

Chris Parker

Company Name

Atlantic Coast Consulting

Pump Information:

Pump Model/Type

Tubing Type

Company NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length42 ft

Latitude 0° 0′ 0″ Longitude 0° 0′ 0″ 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 38.8 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-2R 110 mL/min Well diameter Total System Volume 0.2774638 L 2 in Calculated Sample Rate Well Total Depth 43.8 ft 300 sec Stabilization Drawdown Screen Length 10 ft 3 in Depth to Water 5 L 29.80 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	15:21:36	900.02	22.58	5.53	192.13	6.88	30.00	4.05	111.93
Last 5	15:26:36	1200.02	22.71	5.54	192.24	6.41	30.00	3.96	106.91
Last 5	15:31:36	1500.01	22.29	5.52	193.78	5.34	30.00	3.82	104.21
Last 5	15:36:36	1800.00	22.44	5.49	195.94	5.02	30.00	3.89	103.13
Last 5	15:46:36	2400.00	21.97	5.49	198.24	4.83	30.00	3.72	99.00
Variance 0			-0.42	-0.02	1.54			-0.14	-2.70
Variance 1			0.15	-0.03	2.16			0.06	-1.08
Variance 2			-0.47	-0.01	2.30			-0.16	-4.12

Notes

Collected at 15:50. Sunny 80s. Extra Rad here.

Date: 2017-07-18 13:49:23

Project Information:		Pump Information:	
Operator Name	Chris Parker	Pump Model/Type	peri Pump
Company Name	Atlantic Coast Consulting	Tubing Type	Poly
Project Name	Plant Yates Gypsum	Tubing Diameter	.17 in
Site Name	Plant Yates Gypsum	Tubing Length	38.0 ft
Latitude	00 0' 0"		
Longitude	00 0' 0"		

Longitude 0° 0' 0"
Sonde SN 466086
Turbidity Make (Made)

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 34.0 ft

Well Information: Pumping Information:

Well ID GWC-3R Final Pumping Rate 110 mL/min Total System Volume Calculated Sample Rate Well diameter 2 in 0.2596101 L Well Total Depth 38.34 ft 300 sec Screen Length 10 ft Stabilization Drawdown 5 in Depth to Water 30.65 ft **Total Volume Pumped** 14 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	13:27:34	6299.93	23.61	5.20	160.14	2.09	31.00	5.50	136.02
Last 5	13:32:34	6599.93	23.94	5.21	159.64	1.80	31.00	5.57	136.53
Last 5	13:37:34	6899.92	23.55	5.21	158.36	1.74	31.00	5.59	134.77
Last 5	13:42:34	7199.92	23.69	5.23	159.29	1.65	31.00	5.65	133.65
Last 5	13:47:34	7499.92	23.46	5.21	158.86	1.83	31.00	5.55	132.96
Variance 0			-0.39	0.00	-1.28			0.02	-1.76
Variance 1			0.14	0.02	0.93			0.06	-1.12
Variance 2			-0.23	-0.02	-0.43			-0.09	-0.69

Notes

Collected at 13:50. Sunny 80s.

Date: 2017-07-18 12:49:03

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Peristaltic

Poly

.17 in

30 ft

Project Information:
Operator Name

J Berisford

Company Name Atlantic Coast Consulting, Inc.
Project Name Plant Yates Gypsum Storage
Site Name Plant Yates-Gypsum Storage

Latitude 33° 28' 2.65" Longitude -84° -54' -0.17"

Sonde SN 466058

Turbidity Make/Model Hach 2100Q Pump placement from TOC 26.0 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-4R 175 mL/min Well diameter Total System Volume 0.2239027 L 2 in Calculated Sample Rate Well Total Depth 31.05 ft 300 sec Stabilization Drawdown Screen Length 10 ft 5 in Depth to Water 17.71 ft **Total Volume Pumped** 28 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	12:25:26	8405.90	22.98	5.59	350.63	0.89	8.10	3.54	147.05
Last 5	12:30:26	8705.89	23.05	5.58	388.95	1.05	8.10	3.39	148.28
Last 5	12:35:26	9005.89	23.17	5.59	348.25	1.19	8.10	3.49	148.23
Last 5	12:40:26	9305.88	23.34	5.59	353.92	0.99	8.10	3.38	149.42
Last 5	12:45:26	9605.88	23.39	5.59	352.87	0.79	8.10	3.43	151.93
Variance 0			0.13	0.01	-40.70			0.11	-0.05
Variance 1			0.16	0.00	5.67			-0.12	1.19
Variance 2			0.06	-0.00	-1.05			0.05	2.50

Notes

Sunny, sample time 1245, Dup-1-7-18-17 here

Date: 2017-07-17 14:51:41

Tubing Type

Tubing Diameter

Tubing Length

Project Information:
Operator Name
Chris Parker
Pump Information:
Pump Model/Type

Company Name Atlantic Coast Consulting
Project Name Plant Yates Gypsum
Site Name Plant Yates Gypsum

Latitude 0° 0′ 0″

Longitude 0° 0′ 0″

Sonde SN 466086

Turbidity Make/Model Hach 21

Hach 2100 Q Pump placement from TOC 37.0 ft

Well Information:

Well ID GWC-5R
Well diameter 2 in
Well Total Depth 42.82 ft
Screen Length 10 ft
Depth to Water 32.35 ft

Pumping Information:
Final Pumping Rate 100 mL/min
Total System Volume 0.6724638 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 12 in

Bladder Pump

Poly

.17 in

42.0 ft

Stabilization Drawdown 12 in Total Volume Pumped 19.3 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS/	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	14:27:26	8699.92	21.91	5.22	1571.19	5.43	33.40	6.93	104.98
Last 5	14:32:26	8999.89	21.99	5.22	1571.23	4.79	33.40	6.88	105.72
Last 5	14:37:26	9299.89	21.97	5.22	1565.89	4.56	33.40	6.88	105.48
Last 5	14:42:26	9599.88	21.94	5.22	1562.02	4.03	33.40	6.89	106.49
Last 5	14:47:26	9899.88	21.31	5.21	1570.46	3.79	33.40	6.84	105.40
Variance 0			-0.02	0.01	-5.35			0.00	-0.24
Variance 1			-0.04	0.00	-3.87			0.01	1.01
Variance 2			-0.63	-0.01	8.44			-0.05	-1.09

Notes

Collected at 14:50. Sunny 80s. FB -1 here

Date: 2017-07-18 10:43:43

Project Information: Operator Name Company Name Project Name Site Name Latitude Longitude Sonde SN Turbidity Make/Model	Chris Parker Atlantic Coast Consulting Plant Yates Gypsum Plant Yates Gypsum 0° 0' 0" 0° 0' 0" 466086 Hach 2100 Q	Pump Information: Pump Model/Type Tubing Type Tubing Diameter Tubing Length Pump placement from TOC	Bladder Pump Poly .17 in 52.0 ft
Well Information: Well ID	GWC-6R	Pumping Information: Final Pumping Rate	180 mL/min

Well IDGWC-6RFinal Pumping Rate180 mL/minWell diameter2 inTotal System Volume0.717098 LWell Total Depth51.87 ftCalculated Sample Rate300 secScreen Length10 ftStabilization Drawdown4 inDepth to Water39.17 ftTotal Volume Pumped8.1 L

-0.03

-0.01

Low-Flow Sar	mpling Stabiliz	ation Summary	1						
	Time	Elapsed	Temp C	рН	SpCond µS/	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	10:14:54	600.02	18.86	5.96	1545.68	2.43	39.50	6.13	145.44
Last 5	10:19:54	900.02	18.64	5.83	1556.17	1.22	39.50	6.02	137.35
Last 5	10:24:54	1200.02	18.75	5.80	1558.53	1.01	39.50	5.94	135.96
Last 5	10:34:53	1800.00	18.80	5.77	1556.49	1.23	39.50	5.96	133.51
Last 5	10:39:54	2100.01	18.66	5.76	1550.89	0.95	39.50	5.88	153.76
Variance 0			0.11	-0.03	2.35			-0.08	-1.38

-2.04

-5.60

0.02

-0.08

-2.46

20.25

Notes

Variance 1

Variance 2

Collected at 10:45. Sunny 70s. EB-1 here at 09:45.

0.05

-0.15

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Georgia Power 2480 Maner Road Atlanta, GA 30339

Attention: Mr. Joju Abraham

Report Number: AAJ0625

November 02, 2017

Project: CCR Event

Project #:Plant Yates

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, LLC.

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

November 02, 2017

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GWA-2	AAJ0625-01	Ground Water	10/16/17 11:10	10/18/17 16:57
GWC-5R	AAJ0625-02	Ground Water	10/16/17 13:35	10/18/17 16:57
FB-1-10-16-17	AAJ0625-03	Water	10/16/17 14:25	10/18/17 16:57
GWC-1R	AAJ0625-04	Ground Water	10/17/17 11:45	10/18/17 16:57
GWC-4R	AAJ0625-05	Ground Water	10/17/17 14:55	10/18/17 16:57
GWC-2R	AAJ0625-06	Ground Water	10/17/17 16:40	10/18/17 16:57
Dup-1	AAJ0625-07	Ground Water	10/17/17 00:00	10/18/17 16:57
GWC-3R	AAJ0625-08	Ground Water	10/18/17 12:55	10/18/17 16:57
GWC-6R	AAJ0625-09	Ground Water	10/18/17 14:05	10/18/17 16:57
EB-1-10-18-17	AAJ0625-10	Water	10/18/17 13:50	10/18/17 16:57

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

November 02, 2017

Case Narrative

The Radium analysis by methods EPA 9315/9320 was performed by Pace-Pittsburgh, 1638 Roseytown Road - Suites 2, 3, 4, Greensburg PA 15601. The Pace-Pittsburgh lab contact is Jacquelyn Collins at 724-850-5612.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

November 02, 2017

Report No.: AAJ0625

Client ID: GWA-2

Date/Time Sampled: 10/16/2017 11:10:00AM

Matrix: Ground Water

Project: CCR Event

Lab Number ID: AAJ0625-01

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	218	25	10	mg/L	SM 2540 C		1	10/20/17 17:55	10/20/17 17:55	7100630	JPT
Inorganic Anions											
Chloride	4.2	0.25	0.02	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 15:12	7100714	RLC
Fluoride	0.12	0.30	0.03	mg/L	EPA 300.0	J	1	10/24/17 18:42	10/25/17 15:12	7100714	RLC
Sulfate	62	5.0	0.08	mg/L	EPA 300.0		5	10/24/17 18:42	10/26/17 12:15	7100714	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Barium	0.0542	0.0100	0.0004	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Calcium	13.6	5.00	2.02	mg/L	EPA 6020B		50	10/20/17 13:15	10/25/17 16:07	7100609	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Cobalt	0.0034	0.0100	0.0003	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Thallium	0.00007	0.0010	0.00005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Lithium	0.0016	0.0500	0.0015	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:01	7100609	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/24/17 13:55	10/25/17 09:57	7100634	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0625

Client ID: GWC-5R

Date/Time Sampled: 10/16/2017 1:35:00PM

Matrix: Ground Water

November 02, 2017

Project: CCR Event

Lab Number ID: AAJ0625-02

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1080	25	10	mg/L	SM 2540 C		1	10/20/17 17:55	10/20/17 17:55	7100630	JPT
Inorganic Anions											
Chloride	9.0	0.25	0.02	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 15:34	7100714	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 15:34	7100714	RLC
Sulfate	720	50	0.85	mg/L	EPA 300.0		50	10/24/17 18:42	10/26/17 12:36	7100714	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Arsenic	0.0011	0.0050	0.0005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Barium	0.0151	0.0100	0.0004	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Beryllium	0.0006	0.0030	0.00009	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Boron	0.0066	0.0400	0.0060	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Cadmium	0.0006	0.0010	0.0001	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Calcium	78.2	25.0	2.02	mg/L	EPA 6020B		50	10/20/17 13:15	10/25/17 16:31	7100609	CSW
Chromium	0.0023	0.0100	0.0005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Selenium	0.0242	0.0100	0.0018	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:25	7100609	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/24/17 13:55	10/25/17 10:00	7100634	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0625

Client ID: FB-1-10-16-17

Date/Time Sampled: 10/16/2017 2:25:00PM

Matrix: Water

November 02, 2017

Project: CCR Event

Lab Number ID: AAJ0625-03

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	10/23/17 18:35	10/23/17 18:35	7100680	JPT
Inorganic Anions											
Chloride	ND	0.25	0.02	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 16:39	7100714	RLC
Fluoride	0.72	0.30	0.03	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 16:39	7100714	RLC
Sulfate	0.28	1.0	0.02	mg/L	EPA 300.0	J	1	10/24/17 18:42	10/25/17 16:39	7100714	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Arsenic	0.0007	0.0050	0.0005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Barium	ND	0.0100	0.0004	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Calcium	ND	0.500	0.0404	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:37	7100609	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/24/17 13:55	10/25/17 10:02	7100634	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

November 02, 2017

Report No.: AAJ0625 Client ID: GWC-1R

Date/Time Sampled: 10/17/2017 11:45:00AM

Matrix: Ground Water

Project: CCR Event

Lab Number ID: AAJ0625-04

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	381	25	10	mg/L	SM 2540 C		1	10/20/17 17:55	10/20/17 17:55	7100630	JPT
Inorganic Anions											
Chloride	31	0.25	0.02	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 17:01	7100714	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 17:01	7100714	RLC
Sulfate	180	10	0.17	mg/L	EPA 300.0		10	10/24/17 18:42	10/26/17 12:57	7100714	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Arsenic	0.0009	0.0050	0.0005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Barium	0.0349	0.0100	0.0004	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Beryllium	0.0001	0.0030	0.00009	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Boron	0.0513	0.0400	0.0060	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Calcium	38.7	25.0	2.02	mg/L	EPA 6020B		50	10/20/17 13:15	10/25/17 16:48	7100609	CSW
Chromium	0.0010	0.0100	0.0005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Cobalt	0.0007	0.0100	0.0003	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Selenium	0.0030	0.0100	0.0018	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Lithium	0.0016	0.0500	0.0015	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 16:42	7100609	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/24/17 13:55	10/25/17 10:09	7100634	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Lab Number ID: AAJ0625-05

Date/Time Received: 10/18/2017 4:57:00PM

November 02, 2017

Report No.: AAJ0625 Client ID: GWC-4R

Date/Time Sampled: 10/17/2017 2:55:00PM

Matrix: Ground Water

Fluoride ND 0.30 0.03 mg/L EPA 300.0 1 10/24/17 18:42 10/25/17 17:24 71007 Sulfate 58 5.0 0.08 mg/L EPA 300.0 5 10/24/17 18:42 10/26/17 13:17 71007 Metals, Total Antimony ND 0.0030 0.0006 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Metals Metals, Total Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Metals Met) JPT
Chloride) JPT
Chloride 50 0.25 0.02 mg/L EPA 300.0 1 10/24/17 18:42 10/25/17 17:24 71007 Fluoride ND 0.30 0.03 mg/L EPA 300.0 1 10/24/17 18:42 10/25/17 17:24 71007 Sulfate 58 5.0 0.08 mg/L EPA 300.0 5 10/24/17 18:42 10/25/17 17:24 71007 Sulfate 58 5.0 0.08 mg/L EPA 300.0 5 10/24/17 18:42 10/25/17 13:17 71007 Metals, Total Antimony ND 0.0030 0.0006 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Arsenic ND 0.0157 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Boron 0.804 0.0400 0.0060 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Calcium 14:3 5.00 2.02 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B J 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B J 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B J 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B J 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B J 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71007 Cobalt 0.0006 0.0100 0.0005 mg/L EPA	
Fluoride ND 0.30 0.03 mg/L EPA 300.0 1 10/24/17 18:42 10/25/17 17:24 71007 Sulfate 58 5.0 0.08 mg/L EPA 300.0 5 10/24/17 18:42 10/26/17 13:17 71007 Metals, Total Antimony ND 0.0030 0.0006 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Arsenic ND 0.0157 0.0100 0.0004 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Barium ND 0.0157 0.0100 0.0004 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Boron 0.804 0.0400 0.0060 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Calcium 14.3 5.00 2.02 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0006 0.0100 0.0005 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0006 0.0100 0.0006 0.0006 0.0006 0.0006	
Sulfate 58 5.0 0.08 mg/L EPA 300.0 5 10/24/17 18:42 10/26/17 13:17 7100.00 Metals, Total Antimony ND 0.0030 0.0006 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Barium 0.0157 0.0100 0.0004 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Boron 0.804 0.0400 0.0060 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Chromium ND 0.0100 0.0005	RLC
Metals, Total ND 0.0030 0.0006 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Barium 0.0157 0.0100 0.0004 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Boron 0.804 0.0400 0.0060 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Calcium 14.3 5.00 2.02 mg/L EPA 6020B 50 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B <td< td=""><td>RLC</td></td<>	RLC
Antimony Antimony Antimony Arsenic ND 0.0030 0.0006 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Barium 0.0157 0.0100 0.0004 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Barium ND 0.0157 0.0100 0.0004 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Boron 0.804 0.0400 0.0060 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Calcium 14.3 5.00 2.02 mg/L EPA 6020B 50 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B J 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B J 10/20/17 13:15 10/25/17 16:54 71006 Cobalt 0.0006 0.0100 0.0003 mg/L EPA 6020B J 10/20/17 13:15 10/25/17 16:54 71006	RLC
Arsenic ND 0.0050 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Barium 0.0157 0.0100 0.0004 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Boron 0.804 0.0400 0.0060 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Calcium 14.3 5.00 2.02 mg/L EPA 6020B 50 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cobalt 0.0006 0.0100 0.0003 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006	
Barium 0.0157 0.0100 0.0004 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Boron 0.804 0.0400 0.0060 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Calcium 14.3 5.00 2.02 mg/L EPA 6020B 50 10/20/17 13:15 10/25/17 16:54 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cobalt 0.0006 0.0100 0.0003 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006) CSW
Beryllium ND 0.0030 0.00009 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Boron 0.804 0.0400 0.0060 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Calcium 14.3 5.00 2.02 mg/L EPA 6020B 50 10/20/17 13:15 10/25/17 16:54 71000 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Cobalt 0.0006 0.0100 0.0003 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71000) CSW
Boron 0.804 0.0400 0.0060 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Calcium 14.3 5.00 2.02 mg/L EPA 6020B 50 10/20/17 13:15 10/25/17 17:00 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cobalt 0.0006 0.0100 0.0003 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006) CSW
Cadmium ND 0.0010 0.0001 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Calcium 14.3 5.00 2.02 mg/L EPA 6020B 50 10/20/17 13:15 10/25/17 17:00 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cobalt 0.0006 0.0100 0.0003 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006) CSW
Calcium 14.3 5.00 2.02 mg/L EPA 6020B 50 10/20/17 13:15 10/25/17 17:00 71006 Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006 Cobalt 0.0006 0.0100 0.0003 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006	O CSW
Chromium ND 0.0100 0.0005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71000 Cobalt 0.0006 0.0100 0.0003 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71000	o csw
Cobalt 0.0006 0.0100 0.0003 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006	o csw
0.0000 mg =	o csw
Lead ND 0.0050 0.00007 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006	o csw
	o csw
Molybdenum ND 0.0100 0.0010 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006	o csw
Selenium 0.0040 0.0100 0.0018 mg/L EPA 6020B J 1 10/20/17 13:15 10/25/17 16:54 71006	o csw
Thallium ND 0.0010 0.00005 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006) CSW
Lithium ND 0.0500 0.0015 mg/L EPA 6020B 1 10/20/17 13:15 10/25/17 16:54 71006) CSW
Mercury ND 0.00050 0.000036 mg/L EPA 7470A 1 10/24/17 13:55 10/25/17 10:11 71006	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Lab Number ID: AAJ0625-06

Date/Time Received: 10/18/2017 4:57:00PM

November 02, 2017

Report No.: AAJ0625 Client ID: GWC-2R

Date/Time Sampled: 10/17/2017 4:40:00PM

Matrix: Ground Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	214	25	10	mg/L	SM 2540 C		1	10/20/17 17:55	10/20/17 17:55	7100630	JPT
Inorganic Anions											
Chloride	6.1	0.25	0.02	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 17:46	7100714	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 17:46	7100714	RLC
Sulfate	59	5.0	0.08	mg/L	EPA 300.0		5	10/24/17 18:42	10/26/17 13:38	7100714	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Barium	0.0470	0.0100	0.0004	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Boron	0.0168	0.0400	0.0060	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Calcium	9.77	5.00	2.02	mg/L	EPA 6020B		50	10/20/17 13:15	10/25/17 17:11	7100609	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Cobalt	0.0182	0.0100	0.0003	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Selenium	0.0028	0.0100	0.0018	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Lithium	0.0035	0.0500	0.0015	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 17:05	7100609	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/24/17 13:55	10/25/17 10:14	7100634	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Report No.: AAJ0625

Lab Number ID: AAJ0625-07

Client ID: Dup-1

Date/Time Received: 10/18/2017 4:57:00PM

November 02, 2017

Date/Time Sampled: 10/17/2017 12:00:00AM

Matrix: Ground Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	301	25	10	mg/L	SM 2540 C		1	10/20/17 17:55	10/20/17 17:55	7100630	JPT
Inorganic Anions											
Chloride	50	0.25	0.02	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 18:08	7100714	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 18:08	7100714	RLC
Sulfate	57	5.0	0.08	mg/L	EPA 300.0		5	10/24/17 18:42	10/26/17 13:59	7100714	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Barium	0.0156	0.0100	0.0004	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Boron	0.786	0.0400	0.0060	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Calcium	14.7	5.00	2.02	mg/L	EPA 6020B		50	10/20/17 13:15	10/25/17 17:45	7100609	CSW
Chromium	0.0005	0.0100	0.0005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Cobalt	0.0005	0.0100	0.0003	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Selenium	0.0041	0.0100	0.0018	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:40	7100609	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/24/17 13:55	10/25/17 10:16	7100634	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

November 02, 2017

Report No.: AAJ0625 Client ID: GWC-3R

Date/Time Sampled: 10/18/2017 12:55:00PM

Matrix: Ground Water

Project: CCR Event

Lab Number ID: AAJ0625-08

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	166	25	10	mg/L	SM 2540 C		1	10/20/17 17:55	10/20/17 17:55	7100630	JPT
Inorganic Anions											
Chloride	6.5	0.25	0.02	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 18:31	7100714	RLC
Fluoride	0.22	0.30	0.03	mg/L	EPA 300.0	J	1	10/24/17 18:42	10/25/17 18:31	7100714	RLC
Sulfate	53	5.0	0.08	mg/L	EPA 300.0		5	10/24/17 18:42	10/26/17 14:19	7100714	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Arsenic	ND	0.0050	0.0005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Barium	0.0490	0.0100	0.0004	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Beryllium	0.0004	0.0030	0.00009	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Calcium	5.67	5.00	2.02	mg/L	EPA 6020B		50	10/20/17 13:15	10/25/17 17:57	7100609	CSW
Chromium	0.0010	0.0100	0.0005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Lead	0.00008	0.0050	0.00007	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Selenium	0.0047	0.0100	0.0018	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 17:51	7100609	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/24/17 13:55	10/25/17 10:19	7100634	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

November 02, 2017

Report No.: AAJ0625 Client ID: GWC-6R

Date/Time Sampled: 10/18/2017 2:05:00PM

Matrix: Ground Water

Project: CCR Event

Lab Number ID: AAJ0625-09

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	1150	25	10	mg/L	SM 2540 C		1	10/20/17 17:55	10/20/17 17:55	7100630	JPT
Inorganic Anions											
Chloride	4.1	0.25	0.02	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 20:22	7100714	RLC
Fluoride	ND	0.30	0.03	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 20:22	7100714	RLC
Sulfate	760	50	0.85	mg/L	EPA 300.0		50	10/24/17 18:42	10/26/17 14:40	7100714	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Arsenic	0.0011	0.0050	0.0005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Barium	0.0757	0.0100	0.0004	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Calcium	118	25.0	2.02	mg/L	EPA 6020B		50	10/20/17 13:15	10/25/17 18:08	7100609	CSW
Chromium	0.0012	0.0100	0.0005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Selenium	0.0037	0.0100	0.0018	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Lithium	0.0026	0.0500	0.0015	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 18:02	7100609	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/24/17 13:55	10/25/17 10:21	7100634	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Project: CCR Event

Lab Number ID: AAJ0625-10

Date/Time Received: 10/18/2017 4:57:00PM

November 02, 2017

Report No.: AAJ0625 Client ID: EB-1-10-18-17

Date/Time Sampled: 10/18/2017 1:50:00PM

Matrix: Water

Analyte	Result	RL	MDL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry											
Total Dissolved Solids	ND	25	10	mg/L	SM 2540 C		1	10/23/17 18:35	10/23/17 18:35	7100680	JPT
norganic Anions											
Chloride	ND	0.25	0.02	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 20:44	7100714	RLC
Fluoride	1.6	0.30	0.03	mg/L	EPA 300.0		1	10/24/17 18:42	10/25/17 20:44	7100714	RLC
Sulfate	0.35	1.0	0.02	mg/L	EPA 300.0	J	1	10/24/17 18:42	10/25/17 20:44	7100714	RLC
Metals, Total											
Antimony	ND	0.0030	0.0006	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Arsenic	0.0005	0.0050	0.0005	mg/L	EPA 6020B	J	1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Barium	ND	0.0100	0.0004	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Beryllium	ND	0.0030	0.00009	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Boron	ND	0.0400	0.0060	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Cadmium	ND	0.0010	0.0001	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Calcium	ND	0.500	0.0404	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Chromium	ND	0.0100	0.0005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Cobalt	ND	0.0100	0.0003	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Lead	ND	0.0050	0.00007	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Molybdenum	ND	0.0100	0.0010	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Selenium	ND	0.0100	0.0018	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Thallium	ND	0.0010	0.00005	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Lithium	ND	0.0500	0.0015	mg/L	EPA 6020B		1	10/20/17 13:15	10/25/17 18:14	7100609	CSW
Mercury	ND	0.00050	0.000036	mg/L	EPA 7470A		1	10/24/17 13:55	10/25/17 10:23	7100634	MTC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0625

General Chemistry - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100630 - SM 2540 C											
Blank (7100630-BLK1)						Prepare	ed & Anal	yzed: 10/20)/17		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (7100630-BS1)						Prepare	ed & Anal	yzed: 10/20)/17		
Total Dissolved Solids	430	25	10	mg/L	400.00		108	84-108			
Duplicate (7100630-DUP1)		So	urce: AAJ06	625-10		Prepare	ed & Anal	yzed: 10/20)/17		
Total Dissolved Solids	23	25	10	mg/L		37			47	10	QR-03, J
Batch 7100680 - SM 2540 C											
Blank (7100680-BLK1)						Prepare	ed & Anal	yzed: 10/23	3/17		
Total Dissolved Solids	ND	25	10	mg/L							
LCS (7100680-BS1)						Prepare	ed & Anal	yzed: 10/23	3/17		
Total Dissolved Solids	367	25	10	mg/L	400.00	•	92	84-108			
Duplicate (7100680-DUP1)		So	urce: AAJ06	625-03RE1		Prepare	ed & Anal	yzed: 10/23	3/17		
Total Dissolved Solids	ND	25	10	mg/L		ND				10	
Duplicate (7100680-DUP2)		So	urce: AAJ06	625-10RE1		Prepare	ed & Anal	yzed: 10/23	3/17		
Total Dissolved Solids	ND	25	10	mg/L		ND				10	

November 02, 2017

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0625

November 02, 2017

Inorganic Anions - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100714 - EPA 300.0											
Blank (7100714-BLK1)						Prepare	ed: 10/24/	17 Analyz	ed: 10/25	/17	
Chloride	ND	0.25	0.02	mg/L							
Fluoride	ND	0.30	0.03	mg/L							
Sulfate	ND	1.0	0.02	mg/L							
LCS (7100714-BS1)						Prepare	ed: 10/24/	17 Analyz	ed: 10/25	/17	
Chloride	10.5	0.25	0.02	mg/L	10.020		105	90-110			
Fluoride	10.8	0.30	0.03	mg/L	10.020		108	90-110			
Sulfate	10.5	1.0	0.02	mg/L	10.050		105	90-110			
Matrix Spike (7100714-MS1)		Sou	ırce: AAJ06	625-02		Prepare	ed: 10/24/	17 Analyz	ed: 10/25	/17	
Chloride	18.9	0.25	0.02	mg/L	10.020	9.02	98	90-110			
Fluoride	11.4	0.30	0.03	mg/L	10.020	ND	114	90-110			QM-02
Sulfate	361	1.0	0.02	mg/L	10.050	383	NR	90-110			QM-05
Matrix Spike Dup (7100714-MSD1)		Sou	ırce: AAJ06	625-02		Prepare	ed: 10/24/	17 Analyz	ed: 10/25	/17	
Chloride	18.9	0.25	0.02	mg/L	10.020	9.02	98	90-110	0.1	15	
Fluoride	11.7	0.30	0.03	mg/L	10.020	ND	116	90-110	2	15	QM-02
Sulfate	361	1.0	0.02	mg/L	10.050	383	NR	90-110	0.06	15	QM-05

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0625

November 02, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100609 - EPA 3005A											
Blank (7100609-BLK1)						Prepare	ed: 10/20/	17 Analyz	ed: 10/25/	17	
Antimony	ND	0.0030	0.0006	mg/L							
Arsenic	ND	0.0050	0.0005	mg/L							
Barium	ND	0.0100	0.0004	mg/L							
Beryllium	ND	0.0030	0.00009	mg/L							
Boron	ND	0.0400	0.0060	mg/L							
Cadmium	ND	0.0010	0.0001	mg/L							
Calcium	ND	0.500	0.0404	mg/L							
Chromium	ND	0.0100	0.0005	mg/L							
Cobalt	ND	0.0100	0.0003	mg/L							
Copper	ND	0.0250	0.0003	mg/L							
Lead	ND	0.0050	0.00007	mg/L							
Molybdenum	ND	0.0100	0.0010	mg/L							
Nickel	ND	0.0100	0.0005	mg/L							
Selenium	ND	0.0100	0.0018	mg/L							
Silver	ND	0.0100	0.0002	mg/L							
Thallium	ND	0.0010	0.00005	mg/L							
Vanadium	ND	0.0100	0.0012	mg/L							
Zinc	0.0014	0.0100	0.0012	mg/L							
Lithium	ND	0.0500	0.0015	mg/L							
LCS (7100609-BS1)						Prepare	ed: 10/20/	17 Analyz	ed: 10/25/	17	
Antimony	0.104	0.0030	0.0006	mg/L	0.10000		104	80-120			
Arsenic	0.0994	0.0050	0.0005	mg/L	0.10000		99	80-120			
Barium	0.0980	0.0100	0.0004	mg/L	0.10000		98	80-120			
Beryllium	0.101	0.0030	0.00009	mg/L	0.10000		101	80-120			
Cadmium	0.105	0.0010	0.0001	mg/L	0.10000		105	80-120			
Chromium	0.108	0.0100	0.0005	mg/L	0.10000		108	80-120			
Cobalt	0.100	0.0100	0.0003	mg/L	0.10000		100	80-120			
Copper	0.102	0.0250	0.0003	mg/L	0.10000		102	80-120			
Lead	0.101	0.0050	0.00007	mg/L	0.10000		101	80-120			
Nickel	0.105	0.0100	0.0005	mg/L	0.10000		105	80-120			
Selenium	0.102	0.0100	0.0018	mg/L	0.10000		102	80-120			
Silver	0.101	0.0100	0.0002	mg/L	0.10000		101	80-120			
Thallium	0.103	0.0010	0.00005	mg/L	0.10000		103	80-120			
Vanadium	0.108	0.0100	0.0012	mg/L	0.10000		108	80-120			
Zinc	0.103	0.0100	0.0012	mg/L	0.10000		103	80-120			
Lithium	0.104	0.0500	0.0015	mg/L	0.10000		104	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

Report No.: AAJ0625

November 02, 2017

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100609 - EPA 3005A											
Matrix Spike (7100609-MS1)		Sou	ırce: AAJ062	25-01		Prepare	ed: 10/20/	17 Analyz	ed: 10/25	/17	
Antimony	0.104	0.0030	0.0006	mg/L	0.10000	ND	104	75-125			
Arsenic	0.102	0.0050	0.0005	mg/L	0.10000	ND	102	75-125			
Barium	0.154	0.0100	0.0004	mg/L	0.10000	0.0542	99	75-125			
Beryllium	0.101	0.0030	0.00009	mg/L	0.10000	ND	101	75-125			
Cadmium	0.104	0.0010	0.0001	mg/L	0.10000	ND	104	75-125			
Chromium	0.104	0.0100	0.0005	mg/L	0.10000	ND	104	75-125			
Cobalt	0.104	0.0100	0.0003	mg/L	0.10000	0.0034	101	75-125			
Copper	0.101	0.0250	0.0003	mg/L	0.10000	0.0008	101	75-125			
Lead	0.102	0.0050	0.00007	mg/L	0.10000	ND	102	75-125			
Nickel	0.109	0.0100	0.0005	mg/L	0.10000	0.0042	104	75-125			
Selenium	0.101	0.0100	0.0018	mg/L	0.10000	ND	101	75-125			
Silver	0.102	0.0100	0.0002	mg/L	0.10000	ND	102	75-125			
Thallium	0.104	0.0010	0.00005	mg/L	0.10000	0.00007	104	75-125			
Vanadium	0.108	0.0100	0.0012	mg/L	0.10000	0.0015	106	75-125			
Zinc	0.104	0.0100	0.0012	mg/L	0.10000	0.0024	102	75-125			
Lithium	0.106	0.0500	0.0015	mg/L	0.10000	0.0016	105	75-125			
Matrix Spike Dup (7100609-MSD1)		Sou	ırce: AAJ06	25-01		Prepare	ed: 10/20/	17 Analyz	ed: 10/25	/17	
Antimony	0.106	0.0030	0.0006	mg/L	0.10000	ND	106	75-125	2	20	
Arsenic	0.103	0.0050	0.0005	mg/L	0.10000	ND	103	75-125	1	20	
Barium	0.152	0.0100	0.0004	mg/L	0.10000	0.0542	97	75-125	1	20	
Beryllium	0.0997	0.0030	0.00009	mg/L	0.10000	ND	100	75-125	1	20	
Cadmium	0.103	0.0010	0.0001	mg/L	0.10000	ND	103	75-125	0.7	20	
Chromium	0.107	0.0100	0.0005	mg/L	0.10000	ND	107	75-125	3	20	
Cobalt	0.106	0.0100	0.0003	mg/L	0.10000	0.0034	103	75-125	2	20	
Copper	0.106	0.0250	0.0003	mg/L	0.10000	0.0008	105	75-125	4	20	
Lead	0.104	0.0050	0.00007	mg/L	0.10000	ND	104	75-125	2	20	
Nickel	0.111	0.0100	0.0005	mg/L	0.10000	0.0042	107	75-125	2	20	
Selenium	0.100	0.0100	0.0018	mg/L	0.10000	ND	100	75-125	0.5	20	
Silver	0.100	0.0100	0.0002	mg/L	0.10000	ND	100	75-125	1	20	
Thallium	0.105	0.0010	0.00005	mg/L	0.10000	0.00007	105	75-125	0.6	20	
Vanadium	0.110	0.0100	0.0012	mg/L	0.10000	0.0015	108	75-125	2	20	
Zinc	0.103	0.0100	0.0012	mg/L	0.10000	0.0024	101	75-125	0.6	20	
Lithium	0.104	0.0500	0.0015	mg/L	0.10000	0.0016	103	75-125	2	20	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham

November 02, 2017

Report No.: AAJ0625

Metals, Total - Quality Control

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100609 - EPA 3005A											
Post Spike (7100609-PS1)		Soi	urce: AAJ06	25-01		Prepare	ed: 10/20/	17 Analyz	ed: 10/25/	17	
Antimony	99.4			ug/L	100.00	0.254	99	80-120			
Arsenic	98.1			ug/L	100.00	0.360	98	80-120			
Barium	153			ug/L	100.00	54.2	99	80-120			
Beryllium	100			ug/L	100.00	0.0145	100	80-120			
Cadmium	104			ug/L	100.00	-0.0149	104	80-120			
Chromium	103			ug/L	100.00	0.152	103	80-120			
Cobalt	104			ug/L	100.00	3.39	100	80-120			
Copper	101			ug/L	100.00	0.833	100	80-120			
Lead	98.8			ug/L	100.00	0.0317	99	80-120			
Nickel	105			ug/L	100.00	4.24	100	80-120			
Selenium	105			ug/L	100.00	1.21	104	80-120			
Silver	103			ug/L	100.00	0.0041	103	80-120			
Thallium	102			ug/L	100.00	0.0653	102	80-120			
Vanadium	110			ug/L	100.00	1.48	109	80-120			
Zinc	103			ug/L	100.00	2.41	101	80-120			
Lithium	101			ug/L	100.00	1.59	100	80-120			
Batch 7100634 - EPA 7470A											
Blank (7100634-BLK1)						Prepare	ed: 10/24/	17 Analyz	ed: 10/25/	17	
Mercury	ND	0.00050	0.000036	mg/L							
LCS (7100634-BS1)						Prepare	ed: 10/24/	17 Analyz	ed: 10/25/	17	
Mercury	0.00248	0.00050	0.000036	mg/L	2.5000E-3		99	80-120			
Duplicate (7100634-DUP1)		Soi	urce: AAJ02	56-16RE1		Prepare	ed: 10/24/	17 Analyzo	ed: 10/25/	17	
Mercury	0.00289	0.00050	0.000036	mg/L		0.00264			9	20	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Mercury

Attention: Mr. Joju Abraham

Report No.: AAJ0625

1.73

Metals, Total - Quality Control

November 02, 2017

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7100634 - EPA 7470A											
Matrix Spike (7100634-MS1)		Sou	ırce: AAJ062	25-02		Prepare	ed: 10/24/	17 Analyz	ed: 10/25/	17	
Mercury	0.00242	0.00050	0.000036	mg/L	2.5000E-3	ND	97	75-125			
Matrix Spike Dup (7100634-MSD1)		Sou	ırce: AAJ062	25-02		Prepare	ed: 10/24/	17 Analyz	ed: 10/25/	17	
Mercury	0.00239	0.00050	0.000036	mg/L	2.5000E-3	ND	96	75-125	1	20	
Post Spike (7100634-PS1)		Sou	ırce: AAJ062	25-02		Prepare	ed: 10/24/	17 Analyz	ed: 10/25/	17	

ug/L

1.6667

0.0185

103

80-120

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Georgia Power 2480 Maner Road Atlanta GA, 30339

Attention: Mr. Joju Abraham November 02, 2017

Legend

Definition of Laboratory Terms

ND - Not Detected at levels equal to or greater than the MDL

BRL - Not Detected at levels equal to or greater than the RL

RL - Reporting Limit MDL - Method Detection Limit

SOP - Method run per Pace Standard Operating Procedure

CFU - Colony Forming Units

DF - Dilution Factor **TIC** - Tentatively Identified Compound

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for N-Nitrososdiphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **QR-03** The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to suspected matrix interference and/or non-homogeneous sample matrix.
- **QM-05** The spike recovery was outside acceptance limits for the MS and/or MSD and/or PDS due to suspected matrix interference. Sample results for the QC batch were accepted based on acceptable LCS recoveries.
- **QM-02** The spike recovery is outside acceptance limits due to insignificant spike amount as compared to sample concentration.
 - J Estimated value less than Reporting Limit (RL) but greater than Method Detection Limit(MDL) (CLP J-Flag).

Note: Unless otherwise noted, all results are reported on an as received basis.

Pace Analytical * **CHAIN OF CUSTODY RECORD**

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

R

PAGE:

5 - NaOH/ZnAc, ≤6°C 7 - s6°C not frozen 6 - Na₂S₂O_{3, ≤}6°C 2 - H₂SO₄, ≤6°C REMARKS/ADDITIONAL INFORMATION 4 - NaOH, ≤6°C 4470625 PRESERVATION 1 - HCl, ≤6°C P - PRODUCT SL - SLUDGE L - LIQUID sp - soup 3- HNO A - AIR တ် **MATRIX** DW - DRINKING WATER SW - SURFACE WATER GW - GROUNDWATER AW - WASTEWATER STORM WATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE Entered into LIMS V - VOA VIAL P - PLASTIC S - STERILE O - OTHER WATER Tracking # AB #: ST. Ś 200 11 00 4 459 スタ < □ **-** 0 ZJZmwk 5 FS OTHER CO-18- DO DATE/TIME: DATE/TIME ANALYSIS REQUESTED COURIER (0266/9166 948-1/VS) 'n ٦ Δ ო J Z Radium 226 & 228 USPS (EFA 300.0 & SM 2540C) a. SQT & LOS 'IO SAMPLE SHIPPED VIA UPS FED-EX Meals App. III & IV (0747/0209 APE) RELINQUISHED BY: FED Seat RELINQUISHED BY: ۵. CONTAINER TYPE: RESERVATION j0 # OOZH ⋖ \mathbf{z} w œ J J 7 7 J 7 ェ ァ J laburch@southernco.com 165 FB-1-10-16-17 0491 SAMPLE IDENTIFICATION EB-1-10-18-17 Heath McCorkle 600-5R 600c- 1R 12 WC- 4R 6Wc- 2R 6WC-3R 600-6R Yates Gypsum Storage Phase 2 CCR - HMG h S Maria Padilla DUP-1 10-18-17 Ø₫ DATE/TIME DATE/TIME Plant Yates Gypsum Storage CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER ₩ ₩ ዕ ແ ଏ 8 をで ۵, υ o 2 REQUESTED COMPLETION DATE: MATRIX CODE* 6 W 6 W 241 Ralph McGill Blvd SE B10185 <u>ک</u> SV CV <u>δ</u> ₹ 2 B ζ Lauren Petty SAMPLED BY AND TITLE: PROJECT NAME/STATE: Collection 1335 1255 1425 1645 1455 1640 1350 TIME 1405 50 Mary 6 Atlanta, GA 30308 CLIENT NAME Georgia Power RECEIVED BY: 104-506-7239 11-11-01 ח-ט-סו REPORT TO 71-91-01 71-L1-01 10-18-17 M-11-17 21-81-01 19-19 71-01-G 10-16-17 Collection DATE PROJECT

L'Sales State convillements St. No. Ba-Be-Gill-Gr. Ge. Gu., Pb. Hg. Nersey Agreat Octopoum Storage.xlsx

Page 21 of 23

of Coolers

Not Present

					-	$\neg \top$			
Face Analytical	Client Name):	00	4/	bowere	Proje	ct #	AA	106
Courier: Fed Ex UPS	Tuene Zoio	[] (ļ		□ Bass Other		programme and		
Tracking #:	C OSPS E Cile	и ш	Jomin	ierciai	☐ Pace Other _		Optiona Pio Hot	e Date	
Custody Seal on Cooler/Box F	resent: yes	☐ r	0	Seals	s intact:	no	ProjaNa		
Packing Material: Bubble \		Bags		7 None	Other				
Thermometer Used/	12-4	Туре	of Ice	: Wet	Blue None	Sample	s on ice, coo	ling process i	has begun
Cooler Temperature	0.1	Biolog	jical	Tissue	is Frozen: Yes No	Date	e and Initials	of person/e	xamining
Temp should be above freezing to 6	J°C				Comments:	et.	mtents://	2/18/1	T-1 /K
Chain of Custody Present:		Yes	□No	□n/a	1.				
Chain of Custody Filled Out:		.⊒Yes	□No	□N/A	2.		•		
Chain of Custody Relinquished:		_₽76g	□No	□n/a	3.				
Sampler Name & Signature on C	COC:	₽78s	□No	□N/A	4.				
Samples Arrived within Hold Tim	ie:	-₽7es	□No	□N/A	5.				
Short Hold Time Analysis (<72	!hr):	□Yes	⊡ N6	□n/a	6.				
Rush Turn Around Time Requ	ested:	□Yes ,	ØN₀	□n/a	7.				
Sufficient Volume:		₽ ₹6\$	□No	□n/a	8.				
Correct Containers Used:		₽¥65	□No	□N/A	9.		 -		
-Pace Containers Used:	*•	-ElYes	□No	□N⁄A					
Containers Intact:		UY8s	□No	□N/A	10.				
iltered volume received for Diss	olved tests	□Yes	□No	DWA	11.				
Sample Labels match COC:		Ŷes	_N₀	□n/a	12.				*
-Includes date/time/ID/Analys	is Matrix:	600	<u>U_</u>			•		•	
All containers needing preservation have	ve been checked.	ATES (DN0	□N/A	13.				·
All containers needing preservation a compliance with EPA recommendation	are found to be in	ØYes i	□No	□N/A			,		
xcaptions: VOA, coliform, TOC, O&G, W	/I-DRO (water)	□Yes ↓	200		Initial when completed	Lot # of a			
samples checked for dechlorinati	ion:	□Yes (□No	-EINIA	14.				
leadspace in VOA Vials (>6mm	i):			ØÑ⁄Ā					<u>-</u>
rip Blank Present:				€TN/A					
rip Blank Custody Seals Presen	it	□Yes (i	ا۔				•	
Pace Trip Blank Lot # (if purchase									
Client Notification/ Resolution:									
Person Contacted:				Date/T	ima	Field Oat	a Required?	Υ /	N
Comments/ Resolution:			 	Date/T	e.	<u> </u>			
-								······································	
					•			·	
							 		
								-	
									 -
Project Manager Review:	٠. چ <i>ھر</i>						ate:		
Protect Manager Periters									

F-ALLC003rev.3 11Septen Page 22 of 23

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 10/19/2017 10:48:36AM

Attn: Mr. Joju Abraham

Client: Georgia Power

Project: CCR Event

Date Received: 10/18/17 16:57

Work Order: AAJ0625

Logged In By: Mohammad M. Rahman

OBSERVATIONS

#Samples: 10 **#Containers:**

42 Minimum Temp(C): 0.1 **Custody Seal(s) Used:** 0.1 **Maximum Temp(C):** Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

(724)850-5600

November 14, 2017

Mr. Joju Abraham Georgia Power 2480 Maner Road Atlanta, GA 30339

RE: Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

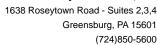
Dear Mr. Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on October 20, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jacquelyn Collins


Sugnely Sellins

jacquelyn.collins@pacelabs.com

(724)850-5612 Project Manager

Enclosures

CERTIFICATIONS

Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification lowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308
Massachusetts Certification #: M-PA1457

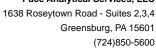
Michigan/PADEP Certification
Missouri Certification #: 235

Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976

New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282
South Dakota Certification

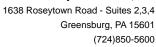

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868

Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Certification

Wyoming Certification #: 8TMS-L

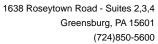


SAMPLE SUMMARY

Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30233662001	GWA-2	Water	10/16/17 11:10	10/20/17 10:00
30233662002	GWC-5R	Water	10/16/17 13:35	10/20/17 10:00
30233662003	FB-1-10-16-17	Water	10/16/17 14:25	10/20/17 10:00
30233662004	GWC-1R	Water	10/17/17 11:45	10/20/17 10:00
30233662005	GWC-4R	Water	10/17/17 14:55	10/20/17 10:00
30233662006	GWC-2R	Water	10/17/17 16:40	10/20/17 10:00
30233662007	Dup-1	Water	10/17/17 00:00	10/20/17 10:00
30233662008	GWC-3R	Water	10/18/17 12:55	10/20/17 10:00
30233662009	GWC-6R	Water	10/18/17 14:05	10/20/17 10:00
30233662010	EB-1-10-18-17	Water	10/18/17 13:50	10/20/17 10:00



SAMPLE ANALYTE COUNT

Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

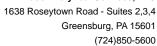
Lab ID	Sample ID	Method	Analysts	Analytes Reported
30233662001	GWA-2	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	CMC	1
30233662002	GWC-5R	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	CMC	1
30233662003	FB-1-10-16-17	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	CMC	1
30233662004	GWC-1R	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	CMC	1
30233662005	GWC-4R	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	CMC	1
30233662006	GWC-2R	EPA 9315	LAL	1
		EPA 9320	VAL	1
		Total Radium Calculation	CMC	1
30233662007	Dup-1	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	CMC	1
30233662008	GWC-3R	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	CMC	1
30233662009	GWC-6R	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	CMC	1
30233662010	EB-1-10-18-17	EPA 9315	JC2	1
		EPA 9320	VAL	1
		Total Radium Calculation	CMC	1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

Pace Project No.: 30233662	2					
Sample: GWA-2	Lab ID: 30233662		Received:	10/20/17 10:00 Mat	rix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.918 ± 0.217 (0.194)	pCi/L	10/25/17 13:00 1	3982-63-3	
Radium-228	EPA 9320	C:81% T:NA 0.249 ± 0.423 (0.922) C:73% T:73%	pCi/L	10/30/17 14:40 1	5262-20-1	
Total Radium		1.17 ± 0.640 (1.12)	pCi/L	11/10/17 12:45 7	440-14-4	
Sample: GWC-5R	Lab ID: 30233662	2002 Collected: 10/16/17 13:35	Received:	10/20/17 10:00 Mat	rix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.434 ± 0.133 (0.144)	pCi/L	10/25/17 13:00 1	3982-63-3	
Radium-228	EPA 9320	C:88% T:NA 0.124 ± 0.299 (0.667) C:73% T:93%	pCi/L	10/30/17 14:40 1	5262-20-1	
Total Radium		0.558 ± 0.432 (0.811)	pCi/L	11/10/17 12:34 7	440-14-4	
Sample: FB-1-10-16-17 PWS:	Lab ID: 30233662 Site ID:	003 Collected: 10/16/17 14:25 Sample Type:	Received:	10/20/17 10:00 Mate	rix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.376 ± 0.249 (0.384)	pCi/L	10/26/17 08:25	3982-63-3	
Radium-228	EPA 9320	C:87% T:NA -0.105 ± 0.293 (0.706) C:70% T:101%	pCi/L	10/30/17 14:40 1	5262-20-1	
Total Radium		0.376 ± 0.542 (1.09)	pCi/L	11/10/17 12:34 7	440-14-4	
Sample: GWC-1R PWS:	Lab ID: 30233662 Site ID:	2004 Collected: 10/17/17 11:45 Sample Type:	Received:	10/20/17 10:00 Mate	rix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.620 ± 0.165 (0.171)	pCi/L	10/25/17 13:01 1		
Radium-228	EPA 9320	C:82% T:NA 0.317 ± 0.409 (0.870)	pCi/L	10/30/17 14:40 1	5262-20-1	
Total Radium		C:71% T:77% 0.937 ± 0.574 (1.04)	pCi/L	11/10/17 12:34 7	440-14-4	
Sample: GWC-4R PWS:	Lab ID: 30233662 Site ID:	2005 Collected: 10/17/17 14:55 Sample Type:	Received:	10/20/17 10:00 Mat	rix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.253 ± 0.122 (0.186)	pCi/L	10/25/17 13:01		
Radium-228	EPA 9320	C:81% T:NA 0.0413 ± 0.418 (0.964) C:71% T:73%	pCi/L	10/30/17 14:40 1	5262-20-1	

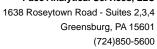


ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

Sample: GWC-4R Lab ID: 30233662005 Collected: 10/17/17 14:55 Received: 10/20/17 10:00 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Total Radium Total Radium 0.294 ± 0.540 (1.15) pCi/L 11/10/17 12:34 7440-14-4 Calculation Sample: GWC-2R Lab ID: 30233662006 Collected: 10/17/17 16:40 Received: 10/20/17 10:00 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 9315 $0.402 \pm 0.164 \quad (0.240)$ Radium-226 pCi/L 10/25/17 13:01 13982-63-3 C:76% T:NA Radium-228 EPA 9320 -0.0582 ± 0.311 (0.736) pCi/L 10/30/17 14:40 15262-20-1 C:75% T:93% Total Radium Total Radium 0.402 ± 0.475 (0.976) pCi/L 11/10/17 12:34 7440-14-4 Calculation Sample: Dup-1 Lab ID: 30233662007 Collected: 10/17/17 00:00 Received: 10/20/17 10:00 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.243 \pm 0.162 \quad (0.246)$ 10/30/17 08:10 13982-63-3 Radium-226 pCi/L C:80% T:NA Radium-228 EPA 9320 $0.199 \pm 0.424 \quad (0.934)$ pCi/L 10/31/17 15:03 15262-20-1 C:81% T:85% Total Radium Total Radium 0.442 ± 0.586 (1.18) pCi/L 11/10/17 12:34 7440-14-4 Calculation Lab ID: 30233662008 Sample: GWC-3R Collected: 10/18/17 12:55 Received: 10/20/17 10:00 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.270 ± 0.160 (0.225) Radium-226 pCi/L 10/30/17 08:10 13982-63-3 C:84% T:NA EPA 9320 0.436 ± 0.475 Radium-228 (0.996)pCi/L 10/31/17 15:03 15262-20-1 C:81% T:68% Total Radium Total Radium 0.706 ± 0.635 (1.22) pCi/L 11/10/17 12:34 7440-14-4 Calculation Sample: GWC-6R Lab ID: 30233662009 Collected: 10/18/17 14:05 Received: 10/20/17 10:00 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units CAS No. Qual Analyzed 10/30/17 08:10 13982-63-3 Radium-226 EPA 9315 $0.239 \pm 0.146 \quad (0.226)$ pCi/L C:94% T:NA EPA 9320 -0.264 ± 0.411 Radium-228 (0.987)pCi/L 10/31/17 15:03 15262-20-1 C:80% T:77% Total Radium Total Radium 0.239 ± 0.557 (1.21) pCi/L 11/10/17 12:34 7440-14-4 Calculation



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

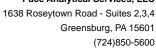
Sample: EB-1-10-18-17 PWS:	Lab ID: 302336 Site ID:	62010 Collected: 10/18/17 13:50 Sample Type:	Received:	10/20/17 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.160 ± 0.136 (0.252) C:90% T:NA	pCi/L	10/30/17 08:10	13982-63-3	
Radium-228	EPA 9320	-0.0260 ± 0.407 (0.940) C:80% T:80%	pCi/L	10/31/17 15:03	3 15262-20-1	
Total Radium	Total Radium Calculation	0.160 ± 0.543 (1.19)	pCi/L	11/10/17 12:34	4 7440-14-4	

Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

QC Batch: 276729 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30233662007, 30233662008, 30233662009, 30233662010


METHOD BLANK: 1360113 Matrix: Water

Associated Lab Samples: 30233662007, 30233662008, 30233662009, 30233662010

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.0822 ± 0.415 (0.946) C:76% T:70%
 pCi/L
 10/31/17 11:39

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

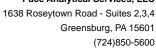
Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

QC Batch: 276533 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 30233662001, 30233662002, 30233662003, 30233662004, 30233662005, 30233662006


METHOD BLANK: 1359226 Matrix: Water

Associated Lab Samples: 30233662001, 30233662002, 30233662003, 30233662004, 30233662005, 30233662006

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.283 \pm 0.360 (0.764) C:79% T:79% pCi/L 10/30/17 14:39

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

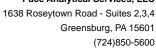
Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

QC Batch: 276727 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30233662007, 30233662008, 30233662009, 30233662010


METHOD BLANK: 1360112 Matrix: Water

Associated Lab Samples: 30233662007, 30233662008, 30233662009, 30233662010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.310 ± 0.164 (0.210) C:87% T:NA pCi/L 10/30/17 08:09

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

QC Batch: 276531 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 30233662001, 30233662002, 30233662003, 30233662004, 30233662005, 30233662006

METHOD BLANK: 1359224 Matrix: Water

Associated Lab Samples: 30233662001, 30233662002, 30233662003, 30233662004, 30233662005, 30233662006

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.134 ± 0.0840 (0.134) C:91% T:NA pCi/L 10/25/17 13:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: AAJ0625 Plant Yates

Pace Project No.: 30233662

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 11/14/2017 11:12 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Pace Analytical

LAB USE ONLY Results Requested By: 11/13/2017 JO#:30233662 Comments Requested Analysis Date/Time Radium 226, 228, Total × × × Preserved Containers Owner Received Date: ONH Matrix 8 <u>8</u> **≥ §** ₽ <u></u> <u>≷</u> 8€ ≥ ≥ Received By AAJ0625-10 AAJ0625-09 AAJ0625-03 AAJ0625-04 AAJ0625-05 AAJ0625-06 AAJ0625-08 AAJ0625-07 AAJ0625-01 AAJ0625-02 Phone (724) 850-5600 1638 Roseytown Road Greensburg, PA 15601 Plant Yates Collect Date/Time Lab ID Date/Time Pace - Pittsburgh Subcontract To: 10/16/2017 14:25 10/17/2017 16:40 10/18/2017 13:50 10/16/2017 11:10 10/16/2017 13:35 10/17/2017 11:45 10/18/2017 12:55 10/18/2017 14:05 10/17/2017 14:55 10/17/2017 0:00 Stes. 2,3,4 Workorder Name: Sample Type Ø G G G G G G Ů G Peachtree Corners, GA 30092 110 Technology Parkway Workorder: AAJ0625 Pace Analytical Atlanta Phone (770)-734-4200 Transfers | Released By EB-1-10-18-17 FB-1-10-16-17 **Betsy McDaniel** Item Sample ID **GWC-1R** GWC-4R GWC-3R **GWC-2R** GWC-6R GWC-5R GWA-2 Dup-1 Report To: 10 ∞

or N Sample Intact Y or N	ay not be provided on this COC	-
Received on Ice Y or N	1/name of the sampling site, sampler's name and signature may not be provided on this COC	e this information is available in the owner laboratory.
°C Custody Seal Y or N	rfidentiality, location/name of the sampl	d complete as is since this information is
Cooler Temperature on Receipt	***In order to maintain client confidentiality, location/n	This chain of custody is considered complete as is since the

Friday, June 17, 2016 11:01:34 AM

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

Sample Condition Upon Receipt Client Name: GCA Powers Courier: Fed Ex UPS USPS Client Commercial Pace Other Custody Seal on Cooler/Box Present: Yes 🔲 no Seals intact: < yes Packing Material: | Bubble Wrap | Bubble Bags None | Other Thermometer Used Type of Ice: Wet? Blue None Samples on ice, cooling process has begun Date and initials of person/examining Biological Tissue is Frozen: Yes No Cooler Temperature contents: 10/18/17- M Temp should be above freezing to 6°C Comments: TIYOS Chain of Custody Present: DNO DNA 1 Chain of Custody Filled Out: ₽Yes □N/A 2. □No Chain of Custody Relinquished: .₽Y6\$ □No □NA 3. Sampler Name & Signature on COC: EY65 □No □N/A 4. Samples Arrived within Hold Time: ₽ Yes DNA Short Hold Time Analysis (<72hr): ☐Yes **□N/A** Rush Turn Around Time Requested: ₽Ńο. ☐Yes □N/A Sufficient Volume: ATOS □N/A □No Correct Containers Used: ÆTYES. □N/A -Pace Containers Used: -EIYes □No □N/A □N⁄A Containers Intact: Yes DNo 10. Filtered volume received for Dissolved tests □Yes □No DWA. Sample Labels match COC: **--**€¶88 □No □NA 12. -Includes date/time/tD/Analysis Matrix: All containers needing preservation have been checked. ENG: □No □N/A 13. All containers needing preservation are found to be in ZYES DNO DNA compliance with EPA recommendation. Inilia) when Lot # of added □Yes -ĐNo exceptions: VOA, coliform, TOC, O&G, WI-DRO (water) completed preservative Samples checked for dechlorination: DYes DNo -ENTA Headspace in VOA Vials (>6mm): DYES DNO DNA 15. Trip Blank Present: ☐Yes ŪNo ÆNA 16. Trip Blank Custody Seals Present DYes DNo DINA Pace Trip Blank Lot# (if purchased): Client Notification/Resolution: Field Data Required? Person Contacted: Date/Time: Comments/ Resolution: Project Manager Review: Date: Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp. incorrect containers) F-ALLC003rev.3 11September2008

Pittsburgh La	ib Sample Cond	ition	Upo	n R	eceipt				
Pace Analytical							80	x 0 2	3366
Pace Analytical	Client Name:					Proje	ct #	302	~~~~
									ANI
Courier Fed Ex	UPS ☐ USPS ☐ Clier	ıt $_{L}^{\square}$	Comm	ercial	☐ Pace Other _			Label	000
Tracking #: 7413		<u></u>	-				LI	MS Login	
Custody Seal on Cooler						□ no			
Thermometer Used	$\underline{\mathcal{L}}\mathcal{H}$,	Туре	of Ice:	We	t Blue None		•	econitá	
Cooler Temperature	Observed Temp	<u> </u>	. c	Сог	rection Factor:	° C	Final Te	mp:	°C
Temp should be above freez	ting to 6°C					Dat	e and Init	ialsofpers	on examining
		- X	T" N. I -	LAITA	7	cc	ontents:	70 /20	on examining
Comments:		Yes	No	N/A					
Chain of Custody Present					11.		··· ·		
Chain of Custody Filled O	out:	and the same of th		<u> </u>	2.			··-	
Chain of Custody Relinqu	ished:	CONTRACTOR OF THE PARTY OF THE			3.				
Sampler Name & Signatu	re on COC:	-	- Carlos		4.				————
Sample Labels match CO	C:	E O	200	<u> </u>	5.				
-Includes date/time/ID	Matrix:	42	_				 -		
Samples Arrived within Ho		estimate and a	200	-	6.				
Short Hold Time Analysi	s (<72hr remaining):		O'S TOWN OF THE PARTY OF THE PA		7.		<u></u>		
Rush Turn Around Time	Requested:		ACA CONTRACTOR		8.				
Sufficient Volume:		~23500000			9.				
Correct Containers Used:		(AMAZZA	/		10.				
-Pace Containers Used	d:	- CONTRACTOR OF THE PARTY OF TH			-				
Containers Intact:		e succession de la constitución de		- Aller	11.				
Orthophosphate field filter	ed			- ACCES	12.		<u></u>		
Hex Cr Aqueous Compliance	/NPDES sample field filtered			A STATE OF THE PARTY OF THE PAR	13.			 	
Organic Samples check	ed for dechlorination:				14.				
Filtered volume received for				SECOND SE	15.			<u></u>	
All containers have been che	cked for preservation.				16.	•			
All containers needing preser compliance with EPA recomm	vation are found to be in nendation.				9.		 		
exceptions: VOA, coliforn	TOC O&G. Phenolics				Initial when Completed	Date/tim preserva			
excopilette: Vov., comen	.,, ,				Lot # of added				
				- AND THE REAL PROPERTY AND THE REAL PROPERT	preservative				
Headspace in VOA Vials (>6mm):			CONTROL OF THE PARTY OF THE PAR	17.				
Trip Blank Present:					18.		A	1	
Trip Blank Custody Seals I Rad Aqueous Samples S		_			Initial when 🔾 🛦	1.	MK.	(A)	1/
Laa Valaeans Sumbles 2					completed:	Date:	<u> </u>	<u> </u>	<i>V</i>
Client Notification/ Resol						_	•		
				Date/1	Time:	C	Contacted	В <u>у:</u>	
Comments/ Resolution: _									
							<u> </u>		

☐ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Pace Analytical

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample I.D.

Sample Collection Date Sample MS I.D. Sample MSD I.D. Spike LD.

Sample Matrix Spike Control Assessment

MS Aliquot (L, g, F): MSD Aliquot (L, g, F):

MS Target Conc.(pCi/L, g, F): MSD Target Conc. (pCI/L, g, F):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Sample Result:

Sample Matrix Spike Result:

Sample Result Counting Uncertainty (pCi/L, g, F): Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MS Numerical Performance Indicator. MSD Numerical Performance Indicator:

MS Percent Recovery: MSD Percent Recovery: MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery.

MSD Status vs Recovery

Spike uncertainty (calculated):

Ra-226 Z Test: **Analyst**:

10/25/2017 38364 DW Date: Worklist: Matrix:

0.134 0.082 0.134 3.21 N/A Pass MB Sample ID MB concentration: M/B Counting Uncertainty: MB MDC: MB Numerical Performance Indicator; MB Status vs Numerical Indicator: Method Blank Assessment

MB Status vs. MDC

LCSD38364 10/26/2017 LCS38364 80,189 0,10 0,512 15,677 1,444 11,987 LCSD (Yor N 17-030 76.46% 1.170 3.89 N/A Farget Conc. (pCi/L, g, F):
 Uncertainty (Calculated): Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Count Date Spike I.D.: Spike Concentration (pCi/mL): Volume Used (mL): Aliquot Volume (L, g, F): Numerical Performance Indicator: Percent Recovery: Status vs Numerical Indicator: Status vs Recovery Laboratory Control Sample Assessment

Matrix Spike/Matrix Spike Duplicate Sample Assessment CS/LCSD in the 30233661012 30233661012DUP Enter Duplicate sample IDs if space below. other than 30233661012DUP 30233661012 See Below 排 -1.555· 25.50% 0.136 0.676 0.137 0.523 Sample I.D.: Duplicate Sample I.D. Sample Result (pCi/L, g, F): Sample Result (pCi/L, g, F): Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): Are sample and/or duplicate results below MDC? Duplicate Numerical Performance Indicator: Duplicate RPD: Duplicate Status vs Numerical Indicator: Sample Duplicate Result (pCi/L, g, F):

Duplicate Sample Assessment

Sample Matrix Spike Result:

Sample MS I.D. Sample MSD I.D. Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

MS/ MSD Duplicate RPD:

MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:

Duplicate Numerical Performance Indicator:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): N/A Fail*** Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

***Batch must be re-prepped due to unacceptable precision.

Comments:

TAR DW QC Printed: 11/13/2017 10:03 AM

Page 16 of 18

Pace Analytical"

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample I.D. Sample MS I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Spike I.D.:

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Sample MSD I.D.

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F):

Spike uncertainty (calculated):

MSD Target Conc. (pCi/L, g, F):

Sample Result:

Sample Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Result:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result.

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MSD Numerical Performance Indicator:

MS Percent Recovery MSD Percent Recovery

MS Numerical Performance Indicator:

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery

MSD Status vs Recovery

Ra-226 JC2 10/26/2017 38405 DW Analyst: Date: Test:

Worklist: Matrix

_							
	1360112	0.310	0.157	0.210	3.87	A/N	See Comment*
Method Blank Assessment	UB Sample 1D	MB concentration;	M/B Counting Uncertainty:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs. MDC:

Laboratory Co

entrol Sample Assessment	LCSD (Y or N)?	z
	LCS38405	LCSD38405
Count Date:	10/30/2017	
Spike I.D.:	17-030	
Spike Concentration (pCi/mL):	80.188	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.502	
Target Conc. (pCi/L, g, F):	15.979	
Uncertainty (Calculated):	1.472	
Result (pCI/L, g, F):	13.843	
LCS/LCSD Counting Uncertainty (pCi/l., g, F):	0.946	
Numerical Performance Indicator:	-2.39	
Percent Recovery:	86.64%	
Status vs Numerical Indicator:	A/A	
Status vs Recovery:	Pass	

ite Sample Assessment		
Sample I.D.:	30233778003	Enter Duplicate
Duplicate Sample I.D. 30233778003DUP	233778003DUP	sample IDs if
Sample Result (pCi/L, g, F):	0.633	other than
Sample Result Counting Uncertainty (pCi/L, g, F):	0.220	LCS/LCSD in the
Sample Duplicate Result (pCi/L, g, F):	0.740	space below.
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.248	
Are sample and/or duplicate results below MDC?	See Below ##	
Duplicate Numerical Performance Indicator:	-0.633	30233778003
Duplicate RPD:	15.59%	30233778003DUP
Duplicate Status vs Numerical Indicator:	A/N	
Duplicate Status vs RPD:	Pass	

Duplicate 5

Sample I.D. Sample MS I.D. Sample MSD I.D. Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result. Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: MS/ MSD Duplicate RPD: Duplicate Numerical Performance Indicator: Matrix Spike/Matrix Spike Duplicate Sample Assessment

MS/ MSD Duplicate Status vs Numerical Indicator.

MS/ MSD Duplicate Status vs RPD

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

*The method blank result is below the reporting limit for this analysis and is acceptable.

1 of 1

Face Analytical www.parentate.com

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample I.D. Sample MS I.D. Sample MSD I.D.

Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):

Sample Collection Date:

Sample Matrix Spike Control Assessment

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCl/L, g, F):

MS Aliquot (L, g, F):

Matrix Spike Result Counting Uncertainty (pCifl., g, F): Sample Matrix Spike Duplicate Result.

Sample Result Counting Uncertainty (pCi/L, g, F):

Spike uncertainty (calculated):

Sample Result

Sample Matrix Spike Result

Matrix Spike Duplicate Result Counting Uncertainty (pCl/L, g, F): MS Numerical Performance Indicator:

MSD Numerical Performance Indicator:

MS Percent Recovery: MSD Percent Recovery:

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery: MSD Status vs Recovery:

10/26/2017 38366 DW Analyst: Date: Worklist: Matrix:

Pass	MB Status vs. MDC:
ΥZ	MB Status vs Numerical Indicator:
1.56	MB Numerical Performance Indicator:
0.764	MB MDC:
0.356	M/B Counting Uncertainty:
0.283	MB concentration:
1359226	MB Sample ID
	Blank Assessment

Method E

				. (2. 5) . (2. 5)	.(*: 10 -) 2001	.(*: 10 1) 2001								1000	
	000000			00000	0000000	C.C.C.C.	200000						0000000	0000000	
538366		LC538366	LCS38366									LCS38366	LC538366	L.C.5.38.366	LC\$38366
30/2017	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,
0170															
7-033															
3.151															
0.40															
0.40															
0.40															
538366 30/2017 7-033 3.151 0.40	_ 、	- (-	- (-	- (-	- (-	- (-	- (-	- (-	- (-	- (-	- (-	- (-	- (-	- (-	- (-
338 30/2 7-03 33.15	- (-	- (-													
		Date 9 I.D i/mL	ount Date Spike I.D (pCi/mL)	Count Date Spike I.D ation (pCi/mL	Count Date Spike I.D Sentration (pCl/mL)	Count Date Spike I.D Concentration (pCi/mL.) Volume I Ised (ml.)	Count Date Spike I.D like Concentration (pCl/mL)	Count Date Spike LD Spike Concentration (pCl/mL) Volume Head fm	Count Date Spike I.D Spike Concentration (pc//ml.) Volume Head (ml.)	Count Date Spike LD Spike Concentration (pC/mL) Volume Head (m)	Count Date Spike L) Spike Concentration (pCi/ml.) Volume Head (ml.)	Count Date Spike LD Spike Concentration (pCi/mL) Volume Head (mL)	Count Date Spike LD Spike Concentration (pCj/nt) Volume Head (mt)	Count Date Spike LD Spike Concentration (Smith)	Count Date Spike I.D Spike Concentration (Spike I.D Volume II.e.d (m)

		Duplicate Sample Assessment
Pass	Pass	Status vs Recovery:
N/A	A/A	Status vs Numerical Indicator:
107.41%	89.52%	Percent Recovery:
1.29	-1.92	Numerical Performance Indicator:
0.992	0.914	LCS/LCSD Counting Uncertainty (pCi/L, g, F):
12.379	10.338	Result (pCi/L, g, F):
0.830	0.831	Uncertainty (Calculated):
11.525	11.549	Target Conc. (pCl/L, g, F):
50.5	200.0	Sudger (c) 8, 1).

he space below.

-2.965 18.17%

Duplicate Numerical Performance Indicator:

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD:

Υ×

9

LCS38366 LCSD38366 10.338 0.914 12.379 0.992

Sample Result (pCifL, g, F):
Sample Result Counting Uncertainty (pCifL, g, F):
Sample Duplicate Result (pCifL, g, F):
Sample Duplicate Result (pCifL, g, F):
Are sample and/or duplicate results below MDC?

Enter Duplicate sample IDs if LCS/LCSD in other than

Sample I.D.: Duplicate Sample I.D.

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Printed: 11/13/2017 10:05 AM Ra-228 NELAC DW2

Date: 2017-10-16 11:08:53

Project Information: Pump Information: Operator Name Chris Parker Pump Model/Type QED Bladder Company Name Atlantic Coast Consulting Tubing Type poly Project Name Plant Yates - Gypsum Storage Tubing Diameter .375 in Plant Yates - Ash Ponds Tubing Length Site Name 52 ft

Latitude 0° 0° 0"

Longitude 0° 0° 0"

Sonde SN 466086

Turbidity Make/Model Hach 2100Q

Pump placement from TOC 47.1 ft

Well Information: Pumping Information:

Final Pumping Rate 75 mL/min Well ID GWA-2 Well diameter Total System Volume 1.61437 L 2 in Calculated Sample Rate Well Total Depth 52.13 ft 300 sec Stabilization Drawdown Screen Length 10 ft 7 in Depth to Water 3.8 L 40.52 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	10:43:21	1200.02	16.93	6.34	250.99	2.34	41.10	1.12	-25.39
Last 5	10:48:21	1500.02	17.04	6.23	249.72	2.63	41.10	0.98	-19.27
Last 5	10:53:21	1800.03	17.14	6.16	249.43	2.04	41.20	0.93	-15.18
Last 5	10:58:21	2099.92	17.36	6.13	249.66	1.77	41.20	0.80	-11.36
Last 5	11:03:21	2399.92	17.50	6.12	249.32	2.10	41.20	0.76	-8.07
Variance 0			0.10	-0.06	-0.29			-0.05	4.09
Variance 1			0.22	-0.03	0.23			-0.12	3.82
Variance 2			0.13	-0.02	-0.34			-0.05	3.28

Notes

Collected at 11:10. Cloudy 60s

Date: 2017-10-17 11:42:54

Project Information:
Operator Name
Chris Parker

Company Name Atlantic Coast Consulting
Project Name Plant Yates Gypsum
Site Name Plant Yates Gypsum

Latitude 0° 0' 0"

Longitude 0° 0' 0"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Pump Information:

Pump Model/Type Peripump
Tubing Type Poly
Tubing Diameter .17 in
Tubing Length 37 ft

Pump placement from TOC

Well Information:

Well IDGWC-1RWell diameter2 inWell Total Depth36.34 ftScreen Length10 ftDepth to Water25.57 ft

Pumping Information:

Final Pumping Rate 140 mL/min
Total System Volume 0.2551467 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 7 in
Total Volume Pumped 9.1 L

31.3 ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	11:20:30	2099.99	18.79	5.42	495.06	6.46	26.20	7.66	64.09
Last 5	11:25:30	2399.99	18.92	5.43	498.83	6.17	26.20	7.63	62.85
Last 5	11:30:30	2699.97	18.84	5.42	506.39	5.43	26.20	7.65	62.67
Last 5	11:35:30	2999.98	18.92	5.42	508.50	5.04	26.20	7.62	62.25
Last 5	11:40:30	3299.98	19.06	5.42	511.95	4.92	26.20	7.61	62.34
Variance 0			-0.08	-0.01	7.56			0.03	-0.18
Variance 1			0.09	0.00	2.10			-0.03	-0.42
Variance 2			0.13	-0.00	3.45			-0.01	0.09

Notes

Collected at 11:45. Sunny 60s

Date: 2017-10-17 16:39:28

Tubing Type

Tubing Diameter

Tubing Length

Project Information:

Operator Name

Chris Parker

Pump Information:

Pump Model/Type

Company Name Atlantic Coast Consulting
Project Name Plant Yates Gypsum
Site Name Plant Yates Gypsum

Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Pump placement from TOC

Pump placement from TOC 38.8 ft

Peripump

Poly

.17 in

44 ft

Well Information:

Well ID GWC-2R
Well diameter 2 in
Well Total Depth 43.8 ft
Screen Length 10 ft
Depth to Water 28.78 ft

Pumping Information: Final Pumping Rate

Final Pumping Rate 140 mL/min
Total System Volume 0.2863906 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 4 in
Total Volume Pumped 7 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	16:16:12	1500.00	18.30	5.43	203.24	5.87	30.00	4.51	57.29
Last 5	16:21:13	1801.04	18.26	5.51	206.03	5.21	30.00	4.50	52.54
Last 5	16:26:13	2101.01	18.21	5.46	207.38	5.41	30.00	4.50	55.34
Last 5	16:31:13	2400.99	18.18	5.43	207.39	5.05	30.00	4.56	53.78
Last 5	16:36:12	2700.98	18.17	5.45	209.57	4.89	30.00	4.59	51.66
Variance 0			-0.04	-0.05	1.34			-0.01	2.80
Variance 1			-0.03	-0.03	0.02			0.06	-1.56
Variance 2			-0.02	0.02	2.18			0.03	-2.12

Notes

Collected at 16:40. Sunny 60s.

Date: 2017-10-18 12:54:22

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Project Information:

Operator Name Chris Parker

Company Name Atlantic Coast Consulting Project Name Plant Yates Gypsum Plant Yates Gypsum Site Name

00 0' 0" Latitude 00 0' 0" Longitude Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC

33.3 ft

bladder Pump

160 mL/min

1.332027 L

Poly

39 ft

.375 in

Well Information:

Well ID GWC-3R Well diameter 2 in Well Total Depth 38.34 ft Screen Length 10 ft Depth to Water 29.95 ft

Pumping Information: Final Pumping Rate Total System Volume Calculated Sample Rate

300 sec Stabilization Drawdown 6 in **Total Volume Pumped** 18 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	12:29:39	5099.94	19.03	5.12	190.73	3.56	30.50	7.32	81.34
Last 5	12:34:39	5399.93	19.06	5.15	197.21	3.22	30.50	7.29	79.67
Last 5	12:39:39	5699.94	19.14	5.12	184.87	4.31	30.50	7.21	80.75
Last 5	12:44:39	5999.92	19.15	5.16	186.94	3.86	30.50	7.19	79.02
Last 5	12:49:39	6299.93	19.23	5.17	186.59	3.44	30.50	7.15	78.36
Variance 0			0.08	-0.03	-12.34			-0.08	1.08
Variance 1			0.01	0.03	2.07			-0.02	-1.73
Variance 2			0.09	0.01	-0.35			-0.04	-0.65

Notes

Collected at 12:55. Sunny 60s

Date: 2017-10-17 14:54:59

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Project Information:

Operator Name Chris Parker

Company Name Atlantic Coast Consulting
Project Name Plant Yates Gypsum
Site Name Plant Yates Gypsum

Latitude 0° 0′ 0″

Longitude 0° 0′ 0″

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Pump placement from TOC

26 ft

Peripump

Poly

.17 in

31 ft

Well Information:

Well IDGWC-4RWell diameter2 inWell Total Depth31.05 ftScreen Length10 ftDepth to Water17.93 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.2283661 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 5 in
Total Volume Pumped 28 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	S/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	า		+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	14:32:19	3599.97	21.00	5.52	428.18	2.20	18.30	3.63	49.35
Last 5	14:37:19	3899.97	21.03	5.52	389.81	2.88	18.30	3.65	49.39
Last 5	14:42:19	4199.97	21.33	5.54	370.55	2.07	18.40	3.71	49.38
Last 5	14:47:19	4499.97	21.34	5.53	365.49	1.60	18.30	3.76	50.72
Last 5	14:52:19	4799.95	21.40	5.52	367.99	1.35	18.30	3.69	50.89
Variance 0			0.30	0.02	-19.26			0.06	-0.01
Variance 1			0.01	-0.00	-5.06			0.04	1.33
Variance 2			0.05	-0.02	2.51			-0.07	0.18

Notes

Collected at 14:55. Sunny 60s. DUP 1 here

Date: 2017-10-16 13:34:04

Project Information: Operator Name Company Name Project Name Site Name Latitude Longitude Sonde SN Turbidity Make/Model	Chris Parker Atlantic Coast Consulting Plant Yates - Gypsum Storage Plant Yates - Ash Ponds 0° 0' 0" 0° 0' 0" 466086 Hach 2100Q	Pump Information: Pump Model/Type Tubing Type Tubing Diameter Tubing Length Pump placement from TOC	QED Bladder poly .375 in 43 ft 37.8 ft
Well Information: Well ID	GWC-5R	Pumping Information: Final Pumping Rate	150 mL/min

Well ID	GWC-5R	Final Pumping Rate	150 mL/min
Well diameter	2 in	Total System Volume	1.418902 L
Well Total Depth	42.82 ft	Calculated Sample Rate	300 sec
Screen Length	10 ft	Stabilization Drawdown	6 in
Depth to Water	30.90 ft	Total Volume Pumped	6.7 L

0.01

0.15

Low-Flow Sa	ampling Stabiliz	ation Summary	1						
	Time	Elapsed	Temp C	рН	SpCond µS/	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- O	+/- 0.1	+/- 5%	+/- O		+/- 10%	+/- O
Last 5	13:10:42	3900.46	20.93	5.15	1377.41	5.97	41.40	7.27	72.06
Last 5	13:15:42	4200.46	20.21	5.14	1365.87	5.46	41.40	7.27	70.91
Last 5	13:20:42	4500.46	19.86	5.15	1363.31	5.11	41.40	7.35	70.27
Last 5	13:25:42	4800.46	19.80	5.15	1356.69	4.92	41.40	7.35	69.54
Last 5	13:30:42	5100.46	19.95	5.16	1347.31	4.80	41.40	7.35	67.34
Variance 0			-0.35	0.01	-2.56			0.09	-0.64
Variance 1			-0.06	0.00	-6.62			-0.01	-0.73

-9.39

0.00

-2.19

Notes

Variance 2

Collected at 15:35. Sunny 60s. FB 1 here

Date: 2017-10-18 14:03:07

Project Information:

Operator Name

Chris Parker

Pump Information:

Pump Model/Type

Operator NameChris ParkerPump Model/TypeBladder PumpCompany NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.375 inSite NamePlant Yates GypsumTubing Length52 ft

Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 46.8 ft

Well Information: Pumping Information:

Final Pumping Rate 150 mL/min Well ID GWC-6R Well diameter Total System Volume 1.61437 L 2 in Calculated Sample Rate Well Total Depth 51.87 ft 300 sec Stabilization Drawdown Screen Length 10 ft 5 in Depth to Water 5.6 L 39.28 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	13:39:28	600.02	17.59	5.77	1392.70	2.94	39.60	5.58	47.73
Last 5	13:44:28	900.01	17.54	5.78	1396.38	2.01	39.60	5.56	43.64
Last 5	13:49:28	1200.01	17.63	5.76	1393.79	1.92	39.60	5.56	41.78
Last 5	13:54:28	1500.01	17.61	5.77	1403.47	2.18	39.60	5.59	39.92
Last 5	13:59:28	1800.01	17.54	5.76	1404.64	1.81	39.60	5.64	39.00
Variance 0			0.09	-0.01	-2.59			0.01	-1.86
Variance 1			-0.02	0.01	9.67			0.03	-1.86
Variance 2			-0.06	-0.00	1.17			0.05	-0.92

Notes

Collected at 14:05. Sunny 60s. EB 1 here

August 15, 2018

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 20, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

REV03292018_report revised to add Cu, Ni, and Ag data.

REV08152018_report revised to change metals units to mg/L per consultant.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200

Project Manager

Enclosures

cc: Maria Padilla, Georgia Power
Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

(770)734-4200

CERTIFICATIONS

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812

Virginia Certification #: 460204

North Carolina Certification #: 381

South Carolina Certification #: 98011001

Texas Certification #: T104704397-08-TX

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Asheville Certification IDs

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Lab ID	Sample ID	Matrix	Date Collected	Date Received
262048001	GWA-2	Water	02/19/18 14:50	02/20/18 16:50
262048002	GWA-2	Water	02/19/18 14:50	02/20/18 16:50
262048003	FB-1-2-19-18	Water	02/19/18 16:10	02/20/18 16:50
262048004	FB-1-2-19-18	Water	02/19/18 16:10	02/20/18 16:50
262048005	GWC-6R	Water	02/19/18 16:25	02/20/18 16:50
262048006	GWC-6R	Water	02/19/18 16:25	02/20/18 16:50
262048007	GWC-2R	Water	02/20/18 11:45	02/20/18 16:50
262048008	GWC-2R	Water	02/20/18 11:45	02/20/18 16:50
262048009	GWC-4R	Water	02/20/18 14:05	02/20/18 16:50
262048010	GWC-4R	Water	02/20/18 14:05	02/20/18 16:50
262048011	Dup-1	Water	02/20/18 00:00	02/20/18 16:50
262048012	Dup-1	Water	02/20/18 00:00	02/20/18 16:50

SAMPLE ANALYTE COUNT

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
262048001	GWA-2	EPA 6020B	CSW	19	PASI-GA
		EPA 7470A	MTC	1	PASI-GA
		SM 2540C	MJP	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
262048002	GWA-2	EPA 9315	JC2	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
262048003	FB-1-2-19-18	EPA 6020B	CSW	19	PASI-GA
		EPA 7470A	MTC	1	PASI-GA
		SM 2540C	MJP	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
262048004	FB-1-2-19-18	EPA 9315	JC2	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
262048005	GWC-6R	EPA 6020B	CSW	19	PASI-GA
		EPA 7470A	MTC	1	PASI-GA
		SM 2540C	MJP	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
262048006	GWC-6R	EPA 9315	JC2	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
262048007	GWC-2R	EPA 6020B	CSW	19	PASI-GA
		EPA 7470A	MTC	1	PASI-GA
		SM 2540C	MJP	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
262048008	GWC-2R	EPA 9315	JC2	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
262048009	GWC-4R	EPA 6020B	CSW	19	PASI-GA
		EPA 7470A	MTC	1	PASI-GA
		SM 2540C	MJP	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
262048010	GWC-4R	EPA 9315	JC2	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
262048011	Dup-1	EPA 6020B	CSW	19	PASI-GA
		EPA 7470A	MTC	1	PASI-GA

SAMPLE ANALYTE COUNT

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
	-	SM 2540C	MJP	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
262048012	Dup-1	EPA 9315	JC2	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

Sample: GWA-2	Lab ID:	262048001	Collecte	ed: 02/19/18	3 14:50	Received: 02/	20/18 16:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL_	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00060	1	02/27/18 10:06	02/28/18 15:42	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00052	1	02/27/18 10:06	02/28/18 15:42	7440-38-2	
Barium	0.053	mg/L	0.010	0.00042	1	02/27/18 10:06	02/28/18 15:42	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000091	1	02/27/18 10:06	02/28/18 15:42	7440-41-7	
Boron	ND	mg/L	0.040	0.0060	1	02/27/18 10:06	02/28/18 15:42	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00014	1	02/27/18 10:06	02/28/18 15:42	7440-43-9	
Calcium	ND	mg/L	25.0	2.0	50	02/27/18 10:06	02/28/18 15:54	7440-70-2	M6
Chromium	ND	mg/L	0.010	0.00045	1	02/27/18 10:06	02/28/18 15:42	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00026	1	02/27/18 10:06	02/28/18 15:42	7440-48-4	
Copper	ND	mg/L	0.025	0.00027	1	02/27/18 10:06	02/28/18 15:42	7440-50-8	
Lead	ND	mg/L	0.0050	0.000067	1	02/27/18 10:06	02/28/18 15:42	7439-92-1	
Lithium	ND	mg/L	0.050	0.0015	1	02/27/18 10:06	02/28/18 15:42	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0010	1	02/27/18 10:06	02/28/18 15:42	7439-98-7	
Nickel	ND	mg/L	0.010	0.00049	1	02/27/18 10:06	02/28/18 15:42	7440-02-0	
Selenium	ND	mg/L	0.010	0.0018	1	02/27/18 10:06	02/28/18 15:42	7782-49-2	
Silver	ND	mg/L	0.010	0.00023	1	02/27/18 10:06	02/28/18 15:42	7440-22-4	
Thallium	ND	mg/L	0.0010	0.000052	1	02/27/18 10:06	02/28/18 15:42	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0012	1	02/27/18 10:06	02/28/18 15:42	7440-62-2	
Zinc	ND	mg/L	0.010	0.0012	1	02/27/18 10:06	02/28/18 15:42	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	02/27/18 15:30	02/28/18 17:03	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	173	mg/L	25.0	25.0	1		02/25/18 10:30		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.3	mg/L	0.25	0.024	1		02/22/18 19:58	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		02/22/18 19:58		
Sulfate	64.6	mg/L	10.0	0.023	10		03/02/18 15:46		

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

Sample: FB-1-2-19-18	Lab ID:	262048003	Collecte	ed: 02/19/18	3 16:10	Received: 02/	20/18 16:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: Ef	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00060	1	02/27/18 10:06	02/28/18 16:22	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00052	1	02/27/18 10:06	02/28/18 16:22	7440-38-2	
Barium	ND	mg/L	0.010	0.00042	1	02/27/18 10:06	02/28/18 16:22	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000091	1	02/27/18 10:06	02/28/18 16:22	7440-41-7	
Boron	ND	mg/L	0.040	0.0060	1	02/27/18 10:06	02/28/18 16:22	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00014	1	02/27/18 10:06	02/28/18 16:22	7440-43-9	
Calcium	ND	mg/L	0.50	0.040	1	02/27/18 10:06	02/28/18 16:22	7440-70-2	
Chromium	ND	mg/L	0.010	0.00045	1	02/27/18 10:06	02/28/18 16:22	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00026	1	02/27/18 10:06	02/28/18 16:22	7440-48-4	
Copper	ND	mg/L	0.025	0.00027	1	02/27/18 10:06	02/28/18 16:22	7440-50-8	
Lead	ND	mg/L	0.0050	0.000067	1	02/27/18 10:06	02/28/18 16:22	7439-92-1	
Lithium	ND	mg/L	0.050	0.0015	1	02/27/18 10:06	02/28/18 16:22	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0010	1	02/27/18 10:06	02/28/18 16:22	7439-98-7	
Nickel	ND	mg/L	0.010	0.00049	1	02/27/18 10:06	02/28/18 16:22	7440-02-0	
Selenium	ND	mg/L	0.010	0.0018	1	02/27/18 10:06	02/28/18 16:22	7782-49-2	
Silver	ND	mg/L	0.010	0.00023	1	02/27/18 10:06	02/28/18 16:22	7440-22-4	
Thallium	ND	mg/L	0.0010	0.000052	1	02/27/18 10:06	02/28/18 16:22	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0012	1	02/27/18 10:06	02/28/18 16:22	7440-62-2	
Zinc	ND	mg/L	0.010	0.0012	1	02/27/18 10:06	02/28/18 16:22	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	02/27/18 15:30	02/28/18 16:54	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	25.02	mg/L	25.0	25.0	1		02/25/18 10:30		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	ND	mg/L	0.25	0.024	1		02/22/18 21:00	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		02/22/18 21:00		
Sulfate	ND	mg/L	1.0	0.017	1		02/22/18 21:00		

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

Sample: GWC-6R	Lab ID:	262048005	Collecte	ed: 02/19/18	3 16:25	Received: 02/	20/18 16:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	thod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00060	1	02/27/18 10:06	02/28/18 16:41	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00052	1	02/27/18 10:06	02/28/18 16:41	7440-38-2	
Barium	0.070	mg/L	0.010	0.00042	1	02/27/18 10:06	02/28/18 16:41	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000091	1	02/27/18 10:06	02/28/18 16:41	7440-41-7	
Boron	ND	mg/L	0.040	0.0060	1	02/27/18 10:06	02/28/18 16:41	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00014	1	02/27/18 10:06	02/28/18 16:41	7440-43-9	
Calcium	124	mg/L	25.0	2.0	50	02/27/18 10:06	02/28/18 16:47	7440-70-2	
Chromium	ND	mg/L	0.010	0.00045	1	02/27/18 10:06	02/28/18 16:41	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00026	1	02/27/18 10:06	02/28/18 16:41	7440-48-4	
Copper	ND	mg/L	0.025	0.00027	1	02/27/18 10:06	02/28/18 16:41	7440-50-8	
Lead	ND	mg/L	0.0050	0.000067	1	02/27/18 10:06	02/28/18 16:41	7439-92-1	
Lithium	ND	mg/L	0.050	0.0015	1	02/27/18 10:06	02/28/18 16:41		
Molybdenum	ND	mg/L	0.010	0.0010	1	02/27/18 10:06	02/28/18 16:41	7439-98-7	
Nickel	ND	mg/L	0.010	0.00049	1	02/27/18 10:06	02/28/18 16:41	7440-02-0	
Selenium	ND	mg/L	0.010	0.0018	1	02/27/18 10:06	02/28/18 16:41	7782-49-2	
Silver	ND	mg/L	0.010	0.00023	1	02/27/18 10:06	02/28/18 16:41	7440-22-4	
Thallium	ND	mg/L	0.0010	0.000052	1	02/27/18 10:06	02/28/18 16:41	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0012	1	02/27/18 10:06	02/28/18 16:41	7440-62-2	
Zinc	ND	mg/L	0.010	0.0012	1	02/27/18 10:06	02/28/18 16:41	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	02/27/18 15:30	02/28/18 17:05	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	1070	mg/L	50.0	50.0	1		02/25/18 10:30		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.4	mg/L	0.25	0.024	1		02/22/18 21:21	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		02/22/18 21:21		
Sulfate	718	mg/L	50.0	0.85	50		03/02/18 16:07		

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

Sample: GWC-2R	Lab ID:	262048007	Collecte	ed: 02/20/18	3 11:45	Received: 02/	20/18 16:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	02/27/18 10:06	02/28/18 16:53	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	02/27/18 10:06	02/28/18 16:53	7440-38-2	
Barium	0.047	mg/L	0.010	0.00078	1	02/27/18 10:06	02/28/18 16:53	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	02/27/18 10:06	02/28/18 16:53	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	02/27/18 10:06	02/28/18 16:53	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	02/27/18 10:06	02/28/18 16:53	7440-43-9	
Calcium	ND	mg/L	25.0	0.69	50	02/27/18 10:06	02/28/18 16:58	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	02/27/18 10:06	02/28/18 16:53	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	02/27/18 10:06	02/28/18 16:53	7440-48-4	
Copper	ND	mg/L	0.025	0.0013	1	02/27/18 10:06	02/28/18 16:53	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	02/27/18 10:06	02/28/18 16:53	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	02/27/18 10:06	02/28/18 16:53	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	02/27/18 10:06	02/28/18 16:53	7439-98-7	
Nickel	ND	mg/L	0.010	0.00095	1	02/27/18 10:06	02/28/18 16:53	7440-02-0	
Selenium	ND	mg/L	0.010	0.0014	1	02/27/18 10:06	02/28/18 16:53	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	02/27/18 10:06	02/28/18 16:53	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	02/27/18 10:06	02/28/18 16:53	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	02/27/18 10:06	02/28/18 16:53	7440-62-2	
Zinc	ND	mg/L	0.010	0.0021	1	02/27/18 10:06	02/28/18 16:53	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	02/27/18 15:30	02/28/18 17:08	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	131	mg/L	25.0	25.0	1		02/25/18 10:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	5.8	mg/L	0.25	0.024	1		02/22/18 21:42	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		02/22/18 21:42	16984-48-8	
Sulfate	55.9	mg/L	10.0	0.17	10		03/02/18 16:48		

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

Sample: GWC-4R	Lab ID:	Lab ID: 262048009 Collected: 02/20/18 14:05 Received: 02/20/18 16:50 Matrix: Water									
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua		
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A					
Antimony	ND	mg/L	0.0030	0.00078	1	02/27/18 10:06	02/28/18 17:04	7440-36-0			
Arsenic	ND	mg/L	0.0050	0.00057	1	02/27/18 10:06	02/28/18 17:04	7440-38-2			
Barium	0.015	mg/L	0.010	0.00078	1	02/27/18 10:06	02/28/18 17:04	7440-39-3			
Beryllium	ND	mg/L	0.0030	0.000050	1	02/27/18 10:06	02/28/18 17:04	7440-41-7			
Boron	1.0	mg/L	0.040	0.0039	1	02/27/18 10:06	02/28/18 17:04	7440-42-8			
Cadmium	ND	mg/L	0.0010	0.000093	1	02/27/18 10:06	02/28/18 17:04	7440-43-9			
Calcium	ND	mg/L	25.0	0.69	50	02/27/18 10:06	02/28/18 17:10	7440-70-2			
Chromium	ND	mg/L	0.010	0.0016	1	02/27/18 10:06	02/28/18 17:04	7440-47-3			
Cobalt	ND	mg/L	0.010	0.00052	1	02/27/18 10:06	02/28/18 17:04	7440-48-4			
Copper	ND	mg/L	0.025	0.0013	1	02/27/18 10:06	02/28/18 17:04	7440-50-8			
_ead	ND	mg/L	0.0050	0.00027	1	02/27/18 10:06	02/28/18 17:04	7439-92-1			
_ithium	ND	mg/L	0.050	0.00097	1	02/27/18 10:06	02/28/18 17:04	7439-93-2			
Molybdenum	ND	mg/L	0.010	0.0019	1	02/27/18 10:06	02/28/18 17:04	7439-98-7			
Nickel	ND	mg/L	0.010	0.00095	1	02/27/18 10:06	02/28/18 17:04	7440-02-0			
Selenium	ND	mg/L	0.010	0.0014	1	02/27/18 10:06	02/28/18 17:04	7782-49-2			
Silver	ND	mg/L	0.010	0.00095	1	02/27/18 10:06	02/28/18 17:04	7440-22-4			
Thallium	ND	mg/L	0.0010	0.00014	1	02/27/18 10:06	02/28/18 17:04	7440-28-0			
Vanadium	ND	mg/L	0.010	0.0019	1	02/27/18 10:06	02/28/18 17:04	7440-62-2			
Zinc	ND	mg/L	0.010	0.0021	1	02/27/18 10:06	02/28/18 17:04	7440-66-6			
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A					
Mercury	ND	mg/L	0.00050	0.000036	1	02/27/18 15:30	02/28/18 17:10	7439-97-6			
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C								
Total Dissolved Solids	233	mg/L	25.0	25.0	1		02/25/18 10:31				
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0								
Chloride	53.1	mg/L	2.5	0.24	10		03/02/18 17:09	16887-00-6			
Fluoride	ND	mg/L	0.30	0.029	1		02/22/18 22:02				
Sulfate	64.6	mg/L	10.0	0.17	10		03/02/18 17:09				

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

Sample: Dup-1	Lab ID:	262048011	Collecte	ed: 02/20/18	3 00:00	Received: 02/	20/18 16:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	02/27/18 10:06	02/28/18 17:16	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	02/27/18 10:06	02/28/18 17:16	7440-38-2	
Barium	0.017	mg/L	0.010	0.00078	1	02/27/18 10:06	02/28/18 17:16	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	02/27/18 10:06	02/28/18 17:16	7440-41-7	
Boron	1.3	mg/L	0.040	0.0039	1	02/27/18 10:06	02/28/18 17:16	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	02/27/18 10:06	02/28/18 17:16	7440-43-9	
Calcium	ND	mg/L	25.0	0.69	50	02/27/18 10:06	02/28/18 17:21	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	02/27/18 10:06	02/28/18 17:16	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	02/27/18 10:06	02/28/18 17:16	7440-48-4	
Copper	ND	mg/L	0.025	0.0013	1	02/27/18 10:06	02/28/18 17:16	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	02/27/18 10:06	02/28/18 17:16	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	02/27/18 10:06	02/28/18 17:16	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	02/27/18 10:06	02/28/18 17:16	7439-98-7	
Nickel	ND	mg/L	0.010	0.00095	1	02/27/18 10:06	02/28/18 17:16	7440-02-0	
Selenium	ND	mg/L	0.010	0.0014	1	02/27/18 10:06	02/28/18 17:16	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	02/27/18 10:06	02/28/18 17:16	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	02/27/18 10:06	02/28/18 17:16	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	02/27/18 10:06	02/28/18 17:16	7440-62-2	
Zinc	ND	mg/L	0.010	0.0021	1	02/27/18 10:06	02/28/18 17:16	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	02/27/18 15:30	02/28/18 17:17	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	234	mg/L	25.0	25.0	1		02/25/18 10:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	53.4	mg/L	2.5	0.24	10		03/02/18 17:29	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		02/22/18 22:23		
Sulfate	67.0	mg/L	10.0	0.17	10		03/02/18 17:29		

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

 QC Batch:
 1653
 Analysis Method:
 EPA 7470A

 QC Batch Method:
 EPA 7470A
 Analysis Description:
 7470 Mercury

 Associated Lab Samples:
 262048001, 262048003, 262048005, 262048007, 262048009, 262048011

METHOD BLANK: 9605 Matrix: Water

Associated Lab Samples: 262048001, 262048003, 262048005, 262048007, 262048009, 262048011

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Mercury
 mg/L
 ND
 0.00050
 0.00036
 02/28/18 16:49

LABORATORY CONTROL SAMPLE: 9606

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury mg/L .0025 0.0029 116 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 9838 9839

MS MSD 262048003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual ND .0025 0.0029 75-125 20 Mercury mg/L .0025 0.0029 115 117

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

 QC Batch:
 1650
 Analysis Method:
 EPA 6020B

 QC Batch Method:
 EPA 3005A
 Analysis Description:
 6020B MET

 Associated Lab Samples:
 262048001, 262048003, 262048005, 262048007, 262048009, 262048011

METHOD BLANK: 9599 Matrix: Water

Associated Lab Samples: 262048001, 262048003, 262048005, 262048007, 262048009, 262048011

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00060	02/28/18 15:31	
Arsenic	mg/L	ND	0.0050	0.00052	02/28/18 15:31	
Barium	mg/L	ND	0.010	0.00042	02/28/18 15:31	
Beryllium	mg/L	ND	0.0030	0.000091	02/28/18 15:31	
Boron	mg/L	ND	0.040	0.0060	02/28/18 15:31	
Cadmium	mg/L	ND	0.0010	0.00014	02/28/18 15:31	
Calcium	mg/L	ND	0.50	0.040	02/28/18 15:31	
Chromium	mg/L	ND	0.010	0.00045	02/28/18 15:31	
Cobalt	mg/L	ND	0.010	0.00026	02/28/18 15:31	
Copper	mg/L	ND	0.025	0.00027	02/28/18 15:31	
Lead	mg/L	ND	0.0050	0.000067	02/28/18 15:31	
Lithium	mg/L	ND	0.050	0.0015	02/28/18 15:31	
Molybdenum	mg/L	ND	0.010	0.0010	02/28/18 15:31	
Nickel	mg/L	ND	0.010	0.00049	02/28/18 15:31	
Selenium	mg/L	ND	0.010	0.0018	02/28/18 15:31	
Silver	mg/L	ND	0.010	0.00023	02/28/18 15:31	
Thallium	mg/L	ND	0.0010	0.000052	02/28/18 15:31	
Vanadium	mg/L	ND	0.010	0.0012	02/28/18 15:31	
Zinc	mg/L	ND	0.010	0.0012	02/28/18 15:31	

LABORATORY CONTROL SAMPLE	: 9600					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L		0.11	109	80-120	
Arsenic	mg/L	.1	0.10	103	80-120	
Barium	mg/L	.1	0.11	106	80-120	
Beryllium	mg/L	.1	0.10	104	80-120	
Boron	mg/L	1	1.0	105	80-120	
Cadmium	mg/L	.1	0.10	104	80-120	
Calcium	mg/L	1	1.1	106	80-120	
Chromium	mg/L	.1	0.11	105	80-120	
Cobalt	mg/L	.1	0.10	104	80-120	
Copper	mg/L	.1	0.10	103	80-120	
Lead	mg/L	.1	0.10	103	80-120	
Lithium	mg/L	.1	0.11	105	80-120	
Molybdenum	mg/L	.1	0.11	109	80-120	
Nickel	mg/L	.1	0.10	103	80-120	
Selenium	mg/L	.1	0.10	105	80-120	
Silver	mg/L	.1	0.099	99	80-120	
Thallium	mg/L	.1	0.10	102	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

LABORATORY CONTROL SAMPLE: 9600

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Vanadium Zinc	mg/L mg/L		0.11 0.11	105 106	80-120 80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	ATE: 9685			9686							
			MS	MSD								
		262048001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	.1	.1	0.11	0.11	108	108	75-125	0	20	
Arsenic	mg/L	ND	.1	.1	0.10	0.10	104	104	75-125	0	20	
Barium	mg/L	0.053	.1	.1	0.16	0.17	102	119	75-125	10	20	
Beryllium	mg/L	ND	.1	.1	0.10	0.11	104	107	75-125	3	20	
Boron	mg/L	ND	1	1	1.0	1.2	103	117	75-125	13	20	
Cadmium	mg/L	ND	.1	.1	0.10	0.10	100	103	75-125	2	20	
Calcium	mg/L	ND	1	1	15.6J	15.4J	157	140	75-125	1	20	M6
Chromium	mg/L	ND	.1	.1	0.10	0.11	105	111	75-125	6	20	
Cobalt	mg/L	ND	.1	.1	0.10	0.11	101	109	75-125	7	20	
Copper	mg/L	ND	.1	.1	0.10	0.10	101	102	75-125	1	20	
Lead	mg/L	ND	.1	.1	0.10	0.10	101	101	75-125	0	20	
Lithium	mg/L	ND	.1	.1	0.10	0.11	102	110	75-125	7	20	
Molybdenum	mg/L	ND	.1	.1	0.11	0.11	107	110	75-125	2	20	
Nickel	mg/L	ND	.1	.1	0.11	0.11	104	107	75-125	2	20	
Selenium	mg/L	ND	.1	.1	0.10	0.11	104	107	75-125	3	20	
Silver	mg/L	ND	.1	.1	0.094	0.095	94	95	75-125	1	20	
Thallium	mg/L	ND	.1	.1	0.10	0.10	100	101	75-125	1	20	
Vanadium	mg/L	ND	.1	.1	0.11	0.12	109	116	75-125	6	20	
Zinc	mg/L	ND	.1	.1	0.11	0.12	104	113	75-125	8	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

QC Batch: 399634 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 262048001, 262048003, 262048005, 262048007, 262048009, 262048011

METHOD BLANK: 2216627 Matrix: Water

Associated Lab Samples: 262048001, 262048003, 262048005, 262048007, 262048009, 262048011

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/L25.0225.025.002/25/18 10:30

LABORATORY CONTROL SAMPLE: 2216628

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 250 242 97 90-110

SAMPLE DUPLICATE: 2216629

262048001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 173 2 5 **Total Dissolved Solids** 177 mg/L

SAMPLE DUPLICATE: 2216630

Date: 08/15/2018 01:00 PM

ParameterUnits92374543013 ResultDup ResultRPDMax RPDQualifiersTotal Dissolved Solidsmg/L12612715

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

 QC Batch:
 1441
 Analysis Method:
 EPA 300.0

 QC Batch Method:
 EPA 300.0
 Analysis Description:
 300.0 IC Anions

 Associated Lab Samples:
 262048001, 262048003, 262048005, 262048007, 262048009, 262048011

METHOD BLANK: 8751 Matrix: Water

Associated Lab Samples: 262048001, 262048003, 262048005, 262048007, 262048009, 262048011

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	0.25	0.024	02/22/18 18:36	
Fluoride	mg/L	ND	0.30	0.029	02/22/18 18:36	
Sulfate	mg/L	ND	1.0	0.017	02/22/18 18:36	

LABORATORY CONTROL SAMPLE:	8752					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	10	10.1	101	90-110	
Fluoride	mg/L	10	10.1	101	90-110	
Sulfate	mg/L	10	10.2	102	90-110	

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 8753 8754											
		000040004	MS	MSD	140	MOD	140	MOD	0/ D			
		262048001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.3	10	10	14.0	14.0	97	97	90-110	0	15	
Fluoride	mg/L	ND	10	10	10.1	10.1	99	99	90-110	0	15	
Sulfate	mg/L	64.6	10	10	66.3	66.3	17	18	90-110	0	15	E

MATRIX SPIKE SAMPLE:	8755						
Parameter	Units	262069003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	4.4	10	13.8	94	90-110	_
Fluoride	mg/L	0.21J	10	9.8	96	90-110	
Sulfate	mg/L	5.2	10	14.8	96	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Sample: GWA-2 Lab ID: 262048002 Collected: 02/19/18 14:50 Received: 02/20/18 16:50 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.628 ± 0.217 (0.208) Radium-226 pCi/L 02/28/18 13:45 13982-63-3 C:83% T:NA EPA 9320 0.954 ± 0.524 (0.944) Radium-228 pCi/L 03/06/18 13:25 15262-20-1 C:76% T:76% Total Radium Total Radium $1.58 \pm 0.741 \quad (1.15)$ pCi/L 03/09/18 12:47 7440-14-4 Calculation

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Sample: FB-1-2-19-18 PWS:	Lab ID: 26204800 Site ID:	Collected: 02/19/18 16:10 Sample Type:	Received:	02/20/18 16:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.243 ± 0.143 (0.217) C:88% T:NA	pCi/L	02/28/18 13:45	13982-63-3	
Radium-228		0.672 ± 0.442 (0.830) C:79% T:74%	pCi/L	03/06/18 13:25	5 15262-20-1	
Total Radium	Total Radium Calculation	0.915 ± 0.585 (1.05)	pCi/L	03/09/18 12:47	7 7440-14-4	

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Sample: GWC-6R PWS:	Lab ID: 26204800 Site ID:	Collected: 02/19/18 16:25 Sample Type:	Received:	02/20/18 16:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.287 ± 0.153 (0.217) C:85% T:NA	pCi/L	02/28/18 13:4	13982-63-3	
Radium-228		0.686 ± 0.408 (0.738) C:78% T:81%	pCi/L	03/06/18 13:25	5 15262-20-1	
Total Radium	Total Radium Calculation	0.973 ± 0.561 (0.955)	pCi/L	03/09/18 12:47	7 7440-14-4	

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Sample: GWC-2R Lab ID: 262048008 Collected: 02/20/18 11:45 Received: 02/20/18 16:50 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.496 ± 0.205 (0.243) Radium-226 pCi/L 02/28/18 13:45 13982-63-3 C:75% T:NA EPA 9320 1.14 ± 0.560 (0.955) Radium-228 pCi/L 03/06/18 13:25 15262-20-1 C:77% T:71% Total Radium **Total Radium** 1.64 ± 0.765 (1.20) pCi/L 03/09/18 12:47 7440-14-4 Calculation

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Sample: GWC-4R Lab ID: 262048010 Collected: 02/20/18 14:05 Received: 02/20/18 16:50 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.310 \pm 0.197 \quad (0.341)$ Radium-226 pCi/L 02/28/18 13:45 13982-63-3 C:84% T:NA EPA 9320 0.716 ± 0.461 (0.865) Radium-228 pCi/L 03/06/18 13:26 15262-20-1 C:76% T:79% Total Radium Total Radium 1.03 ± 0.658 (1.21) pCi/L 03/09/18 12:47 7440-14-4 Calculation

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Sample: Dup-1 Lab ID: 262048012 Collected: 02/20/18 00:00 Received: 02/20/18 16:50 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.220 \pm 0.174 \quad (0.315)$ Radium-226 pCi/L 02/28/18 13:45 13982-63-3 C:65% T:NA EPA 9320 1.06 ± 0.463 (0.722) Radium-228 pCi/L 03/06/18 13:26 15262-20-1 C:77% T:79% Total Radium Total Radium $1.28 \pm 0.637 \quad (1.04)$ pCi/L 03/09/18 12:47 7440-14-4 Calculation

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

QC Batch: 289269 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium Associated Lab Samples: 262048002, 262048004, 262048006, 262048008, 262048010, 262048012

METHOD BLANK: 1417375 Matrix: Water

Associated Lab Samples: 262048002, 262048004, 262048006, 262048008, 262048010, 262048012

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.147 \pm 0.117 (0.204) C:89% T:NA pCi/L 02/28/18 13:45

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

 QC Batch:
 289273
 Analysis Method:
 EPA 9320

 QC Batch Method:
 EPA 9320
 Analysis Description:
 9320 Radium 228

 Associated Lab Samples:
 262048002, 262048004, 262048006, 262048008, 262048010, 262048012

METHOD BLANK: 1417382 Matrix: Water

Associated Lab Samples: 262048002, 262048004, 262048006, 262048008, 262048010, 262048012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.985 ± 0.481 (0.811) C:78% T:78%
 pCi/L
 03/06/18 13:25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-A Pace Analytical Services - Asheville
PASI-GA Pace Analytical Services - Atlanta, GA
PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 08/15/2018 01:00 PM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Gypsum Storage

Pace Project No.: 262048

Date: 08/15/2018 01:00 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
262048001	GWA-2	EPA 3005A	1650	EPA 6020B	
262048003	FB-1-2-19-18	EPA 3005A	1650	EPA 6020B	1792
262048005	GWC-6R	EPA 3005A	1650	EPA 6020B	1792
62048007	GWC-2R	EPA 3005A	1650	EPA 6020B	1792
62048009	GWC-4R	EPA 3005A	1650	EPA 6020B	1792
62048011	Dup-1	EPA 3005A	1650	EPA 6020B	1792
62048001	GWA-2	EPA 7470A	1653	EPA 7470A	1776
62048003	FB-1-2-19-18	EPA 7470A	1653	EPA 7470A	1776
62048005	GWC-6R	EPA 7470A	1653	EPA 7470A	1776
62048007	GWC-2R	EPA 7470A	1653	EPA 7470A	1776
62048009	GWC-4R	EPA 7470A	1653	EPA 7470A	1776
62048011	Dup-1	EPA 7470A	1653	EPA 7470A	1776
62048002	GWA-2	EPA 9315	289269		
62048004	FB-1-2-19-18	EPA 9315	289269		
62048006	GWC-6R	EPA 9315	289269		
62048008	GWC-2R	EPA 9315	289269		
62048010	GWC-4R	EPA 9315	289269		
62048012	Dup-1	EPA 9315	289269		
62048002	GWA-2	EPA 9320	289273		
62048004	FB-1-2-19-18	EPA 9320	289273		
62048006	GWC-6R	EPA 9320	289273		
62048008	GWC-2R	EPA 9320	289273		
62048010	GWC-4R	EPA 9320	289273		
62048012	Dup-1	EPA 9320	289273		
62048002	GWA-2	Total Radium Calculation	290744		
62048004	FB-1-2-19-18	Total Radium Calculation	290744		
62048006	GWC-6R	Total Radium Calculation	290744		
62048008	GWC-2R	Total Radium Calculation	290744		
62048010	GWC-4R	Total Radium Calculation	290744		
62048012	Dup-1	Total Radium Calculation	290744		
32048001	GWA-2	SM 2540C	399634		
62048003	FB-1-2-19-18	SM 2540C	399634		
62048005	GWC-6R	SM 2540C	399634		
62048007	GWC-2R	SM 2540C	399634		
62048009	GWC-4R	SM 2540C	399634		
62048011	Dup-1	SM 2540C	399634		
62048001	GWA-2	EPA 300.0	1441		
62048003	FB-1-2-19-18	EPA 300.0	1441		
62048005	GWC-6R	EPA 300.0	1441		
62048007	GWC-2R	EPA 300.0	1441		
62048009	GWC-4R	EPA 300.0	1441		
62048011	Dup-1	EPA 300.0	1441		

Face Analytical * CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

N

OF

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O₃, ≤6°C 7 - ≤6°C not frozen 3 - HNO₃ 4 - NaOH, ≤6°C 2 - H₂SO₄, ≤6°C REMARKS/ADDITIONAL INFORMATION P. PRODUCT PRESERVATION 1 - HCI, <6°C SL - SLUDGE L - LIQUID SD - SOLID S - SOIL A- AIR FOR LAB USE ONLY *MATRIX CODES: MO#: 262048 SW - SURFACE WATER DRINKING WATER GW - GROUNDWATER STORM WATER ww - WASTEWATER A - AMBER GLASS G - CLEAR GLASS Entered into LIMS: Tracking #: CONTAINER TYPE S - STERILE O - OTHER V - VOA VIAL P - PLASTIC W- WATER ST. LAB #: 1650 8/5 0)/ BAL - 0 Z D Z M W K OTH 2-20-18 DATE/TIME The second ANALYSIS REQUESTED COURIER of Coolers (SW-846 9315/9320) ۵. 2 2 Radium 226 & 228 USPS EPA 300.0 & SM 2540C) ۵. CI, F, SO, & TDS (plus metals list at bottom of COC) RELINQUISHED BY: RELINQUISHED BY AMPLE SHIPPED ۵. FED-EX Metals App. III & IV (EPA 6020/7470) CONTAINER TYPE: RESERVATION # of 00 z IPS и ш и s 7 J 7 I 7 J Yates Gypsum Storage Phase 2 CCR & Semi-Annual Monitoring 1500 laburch@southernco.com SAMPLE IDENTIFICATION FB-1-2-19-18 Heath McCorkle 5-AM3 GWC-GR 6WC-4R 6WC-2R DATE/TIME: Maria Padilla Dup-1 DATE/TIME: DATETIME Plant Yates Gypsum Storage CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER PO #: CC 0240 (204) 0050 REQUESTED COMPLETION DATE MATRIX CODE MS GE 241 Ralph McGill Blvd SE B10185 6 E 3 Š ⋛ Lauren Petty PROJECT NAME/STATE: SAMPLED BY AND TITLE Collection 1450 0191 1625 20-18 1405 TIME SHII 81-02-2 Atlanta, GA 30308 CLIENT NAME Georgia Power ECEIVED BY 404-506-7239 REPORT TO: 2-19-18 PROJECT #: 2-19-18 81-61-7 2-20-18 Collection DATE

Plant Yates COC Gypsum Storage.xlsx
Plant Yates State constituents: Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn

P. J. Committee	$(\cap A)$	MC	#:262048
Face Analytical Client Nan		PM:	
ourier: Fed Ex UPS USPS	Client Gommercial	_ Face /	
racking #:	ves 🗌 no Seals	intact: Zyes	no no
Custody Seal on Cooler/Box Present:	•		
Packing Material: Bubble Wrap But	oble Bags	Other	,4,
hermometer Used	Type of Ice: Vet		Samples on ice, cooling process has begun Date and Initials of person examining
Cooler Temperature	Biological Tissue	is Frozen: Yes No	contents: 2/20/18 (24)
emp should be above freezing to 6°C		Comments:	
Chain of Custody Present:	───Yes □No □N/A		
Chain of Custody Filled Out:	Yes ONO ON/A		
Chain of Custody Relinquished:	Pres ONO ONA	3.	
Sampler Name & Signature on COC:	Yes ONO ONA	4.	
Samples Arrived within Hold Time:	ØYes □No □N/A	5.	
Short Hold Time Analysis (<72hr):	☐Yes ☐N/A	6.	
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.	
Sufficient Volume:	Yes No NA	8.	
Correct Containers Used:	Zyes ONO ON/A	9.	
-Pace Containers Used:	Yes ONO ONA		
Containers Intact:	EYes ONO ONA	10.	
Filtered volume received for Dissolved tests	□Yes □No ZAFA	11.	
Sample Labels match COC	Tyes ING INA	12.	
-Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked		13.	
All containers needing preservation are found to be compliance with EPA recommendation.	AVA CONC SEYZ		Lot # of added
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes ZNo	Initial when completed	préservative
Samples checked for dechlorination:	□Yes □No □KIA	14	
Headspace in VOA Vials (>6mm):	□Yes □No □N/A		
Trip Blank Present:	□Yes □No €N/A		
	□Yes □No □NA		
Trip Blank Custody Seals Present	7.63 7.00 7.00A		
Pace Trip Blank Lot # (if purchased).			
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted	Date/	Time	
Comments/ Resolution:			
6			
30.5			
· ·			
Project Manager Review:			Date:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. dut of hold incorrect preservative, out of temp incorrect containers

April 13, 2018

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 22, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

REV04132018_report revised to add Cu, Ni, and Ag data.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton Moamil

betsy.mcdaniel@pacelabs.com

(770)734-4200

Project Manager

Enclosures

cc: Maria Padilla, Georgia Power
Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.

(770)734-4200

CERTIFICATIONS

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812

Virginia Certification #: 460204

North Carolina Certification #: 381

South Carolina Certification #: 98011001

Texas Certification #: T104704397-08-TX

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Asheville Certification IDs

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Lab ID	Sample ID	Matrix	Date Collected	Date Received
262140001	GWC-3R	Water	02/21/18 11:40	02/22/18 10:00
262140002	GWC-3R	Water	02/21/18 11:40	02/22/18 10:00
262140003	GWC-5R	Water	02/21/18 13:55	02/22/18 10:00
262140004	GWC-5R	Water	02/21/18 13:55	02/22/18 10:00
262140005	GWC-1R	Water	02/21/18 16:15	02/22/18 10:00
262140006	GWC-1R	Water	02/21/18 16:15	02/22/18 10:00
262140007	EB-1-2-21-18	Water	02/21/18 15:45	02/22/18 10:00
262140008	EB-1-2-21-18	Water	02/21/18 15:45	02/22/18 10:00

SAMPLE ANALYTE COUNT

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
262140001	GWC-3R	EPA 6020B	CSW	19	PASI-GA
		EPA 7470A	MTC	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
262140002	GWC-3R	EPA 9315	JC2	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
262140003	GWC-5R	EPA 6020B	CSW	19	PASI-GA
		EPA 7470A	MTC	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
262140004	GWC-5R	EPA 9315	JC2	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
262140005	GWC-1R	EPA 6020B	CSW	19	PASI-GA
		EPA 7470A	MTC	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
262140006	GWC-1R	EPA 9315	JC2	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
262140007	EB-1-2-21-18	EPA 6020B	CSW	19	PASI-GA
		EPA 7470A	MTC	1	PASI-GA
		SM 2540C	EJJ	1	PASI-A
		EPA 300.0	RLC	3	PASI-GA
262140008	EB-1-2-21-18	EPA 9315	JC2	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Date: 04/13/2018 12:26 PM

Sample: GWC-3R	Lab ID:	262140001	Collecte	d: 02/21/18	3 11:40	Received: 02/	22/18 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Antimony	ND	ug/L	3.0	0.78	1	02/27/18 10:07	02/28/18 19:28	7440-36-0	
Arsenic	ND	ug/L	5.0	0.57	1	02/27/18 10:07	02/28/18 19:28	7440-38-2	
Barium	28.5	ug/L	10.0	0.78	1	02/27/18 10:07	02/28/18 19:28	7440-39-3	
Beryllium	ND	ug/L	3.0	0.050	1	02/27/18 10:07	02/28/18 19:28	7440-41-7	
Boron	39.9J	ug/L	40.0	3.9	1	02/27/18 10:07	02/28/18 19:28	7440-42-8	
Cadmium	ND	ug/L	1.0	0.093	1	02/27/18 10:07	02/28/18 19:28	7440-43-9	
Calcium	4760	ug/L	500	13.7	1	02/27/18 10:07	02/28/18 19:28	7440-70-2	
Chromium	ND	ug/L	10.0	1.6	1	02/27/18 10:07	02/28/18 19:28	7440-47-3	
Cobalt	ND	ug/L	10.0	0.52	1	02/27/18 10:07	02/28/18 19:28	7440-48-4	
Copper	ND	ug/L	5.0	1.3	1	02/27/18 10:07	02/28/18 19:28	7440-50-8	
Lead	ND	ug/L	5.0	0.27	1	02/27/18 10:07	02/28/18 19:28	7439-92-1	
Lithium	ND	ug/L	50.0	0.97	1	02/27/18 10:07	02/28/18 19:28	7439-93-2	
Molybdenum	ND	ug/L	10.0	1.9	1	02/27/18 10:07	02/28/18 19:28	7439-98-7	
Nickel	ND	ug/L	5.0	0.95	1	02/27/18 10:07	02/28/18 19:28	7440-02-0	
Selenium	ND	ug/L	10.0	1.4	1	02/27/18 10:07	02/28/18 19:28	7782-49-2	
Silver	ND	ug/L	5.0	0.95	1	02/27/18 10:07	02/28/18 19:28	7440-22-4	
Thallium	ND	ug/L	1.0	0.14	1	02/27/18 10:07	02/28/18 19:28	7440-28-0	
Vanadium	ND	ug/L	10.0	1.9	1	02/27/18 10:07	02/28/18 19:28	7440-62-2	
Zinc	3.0J	ug/L	10.0	2.1	1	02/27/18 10:07	02/28/18 19:28	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prep	aration Met	hod: EF	PA 7470A			
Mercury	ND	ug/L	0.20	0.036	1	02/27/18 15:50	02/28/18 15:59	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	105	mg/L	25.0	25.0	1		02/27/18 18:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	6.7	mg/L	1.0	0.024	1		02/28/18 21:51	16887-00-6	
Fluoride	ND	mg/L	0.10	0.029	1		02/28/18 21:51		
Sulfate	46.7	mg/L	25.0	0.085	5		03/06/18 04:18		

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Date: 04/13/2018 12:26 PM

Sample: GWC-5R	Lab ID:	262140003	Collecte	d: 02/21/18	3 13:55	Received: 02/	22/18 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Antimony	ND	ug/L	3.0	0.78	1	02/27/18 10:07	02/28/18 19:39	7440-36-0	
Arsenic	0.91J	ug/L	5.0	0.57	1	02/27/18 10:07	02/28/18 19:39	7440-38-2	
Barium	17.4	ug/L	10.0	0.78	1	02/27/18 10:07	02/28/18 19:39	7440-39-3	
Beryllium	ND	ug/L	3.0	0.050	1	02/27/18 10:07	02/28/18 19:39	7440-41-7	
Boron	26.8J	ug/L	40.0	3.9	1	02/27/18 10:07	02/28/18 19:39	7440-42-8	
Cadmium	ND	ug/L	1.0	0.093	1	02/27/18 10:07	02/28/18 19:39	7440-43-9	
Calcium	64000	ug/L	25000	685	50	02/27/18 10:07	02/28/18 19:45	7440-70-2	
Chromium	ND	ug/L	10.0	1.6	1	02/27/18 10:07	02/28/18 19:39	7440-47-3	
Cobalt	ND	ug/L	10.0	0.52	1	02/27/18 10:07	02/28/18 19:39	7440-48-4	
Copper	ND	ug/L	5.0	1.3	1	02/27/18 10:07	02/28/18 19:39	7440-50-8	
Lead	ND	ug/L	5.0	0.27	1	02/27/18 10:07	02/28/18 19:39	7439-92-1	
Lithium	ND	ug/L	50.0	0.97	1	02/27/18 10:07	02/28/18 19:39	7439-93-2	
Molybdenum	ND	ug/L	10.0	1.9	1	02/27/18 10:07	02/28/18 19:39	7439-98-7	
Nickel	1.3J	ug/L	5.0	0.95	1	02/27/18 10:07	02/28/18 19:39	7440-02-0	
Selenium	12.7	ug/L	10.0	1.4	1	02/27/18 10:07	02/28/18 19:39	7782-49-2	
Silver	ND	ug/L	5.0	0.95	1	02/27/18 10:07	02/28/18 19:39	7440-22-4	
Thallium	ND	ug/L	1.0	0.14	1	02/27/18 10:07	02/28/18 19:39	7440-28-0	
Vanadium	ND	ug/L	10.0	1.9	1	02/27/18 10:07	02/28/18 19:39	7440-62-2	
Zinc	10.2	ug/L	10.0	2.1	1	02/27/18 10:07	02/28/18 19:39	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prep	aration Met	hod: EF	PA 7470A			
Mercury	ND	ug/L	0.20	0.036	1	02/27/18 15:50	02/28/18 16:35	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	830	mg/L	50.0	50.0	1		02/27/18 18:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	5.6	mg/L	1.0	0.024	1		02/28/18 22:12	16887-00-6	
Fluoride	ND	mg/L	0.10	0.029	1		02/28/18 22:12		
Sulfate	533	mg/L	250	0.85	50		03/08/18 20:12		

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Date: 04/13/2018 12:26 PM

Sample: GWC-1R	Lab ID:	262140005	Collecte	d: 02/21/18	3 16:15	Received: 02/	22/18 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Antimony	ND	ug/L	3.0	0.78	1	02/27/18 10:07	02/28/18 19:51	7440-36-0	
Arsenic	ND	ug/L	5.0	0.57	1	02/27/18 10:07	02/28/18 19:51	7440-38-2	
Barium	32.2	ug/L	10.0	0.78	1	02/27/18 10:07	02/28/18 19:51	7440-39-3	
Beryllium	ND	ug/L	3.0	0.050	1	02/27/18 10:07	02/28/18 19:51	7440-41-7	
Boron	37.8J	ug/L	40.0	3.9	1	02/27/18 10:07	02/28/18 19:51	7440-42-8	
Cadmium	ND	ug/L	1.0	0.093	1	02/27/18 10:07	02/28/18 19:51	7440-43-9	
Calcium	34300	ug/L	25000	685	50	02/27/18 10:07	02/28/18 19:57	7440-70-2	
Chromium	ND	ug/L	10.0	1.6	1	02/27/18 10:07	02/28/18 19:51	7440-47-3	
Cobalt	ND	ug/L	10.0	0.52	1	02/27/18 10:07	02/28/18 19:51	7440-48-4	
Copper	ND	ug/L	5.0	1.3	1	02/27/18 10:07	02/28/18 19:51	7440-50-8	
Lead	ND	ug/L	5.0	0.27	1	02/27/18 10:07	02/28/18 19:51	7439-92-1	
Lithium	1.4J	ug/L	50.0	0.97	1	02/27/18 10:07	02/28/18 19:51	7439-93-2	
Molybdenum	ND	ug/L	10.0	1.9	1	02/27/18 10:07	02/28/18 19:51	7439-98-7	
Nickel	1.0J	ug/L	5.0	0.95	1	02/27/18 10:07	02/28/18 19:51	7440-02-0	
Selenium	ND	ug/L	10.0	1.4	1	02/27/18 10:07	02/28/18 19:51	7782-49-2	
Silver	ND	ug/L	5.0	0.95	1	02/27/18 10:07	02/28/18 19:51	7440-22-4	
Thallium	ND	ug/L	1.0	0.14	1	02/27/18 10:07	02/28/18 19:51	7440-28-0	
Vanadium	ND	ug/L	10.0	1.9	1	02/27/18 10:07	02/28/18 19:51	7440-62-2	
Zinc	ND	ug/L	10.0	2.1	1	02/27/18 10:07	02/28/18 19:51	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prep	aration Met	hod: EF	PA 7470A			
Mercury	ND	ug/L	0.20	0.036	1	02/27/18 15:50	02/28/18 16:37	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	285	mg/L	25.0	25.0	1		02/27/18 18:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	27.0	mg/L	20.0	0.48	20		03/06/18 04:59	16887-00-6	В
Fluoride	ND	mg/L	0.10	0.40	1		02/28/18 22:33		ی
Sulfate	146	mg/L	100	0.029	20		03/06/18 04:59		

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Date: 04/13/2018 12:26 PM

Sample: EB-1-2-21-18	Lab ID:	262140007	Collecte	d: 02/21/18	3 15:45	Received: 02/	22/18 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Antimony	ND	ug/L	3.0	0.78	1	02/27/18 10:07	02/28/18 20:02	7440-36-0	
Arsenic	ND	ug/L	5.0	0.57	1	02/27/18 10:07	02/28/18 20:02	7440-38-2	
Barium	ND	ug/L	10.0	0.78	1	02/27/18 10:07	02/28/18 20:02	7440-39-3	
Beryllium	ND	ug/L	3.0	0.050	1	02/27/18 10:07	02/28/18 20:02	7440-41-7	
Boron	11.5J	ug/L	40.0	3.9	1	02/27/18 10:07	02/28/18 20:02	7440-42-8	
Cadmium	ND	ug/L	1.0	0.093	1	02/27/18 10:07	02/28/18 20:02	7440-43-9	
Calcium	ND	ug/L	500	13.7	1	02/27/18 10:07	02/28/18 20:02	7440-70-2	
Chromium	ND	ug/L	10.0	1.6	1	02/27/18 10:07	02/28/18 20:02	7440-47-3	
Cobalt	ND	ug/L	10.0	0.52	1	02/27/18 10:07	02/28/18 20:02	7440-48-4	
Copper	ND	ug/L	5.0	1.3	1	02/27/18 10:07	02/28/18 20:02	7440-50-8	
_ead	ND	ug/L	5.0	0.27	1	02/27/18 10:07	02/28/18 20:02	7439-92-1	
_ithium	ND	ug/L	50.0	0.97	1	02/27/18 10:07	02/28/18 20:02	7439-93-2	
Molybdenum	ND	ug/L	10.0	1.9	1	02/27/18 10:07	02/28/18 20:02	7439-98-7	
Nickel	ND	ug/L	5.0	0.95	1	02/27/18 10:07	02/28/18 20:02	7440-02-0	
Selenium	ND	ug/L	10.0	1.4	1	02/27/18 10:07	02/28/18 20:02	7782-49-2	
Silver	ND	ug/L	5.0	0.95	1	02/27/18 10:07	02/28/18 20:02	7440-22-4	
Thallium	ND	ug/L	1.0	0.14	1	02/27/18 10:07	02/28/18 20:02	7440-28-0	
Vanadium Vanadium	ND	ug/L	10.0	1.9	1	02/27/18 10:07	02/28/18 20:02	7440-62-2	
Zinc	ND	ug/L	10.0	2.1	1	02/27/18 10:07	02/28/18 20:02	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prep	aration Met	hod: EF	PA 7470A			
Mercury	ND	ug/L	0.20	0.036	1	02/27/18 15:50	02/28/18 16:39	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		02/27/18 18:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	0.060J	mg/L	1.0	0.024	1		02/28/18 22:53	16887-00-6	В
Fluoride	ND	mg/L	0.10	0.029	1		02/28/18 22:53		_
Sulfate	0.050J	mg/L	5.0	0.023	1		02/28/18 22:53		

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Date: 04/13/2018 12:26 PM

QC Batch: 1654 Analysis Method: EPA 7470A
QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Associated Lab Samples: 262140001, 262140003, 262140005, 262140007

METHOD BLANK: 9608 Matrix: Water

Associated Lab Samples: 262140001, 262140003, 262140005, 262140007

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury ug/L ND 0.20 0.036 02/28/18 15:54

LABORATORY CONTROL SAMPLE: 9609

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 2.5 2.9 116 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 9840 9841 MS MSD

262140001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual ND 2.5 2.8 2.7 75-125 2 20 Mercury ug/L 2.5 110 108

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Date: 04/13/2018 12:26 PM

QC Batch: 1651 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 262140001, 262140003, 262140005, 262140007

METHOD BLANK: 9601 Matrix: Water Associated Lab Samples: 262140001, 262140003, 262140005, 262140007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	ND ND	3.0	0.78	02/28/18 18:25	
Arsenic	ug/L	ND	5.0	0.57	02/28/18 18:25	
Barium	ug/L	ND	10.0	0.78	02/28/18 18:25	
Beryllium	ug/L	ND	3.0	0.050	02/28/18 18:25	
Boron	ug/L	ND	40.0	3.9	02/28/18 18:25	
Cadmium	ug/L	ND	1.0	0.093	02/28/18 18:25	
Calcium	ug/L	ND	500	13.7	02/28/18 18:25	
Chromium	ug/L	ND	10.0	1.6	02/28/18 18:25	
Cobalt	ug/L	ND	10.0	0.52	02/28/18 18:25	
Copper	ug/L	ND	5.0	1.3	02/28/18 18:25	
Lead	ug/L	ND	5.0	0.27	02/28/18 18:25	
Lithium	ug/L	ND	50.0	0.97	02/28/18 18:25	
Molybdenum	ug/L	ND	10.0	1.9	02/28/18 18:25	
Nickel	ug/L	ND	5.0	0.95	02/28/18 18:25	
Selenium	ug/L	ND	10.0	1.4	02/28/18 18:25	
Silver	ug/L	ND	5.0	0.95	02/28/18 18:25	
Thallium	ug/L	ND	1.0	0.14	02/28/18 18:25	
Vanadium	ug/L	ND	10.0	1.9	02/28/18 18:25	
Zinc	ug/L	ND	10.0	2.1	02/28/18 18:25	

LABORATORY CONTROL SAMP	PLE: 9602					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	100	103	103	80-120	
Arsenic	ug/L	100	100	100	80-120	
Barium	ug/L	100	100	100	80-120	
Beryllium	ug/L	100	107	107	80-120	
Boron	ug/L	1000	1050	105	80-120	
Cadmium	ug/L	100	102	102	80-120	
Calcium	ug/L	1000	1010	101	80-120	
Chromium	ug/L	100	103	103	80-120	
Cobalt	ug/L	100	102	102	80-120	
Copper	ug/L	100	102	102	80-120	
Lead	ug/L	100	102	102	80-120	
Lithium	ug/L	100	107	107	80-120	
Molybdenum	ug/L	100	106	106	80-120	
Nickel	ug/L	100	103	103	80-120	
Selenium	ug/L	100	102	102	80-120	
Silver	ug/L	100	93.7	94	80-120	
Thallium	ug/L	100	103	103	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Date: 04/13/2018 12:26 PM

LABORATORY CONTROL SAMPLE: 9602

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Vanadium	ug/L	100	105	105	80-120	
Zinc	ug/L	100	105	105	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	ATE: 9687			9688							
			MS	MSD								
		262138001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	ND	100	100	112	113	112	113	75-125	1	20	
Arsenic	ug/L	0.96J	100	100	111	112	110	111	75-125	1	20	
Barium	ug/L	25.5	100	100	133	134	107	109	75-125	1	20	
Beryllium	ug/L	5.3	100	100	91.4	89.4	86	84	75-125	2	20	
Boron	ug/L	18600	1000	1000	19300	19600	69	103	75-125	2	20	M6
Cadmium	ug/L	2.9	100	100	105	108	102	105	75-125	3	20	
Calcium	ug/L	184000	1000	1000	187000	188000	331	354	75-125	0	20	M6
Chromium	ug/L	ND	100	100	108	110	108	110	75-125	2	20	
Cobalt	ug/L	ND	100	100	104	106	104	106	75-125	2	20	
Copper	ug/L				100	101				1	20	
Lead	ug/L	ND	100	100	95.7	96.7	96	97	75-125	1	20	
Lithium	ug/L	8.2J	100	100	93.4	93.2	85	85	75-125	0	20	
Molybdenum	ug/L	ND	100	100	115	115	115	114	75-125	0	20	
Nickel	ug/L				101	103				2	20	
Selenium	ug/L	253	100	100	377	378	124	125	75-125	0	20	
Silver	ug/L				90.4	89.7				1	20	
Thallium	ug/L	ND	100	100	97.3	97.7	97	98	75-125	0	20	
Vanadium	ug/L	ND	100	100	112	112	112	112	75-125	1	20	
Zinc	ug/L	49.5	100	100	155	160	105	111	75-125	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

QC Batch: 399936 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 262140001, 262140003, 262140005, 262140007

METHOD BLANK: 2218070 Matrix: Water

Associated Lab Samples: 262140001, 262140003, 262140005, 262140007

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND25.025.002/27/18 18:50

LABORATORY CONTROL SAMPLE: 2218071

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 250 234 94 90-110

SAMPLE DUPLICATE: 2218072

92374543042 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 113 5 5 **Total Dissolved Solids** 119 mg/L

SAMPLE DUPLICATE: 2218073

Date: 04/13/2018 12:26 PM

ParameterUnits262140007 ResultDup ResultRPDMax RPDQualifiersTotal Dissolved Solidsmg/LNDND5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Date: 04/13/2018 12:26 PM

QC Batch: 1766 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 262140001, 262140003, 262140005, 262140007

METHOD BLANK: 10018 Matrix: Water

Associated Lab Samples: 262140001, 262140003, 262140005, 262140007

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.26J	1.0	0.024	02/28/18 19:27	
Fluoride	mg/L	ND	0.10	0.029	02/28/18 19:27	
Sulfate	mg/L	ND	5.0	0.017	02/28/18 19:27	

LABORATORY CONTROL SAMPLE:	10019					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	10	10.3	103	90-110	
Fluoride	mg/L	10	10.1	101	90-110	
Sulfate	mg/L	10	9.9	99	90-110	

MATRIX SPIKE & MATRIX SPIR	KE DUPLIC	ATE: 10020			10021							
			MS	MSD								
		262138001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	6.2	10	10	16.0	15.9	97	96	90-110	1	15	
Fluoride	mg/L	ND	10	10	12.1	12.0	121	120	90-110	1	15	M1
Sulfate	mg/L	905	10	10	376	376	-5280	-5290	90-110	0	15	E

MATRIX SPIKE SAMPLE:	10022						
Parameter	Units	262140001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
					70 IXEC		Qualifiers
Chloride	mg/L	6.7	10	16.1	94	90-110	
Fluoride	mg/L	ND	10	10.4	104	90-110	
Sulfate	mg/L	46.7	10	51.5	48	90-110 E	<u> </u>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Sample: GWC-3R Lab ID: 262140002 Collected: 02/21/18 11:40 Received: 02/22/18 10:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.164 \pm 0.300 \quad (0.685)$ Radium-226 pCi/L 03/14/18 10:13 13982-63-3 C:67% T:NA EPA 9320 0.362 ± 0.504 (1.09) Radium-228 pCi/L 03/19/18 12:54 15262-20-1 C:77% T:75% Total Radium Total Radium 0.526 ± 0.804 (1.78) pCi/L 03/21/18 13:40 7440-14-4 Calculation

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Sample: GWC-5R Lab ID: 262140004 Collected: 02/21/18 13:55 Received: 02/22/18 10:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.241 ± 0.239 (0.446) Radium-226 pCi/L 03/14/18 10:13 13982-63-3 C:71% T:NA EPA 9320 $0.893 \pm 0.531 \quad (1.02)$ Radium-228 pCi/L 03/19/18 12:54 15262-20-1 C:77% T:81% Total Radium Total Radium pCi/L 03/21/18 13:40 7440-14-4 $1.13 \pm 0.770 \quad (1.47)$ Calculation

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Sample: GWC-1R Lab ID: 262140006 Collected: 02/21/18 16:15 Received: 02/22/18 10:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.738 \pm 0.443 \quad (0.681)$ Radium-226 pCi/L 03/14/18 10:13 13982-63-3 C:47% T:NA EPA 9320 0.0788 ± 0.470 (1.06) Radium-228 pCi/L 03/19/18 12:54 15262-20-1 C:75% T:74% Total Radium Total Radium 0.817 ± 0.913 (1.74) pCi/L 03/21/18 13:40 7440-14-4 Calculation

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Sample: EB-1-2-21-18 PWS:	Lab ID: 26214000 Site ID:	8 Collected: 02/21/18 15:45 Sample Type:	Received:	02/22/18 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.197 ± 0.225 (0.456) C:81% T:NA	pCi/L	03/14/18 10:13	13982-63-3	
Radium-228		0.597 ± 0.419 (0.814) C:75% T:79%	pCi/L	03/19/18 12:57	7 15262-20-1	
Total Radium	Total Radium Calculation	0.794 ± 0.644 (1.27)	pCi/L	03/21/18 13:40	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

QC Batch: 290898 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 262140002, 262140004, 262140006, 262140008

METHOD BLANK: 1424477 Matrix: Water

Associated Lab Samples: 262140002, 262140004, 262140006, 262140008

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.524 ± 0.423 (0.845) C:78% T:75% pCi/L 03/19/18 11:52

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

QC Batch: 290896 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 262140002, 262140004, 262140006, 262140008

METHOD BLANK: 1424475 Matrix: Water

Associated Lab Samples: 262140002, 262140004, 262140006, 262140008

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.418 \pm 0.284 (0.409) C:64% T:NA pCi/L 03/14/18 10:13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-A	Pace Analytical Services - Asheville
PASI-GA	Pace Analytical Services - Atlanta, GA
PASI-PA	Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 04/13/2018 12:26 PM

B Analyte was detected in the associated method blank.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Gypsum Storage

Pace Project No.: 262140

Date: 04/13/2018 12:26 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
262140001	GWC-3R	EPA 3005A	1651	EPA 6020B	1802
262140003	GWC-5R	EPA 3005A	1651	EPA 6020B	1802
262140005	GWC-1R	EPA 3005A	1651	EPA 6020B	1802
262140007	EB-1-2-21-18	EPA 3005A	1651	EPA 6020B	1802
262140001	GWC-3R	EPA 7470A	1654	EPA 7470A	1775
262140003	GWC-5R	EPA 7470A	1654	EPA 7470A	1775
262140005	GWC-1R	EPA 7470A	1654	EPA 7470A	1775
262140007	EB-1-2-21-18	EPA 7470A	1654	EPA 7470A	1775
262140002	GWC-3R	EPA 9315	290896		
262140004	GWC-5R	EPA 9315	290896		
262140006	GWC-1R	EPA 9315	290896		
262140008	EB-1-2-21-18	EPA 9315	290896		
262140002	GWC-3R	EPA 9320	290898		
262140004	GWC-5R	EPA 9320	290898		
262140006	GWC-1R	EPA 9320	290898		
262140008	EB-1-2-21-18	EPA 9320	290898		
262140002	GWC-3R	Total Radium Calculation	292016		
262140004	GWC-5R	Total Radium Calculation	292016		
262140006	GWC-1R	Total Radium Calculation	292016		
262140008	EB-1-2-21-18	Total Radium Calculation	292016		
262140001	GWC-3R	SM 2540C	399936		
262140003	GWC-5R	SM 2540C	399936		
262140005	GWC-1R	SM 2540C	399936		
262140007	EB-1-2-21-18	SM 2540C	399936		
262140001	GWC-3R	EPA 300.0	1766		
262140003	GWC-5R	EPA 300.0	1766		
262140005	GWC-1R	EPA 300.0	1766		
262140007	EB-1-2-21-18	EPA 300.0	1766		

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

7

P

2

PAGE:

CLIENT NAME:			AN	ANALYSIS REQUESTED	JESTED			CONTAINER TYPE	
Georgia Power		CONTAINER TYPE: P	\vdash	_ a	_	-	I ⊲		PRESERVATION
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER	X NUMBER:	PRESERVATION:	3 7	3		-	C 40	900	1 - HCl, ≤6°C
241 Ralph McGill Blvd SE B10185		# of	<u> </u>						2 - H2504, ≤6°C
Atlanta, GA 30308									4 - NaOH, ≤6°C
020 COT TO	Т							S-STERILE 5-N	5 - NaOH/ZnAc <6°C
	CC: wana Padilla	021	(٥		6- Na.S.O. <6°C
Lauren Petty	Heath McCorkle	b 2)						200 200
REQUESTED COMPLETION DATE:	PO#	020	001				, Z	VI	/ - ≤o C not frozen
	laburch@southernco.com	9 1	o u		-		Þ	*MATRIX CODES:	
PROJECT NAME/STATE:		∀ d:	ton				Σ	2000	-
Plant Yates Gy	Plant Yates Gypsum Storage	3) /	poq:	(0		-	ø	ER S-	SOIL
DDO JECT # Votor Guerium Chemen D	Vator Cumium Stomes Bhone 2 CCB & Sami America in a	/1.8	te t S	335 335		-	ш	WASTEWATER	SL - SLUDGE
	Tiase z Con a Seill-Alindai Monitoling	2 U	sil s OT ,	3/SI			33.3	œ	OLID
	9	-dd	8 *(63 558	•			SW - SURFACE WATER A- AIR	
n Collection MATRIX o	SAMPLE IDENTIFICATION	A alı	os '	9+8-				ST - STORM WATER L - LIQUID W - WATER	IQUID
	B	→ StaM	(biu (piu	ibe? WS;					F. PRODUCT
1	ľ		#					REMARKS/ADDITIONAL INFORMATION	DRMATION
M9 OF11 81-12-2	V GWC-JK	9	-	7				extra Rad hore	
12-21-18 1355 6W	V 650.5R	7	_	7					
אינע אין אין	V 6.30-16	7	-	7					
A40 (2/9)			-		+	-			
2-21-18 1545 W	VEB-1-2-21-15	7		77					
	i								
			I	+	1				
					<u> </u>				
			1						
					-				
						<u> </u>			
ND TITLE:		RELINQUISHED B] 	7		DATE/TIME:			-
C. Par Ken (HCC)	2-21-18 1630		7	11-14	1	2.12-18	88/	ラファクリク・#リア	
RECEIVED BY:	DATE/TIME:	RELINQUISHED B	BY:	•		DATE/TIME:	_	のサーマのマ・井へい	
RECHIVED BY MAE: /	DATETIMES OF 1000	SAMPLE SHIPPED VIA:	VIA:			_			
		Circust Sent	S1	PS COURIER # of Coolers	到 】	ENT / OTHER	프(연		
Yes / No NA NA	Mini C Mac	s	Not Present			6	7	07140	
)	<i>)</i>)							

Project # Client Name: Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Client ☐ Commercial ☐ Pace Other Due Date: 03/01/18 Tracking #: ___ CLIENT: GAPower-CCR Custody Seal on Cooler/Box Present: yes no Packing Material: Bubble Wrap Bubble Bags I None Other Samples on ice, cooling process,has begun Type of ce: Net Blue None Thermometer Used Date and initials of person examining Biological Tissue is Frozen: Yes No contents:_ Cooler Temperature Comments: Temp should be above freezing to 6°C Yes No ONA 1. Chain of Custody Present: ZYes ONo ONA 2. Chain of Custody Filled Out: ØYes □No □N/A 3. Chain of Custody Relinquished: 2783 □NO □NA 4. Sampler Name & Signature on COC: Yes UNO □N/A 5. Samples Arrived within Hold Time: □Yes ⊈K6 Short Hold Time Analysis (<72hr): □Yes INO □NA 7. Rush Turn Around Time Requested: Ø8 DNO DNA 18. Sufficient Volume: Pres DNo □NA 9. Correct Containers Used: ZY63 UNO ONA -Pace Containers Used: ZYes Ino Inva 10. Containers Intact: TYES THO DATA Filtered volume received for Dissolved tests Yes INO □N/A 12. Sample Labels match COC: -Includes date/time/ID/Analysis All containers needing preservation have been checked. -278 DNO DNA 13. All containers needing preservation are found to be in Pres Ino Ina compliance with EPA recommendation. Lot # of added Initial when □Yes ₽No preservative completed exceptions: VOA, coliform, TOC, O&G, WI-DRO (water) □Yes □No **⊟**N/A 14. Samples checked for dechlorination: ☐Yes ☐No ENVA Headspace in VOA Vials (>6mm): □Yes DNo **WIND** Trip Blank Present: □Yes □No DATA Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Field Data Required? Client Notification/ Resolution: Date/Time: Person Contacted: Comments/ Resolution: Date: Project Manager Review:

Sample Condition Upon Receipt

Note: Whenever there is a discrepancy affecting North Carolina compliance samples a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp incorrect containers)

Product Name: Low-Flow System

Date: 2018-02-19 14:51:49

Pump Information:

Project Information:
Operator Name
Chris Parker

Operator NameChris ParkerPump Model/TypeBladder PumpCompany NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length55 ft

Latitude 0° 0' 0"

Longitude 0° 0' 0"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 47.1 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWA-2 80 mL/min Well diameter 2 in Total System Volume 0.7304883 L Calculated Sample Rate Well Total Depth 52.13 ft 300 sec Stabilization Drawdown Screen Length 10 ft 12 in Depth to Water 6.4 L 40.68 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	14:28:36	3299.97	20.26	6.18	255.48	0.69	41.60	1.05	77.12
Last 5	14:33:36	3599.96	20.97	6.23	256.03	0.67	41.60	0.95	72.06
Last 5	14:38:36	3899.96	20.75	6.19	255.52	0.69	41.60	0.84	73.02
Last 5	14:43:36	4199.95	20.28	6.12	256.45	0.59	41.70	0.73	74.81
Last 5	14:48:36	4499.96	19.99	6.13	257.08	0.64	41.70	0.65	72.51
Variance 0			-0.22	-0.04	-0.51			-0.12	0.96
Variance 1			-0.47	-0.07	0.93			-0.11	1.79
Variance 2			-0.28	0.01	0.62			-0.08	-2.29

Notes

Collected at 14:50. Sunny 70s.

Grab Samples

Product Name: Low-Flow System

Date: 2018-02-21 16:14:54

Project Information:

Operator Name
Company Name
Company Name
Company Name

Pump Information:

Pump Model/Type
Peripump
Tubing Type
Poly

Project Name Plant Yates Gypsum Tubing Diameter .17 in Site Name Plant Yates Gypsum Tubing Length 35 ft

Latitude 0° 0' 0"

Longitude 0° 0' 0"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 31.3 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-1R 120 mL/min Well diameter Total System Volume 0.2462198 L 2 in Calculated Sample Rate Well Total Depth 36.34 ft 300 sec Stabilization Drawdown Screen Length 10 ft 9 in Depth to Water 4.8 L 25.14 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	15:50:06	1200.02	19.41	5.24	410.03	1.03	25.80	7.07	113.51
Last 5	15:55:06	1500.00	18.98	5.22	415.99	0.99	25.80	7.50	112.21
Last 5	16:00:06	1800.00	19.02	5.38	424.62	1.14	25.90	7.21	103.05
Last 5	16:05:10	2103.99	19.24	5.35	434.01	0.99	25.90	7.05	103.96
Last 5	16:10:10	2403.99	19.34	5.39	435.07	1.08	25.90	7.02	101.02
Variance 0			0.04	0.16	8.63			-0.29	-9.16
Variance 1			0.22	-0.03	9.39			-0.17	0.91
Variance 2			0.10	0.04	1.06			-0.03	-2.94

Notes

Collected at 16:15. Cloudy 70s. EB-1 here at 15:45.

Grab Samples

Date: 2018-02-20 11:46:56

Project Information:

Operator Name

Chris Parker

Pump Information:

Pump Model/Type

Operator NameChris ParkerPump Model/TypePeripumpCompany NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length45.0 ft

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 38.8 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-2R 130 mL/min Well diameter Total System Volume 0.290854 L 2 in Calculated Sample Rate Well Total Depth 43.80 ft 300 sec Stabilization Drawdown Screen Length 10 ft 3 in Depth to Water 15.6 L 30.05 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	11:23:49	5700.92	18.10	5.53	189.75	6.14	30.20	4.77	93.34
Last 5	11:28:50	6001.92	18.10	5.41	190.22	5.97	30.20	4.81	99.46
Last 5	11:33:50	6301.91	18.12	5.50	189.83	5.32	30.20	4.83	94.24
Last 5	11:38:52	6603.90	18.15	5.48	190.21	5.05	30.20	4.80	95.31
Last 5	11:43:52	6903.89	18.26	5.52	189.86	4.86	30.20	4.72	93.00
Variance 0			0.02	0.09	-0.39			0.02	-5.22
Variance 1			0.03	-0.02	0.37			-0.03	1.07
Variance 2			0.11	0.04	-0.35			-0.08	-2.32

Notes

Collected at 11:45. Cloudy 60s

Date: 2018-02-21 11:36:43

Bladder Pump

Project Information:

Operator Name

Chris Parker

Pump Information:

Pump Model/Type

Company NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length38.0 ft

Latitude 0° 0' 0"

Longitude 0° 0' 0"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 33.3 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-3R 160 mL/min Well diameter Total System Volume 0.6546101 L 2 in Calculated Sample Rate Well Total Depth 38.34 ft 300 sec Stabilization Drawdown Screen Length 10 ft 8 in Depth to Water 30.63 ft **Total Volume Pumped** 15 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	11:04:15	3299.96	18.25	5.26	177.70	1.21	31.30	7.01	116.67
Last 5	11:14:15	3899.95	18.26	5.16	174.88	1.05	31.30	7.01	120.72
Last 5	11:19:15	4199.94	18.22	5.15	173.22	0.97	31.30	7.00	120.78
Last 5	11:24:15	4499.94	18.25	5.17	171.71	0.76	31.30	7.00	119.08
Last 5	11:29:15	4799.93	18.21	5.15	170.57	0.82	31.30	7.00	119.64
Variance 0			-0.03	-0.01	-1.65			-0.01	0.06
Variance 1			0.03	0.02	-1.52			-0.00	-1.70
Variance 2			-0.05	-0.02	-1.14			-0.00	0.56

Notes

Collected at 11:40. Cloudy 70s. Extra Rad here.

Date: 2018-02-20 14:03:29

Peripump

Project Information:

Operator Name

Chris Parker

Atlantia Coast Consulting

Tubing Type

Company NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length33 ft

Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 26.0 ft

Well Information: Pumping Information:

Final Pumping Rate 170 mL/min Well ID GWC-4R Well diameter Total System Volume 0.237293 L 2 in Calculated Sample Rate Well Total Depth 31.05 ft 300 sec Stabilization Drawdown Screen Length 10 ft 6 in Depth to Water 16.2 L 17.38 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	13:36:23	3902.97	19.50	5.58	556.19	0.77	17.80	2.77	116.01
Last 5	13:41:23	4202.97	19.75	5.60	498.41	0.71	17.80	2.95	110.92
Last 5	13:46:23	4502.97	19.77	5.57	500.90	1.05	17.80	3.10	110.71
Last 5	13:51:23	4802.95	19.67	5.58	512.24	0.87	17.80	3.20	108.82
Last 5	13:56:23	5102.95	19.87	5.51	424.47	1.31	17.80	3.35	109.84
Variance 0			0.02	-0.03	2.49			0.15	-0.20
Variance 1			-0.10	0.01	11.34			0.10	-1.90
Variance 2			0.20	-0.06	-87.76			0.15	1.03

Notes

Collected at 14:05. Sunny 70s. DUP 1 here.

Date: 2018-02-21 13:53:42

Project Information:
Operator Name
Chris Parker

Company Name
Project Name
Site Name
Plant Yates Gypsum
Plant Yates Gypsum
Plant Yates Gypsum

Latitude 0° 0′ 0″

Longitude 0° 0′ 0″

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Pump Information:

Pump Model/Type Bladder Pump

Tubing TypePolyTubing Diameter.17 inTubing Length42.8 ft

Pump placement from TOC 37.8 ft

Well Information:

Well ID GWC-5R
Well diameter 2 in
Well Total Depth 42.82 ft
Screen Length 10 ft
Depth to Water 31.31 ft

Pumping Information:

Final Pumping Rate 60 mL/min
Total System Volume 0.6760345 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 5 in
Total Volume Pumped 3.6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	13:29:16	1499.99	19.61	5.15	1251.85	6.93	31.70	7.56	120.42
Last 5	13:34:16	1799.99	19.68	5.15	1240.45	7.64	31.70	7.51	120.57
Last 5	13:39:16	2099.98	19.83	5.18	1227.41	5.43	31.70	7.51	118.42
Last 5	13:44:16	2399.99	19.99	5.18	1215.37	4.60	31.70	7.49	117.58
Last 5	13:49:16	2699.98	19.91	5.18	1201.03	3.96	31.70	7.50	117.81
Variance 0			0.15	0.03	-13.03			-0.01	-2.15
Variance 1			0.16	0.01	-12.04			-0.02	-0.83
Variance 2			-0.08	-0.01	-14.34			0.01	0.23

Notes

Collected at 13:55. Cloudy 70s.

Date: 2018-02-19 16:25:44

Project Information:

Operator Name

Chris Parker

Pump Information:

Pump Model/Type

Operator NameChris ParkerPump Model/TypeBladder PumpCompany NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length55.0 ft

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 46.8 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-6R 170 mL/min Well diameter Total System Volume 0.7304883 L 2 in Calculated Sample Rate Well Total Depth 51.87 ft 300 sec Stabilization Drawdown Screen Length 10 ft 5 in Depth to Water 39.52 ft **Total Volume Pumped** 7.6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	15:53:34	600.01	17.92	5.83	1258.83	0.64	39.90	5.60	85.29
Last 5	15:58:34	900.00	17.72	5.88	1276.02	0.56	39.90	5.29	79.41
Last 5	16:03:34	1200.00	17.81	5.90	1286.51	0.67	39.90	5.25	77.84
Last 5	16:13:34	1800.00	17.71	5.90	1294.97	0.56	39.90	5.24	77.16
Last 5	16:18:34	2100.00	17.67	5.86	1304.60	0.50	39.90	5.36	78.47
Variance 0			0.09	0.02	10.49			-0.04	-1.57
Variance 1			-0.10	0.00	8.46			-0.01	-0.69
Variance 2			-0.04	-0.04	9.63			0.12	1.32

Notes

Collected at 16:25. Cloudy 70s. FB-1-2-19-18 here.

August 17, 2018

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on August 09, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Maria Padilla, Georgia Power Chris Parker, Atlantic Coast Consulting

Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

CERTIFICATIONS

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001 Texas Certification #: T104704397-08-TX

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Lab ID	Sample ID	Matrix	Date Collected	Date Received
268070001	GWA-2	Water	08/06/18 13:10	08/09/18 13:30
268070002	GWC-6R	Water	08/06/18 14:30	08/09/18 13:30
268070003	Dup-1	Water	08/06/18 00:00	08/09/18 13:30
268070004	GWC-3R	Water	08/07/18 10:20	08/09/18 13:30
268070005	FB-1-8-7-18	Water	08/07/18 08:55	08/09/18 13:30
268070006	GWC-1R	Water	08/07/18 13:25	08/09/18 13:30
268070007	GWC-5R	Water	08/07/18 11:50	08/09/18 13:30
268070008	GWC-4R	Water	08/08/18 12:25	08/09/18 13:30
268070009	GWC-2R	Water	08/08/18 13:30	08/09/18 13:30
268070010	EB-1-8-8-18	Water	08/08/18 13:15	08/09/18 13:30

SAMPLE ANALYTE COUNT

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Lab ID	Sample ID	Method	Analysts	Analytes Reported
268070001	GWA-2	EPA 6020B	CSW	19
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
268070002	GWC-6R	EPA 6020B	CSW	19
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
68070003	Dup-1	EPA 6020B	CSW	19
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
68070004	GWC-3R	EPA 6020B	CSW	19
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
68070005	FB-1-8-7-18	EPA 6020B	CSW	19
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
68070006	GWC-1R	EPA 6020B	CSW	19
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
68070007	GWC-5R	EPA 6020B	CSW	19
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
68070008	GWC-4R	EPA 6020B	CSW	19
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
68070009	GWC-2R	EPA 6020B	CSW	19
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3
68070010	EB-1-8-8-18	EPA 6020B	CSW	19

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 7470A	DRB	1
		SM 2540C	JPT	1
		EPA 300.0	RLC	3

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Sample: GWA-2	Lab ID:	268070001	Collecte	ed: 08/06/18	3 13:10	Received: 08/	09/18 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: Ef	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/13/18 12:38	08/14/18 13:07	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	08/13/18 12:38	08/14/18 13:07	7440-38-2	
Barium	0.044	mg/L	0.010	0.00078	1	08/13/18 12:38	08/14/18 13:07	7440-39-3	
Beryllium	ND	mg/L	0.015	0.00025	5	08/13/18 12:38	08/15/18 14:09	7440-41-7	D3
Boron	ND	mg/L	0.20	0.020	5	08/13/18 12:38	08/15/18 14:09	7440-42-8	D3
Cadmium	ND	mg/L	0.0010	0.000093	1	08/13/18 12:38	08/14/18 13:07	7440-43-9	
Calcium	11.4J	mg/L	25.0	0.69	50	08/13/18 12:38	08/14/18 13:13	7440-70-2	D3
Chromium	ND	mg/L	0.010	0.0016	1	08/13/18 12:38	08/14/18 13:07	7440-47-3	
Cobalt	0.0030J	mg/L	0.010	0.00052	1	08/13/18 12:38	08/14/18 13:07	7440-48-4	
Copper	ND	mg/L	0.025	0.0013	1	08/13/18 12:38	08/14/18 13:07	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	08/13/18 12:38	08/14/18 13:07	7439-92-1	
Lithium	ND	mg/L	0.25	0.0049	5	08/13/18 12:38	08/15/18 14:09	7439-93-2	D3
Molybdenum	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 13:07	7439-98-7	
Nickel	0.0030J	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 13:07	7440-02-0	
Selenium	ND	mg/L	0.010	0.0014	1	08/13/18 12:38	08/14/18 13:07	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 13:07	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	08/13/18 12:38	08/14/18 13:07	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 13:07	7440-62-2	
Zinc	0.0037J	mg/L	0.010	0.0021	1	08/13/18 12:38	08/14/18 13:07	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	08/13/18 16:20	08/14/18 09:25	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	158	mg/L	25.0	10.0	1		08/10/18 15:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	3.8	mg/L	0.25	0.024	1		08/14/18 20:48	16887-00-6	
Fluoride	0.087J	mg/L	0.30	0.029	1			16984-48-8	
Sulfate	42.1	mg/L	1.0	0.017	1		08/14/18 20:48		M1

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Sample: GWC-6R	Lab ID:	268070002	Collecte	ed: 08/06/18	3 14:30	Received: 08/	09/18 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/13/18 12:38	08/14/18 13:18	7440-36-0	
Arsenic	0.0023J	mg/L	0.0050	0.00057	1	08/13/18 12:38	08/14/18 13:18	7440-38-2	
Barium	0.076	mg/L	0.010	0.00078	1	08/13/18 12:38	08/14/18 13:18	7440-39-3	
Beryllium	ND	mg/L	0.015	0.00025	5	08/13/18 12:38	08/15/18 14:15	7440-41-7	D3
Boron	ND	mg/L	0.20	0.020	5	08/13/18 12:38	08/15/18 14:15	7440-42-8	D3
Cadmium	ND	mg/L	0.0010	0.000093	1	08/13/18 12:38	08/14/18 13:18	7440-43-9	
Calcium	173	mg/L	25.0	0.69	50	08/13/18 12:38	08/14/18 13:24	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	08/13/18 12:38	08/14/18 13:18	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	08/13/18 12:38	08/14/18 13:18	7440-48-4	
Copper	0.0016J	mg/L	0.025	0.0013	1	08/13/18 12:38	08/14/18 13:18	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	08/13/18 12:38	08/14/18 13:18	7439-92-1	
Lithium	ND	mg/L	0.25	0.0049	5	08/13/18 12:38	08/15/18 14:15	7439-93-2	D3
Molybdenum	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 13:18	7439-98-7	
Nickel	0.0026J	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 13:18	7440-02-0	
Selenium	0.0047J	mg/L	0.010	0.0014	1	08/13/18 12:38	08/14/18 13:18	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 13:18	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	08/13/18 12:38	08/14/18 13:18	7440-28-0	
Vanadium	0.0029J	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 13:18	7440-62-2	
Zinc	0.0040J	mg/L	0.010	0.0021	1	08/13/18 12:38	08/14/18 13:18	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	08/13/18 16:20	08/14/18 09:55	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	1260	mg/L	25.0	10.0	1		08/10/18 15:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	3.9	mg/L	0.25	0.024	1		08/14/18 21:50	16887-00-6	
Fluoride	ND	mg/L	0.23	0.024	1		08/14/18 21:50		
Sulfate	797	mg/L	50.0	0.029	50		08/15/18 03:41		M1

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Sample: Dup-1	Lab ID:	268070003	Collecte	ed: 08/06/18	3 00:00	Received: 08/	09/18 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/13/18 12:38	08/14/18 13:30	7440-36-0	
Arsenic	0.0027J	mg/L	0.0050	0.00057	1	08/13/18 12:38	08/14/18 13:30	7440-38-2	
Barium	0.075	mg/L	0.010	0.00078	1	08/13/18 12:38	08/14/18 13:30	7440-39-3	
Beryllium	ND	mg/L	0.015	0.00025	5	08/13/18 12:38	08/15/18 14:21	7440-41-7	D3
Boron	ND	mg/L	0.20	0.020	5	08/13/18 12:38	08/15/18 14:21	7440-42-8	D3
Cadmium	ND	mg/L	0.0010	0.000093	1	08/13/18 12:38	08/14/18 13:30	7440-43-9	
Calcium	171	mg/L	25.0	0.69	50	08/13/18 12:38	08/14/18 13:35	7440-70-2	
Chromium	0.0016J	mg/L	0.010	0.0016	1	08/13/18 12:38	08/14/18 13:30	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	08/13/18 12:38	08/14/18 13:30	7440-48-4	
Copper	0.0017J	mg/L	0.025	0.0013	1	08/13/18 12:38	08/14/18 13:30	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	08/13/18 12:38	08/14/18 13:30	7439-92-1	
Lithium	ND	mg/L	0.25	0.0049	5	08/13/18 12:38	08/15/18 14:21	7439-93-2	D3
Molybdenum	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 13:30	7439-98-7	
Nickel	0.0026J	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 13:30	7440-02-0	
Selenium	0.0046J	mg/L	0.010	0.0014	1	08/13/18 12:38	08/14/18 13:30	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 13:30	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	08/13/18 12:38	08/14/18 13:30	7440-28-0	
Vanadium	0.0034J	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 13:30	7440-62-2	
Zinc	0.0047J	mg/L	0.010	0.0021	1	08/13/18 12:38	08/14/18 13:30	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	08/13/18 16:20	08/14/18 09:58	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	1230	mg/L	25.0	10.0	1		08/10/18 15:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	3.9	mg/L	0.25	0.024	1		08/14/18 22:10	16887-00-6	
Fluoride	ND	mg/L	0.23	0.024	1		08/14/18 22:10		
Sulfate	849	mg/L	20.0	0.029	20		08/16/18 16:07		

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Sample: GWC-3R	Lab ID:	268070004	Collecte	ed: 08/07/18	3 10:20	Received: 08/	09/18 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	thod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/13/18 12:38	08/14/18 13:41	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	08/13/18 12:38	08/14/18 13:41	7440-38-2	
Barium	0.029	mg/L	0.010	0.00078	1	08/13/18 12:38	08/14/18 13:41	7440-39-3	
Beryllium	0.00026J	mg/L	0.0030	0.000050	1	08/13/18 12:38	08/14/18 13:41	7440-41-7	
Boron	0.0049J	mg/L	0.040	0.0039	1	08/13/18 12:38	08/14/18 13:41	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	08/13/18 12:38	08/14/18 13:41	7440-43-9	
Calcium	4.7	mg/L	0.50	0.014	1	08/13/18 12:38	08/14/18 13:41	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	08/13/18 12:38	08/14/18 13:41	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	08/13/18 12:38	08/14/18 13:41	7440-48-4	
Copper	ND	mg/L	0.025	0.0013	1	08/13/18 12:38	08/14/18 13:41	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	08/13/18 12:38	08/14/18 13:41	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	08/13/18 12:38	08/14/18 13:41	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 13:41	7439-98-7	
Nickel	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 13:41	7440-02-0	
Selenium	0.0016J	mg/L	0.010	0.0014	1	08/13/18 12:38	08/14/18 13:41	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 13:41	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	08/13/18 12:38	08/14/18 13:41	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 13:41	7440-62-2	
Zinc	0.0036J	mg/L	0.010	0.0021	1	08/13/18 12:38	08/14/18 13:41	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	08/13/18 16:20	08/14/18 10:00	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	99.0	mg/L	25.0	10.0	1		08/10/18 15:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	6.3	mg/L	0.25	0.024	1		08/14/18 22:31	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		08/14/18 22:31	16984-48-8	
Sulfate	38.8	mg/L	1.0	0.017	1		08/14/18 22:31		

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Sample: FB-1-8-7-18	Lab ID:	268070005	Collecte	ed: 08/07/18	3 08:55	Received: 08/	09/18 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/13/18 12:38	08/14/18 14:05	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	08/13/18 12:38	08/14/18 14:05	7440-38-2	
Barium	ND	mg/L	0.010	0.00078	1	08/13/18 12:38	08/14/18 14:05	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	08/13/18 12:38	08/14/18 14:05	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	08/13/18 12:38	08/14/18 14:05	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	08/13/18 12:38	08/14/18 14:05	7440-43-9	
Calcium	0.025J	mg/L	0.50	0.014	1	08/13/18 12:38	08/14/18 14:05	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	08/13/18 12:38	08/14/18 14:05	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	08/13/18 12:38	08/14/18 14:05	7440-48-4	
Copper	ND	mg/L	0.025	0.0013	1	08/13/18 12:38	08/14/18 14:05	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	08/13/18 12:38	08/14/18 14:05	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	08/13/18 12:38	08/14/18 14:05	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 14:05	7439-98-7	
Nickel	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 14:05	7440-02-0	
Selenium	ND	mg/L	0.010	0.0014	1	08/13/18 12:38	08/14/18 14:05	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 14:05	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	08/13/18 12:38	08/14/18 14:05	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 14:05	7440-62-2	
Zinc	0.0023J	mg/L	0.010	0.0021	1	08/13/18 12:38	08/14/18 14:05	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	08/13/18 16:20	08/14/18 10:03	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	ND	mg/L	25.0	10.0	1		08/10/18 15:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	0.11J	mg/L	0.25	0.024	1		08/14/18 22:52	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		08/14/18 22:52		
Sulfate	ND	mg/L	1.0	0.017	1		08/14/18 22:52		

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Sample: GWC-1R	Lab ID:	268070006	Collecte	ed: 08/07/18	3 13:25	Received: 08/	09/18 13:30 Ma	atrix: Water	r					
			Report											
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua					
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A								
Antimony	ND	mg/L	0.0030	0.00078	1	08/13/18 12:38	08/14/18 14:11	7440-36-0						
Arsenic	ND	mg/L	0.0050	0.00057	1	08/13/18 12:38	08/14/18 14:11	7440-38-2						
Barium	0.025	mg/L	0.010	0.00078	1	08/13/18 12:38	08/14/18 14:11	7440-39-3						
Beryllium	0.000074J	mg/L	0.0030	0.000050	1	08/13/18 12:38	08/14/18 14:11	7440-41-7						
Boron	0.043	mg/L	0.040	0.0039	1	08/13/18 12:38	08/14/18 14:11	7440-42-8						
Cadmium	ND	mg/L	0.0010	0.000093	1	08/13/18 12:38	08/14/18 14:11	7440-43-9						
Calcium	26.2	mg/L	25.0	0.69	50	08/13/18 12:38	08/14/18 14:17	7440-70-2						
Chromium	ND	mg/L	0.010	0.0016	1	08/13/18 12:38	08/14/18 14:11	7440-47-3						
Cobalt	ND	mg/L	0.010	0.00052	1	08/13/18 12:38	08/14/18 14:11	7440-48-4						
Copper	ND	mg/L	0.025	0.0013	1	08/13/18 12:38	08/14/18 14:11	7440-50-8						
Lead	ND	mg/L	0.0050	0.00027	1	08/13/18 12:38	08/14/18 14:11	7439-92-1						
_ithium	0.0010J	mg/L	0.050	0.00097	1	08/13/18 12:38	08/14/18 14:11	7439-93-2						
Molybdenum	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 14:11	7439-98-7						
Nickel	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 14:11	7440-02-0						
Selenium	ND	mg/L	0.010	0.0014	1	08/13/18 12:38	08/14/18 14:11	7782-49-2						
Silver	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 14:11	7440-22-4						
Thallium	ND	mg/L	0.0010	0.00014	1	08/13/18 12:38	08/14/18 14:11	7440-28-0						
Vanadium	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 14:11	7440-62-2						
Zinc	0.0044J	mg/L	0.010	0.0021	1	08/13/18 12:38	08/14/18 14:11	7440-66-6						
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A								
Mercury	ND	mg/L	0.00050	0.000036	1	08/13/18 16:20	08/14/18 10:05	7439-97-6						
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C											
Total Dissolved Solids	242	mg/L	25.0	10.0	1		08/10/18 15:08							
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0											
Chloride	35.4	mg/L	0.25	0.024	1		08/14/18 23:12	16887-00-6						
Fluoride	ND	mg/L	0.30	0.029	1		08/14/18 23:12							
Sulfate	100	mg/L	20.0	0.34	20		08/15/18 04:43							

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Sample: GWC-5R	Lab ID:	268070007	Collecte	ed: 08/07/18	3 11:50	Received: 08/	09/18 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	thod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/13/18 12:38	08/14/18 14:23	7440-36-0	
Arsenic	0.0021J	mg/L	0.0050	0.00057	1	08/13/18 12:38	08/14/18 14:23	7440-38-2	
Barium	0.015	mg/L	0.010	0.00078	1	08/13/18 12:38	08/14/18 14:23	7440-39-3	
Beryllium	0.00096J	mg/L	0.0030	0.000050	1	08/13/18 12:38	08/14/18 14:23	7440-41-7	
Boron	0.012J	mg/L	0.040	0.0039	1	08/13/18 12:38	08/14/18 14:23	7440-42-8	
Cadmium	0.00083J	mg/L	0.0010	0.000093	1	08/13/18 12:38	08/14/18 14:23	7440-43-9	
Calcium	83.0	mg/L	25.0	0.69	50	08/13/18 12:38	08/14/18 14:28	7440-70-2	
Chromium	0.0024J	mg/L	0.010	0.0016	1	08/13/18 12:38	08/14/18 14:23	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	08/13/18 12:38	08/14/18 14:23	7440-48-4	
Copper	ND	mg/L	0.025	0.0013	1	08/13/18 12:38	08/14/18 14:23	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	08/13/18 12:38	08/14/18 14:23	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	08/13/18 12:38	08/14/18 14:23	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 14:23	7439-98-7	
Nickel	0.0019J	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 14:23	7440-02-0	
Selenium	0.021	mg/L	0.010	0.0014	1	08/13/18 12:38	08/14/18 14:23	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 14:23	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	08/13/18 12:38	08/14/18 14:23	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 14:23	7440-62-2	
Zinc	0.015	mg/L	0.010	0.0021	1	08/13/18 12:38	08/14/18 14:23	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	08/13/18 16:20	08/14/18 10:07	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	1180	mg/L	25.0	10.0	1		08/10/18 15:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.7	mg/L	0.25	0.024	1		08/14/18 23:33	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		08/14/18 23:33		
Sulfate	784	mg/L	50.0	0.85	50		08/15/18 06:26		

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Sample: GWC-4R	Lab ID:	268070008	Collecte	ed: 08/08/18	3 12:25	Received: 08/	09/18 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/13/18 12:38	08/14/18 14:34	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	08/13/18 12:38	08/14/18 14:34	7440-38-2	
Barium	0.019	mg/L	0.010	0.00078	1	08/13/18 12:38	08/14/18 14:34	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	08/13/18 12:38	08/14/18 14:34	7440-41-7	
Boron	1.3	mg/L	0.040	0.0039	1	08/13/18 12:38	08/14/18 14:34	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	08/13/18 12:38	08/14/18 14:34	7440-43-9	
Calcium	22.1J	mg/L	25.0	0.69	50	08/13/18 12:38	08/14/18 14:40	7440-70-2	D3
Chromium	ND	mg/L	0.010	0.0016	1	08/13/18 12:38	08/14/18 14:34	7440-47-3	
Cobalt	0.0010J	mg/L	0.010	0.00052	1	08/13/18 12:38	08/14/18 14:34	7440-48-4	
Copper	ND	mg/L	0.025	0.0013	1	08/13/18 12:38	08/14/18 14:34	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	08/13/18 12:38	08/14/18 14:34	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	08/13/18 12:38	08/14/18 14:34	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 14:34	7439-98-7	
Nickel	0.0012J	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 14:34	7440-02-0	
Selenium	0.0041J	mg/L	0.010	0.0014	1	08/13/18 12:38	08/14/18 14:34	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 14:34	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	08/13/18 12:38	08/14/18 14:34	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 14:34	7440-62-2	
Zinc	0.0033J	mg/L	0.010	0.0021	1	08/13/18 12:38	08/14/18 14:34	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	08/13/18 16:20	08/14/18 10:17	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	292	mg/L	25.0	10.0	1		08/10/18 15:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	69.3	mg/L	2.5	0.24	10		08/15/18 06:47	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		08/14/18 23:54		
Sulfate	79.5	mg/L	10.0	0.17	10		08/15/18 06:47		

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Sample: GWC-2R	Lab ID:	268070009	Collecte	ed: 08/08/18	3 13:30	Received: 08/	09/18 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/13/18 12:38	08/14/18 14:45	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	08/13/18 12:38	08/14/18 14:45	7440-38-2	
Barium	0.049	mg/L	0.010	0.00078	1	08/13/18 12:38	08/14/18 14:45	7440-39-3	M1
Beryllium	0.000070J	mg/L	0.0030	0.000050	1	08/13/18 12:38	08/14/18 14:45	7440-41-7	
Boron	0.017J	mg/L	0.040	0.0039	1	08/13/18 12:38	08/14/18 14:45	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	08/13/18 12:38	08/14/18 14:45	7440-43-9	
Calcium	13.4J	mg/L	25.0	0.69	50	08/13/18 12:38	08/14/18 14:51	7440-70-2	D3,M6
Chromium	ND	mg/L	0.010	0.0016	1	08/13/18 12:38	08/14/18 14:45	7440-47-3	
Cobalt	0.014	mg/L	0.010	0.00052	1	08/13/18 12:38	08/14/18 14:45	7440-48-4	
Copper	ND	mg/L	0.025	0.0013	1	08/13/18 12:38	08/14/18 14:45	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	08/13/18 12:38	08/14/18 14:45	7439-92-1	
Lithium	0.0031J	mg/L	0.050	0.00097	1	08/13/18 12:38	08/14/18 14:45	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 14:45	7439-98-7	
Nickel	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 14:45	7440-02-0	
Selenium	0.0025J	mg/L	0.010	0.0014	1	08/13/18 12:38	08/14/18 14:45	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 14:45	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	08/13/18 12:38	08/14/18 14:45	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 14:45	7440-62-2	
Zinc	0.0021J	mg/L	0.010	0.0021	1	08/13/18 12:38	08/14/18 14:45	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	08/13/18 16:20	08/14/18 10:19	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	166	mg/L	25.0	10.0	1		08/10/18 15:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.7	mg/L	0.25	0.024	1		08/15/18 01:37	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		08/15/18 01:37		
Sulfate	81.1	mg/L	10.0	0.17	10		08/15/18 07:07		

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Sample: EB-1-8-8-18	Lab ID:	268070010	Collecte	ed: 08/08/18	3 13:15	Received: 08/	09/18 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	thod: El	PA 3005A			
Antimony	0.0013J	mg/L	0.0030	0.00078	1	08/13/18 12:38	08/14/18 16:04	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00057	1	08/13/18 12:38	08/14/18 16:04	7440-38-2	
Barium	ND	mg/L	0.010	0.00078	1	08/13/18 12:38	08/14/18 16:04	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	08/13/18 12:38	08/14/18 16:04	7440-41-7	
Boron	ND	mg/L	0.040	0.0039	1	08/13/18 12:38	08/14/18 16:04	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.000093	1	08/13/18 12:38	08/14/18 16:04	7440-43-9	
Calcium	0.027J	mg/L	0.50	0.014	1	08/13/18 12:38	08/14/18 16:04	7440-70-2	
Chromium	ND	mg/L	0.010	0.0016	1	08/13/18 12:38	08/14/18 16:04	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00052	1	08/13/18 12:38	08/14/18 16:04	7440-48-4	
Copper	ND	mg/L	0.025	0.0013	1	08/13/18 12:38	08/14/18 16:04	7440-50-8	
Lead	ND	mg/L	0.0050	0.00027	1	08/13/18 12:38	08/14/18 16:04	7439-92-1	
Lithium	ND	mg/L	0.050	0.00097	1	08/13/18 12:38	08/14/18 16:04	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 16:04	7439-98-7	
Nickel	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 16:04	7440-02-0	
Selenium	ND	mg/L	0.010	0.0014	1	08/13/18 12:38	08/14/18 16:04	7782-49-2	
Silver	ND	mg/L	0.010	0.00095	1	08/13/18 12:38	08/14/18 16:04	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	08/13/18 12:38	08/14/18 16:04	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/13/18 12:38	08/14/18 16:04	7440-62-2	
Zinc	0.0025J	mg/L	0.010	0.0021	1	08/13/18 12:38	08/14/18 16:04	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: Ef	PA 7470A			
Mercury	ND	mg/L	0.00050	0.000036	1	08/13/18 16:20	08/14/18 10:22	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	ND	mg/L	25.0	10.0	1		08/10/18 15:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	0.098J	mg/L	0.25	0.024	1		08/15/18 01:58	16887-00-6	
Fluoride	ND	mg/L	0.20	0.024	1		08/15/18 01:58	16984-48-8	
Sulfate	ND ND	mg/L	1.0	0.023	1		08/15/18 01:58		

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

QC Batch: 11557 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Associated Lab Samples: 268070001, 268070002, 268070003, 268070004, 268070005, 268070006, 268070007, 268070008, 268070009,

268070010

METHOD BLANK: 52105 Matrix: Water

Associated Lab Samples: 268070001, 268070002, 268070003, 268070004, 268070005, 268070006, 268070007, 268070008, 268070009,

Blank

268070010

Parameter Units MDL Qualifiers Result Limit Analyzed Mercury mg/L ND 0.00050 0.000036 08/14/18 09:20 LABORATORY CONTROL SAMPLE: 52106 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers mg/L 0.0024 95 80-120 Mercury .0025

Reporting

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 52107 52108 MS MSD 268070001 Spike Spike MS MSD MS MSD % Rec Max RPD RPD Parameter Units Result Conc. % Rec % Rec Limits Conc. Result Result Qual Mercury mg/L ND .0025 .0025 0.0023 0.0023 91 75-125 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

QC Batch: 11603 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 268070001, 268070002, 268070003, 268070004, 268070005, 268070006, 268070007, 268070008, 268070009,

268070010

METHOD BLANK: 52179 Matrix: Water

Associated Lab Samples: 268070001, 268070002, 268070003, 268070004, 268070005, 268070006, 268070007, 268070008, 268070009,

268070010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00078	08/14/18 12:55	
Arsenic	mg/L	ND	0.0050	0.00057	08/14/18 12:55	
Barium	mg/L	ND	0.010	0.00078	08/14/18 12:55	
Beryllium	mg/L	ND	0.0030	0.000050	08/14/18 12:55	
Boron	mg/L	ND	0.040	0.0039	08/14/18 12:55	
Cadmium	mg/L	ND	0.0010	0.000093	08/14/18 12:55	
Calcium	mg/L	ND	0.50	0.014	08/14/18 12:55	
Chromium	mg/L	ND	0.010	0.0016	08/14/18 12:55	
Cobalt	mg/L	ND	0.010	0.00052	08/14/18 12:55	
Copper	mg/L	ND	0.025	0.0013	08/14/18 12:55	
Lead	mg/L	ND	0.0050	0.00027	08/14/18 12:55	
Lithium	mg/L	ND	0.050	0.00097	08/14/18 12:55	
Molybdenum	mg/L	ND	0.010	0.0019	08/14/18 12:55	
Nickel	mg/L	ND	0.010	0.00095	08/14/18 12:55	
Selenium	mg/L	ND	0.010	0.0014	08/14/18 12:55	
Silver	mg/L	ND	0.010	0.00095	08/14/18 12:55	
Thallium	mg/L	ND	0.0010	0.00014	08/14/18 12:55	
Vanadium	mg/L	ND	0.010	0.0019	08/14/18 12:55	
Zinc	mg/L	ND	0.010	0.0021	08/14/18 12:55	

LABORATORY CONTROL SAMPLE:	52180					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L		0.10	105	80-120	
Arsenic	mg/L	.1	0.10	101	80-120	
Barium	mg/L	.1	0.096	96	80-120	
Beryllium	mg/L	.1	0.099	99	80-120	
Boron	mg/L	1	1.0	100	80-120	
Cadmium	mg/L	.1	0.10	100	80-120	
Calcium	mg/L	1	0.99	99	80-120	
Chromium	mg/L	.1	0.10	103	80-120	
Cobalt	mg/L	.1	0.10	103	80-120	
Copper	mg/L	.1	0.10	103	80-120	
Lead	mg/L	.1	0.10	101	80-120	
Lithium	mg/L	.1	0.099	99	80-120	
Molybdenum	mg/L	.1	0.10	104	80-120	
Nickel	mg/L	.1	0.10	103	80-120	
Selenium	mg/L	.1	0.10	101	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

LABORATORY CONTROL SAMPLE: 52180

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Silver	mg/L	.1	0.095	95	80-120	
Thallium	mg/L	.1	0.10	101	80-120	
Vanadium	mg/L	.1	0.10	104	80-120	
Zinc	mg/L	.1	0.12	115	80-120	

MATRIX SPIKE & MATRIX S	ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 52181											
			MS	MSD								
		268070009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	.1	.1	0.11	0.11	113	109	75-125	4	20	
Arsenic	mg/L	ND	.1	.1	0.11	0.11	110	106	75-125	4	20	
Barium	mg/L	0.049	.1	.1	0.18	0.18	127	135	75-125	4	20	M1
Beryllium	mg/L	0.000070J	.1	.1	0.090	0.10	90	99	75-125	10	20	
Boron	mg/L	0.017J	1	1	0.91	0.95	89	93	75-125	4	20	
Cadmium	mg/L	ND	.1	.1	0.11	0.10	107	104	75-125	3	20	
Calcium	mg/L	13.4J	1	1	15.0J	14.4J	163	99	75-125	4	20	M6
Chromium	mg/L	ND	.1	.1	0.11	0.11	114	110	75-125	3	20	
Cobalt	mg/L	0.014	.1	.1	0.13	0.12	113	109	75-125	3	20	
Copper	mg/L	ND	.1	.1	0.11	0.10	109	105	75-125	4	20	
Lead	mg/L	ND	.1	.1	0.10	0.10	103	101	75-125	3	20	
Lithium	mg/L	0.0031J	.1	.1	0.092	0.10J	89	101	75-125		20	
Molybdenum	mg/L	ND	.1	.1	0.11	0.11	113	109	75-125	3	20	
Nickel	mg/L	ND	.1	.1	0.11	0.11	110	106	75-125	4	20	
Selenium	mg/L	0.0025J	.1	.1	0.11	0.10	105	101	75-125	4	20	
Silver	mg/L	ND	.1	.1	0.099	0.096	99	96	75-125	3	20	
Thallium	mg/L	ND	.1	.1	0.10	0.10	104	101	75-125	3	20	
Vanadium	mg/L	ND	.1	.1	0.12	0.12	120	115	75-125	4	20	
Zinc	mg/L	0.0021J	.1	.1	0.12	0.12	116	114	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

LABORATORY CONTROL SAMPLE: 51741

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

QC Batch: 11472 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 268070001, 268070002, 268070003, 268070004, 268070005, 268070006, 268070007, 268070008, 268070009,

268070010

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 84-108 **Total Dissolved Solids** mg/L 400 414 104 SAMPLE DUPLICATE: 51742 268070001 Dup Max

ParameterUnitsResultResultRPDRPDQualifiersTotal Dissolved Solidsmg/L158159110

SAMPLE DUPLICATE: 51743 268070008 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 292 **Total Dissolved Solids** 10 mg/L 289

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

QC Batch: 11673 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 268070001, 268070002, 268070003, 268070004, 268070005, 268070006, 268070007, 268070008, 268070009,

268070010

METHOD BLANK: 52426 Matrix: Water

Associated Lab Samples: 268070001, 268070002, 268070003, 268070004, 268070005, 268070006, 268070007, 268070008, 268070009,

268070010

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	0.25	0.024	08/14/18 20:06	
Fluoride	mg/L	ND	0.30	0.029	08/14/18 20:06	
Sulfate	mg/L	ND	1.0	0.017	08/14/18 20:06	

LABORATORY CONTROL SAMPLE.	52427	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	10	9.8	98	90-110	
Fluoride	mg/L	10	9.9	99	90-110	
Sulfate	mg/L	10	9.7	97	90-110	

MATRIX SPIKE & MATRIX SPIK	E DUPLIC	ATE: 52428			52429							
			MS	MSD					_			
		268070001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.8	10	10	13.5	13.4	96	95	90-110	1	15	
Fluoride	mg/L	0.087J	10	10	10	9.8	99	97	90-110	1	15	
Sulfate	mg/L	42.1	10	10	47.4	47.4	53	53	90-110	0	15	M1

MATRIX SPIKE SAMPLE:	52430						
		268070002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	 mg/L	3.9	10	13.0	91	90-110	
Fluoride	mg/L	ND	10	9.8	98	90-110	
Sulfate	mg/L	797	10	384	-4130	90-110 I	≣,M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 08/17/2018 12:06 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Gypsum Storage

Pace Project No.: 268070

Date: 08/17/2018 12:06 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
268070001	GWA-2	EPA 3005A	11603	EPA 6020B	11679
268070002	GWC-6R	EPA 3005A	11603	EPA 6020B	11679
268070003	Dup-1	EPA 3005A	11603	EPA 6020B	11679
268070004	GWC-3R	EPA 3005A	11603	EPA 6020B	11679
68070005	FB-1-8-7-18	EPA 3005A	11603	EPA 6020B	11679
68070006	GWC-1R	EPA 3005A	11603	EPA 6020B	11679
68070007	GWC-5R	EPA 3005A	11603	EPA 6020B	11679
68070008	GWC-4R	EPA 3005A	11603	EPA 6020B	11679
68070009	GWC-2R	EPA 3005A	11603	EPA 6020B	11679
68070010	EB-1-8-8-18	EPA 3005A	11603	EPA 6020B	11679
68070001	GWA-2	EPA 7470A	11557	EPA 7470A	11636
68070002	GWC-6R	EPA 7470A	11557	EPA 7470A	11636
68070003	Dup-1	EPA 7470A	11557	EPA 7470A	11636
68070004	GWC-3R	EPA 7470A	11557	EPA 7470A	11636
68070005	FB-1-8-7-18	EPA 7470A	11557	EPA 7470A	11636
68070006	GWC-1R	EPA 7470A	11557	EPA 7470A	11636
68070007	GWC-5R	EPA 7470A	11557	EPA 7470A	11636
68070008	GWC-4R	EPA 7470A	11557	EPA 7470A	11636
68070009	GWC-2R	EPA 7470A	11557	EPA 7470A	11636
68070010	EB-1-8-8-18	EPA 7470A	11557	EPA 7470A	11636
68070001	GWA-2	SM 2540C	11472		
68070002	GWC-6R	SM 2540C	11472		
68070003	Dup-1	SM 2540C	11472		
68070004	GWC-3R	SM 2540C	11472		
68070005	FB-1-8-7-18	SM 2540C	11472		
68070006	GWC-1R	SM 2540C	11472		
68070007	GWC-5R	SM 2540C	11472		
68070008	GWC-4R	SM 2540C	11472		
68070009	GWC-2R	SM 2540C	11472		
68070010	EB-1-8-8-18	SM 2540C	11472		
68070001	GWA-2	EPA 300.0	11673		
68070002	GWC-6R	EPA 300.0	11673		
68070003	Dup-1	EPA 300.0	11673		
68070004	GWC-3R	EPA 300.0	11673		
68070005	FB-1-8-7-18	EPA 300.0	11673		
68070006	GWC-1R	EPA 300.0	11673		
68070007	GWC-5R	EPA 300.0	11673		
68070008	GWC-4R	EPA 300.0	11673		
68070009	GWC-2R	EPA 300.0	11673		
68070010	EB-1-8-8-18	EPA 300.0	11673		

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092

(770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com

Р

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O_{3, ≤}6°C 7 - ≤6°C not frozen 2 - H₂SO₄, ≤6°C 4 - NaOH, s6°C REMARKS/ADDITIONAL INPORMATION PRESERVATION 1 - HCI, ≤6°C P - PRODUCT SL - SLUDGE L- LIQUID SD - SOLID 3 - HNO3 S- SOIL A- AIR *MATRIX CODES FOR LAB USE ONLY MO#:268070 DRINKING WATER SW - SURFACE WATER GW - GROUNDWATER STORM WATER MW - WASTEWATER A - AMBER GLASS G - CLEAR GLASS CONTAINER TYPE V - VOA VIAL P - PLASTIC S - STERILE Entered Info LIMS 0 - OTHER WATER racking #: ST. Š LAB#: (देश <u>....</u> ∢ m - 0 FS. OTHER DATE/TIME: BATE/TIME: **GLIENT ANALYSIS REQUESTED** COURIER it of Coolers 2M-846 9312/9320) S ہ 2 7 ~ 2 82S & 3SS mulbe? SdSn EPA 300.0 & SM 2540C) Ф. CI, F, SO, & TDS SAMPLE SHIPPED VIA: UPS FED-EX RELINQUISHED BY. (DOD to mottod its fisher of COC) RELINQUISHED OF ۵ Metals App. III & IV (EPA 6020/7470) CONTAINER TYPE Man Seat RESERVATION **jo** # 7 フ \supset J 7 T フ 7 7 3 Yates Gypsum Storage Phase 2 CCR & Semi-Annual Monitoring laburch@southemco.com 1400 SAMPLE IDENTIFICATION EG-1-8-8-18 FB-1-8-7-18 Heath McCorkle \propto 6wc-3R GUCISR 60c-4R 60C-2R 60 C-6 6W A-2 '89' DATE/TIME: 8-8-18 Dup-Maria Padilla -20ME DATE/TIME Plant Yates Gypsum Storage CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER းသ 9 2 4 6 υ O Σ α REQUESTED COMPLETION DATE MATRIX CODE* 5 3 **3** 3 S 241 Ralph McGill Blvd SE B10185 **G**E 3 35 8-8-18 1330 GW 3 Lauren Petty PROJECT NAME/STATE: 1430 1325 arker Collection 1310 1020 1150 5221 0855 1318 TIME l SAMPLED BY AND Atlanta, GA 30308 **CLIENT NAME** Georgia Power 104-506-7239 REPORT TO: 8-8-16 Aris PROJECT #: 8-7-18 8-1-18 8-7-8 8-7-18 Collection DATE 8-6-18 8-6-18 8-8-18 81-18

Plant Yates COC Gypsum Storage.xlsx
Plant Yates COC Gypsum Storage.xlsx

Plant Yates COC Gypsum Storage.xlsx

Record Co. Co. Co. Pb. Hg. Ni. Se. Ag. Ti. V. Zo.

Record Co. Co. Co. Co. Pb. Hg. Ni. Se. Ag. Ti. V. Zo.

Page

	Sa	mple	Condi	tion	Upon Recei	pt			
	Face Analytical Client Name	e: <i>_</i>	STA.	- P	ower		eroject#		
	urier:			•			W0#:2		
	stody Seal on Cooler/Box Present: - yes		0 5	Seals	intact: yes		PM: BM CLIENT: GRP	Due Date:	08/16/1
	pking Material: Bubble Wrap Bubble						CLIENT: ONF	DWER-COR	
	ermometer Used 23	_	of Ice	$\overline{}$	5	 	Samples en ice neel		
	oler Temperature LF · I		1 (<u>'</u> _	No II	Date and Initials	ng process has begun	3
	np should be above freezing to 6°C				Comments:		contents:_\$	19/18 M	
Ch	ain of Custody Present:	J⊒W6S		Jn/a	1.				7
Ch	ain of Custody Filled Out:	Yes	□No [Jn/a	2.				
Ch	ain of Custody Relinquished:		□No []n/a	3.				
Sa	mpler Name & Signature on COC:	Yes		JN/A	4.				
Sa	mples Arrived within Hold Time:	₽ŪYes	□No □]N/A	5.				
Sh	ort Hold Time Analysis (<72hr):	□Yes	ENO' E]N/A	6.				
Ru	sh Turn Around Time Requested:	□Yes	12NO C	Jn/a	7.				
Su	ficient Volume:	→ÐY 0 S	□No □]N/A	8.				
Co	rect Containers Used:	Yes	□No □]N/A	9.				
_	Pace Containers Used:	-EYes	□No □]N/A					
Co	ntainers Intact:	Yes]N/A	10.				
Filt	ered volume received for Dissolved tests	□Yes	□No □	₹N/A	11.				
	nple Labels match COC: Includes date/time/ID/Analysis Matrix:	JETTES G	□no □]N/A	12.				
All c	ontainers needing preservation have been checked.	-ETVes	□No □]N/A	13.				
All d	containers needing preservation are found to be in pliance with EPA recommendation.	□¥es]N/A					
exce	ptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes	ZMO -		Initial when completed		Lot # of added preservative		
Sar	nples checked for dechlorination:	□Yes	□No E	N/A	14.				
Hea	dspace in VOA Vials (>6mm):	□Yes	DNO Z	N/A	15.				
Trip	Blank Present:	₽¥	DN0 €	NA	16.		1,01		
	Blank Custody Seals Present	□Yes	□N0 -Z	MA			•		
Pac	e Trip Blank Lot # (if purchased):	·							
Clie	nt Notification/ Resolution:						Field Data Required?	Y N	
	Person Contacted:		O:	ate/T	ime:			, ,,	
С	omments/ Resolution:								
				-					
			<u> </u>	** <u>***</u>					ļ
			 		_				<u> </u>
				-			·		
P	roject Manager Review:						Date:		_
Note Certi	Whenever there is a discrepancy affecting North Calication Office i.e out of hold, incorrect preservative.	arolina co out of te	mpliance mp∴ncori	samp rect o	les, a copy of this fo	orm will i			e 24 of 24

F-ALLC003rev 3. 11 September2006

August 31, 2018

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on August 09, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Maria Padilla, Georgia Power Chris Parker, Atlantic Coast Consulting Evan Perry, Atlantic Coast Consulting

Lauren Petty, Southern Company Services, Inc. Rebecca Thornton, Pace Analytical Atlanta

(770)734-4200

CERTIFICATIONS

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133

KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012

Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Lab ID	Sample ID	Matrix	Date Collected	Date Received
268071001	GWA-2	Water	08/06/18 13:10	08/09/18 13:30
268071002	GWC-6R	Water	08/06/18 14:30	08/09/18 13:30
268071003	Dup-1	Water	08/06/18 00:00	08/09/18 13:30
268071004	GWC-3R	Water	08/07/18 10:20	08/09/18 13:30
268071005	FB-1-8-7-18	Water	08/07/18 08:55	08/09/18 13:30
268071006	GWC-1R	Water	08/07/18 13:25	08/09/18 13:30
268071007	GWC-5R	Water	08/07/18 11:50	08/09/18 13:30
268071008	GWC-4R	Water	08/08/18 12:25	08/09/18 13:30
268071009	GWC-2R	Water	08/08/18 13:30	08/09/18 13:30
268071010	EB-1-8-8-18	Water	08/08/18 13:15	08/09/18 13:30

SAMPLE ANALYTE COUNT

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
268071001	GWA-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
268071002	GWC-6R	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
268071003	Dup-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
268071004	GWC-3R	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
268071005	FB-1-8-7-18	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
268071006	GWC-1R	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
268071007	GWC-5R	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
268071008	GWC-4R	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
268071009	GWC-2R	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
268071010	EB-1-8-8-18	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Sample: GWA-2 Lab ID: 268071001 Collected: 08/06/18 13:10 Received: 08/09/18 13:30 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.196 ± 0.152 (0.278) Radium-226 pCi/L 08/22/18 18:00 13982-63-3 C:79% T:NA EPA 9320 -0.338 ± 0.448 (1.07) 08/23/18 12:43 15262-20-1 Radium-228 pCi/L C:71% T:86% Total Radium Total Radium $0.196 \pm 0.600 \quad (1.35)$ pCi/L 08/29/18 11:57 7440-14-4 Calculation

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Sample: GWC-6R PWS:	Lab ID: 26807100 Site ID:	Collected: 08/06/18 14:30 Sample Type:	Received:	08/09/18 13:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.252 ± 0.131 (0.209) C:84% T:NA	pCi/L	08/22/18 18:00	13982-63-3	
Radium-228		0.614 ± 0.553 (1.13) C:74% T:66%	pCi/L	08/23/18 15:5	1 15262-20-1	
Total Radium	Total Radium Calculation	0.866 ± 0.684 (1.34)	pCi/L	08/29/18 11:57	7 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Sample: Dup-1 PWS:	Lab ID: 26807100 Site ID:	Collected: 08/06/18 00:00 Sample Type:	Received:	08/09/18 13:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.187 ± 0.155 (0.287) C:85% T:NA	pCi/L	08/22/18 18:00	13982-63-3	
Radium-228		0.000 ± 0.409 (0.951) C:72% T:75%	pCi/L	08/23/18 15:51	15262-20-1	
Total Radium	Total Radium Calculation	0.187 ± 0.564 (1.24)	pCi/L	08/29/18 11:57	7440-14-4	

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Sample: GWC-3R PWS:	Lab ID: 26807100 Site ID:	Collected: 08/07/18 10:20 Sample Type:	Received:	08/09/18 13:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.121 ± 0.170 (0.338) C:74% T:NA	pCi/L	08/22/18 18:00	13982-63-3	
Radium-228	EPA 9320	0.255 ± 0.384 (0.830) C:72% T:86%	pCi/L	08/23/18 15:51	15262-20-1	
Total Radium	Total Radium Calculation	0.376 ± 0.554 (1.17)	pCi/L	08/29/18 11:57	7440-14-4	

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Sample: FB-1-8-7-18 PWS:	Lab ID: 26807100 Site ID:	Collected: 08/07/18 08:55 Sample Type:	Received:	08/09/18 13:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.377 ± 0.247 (0.386) C:88% T:NA	pCi/L	08/23/18 08:1	1 13982-63-3	
Radium-228	EPA 9320	0.691 ± 0.515 (1.02) C:68% T:80%	pCi/L	08/23/18 15:5	1 15262-20-1	
Total Radium	Total Radium Calculation	1.07 ± 0.762 (1.41)	pCi/L	08/29/18 11:57	7 7440-14-4	

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Sample: GWC-1R Lab ID: 268071006 Collected: 08/07/18 13:25 Received: 08/09/18 13:30 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.0814 \pm 0.174 \quad (0.409)$ Radium-226 pCi/L 08/23/18 08:11 13982-63-3 C:79% T:NA EPA 9320 $0.497 \pm 0.475 \quad (0.976)$ 08/23/18 15:51 15262-20-1 Radium-228 pCi/L C:73% T:74% Total Radium Total Radium 0.578 ± 0.649 (1.39) pCi/L 08/29/18 11:57 7440-14-4 Calculation

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Sample: GWC-5R PWS:	Lab ID: 26807100 Site ID:	7 Collected: 08/07/18 11:50 Sample Type:	Received:	08/09/18 13:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.124 ± 0.198 (0.441) C:89% T:NA	pCi/L	08/23/18 08:1	1 13982-63-3	
Radium-228		0.386 ± 0.449 (0.946) C:73% T:71%	pCi/L	08/23/18 15:5	1 15262-20-1	
Total Radium	Total Radium Calculation	0.510 ± 0.647 (1.39)	pCi/L	08/29/18 11:57	7 7440-14-4	

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Sample: GWC-4R Lab ID: 268071008 Collected: 08/08/18 12:25 Received: 08/09/18 13:30 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.0378 \pm 0.0882 \quad (0.184)$ Radium-226 pCi/L 08/23/18 18:14 13982-63-3 C:93% T:NA -0.189 ± 0.498 (1.21) EPA 9320 08/27/18 19:47 15262-20-1 Radium-228 pCi/L C:74% T:82% Total Radium Total Radium $0.0378 \pm 0.586 \quad (1.39)$ pCi/L 08/29/18 11:57 7440-14-4 Calculation

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Sample: GWC-2R PWS:	Lab ID : 26807100 Site ID:	9 Collected: 08/08/18 13:30 Sample Type:	Received:	08/09/18 13:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.645 ± 0.307 (0.373) C:90% T:NA	pCi/L	08/24/18 08:26	13982-63-3	
Radium-228		1.36 ± 0.599 (0.998) C:74% T:78%	pCi/L	08/27/18 17:02	2 15262-20-1	
Total Radium	Total Radium Calculation	2.01 ± 0.906 (1.37)	pCi/L	08/29/18 11:57	7440-14-4	

Project: Plant Yates Gypsum Storage

Calculation

Pace Project No.: 268071

Sample: EB-1-8-8-18 Lab ID: 268071010 Collected: 08/08/18 13:15 Received: 08/09/18 13:30 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.0489 \pm 0.132 \quad (0.324)$ Radium-226 pCi/L 08/24/18 08:26 13982-63-3 C:98% T:NA $0.870 \pm 0.500 \quad (0.921)$ EPA 9320 Radium-228 pCi/L 08/27/18 17:25 15262-20-1 C:74% T:85% Total Radium Total Radium $0.919 \pm 0.632 \quad (1.25)$ pCi/L 08/29/18 11:57 7440-14-4

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

QC Batch: 310120 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 268071008, 268071009, 268071010

METHOD BLANK: 1515356 Matrix: Water

Associated Lab Samples: 268071008, 268071009, 268071010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.667 \pm 0.392 (0.705) C:76% T:80% pCi/L 08/27/18 16:38

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

QC Batch: 309688 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 268071001, 268071002, 268071003, 268071004, 268071005, 268071006, 268071007

METHOD BLANK: 1513132 Matrix: Water

Associated Lab Samples: 268071001, 268071002, 268071003, 268071004, 268071005, 268071006, 268071007

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.101 \pm 0.101 (0.190) C:90% T:NA pCi/L 08/22/18 16:23

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

QC Batch: 309687 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 268071001, 268071002, 268071003, 268071004, 268071005, 268071006, 268071007

METHOD BLANK: 1513131 Matrix: Water

Associated Lab Samples: 268071001, 268071002, 268071003, 268071004, 268071005, 268071006, 268071007

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.429 ± 0.382 (0.771) C:76% T:72% pCi/L 08/23/18 10:47

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

QC Batch: 310356 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 268071008, 268071009, 268071010

METHOD BLANK: 1516172 Matrix: Water

Associated Lab Samples: 268071008, 268071009, 268071010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.0838 \pm 0.0900 (0.171) C:99% T:NA pCi/L 08/23/18 18:14

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 08/31/2018 10:39 AM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Gypsum Storage

Pace Project No.: 268071

Date: 08/31/2018 10:39 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
268071001	GWA-2	EPA 9315	309688		
268071002	GWC-6R	EPA 9315	309688		
268071003	Dup-1	EPA 9315	309688		
268071004	GWC-3R	EPA 9315	309688		
268071005	FB-1-8-7-18	EPA 9315	309688		
268071006	GWC-1R	EPA 9315	309688		
268071007	GWC-5R	EPA 9315	309688		
268071008	GWC-4R	EPA 9315	310356		
268071009	GWC-2R	EPA 9315	310356		
268071010	EB-1-8-8-18	EPA 9315	310356		
268071001	GWA-2	EPA 9320	309687		
268071002	GWC-6R	EPA 9320	309687		
268071003	Dup-1	EPA 9320	309687		
268071004	GWC-3R	EPA 9320	309687		
268071005	FB-1-8-7-18	EPA 9320	309687		
268071006	GWC-1R	EPA 9320	309687		
268071007	GWC-5R	EPA 9320	309687		
268071008	GWC-4R	EPA 9320	310120		
268071009	GWC-2R	EPA 9320	310120		
268071010	EB-1-8-8-18	EPA 9320	310120		
268071001	GWA-2	Total Radium Calculation	311318		
268071002	GWC-6R	Total Radium Calculation	311318		
268071003	Dup-1	Total Radium Calculation	311318		
268071004	GWC-3R	Total Radium Calculation	311318		
268071005	FB-1-8-7-18	Total Radium Calculation	311318		
268071006	GWC-1R	Total Radium Calculation	311318		
268071007	GWC-5R	Total Radium Calculation	311318		
268071008	GWC-4R	Total Radium Calculation	311318		
268071009	GWC-2R	Total Radium Calculation	311318		
268071010	EB-1-8-8-18	Total Radium Calculation	311318		

CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200 : FAX (770) 734-4201 : www.asi-lab.com Pace Analytical"

P

PAGE:

5 - NaOH/ZnAc, ≤6°C 6 - Na₂S₂O_{3, ≤6°C} 7 - ≤6°C not frozen 2 - H₂SO4, ≤6°C 4 - NaOH, ≤6°C REMARKS/ADDITIONAL INFORMATION PRESERVATION 1 - HCI, ≤6°C P - PRODUCT St. SLUDGE 3 - HNO3 L- LIQUID SD- SOLID A- AIR *MATRIX CODES FOR LAB USE ONLY င်္ပ MO# . 26807 **DRINKING WATER** SW - SURFACE WATER GW - GROUNDWATER ST - STORM WATER A - AMBER GLASS G - CLEAR GLASS MW - WASTEWATER CONTAINER TYPE V - VOA VIAL S - STERILE O - OTHER P - PLASTIC W- WATER racking #: ... 78 --2 D 2 0 U c ≺ 🛭 525 OTHER FS. BATE/TIME CLIENT/ Cooler 10: ANALYSIS REQUESTED COURIER (SW-846 9315/9320) ۵ 4 က 7 ٦ 2 Radium 226 & 228 USPS (EPA 300.0 & SM 2540C) ۵ Custody Seat: Marct Broken Not Present CI, F, SO, & TDS SAMPLE SHIPPED VIA (plus metals list at bottom of COC) ۵ ო RELINQUISHED BY. RELINQUISHED 67 Metals App. III & IV (EPA 6020/7470) FEDEX CONTAINER TYPE: PRESERVATION ***** + ァ ב 5 T フ 7 7 3 7 Yates Gypsum Storage Phase 2 CCR & Semi-Annual Monitoring laburch@southernco.com SAMPLE IDENTIFICATION 1400 FB-1-8-7-18 EB-1-8-8-18 Heath McCorkle 60 C-6R 6wc-3R SUCSR 60c-4R 600c-2R 5-A W3 110c-1R Dup-DATE/TIME: 8-18 Mana Padilla Plant Yates Gypsum Storage DATE/TIME CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER ပ္ပ o α **∢ α** Bec 0 O Z a REQUESTED COMPLETION DATE MATRIX CODE* 241 Ralph McGill Blvd SE B10185 3 3 3 S S S Э З **3** 3 3 3 Lauren Petty PROJECT NAME/STATE: 1020 Collection 1430 1325 5221 1330 0855 1150 TIME rke 1318 Atlanta, GA 30308 AMPLED BY AND CLIENT NAME Georgia Power 404-506-7239 REPORT TO 8-8-16 ECEIVED BY PROJECT #: 8-9-8 8-7-18 8-7-18 8-7-18 8-8-18 8-8-18 8-6-16 Collection 8-9-18 DATE 8.7-18

Blank Yates COC Gypsum Storage.xlsx

Plant Yates COC Gypsum Storage.xlsx

of control of

	Same of the same o		Sample	Cor	nditi	on Upon Re	coint		Ì			
	Face Analytical	Client Na	ame:(91	Æ	Power	recibi		: Project 4	ц		
Co	urier: D Ead C. D.					1 0000			Project #	-		
Tr	ourier: Fed Ex UPS	∐usps -Z ——	Client [omr	nercia	Pace O	ther	+	WO#	:2	68071	
	stody Seal on Cooler/Box I	Present: 🖊	yes 🗆 r	0	Sea	als intact:	V98	Щ.	PM: BM		Due Date.	09/07/19
Pa 	cking Material: Dubble \	Wrap □Bu	ibble Bags		None_			1	CLIENT:	GAPo	wer-CCR	15,07,18
	ermometer Used	33	1			et) Blue None		∰_				
Cod	pler Temperature	4.1	Biolog	ical	neelT	e is Frozen: Yes		Щs	Camples on ic	e, cooli	ig process has begun	<u>. </u>
	p should be above freezing to 6	°C /				Comments:	a No		content	s:_ <i>\$</i> /	of person examining	
	in of Custody Present:		Tes	□×0	□n/,			╁				
	in of Custody Filled Out:		Yes	□No	□N//	2.		╁				
	n of Custody Relinquished:	· · · · · · · · · · · · · · · · · · ·	₽ Yes i	JNo	□N/A	3.		╁-				\coprod
Sam	pler Name & Signature on Co	OC: _	Ves (JNo	□N/A	4.		+-				1
Shor	ples Arrived within Hold Time) <u>:</u>	Yes [No	□N/A	5.		╁╌			·	$\downarrow \downarrow$
Rush	t Hold Time Analysis (<72h	τ):	□Yes ₽	ন্যত7	□N/A	6.		+-				$\perp \downarrow$
Suffic	Turn Around Time Reques	sted:	□Yes €				 	#-				$\downarrow \downarrow$
			-₽Yes □					╫╌				\coprod
	ct Containers Used:		√EYes □				 	╁				Ц
	ace Containers Used:		-El Ves									
	iners Intact:		-□Yes □			10.		 				\mathbb{I}
rittere	d volume received for Dissolv	ved tests	□Yes □				 	╫┈				
,	e Labels match COC:		→ElYes □				 	╂				
-Inc	ludes date/time/ID/Analysis iners needing preservation have b	Matrix:	_ G1 0	O	1	· C.						
			-2783 UN]N/A 1	2		+]
All conta compliar	iners needing preservation are face with EPA recommendation.	ound to be in	□ Yes □ N		N/A	· 3.						
	8: VOA, coliform, TOC, O&G, WI-DE		□Yes □ M			nitial when ompleted			of added	 -		}
	s checked for dechlorination:		□Yes □No	Ą.	NA 1	4.		1				!
Headsp.	ace in VOA Vials (>6mm):		□Yes □Nd	Ų	VA 15	 5.		+				
Trip Blai	nk Present:		□Yas □No	2	VA 16			1				
Trip Blan	k Custody Seals Present		□Yes □Nc	بح.	I.A				اوا			
Pace Tri	p Blank Lot # (if purchased):				1							
Cliont N	otification/ Resolution:							1				
							F	ield D	ata Required	37	Y N	
Comm	erson Contacted:			_Dat	:e/Tim	e:		#				
Comm	ents/ Resolution:	*-					<u> </u>					
								1				
					<u> </u>			-				
								╁╴				
		* ** **** **						+				
-					-	· · · · · ·		#				
Projec	t Manager Review:					 			Date:			
Note: MA	anguar thare in a sis	Haakaa kir al- A										
Certification	enever there is a discrepancy af in Office the but of hold, incorre	necting North Ca act praservative	aliamos anlient amet is tus	rce sa rcorre	amble: ect con	s, a popy of this for tainers	Th Will Ce	e sent	to the North	Carolin		ge 22 of 22
									e-4_1000	Bray B :	1 September2006	

Date: 2018-08-06 13:09:02

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Project Information:

Operator Name Chris Parker

Company Name Atlantic Coast Consulting Project Name Plant Yates Gypsum Site Name Plant Yates Gypsum

Latitude 0° 0' 0"

Longitude 0° 0' 0"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Pump placement from TOC

47 ft

Poly

.25 in

52 ft

QED bladder pump

Well Information:

Well IDGWA-2Well diameter2 inWell Total Depth52.13 ftScreen Length10 ftDepth to Water39.15 ft

Pumping Information:

Final Pumping Rate 100 mL/min
Total System Volume 0.986942 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 14 in
Total Volume Pumped 6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0		
Last 5	12:45:29	1802.99	19.62	5.99	211.78	1.37	40.30	1.16	87.35		
Last 5	12:50:29	2102.98	19.77	5.98	209.89	1.45	40.30	1.04	88.42		
Last 5	12:55:29	2402.98	19.59	5.97	207.59	1.21	40.30	0.90	89.47		
Last 5	13:00:30	2703.97	19.98	6.00	207.08	1.48	40.30	0.84	87.54		
Last 5	13:05:35	3008.97	20.21	6.01	206.34	1.28	40.30	0.81	87.55		
Variance 0			-0.18	-0.01	-2.30			-0.14	1.05		
Variance 1			0.39	0.03	-0.51			-0.06	-1.93		
Variance 2			0.24	0.00	-0.74			-0.03	0.01		

Notes

Collected at 13:10. Sunny 90s.

Date: 2018-08-07 13:19:41

Project Information:

Operator Name

Chris Parker

Pump Information:

Pump Model/Type

Operator NameChris ParkerPump Model/TypePeripumpCompany NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length36 ft

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 31 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-1R 1140 mL/min Well diameter Total System Volume 0.2506832 L 2 in Calculated Sample Rate Well Total Depth 36.34 ft 300 sec Stabilization Drawdown Screen Length 10 ft 6 in Depth to Water 5.5 L 23.68 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	12:56:05	600.03	21.74	4.89	351.12	3.41	24.30	6.78	194.25
Last 5	13:01:05	900.02	20.70	4.97	344.05	4.34	24.40	6.86	185.43
Last 5	13:06:05	1200.02	20.42	5.13	350.76	4.12	24.40	6.89	176.50
Last 5	13:11:05	1500.01	20.30	5.12	358.46	4.02	24.40	6.89	174.61
Last 5	13:16:05	1800.01	20.49	5.14	365.23	3.72	24.40	6.82	172.04
Variance 0			-0.28	0.16	6.70			0.03	-8.92
Variance 1			-0.11	-0.01	7.70			0.01	-1.89
Variance 2			0.18	0.02	6.77			-0.07	-2.58

Notes

Collected at 13:25. Cloudy 90s.

Date: 2018-08-08 13:31:42

Project Information:

Operator Name

Chris Parker

Pump Information:

Pump Model/Type

Operator NameChris ParkerPump Model/TypePeripumpCompany NameAtlantic Coast ConsultingTubing TypePolyProject NamePlant Yates GypsumTubing Diameter.17 inSite NamePlant Yates GypsumTubing Length43 ft

Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 466086

Turbidity Make/Model Hach 2100 Q Pump placement from TOC 38 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID GWC-2R 150 mL/min Well diameter Total System Volume 0.2819272 L 2 in Calculated Sample Rate Well Total Depth 43.80 ft 300 sec Stabilization Drawdown Screen Length 10 ft 2 in Depth to Water 5.3 L 29.15 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	13:01:49	300.04	21.46	4.87	240.04	4.08	29.30	3.62	159.74
Last 5	13:06:49	600.03	21.01	5.03	241.37	3.03	29.30	3.48	150.18
Last 5	13:16:49	1200.02	20.79	5.08	245.75	2.78	29.30	3.49	148.10
Last 5	13:21:49	1500.01	20.92	5.15	245.52	3.01	29.30	3.55	129.90
Last 5	13:26:49	1800.01	20.84	5.15	244.10	2.86	29.30	3.49	119.41
Variance 0			-0.22	0.05	4.38			0.01	-2.08
Variance 1			0.12	0.07	-0.23			0.05	-18.20
Variance 2			-0.08	0.01	-1.43			-0.06	-10.50

Notes

Collected at 13:30. Sunny 90s. EB 1 here at 13:15.

Date: 2018-08-07 10:21:05

Project Information:

Operator Name Chris Parker

Company Name Atlantic Coast Consulting
Project Name Plant Yates Gypsum
Site Name Plant Yates Gypsum

Latitude 0° 0' 0"

Longitude 0° 0' 0"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Pump Information:

Pump Model/Type QED bladder pump

33 ft

Tubing TypePolyTubing Diameter.25 inTubing Length38 ft

Pump placement from TOC

Well Information:

Well ID GWC-3R
Well diameter 2 in
Well Total Depth 38.34 ft
Screen Length 10 ft
Depth to Water 29.36 ft

Pumping Information:
Final Pumping Rate 280 mL/min
Total System Volume 0.8518038 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 10 in
Total Volume Pumped 17 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	09:52:51	900.02	18.36	4.99	145.62	2.78	30.20	6.92	149.93
Last 5	09:57:51	1200.00	18.44	4.96	144.74	2.68	30.20	6.89	154.15
Last 5	10:02:51	1500.00	18.40	4.98	143.63	3.01	30.20	6.90	153.53
Last 5	10:07:51	1800.05	18.34	4.97	143.27	2.65	30.20	6.91	155.42
Last 5	10:12:51	2100.00	18.61	4.95	142.00	2.69	30.20	6.87	158.97
Variance 0			-0.03	0.02	-1.11			0.01	-0.62
Variance 1			-0.06	-0.01	-0.36			0.01	1.89
Variance 2			0.27	-0.02	-1.26			-0.03	3.55

Notes

Collected at 10:20. Sunny 80s. FB 1 here at 08:55

Date: 2018-08-08 12:22:08

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Project Information:

Operator Name Chris Parker

Company Name Atlantic Coast Consulting
Project Name Plant Yates Gypsum
Site Name Plant Yates Gypsum

Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Pump placement from TOC

26 ft

Peripump

Poly

.17 in

31 ft

Well Information:

Well IDGWC-4RWell diameter2 inWell Total Depth31.05 ftScreen Length10 ftDepth to Water16.80 ft

Pumping Information:

Final Pumping Rate 190 mL/min
Total System Volume 0.2283661 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 4 in
Total Volume Pumped 21 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	12:00:02	4802.94	21.86	5.32	602.06	2.01	17.10	2.27	134.90
Last 5	12:05:03	5103.93	21.45	5.29	598.01	2.13	17.10	2.50	136.36
Last 5	12:10:06	5406.92	21.82	5.30	540.51	2.40	17.10	2.69	135.93
Last 5	12:15:06	5706.90	21.73	5.31	554.36	1.73	17.10	2.62	136.33
Last 5	12:20:07	6007.91	21.36	5.33	540.56	1.65	17.10	2.79	138.84
Variance 0			0.37	0.01	-57.50			0.19	-0.42
Variance 1			-0.09	0.01	13.85			-0.06	0.39
Variance 2			-0.37	0.01	-13.80			0.16	2.51

Notes

Collected at 12:25. Sunny 90s

Date: 2018-08-07 11:51:25

Tubing Type

Pump Information: Pump Model/Type

Tubing Diameter

Pump placement from TOC

Tubing Length

QED bladder pump

Poly

.25 in

42 ft

37.8 ft

Project Information:

Operator Name Chris Parker

Company Name
Project Name
Site Name
Atlantic Coast Consulting
Plant Yates Gypsum
Plant Yates Gypsum

Latitude 0° 0' 0"

Longitude 0° 0' 0"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Well Information: Pumping Information:

Final Pumping Rate 110 mL/min Well ID GWC-5R Well diameter Total System Volume 0.8904147 L 2 in Calculated Sample Rate Well Total Depth 42.82 ft 300 sec Stabilization Drawdown Screen Length 10 ft 10 in Depth to Water 29.52 ft **Total Volume Pumped** 7.1 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilizatio	n		+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	11:29:16	2399.99	21.46	4.98	1493.56	6.61	30.40	7.54	181.37
Last 5	11:34:16	2699.98	21.42	5.01	1456.48	5.89	30.40	7.50	180.66
Last 5	11:39:16	2999.98	21.64	5.04	1431.03	5.11	30.40	7.46	181.82
Last 5	11:44:16	3299.97	21.73	5.04	1413.22	4.78	30.40	7.63	181.57
Last 5	11:49:16	3599.96	21.69	5.06	1391.64	4.65	30.40	7.58	183.56
Variance 0			0.22	0.04	-25.45			-0.04	1.17
Variance 1			0.09	-0.01	-17.81			0.17	-0.25
Variance 2			-0.04	0.03	-21.58			-0.04	1.98

Notes

Collected at 11:50. Sunny 90s.

Date: 2018-08-06 14:27:24

Project Information:

Operator Name Chris Parker

Company Name Atlantic Coast Consulting
Project Name Plant Yates Gypsum
Site Name Plant Yates Gypsum

Latitude 0° 0' 0"

Longitude 0° 0' 0"

Sonde SN 466086

Turbidity Make/Model Hach 2100 Q

Pump Information:

Pump Model/Type Bladder Pump

Tubing TypePolyTubing Diameter.25 inTubing Length51 ft

Pump placement from TOC 46 ft

Well Information:

Well ID GWC-6R
Well diameter 2 in
Well Total Depth 51.87 ft
Screen Length 10 ft
Depth to Water 37.61 ft

Pumping Information:

Final Pumping Rate 180 mL/min
Total System Volume 0.9772893 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 7 in
Total Volume Pumped 7 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	14:03:24	600.02	18.05	5.76	1423.17	1.26	38.10	4.90	111.80
Last 5	14:08:24	900.01	17.84	5.81	1424.15	1.11	38.10	4.77	108.02
Last 5	14:13:24	1200.01	17.62	5.80	1430.12	1.04	38.20	4.78	107.84
Last 5	14:18:24	1500.00	17.63	5.78	1435.51	0.98	38.20	4.84	107.87
Last 5	14:23:24	1800.00	17.73	5.84	1444.74	1.03	38.20	4.77	104.51
Variance 0			-0.22	-0.02	5.97			0.01	-0.18
Variance 1			0.01	-0.02	5.39			0.05	0.03
Variance 2			0.09	0.06	9.24			-0.06	-3.36

Notes

Collected at 14:30. Sunny 90s. DUP 1 here

June 21, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on June 14, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Chris Parker, Atlantic Coast Consulting
Evan Perry, Atlantic Coast Consulting
Lauren Petty, Southern Company Services, Inc.
Rebecca Thornton, Pace Analytical Atlanta

CERTIFICATIONS

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2619701001	GWA-2	Water	06/12/19 11:50	06/14/19 09:25
2619701002	GWC-1R	Water	06/13/19 14:55	06/14/19 09:25
2619701003	GWC-2R	Water	06/12/19 15:15	06/14/19 09:25
2619701004	GWC-3R	Water	06/13/19 10:25	06/14/19 09:25
2619701005	GWC-4R	Water	06/12/19 14:10	06/14/19 09:25
2619701006	GWC-5R	Water	06/13/19 12:55	06/14/19 09:25
2619701007	GWC-6R	Water	06/13/19 13:55	06/14/19 09:25
2619701008	EB-1-6-12-19	Water	06/12/19 13:10	06/14/19 09:25
2619701009	Dup-1	Water	06/13/19 00:00	06/14/19 09:25
2619701010	FB-1-6-13-19	Water	06/13/19 11:10	06/14/19 09:25

SAMPLE ANALYTE COUNT

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2619701001	GWA-2	EPA 6020B	CSW	17
		EPA 7470A	DRB	1
		SM 2540C	M1O	1
		EPA 300.0	RLC	3
2619701002	GWC-1R	EPA 6020B	CSW	17
		EPA 7470A	DRB	1
		SM 2540C	M1O	1
		EPA 300.0	RLC	3
2619701003	GWC-2R	EPA 6020B	CSW	17
		EPA 7470A	DRB	1
		SM 2540C	M1O	1
		EPA 300.0	RLC	3
2619701004	GWC-3R	EPA 6020B	CSW	17
		EPA 7470A	DRB	1
		SM 2540C	M1O	1
		EPA 300.0	RLC	3
2619701005	GWC-4R	EPA 6020B	CSW	17
		EPA 7470A	DRB	1
		SM 2540C	M1O	1
		EPA 300.0	RLC	3
2619701006	GWC-5R	EPA 6020B	CSW	17
		EPA 7470A	DRB	1
		SM 2540C	M1O	1
		EPA 300.0	RLC	3
2619701007	GWC-6R	EPA 6020B	CSW	17
		EPA 7470A	DRB	1
		SM 2540C	M1O	1
		EPA 300.0	RLC	3
2619701008	EB-1-6-12-19	EPA 6020B	CSW	17
		EPA 7470A	DRB	1
		SM 2540C	M1O	1
		EPA 300.0	RLC	3
2619701009	Dup-1	EPA 6020B	CSW	17
		EPA 7470A	DRB	1
		SM 2540C	M1O	1
		EPA 300.0	RLC	3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 7470A	DRB	1
		SM 2540C	M1O	1
		FPA 300.0	RI C	3

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Sample: GWA-2	Lab ID:	2619701001	Collecte	ed: 06/12/19	11:50	Received: 06/	14/19 09:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00027	1	06/18/19 13:30	06/19/19 15:43	7440-36-0	
Arsenic	0.00038J	mg/L	0.0050	0.00035	1	06/18/19 13:30	06/19/19 15:43	7440-38-2	
Barium	0.063	mg/L	0.010	0.00049	1	06/18/19 13:30	06/19/19 15:43	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	06/18/19 13:30	06/19/19 15:43	7440-41-7	
Boron	ND	mg/L	0.040	0.0049	1	06/18/19 13:30	06/19/19 15:43	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00011	1	06/18/19 13:30	06/19/19 15:43	7440-43-9	
Calcium	18.9	mg/L	5.0	0.55	50	06/18/19 13:30	06/19/19 15:49	7440-70-2	
Chromium	ND	mg/L	0.010	0.00039	1	06/18/19 13:30	06/19/19 15:43	7440-47-3	
Cobalt	0.0030J	mg/L	0.010	0.00030	1	06/18/19 13:30	06/19/19 15:43	7440-48-4	
Copper	0.00034J	mg/L	0.025	0.00019	1	06/18/19 13:30	06/19/19 15:43	7440-50-8	
Lead	ND	mg/L	0.0050	0.000046	1	06/18/19 13:30	06/19/19 15:43	7439-92-1	
Nickel	0.0038J	mg/L	0.010	0.00031	1	06/18/19 13:30	06/19/19 15:43		
Selenium	ND	mg/L	0.010	0.0013	1	06/18/19 13:30	06/19/19 15:43		
Silver	ND	mg/L	0.010	0.00028	1	06/18/19 13:30	06/19/19 15:43	7440-22-4	
Thallium	ND	mg/L	0.0010	0.000052	1	06/18/19 13:30	06/19/19 15:43	7440-28-0	
Vanadium	0.0032J	mg/L	0.010	0.00071	1	06/18/19 13:30	06/19/19 15:43	7440-62-2	В
Zinc	ND	mg/L	0.010	0.0015	1	06/18/19 13:30	06/19/19 15:43	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	06/18/19 08:32	06/18/19 18:02	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	226	mg/L	10.0	10.0	1		06/18/19 15:01		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.7	mg/L	0.25	0.024	1		06/18/19 22:40	16887-00-6	
Fluoride	0.12J	mg/L	0.30	0.029	1		06/18/19 22:40		
Sulfate	83.4	mg/L	5.0	0.085	5		06/19/19 09:11		M1

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Sample: GWC-1R	Lab ID:	2619701002	Collecte	ed: 06/13/19	9 14:55	Received: 06/	/14/19 09:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: Ef	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00027	1	06/18/19 13:30	06/19/19 15:55	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00035	1	06/18/19 13:30	06/19/19 15:55	7440-38-2	
Barium	0.033	mg/L	0.010	0.00049	1	06/18/19 13:30	06/19/19 15:55	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	06/18/19 13:30	06/19/19 15:55	7440-41-7	
Boron	0.057	mg/L	0.040	0.0049	1	06/18/19 13:30	06/19/19 15:55	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00011	1	06/18/19 13:30	06/19/19 15:55	7440-43-9	
Calcium	33.8	mg/L	5.0	0.55	50	06/18/19 13:30	06/19/19 16:00	7440-70-2	
Chromium	0.00090J	mg/L	0.010	0.00039	1	06/18/19 13:30	06/19/19 15:55	7440-47-3	
Cobalt	0.00033J	mg/L	0.010	0.00030	1	06/18/19 13:30	06/19/19 15:55	7440-48-4	
Copper	ND	mg/L	0.025	0.00019	1	06/18/19 13:30	06/19/19 15:55	7440-50-8	
Lead	ND	mg/L	0.0050	0.000046	1	06/18/19 13:30	06/19/19 15:55	7439-92-1	
Nickel	0.00072J	mg/L	0.010	0.00031	1	06/18/19 13:30	06/19/19 15:55	7440-02-0	
Selenium	ND	mg/L	0.010	0.0013	1	06/18/19 13:30	06/19/19 15:55	7782-49-2	
Silver	ND	mg/L	0.010	0.00028	1	06/18/19 13:30	06/19/19 15:55	7440-22-4	
Thallium	ND	mg/L	0.0010	0.000052	1	06/18/19 13:30	06/19/19 15:55	7440-28-0	
Vanadium	ND	mg/L	0.010	0.00071	1	06/18/19 13:30	06/19/19 15:55	7440-62-2	
Zinc	ND	mg/L	0.010	0.0015	1	06/18/19 13:30	06/19/19 15:55	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	06/18/19 08:32	06/18/19 18:17	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	301	mg/L	10.0	10.0	1		06/18/19 15:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	16.4	mg/L	0.25	0.024	1		06/18/19 23:03	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		06/18/19 23:03		
Sulfate	163	mg/L	10.0	0.17	10		06/19/19 09:33		

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Sample: GWC-2R	Lab ID:	2619701003	3 Collecte	ed: 06/12/19	15:15	Received: 06/	14/19 09:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	A 6020B Pre	paration Met	hod: Ef	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00027	1	06/18/19 13:30	06/19/19 16:06	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00035	1	06/18/19 13:30	06/19/19 16:06	7440-38-2	
Barium	0.046	mg/L	0.010	0.00049	1	06/18/19 13:30	06/19/19 16:06	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	06/18/19 13:30	06/19/19 16:06	7440-41-7	
Boron	0.013J	mg/L	0.040	0.0049	1	06/18/19 13:30	06/19/19 16:06	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00011	1	06/18/19 13:30	06/19/19 16:06	7440-43-9	
Calcium	26.6	mg/L	5.0	0.55	50	06/18/19 13:30	06/19/19 16:12	7440-70-2	
Chromium	ND	mg/L	0.010	0.00039	1	06/18/19 13:30	06/19/19 16:06	7440-47-3	
Cobalt	0.013	mg/L	0.010	0.00030	1	06/18/19 13:30	06/19/19 16:06	7440-48-4	
Copper	ND	mg/L	0.025	0.00019	1	06/18/19 13:30	06/19/19 16:06	7440-50-8	
Lead	ND	mg/L	0.0050	0.000046	1	06/18/19 13:30	06/19/19 16:06	7439-92-1	
Nickel	0.00043J	mg/L	0.010	0.00031	1	06/18/19 13:30	06/19/19 16:06	7440-02-0	
Selenium	0.0034J	mg/L	0.010	0.0013	1	06/18/19 13:30	06/19/19 16:06	7782-49-2	
Silver	ND	mg/L	0.010	0.00028	1	06/18/19 13:30	06/19/19 16:06	7440-22-4	
Thallium	ND	mg/L	0.0010	0.000052	1	06/18/19 13:30	06/19/19 16:06	7440-28-0	
Vanadium	0.00079J	mg/L	0.010	0.00071	1	06/18/19 13:30	06/19/19 16:06	7440-62-2	В
Zinc	0.0019J	mg/L	0.010	0.0015	1	06/18/19 13:30	06/19/19 16:06	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	06/18/19 08:32	06/18/19 18:19	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM	2540C						
Total Dissolved Solids	391	mg/L	10.0	10.0	1		06/18/19 15:01		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	9.1	mg/L	0.25	0.024	1		06/18/19 23:26	16887-00-6	
Fluoride	0.58	mg/L	0.30	0.029	1		06/18/19 23:26	16984-48-8	
Sulfate	180	mg/L	10.0	0.17	10		06/19/19 09:55	14808-70-8	

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Sample: GWC-3R	Lab ID:	2619701004	Collecte	ed: 06/13/19	10:25	Received: 06/	14/19 09:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00027	1	06/18/19 13:30	06/19/19 16:17	7440-36-0	
Arsenic	0.0016J	mg/L	0.0050	0.00035	1	06/18/19 13:30	06/19/19 16:17	7440-38-2	
Barium	0.021	mg/L	0.010	0.00049	1	06/18/19 13:30	06/19/19 16:17	7440-39-3	
Beryllium	0.00051J	mg/L	0.0030	0.000074	1	06/18/19 13:30	06/19/19 16:17	7440-41-7	
Boron	ND	mg/L	0.040	0.0049	1	06/18/19 13:30	06/19/19 16:17	7440-42-8	
Cadmium	0.00021J	mg/L	0.0010	0.00011	1	06/18/19 13:30	06/19/19 16:17	7440-43-9	
Calcium	15.7	mg/L	5.0	0.55	50	06/18/19 13:30	06/19/19 16:23		M6
Chromium	0.00073J	mg/L	0.010	0.00039	1	06/18/19 13:30	06/19/19 16:17	7440-47-3	
Cobalt	0.010	mg/L	0.010	0.00030	1	06/18/19 13:30	06/19/19 16:17	7440-48-4	
Copper	ND	mg/L	0.025	0.00019	1	06/18/19 13:30	06/19/19 16:17		
Lead	ND	mg/L	0.0050	0.000046	1	06/18/19 13:30	06/19/19 16:17	7439-92-1	
Nickel	ND	mg/L	0.010	0.00031	1	06/18/19 13:30	06/19/19 16:17		
Selenium	0.0089J	mg/L	0.010	0.0013	1	06/18/19 13:30	06/19/19 16:17		
Silver	ND	mg/L	0.010	0.00028	1	06/18/19 13:30	06/19/19 16:17	7440-22-4	
Thallium	ND	mg/L	0.0010	0.000052	1	06/18/19 13:30	06/19/19 16:17	7440-28-0	
Vanadium	0.0021J	mg/L	0.010	0.00071	1	06/18/19 13:30	06/19/19 16:17	7440-62-2	В
Zinc	0.0069J	mg/L	0.010	0.0015	1	06/18/19 13:30	06/19/19 16:17	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	06/18/19 08:32	06/18/19 18:21	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	136	mg/L	10.0	10.0	1		06/18/19 15:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	5.0	mg/L	0.25	0.024	1		06/18/19 23:49	16887-00-6	
Fluoride	0.58	mg/L	0.30	0.029	1		06/18/19 23:49	16984-48-8	
Sulfate	77.1	mg/L	2.0	0.034	2		06/19/19 10:17	14808-79-8	

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Sample: GWC-4R	Lab ID:	2619701005	Collecte	ed: 06/12/19	9 14:10	Received: 06/	/14/19 09:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	thod: El	PA 3005A			
Antimony	0.00028J	mg/L	0.0030	0.00027	1	06/18/19 13:30	06/19/19 17:09	7440-36-0	
Arsenic	0.00037J	mg/L	0.0050	0.00035	1	06/18/19 13:30	06/19/19 17:09	7440-38-2	
Barium	0.017	mg/L	0.010	0.00049	1	06/18/19 13:30	06/19/19 17:09		
Beryllium	ND	mg/L	0.0030	0.000074	1	06/18/19 13:30	06/19/19 17:09	7440-41-7	
Boron	1.5	mg/L	0.040	0.0049	1	06/18/19 13:30	06/19/19 17:09	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00011	1	06/18/19 13:30	06/19/19 17:09		
Calcium	24.2	mg/L	5.0	0.55	50	06/18/19 13:30	06/19/19 17:15		
Chromium	ND	mg/L	0.010	0.00039	1	06/18/19 13:30	06/19/19 17:09	-	
Cobalt	0.00078J	mg/L	0.010	0.00030	1	06/18/19 13:30	06/19/19 17:09		
Copper	0.00025J	mg/L	0.025	0.00019	1	06/18/19 13:30	06/19/19 17:09	7440-50-8	
₋ead	ND	mg/L	0.0050	0.000046	1	06/18/19 13:30	06/19/19 17:09	7439-92-1	
Nickel	0.00082J	mg/L	0.010	0.00031	1	06/18/19 13:30	06/19/19 17:09	7440-02-0	
Selenium	0.0029J	mg/L	0.010	0.0013	1	06/18/19 13:30	06/19/19 17:09		
Silver	ND	mg/L	0.010	0.00028	1	06/18/19 13:30	06/19/19 17:09	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.000052	1	06/18/19 13:30	06/19/19 17:09	7440-28-0	
/anadium	0.00088J	mg/L	0.010	0.00071	1	06/18/19 13:30	06/19/19 17:09	7440-62-2	В
Zinc	ND	mg/L	0.010	0.0015	1	06/18/19 13:30	06/19/19 17:09	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: El	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	06/18/19 08:32	06/18/19 18:24	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	298	mg/L	10.0	10.0	1		06/18/19 15:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	69.5	mg/L	2.5	0.24	10		06/19/19 10:39	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		06/19/19 00:12		
Sulfate	92.8	mg/L	10.0	0.023	10		06/19/19 10:39		

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Sample: GWC-5R	Lab ID:	2619701006	Collecte	ed: 06/13/19	9 12:55	Received: 06/	14/19 09:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: El	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00027	1	06/18/19 13:30	06/19/19 17:21	7440-36-0	
Arsenic	0.0012J	mg/L	0.0050	0.00035	1	06/18/19 13:30	06/19/19 17:21	7440-38-2	
Barium	0.014	mg/L	0.010	0.00049	1	06/18/19 13:30	06/19/19 17:21	7440-39-3	
Beryllium	0.0015J	mg/L	0.0030	0.000074	1	06/18/19 13:30	06/19/19 17:21	7440-41-7	
Boron	0.030J	mg/L	0.040	0.0049	1	06/18/19 13:30	06/19/19 17:21	7440-42-8	
Cadmium	0.00073J	mg/L	0.0010	0.00011	1	06/18/19 13:30	06/19/19 17:21	7440-43-9	
Calcium	127	mg/L	5.0	0.55	50	06/18/19 13:30	06/19/19 17:26	7440-70-2	
Chromium	0.0018J	mg/L	0.010	0.00039	1	06/18/19 13:30	06/19/19 17:21	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00030	1	06/18/19 13:30	06/19/19 17:21	7440-48-4	
Copper	0.00049J	mg/L	0.025	0.00019	1	06/18/19 13:30	06/19/19 17:21	7440-50-8	
Lead	ND	mg/L	0.0050	0.000046	1	06/18/19 13:30	06/19/19 17:21	7439-92-1	
Nickel	0.0019J	mg/L	0.010	0.00031	1	06/18/19 13:30	06/19/19 17:21		
Selenium	0.027	mg/L	0.010	0.0013	1	06/18/19 13:30	06/19/19 17:21		
Silver	ND	mg/L	0.010	0.00028	1	06/18/19 13:30	06/19/19 17:21	7440-22-4	
Thallium	ND	mg/L	0.0010	0.000052	1	06/18/19 13:30	06/19/19 17:21	7440-28-0	
Vanadium	ND	mg/L	0.010	0.00071	1	06/18/19 13:30	06/19/19 17:21	7440-62-2	
Zinc	0.015	mg/L	0.010	0.0015	1	06/18/19 13:30	06/19/19 17:21	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	06/18/19 08:32	06/18/19 18:26	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	1410	mg/L	10.0	10.0	1		06/18/19 15:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	5.5	mg/L	0.25	0.024	1		06/19/19 00:35	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		06/19/19 00:35		
Sulfate	976	mg/L	50.0	0.85	50		06/19/19 11:01		

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Sample: GWC-6R	Lab ID:	2619701007	Collecte	ed: 06/13/19	9 13:55	Received: 06/	14/19 09:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	thod: El	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00027	1	06/18/19 13:30	06/19/19 17:54	7440-36-0	
Arsenic	0.00068J	mg/L	0.0050	0.00035	1	06/18/19 13:30	06/19/19 17:54	7440-38-2	
Barium	0.062	mg/L	0.010	0.00049	1	06/18/19 13:30	06/19/19 17:54	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	06/18/19 13:30	06/19/19 17:54	7440-41-7	
Boron	ND	mg/L	0.040	0.0049	1	06/18/19 13:30	06/19/19 17:54	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00011	1	06/18/19 13:30	06/19/19 17:54	7440-43-9	
Calcium	146	mg/L	5.0	0.55	50	06/18/19 13:30	06/19/19 18:00	7440-70-2	
Chromium	0.00089J	mg/L	0.010	0.00039	1	06/18/19 13:30	06/19/19 17:54	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00030	1	06/18/19 13:30	06/19/19 17:54	7440-48-4	
Copper	0.0011J	mg/L	0.025	0.00019	1	06/18/19 13:30	06/19/19 17:54	7440-50-8	
Lead	ND	mg/L	0.0050	0.000046	1	06/18/19 13:30	06/19/19 17:54	7439-92-1	
Nickel	0.0037J	mg/L	0.010	0.00031	1	06/18/19 13:30	06/19/19 17:54	7440-02-0	
Selenium	0.0048J	mg/L	0.010	0.0013	1	06/18/19 13:30	06/19/19 17:54	7782-49-2	
Silver	ND	mg/L	0.010	0.00028	1	06/18/19 13:30	06/19/19 17:54	7440-22-4	
Thallium	ND	mg/L	0.0010	0.000052	1	06/18/19 13:30	06/19/19 17:54	7440-28-0	
Vanadium	ND	mg/L	0.010	0.00071	1	06/18/19 13:30	06/19/19 17:54	7440-62-2	
Zinc	ND	mg/L	0.010	0.0015	1	06/18/19 13:30	06/19/19 17:54	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: Ef	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	06/18/19 08:32	06/18/19 18:28	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	1310	mg/L	10.0	10.0	1		06/18/19 15:03		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	6.2	mg/L	0.25	0.024	1		06/19/19 00:58	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		06/19/19 00:58		
Sulfate	918	mg/L	50.0	0.85	50		06/19/19 11:22		

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Sample: EB-1-6-12-19	Lab ID:	2619701008	Collecte	ed: 06/12/19	13:10	Received: 06/	14/19 09:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00027	1	06/18/19 13:30	06/19/19 18:06	7440-36-0	
Arsenic	0.00057J	mg/L	0.0050	0.00035	1	06/18/19 13:30	06/19/19 18:06	7440-38-2	
Barium	ND	mg/L	0.010	0.00049	1	06/18/19 13:30	06/19/19 18:06	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	06/18/19 13:30	06/19/19 18:06	7440-41-7	
Boron	ND	mg/L	0.040	0.0049	1	06/18/19 13:30	06/19/19 18:06	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00011	1	06/18/19 13:30	06/19/19 18:06	7440-43-9	
Calcium	0.017J	mg/L	0.10	0.011	1	06/18/19 13:30	06/19/19 18:06	7440-70-2	
Chromium	ND	mg/L	0.010	0.00039	1	06/18/19 13:30	06/19/19 18:06	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00030	1	06/18/19 13:30	06/19/19 18:06	7440-48-4	
Copper	ND	mg/L	0.025	0.00019	1	06/18/19 13:30	06/19/19 18:06		
Lead	ND	mg/L	0.0050	0.000046	1	06/18/19 13:30	06/19/19 18:06	7439-92-1	
Nickel	ND	mg/L	0.010	0.00031	1	06/18/19 13:30	06/19/19 18:06		
Selenium	ND	mg/L	0.010	0.0013	1	06/18/19 13:30	06/19/19 18:06		
Silver	ND	mg/L	0.010	0.00028	1	06/18/19 13:30	06/19/19 18:06	-	
Thallium	ND	mg/L	0.0010	0.000052	1	06/18/19 13:30	06/19/19 18:06		
Vanadium	ND	mg/L	0.010	0.00071	1	06/18/19 13:30	06/19/19 18:06		
Zinc	ND	mg/L	0.010	0.0015	1	06/18/19 13:30	06/19/19 18:06	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	06/18/19 08:32	06/18/19 18:31	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		06/18/19 15:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	0.087J	mg/L	0.25	0.024	1		06/19/19 02:53	16887-00-6	В
Fluoride	ND	mg/L	0.30	0.029	1		06/19/19 02:53		-
Sulfate	ND	mg/L	1.0	0.017	1		06/19/19 02:53		

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Sample: Dup-1	Lab ID: 2619701009 Collected: 06/13/19 00:00 Received: 06/14/19 09:25 Matrix: Water								
Report									
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: El	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00027	1	06/18/19 13:30	06/19/19 18:11	7440-36-0	
Arsenic	0.00044J	mg/L	0.0050	0.00035	1	06/18/19 13:30	06/19/19 18:11	7440-38-2	
Barium	0.033	mg/L	0.010	0.00049	1	06/18/19 13:30	06/19/19 18:11	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	06/18/19 13:30	06/19/19 18:11	7440-41-7	
Boron	0.058	mg/L	0.040	0.0049	1	06/18/19 13:30	06/19/19 18:11	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00011	1	06/18/19 13:30	06/19/19 18:11	7440-43-9	
Calcium	35.1	mg/L	5.0	0.55	50	06/18/19 13:30	06/19/19 18:17	7440-70-2	
Chromium	0.0013J	mg/L	0.010	0.00039	1	06/18/19 13:30	06/19/19 18:11	7440-47-3	
Cobalt	0.00031J	mg/L	0.010	0.00030	1	06/18/19 13:30	06/19/19 18:11	7440-48-4	
Copper	ND	mg/L	0.025	0.00019	1	06/18/19 13:30	06/19/19 18:11	7440-50-8	
_ead	ND	mg/L	0.0050	0.000046	1	06/18/19 13:30	06/19/19 18:11	7439-92-1	
Nickel	0.00082J	mg/L	0.010	0.00031	1	06/18/19 13:30	06/19/19 18:11	7440-02-0	
Selenium	ND	mg/L	0.010	0.0013	1	06/18/19 13:30	06/19/19 18:11	7782-49-2	
Silver	ND	mg/L	0.010	0.00028	1	06/18/19 13:30	06/19/19 18:11	7440-22-4	
Гhallium	ND	mg/L	0.0010	0.000052	1	06/18/19 13:30	06/19/19 18:11	7440-28-0	
/anadium	ND	mg/L	0.010	0.00071	1	06/18/19 13:30	06/19/19 18:11	7440-62-2	
Zinc	0.0017J	mg/L	0.010	0.0015	1	06/18/19 13:30	06/19/19 18:11	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	06/18/19 08:32	06/18/19 18:33	7439-97-6	
2540C Total Dissolved Solids	Analytical Method: SM 2540C								
Total Dissolved Solids	310	mg/L	10.0	10.0	1		06/18/19 15:03		
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0								
Chloride	16.5	mg/L	0.25	0.024	1		06/19/19 03:15	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		06/19/19 03:15		
Sulfate	168	mg/L	25.0	0.42	25		06/19/19 13:33		

ANALYTICAL RESULTS

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Sample: FB-1-6-13-19	Lab ID:	2619701010	Collecte	ed: 06/13/19	11:10	Received: 06/	14/19 09:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Antimony	ND	mg/L	0.0030	0.00027	1	06/18/19 13:30	06/19/19 18:28	7440-36-0	
Arsenic	0.00064J	mg/L	0.0050	0.00035	1	06/18/19 13:30	06/19/19 18:28	7440-38-2	
Barium	ND	mg/L	0.010	0.00049	1	06/18/19 13:30	06/19/19 18:28	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	06/18/19 13:30	06/19/19 18:28	7440-41-7	
Boron	ND	mg/L	0.040	0.0049	1	06/18/19 13:30	06/19/19 18:28	7440-42-8	
Cadmium	ND	mg/L	0.0010	0.00011	1	06/18/19 13:30	06/19/19 18:28	7440-43-9	
Calcium	0.015J	mg/L	0.10	0.011	1	06/18/19 13:30	06/19/19 18:28	7440-70-2	
Chromium	0.017	mg/L	0.010	0.00039	1	06/18/19 13:30	06/19/19 18:28	7440-47-3	
Cobalt	ND	mg/L	0.010	0.00030	1	06/18/19 13:30	06/19/19 18:28	7440-48-4	
Copper	0.0011J	mg/L	0.025	0.00019	1	06/18/19 13:30	06/19/19 18:28	7440-50-8	
_ead	ND	mg/L	0.0050	0.000046	1	06/18/19 13:30	06/19/19 18:28	7439-92-1	
Nickel	0.0055J	mg/L	0.010	0.00031	1	06/18/19 13:30	06/19/19 18:28	7440-02-0	
Selenium	ND	mg/L	0.010	0.0013	1	06/18/19 13:30	06/19/19 18:28	7782-49-2	
Silver	ND	mg/L	0.010	0.00028	1	06/18/19 13:30	06/19/19 18:28	7440-22-4	
Thallium	ND	mg/L	0.0010	0.000052	1	06/18/19 13:30	06/19/19 18:28	7440-28-0	
Vanadium	0.0017J	mg/L	0.010	0.00071	1	06/18/19 13:30	06/19/19 18:28	7440-62-2	В
Zinc	0.012	mg/L	0.010	0.0015	1	06/18/19 13:30	06/19/19 18:28	7440-66-6	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	06/18/19 08:32	06/18/19 18:36	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		06/18/19 15:03		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	0.29	mg/L	0.25	0.024	1		06/19/19 04:00	16887-00-6	В
Fluoride	ND	mg/L	0.30	0.029	1		06/19/19 04:00		-
Sulfate	ND	mg/L	1.0	0.017	1		06/19/19 04:00		

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

QC Batch: 30399 Analysis Method: EPA 7470A
QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Associated Lab Samples: 2619701001, 2619701002, 2619701003, 2619701004, 2619701005, 2619701006, 2619701007, 2619701008,

2619701009, 2619701010

METHOD BLANK: 136851 Matrix: Water

Associated Lab Samples: 2619701001, 2619701002, 2619701003, 2619701004, 2619701005, 2619701006, 2619701007, 2619701008,

2619701009, 2619701010

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Mercury mg/L ND 0.00050 0.00014 06/18/19 17:58 LABORATORY CONTROL SAMPLE: 136852 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers mg/L 0.0023 93 80-120 Mercury 0.0025

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 136853 136854 MS MSD MSD 2619701001 Spike Spike MS MS MSD % Rec Max Result Result RPD Parameter Units Result Conc. Conc. % Rec % Rec Limits **RPD** Qual Mercury ND 0.0025 0.0025 0.0023 0.0023 90 90 75-125 20 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

QC Batch: 30472 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2619701001, 2619701002, 2619701003, 2619701004, 2619701005, 2619701006, 2619701007, 2619701008,

2619701009, 2619701010

METHOD BLANK: 137086 Matrix: Water

Associated Lab Samples: 2619701001, 2619701002, 2619701003, 2619701004, 2619701005, 2619701006, 2619701007, 2619701008,

2619701009, 2619701010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00027	06/19/19 15:30	
Arsenic	mg/L	ND	0.0050	0.00035	06/19/19 15:30	
Barium	mg/L	ND	0.010	0.00049	06/19/19 15:30	
Beryllium	mg/L	ND	0.0030	0.000074	06/19/19 15:30	
Boron	mg/L	ND	0.040	0.0049	06/19/19 15:30	
Cadmium	mg/L	ND	0.0010	0.00011	06/19/19 15:30	
Calcium	mg/L	ND	0.10	0.011	06/19/19 15:30	
Chromium	mg/L	ND	0.010	0.00039	06/19/19 15:30	
Cobalt	mg/L	ND	0.010	0.00030	06/19/19 15:30	
Copper	mg/L	ND	0.025	0.00019	06/19/19 15:30	
Lead	mg/L	ND	0.0050	0.000046	06/19/19 15:30	
Nickel	mg/L	ND	0.010	0.00031	06/19/19 15:30	
Selenium	mg/L	ND	0.010	0.0013	06/19/19 15:30	
Silver	mg/L	ND	0.010	0.00028	06/19/19 15:30	
Thallium	mg/L	ND	0.0010	0.000052	06/19/19 15:30	
Vanadium	mg/L	0.0033J	0.010	0.00071	06/19/19 15:30	
Zinc	mg/L	ND	0.010	0.0015	06/19/19 15:30	

LABORATORY CONTROL SAMPLE:	137087					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.099	99	80-120	
Arsenic	mg/L	0.1	0.097	97	80-120	
Barium	mg/L	0.1	0.099	99	80-120	
Beryllium	mg/L	0.1	0.097	97	80-120	
Boron	mg/L	1	0.97	97	80-120	
Cadmium	mg/L	0.1	0.098	98	80-120	
Calcium	mg/L	1	0.96	96	80-120	
Chromium	mg/L	0.1	0.10	100	80-120	
Cobalt	mg/L	0.1	0.098	98	80-120	
Copper	mg/L	0.1	0.099	99	80-120	
Lead	mg/L	0.1	0.099	99	80-120	
Nickel	mg/L	0.1	0.098	98	80-120	
Selenium	mg/L	0.1	0.094	94	80-120	
Silver	mg/L	0.1	0.10	101	80-120	
Thallium	mg/L	0.1	0.099	99	80-120	
Vanadium	mg/L	0.1	0.10	102	80-120	
Zinc	mg/L	0.1	0.097	97	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 1370	88 MS	MSD	137089							
		2619701004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.099	0.099	99	99	75-125	0	20	
Arsenic	mg/L	0.0016J	0.1	0.1	0.097	0.10	96	100	75-125	4	20	
Barium	mg/L	0.021	0.1	0.1	0.12	0.12	97	96	75-125	1	20	
Beryllium	mg/L	0.00051J	0.1	0.1	0.092	0.092	92	91	75-125	1	20	
Boron	mg/L	ND	1	1	0.95	0.93	94	93	75-125	1	20	
Cadmium	mg/L	0.00021J	0.1	0.1	0.098	0.099	98	99	75-125	1	20	
Calcium	mg/L	15.7	1	1	16.0	15.3	28	-38	75-125	4	20	M6
Chromium	mg/L	0.00073J	0.1	0.1	0.10	0.10	100	100	75-125	0	20	
Cobalt	mg/L	0.010	0.1	0.1	0.11	0.11	97	99	75-125	1	20	
Copper	mg/L	ND	0.1	0.1	0.099	0.10	99	100	75-125	2	20	
Lead	mg/L	ND	0.1	0.1	0.093	0.094	93	94	75-125	2	20	
Nickel	mg/L	ND	0.1	0.1	0.098	0.098	97	98	75-125	0	20	
Selenium	mg/L	0.0089J	0.1	0.1	0.10	0.10	93	96	75-125	3	20	
Silver	mg/L	ND	0.1	0.1	0.10	0.10	100	100	75-125	1	20	
Thallium	mg/L	ND	0.1	0.1	0.091	0.092	91	92	75-125	1	20	
Vanadium	mg/L	0.0021J	0.1	0.1	0.10	0.10	102	100	75-125	2	20	
Zinc	mg/L	0.0069J	0.1	0.1	0.10	0.10	97	97	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

QC Batch: 30469 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 2619701001, 2619701002, 2619701003, 2619701004, 2619701005, 2619701006, 2619701007, 2619701008,

2619701009, 2619701010

LABORATORY CONTROL SAMPLE: 137074

Parameter Units Spike LCS LCS % Rec
Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 400 402 100 84-108

SAMPLE DUPLICATE: 137075

Date: 06/21/2019 12:19 PM

Parameter Units Result Result RPD Max Qualifiers

Total Dissolved Solids mg/L 226 229 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

QC Batch: 30462 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 2619701001, 2619701002, 2619701003, 2619701004, 2619701005, 2619701006, 2619701007, 2619701008,

2619701009, 2619701010

METHOD BLANK: 137042 Matrix: Water

Associated Lab Samples: 2619701001, 2619701002, 2619701003, 2619701004, 2619701005, 2619701006, 2619701007, 2619701008,

2619701009, 2619701010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.077J	0.25	0.024	06/18/19 20:45	
Fluoride	mg/L	ND	0.30	0.029	06/18/19 20:45	
Sulfate	mg/L	ND	1.0	0.017	06/18/19 20:45	

LABORATORY CONTROL SAMPLE:	137043					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	10	10.3	103	90-110	
Fluoride	mg/L	10	9.9	99	90-110	
Sulfate	mg/L	10	10.0	100	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 1370	44		137045							
			MS	MSD								
		2619616001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	204	200	200	415	416	106	106	90-110	0	15	
Fluoride	mg/L	11.5	200	200	217	219	103	104	90-110	1	15	
Sulfate	mg/L	2630	200	200	2570	2560	-33	-35	90-110	0	15	E,M6

MATRIX SPIKE SAMPLE:	137046						
		2619701001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	4.7	10	15.1	104	90-110	
Fluoride	mg/L	0.12J	10	10.3	102	90-110	
Sulfate	mg/L	83.4	10	81.7	-17	90-110 I	≣,M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 06/21/2019 12:19 PM

B Analyte was detected in the associated method blank.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Yates Gypsum Storage

Pace Project No.: 2619701

Date: 06/21/2019 12:19 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
 2619701001	GWA-2	EPA 3005A	30472	EPA 6020B	30493
2619701002	GWC-1R	EPA 3005A	30472	EPA 6020B	30493
2619701003	GWC-2R	EPA 3005A	30472	EPA 6020B	30493
2619701004	GWC-3R	EPA 3005A	30472	EPA 6020B	30493
2619701005	GWC-4R	EPA 3005A	30472	EPA 6020B	30493
2619701006	GWC-5R	EPA 3005A	30472	EPA 6020B	30493
2619701007	GWC-6R	EPA 3005A	30472	EPA 6020B	30493
2619701008	EB-1-6-12-19	EPA 3005A	30472	EPA 6020B	30493
2619701009	Dup-1	EPA 3005A	30472	EPA 6020B	30493
2619701010	FB-1-6-13-19	EPA 3005A	30472	EPA 6020B	30493
2619701001	GWA-2	EPA 7470A	30399	EPA 7470A	30457
2619701002	GWC-1R	EPA 7470A	30399	EPA 7470A	30457
2619701003	GWC-2R	EPA 7470A	30399	EPA 7470A	30457
2619701004	GWC-3R	EPA 7470A	30399	EPA 7470A	30457
2619701005	GWC-4R	EPA 7470A	30399	EPA 7470A	30457
2619701006	GWC-5R	EPA 7470A	30399	EPA 7470A	30457
2619701007	GWC-6R	EPA 7470A	30399	EPA 7470A	30457
2619701008	EB-1-6-12-19	EPA 7470A	30399	EPA 7470A	30457
2619701009	Dup-1	EPA 7470A	30399	EPA 7470A	30457
2619701010	FB-1-6-13-19	EPA 7470A	30399	EPA 7470A	30457
2619701001	GWA-2	SM 2540C	30469		
2619701002	GWC-1R	SM 2540C	30469		
619701003	GWC-2R	SM 2540C	30469		
619701004	GWC-3R	SM 2540C	30469		
2619701005	GWC-4R	SM 2540C	30469		
2619701006	GWC-5R	SM 2540C	30469		
2619701007	GWC-6R	SM 2540C	30469		
2619701008	EB-1-6-12-19	SM 2540C	30469		
2619701009	Dup-1	SM 2540C	30469		
2619701010	FB-1-6-13-19	SM 2540C	30469		
2619701001	GWA-2	EPA 300.0	30462		
2619701002	GWC-1R	EPA 300.0	30462		
619701003	GWC-2R	EPA 300.0	30462		
2619701004	GWC-3R	EPA 300.0	30462		
2619701005	GWC-4R	EPA 300.0	30462		
2619701006	GWC-5R	EPA 300.0	30462		
2619701007	GWC-6R	EPA 300.0	30462		
2619701008	EB-1-6-12-19	EPA 300.0	30462		
2619701009	Dup-1	EPA 300.0	30462		
2619701010	FB-1-6-13-19	EPA 300.0	30462		

CHAIN OF CUSTODY RECORD

Pace Analytical Pace Analytical Services, Inc. 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, GA 30092 (770) 734-4200: FAX (770) 734-4201

			I					ANIAI	ANIAI VAIS BEOLIESTED	TIESTE	٥			Г	CONTAINER TYPE	PRESERVATION
CLIENI NAME:							}	<u> </u>		+	<u>-</u>	-	Ī	 4	P. PI ASTIC	1- HCI &6°C
Georgia roma					CONTAINER 1 YPE	i i	╁	۱,	. ,	+	+	+	Ţ	(6	A A A A A A A A A A A A A A A A A A A	2- H.CO. 48*C
CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	SS/PHON	ENUMBER	Ž.	K NUMBER:	PRESERVATION:	ğ	۳	†	, ,,	\dagger	+	\downarrow	Ī	a	A - AMBER GLASS	3- HNO.
241 Raiph McGill Blvd SE B10185		810185			ō #										V- VOA VIAL	4 - NaOH, ≤6°C
404-506-7239	2				o									_	S-STERILE	5 - NaOH/ZnAc, ≤6°C
REPORT TO:					0									۵	O-OTHER	6 - Na ₂ S ₂ O _{3.} ≤6°C
-	Joju Abraham	am			z		4									7 - <6°C not frazen
REQUESTED COMPLETION DATE:	OMPLETIC	ON DATE:		PO#	۰- ۱		(027		(z :	*MATR	*MATRIX CODES:
PPO IECT NAME/STATE	-/STATE				< -			(:	(wo)					> ≥		
	i	Plant Yat	98 0	Plant Yates Gypsum Storage	·z		:09)O>	pe pe						DW- DRINKING WATER	
			ľ		ш				BOS)						WW - WASTEWATER	SL- SLUDGE
PROJECT #:			Yate	Yates Gypsum Storage	22		wr) tell						GW - GROUNDWATER	SD- SOLID
					on T		iola		S[B]						SV- SUAFACE VALIEN	
Collection Co	Collection	MATRIX CODE*	0050	G SAMPLE IDENTIFICATION	_		Aetals Ap Joron, Ce OS 3 15	30), F, SO,	19M etata							WATER P- PRODUCT REMARKS/ADDITIONAL INFORMATION
1 81-21-7	8	33		2-VM4)	~			/2	2			<u> </u>				
╄	3	.3		1 605-1R	7		7	7	7							
-	1515	3		1 6WC-2R	1		7	Z	7							
19-13-19	1025	3			7		7	7	7			_				
014161-13-19	5	.? 3		16.WC-4R	٦		2	7	2							
6-13-19 1	1255	M)		15.7mg	1		2	7	2							
6-13-19 1355	355	PM 9		1 60c-6R	7		2	7	7			-		5	104 - 264 0764	
6-12-19	1310	W		61-21-9-1-83 /	7	,	?	7	7		\dashv	-	3	‡ 5	16107	T @
Н	1	βW		1-dna /	2		7	7	7		\dashv	-				
6-13-19	011	W		1 FB-1-6-13-19	1		Z	2	Z		+		=; 			
-											\dashv	-				
							\exists			_	\dashv			1		
SAMPLED BYOND TITLE	ND TITLE		4	OATE/TIME: Obour	RELIN	HSIO	RELINQUISHED BY:	9	1	6	<u>გ</u>	DATE/TIME:	0925	١	FOR LAB	-OR LAB USE ONLY
RECEIVED BY:	, and a			DATE/TIME:	RELINGUISHED BY:	HSING	D BY:				ă	DATE/TIME		Γ	Entered into LIMS:	
REGELYPOBYL	1	m	1/2	100/50/1/4/19 0925	SAMPL	E SHI	SAMPLE SHIPPED VIA: UPS FED-EX	: USPS	1	RER	GIENT STEIN	\vdash	OTHER F	S.	Tracking #:	
Wes No	\$ ₹	an (Z	AS.	Temperature: // \$ Max:	Curredy Seal: Intact Bro	Seal: Broken	, Not	Not Present	# of Coolers	olera	3	Cooler ID:				
Plant Yates S	state cor	stituents	Ŝ	As, Ba, Be, Cd, Cr, C	与区	Se, A <u>¢</u>	ı, Tı, V,	u Z								

Yates - Gypsum Storage - Blank COCs

Sample Condition Upon Receipt Project # Client Name: WO#: 2619701 Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☑ Client ☐ Commercial ☐ Pace Other Due Date: 06/21/19 Tracking #: - ☐ yes [Seals intact: CLIENT: GAPouer-CCR Packing Material: ☐ Bubble Wrap ☐ Bubble Bags ☐ None ☐ Other Samples on ice, cooling process has begun Type of ice: Wel Blue None **Thermometer Used** Date and Initials of person examining Biological Tissue is Frozen: Yes No **Cooler Temperature** contents: Comments: Temp should be above freezing to 6°C ₽7es □No □N/A 1. Chain of Custody Present: JEYes □No □N/A 2. Chain of Custody Filled Out: □N/A 3. Chain of Custody Relinquished: -EYes □No □N/A 4. Sampler Name & Signature on COC: □N/A Samples Arrived within Hold Time: ☐Yes ☐Nor ☐N/A Short Hold Time Analysis (<72hr): ☐Yes ☐N/A Rush Turn Around Time Requested: -EYES □No □N/A 8. Sufficient Volume: □N/A 9. ∠EYes □No Correct Containers Used: TYes □No □N/A -Pace Containers Used: -EIYes □No □N/A 10. Containers Intact: EN/A ☐Yes ☐No 11. Filtered volume received for Dissolved tests Dres ONO □n/A Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. -∐Yes □No □N/A All containers needing preservation are found to be in -- Pes □no □n/A compliance with EPA recommendation. Lot # of added Initial when □Yes ☑No preservative completed exceptions: VOA, coliform, TOC, O&G, WI-DRO (water) ☐Yes ☐No ☑MA 14. Samples checked for dechlorination: □Yes □No ₽NA 15. Headspace in VOA Vials (>6mm): □Yes □No ĐÑA 16. Trip Blank Present: □Yes □No **⊟N/A** Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Y / N Field Data Required? Client Notification/ Resolution: Date/Time: Person Contacted: Comments/ Resolution:

Date: Project Manager Review: Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR F-ALLC003rev.3, 11September2006 Page 24 of 24

Date: 2019-06-12 11:52:03

Project Information:

Operator Name Chris Parker Company Name ACC

Company Name ACC
Project Name Plant Yates - Gypsum
Site Name Plant Yates

Site Name Plant Yates
Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 573204
Turbidity Make/Model Hach 2100 Q

Pump Information:

Pump Model/Type QED bladder pump

Tubing TypepolyTubing Diameter.25 inTubing Length52.1 ft

Pump placement from TOC 47.1 ft

Well Information:

Well ID GWA-2
Well diameter 2 in
Well Total Depth 52.13 ft
Screen Length 10 ft
Depth to Water 36.08 ft

Pumping Information:

Final Pumping Rate 130 mL/min
Total System Volume 0.9879073 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 17 in
Total Volume Pumped 5.2 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond	Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	11:22:47	300.03	18.54	6.37	317.55	3.47	37.00	0.74	71.16
Last 5	11:27:47	600.00	18.46	6.37	319.47	1.86	37.20	0.57	70.20
Last 5	11:32:47	900.00	18.46	6.34	314.27	0.95	37.40	0.59	70.72
Last 5	11:37:47	1199.99	18.44	6.31	311.18	0.59	37.50	0.61	68.41
Last 5	11:42:47	1499.98	18.77	6.30	309.97	0.56	37.50	0.62	65.74
Variance 0			-0.00	-0.03	-5.20			0.02	0.51
Variance 1			-0.02	-0.03	-3.09			0.03	-2.31
Variance 2			0.33	-0.01	-1.21			0.01	-2.67

Notes

Sampled at 11:50. Cloudy 70s

Date: 2019-06-13 14:52:47

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Project Information:

Operator Name Chris Parker

Company Name ACC

Project Name Plant Yates- Gypsum

Site Name Plant Yates Latitude 33° 27' 39.74"

Longitude -84° -54' -27.69"

Sonde SN 573204

Turbidity Make/Model Hach 2100Q Pump placement from TOC

Well Information:

Well ID GWC-1R
Well diameter 2 in
Well Total Depth 36.34 ft
Screen Length 10 ft
Depth to Water 21.22 ft

Pumping Information:

Final Pumping Rate 150 mL/min
Total System Volume 0.4374984 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 9 in
Total Volume Pumped 6 L

Peri Pump

poly

.25 in

36 ft

31 ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	14:29:39	600.02	21.71	5.58	415.60	1.41	21.90	6.07	230.37
Last 5	14:34:39	900.01	21.49	5.58	417.23	1.30	22.00	6.13	244.00
Last 5	14:39:39	1200.01	20.87	5.57	434.65	1.13	22.00	6.24	230.93
Last 5	14:44:39	1500.01	20.16	5.56	439.32	0.95	22.00	6.26	224.74
Last 5	14:49:39	1800.00	20.04	5.55	447.65	1.08	22.00	6.33	209.62
Variance 0			-0.62	-0.01	17.42			0.12	-13.07
Variance 1			-0.71	-0.01	4.67			0.02	-6.19
Variance 2			-0.11	-0.01	8.33			0.07	-15.12

Notes

Sampled at 14:55. Sunny 80s. DUP1 here

Date: 2019-06-12 15:15:38

Pump Information:

Pump Model/Type

Tubing Diameter

Pump placement from TOC

Tubing Length

Tubing Type

QED Bladder Pump

poly

.25 in

43.8 ft

38.8 ft

Project Information:

Operator Name Chris Parker

Company Name ACC
Project Name Plant Yates- Gypsum
Site Name Plant Yates

Latitude 33° 28' 1.41" Longitude -84° -54' -2.43"

Sonde SN 573204

Turbidity Make/Model Hach 2100Q

Well Information: Pumping Information:

Final Pumping Rate 150 mL/min Well ID GWC-2R Well diameter Total System Volume 0.9077896 L 2 in Calculated Sample Rate Well Total Depth 43.8 ft 300 sec Stabilization Drawdown Screen Length 10 ft 1 in Total Volume Pumped Depth to Water 27.38 ft 4 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilizatio	n		+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	14:49:42	600.02	19.44	5.43	421.36	1.72	27.50	3.95	141.60
Last 5	14:54:42	900.01	19.17	5.40	433.69	1.12	27.50	4.02	137.21
Last 5	14:59:42	1200.00	19.13	5.40	433.02	1.65	27.60	4.03	127.68
Last 5	15:04:42	1500.00	19.13	5.41	427.19	2.20	27.50	3.91	82.87
Last 5	15:09:42	1799.99	19.09	5.38	443.02	1.39	27.50	4.03	106.33
Variance 0			-0.04	-0.00	-0.67			0.01	-9.53
Variance 1			0.00	0.01	-5.83			-0.12	-44.81
Variance 2			-0.05	-0.03	15.82			0.12	23.46

Notes

Sampled at 15:15. Sunny 70s

Date: 2019-06-13 10:27:43

Project Information:

Operator Name Chris Parker

Company Name ACC
Project Name Plant Yates- Gypsum
Site Name Plant Yates
Latitude 33° 27' 39.74"

Longitude -84° -54' -27.69"

Sonde SN 573204

Turbidity Make/Model Hach 2100Q

Well Information:

Well ID GWC-3R
Well diameter 2 in
Well Total Depth 38.34 ft
Screen Length 10 ft
Depth to Water 27.23 ft

Pump Information:

Pump Model/Type QED Bladder Pump

35.3 ft

Tubing TypepolyTubing Diameter.25 inTubing Length38 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 150 mL/min
Total System Volume 0.8518038 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 0 in
Total Volume Pumped 6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	ed Temp C pH SpCond μS/cmTurb NTU		/cm Turb NTU	DTW ft	RDO mg/L	ORP mV	
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	10:04:16	1200.00	19.62	5.02	245.00	9.85	27.80	6.96	211.66
Last 5	10:09:16	1500.00	19.71	5.05	243.28	7.73	27.80	6.93	225.40
Last 5	10:14:16	1800.00	19.80	5.07	239.45	5.88	27.80	6.95	247.78
Last 5	10:19:16	2099.99	19.89	5.09	234.38	5.12	27.80	6.92	282.34
Last 5	10:24:16	2399.98	19.84	5.08	238.66	4.86	27.80	6.92	329.39
Variance 0			0.09	0.02	-3.82			0.02	22.38
Variance 1			0.09	0.02	-5.07			-0.03	34.56
Variance 2			-0.05	-0.01	4.28			0.00	47.04

Notes

Sampled at 10:25. Sunny 70s

Date: 2019-06-12 14:11:53

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Tubing Type

Project Information:

Operator Name Chris Parker

Company Name ACC Project Name Plant Yates- Gypsum Site Name Latitude

Plant Yates 33° 27' 39.74" Longitude -84° -54' -27.69"

573204

Sonde SN

Turbidity Make/Model Hach 2100Q

Pump placement from TOC

Well Information:

Well ID GWC-4R Well diameter 2 in Well Total Depth 31.05 ft Screen Length 10 ft Depth to Water 15.03 ft

Pumping Information:

Final Pumping Rate 170 mL/min Total System Volume 0.7847173 L Calculated Sample Rate 300 sec Stabilization Drawdown 4 in **Total Volume Pumped** 17 L

QED Bladder Pump

poly

.25 in

31.05 ft

26.0 ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	13:46:30	4501.94	19.58	5.53	573.56	1.71	15.40	2.57	183.63
Last 5	13:51:30	4801.93	19.52	5.54	614.68	1.12	15.40	2.58	181.10
Last 5	13:56:33	5104.93	19.67	5.53	544.13	1.11	15.40	2.80	179.14
Last 5	14:01:33	5404.92	19.59	5.53	538.42	1.09	15.40	2.89	178.75
Last 5	14:06:36	5707.92	19.44	5.54	564.70	0.77	15.40	2.90	176.56
Variance 0			0.15	-0.01	-70.55			0.22	-1.95
Variance 1			-0.08	-0.00	-5.71			0.09	-0.39
Variance 2			-0.15	0.01	26.28			0.01	-2.19

Notes

Sampled at 14:10. Cloudy 70s. EB-1 here at 13:10 - peri Pump tubing

Date: 2019-06-13 12:56:59

Project Information:

Operator Name Chris Parker

Company Name ACC
Project Name Plant Yates- Gypsum
Site Name Plant Yates

Latitude 33° 27' 39.74"

Longitude -84° -54' -27.69"

Sonde SN 573204

Turbidity Make/Model Hach 2100Q

Pump Information:

Pump Model/Type QED Bladder Pump

37 ft

Tubing TypepolyTubing Diameter.25 inTubing Length42 ft

Pump placement from TOC

Well Information:

Well ID GWC-5R
Well diameter 2 in
Well Total Depth 42.82 ft
Screen Length 10 ft
Depth to Water 27.43 ft

Pumping Information:

Final Pumping Rate 140 mL/min
Total System Volume 0.8904147 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 9 in
Total Volume Pumped 17 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	12:30:43	5402.93	22.80	5.01	1657.38	6.82	28.20	7.95	378.03
Last 5	12:35:43	5703.31	22.72	5.01	1649.67	6.52	28.20	7.93	376.21
Last 5	12:40:43	6002.92	22.79	5.01	1648.09	5.85	28.20	7.94	376.02
Last 5	12:45:43	6302.91	22.80	5.01	1633.64	5.14	28.20	7.97	371.27
Last 5	12:50:43	6602.90	22.72	5.01	1626.22	4.37	28.20	7.89	367.63
Variance 0			0.06	0.00	-1.58			0.02	-0.18
Variance 1			0.01	-0.00	-14.45			0.03	-4.75
Variance 2			-0.09	0.01	-7.42			-0.08	-3.64

Notes

Sampled at 12:55. Sunny 80s. FB1 here at 11:10

Date: 2019-06-13 13:55:30

Project Information:

Operator Name Chris Parker

Company Name ACC
Project Name Plant Yates- Gypsum
Site Name Plant Yates

Latitude 33° 27' 39.74" Longitude -84° -54' -27.69"

Sonde SN 573204

Turbidity Make/Model Hach 2100Q

Well Information:

Well ID GWC-6R
Well diameter 2 in
Well Total Depth 51.87 ft
Screen Length 10 ft
Depth to Water 34.10 ft

Pump Information:

Pump Model/Type QED Bladder Pump

47 ft

Tubing TypepolyTubing Diameter.25 inTubing Length52 ft

Pump placement from TOC

Pumping Information:

Final Pumping Rate 160 mL/min
Total System Volume 0.986942 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 4 in
Total Volume Pumped 6.5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	Temp C pH SpCond μS/cm Turb NTU		DTW ft	RDO mg/L	ORP mV	
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 0		+/- 10%	+/- 0
Last 5	13:29:41	600.00	18.62	5.86	1494.99	1.22	34.50	4.74	267.03
Last 5	13:34:41	899.99	18.73	5.85	1497.54	1.51	34.50	4.68	234.95
Last 5	13:39:41	1199.99	18.64	5.84	1506.53	0.72	34.50	4.66	215.11
Last 5	13:44:41	1499.98	18.72	5.84	1510.66	0.97	34.50	4.65	203.75
Last 5	13:49:41	1799.98	18.87	5.84	1521.21	0.54	34.50	4.64	204.28
Variance 0			-0.09	-0.01	8.99			-0.02	-19.84
Variance 1			0.08	-0.00	4.13			-0.01	-11.37
Variance 2			0.15	-0.00	10.55			-0.00	0.53

Notes

Sampled at 13:55. Sunny 80s.

APPENDIX B

STATISTICAL ANALYSES

Page 1

100% ND

Date: 8/16/2019 2:40 PM

Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Antimony (mg/L)

GWC-1R, GWC-2R, GWC-5R, GWC-6R

Arsenic (mg/L)

GWC-2R

Beryllium (mg/L)

GWA-2, GWC-4R, GWC-6R

Cadmium (mg/L)

GWA-2, GWC-6R

Cobalt (mg/L)

GWC-5R

Lead (mg/L)

GWA-2, GWC-1R, GWC-4R, GWC-5R, GWC-6R

Selenium (mg/L)

GWA-2

Silver (mg/L)

GWA-2, GWC-1R, GWC-2R, GWC-3R, GWC-4R, GWC-5R, GWC-6R

Thallium (mg/L)

GWC-1R, GWC-3R, GWC-4R, GWC-5R, GWC-6R

Interwell Prediction Limit

		Plant Yates	Client: Souther	n Company	Data: Yate	es Gyps	um Landfill	Printed 7/2	/2019, 1:57 PM	
<u>Constituent</u>	Well	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	<u>Method</u>
Boron (mg/L)	GWC-1R	0.04	6/13/2019	0.057	Yes	10	60	n/a	0.01203	NP (NDs) 1 of 2
Boron (mg/L)	GWC-4R	0.04	6/12/2019	1.5	Yes	10	60	n/a	0.01203	NP (NDs) 1 of 2
Calcium (mg/L)	GWC-1R	19.74	6/13/2019	33.8	Yes	10	10	No	0.001254	Param 1 of 2
Calcium (mg/L)	GWC-2R	19.74	6/12/2019	26.6	Yes	10	10	No	0.001254	Param 1 of 2
Calcium (mg/L)	GWC-4R	19.74	6/12/2019	24.2	Yes	10	10	No	0.001254	Param 1 of 2
Calcium (mg/L)	GWC-5R	19.74	6/13/2019	127	Yes	10	10	No	0.001254	Param 1 of 2
Calcium (mg/L)	GWC-6R	19.74	6/13/2019	146	Yes	10	10	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-1R	4.835	6/13/2019	16.4	Yes	10	0	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-2R	4.835	6/12/2019	9.1	Yes	10	0	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-3R	4.835	6/13/2019	5	Yes	10	0	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-4R	4.835	6/12/2019	69.5	Yes	10	0	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-5R	4.835	6/13/2019	5.5	Yes	10	0	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-6R	4.835	6/13/2019	6.2	Yes	10	0	No	0.001254	Param 1 of 2
Sulfate (mg/L)	GWC-1R	94.04	6/13/2019	163	Yes	10	0	No	0.001254	Param 1 of 2
Sulfate (mg/L)	GWC-2R	94.04	6/12/2019	180	Yes	10	0	No	0.001254	Param 1 of 2
Sulfate (mg/L)	GWC-5R	94.04	6/13/2019	976	Yes	10	0	No	0.001254	Param 1 of 2
Sulfate (mg/L)	GWC-6R	94.04	6/13/2019	918	Yes	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-1R	280.8	6/13/2019	301	Yes	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-2R	280.8	6/12/2019	391	Yes	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-4R	280.8	6/12/2019	298	Yes	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-5R	280.8	6/13/2019	1410	Yes	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-6R	280.8	6/13/2019	1310	Yes	10	0	No	0.001254	Param 1 of 2

Interwell Prediction Limit

		Plant Yates	Client: Souther	n Company	Data: Yate	es Gyps	um Landfill	Printed 7/2/	2019, 1:57 PM	
Constituent	<u>Well</u>	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Boron (mg/L)	GWC-1R	0.04	6/13/2019	0.057	Yes	10	60	n/a	0.01203	NP (NDs) 1 of 2
Boron (mg/L)	GWC-2R	0.04	6/12/2019	0.013	No	10	60	n/a	0.01203	NP (NDs) 1 of 2
Boron (mg/L)	GWC-3R	0.04	6/13/2019	0.04ND	No	10	60	n/a	0.01203	NP (NDs) 1 of 2
Boron (mg/L)	GWC-4R	0.04	6/12/2019	1.5	Yes	10	60	n/a	0.01203	NP (NDs) 1 of 2
Boron (mg/L)	GWC-5R	0.04	6/13/2019	0.03	No	10	60	n/a	0.01203	NP (NDs) 1 of 2
Boron (mg/L)	GWC-6R	0.04	6/13/2019	0.04ND	No	10	60	n/a	0.01203	NP (NDs) 1 of 2
Calcium (mg/L)	GWC-1R	19.74	6/13/2019	33.8	Yes	10	10	No	0.001254	Param 1 of 2
Calcium (mg/L)	GWC-2R	19.74	6/12/2019	26.6	Yes	10	10	No	0.001254	Param 1 of 2
Calcium (mg/L)	GWC-3R	19.74	6/13/2019	15.7	No	10	10	No	0.001254	Param 1 of 2
Calcium (mg/L)	GWC-4R	19.74	6/12/2019	24.2	Yes	10	10	No	0.001254	Param 1 of 2
Calcium (mg/L)	GWC-5R	19.74	6/13/2019	127	Yes	10	10	No	0.001254	Param 1 of 2
Calcium (mg/L)	GWC-6R	19.74	6/13/2019	146	Yes	10	10	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-1R	4.835	6/13/2019	16.4	Yes	10	0	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-2R	4.835	6/12/2019	9.1	Yes	10	0	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-3R	4.835	6/13/2019	5	Yes	10	0	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-4R	4.835	6/12/2019	69.5	Yes	10	0	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-5R	4.835	6/13/2019	5.5	Yes	10	0	No	0.001254	Param 1 of 2
Chloride (mg/L)	GWC-6R	4.835	6/13/2019	6.2	Yes	10	0	No	0.001254	Param 1 of 2
Sulfate (mg/L)	GWC-1R	94.04	6/13/2019	163	Yes	10	0	No	0.001254	Param 1 of 2
Sulfate (mg/L)	GWC-2R	94.04	6/12/2019	180	Yes	10	0	No	0.001254	Param 1 of 2
Sulfate (mg/L)	GWC-3R	94.04	6/13/2019	77.1	No	10	0	No	0.001254	Param 1 of 2
Sulfate (mg/L)	GWC-4R	94.04	6/12/2019	92.8	No	10	0	No	0.001254	Param 1 of 2
Sulfate (mg/L)	GWC-5R	94.04	6/13/2019	976	Yes	10	0	No	0.001254	Param 1 of 2
Sulfate (mg/L)	GWC-6R	94.04	6/13/2019	918	Yes	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-1R	280.8	6/13/2019	301	Yes	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-2R	280.8	6/12/2019	391	Yes	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-3R	280.8	6/13/2019	136	No	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-4R	280.8	6/12/2019	298	Yes	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-5R	280.8	6/13/2019	1410	Yes	10	0	No	0.001254	Param 1 of 2
TDS (mg/L)	GWC-6R	280.8	6/13/2019	1310	Yes	10	0	No	0.001254	Param 1 of 2

Sanitas™ v.9.6.18 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

1.6

0.8

Exceeds Limit: GWC-1R, GWC-4R Prediction Limit Interwell Non-parametric

4
3.2
2.4

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 10 background values. 60% NDs. Annual per-constituent alpha = 0.1352. Individual comparison alpha = 0.01203 (1 of 2). Comparing 6 points to limit.

8/31/16 3/22/17 10/11/17 5/2/18 11/21/18 6/13/19

GWC-1R

GWC-2R

GWC-3R

I imit = 0.04

Constituent: Boron Analysis Run 7/2/2019 1:54 PM View: Appendix III Interwell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.18 Sanitas software licensed to ACC. UG

Exceeds Limit: GWC-1R, GWC-2R, GWC-3R, GWC-4R, GWC-5R, GWC-6R

Prediction Limit
Interwell Parametric

GWC-1R

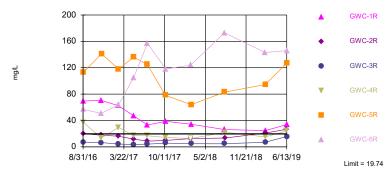
GWC-2R

GWC-2R

GWC-2R

GWC-3R

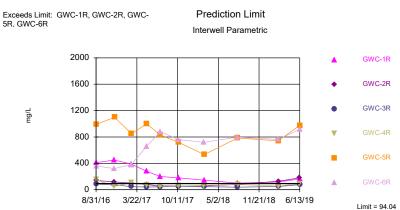
GWC-4R


GWC-5R

Background Data Summary: Mean=4.1, Std. Dev.=0.2944, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9319, critical = 0.781. Kappa = 2.497 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001254. Comparing 6 points to limit.

Sanitas™ v.9.6.18 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

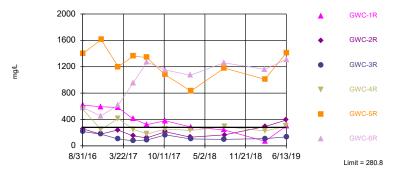
Exceeds Limit: GWC-1R, GWC-2R, GWC-4R, GWC-5R, GWC-6R


Prediction Limit
Interwell Parametric

Background Data Summary: Mean=12.66, Std. Dev=2.836, n=10, 10% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.913, critical = 0.781. Kappa = 2.497 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001254. Comparing 6 points to limit.

Constituent: Calcium Analysis Run 7/2/2019 1:54 PM View: Appendix III Interwell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.18 Sanitas software licensed to ACC. UG



Background Data Summary: Mean=52.52, Std. Dev.=16.63, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9342, critical = 0.781. Kappa = 2.497 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001254. Comparing 6 points to limit.

Sanitas™ v.9.6.18 Sanitas software licensed to ACC. UG

Exceeds Limit: GWC-1R, GWC-2R, GWC-4R, GWC-5R, GWC-6R

Prediction Limit Interwell Parametric

Background Data Summary: Mean=167.2, Std. Dev.=45.5, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9416, critical = 0.781. Kappa = 2.497 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001254. Comparing 6 points to limit.

Constituent: TDS Analysis Run 7/2/2019 1:54 PM View: Appendix III Interwell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: Boron (mg/L) Analysis Run 7/2/2019 1:57 PM View: Appendix III Interwell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2 (bg)	GWC-2R	GWC-3R	GWC-1R	GWC-4R	GWC-5R	GWC-6R
8/31/2016	0.0315 (J)	0.0305 (J)	0.0315 (J)	0.0553 (J)			
9/1/2016					3.25	0.0191 (J)	0.0108 (J)
11/28/2016	0.0095 (J)	0.0206 (J)					
11/29/2016				0.0149 (J)			<0.04
11/30/2016			0.0089 (J)		0.813		
12/1/2016						0.0088 (J)	
2/22/2017	<0.04	0.0192 (J)					
2/23/2017			<0.04	0.0082 (J)			<0.04
2/24/2017					2.53	0.0067 (J)	
5/8/2017	0.0084 (J)						
5/9/2017			0.0077 (J)	0.0097 (J)			
5/10/2017		0.0179 (J)			1.22	0.0068 (J)	<0.04
7/17/2017	0.0092 (J)					0.0102 (J)	
7/18/2017		0.0169 (J)	0.0073 (J)	0.0123 (J)	0.97		0.0061 (J)
10/16/2017	<0.04					0.0066 (J)	
10/17/2017		0.0168 (J)		0.0513	0.804		
10/18/2017			<0.04				<0.04
2/19/2018	<0.04						<0.04
2/20/2018		<0.04			1.01		
2/21/2018			0.0399 (J)	0.0378 (J)		0.0268 (J)	
8/6/2018	<0.04						<0.04
8/7/2018			0.0049 (J)	0.043		0.012 (J)	
8/8/2018		0.017 (J)			1.3		
2/25/2019	<0.04						<0.04
2/26/2019		0.017 (J)	0.0053 (J)	0.062	0.75	0.033 (J)	
6/12/2019	<0.04	0.013 (J)			1.5		
6/13/2019			<0.04	0.057		0.03 (J)	<0.04

Constituent: Calcium (mg/L) Analysis Run 7/2/2019 1:57 PM View: Appendix III Interwell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2 (bg)	GWC-2R	GWC-3R	GWC-1R	GWC-4R	GWC-5R	GWC-6R
8/31/2016	9.31	19.9	7.23	69.4			
9/1/2016					37.1	113	56.8
11/28/2016	9.47 (B)	17.7 (B)					
11/29/2016				70.6 (B)			50.7 (B)
11/30/2016			6.43 (B)		13.4 (B)		
12/1/2016						141 (B)	
2/22/2017	10.4	16.2					
2/23/2017			4.25	62.4			63.5
2/24/2017					29.5	118	
5/8/2017	14.2						
5/9/2017			3.56	47.4			
5/10/2017		11.8			17	136	105
7/17/2017	14.1					125	
7/18/2017		8.69	4.16	33.2	16.8		157
10/16/2017	13.6					78.2	
10/17/2017		9.77		38.7	14.3		
10/18/2017			5.67				118
2/19/2018	<25						124
2/20/2018		<25			<25		
2/21/2018			4.76	34.3		64	
8/6/2018	11.4 (J)						173
8/7/2018			4.7	26.2		83	
8/8/2018		13.4 (J)			22.1 (J)		
2/25/2019	12.7 (J)						143
2/26/2019		20.9 (J)	7.1	24.7 (J)	15.1 (J)	94.4	
6/12/2019	18.9	26.6			24.2		
6/13/2019			15.7	33.8		127	146

Constituent: Chloride (mg/L) Analysis Run 7/2/2019 1:57 PM View: Appendix III Interwell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2 (bg)	GWC-2R	GWC-3R	GWC-1R	GWC-4R	GWC-5R	GWC-6R
8/31/2016	4	6.3	6.7	7.6			
9/1/2016					190	6.6	4.4
11/28/2016	4.2	6.7					
11/29/2016				5.8			4.8
11/30/2016			7.8		48		
12/1/2016						6	
2/22/2017	3.7	5.7					
2/23/2017			6.5	6.2			4.4
2/24/2017					130	3.4	
5/8/2017	4.2						
5/9/2017			7.2	16			
5/10/2017		7.1			71	4.5	3.9
7/17/2017	3.8					3.2	
7/18/2017		6	7.7	18	46		4
10/16/2017	4.2					9	
10/17/2017		6.1		31	50		
10/18/2017			6.5				4.1
2/19/2018	4.3						4.4
2/20/2018		5.8			53.1		
2/21/2018			6.7	27		5.6	
8/6/2018	3.8						3.9
8/7/2018			6.3	35.4		4.7	
8/8/2018		4.7			69.3		
2/25/2019	4.1						4.4
2/26/2019		5.7	5.7	20	42.2	4.2	
6/12/2019	4.7	9.1			69.5		
6/13/2019			5	16.4		5.5	6.2

Constituent: Sulfate (mg/L) Analysis Run 7/2/2019 1:57 PM View: Appendix III Interwell PL

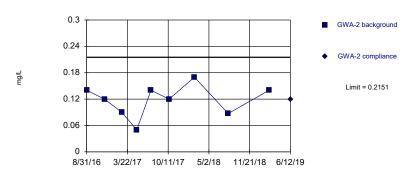
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2 (bg)	GWC-2R	GWC-3R	GWC-1R	GWC-4R	GWC-5R	GWC-6R
8/31/2016	29	140	87	410			
9/1/2016					150	990	360
11/28/2016	36	120					
11/29/2016				450			320
11/30/2016			76		50		
12/1/2016						1100	
2/22/2017	43	100					
2/23/2017			47	390			380
2/24/2017					110	850	
5/8/2017	60						
5/9/2017			41	280			
5/10/2017		80			70	1000	660
7/17/2017	63					830	
7/18/2017		57	44	200	50		880
10/16/2017	62					720	
10/17/2017		59		180	58		
10/18/2017			53				760
2/19/2018	64.6						718
2/20/2018		55.9			64.6		
2/21/2018			46.7	146		533	
8/6/2018	42.1						797
8/7/2018			38.8	100		784	
8/8/2018		81.1			79.5		
2/25/2019	42.1						763
2/26/2019		129	49.3	118	55.8	742	
6/12/2019	83.4	180			92.8		
6/13/2019			77.1	163		976	918

Constituent: TDS (mg/L) Analysis Run 7/2/2019 1:57 PM View: Appendix III Interwell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2 (bg)	GWC-2R	GWC-3R	GWC-1R	GWC-4R	GWC-5R	GWC-6R
8/31/2016	209	257	216	616			
9/1/2016					553	1400	578
11/28/2016	102	177					
11/29/2016				594			455
11/30/2016			177 (B)		247 (B)		
12/1/2016						1610 (B)	
2/22/2017	164	240					
2/23/2017			105	581			614
2/24/2017					414	1200	
5/8/2017	145						
5/9/2017			77	410			
5/10/2017		149			251	1360	955
7/17/2017	185					1340	
7/18/2017		122	89	322	179		1270
10/16/2017	218					1080	
10/17/2017		214		381	256		
10/18/2017			166				1150
2/19/2018	173						1070
2/20/2018		131			233		
2/21/2018			105	285		830	
8/6/2018	158						1260
8/7/2018			99	242		1180	
8/8/2018		166			292		
2/25/2019	92						1160
2/26/2019		293	109	69	226	1010	
6/12/2019	226	391			298		
6/13/2019			136	301		1410	1310

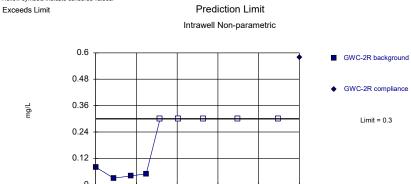
Intrawell Prediction Limit Significant Results


Plant Yates Client: Southern Company Data: Yates Gypsum Landfill Printed 8/27/2019, 1:44 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Fluoride (mg/L)	GWC-2R	0.3	n/a	6/12/2019	0.58	Yes	9	55.56	n/a	0.01809	NP (NDs) 1 of 2
Fluoride (mg/L)	GWC-3R	0.3	n/a	6/13/2019	0.58	Yes	9	55.56	n/a	0.01809	NP (NDs) 1 of 2
pH (S.U.)	GWC-1R	5.52	4.49	6/13/2019	5.55	Yes	9	0	n/a	0.03619	NP (normality) 1 of 2

Intrawell Prediction Limit All Results

		Plant Ya	ites Client: So	uthern Compa	ny Data: Ya	ites Gyps	um Lar	ndfill Pri	inted 8/27/201	9, 1:44 PM	
<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Fluoride (mg/L)	GWA-2	0.2151	n/a	6/12/2019	0.12	No	9	0	No	0.001254	Param 1 of 2
Fluoride (mg/L)	GWC-1R	0.3	n/a	6/13/2019	0.3ND	No	9	55.56	n/a	0.01809	NP (NDs) 1 of 2
Fluoride (mg/L)	GWC-2R	0.3	n/a	6/12/2019	0.58	Yes	9	55.56	n/a	0.01809	NP (NDs) 1 of 2
Fluoride (mg/L)	GWC-3R	0.3	n/a	6/13/2019	0.58	Yes	9	55.56	n/a	0.01809	NP (NDs) 1 of 2
Fluoride (mg/L)	GWC-4R	0.3	n/a	6/12/2019	0.3ND	No	9	55.56	n/a	0.01809	NP (NDs) 1 of 2
Fluoride (mg/L)	GWC-5R	0.37	n/a	6/13/2019	0.3ND	No	9	55.56	n/a	0.01809	NP (NDs) 1 of 2
Fluoride (mg/L)	GWC-6R	0.3	n/a	6/13/2019	0.3ND	No	9	55.56	n/a	0.01809	NP (NDs) 1 of 2
pH (S.U.)	GWA-2	7.106	5.427	6/12/2019	6.3	No	21	0	No	0.0006268	Param 1 of 2
pH (S.U.)	GWC-1R	5.52	4.49	6/13/2019	5.55	Yes	9	0	n/a	0.03619	NP (normality) 1 of 2
pH (S.U.)	GWC-2R	6.8	4.35	6/12/2019	5.38	No	16	0	n/a	0.01291	NP (normality) 1 of 2
pH (S.U.)	GWC-3R	5.28	4.31	6/13/2019	5.08	No	9	0	n/a	0.03619	NP (normality) 1 of 2
pH (S.U.)	GWC-4R	6.245	4.827	6/12/2019	5.54	No	10	0	No	0.0006268	Param 1 of 2
pH (S.U.)	GWC-5R	5.711	4.765	6/13/2019	5.01	No	9	0	No	0.0006268	Param 1 of 2
nH (S II)	GWC-6R	6 687	5 169	6/13/2019	5 84	Nο	19	0	No	0.0006268	Param 1 of 2


Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=0.1174, Std. Dev.=0.03628, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9425, critical = 0.764. Kappa = 2.69 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha =

Constituent: Fluoride Analysis Run 8/27/2019 1:41 PM View: Appendix III Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

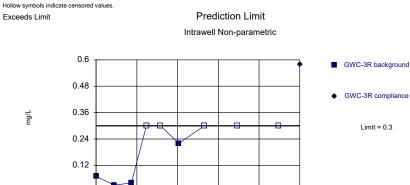
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

8/31/16 3/22/17 10/11/17 5/2/18 11/21/18 6/12/19

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 9 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.03586. Individual comparison alpha =

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

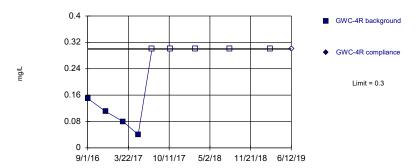
Within Limit


Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 9 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.03586. Individual comparison alpha = 0.01809 (1 of 2).

Constituent: Fluoride Analysis Run 8/27/2019 1:41 PM View: Appendix III Intrawell PL

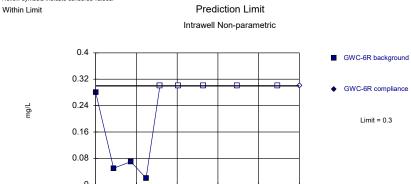
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 9 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.03586. Individual comparison alpha = 0.01809 (1 of 2).

8/31/16 3/22/17 10/11/17 5/2/18 11/21/18 6/13/19

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 9 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.03586. Individual comparison alpha =

Constituent: Fluoride Analysis Run 8/27/2019 1:42 PM View: Appendix III Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

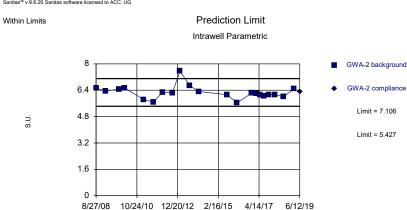
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

9/1/16 3/23/17 10/12/17 5/3/18 11/22/18 6/13/19

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 9 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.03586. Individual comparison alpha =

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Within Limit

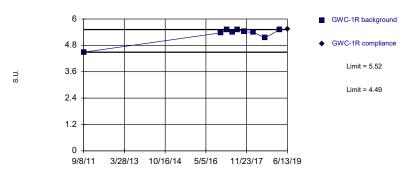
Intrawell Non-parametric


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 9 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.03586. Individual comparison alpha = 0.01809 (1 of 2).

Constituent: Fluoride Analysis Run 8/27/2019 1:42 PM View: Appendix III Intrawell PL

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG



Background Data Summary: Mean=6.266, Std. Dev.=0.401, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8754, critical = 0.873. Kappa = 2.094 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

Exceeds Limits

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 9 background values. Well-constituent pair annual alpha = 0.07172. Individual comparison alpha = 0.03619 (1 of 2).


> Constituent: pH Analysis Run 8/27/2019 1:42 PM View: Appendix III Intrawell PL

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

Prediction Limit Within Limits Intrawell Non-parametric 6 ■ GWC-3R background ♦ GWC-3R compliance Limit = 5.28 3.6 Limit = 4.31 2.4 1.2 3/27/13 10/15/14 5/4/16 11/22/17 6/13/19 9/7/11

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 9 background values. Well-constituent pair annual alpha = 0.07172. Individual comparison alpha = 0.03619 (1 of 2).

Prediction Limit Within Limits Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 16 background values. Well-constituent pair annual alpha = 0.02574. Individual comparison alpha = 0.01291 (1 of 2).

> Constituent: pH Analysis Run 8/27/2019 1:42 PM View: Appendix III Intrawell PL

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

Prediction Limit Within Limits Intrawell Parametric ■ GWC-4R background ♦ GWC-4R compliance 5.6 Limit = 6.245 4.2 Limit = 4.827 2.8 1.4 3/11/11 11/3/12 6/29/14 2/22/16 10/17/17 6/12/19

Background Data Summary: Mean=5.536, Std. Dev.=0.2783, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9104, critical = 0.781. Kappa = 2.549 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=5.238, Std. Dev.=0.1758, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8341, critical = 0.764. Kappa = 2.69 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.01576

Constituent: pH Analysis Run 8/27/2019 1:42 PM View: Appendix III Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=5.928, Std. Dev.=0.3559, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9219, critical = 0.863. Kappa = 2.132 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: pH Analysis Run 8/27/2019 1:42 PM View: Appendix III Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: Fluoride Analysis Run 8/27/2019 1:44 PM View: Appendix III Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2	GWA-2	GWC-1R	GWC-1R	GWC-2R	GWC-2R	GWC-3R	GWC-3R
8/31/2016	0.14 (J)		0.05 (J)		0.08 (J)		0.07 (J)	
11/28/2016	0.12 (J)				0.03 (J)			
11/29/2016			0.04 (J)					
11/30/2016							0.03 (J)	
2/22/2017	0.09 (J)				0.04 (J)			
2/23/2017			0.06 (J)				0.04 (J)	
5/8/2017	0.05 (J)							
5/9/2017			0.06 (J)				<0.3	
5/10/2017					0.05 (J)			
7/17/2017	0.14 (J)							
7/18/2017			<0.3		<0.3		<0.3	
10/16/2017	0.12 (J)							
10/17/2017			<0.3		<0.3			
10/18/2017							0.22 (J)	
2/19/2018	0.17							
2/20/2018					<0.3			
2/21/2018			<0.3				<0.3	
8/6/2018	0.087 (J)							
8/7/2018			<0.3				<0.3	
8/8/2018					<0.3			
2/25/2019	0.14 (J)							
2/26/2019			<0.3		<0.3		<0.3	
6/12/2019		0.12 (J)				0.58		
6/13/2019				<0.3				0.58

Constituent: Fluoride, pH Analysis Run 8/27/2019 1:44 PM View: Appendix III Intrawell PL

Plant Yates	Client: Southern Company	Data: Yates Gypsum Landfill
	1	

	GWC-4R	GWC-4R	GWC-5R	GWC-5R	GWC-6R	GWC-6R	GWA-2	GWA-2	
8/27/2008							6.53		
3/3/2009							6.35		
11/18/2009							6.47		
3/3/2010							6.53		
3/10/2011							5.83		
9/8/2011							5.69		
3/5/2012							6.27		
9/10/2012							6.23		
2/6/2013							7.56		
8/12/2013							6.68		
2/5/2014							6.32		
8/3/2015							6.13 (D)		
2/16/2016							5.64		
9/1/2016	0.15 (J)		0.03 (J)		0.28 (J)				
11/28/2016							6.23		
11/29/2016					0.05 (J)				
11/30/2016	0.11 (J)								
12/1/2016			<0.3						
2/22/2017							6.21		
2/23/2017					0.07 (J)				
2/24/2017	0.08 (J)		0.03 (J)						
5/8/2017							6.12		
5/10/2017	0.04 (J)		<0.3		0.02 (J)				
7/17/2017			0.37				6.03		
7/18/2017	<0.3				<0.3				
10/16/2017			<0.3				6.12		
10/17/2017	<0.3								
10/18/2017					<0.3				
2/19/2018					<0.3		6.13		
2/20/2018	<0.3								
2/21/2018			<0.3						
8/6/2018					<0.3		6.01		
8/7/2018			<0.3						
8/8/2018	<0.3								
2/25/2019					<0.3		6.51		
2/26/2019	<0.3		0.035 (J)						
6/12/2019		<0.3						6.3	
6/13/2019				<0.3		<0.3			

Constituent: pH Analysis Run 8/27/2019 1:44 PM View: Appendix III Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-1R	GWC-1R	GWC-2R	GWC-2R	GWC-3R	GWC-3R	GWC-4R	GWC-4R
3/11/2011			5.52				6.16	
9/7/2011			4.35		4.31		5.07	
9/8/2011	4.49							
3/6/2012			6.37					
9/11/2012			5.69					
2/6/2013			6.8					
8/13/2013			5.51					
2/4/2014			5.74					
2/17/2016			5.59					
11/28/2016			5.47					
11/29/2016	5.37							
11/30/2016					5.13		5.61	
2/22/2017			5.48					
2/23/2017	5.5				5.28			
2/24/2017							5.47	
5/9/2017	5.41				5.12			
5/10/2017			5.6				5.68	
7/18/2017	5.5		5.49		5.21		5.59	
10/17/2017	5.42		5.45				5.52	
10/18/2017					5.17			
2/20/2018			5.52				5.51	
2/21/2018	5.39				5.15			
8/7/2018	5.14				4.95			
8/8/2018			5.15				5.33	
2/26/2019	5.52		5.4		5.22		5.42	
6/12/2019				5.38				5.54
6/13/2019		5.55				5.08		

Constituent: pH Analysis Run 8/27/2019 1:44 PM View: Appendix III Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-5R	GWC-5R	GWC-6R	GWC-6R
11/18/2009			5.82	
1/5/2010			5.8	
3/3/2010			6.15	
3/10/2011			6.05	
9/7/2011	5.64			
9/8/2011			5.31	
3/5/2012			6.23	
9/5/2012			5.83	
2/5/2013			6.79	
8/13/2013			6.48	
2/4/2014			6.14	
2/16/2016			5.2	
11/29/2016			5.92	
12/1/2016	5.24			
2/23/2017			5.97	
2/24/2017	5.37			
5/10/2017	5.2		5.82	
7/17/2017	5.21			
7/18/2017			5.76	
10/16/2017	5.16			
10/18/2017			5.76	
2/19/2018			5.86	
2/21/2018	5.18			
8/6/2018			5.84	
8/7/2018	5.06			
2/25/2019			5.91	
2/26/2019	5.08			
6/13/2019		5.01		5.84

Intrawell Prediction Limit Significant Results

Plant Yates Client: Southern Company Data: Yates Gypsum Landfill Printed 8/27/2019, 1:52 PM

Constituent <u>Well</u> Upper Lim. <u>Date</u> Observ. Sig. Bg N %NDs <u>Transform</u> <u>Alpha</u> Method NP (NDs) 1 of 2 Cobalt (mg/L) GWC-3R 0.01 6/13/2019 0.01 Yes 18 100 n/a 0.005373

Intrawell Prediction Limit All Results

		Plant Yates	Client: Souther	n Company	Data: Yates Gypsum Landfill		Printed 8/27/2019, 1:52 PM			
Constituent	<u>Well</u>	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	GWA-2	0.003	6/12/2019	0.003ND	No	27	96.3	n/a	0.002502	NP (NDs) 1 of 2
Antimony (mg/L)	GWC-4R	0.003	6/12/2019	0.00028	No	23	95.65	n/a	0.003415	NP (NDs) 1 of 2
Arsenic (mg/L)	GWA-2	0.005	6/12/2019	0.00038	No	27	100	n/a	0.002502	NP (NDs) 1 of 2
Arsenic (mg/L)	GWC-1R	0.005	6/13/2019	0.005ND	No	18	88.89	n/a	0.005373	NP (NDs) 1 of 2
Arsenic (mg/L)	GWC-3R	0.005	6/13/2019	0.0016	No	18	100	n/a	0.005373	NP (NDs) 1 of 2
Arsenic (mg/L)	GWC-4R	0.005	6/12/2019	0.00037	No	23	100	n/a	0.003415	NP (NDs) 1 of 2
Arsenic (mg/L)	GWC-5R	0.005	6/13/2019	0.0012	No	18	72.22	n/a	0.005373	NP (NDs) 1 of 2
Arsenic (mg/L)	GWC-6R	0.005	6/13/2019	0.00068	No	24	83.33	n/a	0.003124	NP (NDs) 1 of 2
Barium (mg/L)	GWA-2	0.07657	6/12/2019	0.063	No	27	0	No	0.001254	Param 1 of 2
Barium (mg/L)	GWC-1R	0.08718	6/13/2019	0.033	No	18	0	No	0.001254	Param 1 of 2
Barium (mg/L)	GWC-2R	0.13	6/12/2019	0.046	No	23	0	n/a	0.003415	NP (normality) 1 of 2
Barium (mg/L)	GWC-3R	0.09742	6/13/2019	0.021	No	18	0	sqrt(x)	0.001254	Param 1 of 2
Barium (mg/L)	GWC-4R	0.07177	6/12/2019	0.017	No	19	0	sqrt(x)	0.001254	Param 1 of 2
Barium (mg/L)	GWC-5R	0.05972	6/13/2019	0.014	No	14	0	No	0.001254	Param 1 of 2
Barium (mg/L)	GWC-6R	0.09701	6/13/2019	0.062	No	24	0	No	0.001254	Param 1 of 2
Beryllium (mg/L)	GWC-1R	0.003	6/13/2019	0.003ND	No	18	66.67	n/a	0.005373	NP (NDs) 1 of 2
Beryllium (mg/L)	GWC-2R	0.003	6/12/2019	0.003ND	No	23	95.65	n/a	0.003415	NP (NDs) 1 of 2
Beryllium (mg/L)	GWC-3R	0.003	6/13/2019	0.00051	No	18	38.89	n/a	0.005373	NP (normality) 1 of 2
Beryllium (mg/L)	GWC-5R	0.003	6/13/2019	0.0015	No	18	38.89	n/a	0.005373	NP (normality) 1 of 2
Cadmium (mg/L)	GWC-1R	0.001	6/13/2019	0.001ND	No	18	94.44	n/a	0.005373	NP (NDs) 1 of 2
Cadmium (mg/L)	GWC-2R	0.001	6/12/2019	0.001ND	No	23	91.3	n/a	0.003415	NP (NDs) 1 of 2
Cadmium (mg/L)	GWC-3R	0.001	6/13/2019	0.00021	No	18	88.89	n/a	0.005373	NP (NDs) 1 of 2
Cadmium (mg/L)	GWC-4R	0.001	6/12/2019	0.001ND	No	23	95.65	n/a	0.003415	NP (NDs) 1 of 2
Cadmium (mg/L)	GWC-5R	0.001	6/13/2019	0.00073	No	18	44.44	n/a	0.005373	NP (normality) 1 of 2
Chromium (mg/L)	GWA-2	0.01	6/12/2019	0.01ND	No	27	70.37	n/a	0.002502	NP (NDs) 1 of 2
Chromium (mg/L)	GWC-1R	0.01	6/13/2019	0.0009	No	18	61.11	n/a	0.005373	NP (NDs) 1 of 2
Chromium (mg/L)	GWC-2R	0.01	6/12/2019	0.01ND	No	23	91.3	n/a	0.003415	NP (NDs) 1 of 2
Chromium (mg/L)	GWC-3R	0.01	6/13/2019	0.00073	No	18	33.33	n/a	0.005373	NP (normality) 1 of 2
Chromium (mg/L)	GWC-4R	0.01	6/12/2019	0.01ND	No	23	82.61	n/a	0.003415	NP (NDs) 1 of 2
Chromium (mg/L)	GWC-5R	0.01	6/13/2019	0.0018	No	18	27.78	n/a	0.005373	NP (normality) 1 of 2
Chromium (mg/L)	GWC-6R	0.01	6/13/2019	0.00089	No	24	41.67	n/a	0.003124	NP (normality) 1 of 2
Cobalt (mg/L)	GWA-2	0.01	6/12/2019	0.003	No	27	40.74	n/a	0.002502	NP (normality) 1 of 2
Cobalt (mg/L)	GWC-1R	0.01	6/13/2019	0.00033	No	17	52.94	n/a	0.005914	NP (NDs) 1 of 2
Cobalt (mg/L)	GWC-2R	0.04451	6/12/2019	0.013	No	23	4.348	No	0.001254	Param 1 of 2
Cobalt (mg/L)	GWC-3R	0.01	6/13/2019	0.01	Yes	18	100	n/a	0.005373	NP (NDs) 1 of 2
Cobalt (mg/L)	GWC-4R	0.01	6/12/2019	0.00078	No	23	34.78	n/a	0.003415	NP (normality) 1 of 2
Cobalt (mg/L)	GWC-6R	0.01	6/13/2019	0.01ND	No	24	95.83	n/a	0.003124	NP (NDs) 1 of 2
Copper (mg/L)	GWA-2	0.025	6/12/2019	0.00034	No	22	54.55	n/a	0.003707	NP (NDs) 1 of 2
Copper (mg/L)	GWC-1R	0.025	6/13/2019	0.025ND	No	13	92.31	n/a	0.009692	NP (NDs) 1 of 2
Copper (mg/L)	GWC-3R	0.025	6/13/2019	0.025ND	No	13	76.92	n/a	0.009692	NP (NDs) 1 of 2
Copper (mg/L)	GWC-4R	0.025	6/12/2019	0.00025	No	18	88.89	n/a	0.005373	NP (NDs) 1 of 2
Copper (mg/L)	GWC-5R	0.025	6/13/2019	0.00049	No	13	92.31	n/a	0.009692	NP (NDs) 1 of 2
Copper (mg/L)	GWC-6R	0.005	6/13/2019	0.0011	No	19	57.89	n/a	0.004832	NP (NDs) 1 of 2
Lead (mg/L)	GWC-2R	0.005	6/12/2019	0.005ND	No	23	91.3	n/a	0.003415	NP (NDs) 1 of 2
Lead (mg/L)	GWC-3R	0.005	6/13/2019	0.005ND	No	18	88.89	n/a	0.005373	NP (NDs) 1 of 2
Mercury (mg/L)	GWA-2	0.0005	6/12/2019	0.0005ND	No	27	96.3	n/a	0.002502	NP (NDs) 1 of 2
Mercury (mg/L)	GWC-1R	0.0005	6/13/2019	0.0005ND	No	18	100	n/a	0.005373	NP (NDs) 1 of 2
Mercury (mg/L)	GWC-2R	0.0005	6/12/2019	0.0005ND	No	23	100	n/a	0.003415	NP (NDs) 1 of 2
Mercury (mg/L)	GWC-3R	0.0005	6/13/2019	0.0005ND	No	18	94.44	n/a	0.005373	NP (NDs) 1 of 2
Mercury (mg/L)	GWC-4R	0.0005	6/12/2019	0.0005ND	No	23	95.65	n/a	0.003415	NP (NDs) 1 of 2

Intrawell Prediction Limit All Results

		Plant Yates	Client: Southern Company		y Data: Yates Gypsum Landfill			fill Printed 8/27/2019, 1:52 PM		
Constituent	<u>Well</u>	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Mercury (mg/L)	GWC-5R	0.0005	6/13/2019	0.0005ND	No	18	100	n/a	0.005373	NP (NDs) 1 of 2
Mercury (mg/L)	GWC-6R	0.0005	6/13/2019	0.0005ND	No	24	95.83	n/a	0.003124	NP (NDs) 1 of 2
Nickel (mg/L)	GWA-2	0.021	6/12/2019	0.0038	No	22	13.64	n/a	0.003707	NP (normality) 1 of 2
Nickel (mg/L)	GWC-1R	0.01092	6/13/2019	0.00072	No	13	38.46	ln(x)	0.001254	Param 1 of 2
Nickel (mg/L)	GWC-2R	0.01	6/12/2019	0.00043	No	18	44.44	n/a	0.005373	NP (normality) 1 of 2
Nickel (mg/L)	GWC-3R	0.01	6/13/2019	0.01ND	No	13	69.23	n/a	0.009692	NP (NDs) 1 of 2
Nickel (mg/L)	GWC-4R	0.01	6/12/2019	0.00082	No	18	77.78	n/a	0.005373	NP (NDs) 1 of 2
Nickel (mg/L)	GWC-5R	0.005534	6/13/2019	0.0019	No	13	30.77	No	0.001254	Param 1 of 2
Nickel (mg/L)	GWC-6R	0.005	6/13/2019	0.0037	No	19	89.47	n/a	0.004832	NP (NDs) 1 of 2
Selenium (mg/L)	GWC-1R	0.01	6/13/2019	0.01ND	No	18	66.67	n/a	0.005373	NP (NDs) 1 of 2
Selenium (mg/L)	GWC-2R	0.01	6/12/2019	0.0034	No	23	69.57	n/a	0.003415	NP (NDs) 1 of 2
Selenium (mg/L)	GWC-3R	0.01	6/13/2019	0.0089	No	18	61.11	n/a	0.005373	NP (NDs) 1 of 2
Selenium (mg/L)	GWC-4R	0.01466	6/12/2019	0.0029	No	23	34.78	No	0.001254	Param 1 of 2
Selenium (mg/L)	GWC-5R	0.03974	6/13/2019	0.027	No	18	5.556	sqrt(x)	0.001254	Param 1 of 2
Selenium (mg/L)	GWC-6R	0.01	6/13/2019	0.0048	No	24	70.83	n/a	0.003124	NP (NDs) 1 of 2
Thallium (mg/L)	GWA-2	0.001	6/12/2019	0.001ND	No	26	88.46	n/a	0.002667	NP (NDs) 1 of 2
Thallium (mg/L)	GWC-2R	0.001	6/12/2019	0.001ND	No	21	95.24	n/a	0.003999	NP (NDs) 1 of 2
Vanadium (mg/L)	GWA-2	0.01	6/12/2019	0.0032	No	24	83.33	n/a	0.003124	NP (NDs) 1 of 2
Vanadium (mg/L)	GWC-1R	0.01	6/13/2019	0.01ND	No	15	80	n/a	0.007533	NP (NDs) 1 of 2
Vanadium (mg/L)	GWC-2R	0.01	6/12/2019	0.00079	No	20	100	n/a	0.004291	NP (NDs) 1 of 2
Vanadium (mg/L)	GWC-3R	0.01	6/13/2019	0.0021	No	15	100	n/a	0.007533	NP (NDs) 1 of 2
Vanadium (mg/L)	GWC-4R	0.01	6/12/2019	0.00088	No	20	100	n/a	0.004291	NP (NDs) 1 of 2
Vanadium (mg/L)	GWC-5R	0.01	6/13/2019	0.01ND	No	15	80	n/a	0.007533	NP (NDs) 1 of 2
Vanadium (mg/L)	GWC-6R	0.01	6/13/2019	0.01ND	No	21	76.19	n/a	0.003999	NP (NDs) 1 of 2
Zinc (mg/L)	GWA-2	0.009123	6/12/2019	0.01ND	No	23	4.348	No	0.001254	Param 1 of 2
Zinc (mg/L)	GWC-1R	0.006525	6/13/2019	0.01ND	No	15	20	sqrt(x)	0.001254	Param 1 of 2
Zinc (mg/L)	GWC-2R	0.01144	6/12/2019	0.0019	No	20	10	sqrt(x)	0.001254	Param 1 of 2
Zinc (mg/L)	GWC-3R	0.01293	6/13/2019	0.0069	No	14	7.143	No	0.001254	Param 1 of 2
Zinc (mg/L)	GWC-4R	0.01	6/12/2019	0.01ND	No	19	63.16	n/a	0.004832	NP (NDs) 1 of 2
Zinc (mg/L)	GWC-5R	0.01681	6/13/2019	0.015	No	15	0	No	0.001254	Param 1 of 2
Zinc (mg/L)	GWC-6R	0.01	6/13/2019	0.01ND	No	21	33.33	n/a	0.003999	NP (normality) 1 of 2

Within Limit

0.005
0.004
0.003
0.002
0.002
0.001

Intrawell Non-parametric

GWA-2 background

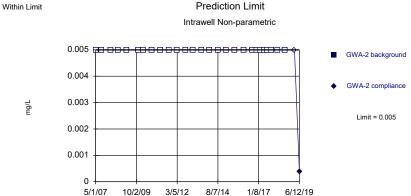
◆ GWA-2 compliance

Limit = 0.003

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

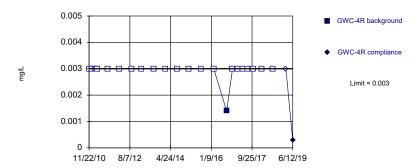
8/7/14


1/8/17 6/12/19

10/2/09

5/1/07

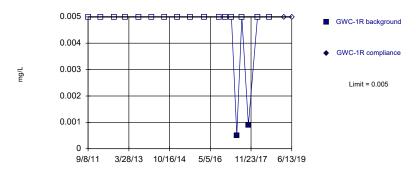
3/5/12


Constituent: Antimony Analysis Run 8/27/2019 1:47 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 27) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values. Within Limit

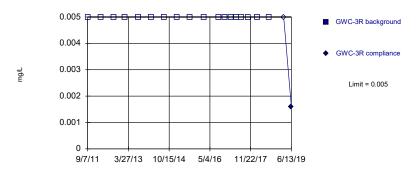
Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 23 background values. 95.65% NDs. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).

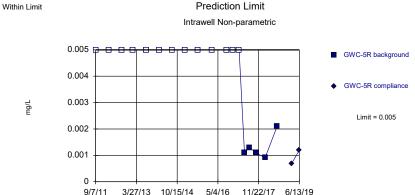
Constituent: Antimony Analysis Run 8/27/2019 1:47 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Non-parametric

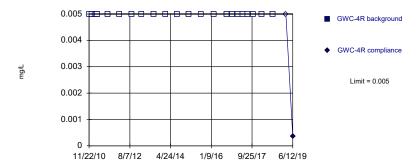
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).


Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 18) were censored: limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Constituent: Arsenic Analysis Run 8/27/2019 1:47 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

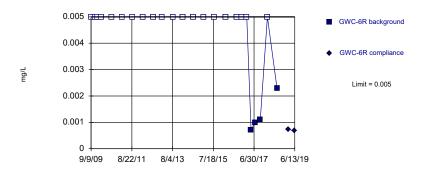


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 72.22% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

 $\mbox{Sanitas} \mbox{\ensuremath{^{\text{IV}}}}

Within Limit

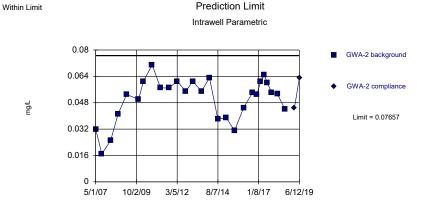
Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 23) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).

Constituent: Arsenic Analysis Run 8/27/2019 1:47 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

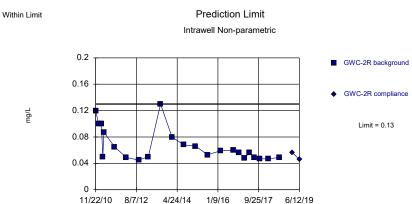
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 24 background values. 83.33% NDs. Well-constituent pair annual alpha = 0.006238. Individual comparison alpha = 0.003124 (1 of 2).

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG


9/8/11

Background Data Summary: Mean=0.05023, Std. Dev.=0.01305, n=27. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.924, critical = 0.894. Kappa = 2.018 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.01524

Constituent: Barium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 23 background values. Well-constituent pair annual alpha = 0.008819. Individual comparison alpha = 0.003415 (1 of 2).

Within Limit Prediction Limit Intrawell Parametric

0.09
0.072
0.054
0.036
0.018
GWC-1R background
GWC-1R compliance
Limit = 0.08718

Background Data Summary: Mean=0.04614, Std. Dev.=0.01903, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9026, critical = 0.858. Kappa = 2.157 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

3/28/13 10/16/14 5/5/16 11/23/17 6/13/19

Constituent: Barium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

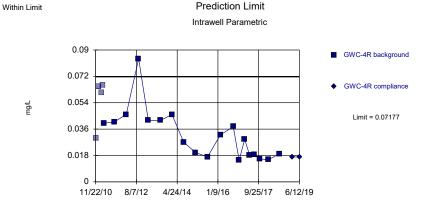
Within Limit Prediction Limit Intrawell Parametric

0.2

0.16

0.12

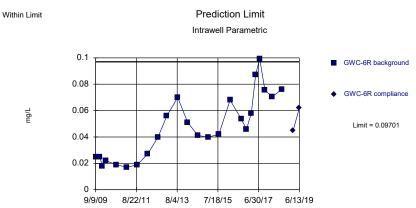
0.08


GWC-3R background

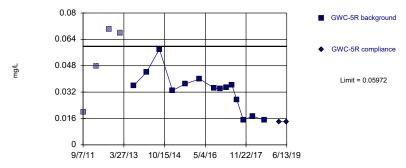
GWC-3R compliance

Limit = 0.09742

Background Data Summary (based on square root transformation): Mean=0.1832, Std. Dev.=0.05976, n=18. Normality test: Shapiro Wilk (palpha = 0.01, calculated = 0.8697, critical = 0.858. Kappa = 2.157 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

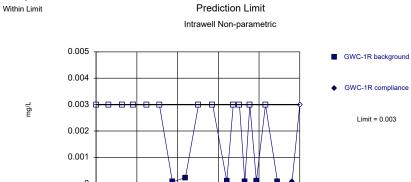
Background Data Summary (based on square root transformation): Mean=0.1732, Std. Dev.=0.04443, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8913, critical = 0.863. Kappa = 2.132 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Barium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

Background Data Summary: Mean=0.04776, Std. Dev.=0.02401, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9379, critical = 0.884. Kappa = 2.051 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Within Limit Prediction Limit Intrawell Parametric



Background Data Summary: Mean=0.03304, Std. Dev.=0.01162, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.911, critical = 0.825. Kappa = 2.295 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Barium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

9/8/11

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

11/23/17 6/13/19

3/28/13 10/16/14 5/5/16

Within Limit

0.005
0.004
0.004
0.003
0.002
0.001

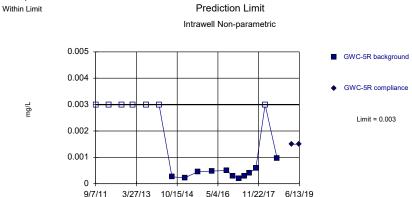
Intrawell Non-parametric

GWC-2R background

GWC-2R compliance

Limit = 0.003

Prediction Limit

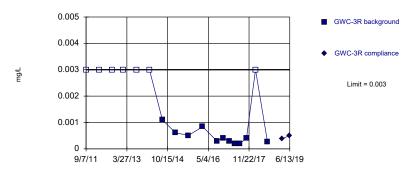

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 23 background values. 95.65% NDs. Well-constituent pair annual alpha = 0.008819. Individual comparison alpha = 0.003415 (1 of 2).

1/9/16

9/25/17 6/12/19

11/22/10 8/7/12 4/24/14

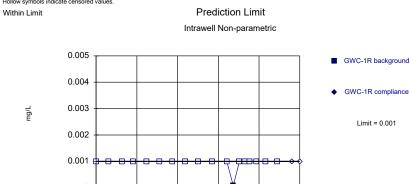
Constituent: Beryllium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. 38.89% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

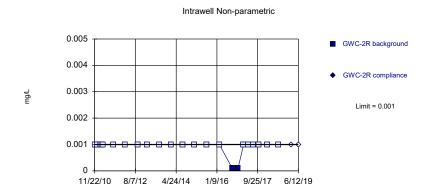
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Non-parametric

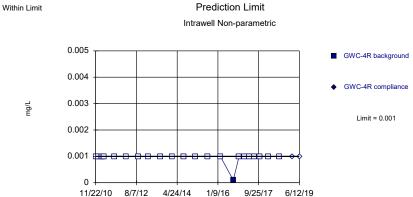
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. 38.89% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Constituent: Beryllium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

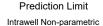
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

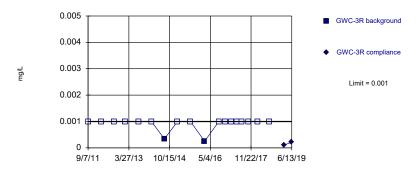
3/28/13 10/16/14 5/5/16 11/23/17 6/13/19


Within Limit

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 23 background values. 91.3% NDs. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).

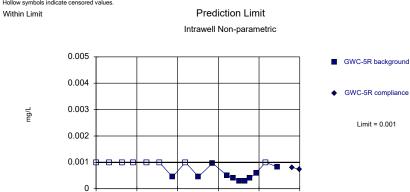

Constituent: Cadmium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 23 background values. 95.65% NDs. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit

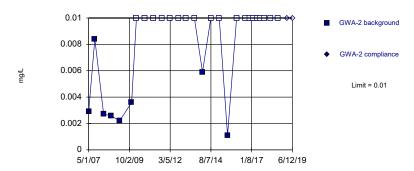


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Constituent: Cadmium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas $^{\text{\tiny{IM}}}$ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

9/7/11



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. 44.44% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

3/27/13 10/15/14 5/4/16 11/22/17 6/13/19

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 70.37% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Chromium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

 $\mbox{Sanitas} \mbox{\ensuremath{^{\text{IV}}}} \mbox{\ensuremath{^{\text{IV}}}}.9.6.20 \mbox{\ensuremath{^{\text{Sanitas}}}} \mbox{\ensuremath{^{\text{Soliton}}}} \mbox{\ensuremath{^{\text{IV}}}} \mbox{\ensu$

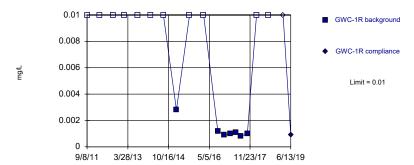
Within Limit Prediction Limit Intrawell Non-parametric

0.01 GWC-2R background
0.008
0.006
0.004
0.002

11/22/10 8/7/12 4/24/14

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 23 background values. 91.3% NDs. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).

1/9/16

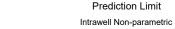

9/25/17 6/12/19

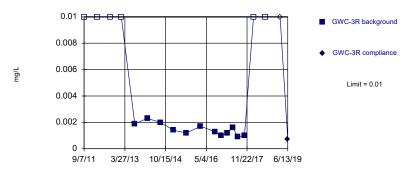
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit

Intrawell Non-parametric

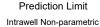
Prediction Limit

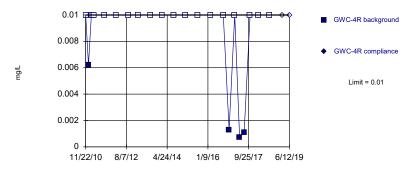



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 61.11% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

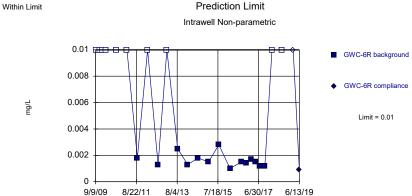
Constituent: Chromium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Within Limit

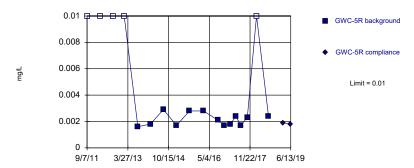


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. 33.33% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).


Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 23 background values. 82.61% NDs. Well-constituent pair annual alpha = 0.008819. Individual comparison alpha = 0.003415 (1 of 2).

Constituent: Chromium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

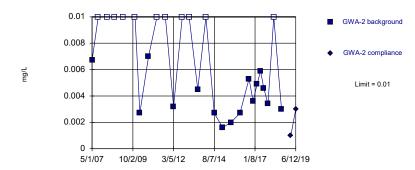


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 24 background values. 41.67% NDs. Well-constituent pair annual alpha = 0.006238. Individual comparison alpha = 0.003124 (1 of 2).

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. 27.78% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Constituent: Chromium Analysis Run 8/27/2019 1:47 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit

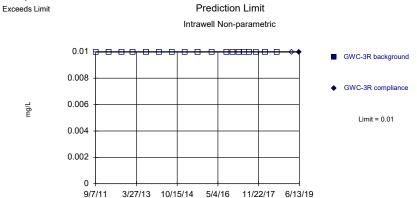
Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 27 background values. 40.74% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

9/8/11

Within Limit

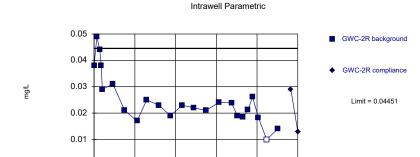
0.02
0.016
0.012
0.008
0.004
0.004
0.004
0.004
0.008


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 17 background values. 52.94% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).

3/28/13 10/16/14 5/5/16 11/23/17 6/13/19

Constituent: Cobalt Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

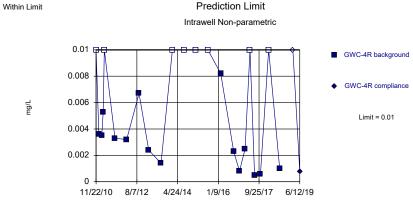

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 18) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit


Background Data Summary: Mean=0.02499, Std. Dev.=0.009454, n=23, 4.348% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0897, critical = 0.881. Kappa = 0.065 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

9/25/17 6/12/19

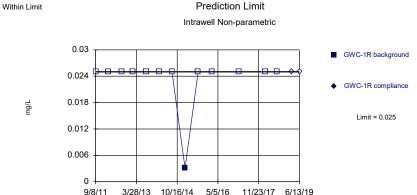
11/22/10 8/7/12 4/24/14 1/9/16

Constituent: Cobalt Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

 $\mbox{Sanitas} \mbox{$^{\text{\tiny{NM}}}$ $v.9.6.20$ Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.}$

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 23 background values. 34.78% NDs. Well-constituent pair annual alpha = 0.008419. Individual comparison alpha = 0.003415 (1 of 2).

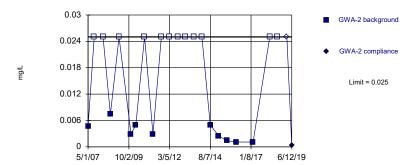
Within Limit Intrawell Non-parametric



Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 24 background values. 95.83% NDs. Well-constituent pair annual alpha = 0.006238. Individual comparison alpha = 0.003124 (1 of 2).

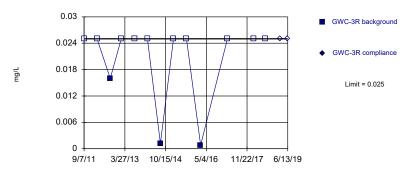
> Constituent: Cobalt Analysis Run 8/27/2019 1:48 PM View: Intrawell PL


Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 92.31% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Within Limit

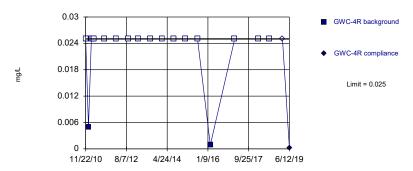
Prediction Limit Intrawell Non-parametric



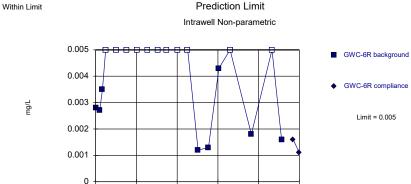
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 22 background values. 54.55% NDs. Well-constituent pair annual alpha = 0.007401. Individual comparison alpha = 0.003707 (1 of 2).

> Constituent: Copper Analysis Run 8/27/2019 1:48 PM View: Intrawell PL

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 76.92% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).


Within Limit

Prediction Limit
Intrawell Non-parametric

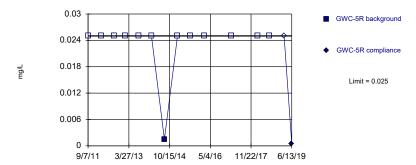
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Constituent: Copper Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 19 background values. 57.89% NDs. Well-constituent pair annual alpha = 0.009641. Individual comparison alpha = 0.004832 (1 of 2).

7/18/15 6/30/17 6/13/19

8/22/11

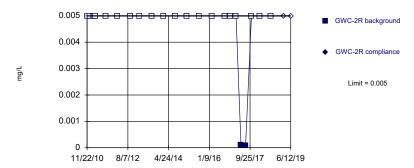

9/9/09

8/4/13

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit

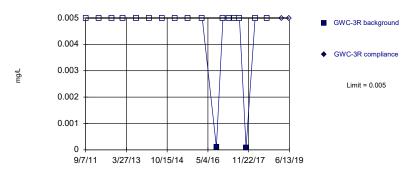
Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 92.31% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Copper Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

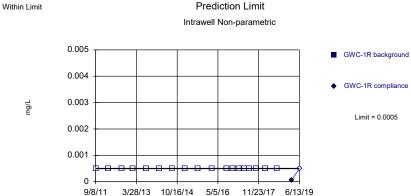
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 23 background values. 91.3% NDs. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).

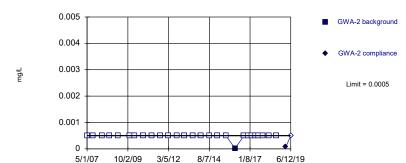
Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Constituent: Lead Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

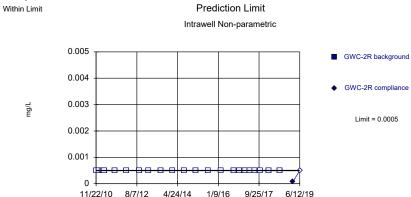
 $\mbox{Sanitas} \mbox{\ensuremath{^{\text{IV}}}} \mbox{\ensuremath{^{\text{IV}}}}.9.6.20 \mbox{\ensuremath{^{\text{Sanitas}}}} \mbox{\ensuremath{^{\text{Soliton}}}} \mbox{\ensuremath{^{\text{IV}}}} \mbox{\ensu$



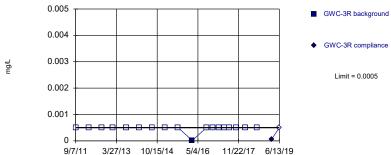
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 18) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Non-parametric

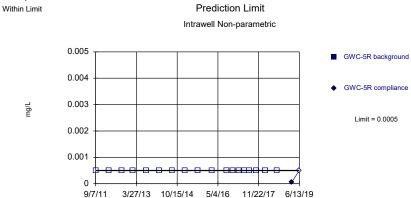
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).


Constituent: Mercury Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas $^{\text{\tiny{TM}}}$ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 23) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).

Prediction Limit Within Limit Intrawell Non-parametric

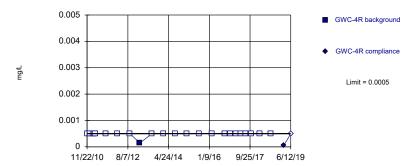


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha =

> Constituent: Mercury Analysis Run 8/27/2019 1:48 PM View: Intrawell PL

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

9/7/11



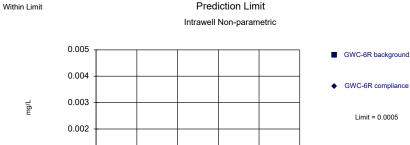
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 18) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 23 background values. 95.65% NDs. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).


> Constituent: Mercury Analysis Run 8/27/2019 1:48 PM View: Intrawell PL

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

0.001

9/9/09

8/22/11

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 24 background values. 95.83% NDs. Well-constituent pair annual alpha = 0.006238. Individual comparison alpha = 0.003124 (1 of 2).

8/4/13 7/18/15 6/30/17 6/13/19

Within Limit

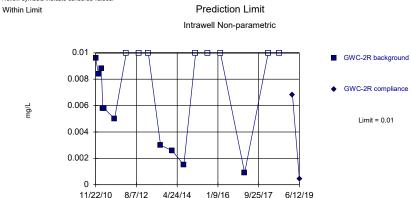
0.03
0.024
0.018
0.012
0.006
0.006
0.006
0.007
0.007
0.008
0.008

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 22 background values. 13.64% NDs. Well-constituent pair annual alpha = 0.003707 (1 of 2).

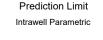
8/7/14

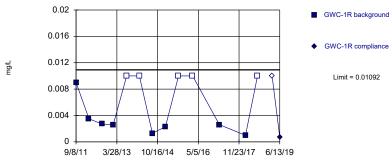
1/8/17


6/12/19

10/2/09

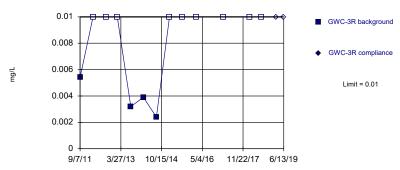
5/1/07


3/5/12


Constituent: Nickel Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

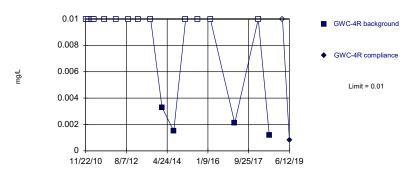
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. 44.44% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

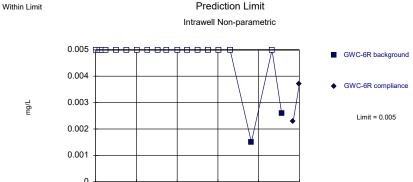
 $\mbox{Sanitas} \mbox{\ensuremath{^{\text{IV}}}}



Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=-6.05, Std. Dev=-0.655, n=13, 38.46% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8323, critical = 0.814. Kappa = 2.34 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Nickel Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 69.23% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

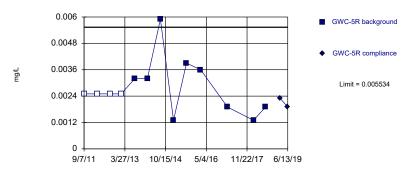
Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 77.78% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Constituent: Nickel Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 19 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.009641. Individual comparison alpha = 0.004832 (1 of 2).

7/18/15 6/30/17 6/13/19

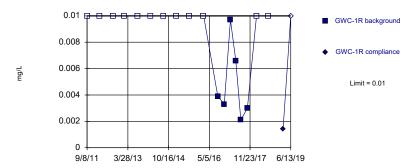

8/22/11

9/9/09

8/4/13

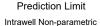
 $\label{eq:Sanitas} \mbox{Sanitas software licensed to ACC. UG} \\ \mbox{Hollow symbols indicate censored values}.$

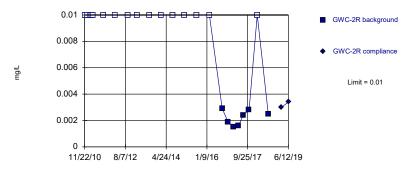
Prediction Limit
Intrawell Parametric



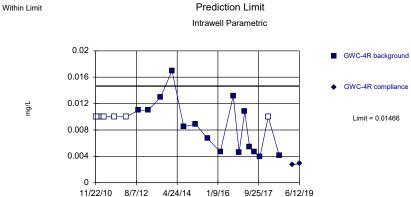
Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.002281, Std. Dev.=0.00139, n=13, 30.77% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8933, critical = 0.814. Kappa = 2.34 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Nickel Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Sanitas $^{\text{\tiny TM}}$ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

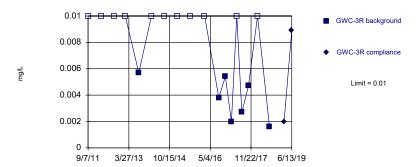

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).


Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 23 background values. 69.57% NDs. Well-constituent pair annual alpha = 0.008819. Individual comparison alpha = 0.003415 (1 of 2).

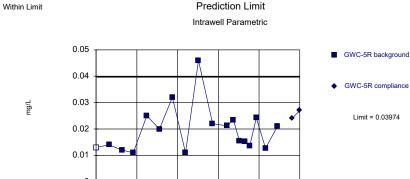
Constituent: Selenium Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill



Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.007285, Std. Dev.=0.003569, n=23, 34.78% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9085, critical = 0.881. Kappa = 2.065 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

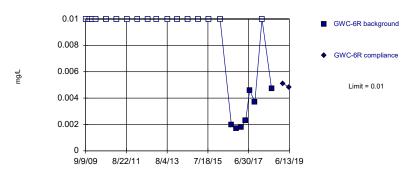
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Non-parametric

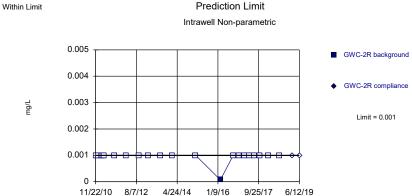
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 61.11% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Constituent: Selenium Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


 $\mbox{Sanitas} \mbox{$^{\text{\tiny{NM}}}$ $v.9.6.20$ Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.}$

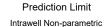
Background Data Summary (based on square root transformation): Mean=0.1371, Std. Dev.=0.02884, n=18, 5.556% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8922, critical = 0.858. Kappa = 2.157 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

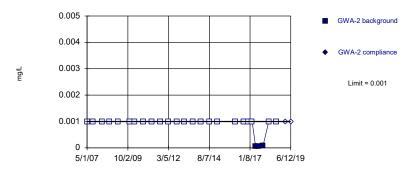
3/27/13 10/15/14 5/4/16 11/22/17 6/13/19


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 24 background values. 70.83% NDs. Well-constituent pair annual alpha = 0.003124 (1 of 2).

Constituent: Selenium Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

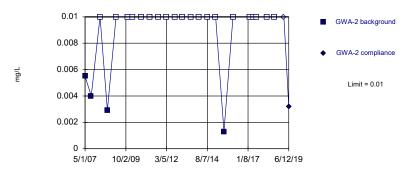

 $\mbox{Sanitas} \mbox{\ensuremath{^{\text{IV}}}} \mbox{\ensuremath{^{\text{IV}}}}.9.6.20 \mbox{\ensuremath{^{\text{Sanitas}}}} \mbox{\ensuremath{^{\text{Soliton}}}} \mbox{\ensuremath{^{\text{IV}}}} \mbox{\ensu$



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 21 background values. 95.24% NDs. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2).

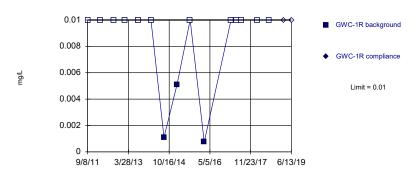
 $\label{eq:Sanitas} \mbox{Sanitas software licensed to ACC. UG} \\ \mbox{Hollow symbols indicate censored values}.$

Within Limit

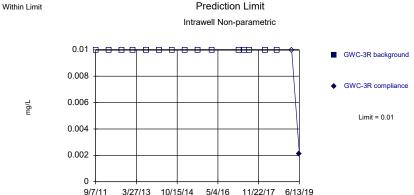


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 88.46% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Constituent: Thallium Analysis Run 8/27/2019 1:48 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

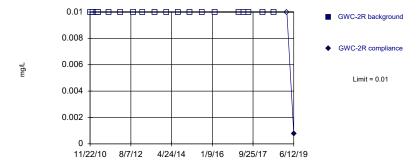
Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 24 background values. 83.33% NDs. Well-constituent pair annual alpha = 0.006238. Individual comparison alpha = 0.003124 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 15 background values. 80% NDs. Well-constituent pair annual alpha = 0.01501. Individual comparison alpha = 0.007533 (1 of 2).

Constituent: Vanadium Analysis Run 8/27/2019 1:48 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

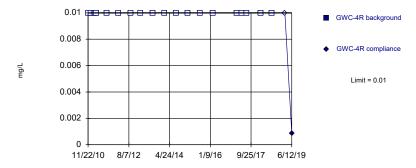


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 15) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01501. Individual comparison alpha = 0.007533 (1 of 2).

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

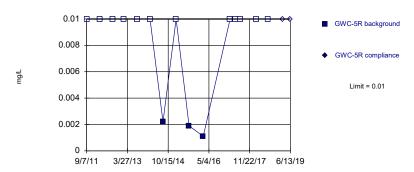
Within Limit

Prediction Limit
Intrawell Non-parametric

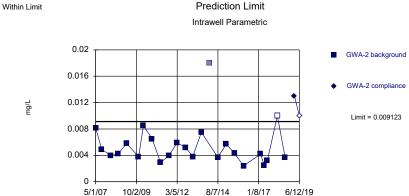

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 20) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.008564. Individual comparison alpha = 0.004291 (1 of 2).

Constituent: Vanadium Analysis Run 8/27/2019 1:48 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Within Limit

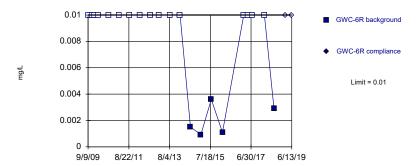
Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 20) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.008564. Individual comparison alpha = 0.004291 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 15 background values. 80% NDs. Well-constituent pair annual alpha = 0.01501. Individual comparison alpha = 0.007533 (1 of 2)

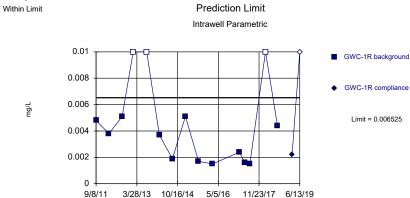
Constituent: Vanadium Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Background Data Summary: Mean=0.004991, Std. Dev.=0.002, n=23, 4.348% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9103, critical = 0.881. Kappa = 2.065 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

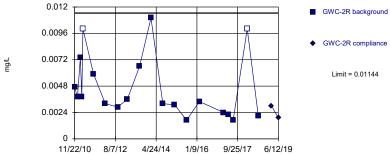
Constituent: Zinc Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit

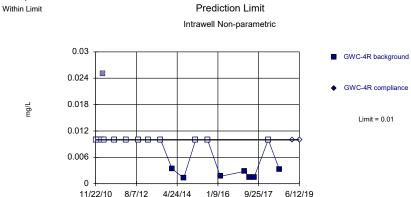

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 21 background values. 76.19% NDs. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2).


Constituent: Vanadium Analysis Run 8/27/2019 1:48 PM View: Intrawell PL
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

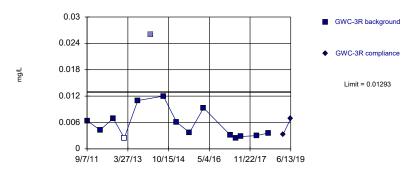
Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=0.05264, Std. Dev.=0.0125, n=15, 20% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8675, critical = 0.835. Kappa = 2.25 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Within Limit Prediction Limit Intrawell Parametric

Background Data Summary (based on square root transformation): Mean=0.0653, Std. Dev.=0.01977, n=20, 10% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8938, critical = 0.868. Kappa = 2.108 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Zinc Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

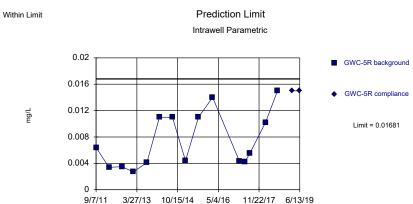
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 19 background values. 63.16% NDs. Well-constituent pair annual alpha = 0.009641. Individual comparison alpha = 0.004832 (1 of 2).

Constituent: Zinc Analysis Run 8/27/2019 1:49 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

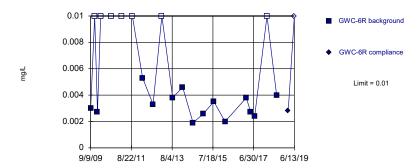
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.005514, Std. Dev.=0.00323, n=14, 7.143% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8465, critical = 0.825. Kappa = 0.225 (c=7, w=0.025, event alpha = 0.001254. Report alpha = 0.001254.

Constituent: Zinc Analysis Run 8/27/2019 1:48 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

Background Data Summary: Mean=0.00738, Std. Dev.=0.004189, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8595, critical = 0.835. Kappa = 2.25 (c=7, w=6, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 21 background values. 33.33% NDs. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2).

Constituent: Zinc Analysis Run 8/27/2019 1:49 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: Antimony, Arsenic Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

ı	GWA-2	GWA-2	GWC-4R	GWC-4R	GWA-2	GWA-2	GWC-1R	GWC-1R
5/1/2007	<0.003				<0.005			
9/11/2007	<0.003				<0.005			
3/20/2008	<0.003				<0.005			
8/27/2008	<0.003				<0.005			
3/3/2009	<0.003				<0.005			
11/18/2009	<0.003				<0.005			
3/3/2010	<0.003				<0.005			
9/8/2010	<0.003				<0.005			
11/22/2010			<0.003					
1/4/2011			<0.003					
2/17/2011			<0.003					
3/10/2011	<0.003				<0.005			
3/11/2011			<0.003					
3/28/2011			<0.003					
9/7/2011			<0.003					
9/8/2011	<0.003				<0.005		<0.005	
3/4/2012			<0.003					
3/5/2012	<0.003				<0.005		<0.005	
9/5/2012							<0.005	
9/10/2012	<0.003		<0.003		<0.005			
2/5/2013							<0.005	
2/6/2013	<0.003		<0.003		<0.005			
8/12/2013	<0.003				<0.005			
8/13/2013							<0.005	
8/14/2013			<0.003					
2/4/2014			<0.003				<0.005	
2/5/2014	<0.003				<0.005			
8/4/2014			<0.003					
8/5/2014	<0.003				<0.005		<0.005	
2/2/2015			<0.003				<0.005	
2/4/2015	<0.003				<0.005			
8/3/2015	<0.003		<0.003 (D)		<0.005			
8/4/2015							<0.005 (D)	
2/16/2016	<0.003		<0.003		<0.005		<0.005	
8/31/2016	<0.003				<0.005		<0.005	
9/1/2016			0.0014 (J)					
11/28/2016	0.0014 (J)				<0.005			
11/29/2016							<0.005	
11/30/2016			<0.003					
2/22/2017	<0.003				<0.005			
2/23/2017							<0.005	
2/24/2017			<0.003					
5/8/2017	<0.003				<0.005			
5/9/2017							0.0005 (J)	
5/10/2017			<0.003					
7/17/2017	<0.003				<0.005			
7/18/2017			<0.003				<0.005	
10/16/2017	<0.003		-0.000		<0.005		0.0000 / "	
10/17/2017	-0.000		<0.003		-0.005		0.0009 (J)	
2/19/2018	<0.003		<0.002		<0.005			
2/20/2018 2/21/2018			<0.003				<0.00E	
2/2 1/2010							<0.005	

Constituent: Antimony, Arsenic Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2	GWA-2	GWC-4R	GWC-4R	GWA-2	GWA-2	GWC-1R	GWC-1R
8/6/2018	<0.003				<0.005			
8/7/2018							<0.005	
8/8/2018			<0.003					
2/25/2019		<0.003				<0.005		
2/26/2019				<0.003				<0.005
6/12/2019		<0.003		0.00028 (J)		0.00038 (J)		
6/13/2019								<0.005

Constituent: Arsenic Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-3R	GWC-3R	GWC-4R	GWC-4R	GWC-5R	GWC-5R	GWC-6R	GWC-6R
9/9/2009							<0.005	
11/18/2009							<0.005	
1/5/2010							<0.005	
3/3/2010							<0.005	
9/7/2010							<0.005	
11/22/2010			<0.005					
1/4/2011			<0.005					
2/17/2011			<0.005					
3/10/2011							<0.005	
3/11/2011			<0.005					
3/28/2011			<0.005					
9/7/2011	<0.005		<0.005		<0.005			
9/8/2011							<0.005	
3/4/2012			<0.005					
3/5/2012	<0.005				<0.005		<0.005	
9/5/2012	<0.005				<0.005		<0.005	
9/10/2012			<0.005					
2/5/2013					<0.005		<0.005	
2/6/2013	<0.005		<0.005					
8/13/2013	<0.005						<0.005	
8/14/2013			<0.005		<0.005			
2/4/2014			<0.005				<0.005	
2/5/2014	<0.005				<0.005			
8/4/2014	<0.005		<0.005		<0.005			
8/5/2014							<0.005	
2/2/2015			<0.005					
2/3/2015	<0.005				<0.005		<0.005	
8/3/2015	<0.005 (D)		<0.005 (D)		<0.005 (D)			
8/4/2015	-0.005		10.005		-0.005		<0.005	
2/16/2016	<0.005		<0.005		<0.005		<0.005	
8/31/2016 9/1/2016	<0.005		<0.005		<0.005		<0.005	
11/29/2016			<0.005		<0.003		<0.005	
11/30/2016	<0.005		<0.005				10.000	
12/1/2016	~0.003		~0.003		<0.005			
2/23/2017	<0.005				10.000		<0.005	
2/24/2017	-0.000		<0.005		<0.005		-0.000	
5/9/2017	<0.005		0.000		0.000			
5/10/2017	0.000		<0.005		0.0011 (J)		0.0007 (J)	
7/17/2017			0.000		0.0013 (J)		0.0007 (0)	
7/18/2017	<0.005		<0.005		0.00.0 (0)		0.001 (J)	
10/16/2017	0.000		0.000		0.0011 (J)		0.00 . (0)	
10/17/2017			<0.005		0.0011 (0)			
10/18/2017	<0.005		0.000				0.0011 (J)	
2/19/2018							<0.005	
2/20/2018			<0.005					
2/21/2018	<0.005		-		0.00091 (J)			
8/6/2018	-						0.0023 (J)	
8/7/2018	<0.005				0.0021 (J)		` '	
8/8/2018			<0.005		. ,			
2/25/2019								0.00073 (J)
2/26/2019		<0.005		<0.005		0.00069 (J)		•
						` '		

Constituent: Arsenic Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-3R	GWC-3R	GWC-4R	GWC-4R	GWC-5R	GWC-5R	GWC-6R	GWC-6R
6/12/2019				0.00037 (J)				
6/13/2019		0.0016 (J)				0.0012 (J)		0.00068 (J)

Constituent: Barium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2	GWA-2	GWC-1R	GWC-1R	GWC-2R	GWC-2R	GWC-3R	GWC-3R
5/1/2007	0.032							
9/11/2007	0.017							
3/20/2008	0.025							
8/27/2008	0.041							
3/3/2009	0.053							
11/18/2009	0.05							
3/3/2010	0.061							
9/8/2010	0.071							
11/22/2010					0.12			
1/4/2011					0.1			
2/17/2011					0.1			
3/10/2011	0.057							
3/11/2011					0.05			
3/28/2011					0.087			
9/7/2011					0.065		0.025	
9/8/2011	0.057		0.086					
3/5/2012	0.061		0.044				0.014	
3/6/2012					0.049			
9/5/2012			0.034				0.0095	
9/10/2012	0.055							
9/11/2012					0.045			
2/5/2013			0.03					
2/6/2013	0.061				0.05		0.0094	
8/12/2013	0.055							
8/13/2013			0.027		0.13		0.13	
2/4/2014			0.037		0.08			
2/5/2014	0.063						0.066	
8/4/2014							0.043	
8/5/2014	0.038		0.048		0.068			
2/2/2015			0.069		0.066			
2/3/2015							0.031	
2/4/2015	0.039							
8/3/2015	0.031						0.039 (D)	
8/4/2015			0.023 (D)		0.053			
2/16/2016	0.045		0.044				0.038	
2/17/2016					0.059			
8/31/2016	0.0542		0.0711		0.0601		0.0286	
11/28/2016	0.0529				0.0562			
11/29/2016			0.0754					
11/30/2016							0.0258	
2/22/2017	0.0607				0.0481			
2/23/2017			0.0646				0.0278	
5/8/2017	0.065							
5/9/2017			0.0463				0.0308	
5/10/2017					0.0563			
7/17/2017	0.06							
7/18/2017			0.039		0.049		0.0407	
10/16/2017	0.0542							
10/17/2017			0.0349		0.047			
10/18/2017							0.049	
2/19/2018	0.0533							
2/20/2018					0.0467			

Constituent: Barium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2	GWA-2	GWC-1R	GWC-1R	GWC-2R	GWC-2R	GWC-3R	GWC-3R
2/21/2018			0.0322				0.0285	
8/6/2018	0.044							
8/7/2018			0.025				0.029	
8/8/2018					0.049			
2/25/2019		0.045						
2/26/2019				0.028		0.056		0.026
6/12/2019		0.063				0.046		
6/13/2019				0.033				0.021

Constituent: Barium, Beryllium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-4R	GWC-4R	GWC-5R	GWC-5R	GWC-6R	GWC-6R	GWC-1R	GWC-1R
9/9/2009					0.025			
11/18/2009					0.025			
1/5/2010					0.018			
3/3/2010					0.022			
9/7/2010					0.019			
3/10/2011					0.017			
3/28/2011	0.04							
9/7/2011	0.041							
9/8/2011					0.019		<0.003	
3/4/2012	0.046							
3/5/2012					0.027		<0.003	
9/5/2012					0.04		<0.003	
9/10/2012	0.084							
2/5/2013					0.056		<0.003	
2/6/2013	0.042							
8/13/2013					0.07		<0.003	
8/14/2013	0.042		0.036					
2/4/2014	0.046				0.051		<0.003	
2/5/2014			0.044					
8/4/2014	0.027		0.058					
8/5/2014					0.041		7.5E-05 (J)	
2/2/2015	0.02						0.00023 (J)	
2/3/2015			0.033		0.04			
8/3/2015	0.017 (D)		0.037 (D)					
8/4/2015					0.042		<0.003 (D)	
2/16/2016	0.032		0.04		0.068		<0.003	
8/31/2016							0.0001 (J)	
9/1/2016	0.0377		0.0345		0.0536			
11/29/2016					0.0459		<0.003	
11/30/2016	0.0148							
12/1/2016			0.0342					
2/23/2017					0.0581		<0.003	
2/24/2017	0.029		0.0347					
5/9/2017							8E-05 (J)	
5/10/2017	0.0182		0.0363		0.0873			
7/17/2017			0.0274					
7/18/2017	0.0187				0.0994		<0.003	
10/16/2017			0.0151					
10/17/2017	0.0157						0.0001 (J)	
10/18/2017					0.0757			
2/19/2018					0.0703			
2/20/2018	0.0151							
2/21/2018			0.0174				<0.003	
8/6/2018					0.076			
8/7/2018			0.015				7.4E-05 (J)	
8/8/2018	0.019							
2/25/2019						0.045		
2/26/2019		0.017		0.014				7.5E-05 (J)
6/12/2019		0.017						
6/13/2019				0.014		0.062		<0.003

Constituent: Beryllium, Cadmium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

			Plant Yates	Client: Southern	Company Data: 1	ates Gypsum Landi	II	
	GWC-2R	GWC-2R	GWC-3R	GWC-3R	GWC-5R	GWC-5R	GWC-1R	GWC-1R
11/22/2010	<0.003							
1/4/2011	<0.003							
2/17/2011	<0.003							
3/11/2011	<0.003							
3/28/2011	<0.003							
9/7/2011	<0.003		<0.003		<0.003			
9/8/2011							<0.001	
3/5/2012			<0.003		<0.003		<0.001	
3/6/2012	<0.003							
9/5/2012			<0.003		<0.003		<0.001	
9/11/2012	<0.003							
2/5/2013					<0.003		<0.001	
2/6/2013	<0.003		<0.003					
8/13/2013	<0.003		<0.003				<0.001	
8/14/2013	10.000				<0.003		-0.001	
2/4/2014	<0.003		<0.002		-0.002		<0.001	
2/5/2014 8/4/2014			<0.003 0.0011 (J)		<0.003			
8/5/2014	<0.003		0.0011 (3)		0.00026 (J)		<0.001	
2/2/2015	<0.003						<0.001	
2/3/2015	-0.000		0.00061 (J)		0.00023 (J)		10.001	
8/3/2015			0.00051 (JD)		0.00046 (JD)			
8/4/2015	<0.003						<0.001 (D)	
2/16/2016			0.00084 (J)		0.00048 (J)		<0.001	
2/17/2016	<0.003							
8/31/2016	<0.003		0.0003 (J)				<0.001	
9/1/2016					0.0005 (J)			
11/28/2016	<0.003							
11/29/2016							8E-05 (J)	
11/30/2016			0.0004 (J)					
12/1/2016					0.0003 (J)			
2/22/2017	<0.003							
2/23/2017			0.0003 (J)				<0.001	
2/24/2017					0.0002 (J)			
5/9/2017			0.0002 (J)				<0.001	
5/10/2017	<0.003				0.0003 (J)			
7/17/2017	10.000		0.0000 (1)		0.0004 (J)		-0.001	
7/18/2017	<0.003		0.0002 (J)		0.0006 (1)		<0.001	
10/16/2017 10/17/2017	<0.003				0.0006 (J)		<0.001	
10/17/2017	<0.003		0.0004 (J)				V 0.001	
2/20/2018	<0.003		0.0004 (3)					
2/21/2018	-0.000		<0.003		<0.003		<0.001	
8/7/2018			0.00026 (J)		0.00096 (J)		<0.001	
8/8/2018	7E-05 (J)		(-/		(-/		**	
2/26/2019	` '	5.3E-05 (J)		0.00038 (J)		0.0015 (J)		<0.001
6/12/2019		<0.003		.,		.,		
6/13/2019				0.00051 (J)		0.0015 (J)		<0.001

Constituent: Cadmium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

			Tidil Taloc	Olichi. Codincin	Company Data: 1	atos aypsam zana		
	GWC-2R	GWC-2R	GWC-3R	GWC-3R	GWC-4R	GWC-4R	GWC-5R	GWC-5R
11/22/2010	<0.001				<0.001			
1/4/2011	<0.001				<0.001			
2/17/2011	<0.001				<0.001			
3/11/2011	<0.001				<0.001			
3/28/2011	<0.001				<0.001			
9/7/2011	<0.001		<0.001		<0.001		<0.001	
3/4/2012					<0.001			
3/5/2012			<0.001				<0.001	
3/6/2012	<0.001							
9/5/2012			<0.001				<0.001	
9/10/2012					<0.001			
9/11/2012	<0.001							
2/5/2013							<0.001	
2/6/2013	<0.001		<0.001		<0.001			
8/13/2013	<0.001		<0.001					
8/14/2013					<0.001		<0.001	
2/4/2014	<0.001				<0.001			
2/5/2014			<0.001				<0.001	
8/4/2014			0.00034 (J)		<0.001		0.00045 (J)	
8/5/2014	<0.001							
2/2/2015	<0.001				<0.001			
2/3/2015			<0.001				<0.001	
8/3/2015			<0.001 (D)		<0.001 (D)		0.00046 (JD)	
8/4/2015	<0.001							
2/16/2016			0.00025 (J)		<0.001		0.00097 (J)	
2/17/2016	<0.001							
8/31/2016	0.0001 (J)		<0.001					
9/1/2016					0.0001 (J)		0.0005 (J)	
11/28/2016	0.0001 (J)							
11/30/2016			<0.001		<0.001			
12/1/2016							0.0004 (J)	
2/22/2017	<0.001							
2/23/2017			<0.001					
2/24/2017					<0.001		0.0003 (J)	
5/9/2017			<0.001					
5/10/2017	<0.001				<0.001		0.0003 (J)	
7/17/2017							0.0004 (J)	
7/18/2017	<0.001		<0.001		<0.001			
10/16/2017							0.0006 (J)	
10/17/2017	<0.001				<0.001			
10/18/2017			<0.001					
2/20/2018	<0.001				<0.001			
2/21/2018			<0.001				<0.001	
8/7/2018	0.004		<0.001		.0.004		0.00083 (J)	
8/8/2018	<0.001	-0.001		0.00044.4%	<0.001	-0.001		0.00001 (1)
2/26/2019		<0.001		0.00011 (J)		<0.001		0.00081 (J)
6/12/2019		<0.001		0.00021 (1)		<0.001		0.00073 (1)
6/13/2019				0.00021 (J)				0.00073 (J)

Constituent: Chromium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

			Flant Tates	Client. Southern	Company Data. I	ates Gypsum Lanun	"	
	GWA-2	GWA-2	GWC-1R	GWC-1R	GWC-2R	GWC-2R	GWC-3R	GWC-3R
5/1/2007	0.0029							
9/11/2007	0.0084							
3/20/2008	0.0027							
8/27/2008	0.0026							
3/3/2009	0.0022							
11/18/2009	0.0036							
3/3/2010	<0.01							
9/8/2010	<0.01							
11/22/2010					<0.01			
1/4/2011					<0.01			
2/17/2011					<0.01			
3/10/2011	<0.01							
3/11/2011					<0.01			
3/28/2011					<0.01			
9/7/2011					<0.01		<0.01	
9/8/2011	<0.01		<0.01					
3/5/2012	<0.01		<0.01				<0.01	
3/6/2012					<0.01			
9/5/2012			<0.01				<0.01	
9/10/2012	<0.01							
9/11/2012					<0.01			
2/5/2013			<0.01					
2/6/2013	<0.01				<0.01		<0.01	
8/12/2013	<0.01							
8/13/2013			<0.01		0.0017		0.0019	
2/4/2014			<0.01		<0.01			
2/5/2014	0.0059						0.0023	
8/4/2014							0.002	
8/5/2014	<0.01		<0.01		<0.01			
2/2/2015			0.0028		<0.01			
2/3/2015							0.0014	
2/4/2015	<0.01							
8/3/2015	0.0011 (J)						0.0012 (JD)	
8/4/2015	.0.04		<0.01 (D)		<0.01		0.0047	
2/16/2016	<0.01		<0.01		.0.04		0.0017	
2/17/2016	-0.01		0.0010 (1)		<0.01		0.0012 (1)	
8/31/2016	<0.01		0.0012 (J)		<0.01		0.0013 (J)	
11/28/2016 11/29/2016	<0.01		0.0000 (1)		<0.01			
11/30/2016			0.0009 (J)				0.001 (J)	
2/22/2017	<0.01				<0.01		0.001 (3)	
2/23/2017	~0.01		0.001 (J)		~0.01		0.0012 (J)	
5/8/2017	<0.01		0.001 (3)				0.0012 (3)	
5/9/2017	\(\text{0.01}\)		0.0011 (J)				0.0016 (J)	
5/10/2017			0.0011 (3)		0.0008 (J)		0.0010 (3)	
7/17/2017	<0.01				0.0000 (0)			
7/18/2017	0.01		0.0008 (J)		<0.01		0.0009 (J)	
10/16/2017	<0.01		- /				· · · · \ - /	
10/17/2017			0.001 (J)		<0.01			
10/18/2017			.,				0.001 (J)	
2/19/2018	<0.01						* *	
2/20/2018					<0.01			

Constituent: Chromium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2	GWA-2	GWC-1R	GWC-1R	GWC-2R	GWC-2R	GWC-3R	GWC-3R
2/21/2018			<0.01				<0.01	
8/6/2018	<0.01							
8/7/2018			<0.01				<0.01	
8/8/2018					<0.01			
2/25/2019		<0.01						
2/26/2019				<0.01		<0.01		<0.01
6/12/2019		<0.01				<0.01		
6/13/2019				0.0009 (J)				0.00073 (J)

Constituent: Chromium, Cobalt Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-4R	GWC-4R	GWC-5R	GWC-5R	GWC-6R	GWC-6R	GWA-2	GWA-2
5/1/2007							0.0067	
9/11/2007							<0.01	
3/20/2008							<0.01	
8/27/2008							<0.01	
3/3/2009							<0.01	
9/9/2009					<0.01			
11/18/2009					<0.01		<0.01	
1/5/2010					<0.01			
3/3/2010					<0.01		0.0027	
9/7/2010					<0.01			
9/8/2010							0.007	
11/22/2010	<0.01							
1/4/2011	0.0062							
2/17/2011	<0.01							
3/10/2011					<0.01		<0.01	
3/11/2011	<0.01							
3/28/2011	<0.01							
9/7/2011	<0.01		<0.01					
9/8/2011					0.0018		<0.01	
3/4/2012	<0.01							
3/5/2012			<0.01		<0.01		0.0032	
9/5/2012			<0.01		0.0013			
9/10/2012	<0.01						<0.01	
2/5/2013			<0.01		<0.01			
2/6/2013	<0.01						<0.01	
8/12/2013							0.0045	
8/13/2013					0.0025			
8/14/2013	<0.01		0.0016					
2/4/2014	<0.01				0.0013			
2/5/2014			0.0018				<0.01	
8/4/2014	<0.01		0.0029					
8/5/2014					0.0018		0.0027	
2/2/2015	<0.01							
2/3/2015			0.0017		0.0015			
2/4/2015							0.0016	
8/3/2015	<0.01 (D)		0.0028 (D)				0.002	
8/4/2015					0.0028			
2/16/2016	<0.01		0.0028		0.001 (J)		0.0027	
8/31/2016							0.0053 (J)	
9/1/2016	<0.01		0.0021 (J)		0.0015 (J)			
11/28/2016							0.0036 (J)	
11/29/2016					0.0014 (J)			
11/30/2016	0.0013 (J)							
12/1/2016			0.0017 (J)					
2/22/2017					0.004777		0.0049 (J)	
2/23/2017	0.04		0.0040 (1)		0.0017 (J)			
2/24/2017	<0.01		0.0018 (J)				0.0050 (1)	
5/8/2017	0.000777		0.0024 / 1		0.0015 (!)		0.0059 (J)	
5/10/2017 7/17/2017	0.0007 (J)		0.0024 (J)		0.0015 (J)		0.0046 (1)	
7/17/2017	0.0011 (J)		0.0017 (J)		0.0012 (J)		0.0046 (J)	
10/16/2017	0.0011(0)		0.0023 (J)		0.0012 (0)		0.0034 (J)	
. 5. 15.2517								

Constituent: Chromium, Cobalt Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-4R	GWC-4R	GWC-5R	GWC-5R	GWC-6R	GWC-6R	GWA-2	GWA-2			
10/17/2017	<0.01										
10/18/2017					0.0012 (J)						
2/19/2018					<0.01		<0.01				
2/20/2018	<0.01										
2/21/2018			<0.01								
8/6/2018					<0.01		0.003 (J)				
8/7/2018			0.0024 (J)								
8/8/2018	<0.01										
2/25/2019						<0.01		0.001 (J)			
2/26/2019		<0.01		0.0019 (J)							
6/12/2019		<0.01						0.003 (J)			
6/13/2019				0.0018 (J)		0.00089 (J)					

Constituent: Cobalt Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

			Tidili Tatos	Onerit. Coutrierr	Company Data: 1	atos aypsam Lanan		
	GWC-1R	GWC-1R	GWC-2R	GWC-2R	GWC-3R	GWC-3R	GWC-4R	GWC-4R
11/22/2010			0.038				<0.01	
1/4/2011			0.049				0.0036	
2/17/2011			0.044				0.0035	
3/11/2011			0.038				0.0053	
3/28/2011			0.029				<0.01	
9/7/2011			0.031		<0.01		0.0033	
3/4/2012							0.0032	
3/5/2012	<0.01				<0.01			
3/6/2012			0.021					
9/5/2012	0.0018				<0.01			
9/10/2012							0.0067	
9/11/2012			0.017					
2/5/2013	0.0013							
2/6/2013			0.025		<0.01		0.0024	
8/13/2013	<0.01		0.023		<0.01			
8/14/2013							0.0014	
2/4/2014	<0.01		0.019				<0.01	
2/5/2014					<0.01			
8/4/2014					<0.01		<0.01	
8/5/2014	<0.01		0.023					
2/2/2015	0.0015		0.022				<0.01	
2/3/2015					<0.01			
8/3/2015					<0.01 (D)		<0.01 (D)	
8/4/2015	<0.01 (D)		0.021					
2/16/2016	<0.01		0.004		<0.01		0.0082	
2/17/2016	0.0000 (1)		0.024		0.04			
8/31/2016	0.0006 (J)		0.0239		<0.01		0.0022 (1)	
9/1/2016			0.0190				0.0023 (J)	
11/28/2016 11/29/2016	<0.01		0.0189					
11/30/2016	~0.01				<0.01		0.0008 (J)	
2/22/2017			0.0184		\0.01		0.0008 (3)	
2/23/2017	0.0009 (J)		0.0104		<0.01			
2/24/2017	0.0003 (3)				40.01		0.0025 (J)	
5/9/2017	0.0008 (J)				<0.01		0.0023 (0)	
5/10/2017	0.0000 (0)		0.0213		10.01		<0.01	
7/18/2017	0.0032 (J)		0.0261		<0.01		0.0005 (J)	
10/17/2017	0.0007 (J)		0.0182		0.01		0.0006 (J)	
10/18/2017	(-)				<0.01		(0)	
2/20/2018			<0.01				<0.01	
2/21/2018	<0.01				<0.01			
8/7/2018	<0.01				<0.01			
8/8/2018			0.014				0.001 (J)	
2/26/2019		<0.01		0.029		<0.01	• •	<0.01
6/12/2019				0.013				0.00078 (J)
6/13/2019		0.00033 (J)				0.01		

Constituent: Cobalt, Copper Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

				Plant fales	Client: Southern	Company Data: 1	ales Gypsum Landi	III	
		GWC-6R	GWC-6R	GWA-2	GWA-2	GWC-1R	GWC-1R	GWC-3R	GWC-3R
5	5/1/2007			0.0047					
9	9/11/2007			<0.025					
3	3/20/2008			<0.025					
8	3/27/2008			0.0074					
3	3/3/2009			<0.025					
g	9/9/2009	<0.01							
1	11/18/2009	<0.01		0.0029					
1	1/5/2010	<0.01							
3	3/3/2010	<0.01		0.005					
9	9/7/2010	<0.01							
9	9/8/2010			<0.025					
3	3/10/2011	<0.01		0.0029					
9	9/7/2011							<0.025	
g	9/8/2011	<0.01		<0.025		<0.025			
3	3/5/2012	<0.01		<0.025		<0.025		<0.025	
9	9/5/2012	<0.01				<0.025		0.016	
9	9/10/2012			<0.025					
	2/5/2013	<0.01				<0.025			
2	2/6/2013			<0.025				<0.025	
	3/12/2013			<0.025					
	3/13/2013	<0.01				<0.025		<0.025	
	2/4/2014	<0.01				<0.025			
	2/5/2014			<0.025				<0.025	
	3/4/2014							0.0012 (J)	
	3/5/2014	<0.01		0.005		<0.025			
	2/2/2015					0.0031 (J)			
	2/3/2015	<0.01						<0.025	
	2/4/2015			0.0025 (J)					
	8/3/2015	0.0014		0.0014 (J)		10 005 (D)		<0.025 (D)	
	8/4/2015	0.0014		0.0011 (1)		<0.025 (D)		0.00000 (1)	
	2/16/2016	<0.01		0.0011 (J)		<0.025		0.00082 (J)	
	9/1/2016 11/29/2016	<0.01							
	2/22/2017	<0.01		0.0011 (J)					
	2/23/2017	<0.01		0.0011 (3)		<0.025		<0.025	
	5/10/2017	<0.01				10.023		10.025	
	7/18/2017	<0.01							
	10/18/2017	<0.01							
	2/19/2018	<0.01		<0.025					
	2/21/2018	10.01		10.025		<0.025		<0.025	
	3/6/2018	<0.01		<0.025		10.020		10.025	
	3/7/2018	3.0 .		020		<0.025		<0.025	
	2/25/2019		<0.01		<0.025			5.020	
	2/26/2019		·				<0.025		<0.025
	6/12/2019				0.00034 (J)				
	6/13/2019		<0.01		(-)		<0.025		<0.025
	-								

Constituent: Copper, Lead Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-4R	GWC-4R	GWC-5R	GWC-5R	GWC-6R	GWC-6R	GWC-2R	GWC-2R
9/9/2009					0.0028			
11/18/2009					0.0027			
1/5/2010					0.0035			
3/3/2010					<0.005			
9/7/2010					<0.005			
11/22/2010	<0.025						<0.005	
1/4/2011	0.0049						<0.005	
2/17/2011	<0.025						<0.005	
3/10/2011					<0.005			
3/11/2011	<0.025						<0.005	
3/28/2011	<0.025						<0.005	
9/7/2011	<0.025		<0.025				<0.005	
9/8/2011					<0.005			
3/4/2012	<0.025							
3/5/2012			<0.025		<0.005			
3/6/2012							<0.005	
9/5/2012			<0.025		<0.005			
9/10/2012	<0.025							
9/11/2012							<0.005	
2/5/2013			<0.025		<0.005			
2/6/2013	<0.025						<0.005	
8/13/2013					<0.005		<0.005	
8/14/2013	<0.025		<0.025					
2/4/2014	<0.025				<0.005		<0.005	
2/5/2014			<0.025					
8/4/2014	<0.025		0.0015 (J)					
8/5/2014					0.0012 (J)		<0.005	
2/2/2015	<0.025						<0.005	
2/3/2015			<0.025		0.0013 (J)			
8/3/2015	<0.025 (D)		<0.025 (D)					
8/4/2015					0.0043 (J)		<0.005	
2/16/2016	0.00088 (J)		<0.025		<0.005			
2/17/2016							<0.005	
8/31/2016							<0.005	
11/28/2016							<0.005	
2/22/2017							<0.005	
2/23/2017					0.0018 (J)			
2/24/2017	<0.025		<0.025					
5/10/2017							0.0001 (J)	
7/18/2017							7E-05 (J)	
10/17/2017							<0.005	
2/19/2018					<0.005			
2/20/2018	<0.025						<0.005	
2/21/2018			<0.025					
8/6/2018					0.0016 (J)			
8/7/2018			<0.025					
8/8/2018	<0.025						<0.005	
2/25/2019						0.0016 (J)		
2/26/2019		<0.025		<0.025				<0.005
6/12/2019		0.00025 (J)						<0.005
6/13/2019				0.00049 (J)		0.0011 (J)		

Constituent: Lead, Mercury Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

						,			
	ı	GWC-3R	GWC-3R	GWA-2	GWA-2	GWC-1R	GWC-1R	GWC-2R	GWC-2R
5/1/	2007			<0.0005					
9/11	1/2007			<0.0005					
3/20	0/2008			<0.0005					
8/27	7/2008			<0.0005					
3/3/	2009			<0.0005					
11/1	18/2009			<0.0005					
3/3/	2010			<0.0005					
9/8/	2010			<0.0005					
11/2	22/2010							<0.0005	
1/4/	2011							<0.0005	
2/17	7/2011							<0.0005	
3/10	0/2011			<0.0005					
3/11	1/2011							<0.0005	
3/28	3/2011							<0.0005	
9/7/	2011	<0.005						<0.0005	
9/8/	2011			<0.0005		<0.0005			
3/5/	2012	<0.005		<0.0005		<0.0005			
3/6/	2012							<0.0005	
9/5/	2012	<0.005				<0.0005			
9/10	0/2012			<0.0005					
9/11	1/2012							<0.0005	
2/5/	2013					<0.0005			
2/6/	2013	<0.005		<0.0005				<0.0005	
8/12	2/2013			<0.0005					
8/13	3/2013	<0.005				<0.0005		<0.0005	
2/4/	2014					<0.0005		<0.0005	
2/5/	2014	<0.005		<0.0005					
8/4/	2014	<0.005							
8/5/	2014			<0.0005		<0.0005		<0.0005	
2/2/	2015					<0.0005		<0.0005	
2/3/	2015	<0.005							
	2015			<0.0005					
	2015	<0.005 (D)		<0.0005					
8/4/	2015					<0.0005 (D)		<0.0005	
	6/2016	<0.005		1.36E-05 (J)		<0.0005			
	7/2016							<0.0005	
	1/2016	0.0001 (J)		<0.0005		<0.0005		<0.0005	
	28/2016			<0.0005				<0.0005	
	29/2016					<0.0005			
	30/2016	<0.005							
	2/2017			<0.0005				<0.0005	
	3/2017	<0.005				<0.0005			
	2017			<0.0005					
	2017	<0.005				<0.0005			
	0/2017							<0.0005	
	7/2017			<0.0005					
	3/2017	<0.005		.0.005		<0.0005		<0.0005	
	16/2017			<0.0005					
	17/2017					<0.0005		<0.0005	
	18/2017	8E-05 (J)		-0.0005					
	9/2018			<0.0005				<0.000E	
2/20	0/2018							<0.0005	

Constituent: Lead, Mercury Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

1	GWC-3R	GWC-3R	GWA-2	GWA-2	GWC-1R	GWC-1R	GWC-2R	GWC-2R		
2/21/2018	<0.005				<0.0005					
8/6/2018			<0.0005							
8/7/2018	<0.005				<0.0005					
8/8/2018							<0.0005			
2/25/2019				7.4E-05 (J)						
2/26/2019		<0.005				5.9E-05 (J)		7.1E-05 (J)		
6/12/2019				<0.0005				<0.0005		
6/13/2019		<0.005				<0.0005				

Constituent: Mercury Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

						, , ,		
	GWC-3R	GWC-3R	GWC-4R	GWC-4R	GWC-5R	GWC-5R	GWC-6R	GWC-6R
9/9/2009							<0.0005	
11/18/2009							<0.0005	
1/5/2010							<0.0005	
3/3/2010							<0.0005	
9/7/2010							<0.0005	
11/22/2010			<0.0005					
1/4/2011			<0.0005					
2/17/2011			<0.0005					
3/10/2011							<0.0005	
3/11/2011			<0.0005					
3/28/2011			<0.0005					
9/7/2011	<0.0005		<0.0005		<0.0005			
9/8/2011							<0.0005	
3/4/2012			<0.0005					
3/5/2012	<0.0005				<0.0005		<0.0005	
9/5/2012	<0.0005				<0.0005		<0.0005	
9/10/2012			<0.0005					
2/5/2013					<0.0005		<0.0005	
2/6/2013	<0.0005		0.00014					
8/13/2013	<0.0005						<0.0005	
8/14/2013			<0.0005		<0.0005			
2/4/2014			<0.0005				<0.0005	
2/5/2014	<0.0005				<0.0005			
8/4/2014	<0.0005		<0.0005		<0.0005			
8/5/2014							<0.0005	
2/2/2015			<0.0005					
2/3/2015	<0.0005				<0.0005		<0.0005	
8/3/2015	<0.0005 (D)		<0.0005 (D)		<0.0005 (D)			
8/4/2015							<0.0005	
2/16/2016	1.34E-05 (J)		<0.0005		<0.0005		1.13E-05 (J)	
8/31/2016	<0.0005							
9/1/2016			<0.0005		<0.0005		<0.0005	
11/29/2016							<0.0005	
11/30/2016	<0.0005		<0.0005					
12/1/2016					<0.0005			
2/23/2017	<0.0005		.0.0005		.0.005		<0.0005	
2/24/2017	.0.005		<0.0005		<0.0005			
5/9/2017	<0.0005		.0.0005		.0.005		0.0005	
5/10/2017			<0.0005		<0.0005		<0.0005	
7/17/2017	10.0005		10.0005		<0.0005		-0.0005	
7/18/2017	<0.0005		<0.0005		.0.005		<0.0005	
10/16/2017			.0.0005		<0.0005			
10/17/2017	10.0005		<0.0005				-0.0005	
10/18/2017	<0.0005						<0.0005	
2/19/2018			<0.000E				<0.0005	
2/20/2018	<0.000F		<0.0005		<0.000E			
2/21/2018	<0.0005				<0.0005		<0.0005	
8/6/2018	<0.0005				<0.0005		<0.0005	
8/7/2018	<0.0005		<0.0005		<0.0005			
8/8/2018 2/25/2019			<0.0005					6.7E-05 (J)
		6 4E 0E (I)		5 8E 0E / I\		6E 05 (I)		0.7L-03 (J)
2/26/2019		6.4E-05 (J)		5.8E-05 (J)		6E-05 (J)		

Constituent: Mercury Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-3R	GWC-3R	GWC-4R	GWC-4R	GWC-5R	GWC-5R	GWC-6R	GWC-6R
6/12/2019				<0.0005				
6/13/2019		<0.0005				<0.0005		<0.0005

Constituent: Nickel Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

			Tidit Tates	Olient. Coutrient	Company Data: 1	ates aypount Eunan	"	
	GWA-2	GWA-2	GWC-1R	GWC-1R	GWC-2R	GWC-2R	GWC-3R	GWC-3R
5/1/2007	0.0061							
9/11/2007	0.021							
3/20/2008	<0.005							
8/27/2008	<0.005							
3/3/2009	0.005							
11/18/2009	0.0052							
3/3/2010	0.011							
9/8/2010	0.012							
11/22/2010					0.0096			
1/4/2011					0.0084			
2/17/2011					0.0088			
3/10/2011	0.0032							
3/11/2011					0.0058			
3/28/2011					0.0058			
9/7/2011					0.005		0.0054	
9/8/2011	0.0046		0.009					
3/5/2012	0.0053		0.0035				<0.01	
3/6/2012					<0.01			
9/5/2012			0.0027				<0.01	
9/10/2012	0.0074							
9/11/2012					<0.01			
2/5/2013			0.0026					
2/6/2013	0.0077				<0.01		<0.01	
8/12/2013	0.016							
8/13/2013			<0.01		0.003		0.0032	
2/4/2014	0.010		<0.01		0.0026		0.000	
2/5/2014	0.019						0.0039	
8/4/2014	0.0057		0.0012 (1)		0.0015 (1)		0.0024 (J)	
8/5/2014 2/2/2015	0.0057		0.0013 (J) 0.0023 (J)		0.0015 (J) <0.01			
2/3/2015			0.0023 (3)		~0.01		<0.01	
2/4/2015	0.0055						~0.01	
8/3/2015	0.0055						<0.01 (D)	
8/4/2015	0.0000		<0.01 (D)		<0.01		0.01(2)	
2/16/2016	0.0039		<0.01				<0.01	
2/17/2016					<0.01			
2/22/2017	0.0051 (J)				0.0009 (J)			
2/23/2017	. ,		0.0026 (J)		()		<0.01	
2/19/2018	<0.005		, ,					
2/20/2018					<0.01			
2/21/2018			0.001 (J)				<0.01	
8/6/2018	0.003 (J)							
8/7/2018			<0.01				<0.01	
8/8/2018					<0.01			
2/25/2019		0.0026 (J)						
2/26/2019				<0.01		0.0068 (J)		<0.01
6/12/2019		0.0038 (J)				0.00043 (J)		
6/13/2019				0.00072 (J)				<0.01

Constituent: Nickel, Selenium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

			r lant rates	Olichi. Codincin	Company Data: 1	atos aypsam Lanar		
	GWC-4R	GWC-4R	GWC-5R	GWC-5R	GWC-6R	GWC-6R	GWC-1R	GWC-1R
9/9/2009					<0.005			
11/18/2009					<0.005			
1/5/2010					<0.005			
3/3/2010					<0.005			
9/7/2010					<0.005			
11/22/2010	<0.01							
1/4/2011	<0.01							
2/17/2011	<0.01							
3/10/2011					<0.005			
3/11/2011	<0.01							
3/28/2011	<0.01							
9/7/2011	<0.01		<0.0025					
9/8/2011					<0.005		<0.01	
3/4/2012	<0.01							
3/5/2012			<0.0025		<0.005		<0.01	
9/5/2012			<0.0025		<0.005		<0.01	
9/10/2012	<0.01							
2/5/2013			<0.0025		<0.005		<0.01	
2/6/2013	<0.01							
8/13/2013					<0.005		<0.01	
8/14/2013	<0.01		0.0032					
2/4/2014	0.0033				<0.005		<0.01	
2/5/2014			0.0032					
8/4/2014	0.0015 (J)		0.0059					
8/5/2014					<0.005		<0.01	
2/2/2015	<0.01						<0.01	
2/3/2015			0.0013 (J)		<0.005			
8/3/2015	<0.01 (D)		0.0039 (D)					
8/4/2015					<0.005		<0.01 (D)	
2/16/2016	<0.01		0.0036		<0.005		<0.01	
8/31/2016							0.0039 (J)	
11/29/2016							0.0033 (J)	
2/23/2017					0.0015 (J)		0.0097 (J)	
2/24/2017	0.0021 (J)		0.0019 (J)					
5/9/2017							0.0066 (J)	
7/18/2017							0.0021 (J)	
10/17/2017							0.003 (J)	
2/19/2018					<0.005			
2/20/2018	<0.01							
2/21/2018			0.0013 (J)				<0.01	
8/6/2018					0.0026 (J)			
8/7/2018			0.0019 (J)				<0.01	
8/8/2018	0.0012 (J)							
2/25/2019						0.0023 (J)		
2/26/2019		<0.01		0.0023 (J)				0.0014 (J)
6/12/2019		0.00082 (J)						
6/13/2019				0.0019 (J)		0.0037 (J)		<0.01

Constituent: Selenium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

					. ,			
	GWC-2R	GWC-2R	GWC-3R	GWC-3R	GWC-4R	GWC-4R	GWC-5R	GWC-5R
11/22/2010	<0.01				<0.01			
1/4/2011	<0.01				<0.01			
2/17/2011	<0.01				<0.01			
3/11/2011	<0.01				<0.01			
3/28/2011	<0.01				<0.01			
9/7/2011	<0.01		<0.01		<0.01		<0.013	
3/4/2012					<0.01			
3/5/2012			<0.01				0.014	
3/6/2012	<0.01							
9/5/2012			<0.01				0.012	
9/10/2012					0.011			
9/11/2012	<0.01							
2/5/2013							0.011	
2/6/2013	<0.01		<0.01		0.011			
8/13/2013	<0.01		0.0057					
8/14/2013					0.013		0.025	
2/4/2014	<0.01				0.017			
2/5/2014			<0.01				0.02	
8/4/2014			<0.01		0.0085		0.032	
8/5/2014	<0.01							
2/2/2015	<0.01				0.0089			
2/3/2015			<0.01				0.011	
8/3/2015	.0.04		<0.01 (D)		0.0067 (D)		0.046 (D)	
8/4/2015	<0.01		0.04		0.004771		0.000	
2/16/2016 2/17/2016	z0.01		<0.01		0.0047 (J)		0.022	
8/31/2016	<0.01 0.0029 (J)		0.0038 (J)					
9/1/2016	0.0029 (3)		0.0038 (3)		0.0132		0.0212	
11/28/2016	0.0019 (J)				0.0132		0.0212	
11/30/2016	0.0013 (3)		0.0054 (J)		0.0046 (J)			
12/1/2016			0.0004 (0)		0.0040 (0)		0.0234	
2/22/2017	0.0015 (J)							
2/23/2017	(4)		0.002 (J)					
2/24/2017			,		0.0108		0.0154	
5/9/2017			<0.01					
5/10/2017	0.0016 (J)				0.0054 (J)		0.0152	
7/17/2017							0.0136	
7/18/2017	0.0024 (J)		0.0027 (J)		0.0047 (J)			
10/16/2017							0.0242	
10/17/2017	0.0028 (J)				0.004 (J)			
10/18/2017			0.0047 (J)					
2/20/2018	<0.01				<0.01			
2/21/2018			<0.01				0.0127	
8/7/2018			0.0016 (J)				0.021	
8/8/2018	0.0025 (J)				0.0041 (J)			
2/26/2019		0.003 (J)		0.002 (J)		0.0027 (J)		0.024
6/12/2019		0.0034 (J)				0.0029 (J)		
6/13/2019				0.0089 (J)				0.027

Constituent: Selenium, Thallium, Vanadium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL GWC-6R GWC-6R GWA-2 GWA-2 GWC-2R GWC-2R GWA-2 GWA-2 5/1/2007 < 0.001 0.0055 0.004 9/11/2007 < 0.001 3/20/2008 < 0.001 <0.01 8/27/2008 <0.001 0.0029 3/3/2009 <0.001 <0.01 9/9/2009 <0.01 11/18/2009 <0.01 <0.001 <0.01 <0.01 1/5/2010 3/3/2010 <0.01 <0.001 <0.01 9/7/2010 <0.01 9/8/2010 <0.001 <0.01 11/22/2010 <0.001 <0.001 1/4/2011 2/17/2011 <0.001 3/10/2011 <0.01 <0.001 <0.01 3/11/2011 <0.001 3/28/2011 <0.001 <0.001 9/7/2011 9/8/2011 <0.01 <0.001 <0.01 3/5/2012 <0.01 <0.001 <0.01 <0.001 3/6/2012 9/5/2012 <0.01 9/10/2012 < 0.001 <0.01 9/11/2012 < 0.001 2/5/2013 <0.01 < 0.001 <0.01 2/6/2013 <0.001 8/12/2013 < 0.001 <0.01 8/13/2013 <0.01 < 0.001 <0.001 2/4/2014 <0.01 <0.001 <0.01 2/5/2014 8/5/2014 <0.01 <0.001 <0.01 <0.001 2/2/2015 2/3/2015 < 0.01 2/4/2015 < 0.001 <0.01 0.0013 (J) 8/3/2015 8/4/2015 <0.01 2/16/2016 <0.01 <0.001 <0.01 2/17/2016 7E-05 (J) 8/31/2016 <0.001 <0.001 9/1/2016 0.002 (J) <0.001 <0.001 11/28/2016 11/29/2016 0.0017 (J) <0.001 <0.001 <0.01 2/22/2017 2/23/2017 0.0018 (J) <0.01 5/8/2017 6E-05 (J) 5/10/2017 0.0023 (J) <0.001 7/17/2017 6E-05 (J) <0.01 7/18/2017 0.0046 (J) <0.001 10/16/2017 7E-05 (J)

< 0.001

< 0.01

10/17/2017

10/18/2017

2/19/2018

0.0037 (J)

<0.001

<0.01

Constituent: Selenium, Thallium, Vanadium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL

			Plant Yates	Client: Southern	Company Data: Y	ates Gypsum Landf	fill	
	GWC-6R	GWC-6R	GWA-2	GWA-2	GWC-2R	GWC-2R	GWA-2	GWA-2
2/20/2018					<0.001			
8/6/2018	0.0047 (J)		<0.001				<0.01	
8/8/2018					<0.001			
2/25/2019		0.0051 (J)		<0.001				<0.01
2/26/2019						<0.001		
6/12/2019				<0.001		<0.001		0.0032 (J)
6/13/2019		0.0048 (J)						

Constituent: Vanadium Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

T	GWC-1R	GWC-1R	GWC-2R	GWC-2R	GWC-3R	GWC-3R	GWC-4R	GWC-4R
11/22/2010			<0.01				<0.01	
1/4/2011			<0.01				<0.01	
2/17/2011			<0.01				<0.01	
3/11/2011			<0.01				<0.01	
3/28/2011			<0.01				<0.01	
9/7/2011			<0.01		<0.01		<0.01	
9/8/2011	<0.01							
3/4/2012							<0.01	
3/5/2012	<0.01				<0.01			
3/6/2012			<0.01					
9/5/2012	<0.01				<0.01			
9/10/2012							<0.01	
9/11/2012			<0.01					
2/5/2013	<0.01							
2/6/2013			<0.01		<0.01		<0.01	
8/13/2013	<0.01		<0.01		<0.01			
8/14/2013							<0.01	
2/4/2014	<0.01		<0.01				<0.01	
2/5/2014					<0.01			
8/4/2014					<0.01		<0.01	
8/5/2014	0.0011 (J)		<0.01					
2/2/2015	0.0051		<0.01				<0.01	
2/3/2015					<0.01			
8/3/2015					<0.01 (D)		<0.01 (D)	
8/4/2015	<0.01 (D)		<0.01					
2/16/2016	0.00075 (J)				<0.01		<0.01	
2/17/2016			<0.01					
2/22/2017			<0.01					
2/23/2017	<0.01				<0.01			
2/24/2017							<0.01	
5/9/2017	<0.01				<0.01			
5/10/2017			<0.01				<0.01	
7/18/2017	<0.01		<0.01		<0.01		<0.01	
2/20/2018			<0.01				<0.01	
2/21/2018	<0.01				<0.01			
8/7/2018	<0.01				<0.01			
8/8/2018			<0.01				<0.01	
2/26/2019		<0.01		<0.01		<0.01		<0.01
6/12/2019				0.00079 (J)				0.00088 (J)
6/13/2019		<0.01				0.0021 (J)		

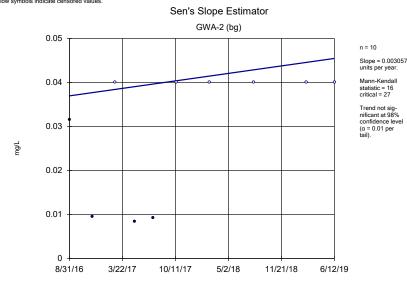
Constituent: Vanadium, Zinc Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

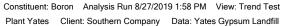
			r lant rates	oneni. Codinem	Company Data.	rates aypount Luna		
	GWC-5R	GWC-5R	GWC-6R	GWC-6R	GWA-2	GWA-2	GWC-1R	GWC-1R
5/1/2007					0.0081			
9/11/2007					0.0049			
3/20/2008					0.004			
8/27/2008					0.0042			
3/3/2009					0.0058			
9/9/2009			<0.01					
11/18/2009			<0.01		0.0038			
1/5/2010			<0.01					
3/3/2010			<0.01		0.0085			
9/7/2010			<0.01					
9/8/2010					0.0065			
3/10/2011			<0.01		0.0029			
9/7/2011	<0.01							
9/8/2011			<0.01		0.004		0.0048	
3/5/2012	<0.01		<0.01		0.0059		0.0038	
9/5/2012	<0.01		<0.01				0.0051	
9/10/2012					0.0052			
2/5/2013	<0.01		<0.01				<0.01	
2/6/2013					0.0038			
8/12/2013					0.0075			
8/13/2013			<0.01				<0.01	
8/14/2013	<0.01							
2/4/2014			<0.01				0.0037	
2/5/2014	<0.01							
8/4/2014	0.0022 (J)							
8/5/2014			0.0015 (J)		0.0037		0.0019 (J)	
2/2/2015							0.0051	
2/3/2015	<0.01		0.00093 (J)					
2/4/2015					0.0057			
8/3/2015	0.0019 (JD)				0.0043			
8/4/2015			0.0036 (J)				0.0017 (JD)	
2/16/2016	0.0011 (J)		0.0011 (J)		0.0024 (J)		0.0015 (J)	
2/22/2017					0.0042 (J)			
2/23/2017			<0.01				0.0024 (J)	
2/24/2017	<0.01							
5/8/2017					0.0025 (J)			
5/9/2017							0.0016 (J)	
5/10/2017	<0.01		<0.01					
7/17/2017	<0.01				0.0032 (J)			
7/18/2017			<0.01				0.0015 (J)	
2/19/2018			<0.01		<0.01			
2/21/2018	<0.01		0.0000 (1)		0.0007 (1)		<0.01	
8/6/2018	-0.01		0.0029 (J)		0.0037 (J)		0.004475	
8/7/2018	<0.01			-0.01		0.012	0.0044 (J)	
2/25/2019		~0.01		<0.01		0.013		0.0022 (1)
2/26/2019		<0.01				~0.01		0.0022 (J)
6/12/2019		<0.01		<0.01		<0.01		<0.01
6/13/2019		~U.U I		~U.U1				<0.01

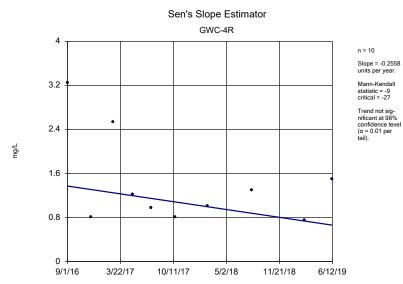
Constituent: Zinc Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

					,			
	GWC-2R	GWC-2R	GWC-3R	GWC-3R	GWC-4R	GWC-4R	GWC-5R	GWC-5R
11/22/2010	0.0047				<0.01			
1/4/2011	0.0038				<0.01			
2/17/2011	0.0074				<0.01			
3/11/2011	0.0038							
3/28/2011	<0.01				<0.01			
9/7/2011	0.0059		0.0064		<0.01		0.0064	
3/4/2012					<0.01			
3/5/2012			0.0043				0.0034	
3/6/2012	0.0032							
9/5/2012			0.0069				0.0035	
9/10/2012					<0.01			
9/11/2012	0.0029							
2/5/2013							0.0027	
2/6/2013	0.0036		<0.0025		<0.01			
8/13/2013	0.0066		0.011					
8/14/2013					<0.01		0.0041	
2/4/2014	0.011				0.0034			
2/5/2014							0.011	
8/4/2014			0.012		0.0013 (J)		0.011	
8/5/2014	0.0032							
2/2/2015	0.0031				<0.01			
2/3/2015			0.0061				0.0044	
8/3/2015			0.0037 (D)		<0.01 (D)		0.011 (D)	
8/4/2015	0.0017 (J)							
2/16/2016			0.0093		0.0017 (J)		0.014	
2/17/2016	0.0034							
2/22/2017	0.0024 (J)							
2/23/2017			0.0031 (J)					
2/24/2017					0.0028 (J)		0.0043 (J)	
5/9/2017			0.0025 (J)					
5/10/2017	0.0022 (J)				0.0014 (J)		0.0042 (J)	
7/17/2017							0.0055 (J)	
7/18/2017	0.0017 (J)		0.0028 (J)		0.0015 (J)			
2/20/2018	<0.01				<0.01			
2/21/2018			0.003 (J)				0.0102	
8/7/2018			0.0036 (J)				0.015	
8/8/2018	0.0021 (J)				0.0033 (J)			
2/26/2019		0.003 (J)		0.0033 (J)		<0.01		0.015
6/12/2019		0.0019 (J)				<0.01		
6/13/2019				0.0069 (J)				0.015

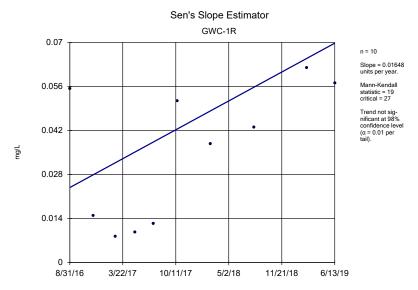
Constituent: Zinc Analysis Run 8/27/2019 1:52 PM View: Intrawell PL Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

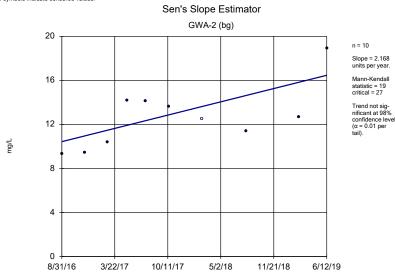

	GWC-6R	GWC-6R
9/9/2009	0.003	23 0
11/18/2009	<0.01	
1/5/2010	0.0027	
3/3/2010	<0.01	
9/7/2010	<0.01	
3/10/2011	<0.01	
9/8/2011	<0.01	
3/5/2012	0.0053	
9/5/2012	0.0033	
2/5/2013	<0.01	
8/13/2013	0.0038	
2/4/2014	0.0046	
8/5/2014	0.0019 (J)	
2/3/2015	0.0026	
8/4/2015	0.0035	
2/16/2016	0.002 (J)	
2/23/2017	0.0038 (J)	
5/10/2017	0.0027 (J)	
7/18/2017	0.0024 (J)	
2/19/2018	<0.01	
8/6/2018	0.004 (J)	
2/25/2019		0.0028 (J)
6/13/2019		<0.01


Trend Test Significant Results


	Plant Yates Clie	nt: Southern Compan	y Data: Yate	s Gypsum Land	fill Prin	ted 8/27/20	019, 2:00 F	PM		
Constituent	Well	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Calcium (mg/L)	GWC-1R	-17.01	-33	-27	Yes	10	0	n/a	0.02	NP
Calcium (mg/L)	GWC-6R	37.56	31	27	Yes	10	0	n/a	0.02	NP
Cobalt (mg/L)	GWA-2 (bg)	-0.0005031	-141	-125	Yes	29	37.93	n/a	0.02	NP
Fluoride (mg/L)	GWC-2R	0.1493	29	27	Yes	10	50	n/a	0.02	NP
Sulfate (mg/L)	GWC-1R	-117.2	-35	-27	Yes	10	0	n/a	0.02	NP
Sulfate (mg/L)	GWC-6R	197.7	31	27	Yes	10	0	n/a	0.02	NP
TDS (mg/L)	GWC-1R	-193.4	-37	-27	Yes	10	0	n/a	0.02	NP
TDS (mg/L)	GWC-6R	302.4	31	27	Yes	10	0	n/a	0.02	NP

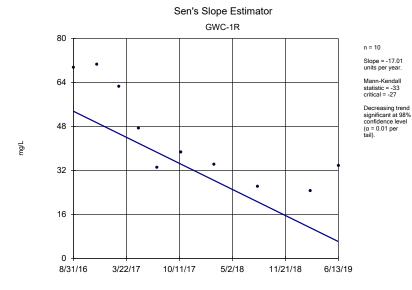
Trend Test All Results


	Plant Yates	Client: Southern Com	pany Data:	Yates Gypsum L	andfill P	rinted 8/2	7/2019, 2:00	PM		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Alpha	Method
Boron (mg/L)	GWA-2 (bg)	0.003057	16	27	No	10	60	n/a	0.02	NP
Boron (mg/L)	GWC-1R	0.01648	19	27	No	10	0	n/a	0.02	NP
Boron (mg/L)	GWC-4R	-0.2558	-9	-27	No	10	0	n/a	0.02	NP
Calcium (mg/L)	GWA-2 (bg)	2.168	19	27	No	10	10	n/a	0.02	NP
Calcium (mg/L)	GWC-1R	-17.01	-33	-27	Yes	10	0	n/a	0.02	NP
Calcium (mg/L)	GWC-2R	1.284	5	27	No	10	10	n/a	0.02	NP
Calcium (mg/L)	GWC-4R	-1.058	-7	-27	No	10	10	n/a	0.02	NP
Calcium (mg/L)	GWC-5R	-11.77	-9	-27	No	10	0	n/a	0.02	NP
Calcium (mg/L)	GWC-6R	37.56	31	27	Yes	10	0	n/a	0.02	NP
Chloride (mg/L)	GWA-2 (bg)	0.1776	13	27	No	10	0	n/a	0.02	NP
Chloride (mg/L)	GWC-1R	10.43	23	27	No	10	0	n/a	0.02	NP
Chloride (mg/L)	GWC-2R	-0.2409	-8	-27	No	10	0	n/a	0.02	NP
Chloride (mg/L)	GWC-3R	-0.722	-27	-27	No	10	0	n/a	0.02	NP
Chloride (mg/L)	GWC-4R	-5.728	-11	-27	No	10	0	n/a	0.02	NP
Chloride (mg/L)	GWC-5R	-0.3266	-7	-27	No	10	0	n/a	0.02	NP
Chloride (mg/L)	GWC-6R	0	2	27	No	10	0	n/a	0.02	NP
Cobalt (mg/L)	GWA-2 (bg)	-0.0005031	-141	-125	Yes	29	37.93	n/a	0.02	NP
Cobalt (mg/L)	GWC-3R	0	0	73	No	20	95	n/a	0.02	NP
Fluoride (mg/L)	GWA-2 (bg)	0	1	27	No	10	0	n/a	0.02	NP
Fluoride (mg/L)	GWC-2R	0.1493	29	27	Yes	10	50	n/a	0.02	NP
Fluoride (mg/L)	GWC-3R	0.1336	27	27	No	10	50	n/a	0.02	NP
pH (S.U.)	GWA-2 (bg)	-0.02897	-57	-84	No	22	0	n/a	0.02	NP
pH (S.U.)	GWC-1R	0.0668	18	27	No	10	0	n/a	0.02	NP
Sulfate (mg/L)	GWA-2 (bg)	12.93	22	27	No	10	0	n/a	0.02	NP
Sulfate (mg/L)	GWC-1R	-117.2	-35	-27	Yes	10	0	n/a	0.02	NP
Sulfate (mg/L)	GWC-2R	-4.417	-3	-27	No	10	0	n/a	0.02	NP
Sulfate (mg/L)	GWC-5R	-99.69	-19	-27	No	10	0	n/a	0.02	NP
Sulfate (mg/L)	GWC-6R	197.7	31	27	Yes	10	0	n/a	0.02	NP
TDS (mg/L)	GWA-2 (bg)	6.113	3	27	No	10	0	n/a	0.02	NP
TDS (mg/L)	GWC-1R	-193.4	-37	-27	Yes	10	0	n/a	0.02	NP
TDS (mg/L)	GWC-2R	15.14	5	27	No	10	0	n/a	0.02	NP
TDS (mg/L)	GWC-4R	-13.89	-7	-27	No	10	0	n/a	0.02	NP
TDS (mg/L)	GWC-5R	-144.7	-17	-27	No	10	0	n/a	0.02	NP
TDS (mg/L)	GWC-6R	302.4	31	27	Yes	10	0	n/a	0.02	NP



Constituent: Boron Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: Boron Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill



Constituent: Calcium Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

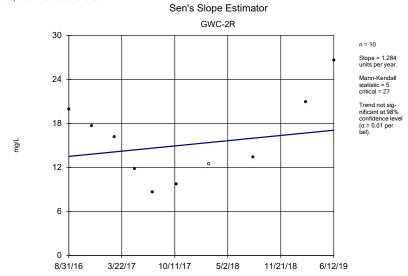
9/1/16

3/22/17

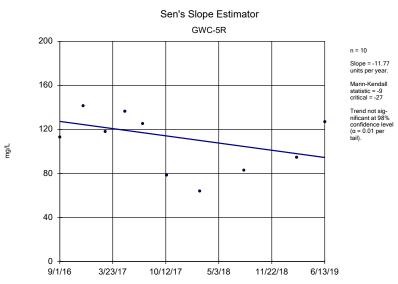
Hollow symbols indicate censored values.

Constituent: Calcium Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

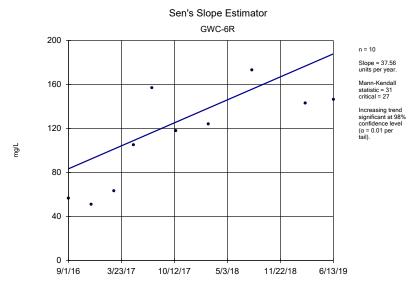
Sen's Slope Estimator

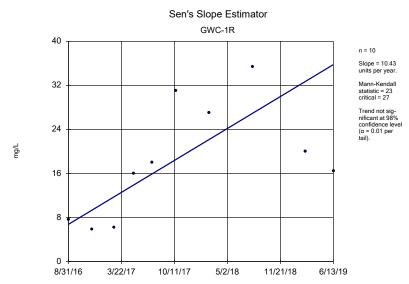

10/11/17

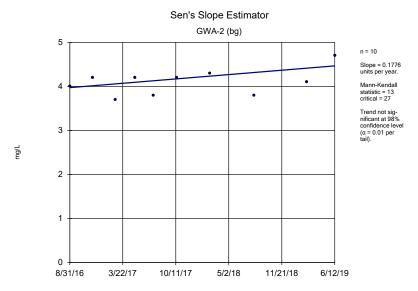
Constituent: Calcium Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

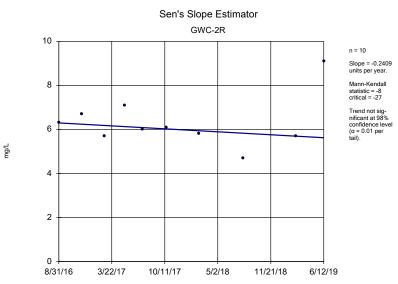

5/2/18

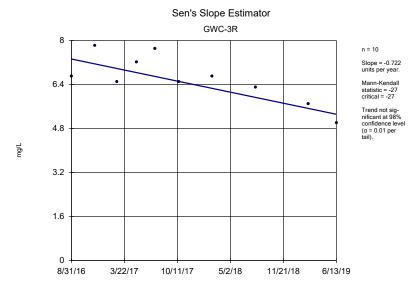
11/21/18

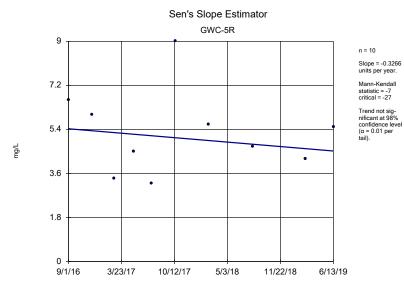

6/12/19

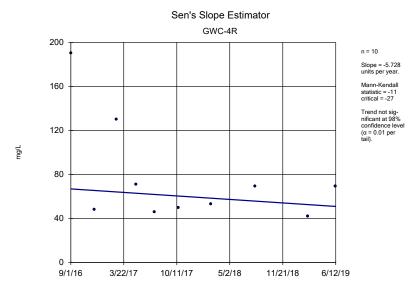

Constituent: Calcium Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

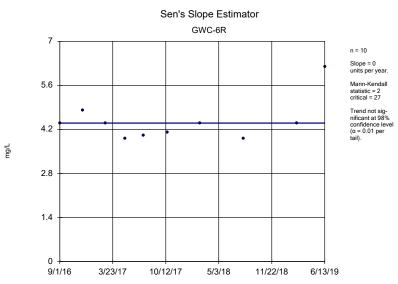

Constituent: Calcium Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Constituent: Calcium Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

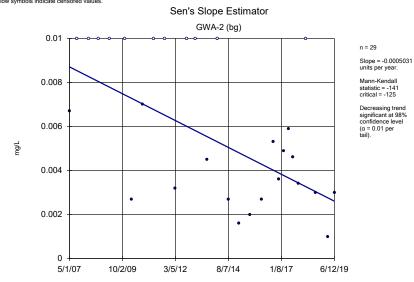

Constituent: Chloride Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Constituent: Chloride Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

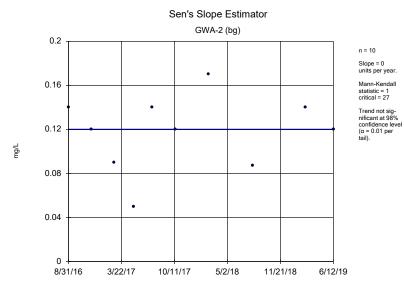

Constituent: Chloride Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Constituent: Chloride Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

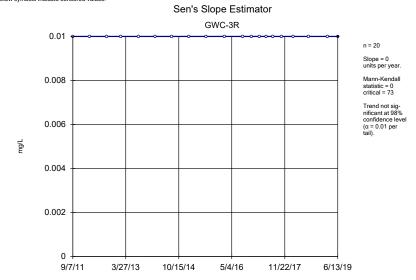
Constituent: Chloride Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill



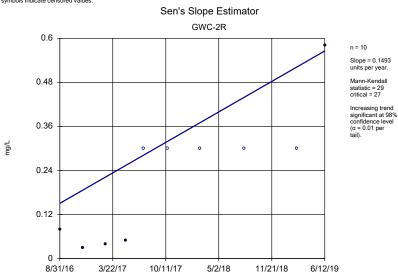
Constituent: Chloride Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Constituent: Chloride Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

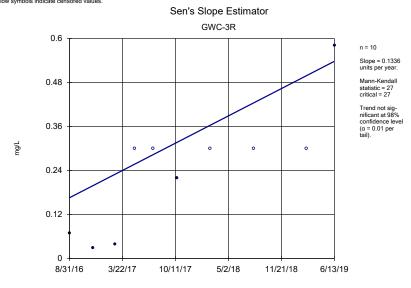
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Constituent: Cobalt Analysis Run 8/27/2019 1:58 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

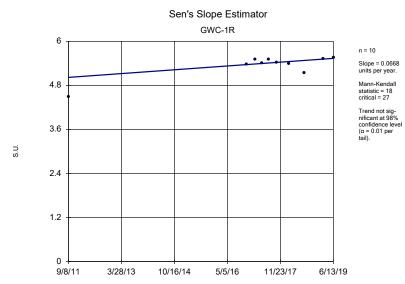
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

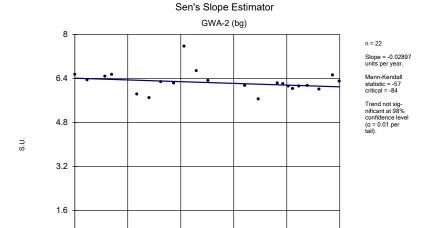

Constituent: Fluoride Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.



Constituent: Cobalt Analysis Run 8/27/2019 1:58 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Constituent: Fluoride Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

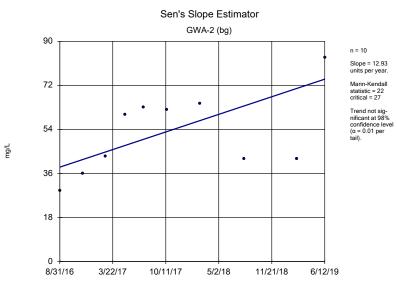
Constituent: Fluoride Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: pH Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

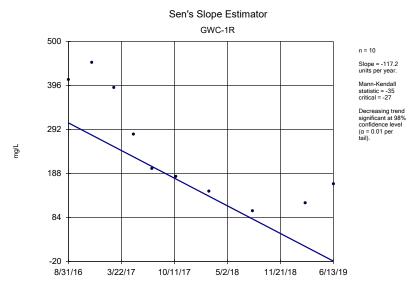
Constituent: pH Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

2/16/15

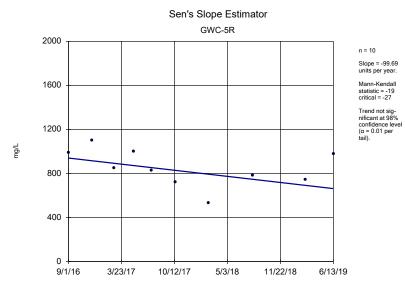
4/14/17

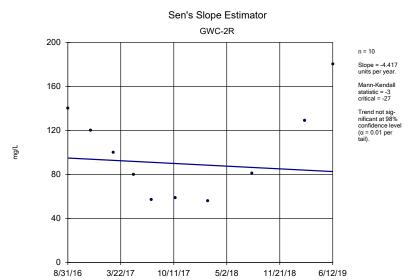

6/12/19

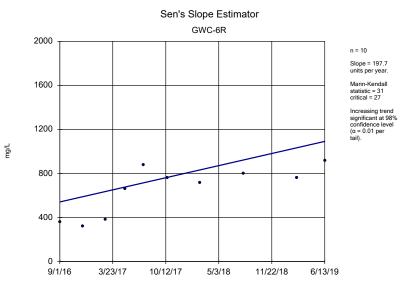
12/20/12

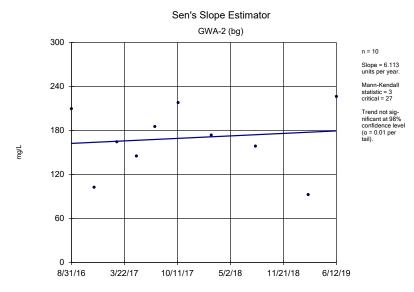

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

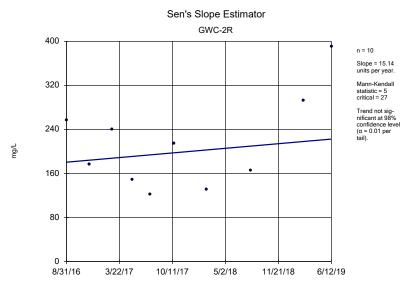
8/27/08

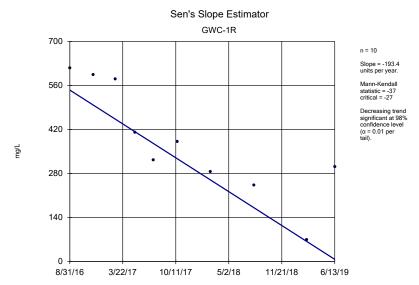

10/24/10

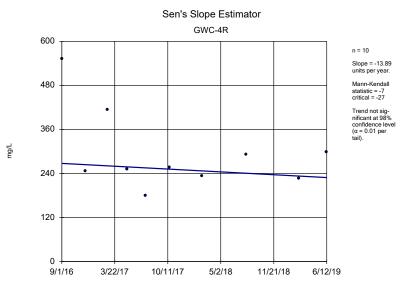

Constituent: Sulfate Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

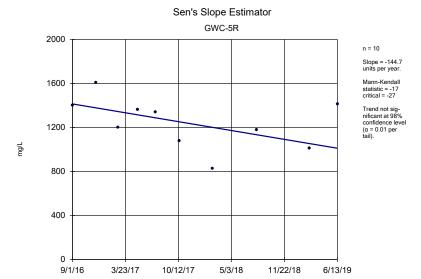

Constituent: Sulfate Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

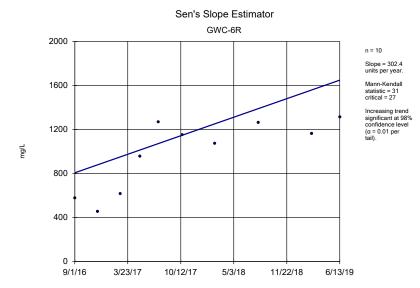

Constituent: Sulfate Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Constituent: Sulfate Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Constituent: Sulfate Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Constituent: TDS Analysis Run 8/27/2019 1:58 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Constituent: TDS Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Constituent: TDS Analysis Run 8/27/2019 1:58 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: TDS Analysis Run 8/27/2019 1:58 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: TDS Analysis Run 8/27/2019 1:58 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: TDS Analysis Run 8/27/2019 1:58 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: Boron, Calcium Analysis Run 8/27/2019 2:00 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

				·
	GWA-2 (bg)	GWC-1R	GWC-4R	GWA-2 (bg)
8/31/2016	0.0315 (J)	0.0553 (J)		9.31
9/1/2016			3.25	
11/28/2016	0.0095 (J)			9.47 (B)
11/29/2016		0.0149 (J)		
11/30/2016			0.813	
2/22/2017	<0.04			10.4
2/23/2017		0.0082 (J)		
2/24/2017			2.53	
5/8/2017	0.0084 (J)			14.2
5/9/2017		0.0097 (J)		
5/10/2017			1.22	
7/17/2017	0.0092 (J)			14.1
7/18/2017		0.0123 (J)	0.97	
10/16/2017	<0.04			13.6
10/17/2017		0.0513	0.804	
2/19/2018	<0.04			<25
2/20/2018			1.01	
2/21/2018		0.0378 (J)		
8/6/2018	<0.04			11.4 (J)
8/7/2018		0.043		
8/8/2018			1.3	
2/25/2019	<0.04			12.7 (J)
2/26/2019		0.062	0.75	
6/12/2019	<0.04		1.5	18.9
6/13/2019		0.057		

Constituent: Calcium Analysis Run 8/27/2019 2:00 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-1R	GWC-2R	GWC-4R	GWC-5R
8/31/2016	69.4	19.9		
9/1/2016			37.1	113
11/28/2016		17.7 (B)		
11/29/2016	70.6 (B)			
11/30/2016			13.4 (B)	
12/1/2016				141 (B)
2/22/2017		16.2		
2/23/2017	62.4			
2/24/2017			29.5	118
5/9/2017	47.4			
5/10/2017		11.8	17	136
7/17/2017				125
7/18/2017	33.2	8.69	16.8	
10/16/2017				78.2
10/17/2017	38.7	9.77	14.3	
2/20/2018		<25	<25	
2/21/2018	34.3			64
8/7/2018	26.2			83
8/8/2018		13.4 (J)	22.1 (J)	
2/26/2019	24.7 (J)	20.9 (J)	15.1 (J)	94.4
6/12/2019		26.6	24.2	
6/13/2019	33.8			127

Constituent: Calcium, Chloride Analysis Run 8/27/2019 2:00 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

			1 10111 1 0100	onem country
T	GWC-6R	GWA-2 (bg)	GWC-1R	GWC-2R
8/31/2016		4	7.6	6.3
9/1/2016	56.8			
11/28/2016		4.2		6.7
11/29/2016	50.7 (B)		5.8	
2/22/2017		3.7		5.7
2/23/2017	63.5		6.2	
5/8/2017		4.2		
5/9/2017			16	
5/10/2017	105			7.1
7/17/2017		3.8		
7/18/2017	157		18	6
10/16/2017		4.2		
10/17/2017			31	6.1
10/18/2017	118			
2/19/2018	124	4.3		
2/20/2018				5.8
2/21/2018			27	
8/6/2018	173	3.8		
8/7/2018			35.4	
8/8/2018				4.7
2/25/2019	143	4.1		
2/26/2019			20	5.7
6/12/2019		4.7		9.1
6/13/2019	146		16.4	

Constituent: Chloride Analysis Run 8/27/2019 2:00 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-3R	GWC-4R	GWC-5R	GWC-6R
8/31/2016	6.7			
9/1/2016		190	6.6	4.4
11/29/2016				4.8
11/30/2016	7.8	48		
12/1/2016			6	
2/23/2017	6.5			4.4
2/24/2017		130	3.4	
5/9/2017	7.2			
5/10/2017		71	4.5	3.9
7/17/2017			3.2	
7/18/2017	7.7	46		4
10/16/2017			9	
10/17/2017		50		
10/18/2017	6.5			4.1
2/19/2018				4.4
2/20/2018		53.1		
2/21/2018	6.7		5.6	
8/6/2018				3.9
8/7/2018	6.3		4.7	
8/8/2018		69.3		
2/25/2019				4.4
2/26/2019	5.7	42.2	4.2	
6/12/2019		69.5		
6/13/2019	5		5.5	6.2

Constituent: Cobalt, Fluoride Analysis Run 8/27/2019 2:00 PM View: Trend Test

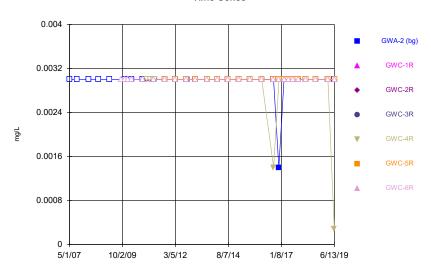
			Plant Yates	Client: Southern Company	Data: Yates Gypsum Landfill
ı	GWA-2 (bg)	GWC-3R	GWA-2 (bg)	GWC-2R	
	0.0067		(-9)		
9/11/2007	<0.01				
3/20/2008	<0.01				
8/27/2008	<0.01				
3/3/2009	<0.01				
	<0.01				
	0.0027				
	0.007				
3/10/2011	<0.01				
9/7/2011	-0.01	<0.01			
	<0.01	-0.01			
	0.0032	<0.01			
9/5/2012	0.0002	<0.01			
9/10/2012	<0.01	-0.01			
2/6/2013	<0.01	<0.01			
	0.0045	10.01			
8/13/2013	0.0040	<0.01			
2/5/2014	<0.01	<0.01			
8/4/2014	10.01	<0.01			
	0.0027	0.0.			
2/3/2015	0.0027	<0.01			
	0.0016	-0.01			
	0.002	<0.01 (D)			
	0.0027	<0.01			
	0.0053 (J)		0.14 (J)	0.08 (J)	
11/28/2016	0.0036 (J)			0.03 (J)	
11/30/2016	(-,	<0.01			
	0.0049 (J)		0.09 (J)	0.04 (J)	
2/23/2017	(-,	<0.01	(-)		
	0.0059 (J)		0.05 (J)		
5/9/2017	()	<0.01	. ,		
5/10/2017				0.05 (J)	
	0.0046 (J)		0.14 (J)		
7/18/2017	. ,	<0.01		<0.3	
	0.0034 (J)		0.12 (J)		
10/17/2017	. ,			<0.3	
10/18/2017		<0.01			
2/19/2018	<0.01		0.17		
2/20/2018				<0.3	
2/21/2018		<0.01			
	0.003 (J)		0.087 (J)		
8/7/2018		<0.01			
8/8/2018				<0.3	
	0.001 (J)		0.14 (J)		
2/26/2019		<0.01		<0.3	
	0.003 (J)			0.58	
6/13/2019		0.01			

Constituent: Fluoride, pH, Sulfate Analysis Run 8/27/2019 2:00 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

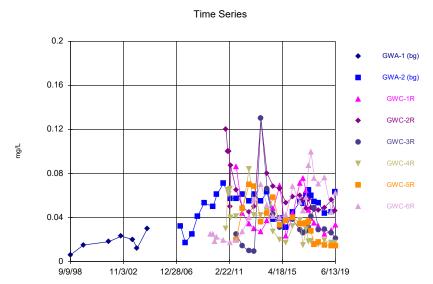
	Hall face Shell Couling Shipping Sale. Face appears Edition			
	GWC-3R	GWA-2 (bg)	GWC-1R	GWA-2 (bg)
8/27/2008		6.53		
3/3/2009		6.35		
11/18/2009		6.47		
3/3/2010		6.53		
3/10/2011		5.83		
9/8/2011		5.69	4.49	
3/5/2012		6.27		
9/10/2012		6.23		
2/6/2013		7.56		
8/12/2013		6.68		
2/5/2014		6.32		
8/3/2015		6.13 (D)		
2/16/2016		5.64		
8/31/2016	0.07 (J)			29
11/28/2016		6.23		36
11/29/2016			5.37	
11/30/2016	0.03 (J)			
2/22/2017		6.21		43
2/23/2017	0.04 (J)		5.5	
5/8/2017		6.12		60
5/9/2017	<0.3		5.41	
7/17/2017		6.03		63
7/18/2017	<0.3		5.5	
10/16/2017		6.12		62
10/17/2017			5.42	
10/18/2017	0.22 (J)			
2/19/2018		6.13		64.6
2/21/2018	<0.3		5.39	
8/6/2018		6.01		42.1
8/7/2018	<0.3		5.14	
2/25/2019		6.51		42.1
2/26/2019	<0.3		5.52	
6/12/2019		6.3		83.4
6/13/2019	0.58		5.55	

Constituent: Sulfate Analysis Run 8/27/2019 2:00 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

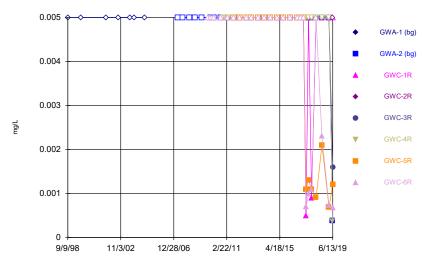
	GWC-1R	GWC-2R	GWC-5R	GWC-6R
8/31/2016	410	140		
9/1/2016			990	360
11/28/2016		120		
11/29/2016	450			320
12/1/2016			1100	
2/22/2017		100		
2/23/2017	390			380
2/24/2017			850	
5/9/2017	280			
5/10/2017		80	1000	660
7/17/2017			830	
7/18/2017	200	57		880
10/16/2017			720	
10/17/2017	180	59		
10/18/2017				760
2/19/2018				718
2/20/2018		55.9		
2/21/2018	146		533	
8/6/2018				797
8/7/2018	100		784	
8/8/2018		81.1		
2/25/2019				763
2/26/2019	118	129	742	
6/12/2019		180		
6/13/2019	163		976	918


Constituent: TDS Analysis Run 8/27/2019 2:00 PM View: Trend Test
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWA-2 (bg)	GWC-1R	GWC-2R	GWC-4R
8/31/2016	209	616	257	
9/1/2016				553
11/28/2016	102		177	
11/29/2016		594		
11/30/2016				247 (B)
2/22/2017	164		240	
2/23/2017		581		
2/24/2017				414
5/8/2017	145			
5/9/2017		410		
5/10/2017			149	251
7/17/2017	185			
7/18/2017		322	122	179
10/16/2017	218			
10/17/2017		381	214	256
2/19/2018	173			
2/20/2018			131	233
2/21/2018		285		
8/6/2018	158			
8/7/2018		242		
8/8/2018			166	292
2/25/2019	92			
2/26/2019		69	293	226
6/12/2019	226		391	298
6/13/2019		301		


Constituent: TDS Analysis Run 8/27/2019 2:00 PM View: Trend Test Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

	GWC-5R	GWC-6R
9/1/2016	1400	578
11/29/2016		455
12/1/2016	1610 (B)	
2/23/2017		614
2/24/2017	1200	
5/10/2017	1360	955
7/17/2017	1340	
7/18/2017		1270
10/16/2017	1080	
10/18/2017		1150
2/19/2018		1070
2/21/2018	830	
8/6/2018		1260
8/7/2018	1180	
2/25/2019		1160
2/26/2019	1010	
6/13/2019	1410	1310



Constituent: Antimony Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: Barium Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Time Series

Constituent: Arsenic Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

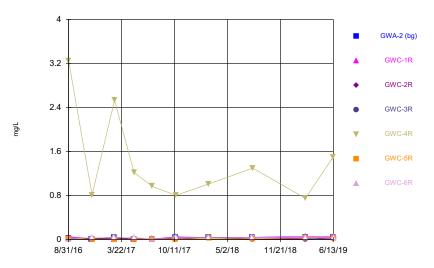
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

9/9/98

11/3/02

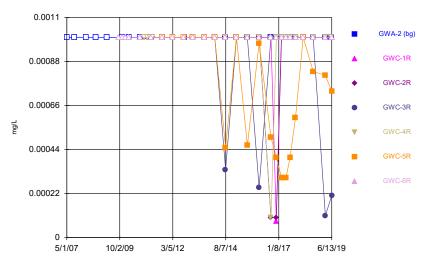
0.02 0.016 0.016 0.012 0.012 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Constituent: Beryllium Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

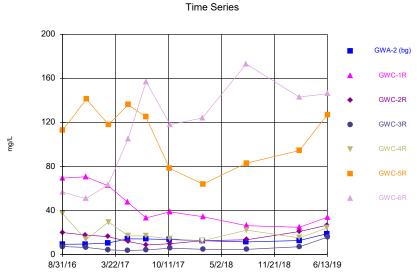

2/22/11

4/18/15

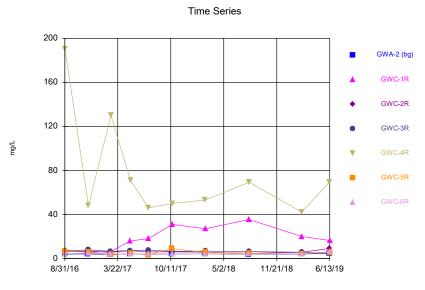
6/13/19


12/28/06

Time Series

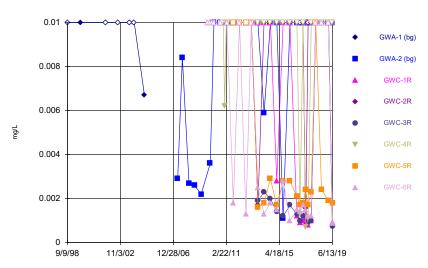

Constituent: Boron Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Time Series

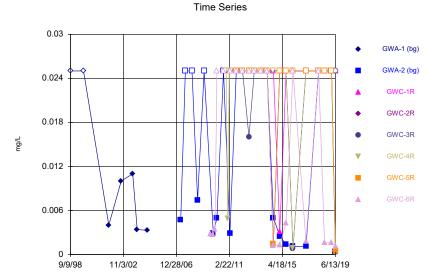


Constituent: Cadmium Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

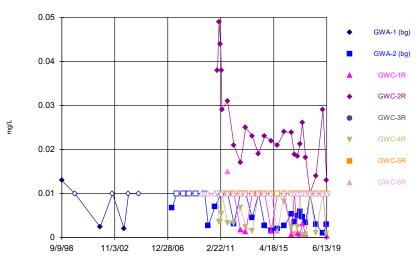
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Constituent: Calcium Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

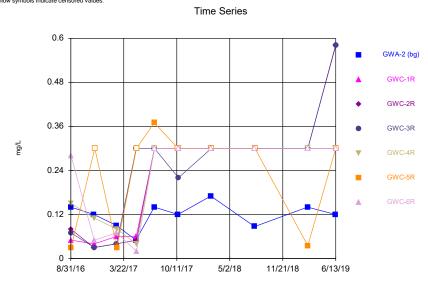
Constituent: Chloride Analysis Run 8/16/2019 10:30 AM View: Time Series


Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

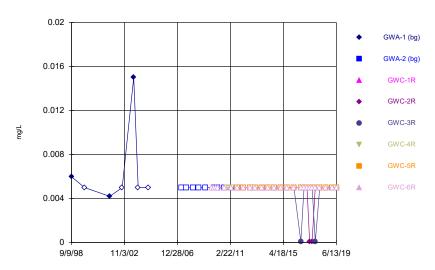
Constituent: Chromium Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.

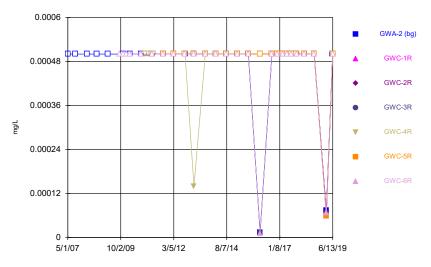
Constituent: Copper Analysis Run 8/16/2019 10:30 AM View: Time Series


Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

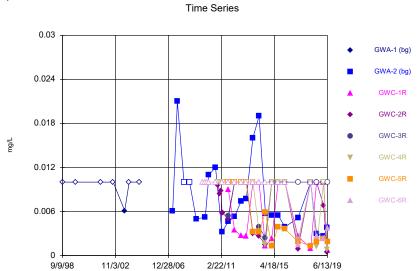
Time Series


Constituent: Cobalt Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

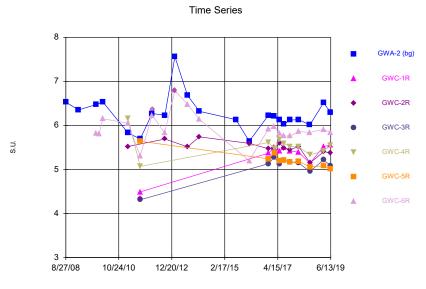
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Constituent: Fluoride Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Time Series

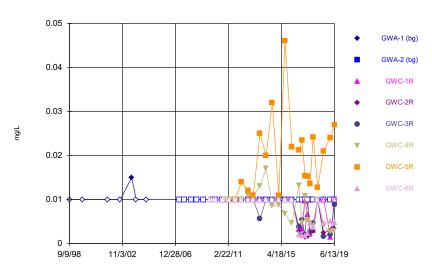

Constituent: Lead Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Time Series

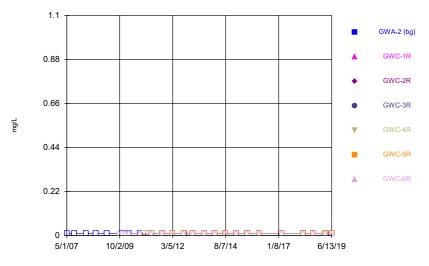


Constituent: Mercury Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

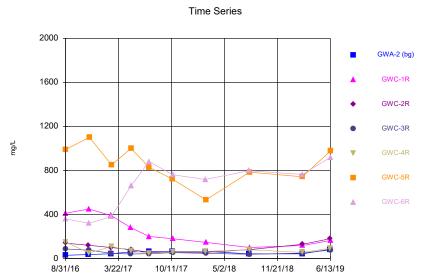
Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.



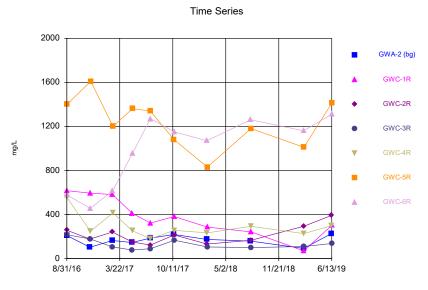
Constituent: Nickel Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill


Constituent: pH Analysis Run 8/16/2019 10:30 AM View: Time Series Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Time Series

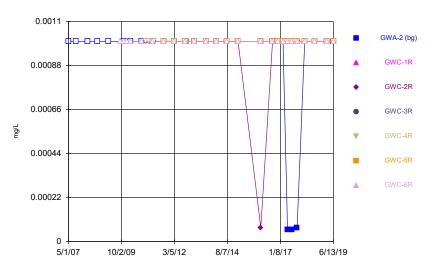

Constituent: Selenium Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Time Series



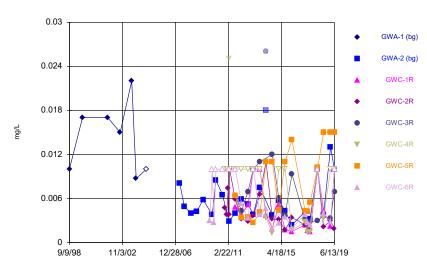
Constituent: Silver Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG



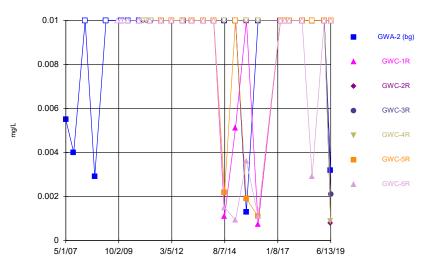
Constituent: Sulfate Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Constituent: TDS Analysis Run 8/16/2019 10:30 AM View: Time Series Plant Yates Client: Southern Company Data: Yates Gypsum Landfill



Constituent: Thallium Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG Hollow symbols indicate censored values.


Time Series

Constituent: Zinc Analysis Run 8/16/2019 10:30 AM View: Time Series Plant Yates Client: Southern Company Data: Yates Gypsum Landfill

Sanitas™ v.9.6.20 Sanitas software licensed to ACC. UG

Time Series

Constituent: Vanadium Analysis Run 8/16/2019 10:30 AM View: Time Series
Plant Yates Client: Southern Company Data: Yates Gypsum Landfill