

REPORT

2020 Semi-Annual Groundwater Monitoring and Corrective Action Report

Georgia Power Company - Plant Branch Ash Pond BCD

Submitted to:

Georgia Power Company

241 Ralph McGill Boulevard NE, Atlanta, Georgia 30308

Submitted by:

Golder Associates Inc.

5170 Peachtree Road Building 100 Suite 300, Atlanta, Georgia, USA 30341 +1 770 496-1893

166625421

February 26, 2021

Summary

This 2020 Semi-Annual Groundwater Monitoring and Corrective Action Report, Georgia Power Company - Plant Branch Ash Ponds B, C, and D (AP-BCD), Milledgeville, Putnam County, Georgia report provides the status of groundwater monitoring and corrective program August through December 2020. Groundwater monitoring and reporting for AP-BCD is performed by Golder Associates Inc. (Golder) in accordance with the United States Environmental Protection Agency (US EPA) Coal Combustion Residual (CCR) Rule published in the Code of Federal Regulations Title 40 Part 257 (40 CFR Part 257, Subpart D) dated April 17, 2015 and revised July 2018, 40 CFR § 257.90 through § 257.98. This summary was prepared by Golder on behalf of Georgia Power to meet the requirements listed in Part A, Section 6¹ of the US EPA CCR rule (40 Code of Federal Regulations [CFR] 257 Subpart D). As required in 40 CFR § 257.90(e), this Annual Report describes the status of the groundwater monitoring program, summarizes key actions completed, describes any problems encountered, discusses actions

to resolve the problems, and presents projected key activities for the upcoming year for AP-BCD. The other CCR unit (AP-E) on-site at Plant Branch is reported separately.

Plant Branch formerly operated as a coalfired power plant since the 1960s until its retirement in 2015. Plant Branch is no longer active and is currently decommissioned. Located approximately 8 miles north of Milledgeville in Putnam County (1100 Milledgeville Road, Milledgeville, GA 31024), the property occupies approximately 3,200 acres and is bounded on the south and east by Lake Sinclair.

Groundwater at the Site is monitored using a monitoring system comprised of

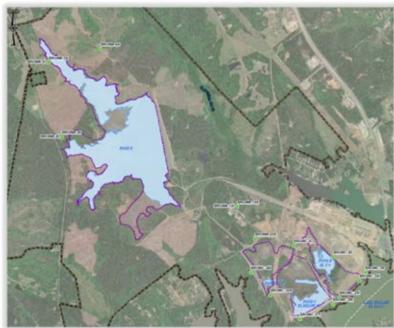


Figure 1: Plant Branch

upgradient and downgradient wells for each CCR Unit. The AP-BCD network consists of eight (8) upgradient and nine (9) downgradient wells installed to meet federal and state monitoring requirements, as shown above. Routine sampling and reporting for AP-BCD began after the background groundwater conditions were established between 2016 and 2018. Based on groundwater quality, an assessment monitoring program and assessment of corrective measures were established on November 13, 2019 and July 9, 2020, respectively. During the 2020 annual reporting period, the Site remained in assessment monitoring as corrective measures are evaluated.

¹ 80 FR 21468, Apr. 17, 2015, as amended at 81 FR 51807, Aug. 5, 2016; 83 FR 36452, July 30, 2018; 85 FR 53561, Aug. 28, 2020

Groundwater elevation measurements were recorded at the site monitoring wells prior to each sampling event. The elevation data were used to confirm the groundwater flow direction, and to confirm that the groundwater monitoring well network for the CCR units remains sufficient to monitor groundwater downgradient of the unit.

2020 Semi-Annual Groundwater Monitoring Activities

There is no change to the AP-BCD certified detection network between August and December 2020. Groundwater monitoring sampling events for AP-BCD were conducted in August (annual)and September 2020 (Semi-annual). Groundwater samples were collected and analyzed for Appendix III² and Appendix IV³ required monitoring parameters from each of the detection and assessment monitoring wells.

Analytical data from the September 2020 monitoring events have been statistically analyzed in accordance with the site's certified statistical analysis method. For the September 2020 semi-annual monitoring event, statistical analyses indicate statistically significant increases (SSIs) for Appendix III constituents above the statistical limits and statistically significant levels (SSLs) of Appendix IV constituents above the groundwater protection standards as summarized below.

Appendix III Constituent	September 2020
Boron	BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-47, BRGWC-50, BRGWC-52I
Calcium	BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-50, BRGWC-52I
Chloride	BRGWC-27I, BRGWC-29I, BRGWC-32S, BRGWC-45, BRGWC-50, BRGWC-52I
Fluoride	BRGWC-50
рН	BRGWC-29I, BRGWC-45, BRGWC-50
Sulfate	BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-50, BRGWC-52I
TDS	BRGWC-27I, BRGWC-30I, BRGWC-32S, BRGWC-47, BRGWC-50, BRGWC-52I
Appendix IV Constituent	September 2020
Cadmium	BRGWC-50
Cobalt	BRGWC-50

Based on review of the Appendix III and Appendix IV results noted above, the site will remain in Assessment Monitoring. Georgia Power will continue routine groundwater monitoring and evaluation of corrective action alternatives at the Site. Reports will be posted to the website and provided to GA EPD semi-annually.

³ Appendix IV: antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, combined radium (226 + 228), selenium, and thallium.

iii

² Appendix III: boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids

Table of Contents

1.0	INTR	ODUCTION	7
	1.1	Site Description and Background	7
	1.2	Site Geology and Hydrogeologic Setting	7
	1.3	Groundwater Monitoring Well Network	8
2.0	GRO	JNDWATER MONITORING ACTIVITIES	8
	2.1	Monitoring Well Installation and Maintenance	8
	2.2	Assessment Monitoring	9
	2.3	Additional Sampling	9
3.0	SAME	PLE METHODOLOGY AND ANALYSIS	9
	3.1	Groundwater Elevation Measurement	9
	3.2	Groundwater Gradient and Flow Velocity	10
	3.3	Groundwater Sampling	10
	3.4	Laboratory Analyses	11
	3.5	Quality Assurance and Quality Control	11
4.0	STAT	ISTICAL ANALYSES	12
	4.1	Statistical Method	12
	4.1.1	Appendix III Assessment Monitoring Statistical Methods	13
	4.1.2	Appendix IV Assessment Monitoring Statistical Methods	14
	4.2	Statistical Analysis Results	15
	4.2.1	September 2020 Appendix III Statistical Results	16
	4.2.2	September 2020 Appendix IV Statistical Results	16
	4.3	Assessment Monitoring & Delineation Status	16
5.0	MONI	TORING PROGRAM STATUS	16
6.0	CON	CLUSIONS AND FUTURE ACTIONS	17
7.0	REFE	RENCES	18

Table of Contents (continued) Figures & Tables

Figure 1	Site Location Map
Figure 2	Site Plan and Monitoring Well and Surface Water Location Map
Figure 3	Potentiometric Surface Contour Map – August 17, 2020
Figure 4	Potentiometric Surface Contour Map – September 14, 2020
Table 1	Monitoring Well Network Summary (AP-BCD)
Table 2	Groundwater Sampling Event Summary
Table 3	Summary of Groundwater Elevations
Table 4A	Groundwater Velocity Calculations – August 2020
Table 4B	Groundwater Velocity Calculations – September 2020
Table 5A	Analytical Data Summary - Pond BCD (August 2020)
Table 5B	Analytical Data Summary - Pond BCD (September and October 2020
Table 5C	Analytical Data Summary – Surface Water - October 2020
Table 5D	Analytical Data Summary – Surface Water - February 2021

Appendices

Appendix A Analytical Results, Field Data Forms, Certified Well Survey Report, Well Inspection Logs & Data
Validation Summaries

Appendix B Statistical Analyses

Appendix C Semi-Annual Remedy Selection and Design Progress Report

Certification Statement

This 2020 Semi-Annual Groundwater Monitoring & Corrective Action Report, Georgia Power Company Plant Branch Ash Pond BCD (AP-BCD) has been prepared in compliance with the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4.10(6)(a-c) by a qualified groundwater scientist with Golder Associates Inc.

Golder Associates Inc.

Brian Steele, PG Georgia Licensed Professional Geologist No. 2171

Steven J. Cribb, PE Georgia Licensed Professional Engineer No. 025799

Golder and the G logo are trademarks of Golder Associates Corporation

1.0 INTRODUCTION

In accordance with the Georgia Environmental Protection Division (GA EPD) Rules of Solid Waste Management 391-3-4-.10(6)(a)-(c), this 2020 Semi-Annual Groundwater Monitoring and Corrective Action Report has been prepared to document groundwater monitoring activities conducted at Georgia Power Company (Georgia Power) Plant Branch Ash Ponds, B, C, and D, together referred to as a multi-unit AP-BCD. To specify groundwater monitoring requirements, GA EPD Rule 391-3-4-.10(6)(a) incorporates by reference the United States Environmental Protection Agency (US EPA) Coal Combustion Residuals (CCR) Rule 40 Code of Federal Regulations (CFR) § 257.90 through 257.91 and 257.93 through 257.94. For ease of reference, The US EPA CCR rules are cited within this report, however Plant Branch ceased producing electricity prior to April 2015. Therefore, Ash Ponds B, C, and D are not subject to the USEPA CCR Rule. This report documents the activities completed to establish the groundwater monitoring program in accordance with § 257.90(e) and GA EPD Rule 391-3-4-.10(6)(a).

Two monitoring events were conducted during this monitoring period - an initial assessment monitoring event conducted in August 2020, and the subsequent semi-annual assessment monitoring event conducted in September 2020. This report documents the activities completed at Branch AP-BCD through the second half of 2020. Activities completed at Branch AP-E are reported under separate cover.

1.1 Site Description and Background

Plant Branch is located in Putnam County, GA, approximately 8 miles north of Milledgeville. The property occupies approximately 3,200 acres and is bounded on the south and east by Lake Sinclair, which is an approximate 15,330-acre hydroelectric reservoir that was created in 1953 by the impoundment of the Oconee River. A site location map and a detailed site map is included as Figure 1.

Plant Branch formerly operated as a coal-fired power plant since the 1960's until its retirement in 2015. Plant Branch is no longer active and is currently decommissioned. During its operation, five ash ponds were used for management of the CCR on the plant property. These ponds are identified as Ponds A, B, C, D, and E. Ash Pond A, the first ash pond constructed at the Site, was taken out of service in the late 1960s and was closed in April 2016 by the removal and relocation of its stored CCR to Ash Pond E. Ponds B, C, D, and E are currently inactive, and will be closed by removal by relocation of the stored CCR material to a proposed fully lined landfill located on the plant property. This report documents the groundwater monitoring program at the multi-unit AP-BCD.

Plant Branch ceased producing electricity prior to April 2015. Therefore, AP-BCD is not subject to the Federal CCR Rule. A CCR Unit Solid Waste Handling Permit application for AP-BCD was submitted to GA EPD in November 2018 and is currently under review.

1.2 Site Geology and Hydrogeologic Setting

The following section and subsections include a general description of regional geologic and hydrogeologic characteristics of formations that occur beneath the site. Information presented in this section is based on published literature, discussion with local geologic experts, and experience working in this geologic terrain.

The site is located within the Piedmont Physiographic Province of central Georgia, which is characterized by gently rolling hills and narrow valleys, with locally pronounced linear ridges. Overall, the property slopes gently east and south toward Beaverdam Creek and Lake Sinclair. The metamorphic and igneous rocks that underlie the

area have been subjected to physical and chemical weathering which has created a landscape dissected by creeks and streams forming a dendritic drainage pattern. These rocks are deeply weathered due to the humid climate and bedrock is typically overlain by a variably thick blanket of residual soils and saprolite. The overall depth of weathering in the Piedmont/Blue Ridge is generally about 20 to 60 feet; however, the depth of weathering along discontinuities and/or very feldspathic rock units may extend to depths greater than 100 feet. Because of such variations in rock types and structure, the depth of weathering can vary significantly over short horizontal distances.

The near surface conditions were determined based upon available boring and monitoring well installation logs. Based on our review of this information, micaceous, locally saprolitic soils, consisting primarily of clay, silty clay, silt, and sandy clay occur as a variably thick blanket of residuum overlying bedrock across most of the site. The thickness of the residual soil encountered in the borings is variable, ranging from approximately 11 feet to as much as 74 feet. Saprolitic soils and/or saprolitic rock vary in thickness across the site but are generally encountered at or near ground surface. Saprolitic rock is also considered to be transitionally weathered rock (TWR) or partially weathered rock (PWR), as defined by standard penetration test data, where available. Material overlying the top of rock surface, including residual soils, saprolite, and transitionally weathered rock, is collectively referred to as overburden or regolith.

1.3 Groundwater Monitoring Well Network

Pursuant to § 257.91 of the CCR rule and 391-3-4-.10(6), a groundwater monitoring system was installed within the uppermost aquifer at AP-BCD. Wells were placed in upgradient and downgradient locations based on groundwater flow direction as determined by the potentiometric surface elevation contour maps.

A network of 12 monitoring wells were installed in 2014 to 2018 for groundwater monitoring in proximity to AP-BCD. In April 2020, the five AP-E upgradient background monitoring wells were added to the AP-BCD groundwater monitoring well network (BRGWA-2S, BRGWA-2I, BRGWA-5S, BRGWA-5I, and BRGWA-6S). This was done to address spatial variability in the upgradient groundwater data set for a robust statistical data evaluation. Table 1, Monitoring Well Network Summary, includes the pertinent construction details for the AP-BCD monitoring well network at Plant Branch.

Based on the site hydrogeology, the monitoring system is designed to monitor groundwater flow in the overburden, the transition-zone, and the upper bedrock as a single inter-connected aquifer system. Wells suffixed with an "S" are installed in overburden (saprolitic soil), an "I" indicates transitionally weathered rock (transition zone), and "D" indicates bedrock. Groundwater in the overburden, partially weathered rock, fractured bedrock, and the materials comprise a single uppermost aquifer based on site hydrogeologic conditions.

2.0 GROUNDWATER MONITORING ACTIVITIES

The following section describes monitoring-related activities performed at the Site during the previous annual monitoring period (August through December 2020).

Pursuant to § 257.90(e)(3) and 391-3-4-.10(6), Table 2, Groundwater Sampling Event Summary, presents a summary of groundwater sampling events completed for AP-BCD.

2.1 Monitoring Well Installation and Maintenance

There was no change to the certified groundwater monitoring system during this reporting period. Monitoring well related activities included visual inspection of well conditions prior to sampling, recording conditions around the

well, and performing exterior maintenance to provide safe access for sampling. The well inspection log is included in Appendix A.

Two piezometers PZ-50D and PZ-51D were installed at the site to characterize and delineate the nature and extent of target constituents showing SSLs in groundwater at the Site. The piezometer installations are documented in a report, *Piezometer Installation Report for Surface Impoundment Ash Pond BCD, Georgia Power Company – Plant Branch, Milledgeville, Georgia,* dated November 20, 2020 (Golder, 2020a). The wells were surveyed by Metro Engineering & Surveying Co., Inc. The certified well survey for this work is included in Appendix A.

2.2 Assessment Monitoring

Pursuant to §257.94(e)(3), an assessment monitoring program has been initiated for AP-BCD based on statistically significant increases documented in the 2019 Annual Groundwater Monitoring and Corrective Action Report, (Golder 2019). A notice of assessment monitoring was placed in the operation record on November 13, 2019.

Groundwater sampling events were conducted for AP-BCD during August 2020 and September 2020 in accordance with § 257.93 and GA EPD rule 391-3-4-.10(6)(a). Samples were collected from each well in the certified monitoring system for the CCR unit. The location of each of these monitoring wells is shown on Figure 2. The groundwater wells sampled included AP-BCD monitoring wells presented in Table 1 and assessment monitoring wells PZ-51S and PZ-51I. Table 2, Groundwater Sampling Event Summary, presents a summary of groundwater sampling events completed for AP-BCD and the status of the monitoring network.

During the initial assessment sampling event in August 2020, groundwater samples were collected and analyzed for Appendix IV to meet the requirement of §257.95(b). During the September 2020 semi-annual sampling event, groundwater samples from each detection monitoring well were collected for analysis of Appendix III, and the Appendix IV constituents detected during the August 2020 event. Results of sampling activities during this monitoring period are presented in Appendix A, Analytical Results, Field Data Forms, and Data Validation Summaries. A resampling event for PZ-51I was completed during October 2020 to confirm laboratory results of Appendix III constituents and target Appendix IV constituents cadmium and cobalt.

2.3 Additional Sampling

Additional sampling was conducted during the reporting period in support of the assessment of corrective measure and in continuing to evaluate the nature and extent of impacts resulting from AP-BCD. This additional sampling is further discussed in Section 4.3.

3.0 SAMPLE METHODOLOGY AND ANALYSIS

Sampling events completed during this reporting period for AP-BCD represent both the 2020 annual Appendix IV monitoring event as well as the first semi-annual assessment monitoring event for AP-BCD at Plant Branch. Groundwater analytical data and chain of custody records are presented in Appendix A. The following sections describe methods used to conduct groundwater monitoring at the site.

3.1 Groundwater Elevation Measurement

Prior to each scheduled sampling events in August and September 2020, groundwater elevations were recorded at each monitoring well and piezometer. Groundwater elevations are summarized in Table 3, Summary of

Groundwater Elevations. The recorded water level data were used to develop Figure 3, AP-BCD Potentiometric Surface Elevation Contour Map – August 17, 2020, and Figure 4, AP-BCD Potentiometric Surface Elevation Contour Map – September 14, 2020. Review of Figures 3 and 4 shows that the general direction of groundwater flow across AP-BCD is to the south-southeast. This groundwater flow pattern is consistent with previous observations.

3.2 Groundwater Gradient and Flow Velocity

Groundwater flow rates at the site were calculated based on hydraulic gradients, hydraulic conductivity from previous slug test results, and an estimated effective porosity of the screened horizon. Based on slug test data at the site, hydraulic conductivity ranges from 2.7 to 5.5 feet per day, which is used in the flow calculations. The hydraulic gradient was calculated between well pairs shown on Table 4A, Groundwater Flow Velocity Calculations – August 2020 and Table 4B, Groundwater Flow Velocity Calculations –September2020. An effective porosity of 0.20 was used based on the default values for effective porosity recommended by USEPA for a silty sand-type soil (USEPA, 1996).

Horizontal flow velocity was calculated using the commonly used derivative of Darcy's Law:

$$V = \frac{K * i}{n_e}$$
 Where:
$$V = \text{Groundwater flow velocity} \left(\frac{feet}{day}\right)$$

$$K = \text{Average hydraulic conductivity of the aquifer} \left(\frac{feet}{day}\right)$$

$$i = \text{Horizontal hydraulic gradient} \left(\frac{feet}{feet}\right)$$

$$n_e = \text{Effective porosity}$$

Using this equation and groundwater elevation data from these sampling events, groundwater flow velocities are calculated for various areas of the site and are tabulated on Tables 4A and 4B.

As presented on Tables 4A and 4B, groundwater flow velocity at the site ranges from approximately 0.19 to 0.90 feet per day (or approximately 69.7 to 333.3 feet per year) across AP-BCD. The observed groundwater flow velocities calculated for this monitoring event are also generally consistent with expected velocities in the regolith-upper bedrock aquifers of Georgia Piedmont and confirm the groundwater monitoring system as properly located to monitor the uppermost aquifer for AP-BCD at Plant Branch.

3.3 Groundwater Sampling

Groundwater samples were collected in accordance with § 257.93(a), 391-3-4-.10(6) and EPA procedures. Monitoring wells were purged and sampled using low-flow sampling procedures. Dedicated and/or non-dedicated low-flow pneumatic bladder or peristaltic pumps were used to purge and sample the wells. During the purging of each well, field measurements of temperature, specific conductance, dissolved oxygen (DO), pH, and oxidation-reduction potential (ORP) were recorded using a SmarTroll® (In-Situ field instrument) along with a separate turbidity meter to verify stabilization.

Groundwater samples were collected when the following general stabilization criteria were met:

0.1 standard units for pH

- 5% for specific conductance
- ±10% for DO where DO>0.5 mg/L; if DO<0.5 milligrams per liter (mg/L), no stabilization criteria apply
- Turbidity measurements less than 5 nephelometric turbidity units (NTU)

Following well stabilization, samples were collected directly into appropriately preserved laboratory supplied sample containers, placed in ice-packed coolers, and submitted to the laboratory following standard chain-of-custody protocol. Field information forms, generated directly from the SmarTroll®, and chain-of-custody records are included in Appendix A.

Environmental monitoring field data sheets are included with the analytical reports in Appendix A. Field data and sampling notes for each monitoring well are recorded on the field information forms, which contain a description of the sampling equipment, sampling method, purge rate, field observations, field calibration forms, and depth to water measurements at each monitoring location.

3.4 Laboratory Analyses

Groundwater samples were collected during August and September in 2020. During the August 2020 sampling event, wells were sampled and analyzed for Appendix IV monitoring parameters pursuant to 40 CFR § 257.90(e)(3). The September 2020 event represents the second first semi-annual sampling event in 2020 for AP-BCD at Plant Branch. Because AP-BCD is currently in assessment monitoring, groundwater samples from wells in the assessment monitoring program were analyzed for Appendix III and the detected Appendix IV monitoring parameters per 40 CFR Parts 257 and 261. Tables 5A and 5B, Analytical Data Summary, present a tabulated summary of the August and September 2020 sampling results, respectively. Analytical methods used for groundwater monitoring parameters can be found on the attached analytical data reports in Appendix A.

Laboratory analyses for these assessment monitoring events were performed by Pace Analytical (Pace) in Atlanta, Georgia and Greensburg, Pennsylvania. Pace is accredited by National Environmental Laboratory Accreditation Program (NELAP) and maintains a NELAP certification for all parameters analyzed for this project. NELAP certification for Pace for 2020 are provided in Appendix A. Groundwater data and chain of custody records for the monitoring events are presented in Appendix A.

3.5 Quality Assurance and Quality Control

During each sampling event, quality assurance/quality control samples (QA/QC) are collected at a rate of one sample per every 10 samples. Equipment blanks (where non-dedicated sampling equipment is used), field blanks, and duplicate samples were also collected during each sampling event. QA/QC sample data was evaluated during data validation and is included in Appendix A.

Groundwater quality data in this report was independently validated in accordance with USEPA guidance (USEPA,2002) and the analytical methods. Data validation generally consisted of reviewing sample integrity, holding times, laboratory method blanks, laboratory control samples, matrix spikes/matrix spike duplicate recoveries and relative percent differences, post digestions spikes, laboratory and field duplicate relative percent difference (RPDs), field and equipment blanks, and reporting limits. The data are considered usable for meeting project objectives and the results are considered valid.

A value followed by a "J" flag in tables and laboratory reports indicate that the value is an estimated analyte concentration detected between the method detection limit (MDL) and the laboratory reporting limit (RL). The

estimated value is positively identified but is below the lowest level that can be reliably achieved within specified limits of precision and accuracy under routine laboratory operating conditions. "J" flagged data are used to establish background statistical limits but are not used when performing statistical analyses.

4.0 STATISTICAL ANALYSES

Statistical analysis of Appendix III groundwater monitoring data was performed pursuant to § 257.93 and 391-3-4.10(6) following the established statistical method for AP-BCD. In addition, pursuant to § 257.95(d)(2), Georgia Power established groundwater protection standards (GWPS) for the Appendix IV constituents and completed statistical analyses of the Appendix IV groundwater monitoring data obtained during the September 2020 assessment monitoring event. The report generated from the analyses is provided in Appendix B. The September 2020 data were analyzed by Groundwater Stats Consulting (GSC).

4.1 Statistical Method

The selected statistical method for AP-BCD was developed in accordance with § 257.93(f) and 391-3-4-.10(6) using methodology presented in Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance, (USEPA, 2009). The Sanitas Groundwater statistical software was used to perform the statistical analyses. Sanitas is a decision-support software package that incorporates the statistical tests required of Subtitle C and D facilities by US EPA regulations and guidance as recommended in the US EPA (2009) document.

Table 4.1.1 Plant Branch AP-BCD Statistical Method Summary provides a summary of the statistical methodology used at AP-BCD for the groundwater monitoring conducted in September 2020 and will be used for any routine monitoring in the future.

Table 4.1.1: PLANT BRAN	ICH AP-BCD STATISTICAL METHOD S	UMMARY		
Monitoring Well Network	Upgradient Wells	BRGWA-2S, BRGWA-2I, BRGWA-5S, BRGWA-5I, BRGWA-6S, BRGWA-12S, BRGWA-12I, and BRGWA-23S		
	Downgradient Wells	BRGWC-25I, BRGWC- 27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-50, BRGWC-52I		
Piezometers	Delineation Wells	PZ-51I and PZ-51S		
	Appendix III (Detection Monitoring)	Boron, Calcium, Chloride, Fluoride, pH, Sulfate, Total Dissolved Solids		
CCR Monitoring Parameters	Appendix IV (Assessment Monitoring)	Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium, Combined Radium (226+228)		
	Data Screening on Proposed Background	Evaluate outliers, trends, and seasonality when sufficient data are available		
Statistical Methodology	Statistical Limits	Interwell statistical limits will be applied on a constituent basis, depending on the appropriateness of the method as determined by the Analysis of Variance.		

Table 4.1.1: PLANT BRANCH AP-BCD STATISTICAL METHOD SUMMARY								
	Prediction Limits	Parametric when data follow a normal or transformed normal distribution and when less than 50% non-detects, utilizing Kaplan Meier non-detect adjustment when applicable; nonparametric when data sets contain greater than 50% non-detects or when data are not normally or transformed-normally distributed.						
	Confidence Intervals	Used in Assessment and Corrective Action monitoring.						
	No Statistical Testing	Statistical testing is not required for parameters with 100% non-detects.						
	Verification Resample Plan (Optional)	 1-of-2 with minimum of 8 samples per well for interwell testing. Initial statistical exceedance warrants independent resampling within 90 days. If resample passes, well/parameter is not considered a confirmed statistically significant increase (SSI). If resample exceeds, well/parameter has a confirmed SSI. If no resample is collected, the original result is deem verified. 						

The following guidance is also applicable to the statistical analysis method:

- Statistical analyses are not performed on analytes containing 100% non-detects (US EPA Unified Guidance, 2009, Chapter 6).
- When data contain less than or equal to 15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the practical quantitation limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, a non-detect adjustment such as the Kaplan-Meier or Regression on Order Statistics (ROS) method for adjustment of the mean and standard deviation will be used prior to constructing a parametric prediction limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

4.1.1 Appendix III Assessment Monitoring Statistical Methods

Groundwater quality data were evaluated through use of interwell prediction limits for Appendix III parameters. Using this method, upgradient well data were pooled to establish a background statistical limit. Data from the September 2020 assessment monitoring event were compared to the statistical limit to determine whether any concentrations exceed background levels. The selected statistical method uses an optional 1-of-2 verification resample plan. When an initial statistically significant increase (SSI) or questionable result occurs, a second sample may be collected to verify the initial result or determine if the result was an outlier.

If resampling is performed and the result does not confirm the initial finding, the initial exceedance is considered a false positive result and there is no confirmed exceedance. When the resample confirms the initial finding, an SSI is declared. The Sen's Slope/Mann Kendall trend test was used to statistically evaluate concentration levels over time and determine whether concentrations are increasing, decreasing, or stabilizing.

4.1.2 Appendix IV Assessment Monitoring Statistical Methods

For the Assessment Monitoring Program (Appendix IV constituents), parametric tolerance limits were used to calculate site specific background limits from pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. The background limits were then used when determining the groundwater protection standard (GWPS) under GA EPD Rule 391-3-4-.10(6)(a).

US EPA revised the Federal CCR Rule on July 30, 2018, specifying GWPS for cobalt, lead, lithium, and molybdenum as described in 40 CFR § 257.95(h)(2).

As described in 40 CFR § 257.95(h)(1-3), the GWPS for cobalt, lead, lithium and molybdenum is:

- (1) Cobalt 0.006 mg/L;
- (2) Lead 0.015 mg/L;
- (3) Lithium 0.040 mg/L;
- (4) Molybdenum 0.100 mg/L; or
- (5) Background levels where the background level is higher than the Rule-specified GWPS.

Presently those Rule-specified GWPS have not yet been incorporated in the current EPD Rules for Solid Waste Management 391-3-4-.10(6)(a); therefore, under GA EPD rules, background concentrations are considered when determining the GWPS for constituents where an MCL has not been established (or where background is higher than the MCL). Under the existing GA EPD rules, the GWPS is:

- The MCL or
- The background concentration when an MCL is not established or when the background concentration is higher than the MCL.

Following the above State rule requirements, GWPSs were established for statistical comparison of Appendix IV constituents. Table 4.1.2, Summary of Background Levels and GWPSs, presented below, summarizes the background limit established at each monitoring well and the GWPS established under State rules.

To complete the statistical comparison to GWPS, confidence intervals were constructed for each of the Appendix IV parameters in each downgradient well. Those confidence intervals were compared to the GWPS established for the State rules. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. If there is an exceedance of the established standard, a statistically significant level (SSL) exceedance is identified.

Table 4.1.2: SUMMARY OF BACKGROUND LEVELS AND GWPSs							
Analyte	Units	MCL	Site Specific Background September 2020 ^[1]	State-Derived GWPS ^[2]			
Antimony	mg/L	0.006	0.012	0.012			
Arsenic	mg/L	0.01	0.005	0.01			
Barium	mg/L	2	0.13	2			
Beryllium	mg/L	0.004	0.003	0.004			
Cadmium	mg/L	0.005	0.0025	0.005			
Chromium	mg/L	0.1	0.016	0.1			
Cobalt	mg/L	NA	0.0135	0.0135			
Fluoride	mg/L	4	0.42	4			
Lead	mg/L	NA	0.005	0.005			
Lithium ^[3]	mg/L	NA	0.089	0.089			
Mercury	mg/L	0.002	0.0005	0.002			
Molybdenum	mg/L	NA	0.01	0.01			
Radium (226 + 228)	pCi/L	5	1.672	5			
Selenium	mg/L	0.05	0.01	0.05			
Thallium	mg/L	0.002	0.001	0.002			

Notes:

mg/L = milligrams per liter; pCi/L = picocuries per liter; NA = Not Available

MCL = Maximum Contaminant Level;

- [1] The background limits are used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and Georgia Environmental Protection Division (EPD) Rule 391-3-4-.10(6)(a).
- [2] Under existing EPD rules, the GWPS is: (i) the MCL, (ii) where the MCL is not established, the background concentration, or (iii) background levels for constituents where the background level is higher than the MCL.
- [3] The background tolerance limit (TL) used to evaluate GWPS for lithium is equal to the most recent laboratory specified reporting limit (RL). Per the SAP, and in accordance with the Unified Guidance, a non-parametric limit approach was used since the data set contains greater than 50% non-detect results for this analyte. Under this approach, the TL equals the highest value reported, for which is the laboratory RL. However, the highest laboratory RL used was 0.05 mg/L. As a result, we have modified the GWPS to be equal to the most recently used RL (0.03 mg/L).

A summary table of the statistical results accompanies the prediction limits for Appendix III and confidence intervals for Appendix IV in Appendix B, Statistical Analyses. The background period for statistical analyses included data through September 2020. Tolerance limits for confidence interval calculations are updated to include current data. Due to varying reporting limits in background, the most recent reporting limit is used when data is not reported above detection limits. This results in a more appropriate statistical test.

4.2 Statistical Analysis Results

Analytical data from the semi-annual assessment monitoring event in September 2020 at AP-BCD have been statistically analyzed in accordance with the site's certified Statistical Analysis Plan. Verification resampling to confirm initial SSIs was performed; therefore, initial SSIs are considered verified. The statistical results of the September 2020 monitoring event are included in Appendix B, Statistical Analyses.

4.2.1 September 2020 Appendix III Statistical Results

Based on the Appendix III statistical results, groundwater conditions have not returned to background and assessment monitoring should continue pursuant to 40 CFR 257.95(f). A detailed list of the noted exceedances is provided in Appendix B.

4.2.2 September 2020 Appendix IV Statistical Results

Analytical data from the September 2020 monitoring event at AP-BCD have been statistically analyzed in accordance with the site's certified statistical analysis method. Review of the Sanitas results indicates that using the GWPS established according to GA EPD Rule 391-3-4-.10(6)(a), the following SSLs were identified:

AP-BCD September 2020 Confidence Interval Statistically Significant Level Exceedances							
AP-BCD Monitoring Well Appendix IV Parameter							
BRGWC-50 Cadmium, Cobalt							

4.3 Assessment Monitoring & Delineation Status

Specific details regarding the delineation status at AP-BCD is discussed in the Semi-Annual Remedy Selection and Design Progress Report (Appendix C). As part of the nature and extent study, two (2) horizontal delineation piezometers (PZ-51S and PZ-51I) and two (2) vertical delineation piezometers (PZ 50D and PZ-51D) were installed at locations downgradient of the monitoring well where Appendix IV SSLs were observed. Piezometer PZ-51S and PZ-51I were installed in August 2018, while PZ-50D and PZ-51D were installed in October 2020. Piezometers PZ-50D and PZ-51I have been included as assessment wells for AP-BCD and will continue to be monitored in future groundwater monitoring events.

Limited groundwater analytical data are available for assessment monitoring wells. In accordance with Section 21.1.1 of the Unified Guidance (US EPA, 2009), four independent data is the minimum population size recommended to construct confidence intervals required to assess SSLs for Appendix IV constituents. At the time of this report, the data set for assessment well PZ-50D, and delineation PZ-51D, installed in 2020, are limited to less than four independent datums and therefore not subject to the statistical analyses.

Due to the proximity of Lake Sinclair in the downgradient direction of the well showing SSLs of cobalt and cadmium (i.e., BRGWC-50), installation of additional conventional wells to horizontally characterize this area is infeasible. As such, surface water samples were collected from Lake Sinclair downgradient of AP BCD to supplement horizontal delineation on October 22, 2020, and February 4th, 2021. The results from surface water samples collected indicate that cadmium and cobalt are not detected in the Lake Sinclair. Based on data collected to date, there are no impacts to surface water by constituents with SSLs at AP-BCD at Plant Branch. Vertical delineation of cadmium and cobalt at well BRGWC-50 is complete. A summary of assessment monitoring data is presented in Tables 5B through 5D.

5.0 MONITORING PROGRAM STATUS

Following the requirements of 40 CFR § 257.96, Plant Branch AP-BCD has initiated an Assessment of Corrective Measures (ACM) (Golder, 2020b). Notification of this action was placed in the CCR operating record on July 9, 2020. Analytical results from assessment wells at AP-BCD are presented in Tables 5A and 5B.

present progress toward selection and design of a groundwater remedy. A copy of the report is included as Appendix C, *Supplemental Semi-Annual Remedy Selection and Design Progress Report*, February 2021. At least 30 days prior to the selection of remedy or remedies, a public meeting to discuss the results of the corrective measures assessment will be held pursuant to 40 CFR 257.96(e).

The Semi-Annual Remedy Selection and Design Progress Report that is included as Appendix C is summarized as follows.

- i) The current site conceptual model relevant to the assessment of current measures as initially presented in the ACM report (Golder, 2020b).
- ii) Summary of work completed to date to achieve delineation of constituents exceeding groundwater protection standards and a summary of data collected to date towards remedy selection.
- iii) The status of evaluating applicable corrective measures at the site. The planned activities and anticipated schedule for the following semi-annual reporting period.

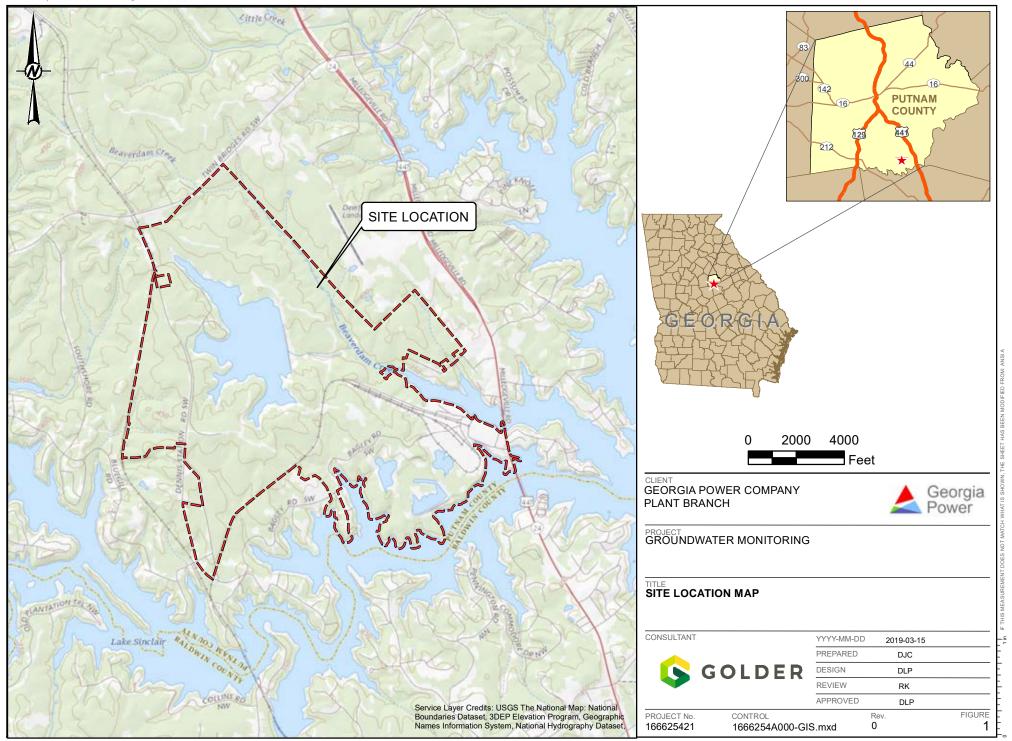
Pursuant to § 257.96(b), Georgia Power will continue to monitor the groundwater at AP-BCD in accordance with the assessment monitoring program regulations of § 257.95 while ACM efforts are implemented to evaluate SSL concentrations of cobalt and cadmium in well BGWC-50.

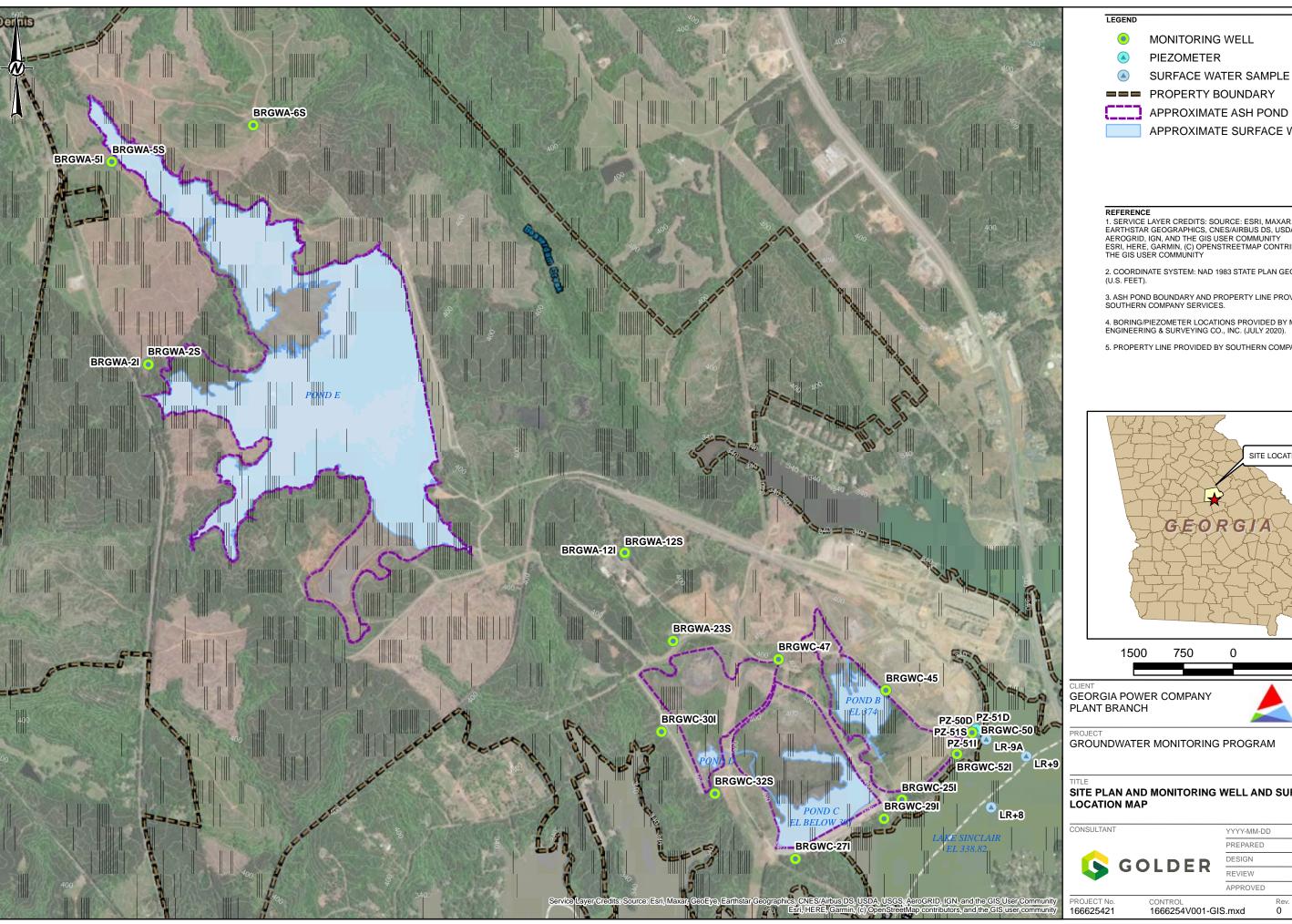
Pursuant to 40 CFR 257.195(g)(1)(iv), the delineation wells will continue to be sampled as part of the ongoing semiannual assessment monitoring program.

6.0 CONCLUSIONS AND FUTURE ACTIONS

This 2020 Semi-Annual Groundwater Monitoring and Corrective Action Report, Georgia Power Plant Branch AP-BCD has been prepared to fulfill the requirements of GA EPD Rules of Solid Waste Management 391-3-4-.10(6). The groundwater flow direction and rates interpreted during the August 2020 and September 2020 monitoring events are generally consistent with historical evaluations. Review of analytical results and statistical analyses developed for the site indicates confirmed SSIs of Appendix III above background and SSLs of Appendix IV above the established GWPS. In accordance with GA EPD Rule 391-3-4-.10(6) and 40 CFR § 257.96, Georgia Power has initiated an assessment of corrective measures study for the identified SSLs. Georgia Power will continue to monitor the delineation wells and adaptively manage the Site as new data become available.

Based on the findings presented herein, Plant Branch will continue with assessment groundwater monitoring and reporting. The next scheduled sampling event is tentatively scheduled for first the quarter of 2021.




7.0 REFERENCES

- Golder Associates, 2020a. Piezometer Installation Report for Surface Impoundment Ash Pond BCD, Georgia Power Plant Branch, Milledgeville, Georgia, November 2020.
- Golder Associates, 2020b. Assessment of Corrective Measures Ash Pond BCD, Georgia Power Plant Branch, Milledgeville, Georgia, November 2020.
- Golder Associates, 2020. Geologic and Hydrogeologic Summary Report, Georgia Power Plant Branch, Putnam County, Georgia, November 2020.
- Golder Associates, 2020. Well Installation Report Addendum Ash Pond BCD, Georgia Power Plant Branch, Milledgeville, Georgia, October 2020.
- Golder Associates, 2017. Installation Report for Surface Impoundment Groundwater Piezometers, Georgia Power Plant Branch, Milledgeville, Georgia, September 2017.
- USEPA, November 2002, Data Validation Standard Operating Procedures and Quality Assurance Manual.
- USEPA, 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. EPA 530-R-09-007.USEPA. 2015. Federal Register. Volume 80. No. 74 Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009–0640; FRL-9919–44– OSWER]. RIN-2050–AE81.
- USEPA. 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington. DC. January.

Figures & Tables

MONITORING WELL

APPROXIMATE ASH POND BOUNDARY

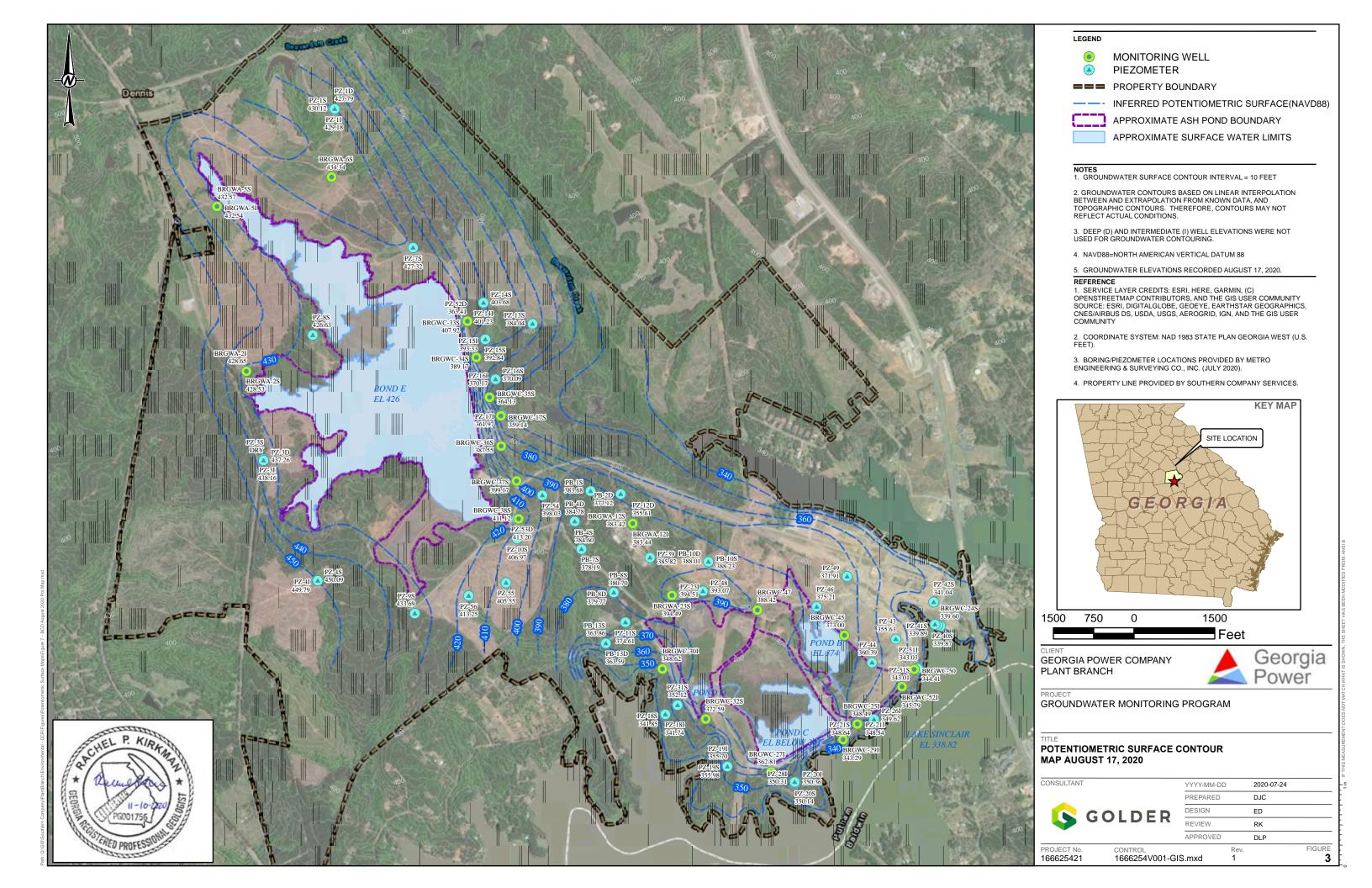
APPROXIMATE SURFACE WATER LIMITS

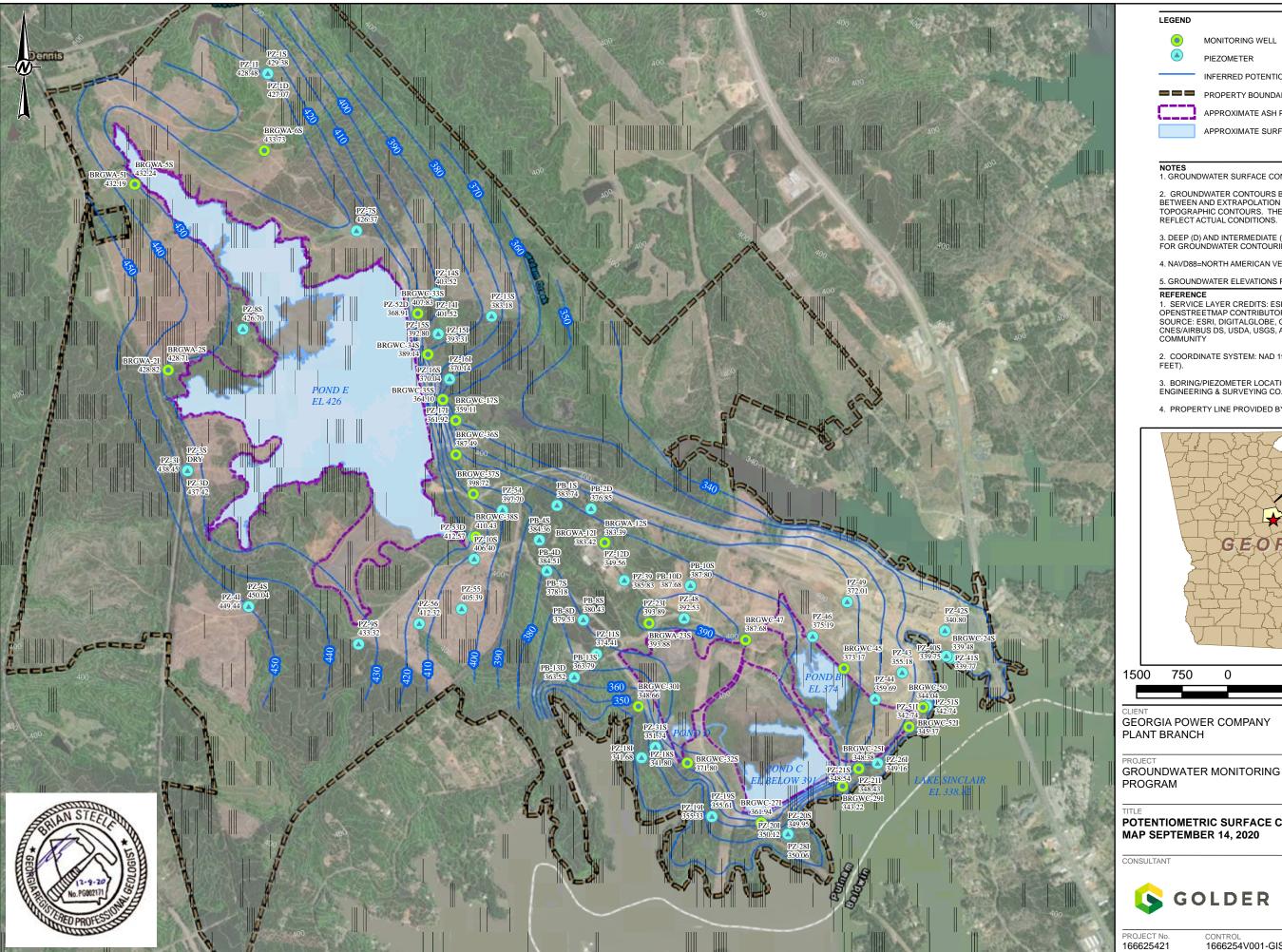
ASERVICE LAYER CREDITS: SOURCE: ESRI, MAXAR, GEOEYE, EARTHSTAR GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND THE GIS USER COMMUNITY ESRI, HERE, GARMIN, (C) OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY

- 2. COORDINATE SYSTEM: NAD 1983 STATE PLAN GEORGIA WEST (U.S. FEET).
- 3. ASH POND BOUNDARY AND PROPERTY LINE PROVIDED BY SOUTHERN COMPANY SERVICES.
- 4. BORING/PIEZOMETER LOCATIONS PROVIDED BY METRO ENGINEERING & SURVEYING CO., INC. (JULY 2020).
- 5. PROPERTY LINE PROVIDED BY SOUTHERN COMPANY SERVICES.

750 1500 0

GEORGIA POWER COMPANY

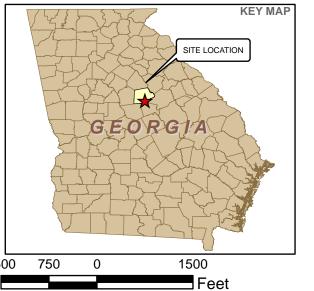



GROUNDWATER MONITORING PROGRAM

SITE PLAN AND MONITORING WELL AND SURFACE WATER

2020-05-21 PREPARED BAS REVIEW RK APPROVED FIGURE 2

INFERRED POTENTIOMETRIC SURACE (NAVD88)


PROPERTY BOUNDARY

APPROXIMATE ASH POND BOUNDARY

APPROXIMATE SURFACE WATER LIMITS

- 1. GROUNDWATER SURFACE CONTOUR INTERVAL = 10 FEET
- 2. GROUNDWATER CONTOURS BASED ON LINEAR INTERPOLATION BETWEEN AND EXTRAPOLATION FROM KNOWN DATA, AND TOPOGRAPHIC CONTOURS. THEREFORE, CONTOURS MAY NOT REFLECT ACTUAL CONDITIONS.
- 3. DEEP (D) AND INTERMEDIATE (I) WELL ELEVATIONS WERE NOT USED FOR GROUNDWATER CONTOURING.
- 4. NAVD88=NORTH AMERICAN VERTICAL DATUM 88
- 5. GROUNDWATER ELEVATIONS RECORDED SEPTEMBER 14, 2020.
- REFERENCE

 1. SERVICE LAYER CREDITS: ESRI, HERE, GARMIN, (C)
 OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY
 SOURCE: ESRI, DIGITALGLOBE, GEOEYE, EARTHSTAR GEOGRAPHICS,
 CNES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND THE GIS USER
 COMMUNITY
- 2. COORDINATE SYSTEM: NAD 1983 STATE PLAN GEORGIA WEST (U.S. FEET).
- 3. BORING/PIEZOMETER LOCATIONS PROVIDED BY METRO ENGINEERING & SURVEYING CO., INC. (JULY 2020).
- 4. PROPERTY LINE PROVIDED BY SOUTHERN COMPANY SERVICES.

GEORGIA POWER COMPANY

POTENTIOMETRIC SURFACE CONTOUR

GOLDER

YYYY-MM-DD	2020-09-25
PREPARED	SEB
DESIGN	ED
REVIEW	RK
APPROVED	DLP

1666254V001-GIS.mxd

FIGURE

TABLE 1 MONITORING WELL NETWORK SUMMARY (AP-BCD)

Georgia Power - Plant Branch Milledgeville, GA

Well-ID	Old Well-ID	Location	Hydrogeologic Unit Screened ^[3]	Latitude	Longitude	Ground Surface Elevation (feet NAVD88) ^[1]	Top of Casing Elevation (feet NAVD88) ^[1]	Total Depth (feet bgs) ^[2]	Top of Screen Elevation (feet NAVD88) ^[1]	Screen Tip Elevation (feet NAVD88) ^[1]	Screen Length	Date of Installation
POND BCD	POND BCD											
BRGWA-2S	PZ-2S	Upgradient BCD & E	Saprolite	33.205940	-83.338294	440.4	443.20	44.6	406.20	396.20	10.0	4/2/2014
BRGWA-2I	PZ -2I	Upgradient BCD & E	Amphibolite Gneiss	33.205913	-83.338279	440.5	443.14	64.3	386.60	376.60	10.0	3/14/2014
BRGWA-5S	PZ-5S	Upgradient BCD & E	Saprolite	33.214300	-83.339971	440.8	443.86	40.0	411.20	401.20	10.0	4/3/2014
BRGWA-5I	PZ - 5I	Upgradient BCD & E	Amphibolite Gneiss	33.214317	-83.339996	441.1	443.79	61.2	390.30	380.30	10.0	4/3/2014
BRGWA-6S	PZ-6S	Upgradient BCD & E	Saprolite	33.215780	-83.333008	455.8	458.96	49.7	416.50	406.50	10.0	4/1/2014
BRGWA-12S	PZ-12S	Upgradient BCD	Residuum	33.197941	-83.314864	431.6	434.64	58.3	383.70	373.70	10.0	3/4/2014
BRGWA-12I	PZ -12I	Upgradient BCD	Biotote Gneiss	33.197981	-83.314877	431.5	434.39	77.6	364.30	354.30	10.0	2/20/2014
BRGWA-23S	PZ-23S	Upgradient BCD	Saprolite/TWR	33.194311	-83.312528	425.5	428.24	40.8	394.70	384.70	10.0	7/26/2016
BRGWC-25I	PZ-25I	Downgradient B	Saprolite/TWR/Biotite Gneiss	33.187670	-83.301326	355.0	357.37	20.5	344.50	334.50	10.0	7/25/2016
BRGWC-27I	PZ-27S	Downgradient C	Saprolite	33.185265	-83.306589	364.0	366.86	24.0	350.00	340.00	10.0	7/22/2016
BRGWC-29I	PZ-29I	Downgradient C	TWR	33.186890	-83.302200	350.6	353.23	20.0	340.60	330.60	10.0	7/23/2016
BRGWC-30I	PZ-30I	Downgradient D	Saprolite/TWR/Biotite Gneiss	33.190566	-83.313141	350.0	352.61	20.3	340.00	330.00	10.0	7/18/2016
BRGWC-32S	PZ-32S	Downgradient D	Saprolite	33.187992	-83.310531	403.6	406.39	45.0	368.60	358.60	10.0	7/20/2016
BRGWC-45	PZ-45	Downgradient B	Saprolite/TWR/Biotite Gneiss	33.192199	-83.302065	381.6	384.58	57.0	335.00	325.00	10.0	2/3/2018
BRGWC-47	PZ-47	Downgradient D	TWR	33.193530	-83.307343	408.8	411.20	92.0	327.20	317.20	10.0	1/25/2018
BRGWC-50	PZ-50	Downgradient B	Residuum/Biotite Gneiss	33.190421	-83.297841	378.8	381.35	65.0	324.20	314.20	10.0	1/31/2018
BRGWC-52I	PZ-52	Downgradient B	Biotite Gneiss	33.189551	-83.298594	381.2	383.87	73.9	317.30	307.30	10.0	8/6/2018
ASH POND BCD	ASSESSMENT \	WELLS										
PZ-50D	PZ-52	Downgradient	Biotite Gneiss	33.190410	-83.297817	378.3	380.86	106.0	282.30	272.30	10.0	10/8/2020
PZ-51I	PZ-52	Downgradient	Saprolilte/TWR/Biotite Gneiss	33.190523	-83.297623	378.0	380.52	65.0	323.10	313.10	10.0	8/1/2018

- 1. feet NAVD88 = feet North American Vertical Datum 1988 feet NAD83 = North American Datum 1983
- 2. feet bgs = feet below ground surface
- 3. TWR = Transitionally Weathered Rock

TABLE 2 GROUNDWATER SAMPLING EVENT SUMMARY Georgia Power Company - Plant Branch Milledgeville, Georgia

		Summ	ary of Sampling	Events	
Well ID	Hydraulic Location	August 2020 September 2020		November 2020	Status of Monitoring Well
Purpose of Sampling Event		Annual Appendix IV Scan	Compliance / Assessment	Compliance / Assessment	
ASH PONDS B, C, a	nd D (AP-BCD)				
BRGWA-2S	Upgradient	Scan02	A03	-	Assessment
BRGWA-2I	Upgradient	Scan02	A03	-	Assessment
BRGWA-5S	Upgradient	Scan02	A03	-	Assessment
BRGWA-5I	Upgradient	Scan02	A03	-	Assessment
BRGWA-6S	Upgradient	Scan02	A03	-	Assessment
BRGWA-12S	Upgradient	Scan02	A03	-	Assessment
BRGWA-12I	Upgradient	Scan02	A03	-	Assessment
BRGWA-23S	Upgradient	Scan02	A03	-	Assessment
BRGWC-25I	Downgradient	Scan02	A03	-	Assessment
BRGWC-27I	Downgradient	Scan02	A03	-	Assessment
BRGWC-29I	Downgradient	Scan02	A03	-	Assessment
BRGWC-30I	Downgradient	Scan02	A03	-	Assessment
BRGWC-32S	Downgradient	Scan02	A03	-	Assessment
BRGWC-45	Downgradient	Scan02	A03	-	Assessment
BRGWC-47	Downgradient	Scan02	A03	-	Assessment
BRGWC-50	Downgradient	Scan02	A03	-	Assessment
BRGWC-52I	Downgradient	Scan02	A03	-	Assessment
PZ-50D*	Downgradient	not installed	-	A03	Assessment
PZ-51S	Downgradient	Scan02	A03	-	Assessment
PZ-51I*	Downgradient	Scan02	A03	A03	Assessment
PZ-51D	Downgradient	not installed	-	A03	Assessment

Notes:

Scan## = Annual Appendix IV Scan

A## = Assessment Monitoring Event Number

"-" = Not Sampled

* = AP-BCD Assessment Well

Summary of Groundwater Elevations

Well-ID	Top of Casing Elevation	GROUNDWATER ELEVATIONS (FEET NAVD88)		
Well-ID	(feet NAVD88) ^[1]	8/17/2020	9/14/2020	
POND BCD				
BRGWA-12S	434.64	383.42	383.39	
BRGWA-12I	434.39	383.44	383.92	
BRGWA-23S	428.24	394.49	393.88	
BRGWC-25I	357.37	348.49	348.38	
BRGWC-27I	366.86	362.81	361.94	
BRGWC-29I	353.23	343.29	343.22	
BRGWC-30I	352.61	348.62	348.66	
BRGWC-32S	406.39	372.59	371.80	
BRGWC-45	384.58	373.00	373.17	
BRGWC-47	411.20	388.42	387.68	
BRGWC-50	381.35	344.41	344.04	
BRGWC-52I	383.87	345.79	345.37	

Summary of Groundwater Elevations

Well-ID	Top of Casing Elevation	GROUNDWATER ELEVATIONS (FEET NAVD88)		
Well-ID	(feet NAVD88) ^[1]	8/17/2020	9/14/2020	
POND E				
BRGWA-2S	443.20	428.53	428.71	
BRGWA-2I	443.14	428.65	428.82	
BRGWA-5S	443.86	432.57	432.24	
BRGWA-5I	443.79	432.54	432.19	
BRGWA-6S	458.96	434.34	433.73	
BRGWC-17S	365.32	359.14	359.11	
BRGWC-33S	416.68	407.92	407.83	
BRGWC-34S	391.96	389.17	389.14	
BRGWC-35S	366.31	364.13	364.10	
BRGWC-36S	389.84	387.55	387.49	
BRGWC-37S	447.05	399.17	398.72	
BRGWC-38S	432.24	411.12	410.43	

Summary of Groundwater Elevations

Well-ID	Top of Casing Elevation		ER ELEVATIONS NAVD88)
	(feet NAVD88) ^[1]	8/17/2020	9/14/2020
PIEZOMETERS			
PZ-1S	465.07	430.12	429.38
PZ-1I	464.71	429.18	428.48
PZ-1D	463.41	427.79	427.07
PZ-3S	490.53	DRY	DRY
PZ-3I	489.49	438.16	438.45
PZ-3D	487.50	437.26	437.42
PZ-4S	482.87	450.09	450.04
PZ-4I	482.98	449.79	449.44
PZ-7S	451.57	427.32	426.37
PZ-8S	453.08	426.63	426.70
PZ-9S	469.28	433.69	433.32
PZ-10S	433.85	406.97	406.40
PZ-11S	393.99	374.61	374.41
PZ-12D	434.09	355.61	349.56
PZ-13S	409.97	384.04	383.18
PZ-14S	423.31	403.68	403.52
PZ-14I	422.71	401.23	401.52
PZ-15S	402.90	392.84	392.80
PZ-15I	403.06	393.33	393.31
PZ-16S	382.52	370.09	370.04
PZ-16I	382.45	370.17	370.14
PZ-17I	365.33	361.97	361.92
PZ-18S	362.82	341.85	341.80
PZ-18I	362.55	341.74	341.68
PZ-19S	371.42	355.98	355.61
PZ-19I	371.74	355.70	355.33
PZ-20S	365.41	350.14	349.95
PZ-20I	365.34	350.36	350.12
PZ-21S	358.52	348.64	348.54

Summary of Groundwater Elevations

Well-ID	Top of Casing Elevation		ER ELEVATIONS NAVD88)
Well-ID	(feet NAVD88) ^[1]	8/17/2020	9/14/2020
PIEZOMETERS			
PZ-21I	358.92	348.54	348.43
PZ-23I	427.74	394.51	393.89
BRGWC-24S	354.10	339.60	339.48
PZ-26I	370.63	349.62	349.16
PZ-28I	364.81	350.31	350.06
PZ-31S	376.77	352.12	351.74
PZ-39	434.78	385.82	385.83
PZ-40S	355.96	339.87	339.75
PZ-41S	357.17	339.89	339.77
PZ-42S	361.66	341.04	340.80
PZ-43	383.71	355.63	355.18
PZ-44	383.04	360.39	359.69
PZ-46	384.64	375.21	375.19
PZ-48	420.90	393.07	392.53
PZ-49	384.99	371.91	372.01
PZ-51S	380.27	343.01	342.74
PZ-51I	380.52	343.03	342.74
PZ-52D	417.03	363.41	368.91
PZ-53D	434.68	413.20	412.57
PZ-54	443.86	398.03	397.70
PZ-55	453.07	405.55	405.39
PZ-56	418.84	413.25	412.32

Summary of Groundwater Elevations

Georgia Power Company- Plant Branch Milledgeville, Georgia

Well-ID	Top of Casing Elevation	GROUNDWATER ELEVATIONS (FEET NAVD88)										
Well-ID	(feet NAVD88) ^[1]	8/17/2020	9/14/2020									
Temporary Landfill Piezometers												
PB-1S	403.16	383.68	383.74									
PB-2D	416.71	377.12	376.85									
PB-4S	411.15	384.60	384.36									
PB-4D	412.12	384.78	384.51									
PB-7S	402.88	378.19	378.18									
PB-8S	401.82	380.70	380.43									
PB-8D	401.74	379.77	379.53									
PB-10S	400.91	388.23	387.80									
PB-10D	400.31	388.01	387.68									
PB-13S	373.31	363.86	363.79									
PB-13D	373.77	363.59	363.52									

- 1. Feet NAVD88 = feet North American Vertical Datum 1988
- 2. Updated survey data for all wells provided by Metro Engineering in July 2020

TABLE 4A

GROUNDWATER VELOCITY CALCULATIONS (August 2020)

Georgia Power - Plant Branch Ash Pond AP-BCD

Milledgeville, GA

Flow Paths	Groundwater Elevation	ΔH (feet) ¹	ΔL (feet) ²	Hydraulic Gradient	Average Hydraulic Conductivity, K	Assumed Effective Porosity	Average Linear Groundwater Velocity			
	(feet NAVD88) ⁷			(Δ H/Δ L) ³	(feet per day) ⁵	(n _e) ⁶	(feet per day)4	(feet per year)4		
Pond BCD August 17, 2020										
BRGWA-23S / BRGWC-30I	394.49	45.87	1374.0	0.033	2.73 to 5.47	0.2	0.46 to 0.91	166.3 to 333.3		
BINGWA-2307 BINGWO-301	348.62	45.07			2.73 10 3.47		0.40 10 0.91	100.5 to 555.5		
BRGWC-47 / BRGWC-50	388.42	44.01	3130.0	0.014	2.73 to 5.47	0.2	0.19 to 0.38	70.1 to 140.4		
BRGWC-47 / BRGWC-50	344.41	74.01			2.73 10 3.47	0.2	0.19 10 0.30	70.1 10 140.4		

- 1. $\Delta H =$ Change in groundwater elevation.
- 2. Δ L = Distance along flow path.
- 3. $I = \Delta H / \Delta L$.
- 4. Velocity = $(I * K)/n_e$.
- 5. Hydraulic conductivity range based on historical aquifer performance tests (revised 4/2019).
- 6. Effective porosity based on default values for effective porosity recommended by USEPA for a silty sand-type soil (USEPA, 1996).
- 7. NAVD88 = North American Vertical Datum 1988.

TABLE 4B

GROUNDWATER VELOCITY CALCULATIONS (September 2020)

Georgia Power - Plant Branch Ash Pond AP-BCD

Milledgeville, GA

Flow Paths	Groundwater Elevation (feet NAVD88) ⁷	ΔH (feet) ¹	ΔL (feet) ²	Hydraulic Gradient (Δ H/Δ L) ³	Average Hydraulic Conductivity, K (feet per day) ⁵	Assumed Effective Porosity (n _e) ⁶	Average Groundwat (feet per day) ⁴	
Pond BCD September 14, 2020								
BRGWA-23S / BRGWC-30I	393.88	45,22	1375.0	0.033	2.73 to 5.47	0.2	0.45 to 0.90	163.9 to 328.3
BINGWA-2307 BINGWO-301	348.66	45.22			2.73 to 5.47	0.2	0.43 10 0.90	100.9 10 020.0
BRGWC-47 / BRGWC-50	387.68	43.64	3120.0	0.014	2.73 to 5.47	0.2	0.19 to 0.38	69.7 to 139.6
BRGWC-47 / BRGWC-50	344.04	45.04			2.75 10 5.47	0.2	0.13 10 0.30	09.7 10 139.0

- 1. $\Delta H =$ Change in groundwater elevation.
- 2. Δ L = Distance along flow path.
- 3. $I = \Delta H / \Delta L$.
- 4. Velocity = $(I * K)/n_e$.
- 5. Hydraulic conductivity range based on historical aquifer performance tests (revised 4/2019).
- 6. Effective porosity based on default values for effective porosity recommended by USEPA for a silty sand-type soil (USEPA, 1996).
- 7. NAVD88 = North American Vertical Datum 1988.

TABLE 5A ANALYTICAL DATA SUMMARY - POND BCD (August 2020)

GPC PLANT BRANCH MILLDEGEVILLE, GEORGIA

										GROUNDW	ATER MONITORI	NG WELLS								
Analyte	Units	BRGWA-2S	BRGWA-2I	BRGWA-5S	BRGWA-5I	BRGWA-6S	BRGWA-12S	BRGWA-12I	BRGWA-23S	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-50	PZ-51I	PZ-51S	BRGWC-52I
		8/18/2020	8/18/2020	8/18/2020	8/18/2020	8/18/2020	8/18/2020	8/18/2020	8/18/2020	8/19/2020	8/19/2020	8/19/2020	8/19/2020	8/19/2020	8/20/2020	8/20/2020	8/20/2020	8/20/2020	8/20/2020	8/20/2020
Appendix III																				
BORON, TOTAL	mg/L	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed									
CALCIUM, TOTAL	mg/L	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed									
CHLORIDE, TOTAL	mg/L	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed									
FLUORIDE, TOTAL	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.052 J	< 0.050	0.17	0.19	0.12	0.14	< 0.050	< 0.050	< 0.050	0.39	< 0.050	0.056 J	0.23
рН	S.U.	6.06	6.59	6.41	6.29	6.33	5.75	6.25	5.56	6.32	5.81	4.67	6.36	5.97	5.86	5.75	5.26	5.57	6.15	6.85
SULFATE, TOTAL	mg/L	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed									
TOTAL DISSOLVED SOLIDS	mg/L	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed									
Appendix IV																[I	
ANTIMONY, TOTAL	mg/L	0.00042 J	0.00054 J	0.0016 J	< 0.00028	< 0.00028	< 0.00028	0.0067	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	0.0031	< 0.00028	< 0.00028	0.0017 J	< 0.00028	< 0.00028
ARSENIC, TOTAL	mg/L	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	0.00089 J	< 0.00078	< 0.00078	< 0.00078	0.0031 J
BARIUM, TOTAL	mg/L	0.010	0.010 J	0.040	0.022	0.014	0.058	0.053	0.067	0.027	0.016	0.019	0.026	0.025	0.083	0.035	0.019	0.013	0.030	0.017
BERYLLIUM, TOTAL	mg/L	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	0.000099 J	0.00074 J	< 0.000046	< 0.000046	0.000046 J	0.000047 J	0.0044	0.000077 J	< 0.000046	< 0.000046
CADMIUM, TOTAL	mg/L	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	0.00014 J	< 0.00012	0.0079	0.0019 J	< 0.00012	< 0.00012
CHROMIUM, TOTAL	mg/L	0.0085 J	0.00096 J	0.0050 J	0.0069 J	0.015	0.0029 J	0.0023 J	0.0017 J	< 0.00055	< 0.00055	< 0.00055	< 0.00055	0.0021 J	0.0010 J	0.00064 J	0.00065 J	< 0.00055	0.00063 J	< 0.00055
COBALT, TOTAL	mg/L	0.0014 J	< 0.00038	< 0.00038	0.00048 J	0.00061 J	< 0.00038	< 0.00038	0.00067 J	0.0039 J	0.0078	0.0065	0.00080 J	< 0.00038	0.022	0.00043 J	1.4	0.020	0.0039 J	< 0.00038
FLUORIDE, TOTAL	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.052 J	< 0.050	0.17	0.19	0.12	0.14	< 0.050	< 0.050	< 0.050	0.39	< 0.050	0.056 J	0.23
LEAD, TOTAL	mg/L	< 0.000036	< 0.000036	0.00010 J	< 0.000036	< 0.000036	< 0.000036	< 0.000036	< 0.000036	< 0.000036	< 0.000036	0.00025 J	< 0.000036	< 0.000036	0.00021 J	0.000048 J	0.000067 J	< 0.000036	< 0.000036	< 0.000036
LITHIUM, TOTAL	mg/L	< 0.00081	0.054	< 0.00081	0.00095 J	0.0026 J	< 0.00081	0.0039 J	0.0099 J	< 0.00081	0.0014 J	0.0029 J	0.018 J	0.0020 J	0.0034 J	0.044	0.040	0.019 J	< 0.00081	0.0022 J
MERCURY, TOTAL	mg/L	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	0.000083 J	< 0.000078	0.000098 J	0.000082 J	0.000082 J	< 0.000078	< 0.000078	< 0.000078	0.000099 J	< 0.000078	< 0.000078
MOLYBDENUM, TOTAL	mg/L	< 0.00069	0.0011 J	< 0.00069	0.0015 J	< 0.00069	< 0.00069	< 0.00069	< 0.00069	0.00081 J	< 0.00069	< 0.00069	0.00078 J	< 0.00069	0.00076 J	< 0.00069	< 0.00069	< 0.00069	< 0.00069	0.0012 J
RADIUM (226 + 228)	pCi/L	1.22 U	0.0861 U	0.581 U	0.530 U	0.453 U	0.969 U	0.988 U	0.784 U	0.467 U	0.684 U	0.876 U	1.00 U	0.482 U	0.501 U	1.64	2.78	0.937 U	1.19	2.97
SELENIUM, TOTAL	mg/L	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	0.0033 J	< 0.0016	< 0.0016	< 0.0016	< 0.0016	0.099	< 0.0016	0.0016 J	0.0037 J	< 0.0016	< 0.0016	< 0.0016
THALLIUM, TOTAL	mg/L	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	0.00016 J	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014

NOTES:

- 1. mg/L milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. S.U. Standard Units
- 4. < indicates the substance was not detected above the analytical method detection limit (MDL). The value displayed is the method detection limit.
- 5. J indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed is qualified by the laboratory as an estimated number.
- 6. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

TABLE 5B

ANALYTICAL DATA SUMMARY - POND BCD (September and October 2020)

GPC PLANT BRANCH MILLDEGEVILLE, GEORGIA

												Well I	D										
Analyte	Units	BRGWA-2S	BRGWA-2I	BRGWA-5S	BRGWA-5I	BRGWA-6S	BRGWA-12S	BRGWA-12I	BRGWA-23S	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-50	PZ-50D	PZ-51S	PZ-51I	PZ-51I	PZ-51D	BRGWC-52I
		9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/16/2020	9/15/2020	9/16/2020	9/16/2020	9/16/2020	9/16/2020	9/17/2020	10/27/2020	9/17/2020	9/17/2020	10/27/2020	10/27/2020	9/17/2020
Appendix III																							
BORON, TOTAL	mg/L	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	0.0071 J	0.033 J	1.2	1.2	1.1	1.7	1.4	0.028 J	0.47	0.36	0.15	0.0063 J	0.43	0.37	0.029 J	1.9
CALCIUM, TOTAL	mg/L	3.9	14.1	16.8	12.7	3.7	5.7	14.5	10.7	40.1	62.5	55.1	106	43.1	39.7	309	206	159	7.7	168	183	132	35.4
CHLORIDE, TOTAL	mg/L	1.7	1.9	3.7	3.7	2.3	3.5	2.4	3.1	4.9	5.4	5.5	4.4	5.6	54.9	4.1	20.1	5.6	4.6	10.5	11.0	6.3	6.3
FLUORIDE, TOTAL	mg/L	< 0.050	< 0.050	0.051 J	< 0.050	< 0.050	< 0.050	0.062 J	< 0.050	0.15	0.15	0.057 J	0.13	< 0.050	0.052 J	< 0.050	0.46	0.28	0.062 J	< 0.050	< 0.050	0.21	0.074 J
рН	S.U.	6.01	6.64	6.25	6.27	6.43	6	6.01	5.72	6	5.81	4.53	6.29	5.79	5.27	5.76	4.41	6.47	5.77	4.93	5.49	6.79	6.12
SULFATE, TOTAL	mg/L	< 0.50	5.9	< 0.50	1.7	< 0.50	< 0.50	1.7	41.5	126	190	241	334	255	103	1360	1330	492	0.53 J	1030	893	357	165
TOTAL DISSOLVED SOLIDS	mg/L	69	116	116	100	79	60	95	109	272	301	281	634	428	275	2090	1910	914	101	1600	1200	680	329
Appendix IV																							
ANTIMONY, TOTAL	mg/L	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	0.010	0.00033 J	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	0.0012 J	0.00035 J	0.00041 J	NA	0.00043 J	< 0.00028	NA	NA	< 0.00028
ARSENIC, TOTAL	mg/L	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	NA	< 0.00078	< 0.00078	NA	NA	< 0.00078
BARIUM, TOTAL	mg/L	0.0094 J	0.0083 J	0.038	0.022	0.013	0.058	0.059	0.086	0.024	0.016	0.017	0.022	0.024	0.085	0.028	0.020	NA	0.033	0.015	NA	NA	0.020
BERYLLIUM, TOTAL	mg/L	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	0.00011 J	0.00071 J	< 0.000046	< 0.000046	< 0.000046	< 0.000046	0.0065	NA	< 0.000046	0.000096 J	NA	NA	< 0.000046
CADMIUM, TOTAL	mg/L	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	0.021	< 0.00012	< 0.00012	0.033	0.0051	< 0.00012	< 0.00012
CHROMIUM, TOTAL	mg/L	0.0082 J	< 0.00055	0.0048 J	0.0069 J	0.014	0.0025 J	0.00096 J	0.0019 J	< 0.00055	< 0.00055	< 0.00055	0.014	0.0025 J	0.0014 J	< 0.00055	0.00098 J	NA	< 0.00055	0.00098 J	NA	NA	< 0.00055
COBALT, TOTAL	mg/L	0.0010 J	< 0.00038	< 0.00038	0.00050 J	< 0.00038	< 0.00038	< 0.00038	0.00076 J	0.0035 J	0.008	0.0064	0.00080 J	< 0.00038	0.0049 J	0.00053 J	1.4	0.0037 J	0.0062	0.022	0.020	0.00041 J	0.00046 J
FLUORIDE, TOTAL	mg/L	< 0.050	< 0.050	0.051 J	< 0.050	< 0.050	< 0.050	0.062 J	< 0.050	0.15	0.15	0.057 J	0.13	< 0.050	0.052 J	< 0.050	0.46	0.28	0.062 J	< 0.050	< 0.050	0.21	0.074 J
LEAD, TOTAL	mg/L	< 0.000036	< 0.000036	0.000043 J	0.0013 J	< 0.000036	< 0.000036	< 0.000036	< 0.000036	< 0.000036	< 0.000036	0.00029 J	0.00011 J	< 0.000036	0.000053 J	0.000066 J	0.00015 J	NA	< 0.000036	0.00036 J	NA	NA	< 0.000036
LITHIUM, TOTAL	mg/L	< 0.00081	0.033	< 0.00081	0.0010 J	0.0027 J	< 0.00081	0.0037 J	0.011 J	< 0.00081	0.0014 J	0.0030 J	0.016 J	0.0022 J	0.0036 J	0.039	0.052	NA	< 0.00081	0.021 J	NA	NA	0.0058 J
MERCURY, TOTAL	mg/L	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	< 0.000078	NA	< 0.000078	< 0.000078	NA	NA	< 0.000078
MOLYBDENUM, TOTAL	mg/L	< 0.00069	0.00070 J	< 0.00069	0.0015 J	< 0.00069	< 0.00069	< 0.00069	< 0.00069	0.0008 J	< 0.00069	< 0.00069	0.0022 J	< 0.00069	< 0.00069	< 0.00069	< 0.00069	NA	< 0.00069	< 0.00069	NA	NA	0.00070 J
RADIUM (226 + 228)	pCi/L	0.579 U	0.0583 U	0.55 U	0.215 U	0.474 U	0.359 U	0.762 U	1.04 U	0.205 U	0.175 U	1.23 U	0.430 U	0.195 U	0.254 U	0.510 U	0.717 U	NA	0.952 U	1.76	NA	NA	2.04
SELENIUM, TOTAL	mg/L	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	0.0028 J	< 0.0016	0.0042 J	< 0.0016	< 0.0016	0.12	< 0.0016	0.0020 J	< 0.0016	NA	< 0.0016	< 0.0016	NA	NA	< 0.0016
THALLIUM, TOTAL	mg/L	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	0.00016 J	< 0.00014	< 0.00014	< 0.00014	< 0.00014	< 0.00014	NA	< 0.00014	< 0.00014	NA	NA	< 0.00014

NOTES:

- 1. mg/L milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. S.U. Standard Units
- 4. < indicates the substance was not detected above the analytical method detection limit (MDL). The value displayed is the method detection limit.
- 5. J indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed is qualified by the laboratory as an estimated number.
- 6. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

TABLE 5C ANALYTICAL DATA SUMMARY Surface Water - October 2020

Georgia Power - Plant Branch Milledgeville, Georgia

		SURFACE WATER SAMPLE LOCATION									
Analyte	Units	LR-1	LR+8	LR+9	LR+10						
		10/22/2020	10/22/2020	10/22/2020	10/22/2020						
Appendix III											
Boron, Total	mg/L	<0.040	<0.040	<0.040	<0.040						
Calcium, Total	mg/L	3.7	4.2	4.3	4.5						
Chloride, Total	mg/L	3.3	3.7	3.8	4.0						
Fluoride, Total	mg/L	<0.10	<0.10	<0.10	<0.10						
Sulfate, Total	mg/L	2.1	2.5	2.6	2.6						
рН	S.U.	7.1	7.2	7.2	7.1						
Total Dissolved Solids	mg/L	59	60	57	59						
Appendix IV											
Cadmium, Total	mg/L	<0.00050	<0.00050	<0.00050	<0.00050						
Cobalt, Total	mg/L	<0.0050	<0.0050	<0.0050	<0.0050						
Other											
Sodium , Total	mg/L	4.4	4.9	4.9	5.1						
Magnesium, Total	mg/L	2.0	2.1	2.1	2.1						
Potassium, Total	mg/L	2.7	2.8	2.9	2.8						
Alkalinity, Bicarbonate (CaCO ₃)	mg/L	24.2	25.6	25.8	26.5						
Alkalinity, Total (CaCO ₃)	mg/L	24.2	25.6	25.8	26.5						

Notes:

mg/L = milligrams per Liter; S.U. = Standard Units

< = substance was not detected above the analytical reporting limit (RL). The value displayed is the RL.</p>

TABLE 5D ANALYTICAL DATA SUMMARY Surface Water - February 2021

Georgia Power - Plant Branch Milledgeville, Georgia

			SURFAC	E WATER SAMPLE LO	CATION	
Analyte	Units	LR-1	LR+8	LR+9	LR-9A	LR-10
		2/4/2021	2/4/2021	2/4/2021	2/4/2021	2/4/2021
Appendix III						
Boron, Total	mg/L	<0.040	<0.040	<0.040	<0.040	<0.040
Calcium, Total	mg/L	4.8	4.7	4.6	4.8	4.6
Chloride, Total	mg/L	3.7	3.8	3.8	3.7	4.3
Fluoride, Total	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Sulfate, Total	mg/L	2.8	3.2	3.2	3.4	3.3
рН	S.U.	7.24	7.21	7.32	7.24	7.34
Total Dissolved Solids	mg/L	70.0	52.0	76.0	59.0	49.0
Appendix IV						
Cadmium, Total	mg/L	<0.00012	<0.00012	<0.00012	<0.00012	<0.00012
Cobalt, Total	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Cations/Anions						
Sodium , Total	mg/L	4.5	4.4	4.4	4.4	4.7
Magnesium, Total	mg/L	2.2	2.1	2.1	2.2	2.0
Potassium, Total	mg/L	2.3	2.5	2.5	2.5	2.6
Alkalinity, Bicarbonate (CaCO ₃)	mg/L	25.8	24.3	24.2	24.9	24.6
Alkalinity, Total (CaCO3)	mg/L	25.8	24.3	24.2	24.9	24.6
Field Parameters						
Temperature	F	48.7	49.0	48.9	48.2	49.6
ORP	mV	167.3	163.6	163.7	166.1	164.3
Dissolved Oxygen	mg/L	11.00	10.72	10.92	10.53	11.30
Turbidity	NTU	23.4	27.3	27.7	32.0	18.8
Specific Conductance	mS/cm	0.072	0.071	0.072	0.071	0.074

Notes:

mg/L = milligrams per Liter; S.U. = Standard Units; F = Fahrenheit; mV = Millivolts; NTU = Nephelometric turbidity unit <math>mS/cm = Millisiemens per centimeter

< = substance was not detected above the analytical reporting limit (RL). The value displayed is the RL.</p>

APPENDIX A

ANALYTICAL RESULTS, FIELD DATA FORMS, CERTIFIED WELL SURVEY REPORT, WELL INSPECTION LOGS & DATA VALIDATION SUMMARIES

APPENDIX A

ANALYTICAL RESULTS

September 11, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on August 19, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA
- Pace Analytical Services Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Kani Lung

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder
Ben Hodges, Georgia Power
Jimmy Jones, Golder Associates Inc.
Kristen Jurinko
Julie Lehrman, Golder Associates Inc.
Ms. Lauren Petty, Southern Co. Services
Carolyn Powrozek, Golder
Dawn Prell, Golder Associates Inc.
Tim Richards, Golder Associates - Atlanta

CERTIFICATIONS

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification
Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001

Virginia/VELAP Certification #: 460222

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92491389001	BRGWA-5I	Water	08/18/20 09:40	08/19/20 10:10
92491389002	BRGWA-5S	Water	08/18/20 10:15	08/19/20 10:10
92491389003	BRGWA-2I	Water	08/18/20 10:45	08/19/20 10:10
92491389004	BRGWA-2S	Water	08/18/20 11:38	08/19/20 10:10
92491389005	BRGWA-6S	Water	08/18/20 12:48	08/19/20 10:10

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92491389001	BRGWA-5I	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491389002	BRGWA-5S	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491389003	BRGWA-2I	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
2491389004	BRGWA-2S	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491389005	BRGWA-6S	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A

 ${\sf PASI-A} = {\sf Pace \ Analytical \ Services \ - \ Asheville}$

PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

PASI-PA = Pace Analytical Services - Greensburg

SUMMARY OF DETECTION

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2491389001	BRGWA-5I					
	рН	6.29	Std. Units		09/09/20 17:00	
EPA 6020B	Barium	0.022	mg/L	0.010	08/21/20 17:42	
EPA 6020B	Chromium	0.0069J	mg/L	0.010	08/21/20 17:42	
EPA 6020B	Cobalt	0.00048J	mg/L	0.0050	08/21/20 17:42	
EPA 6020B	Lithium	0.00095J	mg/L	0.030	08/21/20 17:42	
EPA 6020B	Molybdenum	0.0015J	mg/L	0.010	08/21/20 17:42	
EPA 9315	Radium-226	0.0774 ±	pCi/L		09/02/20 07:40	
		0.196				
		(0.479)				
-DA 0000	Deather 000	C:76% T:NA 0.453 ±	·· O://		00/00/00 40 05	
EPA 9320	Radium-228	0.453 ± 0.459	pCi/L		09/09/20 12:05	
		(0.950)				
		C:53%				
		T:92%				
Total Radium Calculation	Total Radium	0.530 ±	pCi/L		09/10/20 13:23	
		0.655				
		(1.43)				
2491389002	BRGWA-5S					
	рН	6.41	Std. Units		09/09/20 17:00	
EPA 6020B	Antimony	0.0016J	mg/L	0.0030	08/21/20 18:05	
EPA 6020B	Barium	0.040	mg/L	0.010	08/21/20 18:05	
EPA 6020B	Chromium	0.0050J	mg/L	0.010	08/21/20 18:05	
EPA 6020B	Lead	0.00010J	mg/L	0.0050	08/21/20 18:05	
EPA 9315	Radium-226	0.241 ±	pCi/L		09/02/20 07:41	
		0.241				
		(0.446) C:86% T:NA				
EPA 9320	Radium-228	0.340 ±	pCi/L		09/09/20 12:05	
11 A 3320	Radiani 220	0.449	po//L		03/03/20 12.03	
		(0.959)				
		C:59%				
		T:93%				
Total Radium Calculation	Total Radium	0.581 ± 0.690	pCi/L		09/10/20 13:23	
		(1.41)				
2491389003	BRGWA-2I	,				
	pH	6.59	Std. Units		09/09/20 17:00	
EPA 6020B	Antimony	0.00054J	mg/L	0.0030	08/21/20 18:11	
EPA 6020B	Barium	0.010J	mg/L		08/21/20 18:11	
EPA 6020B	Chromium	0.00096J	mg/L		08/21/20 18:11	
EPA 6020B	Lithium	0.054	mg/L		08/21/20 18:11	
EPA 6020B	Molybdenum	0.0011J	mg/L		08/21/20 18:11	
EPA 9315	Radium-226	0.0861 ±	pCi/L	0.010	09/02/20 07:41	
-17.0010	TOGOTH LLO	0.243	PO# E		00,02,20 01.41	
		(0.593)				
		C:77% T:NA				

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92491389003	BRGWA-2I					
EPA 9320	Radium-228	-0.176 ± 0.358 (0.872) C:61% T:91%	pCi/L		09/09/20 12:05	
Total Radium Calculation	Total Radium	0.0861 ± 0.601 (1.47)	pCi/L		09/10/20 13:23	
2491389004	BRGWA-2S					
	рН	6.06	Std. Units		09/09/20 17:00	
EPA 6020B	Antimony	0.00042J	mg/L	0.0030	08/21/20 18:17	
EPA 6020B	Barium	0.010	mg/L	0.010	08/21/20 18:17	
EPA 6020B	Chromium	0.0085J	mg/L	0.010	08/21/20 18:17	
EPA 6020B	Cobalt	0.0014J	mg/L	0.0050	08/21/20 18:17	
EPA 9315	Radium-226	0.189 ± 0.267 (0.570)	pCi/L		09/02/20 07:41	
EPA 9320	Radium-228	C:70% T:NA 1.03 ±	pCi/L		09/09/20 12:05	
LI A 3920	Naulum-220	0.516 (0.891) C:61% T:81%	poi/L		09/09/20 12:03	
Total Radium Calculation	Total Radium	1.22 ± 0.783 (1.46)	pCi/L		09/10/20 13:23	
92491389005	BRGWA-6S					
	pН	6.33	Std. Units		09/09/20 17:00	
EPA 6020B	Barium	0.014	mg/L	0.010	08/21/20 18:22	
EPA 6020B	Chromium	0.015	mg/L	0.010	08/21/20 18:22	
EPA 6020B	Cobalt	0.00061J	mg/L	0.0050	08/21/20 18:22	
EPA 6020B	Lithium	0.0026J	mg/L	0.030	08/21/20 18:22	
EPA 9315	Radium-226	-0.0918 ± 0.174 (0.573)	pCi/L		09/02/20 08:46	
EPA 9320	Radium-228	C:79% T:NA 0.453 ± 0.384 (0.763) C:66%	pCi/L		09/09/20 12:05	
Total Radium Calculation	Total Radium	T:81% 0.453 ± 0.558 (1.34)	pCi/L		09/10/20 13:23	

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Date: 09/11/2020 12:02 PM

Sample: BRGWA-5I	Lab ID:	92491389001	Collecte	ed: 08/18/20	09:40	Received: 08/	19/20 10:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
Н	6.29	Std. Units			1		09/09/20 17:00		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, G	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	08/20/20 14:56	08/21/20 17:42	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/20/20 14:56	08/21/20 17:42	7440-38-2	
Barium	0.022	mg/L	0.010	0.00071	1	08/20/20 14:56	08/21/20 17:42	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/20/20 14:56	08/21/20 17:42	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/20/20 14:56	08/21/20 17:42	7440-43-9	
Chromium	0.0069J	mg/L	0.010	0.00055	1	08/20/20 14:56	08/21/20 17:42	7440-47-3	
Cobalt	0.00048J	mg/L	0.0050	0.00038	1	08/20/20 14:56	08/21/20 17:42	7440-48-4	
₋ead	ND	mg/L	0.0050	0.000036	1	08/20/20 14:56	08/21/20 17:42	7439-92-1	
_ithium	0.00095J	mg/L	0.030	0.00081	1	08/20/20 14:56	08/21/20 17:42	7439-93-2	
Molybdenum	0.0015J	mg/L	0.010	0.00069	1	08/20/20 14:56	08/21/20 17:42	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/20/20 14:56	08/21/20 17:42	7782-49-2	
Thallium Thallium	ND	mg/L	0.0010	0.00014	1	08/20/20 14:56	08/21/20 17:42	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Pre	paration Met	nod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, G	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/21/20 08:05	08/21/20 12:37	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville	:					
Fluoride	ND	mg/L	0.10	0.050	1		08/20/20 17:51	16984-48-8	
		-							

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Date: 09/11/2020 12:02 PM

Sample: BRGWA-5S	Lab ID:	92491389002	Collecte	ed: 08/18/20	10:15	Received: 08/	19/20 10:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
ЭН	6.41	Std. Units			1		09/09/20 17:00		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, G	βA				
Antimony	0.0016J	mg/L	0.0030	0.00028	1	08/20/20 14:56	08/21/20 18:05	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/20/20 14:56	08/21/20 18:05	7440-38-2	
Barium	0.040	mg/L	0.010	0.00071	1	08/20/20 14:56	08/21/20 18:05	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/20/20 14:56	08/21/20 18:05	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/20/20 14:56	08/21/20 18:05	7440-43-9	
Chromium	0.0050J	mg/L	0.010	0.00055	1	08/20/20 14:56	08/21/20 18:05	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	08/20/20 14:56	08/21/20 18:05	7440-48-4	
_ead	0.00010J	mg/L	0.0050	0.000036	1	08/20/20 14:56	08/21/20 18:05	7439-92-1	
_ithium	ND	mg/L	0.030	0.00081	1	08/20/20 14:56	08/21/20 18:05	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/20/20 14:56	08/21/20 18:05	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/20/20 14:56	08/21/20 18:05	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	08/20/20 14:56	08/21/20 18:05	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	'470A Pre _l	paration Met	nod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/21/20 08:05	08/21/20 12:47	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
-	Pace Anal	ytical Services	- Asheville	:					
Fluoride	ND	mg/L	0.10	0.050	1		08/20/20 19:52	16984-48-8	
		-							

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Date: 09/11/2020 12:02 PM

Sample: BRGWA-2I	Lab ID:	92491389003	Collecte	ed: 08/18/20	10:45	Received: 08/	19/20 10:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical I	Method:							
	Pace Analy	ytical Services	- Charlotte						
рН	6.59	Std. Units			1		09/09/20 17:00		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	paration Met	nod: EF	PA 3005A			
	Pace Analy	ytical Services	- Peachtre	e Corners, G	iΑ				
Antimony	0.00054J	mg/L	0.0030	0.00028	1	08/20/20 14:56	08/21/20 18:11	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/20/20 14:56	08/21/20 18:11	7440-38-2	
Barium	0.010J	mg/L	0.010	0.00071	1	08/20/20 14:56	08/21/20 18:11	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/20/20 14:56	08/21/20 18:11	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/20/20 14:56	08/21/20 18:11	7440-43-9	
Chromium	0.00096J	mg/L	0.010	0.00055	1	08/20/20 14:56	08/21/20 18:11	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	08/20/20 14:56	08/21/20 18:11	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	08/20/20 14:56	08/21/20 18:11	7439-92-1	
Lithium	0.054	mg/L	0.030	0.00081	1	08/20/20 14:56	08/21/20 18:11	7439-93-2	
Molybdenum	0.0011J	mg/L	0.010	0.00069	1	08/20/20 14:56	08/21/20 18:11	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/20/20 14:56	08/21/20 18:11	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	08/20/20 14:56	08/21/20 18:11	7440-28-0	
7470 Mercury	Analytical I	Method: EPA 7	470A Prep	paration Met	nod: EF	PA 7470A			
	Pace Analy	ytical Services	- Peachtre	e Corners, G	iΑ				
Mercury	ND	mg/L	0.00020	0.000078	1	08/21/20 08:05	08/21/20 12:49	7439-97-6	
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Analy	ytical Services	- Asheville						

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Date: 09/11/2020 12:02 PM

Sample: BRGWA-2S	Lab ID:	92491389004	Collecte	ed: 08/18/20	11:38	Received: 08/	/19/20 10:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
Н	6.06	Std. Units			1		09/09/20 17:00		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: Ef	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	SA.				
Antimony	0.00042J	mg/L	0.0030	0.00028	1	08/20/20 14:56	08/21/20 18:17	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/20/20 14:56	08/21/20 18:17	7440-38-2	
Barium	0.010	mg/L	0.010	0.00071	1	08/20/20 14:56	08/21/20 18:17	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/20/20 14:56	08/21/20 18:17	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/20/20 14:56	08/21/20 18:17	7440-43-9	
Chromium	0.0085J	mg/L	0.010	0.00055	1	08/20/20 14:56	08/21/20 18:17	7440-47-3	
Cobalt	0.0014J	mg/L	0.0050	0.00038	1	08/20/20 14:56	08/21/20 18:17	7440-48-4	
₋ead	ND	mg/L	0.0050	0.000036	1	08/20/20 14:56	08/21/20 18:17	7439-92-1	
_ithium	ND	mg/L	0.030	0.00081	1	08/20/20 14:56	08/21/20 18:17	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/20/20 14:56	08/21/20 18:17	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/20/20 14:56	08/21/20 18:17	7782-49-2	
Thallium Thallium	ND	mg/L	0.0010	0.00014	1	08/20/20 14:56	08/21/20 18:17	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Pre	paration Met	hod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/21/20 08:05	08/21/20 12:51	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
-	Pace Anal	ytical Services	- Asheville	:					
Fluoride	ND	mg/L	0.10	0.050	1		08/20/20 20:19	16984-48-8	
		-							

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Date: 09/11/2020 12:02 PM

Sample: BRGWA-6S	Lab ID:	92491389005	Collecte	ed: 08/18/20	12:48	Received: 08/	19/20 10:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	s - Charlotte	;					
рН	6.33	Std. Units			1		09/09/20 17:00		
6020 MET ICPMS	Analytical	Method: EPA	6020B Prej	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	s - Peachtre	e Corners, G	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	08/20/20 14:56	08/21/20 18:22	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/20/20 14:56	08/21/20 18:22	7440-38-2	
Barium	0.014	mg/L	0.010	0.00071	1	08/20/20 14:56	08/21/20 18:22	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/20/20 14:56	08/21/20 18:22	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/20/20 14:56	08/21/20 18:22	7440-43-9	
Chromium	0.015	mg/L	0.010	0.00055	1	08/20/20 14:56	08/21/20 18:22	7440-47-3	
Cobalt	0.00061J	mg/L	0.0050	0.00038	1	08/20/20 14:56	08/21/20 18:22	7440-48-4	
₋ead	ND	mg/L	0.0050	0.000036	1	08/20/20 14:56	08/21/20 18:22	7439-92-1	
_ithium	0.0026J	mg/L	0.030	0.00081	1	08/20/20 14:56	08/21/20 18:22	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/20/20 14:56	08/21/20 18:22	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/20/20 14:56	08/21/20 18:22	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	08/20/20 14:56	08/21/20 18:22	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Prep	paration Met	nod: EF	PA 7470A			
	Pace Ana	lytical Services	s - Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/21/20 08:05	08/21/20 12:58	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	s - Asheville						
Fluoride	ND	mg/L	0.10	0.050	1		08/20/20 20:33	16984-48-8	
		-							

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Date: 09/11/2020 12:02 PM

QC Batch: 561324 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92491389001, 92491389002, 92491389003, 92491389004, 92491389005

METHOD BLANK: 2977587 Matrix: Water

Associated Lab Samples: 92491389001, 92491389002, 92491389003, 92491389004, 92491389005

5 .	11.5	Blank	Reporting	MBI		0 111
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00028	08/21/20 17:31	
Arsenic	mg/L	ND	0.0050	0.00078	08/21/20 17:31	
Barium	mg/L	ND	0.010	0.00071	08/21/20 17:31	
Beryllium	mg/L	ND	0.0030	0.000046	08/21/20 17:31	
Cadmium	mg/L	ND	0.0025	0.00012	08/21/20 17:31	
Chromium	mg/L	ND	0.010	0.00055	08/21/20 17:31	
Cobalt	mg/L	ND	0.0050	0.00038	08/21/20 17:31	
Lead	mg/L	ND	0.0050	0.000036	08/21/20 17:31	
Lithium	mg/L	ND	0.030	0.00081	08/21/20 17:31	
Molybdenum	mg/L	ND	0.010	0.00069	08/21/20 17:31	
Selenium	mg/L	ND	0.010	0.0016	08/21/20 17:31	
Thallium	mg/L	ND	0.0010	0.00014	08/21/20 17:31	

LABORATORY CONTROL SAMPLE:	2977588					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.10	103	80-120	
Arsenic	mg/L	0.1	0.094	94	80-120	
Barium	mg/L	0.1	0.096	96	80-120	
Beryllium	mg/L	0.1	0.097	97	80-120	
Cadmium	mg/L	0.1	0.10	100	80-120	
Chromium	mg/L	0.1	0.10	100	80-120	
Cobalt	mg/L	0.1	0.099	99	80-120	
Lead	mg/L	0.1	0.097	97	80-120	
Lithium	mg/L	0.1	0.10	100	80-120	
Molybdenum	mg/L	0.1	0.096	96	80-120	
Selenium	mg/L	0.1	0.095	95	80-120	
Thallium	mg/L	0.1	0.096	96	80-120	

MATRIX SPIKE & MATRIX SF	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2977589											
		92491389001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.11	0.11	106	105	75-125	1	20	
Arsenic	mg/L	ND	0.1	0.1	0.094	0.095	94	95	75-125	2	20	
Barium	mg/L	0.022	0.1	0.1	0.13	0.12	108	96	75-125	9	20	
Beryllium	mg/L	ND	0.1	0.1	0.095	0.097	95	97	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Date: 09/11/2020 12:02 PM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2977			2977590							
		92491389001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	mg/L		0.1	0.1	0.097	0.10	97	100	75-125	3	20	
Chromium	mg/L	0.0069J	0.1	0.1	0.11	0.11	102	101	75-125	1	20	
Cobalt	mg/L	0.00048J	0.1	0.1	0.10	0.099	99	99	75-125	1	20	
Lead	mg/L	ND	0.1	0.1	0.098	0.099	98	99	75-125	1	20	
Lithium	mg/L	0.00095J	0.1	0.1	0.098	0.098	97	97	75-125	0	20	
Molybdenum	mg/L	0.0015J	0.1	0.1	0.10	0.10	99	101	75-125	2	20	
Selenium	mg/L	ND	0.1	0.1	0.095	0.091	94	90	75-125	4	20	
Thallium	mg/L	ND	0.1	0.1	0.096	0.097	96	97	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Date: 09/11/2020 12:02 PM

QC Batch: 561377 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92491389001, 92491389002, 92491389003, 92491389004, 92491389005

METHOD BLANK: 2977870 Matrix: Water

Associated Lab Samples: 92491389001, 92491389002, 92491389003, 92491389004, 92491389005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00050 0.000078 08/21/20 12:32

LABORATORY CONTROL SAMPLE: 2977871

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury 0.0025 0.0027 108 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2977872 2977873

MS MSD

92491389001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result % Rec % Rec **RPD** RPD Qual Result Conc. Result Limits ND 0.0025 104 20 Mercury mg/L 0.0025 0.0026 0.0026 106 75-125 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Fluoride

Date: 09/11/2020 12:02 PM

QC Batch: 561236 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92491389001, 92491389002, 92491389003, 92491389004, 92491389005

METHOD BLANK: 2977010 Matrix: Water

Associated Lab Samples: 92491389001, 92491389002, 92491389003, 92491389004, 92491389005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Fluoride mg/L ND 0.10 0.050 08/20/20 16:29

LABORATORY CONTROL SAMPLE: 2977011

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result 2.5 2.4 95 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2977012 2977013

MSD MS 92490037006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Result **RPD** RPD Result Conc. Conc. % Rec % Rec Limits Qual 10 R1 Fluoride mg/L 0.055J 2.5 2.5 2.7 2.4 107 94 90-110 12

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2977014 2977015

MS MSD 92491455002 MS MSD MS MSD % Rec Spike Spike Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual Fluoride 2.5 95 ND 2.5 2.4 2.3 92 4 10 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Sample: BRGWA-5I PWS:	Lab ID: 9249 ⁻ Site ID:	1389001 Collected: 08/18/20 09:40 Sample Type:	Received:	08/19/20 10:10	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0774 ± 0.196 (0.479) C:76% T:NA	pCi/L	09/02/20 07:40	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.453 ± 0.459 (0.950) C:53% T:92%	pCi/L	09/09/20 12:05	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.530 ± 0.655 (1.43)	pCi/L	09/10/20 13:23	3 7440-14-4	

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Sample: BRGWA-5S PWS:	Lab ID: 9249138 Site ID:	39002 Collected: 08/18/20 10:15 Sample Type:	Received:	08/19/20 10:10	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.241 ± 0.241 (0.446) C:86% T:NA	pCi/L	09/02/20 07:41	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	0.340 ± 0.449 (0.959) C:59% T:93%	pCi/L	09/09/20 12:05	5 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.581 ± 0.690 (1.41)	pCi/L	09/10/20 13:23	3 7440-14-4	

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Sample: BRGWA-2I PWS:	Lab ID: 924913 Site ID:	889003 Collected: 08/18/20 10:45 Sample Type:	Received:	08/19/20 10:10	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	0.0861 ± 0.243 (0.593) C:77% T:NA	pCi/L	09/02/20 07:41	13982-63-3	
	Pace Analytical So	ervices - Greensburg				
Radium-228	EPA 9320	-0.176 ± 0.358 (0.872) C:61% T:91%	pCi/L	09/09/20 12:05	5 15262-20-1	
	Pace Analytical So	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.0861 ± 0.601 (1.47)	pCi/L	09/10/20 13:23	3 7440-14-4	

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Sample: BRGWA-2S PWS:	Lab ID: 9249 Site ID:	11389004 Collected: 08/18/20 11:38 Sample Type:	Received:	08/19/20 10:10	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.189 ± 0.267 (0.570) C:70% T:NA	pCi/L	09/02/20 07:4	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.03 ± 0.516 (0.891) C:61% T:81%	pCi/L	09/09/20 12:0	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.22 ± 0.783 (1.46)	pCi/L	09/10/20 13:23	3 7440-14-4	

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Sample: BRGWA-6S PWS:	Lab ID: 9249 Site ID:	1389005 Collected: 08/18/20 12:48 Sample Type:	Received:	08/19/20 10:10	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	-0.0918 ± 0.174 (0.573) C:79% T:NA	pCi/L	09/02/20 08:46	6 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.453 ± 0.384 (0.763) C:66% T:81%	pCi/L	09/09/20 12:0	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.453 ± 0.558 (1.34)	pCi/L	09/10/20 13:23	3 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

QC Batch: 411435 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92491389001, 92491389002, 92491389003, 92491389004, 92491389005

METHOD BLANK: 1990342 Matrix: Water

Associated Lab Samples: 92491389001, 92491389002, 92491389003, 92491389004, 92491389005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.664 ± 0.374 (0.672) C:70% T:89%
 pCi/L
 09/09/20 12:03

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

QC Batch: 411373 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92491389001, 92491389002, 92491389003, 92491389004, 92491389005

METHOD BLANK: 1989993 Matrix: Water

Associated Lab Samples: 92491389001, 92491389002, 92491389003, 92491389004, 92491389005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0671 ± 0.195 (0.481) C:88% T:NA
 pCi/L
 09/02/20 07:31

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/11/2020 12:02 PM

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD/E BACKGROUND WELLS

Pace Project No.: 92491389

Date: 09/11/2020 12:02 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92491389001	BRGWA-5I				
92491389002	BRGWA-5S				
92491389003	BRGWA-2I				
92491389004	BRGWA-2S				
92491389005	BRGWA-6S				
2491389001	BRGWA-5I	EPA 3005A	561324	EPA 6020B	561396
2491389002	BRGWA-5S	EPA 3005A	561324	EPA 6020B	561396
92491389003	BRGWA-2I	EPA 3005A	561324	EPA 6020B	561396
92491389004	BRGWA-2S	EPA 3005A	561324	EPA 6020B	561396
92491389005	BRGWA-6S	EPA 3005A	561324	EPA 6020B	561396
92491389001	BRGWA-5I	EPA 7470A	561377	EPA 7470A	561555
92491389002	BRGWA-5S	EPA 7470A	561377	EPA 7470A	561555
92491389003	BRGWA-2I	EPA 7470A	561377	EPA 7470A	561555
92491389004	BRGWA-2S	EPA 7470A	561377	EPA 7470A	561555
2491389005	BRGWA-6S	EPA 7470A	561377	EPA 7470A	561555
2491389001	BRGWA-5I	EPA 9315	411373		
2491389002	BRGWA-5S	EPA 9315	411373		
2491389003	BRGWA-2I	EPA 9315	411373		
92491389004	BRGWA-2S	EPA 9315	411373		
2491389005	BRGWA-6S	EPA 9315	411373		
2491389001	BRGWA-5I	EPA 9320	411435		
2491389002	BRGWA-5S	EPA 9320	411435		
2491389003	BRGWA-2I	EPA 9320	411435		
92491389004	BRGWA-2S	EPA 9320	411435		
92491389005	BRGWA-6S	EPA 9320	411435		
2491389001	BRGWA-5I	Total Radium Calculation	413341		
2491389002	BRGWA-5S	Total Radium Calculation	413341		
2491389003	BRGWA-2I	Total Radium Calculation	413341		
2491389004	BRGWA-2S	Total Radium Calculation	413341		
2491389005	BRGWA-6S	Total Radium Calculation	413341		
2491389001	BRGWA-5I	EPA 300.0 Rev 2.1 1993	561236		
2491389002	BRGWA-5S	EPA 300.0 Rev 2.1 1993	561236		
2491389003	BRGWA-2I	EPA 300.0 Rev 2.1 1993	561236		
2491389004	BRGWA-2S	EPA 300.0 Rev 2.1 1993	561236		
92491389005	BRGWA-6S	EPA 300.0 Rev 2.1 1993	561236		

Project Manager Review:

Sample Condition Upon Rece

W0#∶92491389 Client Name: Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Client ☐ Commercial ☐ Pace Othe Tracking #: Proj. Name: Custody Seal on Cooler/Box Present: yes □ no Seals intact: [] no Packing Material: Bubble Wrap ☐ Bubble Bags ☐ None ☐ Other Thermometer Used Type of Ice: (Wet Blue None Samples on ice, cooling process has begun Date and Initials of person examining Biological Tissue is Frozen: Yes No Cooler Temperature contents: Temp should be above freezing to 6°C Comments: Chain of Custody Present: Tes ONO ONIA Chain of Custody Filled Out: Dres ONo □N/A Chain of Custody Relinquished: AYes ONO □N/A Sampler Name & Signature on COC: Tes ONO ON/A Samples Arrived within Hold Time: EYes ONo □N/A DYes DNo Short Hold Time Analysis (<72hr): ONIA 6. Rush Turn Around Time Requested: DYes DNo ON/A 7 Sufficient Volume: TYES ONO ONIA 8 Correct Containers Used: LYes, DNo □N/A EYes ONo -Pace Containers Used: □N/A TYES DNO DNA Containers Intact: DYes DNo TN/A Filtered volume received for Dissolved tests Sample Labels match COC: TYES (JNO ON/A Includes date/time/ID/Analysis All containers needing preservation have been checked. EYES ONO ON/A 13. All containers needing preservation are found to be in Dres ONO ONA compliance with EPA recommendation. Initial when Lot # of added □Yes NNo exceptions: VOA, coliform, TOC, O&G, WI-DRO (water) completed preservative Samples checked for dechlorination: ☐Yes ☐No ☑NIA 14. leadspace in VOA Vials (>6mm): Over DN2 Dles Trip Blank Present: OYes OND DNA 16. DYES DNO LINA Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Fleid Data Required? Person Contacted: Date/Time: Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Date:

Document Issued: March 14, 2019 Document Name. Page 1 of 1 Bottle Identification Form (81F) Pace Analytical . Issuing Authority: Document No : Pace Carolinas Quality Office F-CAR-CS-043-Rev.00 Project # *Check mark top half of box if pH and/or dechlorination is Due Date: 09/02/20 vertical and within the acceptance range for preservation PM: KLH1 CLIENT: GA-GA Power Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) COC, LLHg **Bottom half of box is to list number of bottle AGGU-100 mL Amber Unpreserved vials (N/A) AG3U-250 mL Amber Unpreserved (N/A) (CI-) AGSA[DG3A]-250 mL Amber NH4CI (N/A)[CI-) WGFU-Wide-mouthed Glass Jar Unpreserved hP3A-250 mL Plastic (NH2)2504 (9.3-9.7) BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) AG1U-1 liter Amber Unpreserved (N/A) (G-) BP4U-125 mL Plastic Unpreserved (N/A) (G-) SP2T-250 ml Sterile Blastic (N/A - lab) V/GK (3 vials per kit)-VPH/Gas kit (N/A) SPST-125 mL Sterile Plastic (N/A - lab) BP4C-125 mL Plastic NeOH (pH > 12) (O-) VSGU-20 mL Scintilisation viels (N/A) BP45-125 mL Plastic H25O4 (pH < 2) (G-) VOAK (6 vials per kit)-5035 kit (N/A) BPZU-500 mL Plastic Unpreserved (N/A) BP3U-250 mL Plestic Unpreserved (N/A) AG35-250 mL Amber H2504 (pH < 2) BP1U-1 liter Plastic Unpreserved (N/A) AG15-1 liter Amber H2504 (pH < 2) VG9T-40 mL VOA N225203 (N/A) BP3N-250 mL plastic HNO3 (pH < 2) DG9P-40 mL VOA H3PO4 (N/A) AG1H-1 liter Amber HCI (pH < 2) VG9U-40 mL VOA Unp (N/A) DG9H-40 mL YOA HCI (N/A) Matrix 1 2 3 5 8 10 11 12 pH Adjustment Log for Preserved Samples Amount of Preservative Time preservation Date preservation adjusted pH upon receipt added adjusted Type of Preservative Sample ID Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification O Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical			F-CUSTODY A								LAB	USE O	ONLY- AF	fix Work			bel Here o Number i		: Workorder Number or
Company: Georgia Power - Coal Combu	stion Residuals		Billing Information	11									ALL	HADE	DAR	EFAS	are for	IARII	SE ONLY
Address: 2480 Maner Road					- 1				- 1		-			rvative T					
Atlanta, GA 30339 Report To: Joju Abraham			Erwall To: scsinvoic		-					1		Unitalis	1	value 1	-	T		Labri	roject Manager.
			L I I I SGINGK	ese south	erneus	cen													ide, (5) rinc acetate,
Copy To: Golder			5 to Collection Info	/Address	Plant B	iranch					, {7} sodium b m hydraxide,						A) ascorbic	acid, (B) an	nmonum sulfate,
phone (404) 506-7239			State Georgia Cit	y Melleda	en le	Time Zone	e Collecte	M					Anal	_	-,			Lab Pr	ofde/Line:
Email jabraham@southernco.com				1 PT		I JCT D		-		§ 10 3						1			mple Receipt Checklist:
Phone: (404) 506-7239 Cmail: jabraham@southernco.com	Project Name: Project # CCR	Branch Bi	D/T Background We	s	Pace P	rofiles								- 1					y Seals Present/Intact Y N NA. ly Signatures Present Y N NA
Collected By (print). Travis Martinez.	Purchase Orde			-	-								1					Collect	or Signature Present Y N NA
Andrea McGlure	Quote #					roject Man herring@pa		am.	1	1 1			1 1	9 1		1			Intact YNNA Bottles YNNA
Collected By (signature).	Turnaround D	ate Requir	1		-	l ately Pack							1 1					Sufficie	nt Volume YN NA
Kung						3 11						10	1 :					-	s Received on Ice YN NA leadspace Acceptable YN NA
		[13 Day	y [] Next Day []4 Day []5 Day Narets Applys	1 3	Field(r)					· see comments								Sample Residu CI Strip	regulated Solis Y N NA is in Holding Time Y N NA al Chilorine Present Y N NA
* Matrix Codes (Insert in Matrix box bel Product (P), So l/Solid (SL), Oil (OL), W	low): Drinking Wa ripe (WP), Air (AR	ner (DW).), Tissue (T	Fround Water (GW), 5), Boassay (B), Wat	Was rwa er [WT], O	ter (ava	v1. m				pp IV - see			226.228					pH Stri Sulfide Lead A	Present Y N NA cetate Strips:
Customer Sample 1D	Matrix *	Comp /	Co lected (or Cor Start)		\rightarrow	Composite :		рн	# of Ctns	Metals App IV	Fluoride		Radium 2	March					E ONLY: nple # / Comments:
DO/IMA Ex	1	-	Date	Tirte		ate	Time						2	Ž					42491380
BRGWA-51 BRGWA-55 BRGWA-21 BRGWA-35 BRGWA-65	GW	6	8-18-2020					6.29		X	$\perp X$		X	X					
BRGWA - 55	GW	6	8-18-2020	0.0	-	_		6.41	4	X	\perp X		X	_ >	***				
DRUMA- AI	6 W	6	8-18-2020	Cho	\perp	_		6.59		X	X		X	X		-			
BRGWA- 45	IGW	6	8-18-2020		\perp			6.06	4	×	_ X		X	X				1	
DKG44-03	GW	6	8-18-2020	248				6.33	4	X	×		X		-	-			
	1	-		-	-	-		-	-			-		-	-	-	-		
(App IV Metals): Sb, As, Ba, Be, Cd, Cr, C	Co, Hg, Pb, Li, Mo	Se, TI	Type of Ice Used:	We		lue Dry	y No	-		leun	RT HOLDS P	95559	TIME	ours):	v v	N/A		- In	AB Sample Temperature Info:
	0.00		Packing Material U				, ,,,				Fracking #:	200	TO Z	ousj.		inja.			emp Blank Recuped N M NA herm IDS: 272 ooker 1 Temp Upon Microson Sec
			Radchem sample(s			500 B		NA J			ples receive DEX UP		Client	Courler	Pace C	ourier			poler 1 Therm Corr. Factor of oc poler 1 Corrected Terrol oc comments:
Releasisted by/Company: (Signature)	1der	34	19.2020/08	19	737	29v/Comp	sport the	1	0_	SH	7/7	1/0	10	Table #:	_	SE ONL		-	ALL STATE OF THE S
Rel'inquished by/Company: (Signature)			e/Time:		Receive	d by Comp	pany: (Sig	de la		-4	Datertime	164		Acctnum Templat Prelogin	n: te:				Trip Slank Received: Y N NA HCL MeOH TSP Other
Relinquished by/Company: (Signature)		Dar	citime		Receive	d by/Comp	pany (Sig	nature)			Date/Time			PM: PB:					Non Conformance(s): Page: 1 YES / NO of 1

September 15, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory between August 19, 2020 and August 21, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA
- Pace Analytical Services Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Kain Lung

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder

Ben Hodges, Georgia Power

Jimmy Jones, Golder Associates Inc.

Kristen Jurinko

Julie Lehrman, Golder Associates Inc.

Ms. Lauren Petty, Southern Co. Services

Carolyn Powrozek, Golder

Dawn Prell, Golder Associates Inc.

Tim Richards, Golder Associates - Atlanta

Brian Steele, Golder

CERTIFICATIONS

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391 Kansas/TNI Certification #: E-10358

Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92491393001	BRGWA-12I		08/18/20 13:05	08/19/20 10:10
92491393002	BRGWA-12S	Water	08/18/20 16:25	08/19/20 10:10
92491393003	BRGWA-23S	Water	08/18/20 15:28	08/19/20 10:10
92491393004	BRGWC-25I	Water	08/19/20 09:50	08/20/20 10:03
92491393005	BRGWC-29I	Water	08/19/20 10:50	08/20/20 10:03
92491393006	BRGWC-27I	Water	08/19/20 12:05	08/20/20 10:03
92491393007	BRGWC-32S	Water	08/19/20 13:20	08/20/20 10:03
92491393008	BRGWC-30I	Water	08/19/20 15:05	08/20/20 10:03
92491393009	BRGWC-45	Water	08/20/20 12:12	08/21/20 11:08
92491393010	BRGWC-47	Water	08/20/20 14:00	08/21/20 11:08
92491393011	BRGWC-50	Water	08/20/20 09:32	08/21/20 11:08
92491393012	BRGWC-52I	Water	08/20/20 09:45	08/21/20 11:08
92491393013	DUP-2	Water	08/20/20 00:00	08/21/20 11:08
92491393014	FB-2	Water	08/20/20 09:20	08/21/20 11:08
92491393015	EB-1	Water	08/20/20 12:45	08/21/20 11:08

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92491393001	BRGWA-12I	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393002	BRGWA-12S	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393003	BRGWA-23S	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
2491393004	BRGWC-25I	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
2491393005	BRGWC-29I	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393006	BRGWC-27I	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393007	BRGWC-32S	EPA 6020B	CW1	12	PASI-GA

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7470A		1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393008	BRGWC-30I	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393009	BRGWC-45	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393010	BRGWC-47	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393011	BRGWC-50	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393012	BRGWC-52I	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393013	DUP-2	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393014	FB-2	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
92491393015	EB-1	EPA 6020B	CW1	12	PASI-GA
		EPA 7470A	VB	1	PASI-GA
		EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0 Rev 2.1 1993	CDC	1	PASI-A
		Total Radium Calculation	JAL	1	PASI-PA

PASI-A = Pace Analytical Services - Asheville

PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

PASI-PA = Pace Analytical Services - Greensburg

SUMMARY OF DETECTION

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
2491393001	BRGWA-12I					
	рН	6.25	Std. Units		09/09/20 17:01	
EPA 6020B	Antimony	0.0067	mg/L	0.0030	08/21/20 18:40	
PA 6020B	Barium	0.053	mg/L	0.010	08/21/20 18:40	
EPA 6020B	Chromium	0.0023J	mg/L	0.010	08/21/20 18:40	
EPA 6020B	Lithium	0.0039J	mg/L	0.030	08/21/20 18:40	
EPA 9315	Radium-226	0.240 ±	pCi/L		09/08/20 17:44	
		0.122	•			
		(0.185)				
		C:91% T:NA				
EPA 9320	Radium-228	0.748 ±	pCi/L		09/09/20 14:47	
		0.489 (0.931)				
		C:70%				
		T:80%				
Total Radium Calculation	Total Radium	0.988 ±	pCi/L		09/10/20 15:16	
		0.611				
		(1.12)				
PA 300.0 Rev 2.1 1993	Fluoride	0.052J	mg/L	0.10	08/20/20 20:46	
2491393002	BRGWA-12S					
	рН	5.75	Std. Units		09/09/20 17:01	
PA 6020B	Barium	0.058	mg/L	0.010	08/21/20 18:45	
PA 6020B	Chromium	0.0029J	mg/L	0.010	08/21/20 18:45	
EPA 9315	Radium-226	0.157 ±	pCi/L		09/08/20 17:44	
		0.111				
		(0.189) C:90% T:NA				
EPA 9320	Radium-228	0.812 ±	pCi/L		09/09/20 11:25	
	Nadium-220	0.497	po//L		09/09/20 11.23	
		(0.953)				
		C:70%				
		T:90%				
Total Radium Calculation	Total Radium	0.969 ±	pCi/L		09/10/20 15:16	
		0.608 (1.14)				
1404202002	DDCWA 22C	(1.14)				
2491393003	BRGWA-23S pH	5.56	Std. Units		09/09/20 17:01	
PA 6020B	Barium	0.067	mg/L	0.010		
PA 6020B	Chromium	0.007 0.0017J	mg/L		08/21/20 18:51	
PA 6020B	Cobalt	0.00173 0.00067J	mg/L		08/21/20 18:51	
PA 6020B	Lithium	0.0099J	mg/L		08/21/20 18:51	
PA 6020B	Selenium	0.0033J	mg/L	0.010	08/21/20 18:51	
EPA 9315	Radium-226	0.197 ± 0.113	pCi/L		09/08/20 17:44	
		(0.177)				
		C:84% T:NA				
EPA 9320	Radium-228	0.587 ±	pCi/L		09/09/20 11:25	
		0.442	r			
		(0.866)				
		C:72%				
		T:79%				

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

∟ab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2491393003	BRGWA-23S					
otal Radium Calculation	Total Radium	0.784 ± 0.555 (1.04)	pCi/L		09/10/20 15:16	
2491393004	BRGWC-25I					
	рН	6.32	Std. Units		09/09/20 17:01	
EPA 6020B	Barium	0.027	mg/L	0.010		
PA 6020B	Cobalt	0.0039J	mg/L	0.0050	08/25/20 17:36	
PA 6020B	Molybdenum	0.00081J	mg/L	0.010	08/25/20 17:36	
PA 7470A	Mercury	0.000083J	mg/L	0.00020	08/25/20 10:10	
PA 9315	Radium-226	0.288 ± 0.130 (0.188) C:86% T:NA	pCi/L		09/08/20 17:44	
PA 9320	Radium-228	0.179 ± 0.343 (0.752) C:72% T:90%	pCi/L		09/09/20 11:25	
otal Radium Calculation	Total Radium	0.467 ± 0.473 (0.940)	pCi/L		09/10/20 15:16	
PA 300.0 Rev 2.1 1993	Fluoride	0.17	mg/L	0.10	08/21/20 17:55	M1
491393005	BRGWC-29I					
	рН	4.67	Std. Units		09/09/20 17:01	
PA 6020B	Barium	0.019	mg/L	0.010	08/25/20 17:42	
PA 6020B	Beryllium	0.00074J	mg/L	0.0030	08/25/20 17:42	
PA 6020B	Cobalt	0.0065	mg/L	0.0050	08/25/20 17:42	
PA 6020B	Lead	0.00025J	mg/L	0.0050	08/26/20 17:54	
PA 6020B	Lithium	0.0029J	mg/L	0.030	08/25/20 17:42	
PA 6020B	Thallium	0.00016J	mg/L	0.0010	08/26/20 17:54	
PA 7470A	Mercury	0.000098J	mg/L	0.00020	08/25/20 10:13	
PA 9315	Radium-226	0.299 ± 0.162 (0.267) C:91% T:NA	pCi/L		09/08/20 17:44	
PA 9320	Radium-228	0.577 ± 0.428 (0.848) C:77% T:82%	pCi/L		09/09/20 11:25	
otal Radium Calculation	Total Radium	0.876 ± 0.590 (1.12)	pCi/L		09/10/20 15:16	
PA 300.0 Rev 2.1 1993	Fluoride	0.12	mg/L	0.10	08/21/20 18:35	
491393006	BRGWC-27I					
	рН	5.81	Std. Units		09/09/20 17:01	
PA 6020B	Barium	0.016	mg/L	0.010	08/25/20 17:48	
PA 6020B	Beryllium	0.000099J	mg/L	0.0030	08/25/20 17:48	
PA 6020B	Cobalt	0.0078	mg/L	0.0050	08/25/20 17:48	
PA 6020B	Lithium	0.0014J	mg/L	0.030	08/25/20 17:48	

REPORT OF LABORATORY ANALYSIS

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92491393006	BRGWC-27I					
EPA 9315	Radium-226	0.260 ±	pCi/L		09/08/20 17:44	
		0.132 (0.203)				
		C:91% T:NA				
EPA 9320	Radium-228	0.424 ±	pCi/L		09/09/20 11:26	
		0.358 (0.718)				
		C:74%				
		T:87%				
Total Radium Calculation	Total Radium	0.684 ±	pCi/L		09/10/20 15:16	
		0.490 (0.921)				
EPA 300.0 Rev 2.1 1993	Fluoride	0.19	mg/L	0.10	08/21/20 18:48	
92491393007	BRGWC-32S					
	рН	5.97	Std. Units		09/09/20 17:01	
EPA 6020B	Barium	0.025	mg/L	0.010	08/25/20 17:53	
EPA 6020B	Chromium	0.0021J	mg/L	0.010	08/25/20 17:53	
EPA 6020B	Lithium	0.0020J	mg/L	0.030	08/25/20 17:53	
EPA 6020B	Selenium	0.099	mg/L	0.010	08/25/20 17:53	
EPA 7470A	Mercury	0.000082J	mg/L	0.00020	08/25/20 10:18	
EPA 9315	Radium-226	0.0531 ± 0.0881	pCi/L		09/08/20 17:44	
		(0.172)				
		C:92% T:NA				
EPA 9320	Radium-228	0.429 ±	pCi/L		09/09/20 11:26	
		0.407				
		(0.839) C:75%				
		T:82%				
Total Radium Calculation	Total Radium	0.482 ±	pCi/L		09/10/20 15:16	
		0.495 (1.01)				
92491393008	BRGWC-30I	()				
	рН	6.36	Std. Units		09/09/20 17:01	
EPA 6020B	Barium	0.026	mg/L	0.010	08/25/20 17:59	
EPA 6020B	Cobalt	0.00080J	mg/L	0.0050	08/25/20 17:59	
EPA 6020B	Lithium	0.018J	mg/L	0.030	08/25/20 17:59	
EPA 6020B	Molybdenum	0.00078J	mg/L	0.010	08/25/20 17:59	
EPA 7470A	Mercury	0.000082J	mg/L	0.00020	08/25/20 10:25	
EPA 9315	Radium-226	0.299 ±	pCi/L		09/08/20 17:44	
		0.125				
		(0.167) C:88% T:NA				
EPA 9320	Radium-228	0.703 ±	pCi/L		09/09/20 11:26	
		0.450	•			
		(0.863)				
		C:72% T:86%				
Total Radium Calculation	Total Radium	1.00 ±	pCi/L		09/11/20 08:26	
		0.575	,			
EDA 000 0 D - 0 4 4000	Elección	(1.03)		0.45	00/04/00 10 15	
EPA 300.0 Rev 2.1 1993	Fluoride	0.14	mg/L	0.10	08/21/20 19:15	

REPORT OF LABORATORY ANALYSIS

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2491393009	BRGWC-45					
	рН	5.86	Std. Units		09/09/20 17:01	
PA 6020B	Antimony	0.0031	mg/L	0.0030	08/27/20 16:48	
PA 6020B	Barium	0.083	mg/L	0.010	08/27/20 16:48	
PA 6020B	Beryllium	0.000046J	mg/L	0.0030	08/27/20 16:48	
PA 6020B	Cadmium	0.00014J	mg/L	0.0025	08/27/20 16:48	
PA 6020B	Chromium	0.0010J	mg/L	0.010	08/27/20 16:48	
PA 6020B	Cobalt	0.022	mg/L	0.0050	08/27/20 16:48	
PA 6020B	Lead	0.00021J	mg/L	0.0050	08/27/20 16:48	
PA 6020B	Lithium	0.0034J	mg/L	0.030	08/27/20 16:48	
PA 6020B	Molybdenum	0.00076J	mg/L	0.010	08/27/20 16:48	
PA 9315	Radium-226	0.194 ±	pCi/L		09/03/20 18:45	
		0.154				
		(0.275)				
TDA 0220	Radium-228	C:88% T:NA 0.307 ±	pCi/L		09/09/20 15:08	
EPA 9320	Radium-220	0.468	pCi/L		09/09/20 15.06	
		(1.01)				
		C:62%				
		T:74%				
otal Radium Calculation	Total Radium	0.501 ±	pCi/L		09/10/20 15:16	
		0.622 (1.29)				
2491393010	BRGWC-47	(1.20)				
	рH	5.75	Std. Units		09/09/20 17:01	
PA 6020B	Arsenic	0.00089J	mg/L	0.0050	08/27/20 16:53	
PA 6020B	Barium	0.035	mg/L	0.010	08/27/20 16:53	
PA 6020B	Beryllium	0.000047J	mg/L	0.0030		
EPA 6020B	Chromium	0.00064J	mg/L	0.010		
EPA 6020B	Cobalt	0.00043J	mg/L	0.0050	08/27/20 16:53	
EPA 6020B	Lead	0.000048J	mg/L	0.0050		
EPA 6020B	Lithium	0.044	mg/L	0.030	08/27/20 16:53	
PA 6020B	Selenium	0.0016J	mg/L	0.010		
EPA 9315	Radium-226	0.500 ±	pCi/L	0.0.0	09/03/20 18:45	
	. 199.9 ==0	0.164	P 0., =		00/00/20 10110	
		(0.181)				
		C:86% T:NA				
EPA 9320	Radium-228	1.14 ±	pCi/L		09/09/20 15:08	
		0.652 (1.17)				
		C:53%				
		T:73%				
Total Radium Calculation	Total Radium	1.64 ±	pCi/L		09/10/20 15:16	
		0.816	·			
		(1.35)				
2491393011	BRGWC-50					
	pH	5.26	Std. Units		09/09/20 17:01	
PA 6020B	Barium	0.019	mg/L	0.010		
PA 6020B	Beryllium	0.0044	mg/L	0.0030	08/27/20 16:59	
PA 6020B	Cadmium	0.0079	mg/L	0.0025	08/27/20 16:59	
PA 6020B	Chromium	0.00065J	mg/L	0.010	08/27/20 16:59	

REPORT OF LABORATORY ANALYSIS

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92491393011	BRGWC-50					
EPA 6020B	Cobalt	1.4	mg/L	0.025	08/28/20 15:08	
EPA 6020B	Lead	0.000067J	mg/L	0.0050	08/27/20 16:59	
EPA 6020B	Lithium	0.040	mg/L	0.030	08/27/20 16:59	
EPA 6020B	Selenium	0.0037J	mg/L	0.010	08/27/20 16:59	
EPA 9315	Radium-226	0.735 ± 0.193 (0.151) C:89% T:NA	pCi/L		09/03/20 18:18	
EPA 9320	Radium-228	2.04 ± 0.699 (0.948) C:71% T:67%	pCi/L		09/09/20 15:08	
Total Radium Calculation	Total Radium	2.78 ± 0.892	pCi/L		09/10/20 15:16	
EPA 300.0 Rev 2.1 1993	Fluoride	(1.10) 0.39	mg/L	0.10	08/25/20 18:20	
2491393012	BRGWC-52I					
	рН	6.85	Std. Units		09/09/20 17:01	
EPA 6020B	Arsenic	0.0031J	mg/L	0.0050	08/27/20 17:05	
PA 6020B	Barium	0.017	mg/L	0.010	08/27/20 17:05	
PA 6020B	Lithium	0.0022J	mg/L	0.030	08/27/20 17:05	
PA 6020B	Molybdenum	0.0012J	mg/L	0.010		
EPA 9315	Radium-226	0.684 ± 0.388 (0.589) C:84% T:NA	pCi/L		09/04/20 07:17	
EPA 9320	Radium-228	2.29 ± 0.728 (0.901) C:70% T:69%	pCi/L		09/09/20 14:43	
Total Radium Calculation	Total Radium	2.97 ± 1.12 (1.49)	pCi/L		09/10/20 15:16	
PA 300.0 Rev 2.1 1993	Fluoride	0.23	mg/L	0.10	08/25/20 19:05	
2491393013	DUP-2					
PA 6020B	Barium	0.019	mg/L	0.010	08/27/20 17:10	
PA 6020B	Beryllium	0.0046	mg/L	0.0030	08/27/20 17:10	
PA 6020B	Cadmium	0.0077	mg/L	0.0025	08/27/20 17:10	
PA 6020B	Chromium	0.00065J	mg/L		08/27/20 17:10	
PA 6020B	Cobalt	1.4	mg/L		08/28/20 15:13	
PA 6020B	Lead	0.000050J	mg/L		08/27/20 17:10	
PA 6020B	Lithium	0.041	mg/L		08/27/20 17:10	
EPA 6020B	Selenium	0.0038J	mg/L		08/27/20 17:10	
EPA 9315	Radium-226	0.602 ± 0.324 (0.420) C:87% T:NA	pCi/L	0.010	09/04/20 07:18	

REPORT OF LABORATORY ANALYSIS

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92491393013	DUP-2					
EPA 9320	Radium-228	2.11 ± 0.682 (0.878) C:71% T:75%	pCi/L		09/09/20 14:43	
Total Radium Calculation	Total Radium	2.71 ± 1.01 (1.30)	pCi/L		09/10/20 15:16	
EPA 300.0 Rev 2.1 1993	Fluoride	0.38	mg/L	0.10	08/25/20 19:20	
92491393014	FB-2					
EPA 9315	Radium-226	0.0152 ± 0.200 (0.536) C:84% T:NA	pCi/L		09/04/20 07:18	
EPA 9320	Radium-228	0.713 ± 0.432 (0.796) C:69% T:83%	pCi/L		09/09/20 14:43	
Total Radium Calculation	Total Radium	0.728 ± 0.632 (1.33)	pCi/L		09/10/20 15:16	
2491393015	EB-1					
EPA 7470A	Mercury	0.000082J	mg/L	0.00020		
EPA 9315	Radium-226	0.115 ± 0.167 (0.346) C:89% T:NA	pCi/L		09/04/20 07:51	
EPA 9320	Radium-228	0.206 ± 0.334 (0.724) C:69% T:84%	pCi/L		09/09/20 14:43	
Total Radium Calculation	Total Radium	0.321 ± 0.501 (1.07)	pCi/L		09/10/20 15:16	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWA-12I	Lab ID:	92491393001	Collecte	ed: 08/18/20	13:05	Received: 08/	19/20 10:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Analy	ytical Services	- Charlotte)					
Н	6.25	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, G	βA				
Antimony	0.0067	mg/L	0.0030	0.00028	1	08/20/20 14:56	08/21/20 18:40	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/20/20 14:56	08/21/20 18:40	7440-38-2	
Barium	0.053	mg/L	0.010	0.00071	1	08/20/20 14:56	08/21/20 18:40	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/20/20 14:56	08/21/20 18:40	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/20/20 14:56	08/21/20 18:40	7440-43-9	
Chromium	0.0023J	mg/L	0.010	0.00055	1	08/20/20 14:56	08/21/20 18:40	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	08/20/20 14:56	08/21/20 18:40	7440-48-4	
₋ead	ND	mg/L	0.0050	0.000036	1	08/20/20 14:56	08/21/20 18:40	7439-92-1	
_ithium	0.0039J	mg/L	0.030	0.00081	1	08/20/20 14:56	08/21/20 18:40	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/20/20 14:56	08/21/20 18:40	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/20/20 14:56	08/21/20 18:40	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	08/20/20 14:56	08/21/20 18:40	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Pre	paration Met	nod: EF	PA 7470A			
	Pace Analy	ytical Services	- Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/21/20 08:05	08/21/20 13:01	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
-	Pace Anal	ytical Services	- Asheville						
Fluoride	0.052J	mg/L	0.10	0.050	1		08/20/20 20:46	16984-48-8	
		-							

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWA-12S	Lab ID:	92491393002	Collecte	ed: 08/18/20	16:25	Received: 08/	/19/20 10:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
рН	5.75	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	08/20/20 14:56	08/21/20 18:45	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/20/20 14:56	08/21/20 18:45	7440-38-2	
Barium	0.058	mg/L	0.010	0.00071	1	08/20/20 14:56	08/21/20 18:45	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/20/20 14:56	08/21/20 18:45	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/20/20 14:56	08/21/20 18:45	7440-43-9	
Chromium	0.0029J	mg/L	0.010	0.00055	1	08/20/20 14:56	08/21/20 18:45	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	08/20/20 14:56	08/21/20 18:45	7440-48-4	
_ead	ND	mg/L	0.0050	0.000036	1	08/20/20 14:56	08/21/20 18:45	7439-92-1	
_ithium	ND	mg/L	0.030	0.00081	1	08/20/20 14:56	08/21/20 18:45	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/20/20 14:56	08/21/20 18:45	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/20/20 14:56	08/21/20 18:45	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	08/20/20 14:56	08/21/20 18:45	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	'470A Pre _l	paration Met	nod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/21/20 08:05	08/21/20 13:03	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Fluoride	ND	mg/L	0.10	0.050	1		08/20/20 20:59	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWA-23S	Lab ID:	92491393003	Collecte	ed: 08/18/20	15:28	Received: 08/	19/20 10:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
рН	5.56	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	08/20/20 14:56	08/21/20 18:51	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/20/20 14:56	08/21/20 18:51	7440-38-2	
Barium	0.067	mg/L	0.010	0.00071	1	08/20/20 14:56	08/21/20 18:51	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/20/20 14:56	08/21/20 18:51	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/20/20 14:56	08/21/20 18:51	7440-43-9	
Chromium	0.0017J	mg/L	0.010	0.00055	1	08/20/20 14:56	08/21/20 18:51	7440-47-3	
Cobalt	0.00067J	mg/L	0.0050	0.00038	1	08/20/20 14:56	08/21/20 18:51	7440-48-4	
_ead	ND	mg/L	0.0050	0.000036	1	08/20/20 14:56	08/21/20 18:51	7439-92-1	
_ithium	0.0099J	mg/L	0.030	0.00081	1	08/20/20 14:56	08/21/20 18:51	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/20/20 14:56	08/21/20 18:51	7439-98-7	
Selenium	0.0033J	mg/L	0.010	0.0016	1	08/20/20 14:56	08/21/20 18:51	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	08/20/20 14:56	08/21/20 18:51	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	'470A Pre _l	paration Met	nod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/21/20 08:05	08/21/20 13:06	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Fluoride	ND	mg/L	0.10	0.050	1		08/20/20 21:13	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWC-25I	Lab ID:	92491393004	Collecte	ed: 08/19/20	09:50	Received: 08/	/20/20 10:03 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Analy	ytical Services	- Charlotte	;					
рН	6.32	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Analy	ytical Services	- Peachtre	e Corners, C	€A				
Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:05	08/25/20 17:36	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/24/20 15:05	08/25/20 17:36	7440-38-2	
Barium	0.027	mg/L	0.010	0.00071	1	08/24/20 15:05	08/25/20 17:36	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/24/20 15:05	08/25/20 17:36	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/24/20 15:05	08/25/20 17:36	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	08/24/20 15:05	08/25/20 17:36	7440-47-3	
Cobalt	0.0039J	mg/L	0.0050	0.00038	1	08/24/20 15:05	08/25/20 17:36	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	08/24/20 15:05	08/26/20 17:49	7439-92-1	
Lithium	ND	mg/L	0.030	0.00081	1	08/24/20 15:05	08/25/20 17:36	7439-93-2	
Molybdenum	0.00081J	mg/L	0.010	0.00069	1	08/24/20 15:05	08/25/20 17:36	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/24/20 15:05	08/25/20 17:36	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	08/24/20 15:05	08/26/20 17:49	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prej	paration Met	hod: EF	A 7470A			
	Pace Analy	ytical Services	- Peachtre	e Corners, C	S A				
Mercury	0.000083J	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:10	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
•	Pace Anal	ytical Services	- Asheville						
Fluoride	0.17	mg/L	0.10	0.050	1		08/21/20 17:55	16984-48-8	M1

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWC-29I	Lab ID:	92491393005	Collecte	ed: 08/19/20	10:50	Received: 08/	20/20 10:03 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	;					
Н	4.67	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, G	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:05	08/25/20 17:42	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/24/20 15:05	08/25/20 17:42	7440-38-2	
Barium	0.019	mg/L	0.010	0.00071	1	08/24/20 15:05	08/25/20 17:42	7440-39-3	
Beryllium	0.00074J	mg/L	0.0030	0.000046	1	08/24/20 15:05	08/25/20 17:42	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/24/20 15:05	08/25/20 17:42	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	08/24/20 15:05	08/25/20 17:42	7440-47-3	
Cobalt	0.0065	mg/L	0.0050	0.00038	1	08/24/20 15:05	08/25/20 17:42	7440-48-4	
₋ead	0.00025J	mg/L	0.0050	0.000036	1	08/24/20 15:05	08/26/20 17:54	7439-92-1	
ithium	0.0029J	mg/L	0.030	0.00081	1	08/24/20 15:05	08/25/20 17:42	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/24/20 15:05	08/25/20 17:42	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/24/20 15:05	08/25/20 17:42	7782-49-2	
Γhallium	0.00016J	mg/L	0.0010	0.00014	1	08/24/20 15:05	08/26/20 17:54	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prej	paration Met	nod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, G	βA				
Mercury	0.000098J	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:13	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Fluoride	0.12	mg/L	0.10	0.050	1		08/21/20 18:35	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWC-27I	Lab ID:	92491393006	Collecte	ed: 08/19/20	12:05	Received: 08/	/20/20 10:03 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte	;					
рН	5.81	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, G	SA.				
Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:05	08/25/20 17:48	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/24/20 15:05	08/25/20 17:48	7440-38-2	
Barium	0.016	mg/L	0.010	0.00071	1	08/24/20 15:05	08/25/20 17:48	7440-39-3	
Beryllium	0.000099J	mg/L	0.0030	0.000046	1	08/24/20 15:05	08/25/20 17:48	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/24/20 15:05	08/25/20 17:48	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	08/24/20 15:05	08/25/20 17:48	7440-47-3	
Cobalt	0.0078	mg/L	0.0050	0.00038	1	08/24/20 15:05	08/25/20 17:48	7440-48-4	
_ead	ND	mg/L	0.0050	0.000036	1	08/24/20 15:05	08/26/20 18:00	7439-92-1	
_ithium	0.0014J	mg/L	0.030	0.00081	1	08/24/20 15:05	08/25/20 17:48	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/24/20 15:05	08/25/20 17:48	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/24/20 15:05	08/25/20 17:48	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	08/24/20 15:05	08/26/20 18:00	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	'470A Pre _l	paration Met	hod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	SA.				
Mercury	ND	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:15	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Fluoride	0.19	mg/L	0.10	0.050	1		08/21/20 18:48	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWC-32S	Lab ID:	92491393007	Collecte	ed: 08/19/20	13:20	Received: 08/	/20/20 10:03 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
ЭН	5.97	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:05	08/25/20 17:53	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/24/20 15:05	08/25/20 17:53	7440-38-2	
Barium	0.025	mg/L	0.010	0.00071	1	08/24/20 15:05	08/25/20 17:53	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/24/20 15:05	08/25/20 17:53	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/24/20 15:05	08/25/20 17:53	7440-43-9	
Chromium	0.0021J	mg/L	0.010	0.00055	1	08/24/20 15:05	08/25/20 17:53	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	08/24/20 15:05	08/25/20 17:53	7440-48-4	
_ead	ND	mg/L	0.0050	0.000036	1	08/24/20 15:05	08/26/20 18:06	7439-92-1	
_ithium	0.0020J	mg/L	0.030	0.00081	1	08/24/20 15:05	08/25/20 17:53	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/24/20 15:05	08/25/20 17:53	7439-98-7	
Selenium	0.099	mg/L	0.010	0.0016	1	08/24/20 15:05	08/25/20 17:53	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	08/24/20 15:05	08/26/20 18:06	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prej	paration Met	hod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	SA.				
Mercury	0.000082J	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:18	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Fluoride	ND	mg/L	0.10	0.050	1		08/21/20 19:02	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Analytical Method: Pace Analytical Services - Charlotte 6.36 Std. Units 1 09/09/20 17:01 20 MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Services - Peachtree Corners, GA ND mg/L 0.0030 0.00028 1 08/24/20 15:05 08/25/20 17:59 7440-36-0 senic ND mg/L 0.0050 0.00078 1 08/24/20 15:05 08/25/20 17:59 7440-38-2 infum 0.026 mg/L 0.010 0.00071 1 08/24/20 15:05 08/25/20 17:59 7440-38-2 infum ND mg/L 0.0030 0.000046 1 08/24/20 15:05 08/25/20 17:59 7440-39-3 senitium ND mg/L 0.0025 0.00012 1 08/24/20 15:05 08/25/20 17:59 7440-41-7 informium ND mg/L 0.0025 0.00012 1 08/24/20 15:05 08/25/20 17:59 7440-41-7 informium ND mg/L 0.00050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-43-9 informium ND mg/L 0.00050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 informium ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 informium ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 informium ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 informium ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 informium ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7449-93-2 informium ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 informium ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 informium ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 informium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 informium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 informium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 informium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 informium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 informium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 informium ND mg/L 0.0000 0.00008 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 informium ND mg/L 0.0000 0.00008 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 informium ND mg/L 0.0000 0.00008 1 08/24/20 15:05	Sample: BRGWC-30I	Lab ID:	92491393008	Collecte	ed: 08/19/20	15:05	Received: 08/	/20/20 10:03 Ma	atrix: Water	
Analytical Method: Pace Analytical Services - Charlotte 6.36 Std. Units 1 09/09/20 17:01 20 MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Services - Peachtree Corners, GA ND mg/L 0.0030 0.00028 1 08/24/20 15:05 08/25/20 17:59 7440-38-2 Intimony ND mg/L 0.0050 0.00078 1 08/24/20 15:05 08/25/20 17:59 7440-38-2 Intimony ND mg/L 0.0030 0.000046 1 08/24/20 15:05 08/25/20 17:59 7440-38-2 Intimony ND mg/L 0.0030 0.000046 1 08/24/20 15:05 08/25/20 17:59 7440-38-3 Intimony ND mg/L 0.0025 0.00012 1 08/24/20 15:05 08/25/20 17:59 7440-41-7 Intimony ND mg/L 0.0025 0.00012 1 08/24/20 15:05 08/25/20 17:59 7440-41-7 Intimony ND mg/L 0.00050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-43-9 Intimony ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-44-3 Intimony ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-44-3 Intimony ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 Intimony ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 Intimony ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 Intimony ND mg/L 0.0050 0.000038 1 08/24/20 15:05 08/25/20 17:59 7449-93-2 Intimony ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 Intimony ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 Intimony ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 Intimony ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 Intimony ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 Intimony ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 Intimony ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 Intimony ND mg/L 0.0010 0.00068 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 Intimony ND mg/L 0.00060 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 Intimony ND mg/L 0.00060 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 Intimony ND mg/L 0.00060 1 08/24/20 15:05 08/25/20 17:59 7439-98-2 Intimony ND mg/L 0.00060 1 08/24/20 15:05 08/25/20 17:59 7				Report						
Pace Analytical Services - Charlotte 6.36 Std. Units 1 09/09/20 17:01 20 MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Services - Peachtree Corners, GA Analytical Services - Peachtree Corners, GA Analytical Method: EPA 5005A Pace Analytical Services - Peachtree Corners, GA Analytical Method: EPA 5005A Pace Analytical Services - Peachtree Corners, GA Analytical Method: EPA 5020B Preparation Method: EPA 3005A Pace Analytical Services - Peachtree Corners, GA Analytical Method: EPA 5020B Preparation Method: EPA 3005A Pace Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Method: EPA 5020B Preparation Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Method: EPA 5020B Preparation Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Services - Peachtree Corners, GA Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Services - Peachtree Corners, GA Analytical Services - Peachtree Corners, GA Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Services - Peachtree Corners, GA Analytical Services - Peachtree Corners, GA Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Method: EPA 3000 Rev 2.1 1993 Pace Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Field Data	Analytical	Method:							
Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Services - Peachtree Corners, GA Intimony Senic ND mg/L 0.0030 0.00028 1 08/24/20 15:05 08/25/20 17:59 7440-36-0 0.0050 0.00078 1 08/24/20 15:05 08/25/20 17:59 7440-38-2 0.010 0.0026 0.00071 0.00071 0.0024/20 15:05 08/25/20 17:59		Pace Anal	ytical Services	- Charlotte)					
Pace Analytical Services - Peachtree Corners, GA Intimony ND mg/L 0.0030 0.00028 1 08/24/20 15:05 08/25/20 17:59 7440-36-0 Intimony Int	рН	6.36	Std. Units			1		09/09/20 17:01		
ND mg/L 0.0030 0.00028 1 08/24/20 15:05 08/25/20 17:59 7440-36-0 senic ND mg/L 0.0050 0.00078 1 08/24/20 15:05 08/25/20 17:59 7440-38-2 artium 0.026 mg/L 0.010 0.00071 1 08/24/20 15:05 08/25/20 17:59 7440-39-3 bryllium ND mg/L 0.0030 0.000046 1 08/24/20 15:05 08/25/20 17:59 7440-41-7 admium ND mg/L 0.0025 0.00012 1 08/24/20 15:05 08/25/20 17:59 7440-43-9 artimm ND mg/L 0.010 0.00055 1 08/24/20 15:05 08/25/20 17:59 7440-43-9 artimm ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-47-3 obalt 0.00080J mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 artim ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 artim ND mg/L 0.030 0.000081 1 08/24/20 15:05 08/25/20 17:59 7439-92-1 oblium 0.018J mg/L 0.030 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 oblium 0.00078J mg/L 0.010 0.00069 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 oblium ND mg/L 0.010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 oblium ND mg/L 0.010 0.0014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 artilium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 artilium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 artilium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 artilium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 artilium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 artilium ND mg/L 0.000082J mg/L 0.00000 0.000078 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 artilium ND mg/L 0.00000000000000000000000000000000000	6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
ND mg/L 0.0050 0.00078 1 08/24/20 15:05 08/25/20 17:59 7440-38-2 140 150 08/25/20 17:59 7440-38-2 140 150 08/25/20 17:59 7440-39-3 140		Pace Anal	ytical Services	- Peachtre	e Corners, C	€A				
ND mg/L 0.0050 0.00078 1 08/24/20 15:05 08/25/20 17:59 7440-38-2 140 150 08/25/20 17:59 7440-38-2 140 150 08/25/20 17:59 7440-39-3 140	Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:05	08/25/20 17:59	7440-36-0	
Pryllium ND mg/L 0.0030 0.000046 1 08/24/20 15:05 08/25/20 17:59 7440-41-7 admium ND mg/L 0.0025 0.00012 1 08/24/20 15:05 08/25/20 17:59 7440-43-9 normium ND mg/L 0.010 0.00055 1 08/24/20 15:05 08/25/20 17:59 7440-47-3 obalt 0.00080J mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 obalt ND mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 obalt ND mg/L 0.0050 0.00036 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 obalt ND mg/L 0.030 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-92-1 oblybdenum 0.018J mg/L 0.010 0.00069 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 oblenium ND mg/L 0.010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.0010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.00020 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.00020 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.00010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.00020 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.00020 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.00020 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oblybdenum ND mg/L 0.00020 0.000078 1 08/24/20 15:05 08/25/20 10:25 7439-97-6 oblybdenum ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 oblybdenum ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 oblybdenum ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 oblybdenum ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 oblybdenum ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 oblybdenum ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6	Arsenic	ND		0.0050	0.00078	1	08/24/20 15:05	08/25/20 17:59	7440-38-2	
ND mg/L 0.0025 0.00012 1 08/24/20 15:05 08/25/20 17:59 7440-43-9 normium ND mg/L 0.010 0.00055 1 08/24/20 15:05 08/25/20 17:59 7440-47-3 0.0014 0.00056 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 0.0014 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 0.0014 0.0018J mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 0.0018J mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7439-92-1 0.0018J mg/L 0.030 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 0.0018J mg/L 0.010 0.00069 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 0.0018J mg/L 0.010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 0.0018J mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 0.0018J mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 18:12 7440-28-0 0.0014 0.0014 0.0014 1 08/24/20 15:05 08/25/20 18:12 7440-28-0 0.0014 0.0014 0.0014 1 08/24/20 15:05 08/25/20 18:12 7440-28-0 0.0014 0.0014 0.0014 0.00014 1 08/24/20 15:05 08/25/20 18:12 7440-28-0 0.0014 0.00	3arium	0.026	mg/L	0.010	0.00071	1	08/24/20 15:05	08/25/20 17:59	7440-39-3	
ND mg/L 0.010 0.00055 1 08/24/20 15:05 08/25/20 17:59 7440-47-3 0balt 0.00080J mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 0.0050 0.00038 1 08/24/20 15:05 08/25/20 18:12 7439-92-1 0.0050 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 0.0050 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 0.0050 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 0.0050 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 0.0050 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 0.0050 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 0.0050 0.0050 1 0.0050 1 0.0050 0.0050 1 0.0050	Beryllium	ND	mg/L	0.0030	0.000046	1	08/24/20 15:05	08/25/20 17:59	7440-41-7	
obalt 0.00080J mg/L 0.0050 0.00038 1 08/24/20 15:05 08/25/20 17:59 7440-48-4 oad ND mg/L 0.0050 0.00036 1 08/24/20 15:05 08/26/20 18:12 7439-92-1 hium 0.018J mg/L 0.030 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 oblybdenum 0.00078J mg/L 0.010 0.00069 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 elenium ND mg/L 0.010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 oallium ND mg/L 0.010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 oallium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/26/20 18:12 7440-28-0 70 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pack Pack Pack Pack Pack Pack Pack Pack Pack Pa	Cadmium	ND	mg/L	0.0025	0.00012	1	08/24/20 15:05	08/25/20 17:59	7440-43-9	
ND mg/L 0.0050 0.000036 1 08/24/20 15:05 08/26/20 18:12 7439-92-1 0.0050 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 0.0050 0.00078J mg/L 0.010 0.00069 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 0.0050 0.00078J mg/L 0.010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 0.0010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 0.0010 0.00014 1 08/24/20 15:05 08/26/20 18:12 7440-28-0 0.0010 0.00014 1 08/24/20 15:05 08/26/20 18:12 7440-28-0 0.0010 0.00014 1 0.0010 0.00014 1 0.0010 0.0014 1 0.0010 0.0014 1 0.0010 0.0014 0	Chromium	ND	mg/L	0.010	0.00055	1	08/24/20 15:05	08/25/20 17:59	7440-47-3	
hium 0.018J mg/L 0.030 0.00081 1 08/24/20 15:05 08/25/20 17:59 7439-93-2 09/9bdenum 0.00078J mg/L 0.010 0.00069 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 09/9blenium ND mg/L 0.010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 09/9blenium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 09/9blenium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/26/20 18:12 7440-28-0 09/9blenium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/26/20 18:12 7440-28-0 09/9blenium ND mg/L 0.00010 0.00014 1 08/24/20 15:05 08/26/20 18:12 7440-28-0 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9blenium ND mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 09/9ble	Cobalt	0.00080J	mg/L	0.0050	0.00038	1	08/24/20 15:05	08/25/20 17:59	7440-48-4	
Olybdenum 0.00078J mg/L 0.010 0.00069 1 08/24/20 15:05 08/25/20 17:59 7439-98-7 elenium ND mg/L 0.010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 eallium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/26/20 18:12 7440-28-0 70 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A EPA 7470A Pace Analytical Services - Peachtree Corners, GA Percury 0.000082J mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 0.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Lead	ND	mg/L	0.0050	0.000036	1	08/24/20 15:05	08/26/20 18:12	7439-92-1	
ND mg/L 0.010 0.0016 1 08/24/20 15:05 08/25/20 17:59 7782-49-2 nallium ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/26/20 18:12 7440-28-0 70 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Peachtree Corners, GA Percury 0.000082J mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	_ithium	0.018J	mg/L	0.030	0.00081	1	08/24/20 15:05	08/25/20 17:59	7439-93-2	
ND mg/L 0.0010 0.00014 1 08/24/20 15:05 08/26/20 18:12 7440-28-0 Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Peachtree Corners, GA ercury 0.000082J mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Molybdenum	0.00078J	mg/L	0.010	0.00069	1	08/24/20 15:05	08/25/20 17:59	7439-98-7	
Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Peachtree Corners, GA ercury 0.000082J mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Selenium	ND	mg/L	0.010	0.0016	1	08/24/20 15:05	08/25/20 17:59	7782-49-2	
Pace Analytical Services - Peachtree Corners, GA 0.000082J mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	Thallium	ND	-	0.0010	0.00014	1	08/24/20 15:05	08/26/20 18:12	7440-28-0	
0.000082J mg/L 0.00020 0.000078 1 08/24/20 11:30 08/25/20 10:25 7439-97-6 O.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville	7470 Mercury	Analytical	Method: EPA 7	470A Pre	paration Met	hod: EF	PA 7470A			
O.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville		Pace Anal	ytical Services	- Peachtre	e Corners, C	€A				
Pace Analytical Services - Asheville	Mercury	0.000082J	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:25	7439-97-6	
	300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
uoride 0.14 mg/L 0.10 0.050 1 08/21/20 19:15 16984-48-8		Pace Anal	ytical Services	- Asheville						
	Fluoride	0.14	mg/L	0.10	0.050	1		08/21/20 19:15	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWC-45	Lab ID:	92491393009	Collecte	ed: 08/20/20	12:12	Received: 08/	/21/20 11:08 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte	;					
рН	5.86	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, G	βA				
Antimony	0.0031	mg/L	0.0030	0.00028	1	08/24/20 15:10	08/27/20 16:48	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/24/20 15:10	08/27/20 16:48	7440-38-2	
Barium	0.083	mg/L	0.010	0.00071	1	08/24/20 15:10	08/27/20 16:48	7440-39-3	
Beryllium	0.000046J	mg/L	0.0030	0.000046	1	08/24/20 15:10	08/27/20 16:48	7440-41-7	
Cadmium	0.00014J	mg/L	0.0025	0.00012	1	08/24/20 15:10	08/27/20 16:48	7440-43-9	
Chromium	0.0010J	mg/L	0.010	0.00055	1	08/24/20 15:10	08/27/20 16:48	7440-47-3	
Cobalt	0.022	mg/L	0.0050	0.00038	1	08/24/20 15:10	08/27/20 16:48	7440-48-4	
_ead	0.00021J	mg/L	0.0050	0.000036	1	08/24/20 15:10	08/27/20 16:48	7439-92-1	
_ithium	0.0034J	mg/L	0.030	0.00081	1	08/24/20 15:10	08/27/20 16:48	7439-93-2	
Molybdenum	0.00076J	mg/L	0.010	0.00069	1	08/24/20 15:10	08/27/20 16:48	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/24/20 15:10	08/27/20 16:48	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	08/24/20 15:10	08/27/20 16:48	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	'470A Pre _l	paration Met	nod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:27	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Fluoride	ND	mg/L	0.10	0.050	1		08/25/20 17:21	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWC-47	Lab ID:	92491393010	Collecte	ed: 08/20/20	14:00	Received: 08/	/21/20 11:08 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
Н	5.75	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: Ef	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:10	08/27/20 16:53	7440-36-0	
Arsenic	0.00089J	mg/L	0.0050	0.00078	1	08/24/20 15:10	08/27/20 16:53	7440-38-2	
Barium	0.035	mg/L	0.010	0.00071	1	08/24/20 15:10	08/27/20 16:53	7440-39-3	
Beryllium	0.000047J	mg/L	0.0030	0.000046	1	08/24/20 15:10	08/27/20 16:53	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/24/20 15:10	08/27/20 16:53	7440-43-9	
Chromium	0.00064J	mg/L	0.010	0.00055	1	08/24/20 15:10	08/27/20 16:53	7440-47-3	
Cobalt	0.00043J	mg/L	0.0050	0.00038	1	08/24/20 15:10	08/27/20 16:53	7440-48-4	
₋ead	0.000048J	mg/L	0.0050	0.000036	1	08/24/20 15:10	08/27/20 16:53	7439-92-1	
_ithium	0.044	mg/L	0.030	0.00081	1	08/24/20 15:10	08/27/20 16:53	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/24/20 15:10	08/27/20 16:53	7439-98-7	
Selenium	0.0016J	mg/L	0.010	0.0016	1	08/24/20 15:10	08/27/20 16:53	7782-49-2	
⁻ hallium	ND	mg/L	0.0010	0.00014	1	08/24/20 15:10	08/27/20 16:53	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prej	paration Met	hod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, G	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:29	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
•	Pace Anal	ytical Services	- Asheville	:					
Fluoride	ND	mg/L	0.10	0.050	1		08/25/20 18:05	16984-48-8	
		-							

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWC-50	Lab ID:	92491393011	Collecte	ed: 08/20/20	09:32	Received: 08/	/21/20 11:08 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
pΗ	5.26	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	€A				
Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:10	08/27/20 16:59	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/24/20 15:10	08/27/20 16:59	7440-38-2	
3arium	0.019	mg/L	0.010	0.00071	1	08/24/20 15:10	08/27/20 16:59	7440-39-3	
Beryllium	0.0044	mg/L	0.0030	0.000046	1	08/24/20 15:10	08/27/20 16:59	7440-41-7	
Cadmium	0.0079	mg/L	0.0025	0.00012	1	08/24/20 15:10	08/27/20 16:59	7440-43-9	
Chromium	0.00065J	mg/L	0.010	0.00055	1	08/24/20 15:10	08/27/20 16:59	7440-47-3	
Cobalt	1.4	mg/L	0.025	0.0019	5	08/24/20 15:10	08/28/20 15:08	7440-48-4	
_ead	0.000067J	mg/L	0.0050	0.000036	1	08/24/20 15:10	08/27/20 16:59	7439-92-1	
_ithium	0.040	mg/L	0.030	0.00081	1	08/24/20 15:10	08/27/20 16:59	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/24/20 15:10	08/27/20 16:59	7439-98-7	
Selenium	0.0037J	mg/L	0.010	0.0016	1	08/24/20 15:10	08/27/20 16:59	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	08/24/20 15:10	08/27/20 16:59	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre _l	paration Met	hod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:32	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
-	Pace Anal	ytical Services	- Asheville						
Fluoride	0.39	mg/L	0.10	0.050	1		08/25/20 18:20	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: BRGWC-52I	Lab ID:	92491393012	Collecte	ed: 08/20/20	09:45	Received: 08/	21/20 11:08 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Analy	ytical Services	- Charlotte						
рН	6.85	Std. Units			1		09/09/20 17:01		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Analy	ytical Services	- Peachtre	e Corners, G	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:10	08/27/20 17:05	7440-36-0	
Arsenic	0.0031J	mg/L	0.0050	0.00078	1	08/24/20 15:10	08/27/20 17:05	7440-38-2	
Barium	0.017	mg/L	0.010	0.00071	1	08/24/20 15:10	08/27/20 17:05	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/24/20 15:10	08/27/20 17:05	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/24/20 15:10	08/27/20 17:05	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	08/24/20 15:10	08/27/20 17:05	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	08/24/20 15:10	08/27/20 17:05	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	08/24/20 15:10	08/27/20 17:05	7439-92-1	
Lithium	0.0022J	mg/L	0.030	0.00081	1	08/24/20 15:10	08/27/20 17:05	7439-93-2	
Molybdenum	0.0012J	mg/L	0.010	0.00069	1	08/24/20 15:10	08/27/20 17:05	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/24/20 15:10	08/27/20 17:05	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	08/24/20 15:10	08/27/20 17:05	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	paration Met	nod: EF	PA 7470A			
	Pace Analy	ytical Services	- Peachtre	e Corners, G	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:34	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Analy	ytical Services	- Asheville						
Fluoride	0.23	mg/L	0.10	0.050	1		08/25/20 19:05	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: DUP-2	Lab ID:	92491393013	Collect	ed: 08/20/20	00:00	Received: 08/	21/20 11:08 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical I	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Analy	tical Services	- Peachtre	ee Corners, G	S A				
Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:10	08/27/20 17:10	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/24/20 15:10	08/27/20 17:10	7440-38-2	
Barium	0.019	mg/L	0.010	0.00071	1	08/24/20 15:10	08/27/20 17:10	7440-39-3	
Beryllium	0.0046	mg/L	0.0030	0.000046	1	08/24/20 15:10	08/27/20 17:10	7440-41-7	
Cadmium	0.0077	mg/L	0.0025	0.00012	1	08/24/20 15:10	08/27/20 17:10	7440-43-9	
Chromium	0.00065J	mg/L	0.010	0.00055	1	08/24/20 15:10	08/27/20 17:10	7440-47-3	
Cobalt	1.4	mg/L	0.025	0.0019	5	08/24/20 15:10	08/28/20 15:13	7440-48-4	
Lead	0.000050J	mg/L	0.0050	0.000036	1	08/24/20 15:10	08/27/20 17:10	7439-92-1	
Lithium	0.041	mg/L	0.030	0.00081	1	08/24/20 15:10	08/27/20 17:10	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/24/20 15:10	08/27/20 17:10	7439-98-7	
Selenium	0.0038J	mg/L	0.010	0.0016	1	08/24/20 15:10	08/27/20 17:10	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	08/24/20 15:10	08/27/20 17:10	7440-28-0	
7470 Mercury	Analytical I	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
•	Pace Analy	tical Services	- Peachtre	ee Corners, G	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:37	7439-97-6	
300.0 IC Anions 28 Days	Analytical I	Method: EPA :	300.0 Rev	2.1 1993					
·		tical Services							
Fluoride	0.38	mg/L	0.10	0.050	1		08/25/20 19:20	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: FB-2	Lab ID:	92491393014	Collecte	ed: 08/20/20	09:20	Received: 08/	21/20 11:08 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical I	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Analy	tical Services	s - Peachtre	e Corners, C	€A				
Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:10	08/27/20 17:38	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/24/20 15:10	08/27/20 17:38	7440-38-2	
Barium	ND	mg/L	0.010	0.00071	1	08/24/20 15:10	08/27/20 17:38	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/24/20 15:10	08/27/20 17:38	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/24/20 15:10	08/27/20 17:38	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	08/24/20 15:10	08/27/20 17:38	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	08/24/20 15:10	08/27/20 17:38	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	08/24/20 15:10	08/27/20 17:38	7439-92-1	
Lithium	ND	mg/L	0.030	0.00081	1	08/24/20 15:10	08/27/20 17:38	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/24/20 15:10	08/27/20 17:38	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/24/20 15:10	08/27/20 17:38	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	08/24/20 15:10	08/27/20 17:38	7440-28-0	
7470 Mercury	Analytical I	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
	Pace Analy	tical Services	s - Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 10:39	7439-97-6	
300.0 IC Anions 28 Days	Analytical I	Method: EPA	300.0 Rev 2	2.1 1993					
•	Pace Analy	tical Services	s - Asheville						
Fluoride	ND	mg/L	0.10	0.050	1		08/25/20 19:35	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Sample: EB-1	Lab ID:	92491393015	Collecte	ed: 08/20/20	12:45	Received: 08/	21/20 11:08 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, 0	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	08/24/20 15:10	08/27/20 17:43	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/24/20 15:10	08/27/20 17:43	7440-38-2	
Barium	ND	mg/L	0.010	0.00071	1	08/24/20 15:10	08/27/20 17:43	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/24/20 15:10	08/27/20 17:43	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/24/20 15:10	08/27/20 17:43	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	08/24/20 15:10	08/27/20 17:43	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	08/24/20 15:10	08/27/20 17:43	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	08/24/20 15:10	08/27/20 17:43	7439-92-1	
Lithium	ND	mg/L	0.030	0.00081	1	08/24/20 15:10	08/27/20 17:43	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/24/20 15:10	08/27/20 17:43	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/24/20 15:10	08/27/20 17:43	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	08/24/20 15:10	08/27/20 17:43	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
-	Pace Anal	ytical Services	- Peachtre	e Corners, 0	SA.				
Mercury	0.000082J	mg/L	0.00020	0.000078	1	08/24/20 11:30	08/25/20 09:25	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
·	Pace Anal	ytical Services	- Asheville	:					
Fluoride	ND	mg/L	0.10	0.050	1		08/25/20 19:50	16984-48-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

QC Batch: 561324 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92491393001, 92491393002, 92491393003

METHOD BLANK: 2977587 Matrix: Water

Associated Lab Samples: 92491393001, 92491393002, 92491393003

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00028	08/21/20 17:31	
Arsenic	mg/L	ND	0.0050	0.00078	08/21/20 17:31	
Barium	mg/L	ND	0.010	0.00071	08/21/20 17:31	
Beryllium	mg/L	ND	0.0030	0.000046	08/21/20 17:31	
Cadmium	mg/L	ND	0.0025	0.00012	08/21/20 17:31	
Chromium	mg/L	ND	0.010	0.00055	08/21/20 17:31	
Cobalt	mg/L	ND	0.0050	0.00038	08/21/20 17:31	
Lead	mg/L	ND	0.0050	0.000036	08/21/20 17:31	
Lithium	mg/L	ND	0.030	0.00081	08/21/20 17:31	
Molybdenum	mg/L	ND	0.010	0.00069	08/21/20 17:31	
Selenium	mg/L	ND	0.010	0.0016	08/21/20 17:31	
Thallium	mg/L	ND	0.0010	0.00014	08/21/20 17:31	

LABORATORY CONTROL SAMPLE:	2977588					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.10	103	80-120	
Arsenic	mg/L	0.1	0.094	94	80-120	
Barium	mg/L	0.1	0.096	96	80-120	
Beryllium	mg/L	0.1	0.097	97	80-120	
Cadmium	mg/L	0.1	0.10	100	80-120	
Chromium	mg/L	0.1	0.10	100	80-120	
Cobalt	mg/L	0.1	0.099	99	80-120	
Lead	mg/L	0.1	0.097	97	80-120	
Lithium	mg/L	0.1	0.10	100	80-120	
Molybdenum	mg/L	0.1	0.096	96	80-120	
Selenium	mg/L	0.1	0.095	95	80-120	
Thallium	mg/L	0.1	0.096	96	80-120	

MATRIX SPIKE & MATRIX SF	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2977589											
		92491389001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.11	0.11	106	105	75-125	1	20	
Arsenic	mg/L	ND	0.1	0.1	0.094	0.095	94	95	75-125	2	20	
Barium	mg/L	0.022	0.1	0.1	0.13	0.12	108	96	75-125	9	20	
Beryllium	mg/L	ND	0.1	0.1	0.095	0.097	95	97	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 2977	589 MS	MSD	2977590							
Parameter	g Units	92491389001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cadmium	mg/L	ND	0.1	0.1	0.097	0.10	97	100	75-125	3	20	
Chromium	mg/L	0.0069J	0.1	0.1	0.11	0.11	102	101	75-125	1	20	
Cobalt	mg/L	0.00048J	0.1	0.1	0.10	0.099	99	99	75-125	1	20	
Lead	mg/L	ND	0.1	0.1	0.098	0.099	98	99	75-125	1	20	
Lithium	mg/L	0.00095J	0.1	0.1	0.098	0.098	97	97	75-125	0	20	
Molybdenum	mg/L	0.0015J	0.1	0.1	0.10	0.10	99	101	75-125	2	20	
Selenium	mg/L	ND	0.1	0.1	0.095	0.091	94	90	75-125	4	20	
Thallium	mg/L	ND	0.1	0.1	0.096	0.097	96	97	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

QC Batch: 561963 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92491393004, 92491393005, 92491393006, 92491393007, 92491393008

METHOD BLANK: 2980652 Matrix: Water

Associated Lab Samples: 92491393004, 92491393005, 92491393006, 92491393007, 92491393008

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
- Tarameter					711019200	— Qualificity
Antimony	mg/L	ND	0.0030	0.00028	08/25/20 16:08	
Arsenic	mg/L	ND	0.0050	0.00078	08/25/20 16:08	
Barium	mg/L	ND	0.010	0.00071	08/25/20 16:08	
Beryllium	mg/L	ND	0.0030	0.000046	08/25/20 16:08	
Cadmium	mg/L	ND	0.0025	0.00012	08/25/20 16:08	
Chromium	mg/L	ND	0.010	0.00055	08/25/20 16:08	
Cobalt	mg/L	ND	0.0050	0.00038	08/25/20 16:08	
Lead	mg/L	ND	0.0050	0.000036	08/26/20 16:20	
Lithium	mg/L	ND	0.030	0.00081	08/25/20 16:08	
Molybdenum	mg/L	ND	0.010	0.00069	08/25/20 16:08	
Selenium	mg/L	ND	0.010	0.0016	08/25/20 16:08	
Thallium	mg/L	ND	0.0010	0.00014	08/26/20 16:20	

LABORATORY CONTROL SAMPLE:	2980653					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.10	100	80-120	
Arsenic	mg/L	0.1	0.096	96	80-120	
Barium	mg/L	0.1	0.097	97	80-120	
Beryllium	mg/L	0.1	0.098	98	80-120	
Cadmium	mg/L	0.1	0.099	99	80-120	
Chromium	mg/L	0.1	0.099	99	80-120	
Cobalt	mg/L	0.1	0.098	98	80-120	
Lead	mg/L	0.1	0.10	100	80-120	
Lithium	mg/L	0.1	0.098	98	80-120	
Molybdenum	mg/L	0.1	0.097	97	80-120	
Selenium	mg/L	0.1	0.098	98	80-120	
Thallium	mg/L	0.1	0.10	100	80-120	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 2980	654		2980655							
			MS	MSD								
	9	2491455013	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	0.00064J	0.1	0.1	0.10	0.10	101	99	75-125	2	20	
Arsenic	mg/L	ND	0.1	0.1	0.099	0.099	99	99	75-125	0	20	
Barium	mg/L	0.12	0.1	0.1	0.24	0.23	115	114	75-125	0	20	
Beryllium	mg/L	ND	0.1	0.1	0.098	0.099	98	99	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

			MS	MSD								
		92491455013	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	mg/L	0.00058J	0.1	0.1	0.096	0.096	95	95	75-125	0	20	
Chromium	mg/L	0.0015J	0.1	0.1	0.10	0.10	100	100	75-125	0	20	
Cobalt	mg/L	0.00040J	0.1	0.1	0.10	0.10	99	99	75-125	0	20	
Lead	mg/L	0.00035J	0.1	0.1	0.094	0.093	94	93	75-125	1	20	
Lithium	mg/L	ND	0.1	0.1	0.096	0.098	96	97	75-125	1	20	
Molybdenum	mg/L	0.00077J	0.1	0.1	0.10	0.10	102	99	75-125	2	20	
Selenium	mg/L	0.0028J	0.1	0.1	0.10	0.10	99	99	75-125	0	20	
Thallium	mg/L	0.00021J	0.1	0.1	0.094	0.093	94	93	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

QC Batch: 561964 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92491393009, 92491393010, 92491393011, 92491393012, 92491393013, 92491393014, 92491393015

METHOD BLANK: 2980659 Matrix: Water

Associated Lab Samples: 92491393009, 92491393010, 92491393011, 92491393012, 92491393013, 92491393014, 92491393015

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND ND	0.0030	0.00028	08/27/20 15:08	
Arsenic	mg/L	ND	0.0050	0.00078	08/27/20 15:08	
Barium	mg/L	ND	0.010	0.00071	08/27/20 15:08	
Beryllium	mg/L	ND	0.0030	0.000046	08/27/20 15:08	
Cadmium	mg/L	ND	0.0025	0.00012	08/27/20 15:08	
Chromium	mg/L	ND	0.010	0.00055	08/27/20 15:08	
Cobalt	mg/L	ND	0.0050	0.00038	08/27/20 15:08	
Lead	mg/L	ND	0.0050	0.000036	08/27/20 15:08	
Lithium	mg/L	ND	0.030	0.00081	08/27/20 15:08	
Molybdenum	mg/L	ND	0.010	0.00069	08/27/20 15:08	
Selenium	mg/L	ND	0.010	0.0016	08/27/20 15:08	
Thallium	mg/L	ND	0.0010	0.00014	08/27/20 15:08	

LABORATORY CONTROL SAMPLE:	2980660					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.10	101	80-120	
Arsenic	mg/L	0.1	0.097	97	80-120	
Barium	mg/L	0.1	0.099	99	80-120	
Beryllium	mg/L	0.1	0.099	99	80-120	
Cadmium	mg/L	0.1	0.099	99	80-120	
Chromium	mg/L	0.1	0.099	99	80-120	
Cobalt	mg/L	0.1	0.10	100	80-120	
Lead	mg/L	0.1	0.10	100	80-120	
Lithium	mg/L	0.1	0.10	101	80-120	
Molybdenum	mg/L	0.1	0.099	99	80-120	
Selenium	mg/L	0.1	0.096	96	80-120	
Thallium	mg/L	0.1	0.10	101	80-120	

MATRIX SPIKE & MATRIX SF	PIKE DUPLI	CATE: 2980	661		2980662							
	,	92491663009	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.10	0.10	103	102	75-125	1	20	
Arsenic	mg/L	ND	0.1	0.1	0.10	0.10	101	100	75-125	1	20	
Barium	mg/L	0.047	0.1	0.1	0.14	0.14	98	97	75-125	0	20	
Beryllium	mg/L	ND	0.1	0.1	0.097	0.096	97	96	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

			MS	MSD								
		92491663009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	mg/L	ND	0.1	0.1	0.10	0.098	100	98	75-125	2	20	
Chromium	mg/L	0.012	0.1	0.1	0.12	0.11	106	102	75-125	4	20	
Cobalt	mg/L	ND	0.1	0.1	0.10	0.10	103	102	75-125	1	20	
Lead	mg/L	ND	0.1	0.1	0.10	0.10	100	100	75-125	0	20	
Lithium	mg/L	0.0010J	0.1	0.1	0.10	0.099	98	98	75-125	0	20	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.10	103	100	75-125	2	20	
Selenium	mg/L	0.0030J	0.1	0.1	0.10	0.10	99	102	75-125	3	20	
Thallium	mg/L	ND	0.1	0.1	0.10	0.10	101	102	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

QC Batch: 561377 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92491393001, 92491393002, 92491393003

METHOD BLANK: 2977870 Matrix: Water

Associated Lab Samples: 92491393001, 92491393002, 92491393003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00050 0.00078 08/21/20 12:32

LABORATORY CONTROL SAMPLE: 2977871

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury mg/L 0.0025 0.0027 108 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2977872 2977873

MS MSD

92491389001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits ND 0.0025 104 20 Mercury mg/L 0.0025 0.0026 0.0026 106 75-125 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Mercury

Date: 09/15/2020 10:30 AM

QC Batch: 561894 Analysis Method: EPA 7470A QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

> Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92491393015

METHOD BLANK: Matrix: Water

mg/L

Associated Lab Samples: 92491393015

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed

Mercury ND 0.00050 0.000078 08/25/20 08:19 mg/L

LABORATORY CONTROL SAMPLE: 2980089

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury mg/L 0.0025 0.0026 105 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2980090 2980091

MSD MS 92491616002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Limits ND 0.0025

0.0023

0.0026

90

102

75-125

12

20

0.0025

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

LABORATORY CONTROL SAMPLE:

Date: 09/15/2020 10:30 AM

QC Batch: 561900 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92491393004, 92491393005, 92491393006, 92491393007, 92491393008, 92491393009, 92491393010,

92491393011, 92491393012, 92491393013, 92491393014

METHOD BLANK: 2980098 Matrix: Water

Associated Lab Samples: 92491393004, 92491393005, 92491393006, 92491393007, 92491393008, 92491393009, 92491393010,

92491393011, 92491393012, 92491393013, 92491393014

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Mercury
 mg/L
 ND
 0.00050
 0.000078
 08/25/20 09:32

LCS LCS % Rec Spike Units Result % Rec Limits Qualifiers Parameter Conc. Mercury mg/L 0.0025 0.0026 102 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2980100 2980101

2980099

MS MSD

92491663001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual ND 0.0025 0.0023 20 Mercury 0.0025 0.0024 90 94 75-125 3 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

BRANCH BCD NETWORK Project:

Pace Project No.:

QC Batch Method:

92491393

QC Batch: 561236 Analysis Method:

EPA 300.0 Rev 2.1 1993

MDL

Analysis Description:

300.0 IC Anions

Laboratory:

Pace Analytical Services - Asheville

92491393001, 92491393002, 92491393003 Associated Lab Samples:

EPA 300.0 Rev 2.1 1993

METHOD BLANK:

Matrix: Water

Associated Lab Samples:

92491393001, 92491393002, 92491393003

Blank Result

Limit

Reporting

Analyzed

Qualifiers

Fluoride

Fluoride

Fluoride

Fluoride

Units mg/L

ND

0.10

0.050 08/20/20 16:29

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

Date: 09/15/2020 10:30 AM

Parameter

2977011

Units

mg/L

92490037006

Result

Result

ND

0.055J

Units

mg/L

Units

mg/L

Spike Conc.

2.5

LCS Result

LCS % Rec

MSD

Result

2.4

2.3

% Rec Limits

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

2977012

MS

Spike

Conc.

2.5

MSD Spike

Conc.

2.5

2.5

2977013 MS

Result

2.4

MS

% Rec

107

95

95

MSD % Rec

90-110

% Rec

Limits

90-110

Max **RPD** RPD

10 R1

Qual

Qual

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

2977014

Conc.

2.5

MSD

MS

MSD

92

94

Max

92491455002

MS Spike

MSD Spike Conc.

MS Result Result

2.4

2.7

2977015

% Rec

% Rec

% Rec Limits

RPD RPD 4 10 90-110

12

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

QC Batch: 561506 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92491393004, 92491393005, 92491393006, 92491393007, 92491393008

METHOD BLANK: 2978310 Matrix: Water

Associated Lab Samples: 92491393004, 92491393005, 92491393006, 92491393007, 92491393008

Blank Reporting
Parameter Units Result Limit MDL Analyzed

Fluoride mg/L ND 0.10 0.050 08/21/20 17:28

LABORATORY CONTROL SAMPLE: 2978311

Spike LCS LCS % Rec Conc. Limits Qualifiers Parameter Units Result % Rec Fluoride 2.5 2.4 98 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2978312 2978313

MSD MS 92491393004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Result Conc. % Rec % Rec Limits Qual 10 M1 Fluoride mg/L 0.17 2.5 2.5 3.0 3.0 112 112 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2978314 2978315

MS MSD 92491663005 MS MSD MS MSD % Rec Spike Spike Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual Fluoride 2.5 2.7 0.060J 2.5 2.7 105 106 10 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Fluoride

QC Batch: 562094

QC Batch Method: EPA 300.0 Rev 2.1 1993

Analysis Method: EPA 300.0 Rev 2.1 1993

Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92491393009, 92491393010, 92491393011, 92491393012, 92491393013, 92491393014, 92491393015

METHOD BLANK: 2981303 Matrix: Water

Associated Lab Samples: 92491393009, 92491393010, 92491393011, 92491393012, 92491393013, 92491393014, 92491393015

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 mg/L
 ND
 0.10
 0.050
 08/25/20 12:53
 Qualifiers

LABORATORY CONTROL SAMPLE: 2981304

Spike LCS LCS % Rec Conc. Limits Parameter Units Result % Rec Qualifiers Fluoride 2.5 2.7 108 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2981305 2981306

MS MSD

92492088001 Spike Spike MS MSD MS MSD % Rec Max Units Result Result RPD Parameter Result Conc. Conc. % Rec % Rec Limits **RPD** Qual Fluoride mg/L ND 2.5 2.5 2.6 2.6 104 105 90-110 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2981307 2981308

MS MSD

92491393009 MS MSD MS MSD % Rec Spike Spike Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual 2.5 Fluoride ND 2.5 2.6 2.6 103 103 0 10 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWA-12I PWS:	Lab ID: 9249139 3 Site ID:	3001 Collected: 08/18/20 13:05 Sample Type:	Received:	08/19/20 10:10	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	vices - Greensburg				
Radium-226	EPA 9315	0.240 ± 0.122 (0.185) C:91% T:NA	pCi/L	09/08/20 17:44	13982-63-3	
	Pace Analytical Serv	vices - Greensburg				
Radium-228	EPA 9320	0.748 ± 0.489 (0.931) C:70% T:80%	pCi/L	09/09/20 14:47	7 15262-20-1	
	Pace Analytical Serv	vices - Greensburg				
Total Radium	Total Radium Calculation	0.988 ± 0.611 (1.12)	pCi/L	09/10/20 15:16	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWA-12S PWS:	Lab ID: 92491 Site ID:	1393002 Collected: 08/18/20 16:25 Sample Type:	Received:	08/19/20 10:10	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.157 ± 0.111 (0.189) C:90% T:NA	pCi/L	09/08/20 17:44	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.812 ± 0.497 (0.953) C:70% T:90%	pCi/L	09/09/20 11:25	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.969 ± 0.608 (1.14)	pCi/L	09/10/20 15:16	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWA-23S PWS:	Lab ID: 924913 Site ID:	93003 Collected: 08/18/20 15:28 Sample Type:	Received:	08/19/20 10:10	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	0.197 ± 0.113 (0.177) C:84% T:NA	pCi/L	09/08/20 17:44	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	0.587 ± 0.442 (0.866) C:72% T:79%	pCi/L	09/09/20 11:25	15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.784 ± 0.555 (1.04)	pCi/L	09/10/20 15:16	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWC-25I PWS:	Lab ID: 9249 Site ID:	1393004 Collected: 08/19/20 09:50 Sample Type:	Received:	08/20/20 10:03	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.288 ± 0.130 (0.188) C:86% T:NA	pCi/L	09/08/20 17:44	4 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.179 ± 0.343 (0.752) C:72% T:90%	pCi/L	09/09/20 11:25	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.467 ± 0.473 (0.940)	pCi/L	09/10/20 15:16	6 7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWC-29I PWS:	Lab ID: 9249139 Site ID:	3005 Collected: 08/19/20 10:50 Sample Type:	Received:	08/20/20 10:03	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.299 ± 0.162 (0.267) C:91% T:NA	pCi/L	09/08/20 17:44	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.577 ± 0.428 (0.848) C:77% T:82%	pCi/L	09/09/20 11:25	15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.876 ± 0.590 (1.12)	pCi/L	09/10/20 15:16	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWC-27I PWS:	Lab ID: 9249 1 Site ID:	393006 Collected: 08/19/20 12:05 Sample Type:	Received:	08/20/20 10:03	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 9315	0.260 ± 0.132 (0.203) C:91% T:NA	pCi/L	09/08/20 17:44	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	0.424 ± 0.358 (0.718) C:74% T:87%	pCi/L	09/09/20 11:26	15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	0.684 ± 0.490 (0.921)	pCi/L	09/10/20 15:16	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWC-32S PWS:	Lab ID: 9249 Site ID:	1393007 Collected: 08/19/20 13:20 Sample Type:	Received:	08/20/20 10:03	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0531 ± 0.0881 (0.172) C:92% T:NA	pCi/L	09/08/20 17:44	4 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.429 ± 0.407 (0.839) C:75% T:82%	pCi/L	09/09/20 11:26	6 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.482 ± 0.495 (1.01)	pCi/L	09/10/20 15:16	6 7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWC-30I PWS:	Lab ID: 9249 Site ID:	1393008 Collected: 08/19/20 15:05 Sample Type:	Received:	08/20/20 10:03 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.299 ± 0.125 (0.167) C:88% T:NA	pCi/L	09/08/20 17:44	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.703 ± 0.450 (0.863) C:72% T:86%	pCi/L	09/09/20 11:26	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.00 ± 0.575 (1.03)	pCi/L	09/11/20 08:26	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWC-45 PWS:	Lab ID: 9249 Site ID:	1393009 Collected: 08/20/20 12:12 Sample Type:	Received:	08/21/20 11:08	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.194 ± 0.154 (0.275) C:88% T:NA	pCi/L	09/03/20 18:45	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.307 ± 0.468 (1.01) C:62% T:74%	pCi/L	09/09/20 15:08	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.501 ± 0.622 (1.29)	pCi/L	09/10/20 15:16	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWC-47 PWS:	Lab ID: 9249 Site ID:	01393010 Collected: 08/20/20 14:00 Sample Type:	Received:	08/21/20 11:08	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.500 ± 0.164 (0.181) C:86% T:NA	pCi/L	09/03/20 18:45	5 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.14 ± 0.652 (1.17) C:53% T:73%	pCi/L	09/09/20 15:08	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.64 ± 0.816 (1.35)	pCi/L	09/10/20 15:16	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWC-50 PWS:	Lab ID: 924913 Site ID:	93011 Collected: 08/20/20 09:32 Sample Type:	Received:	08/21/20 11:08	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	0.735 ± 0.193 (0.151) C:89% T:NA	pCi/L	09/03/20 18:18	3 13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	2.04 ± 0.699 (0.948) C:71% T:67%	pCi/L	09/09/20 15:08	3 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	2.78 ± 0.892 (1.10)	pCi/L	09/10/20 15:16	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: BRGWC-52I PWS:	Lab ID: 9249 Site ID:	1393012 Collected: 08/20/20 09:45 Sample Type:	Received:	08/21/20 11:08	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.684 ± 0.388 (0.589) C:84% T:NA	pCi/L	09/04/20 07:1	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	2.29 ± 0.728 (0.901) C:70% T:69%	pCi/L	09/09/20 14:4:	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.97 ± 1.12 (1.49)	pCi/L	09/10/20 15:10	6 7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: DUP-2 PWS:	Lab ID: 9249 Site ID:	1393013 Collected: 08/20/20 00:00 Sample Type:	Received:	08/21/20 11:08 N	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.602 ± 0.324 (0.420) C:87% T:NA	pCi/L	09/04/20 07:18	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	2.11 ± 0.682 (0.878) C:71% T:75%	pCi/L	09/09/20 14:43	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.71 ± 1.01 (1.30)	pCi/L	09/10/20 15:16	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: FB-2 PWS:	Lab ID: 9249 Site ID:	1393014 Collected: 08/20/20 09:20 Sample Type:	Received:	08/21/20 11:08	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0152 ± 0.200 (0.536) C:84% T:NA	pCi/L	09/04/20 07:18	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.713 ± 0.432 (0.796) C:69% T:83%	pCi/L	09/09/20 14:43	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.728 ± 0.632 (1.33)	pCi/L	09/10/20 15:16	7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Sample: EB-1 PWS:	Lab ID: 9249 Site ID:	1393015 Collected: 08/20/20 12:45 Sample Type:	Received:	08/21/20 11:08	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.115 ± 0.167 (0.346) C:89% T:NA	pCi/L	09/04/20 07:5	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.206 ± 0.334 (0.724) C:69% T:84%	pCi/L	09/09/20 14:43	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.321 ± 0.501 (1.07)	pCi/L	09/10/20 15:16	6 7440-14-4	

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

QC Batch: 411440 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92491393002, 92491393003, 92491393004, 92491393005, 92491393006, 92491393007, 92491393008

METHOD BLANK: 1990348 Matrix: Water

Associated Lab Samples: 92491393002, 92491393003, 92491393004, 92491393005, 92491393006, 92491393007, 92491393008

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.805 ± 0.381 (0.635) C:74% T:86%
 pCi/L
 09/09/20 11:25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

QC Batch: 411439 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92491393001, 92491393009, 92491393010, 92491393011, 92491393012, 92491393013, 92491393014,

92491393015

METHOD BLANK: 1990347 Matrix: Water

Associated Lab Samples: 92491393001, 92491393009, 92491393010, 92491393011, 92491393012, 92491393013, 92491393014,

92491393015

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.274 ± 0.326 (0.685) C:63% T:88%
 pCi/L
 09/09/20 12:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

QC Batch: 412359 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92491393001, 92491393002, 92491393003, 92491393004, 92491393005, 92491393006, 92491393007,

92491393008

METHOD BLANK: 1994519 Matrix: Water

Associated Lab Samples: 92491393001, 92491393002, 92491393003, 92491393004, 92491393005, 92491393006, 92491393007,

92491393008

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0753 ± 0.0856 (0.159) C:96% T:NA
 pCi/L
 09/08/20 17:44

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

QC Batch: 411375 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92491393009, 92491393010, 92491393011, 92491393012, 92491393013, 92491393014, 92491393015

METHOD BLANK: 1989998 Matrix: Water

Associated Lab Samples: 92491393009, 92491393010, 92491393011, 92491393012, 92491393013, 92491393014, 92491393015

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.135 ± 0.115 (0.203) C:91% T:NA
 pCi/L
 09/03/20 16:47

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/15/2020 10:30 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

₋ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
92491393001	BRGWA-12I			_	
2491393002	BRGWA-12S				
2491393003	BRGWA-23S				
2491393004	BRGWC-25I				
2491393005	BRGWC-29I				
2491393006	BRGWC-27I				
2491393007	BRGWC-32S				
2491393008	BRGWC-30I				
2491393009	BRGWC-45				
491393010	BRGWC-47				
2491393011	BRGWC-50				
2491393012	BRGWC-52I				
2491393001	BRGWA-12I	EPA 3005A	561324	EPA 6020B	561396
2491393002	BRGWA-12S	EPA 3005A	561324	EPA 6020B	561396
2491393003	BRGWA-23S	EPA 3005A	561324	EPA 6020B	561396
2491393004	BRGWC-25I	EPA 3005A	561963	EPA 6020B	562039
2491393005	BRGWC-29I	EPA 3005A	561963	EPA 6020B	562039
2491393006	BRGWC-27I	EPA 3005A	561963	EPA 6020B	562039
2491393007	BRGWC-32S	EPA 3005A	561963	EPA 6020B	562039
2491393008	BRGWC-30I	EPA 3005A	561963	EPA 6020B	562039
2491393009	BRGWC-45	EPA 3005A	561964	EPA 6020B	562041
2491393010	BRGWC-47	EPA 3005A	561964	EPA 6020B	562041
2491393011	BRGWC-50	EPA 3005A	561964	EPA 6020B	562041
2491393012	BRGWC-52I	EPA 3005A	561964	EPA 6020B	562041
2491393013	DUP-2	EPA 3005A	561964	EPA 6020B	562041
2491393014	FB-2	EPA 3005A	561964	EPA 6020B	562041
2491393015	EB-1	EPA 3005A	561964	EPA 6020B	562041
2491393001	BRGWA-12I	EPA 7470A	561377	EPA 7470A	561555
2491393002	BRGWA-12S	EPA 7470A	561377	EPA 7470A	561555
2491393003	BRGWA-23S	EPA 7470A	561377	EPA 7470A	561555
2491393004	BRGWC-25I	EPA 7470A	561900	EPA 7470A	562049
2491393005	BRGWC-29I	EPA 7470A	561900	EPA 7470A	562049
491393006	BRGWC-27I	EPA 7470A	561900	EPA 7470A	562049
2491393007	BRGWC-32S	EPA 7470A	561900	EPA 7470A	562049
2491393008	BRGWC-30I	EPA 7470A	561900	EPA 7470A	562049
2491393009	BRGWC-45	EPA 7470A	561900	EPA 7470A	562049
2491393010	BRGWC-47	EPA 7470A	561900	EPA 7470A	562049
491393011	BRGWC-50	EPA 7470A	561900	EPA 7470A	562049
2491393012	BRGWC-52I	EPA 7470A	561900	EPA 7470A	562049
491393013	DUP-2	EPA 7470A EPA 7470A	561900	EPA 7470A	562049
2491393014	FB-2	EPA 7470A EPA 7470A	561900	EPA 7470A EPA 7470A	562049
				-	
2491393015	EB-1	EPA 7470A	561894	EPA 7470A	562048
2491393001	BRGWA-12I	EPA 9315	412359		
2491393002	BRGWA-12S	EPA 9315	412359		
2491393003	BRGWA-23S	EPA 9315	412359		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92491393004	BRGWC-25I	EPA 9315	412359	_	
2491393005	BRGWC-29I	EPA 9315	412359		
2491393006	BRGWC-27I	EPA 9315	412359		
2491393007	BRGWC-32S	EPA 9315	412359		
2491393008	BRGWC-30I	EPA 9315	412359		
2491393009	BRGWC-45	EPA 9315	411375		
2491393010	BRGWC-47	EPA 9315	411375		
2491393011	BRGWC-50	EPA 9315	411375		
2491393012	BRGWC-52I	EPA 9315	411375		
2491393013	DUP-2	EPA 9315	411375		
2491393014	FB-2	EPA 9315	411375		
2491393015	EB-1	EPA 9315	411375		
2491393001	BRGWA-12I	EPA 9320	411439		
2491393002	BRGWA-12S	EPA 9320	411440		
2491393003	BRGWA-23S	EPA 9320	411440		
2491393004	BRGWC-25I	EPA 9320	411440		
2491393005	BRGWC-29I	EPA 9320	411440		
2491393006	BRGWC-27I	EPA 9320	411440		
2491393007	BRGWC-32S	EPA 9320	411440		
2491393008	BRGWC-30I	EPA 9320	411440		
2491393009	BRGWC-45	EPA 9320	411439		
2491393010	BRGWC-47	EPA 9320	411439		
2491393011	BRGWC-50	EPA 9320	411439		
2491393012	BRGWC-52I	EPA 9320	411439		
2491393013	DUP-2	EPA 9320	411439		
2491393014	FB-2	EPA 9320	411439		
2491393015	EB-1	EPA 9320	411439		
2491393001	BRGWA-12I	Total Radium Calculation	413385		
2491393002	BRGWA-12S	Total Radium Calculation	413385		
2491393003	BRGWA-23S	Total Radium Calculation	413385		
2491393004	BRGWC-25I	Total Radium Calculation	413385		
2491393005	BRGWC-29I	Total Radium Calculation	413385		
2491393006	BRGWC-27I	Total Radium Calculation	413385		
2491393000 2491393007	BRGWC-32S	Total Radium Calculation	413385		
2491393008	BRGWC-30I	Total Radium Calculation	413442		
2491393009	BRGWC-45	Total Radium Calculation	413385		
2491393010	BRGWC-47	Total Radium Calculation	413385		
2491393011	BRGWC-50	Total Radium Calculation	413385		
2491393012	BRGWC-52I	Total Radium Calculation	413385		
2491393013	DUP-2	Total Radium Calculation	413385		
2491393014	FB-2	Total Radium Calculation	413385		
2491393015	EB-1	Total Radium Calculation	413385		
2491393001	BRGWA-12I	EPA 300.0 Rev 2.1 1993	561236		
2491393002	BRGWA-12S	EPA 300.0 Rev 2.1 1993	561236		
		=::::::::::::::::::::::::::::::::::::::			

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD NETWORK

Pace Project No.: 92491393

Date: 09/15/2020 10:30 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92491393004	BRGWC-25I	EPA 300.0 Rev 2.1 1993	561506		
92491393005	BRGWC-29I	EPA 300.0 Rev 2.1 1993	561506		
92491393006	BRGWC-27I	EPA 300.0 Rev 2.1 1993	561506		
92491393007	BRGWC-32S	EPA 300.0 Rev 2.1 1993	561506		
92491393008	BRGWC-30I	EPA 300.0 Rev 2.1 1993	561506		
92491393009	BRGWC-45	EPA 300.0 Rev 2.1 1993	562094		
92491393010	BRGWC-47	EPA 300.0 Rev 2.1 1993	562094		
92491393011	BRGWC-50	EPA 300.0 Rev 2.1 1993	562094		
92491393012	BRGWC-52I	EPA 300.0 Rev 2.1 1993	562094		
92491393013	DUP-2	EPA 300.0 Rev 2.1 1993	562094		
92491393014	FB-2	EPA 300.0 Rev 2.1 1993	562094		
92491393015	EB-1	EPA 300.0 Rev 2.1 1993	562094		

courier: Fed Ex UPS USPS Clien	t Commercial	L Pace Other	Proj. Due Date: Proj. Name:
Custody Seal on Cooler/Box Present: yes	no Seals	intact: yes [no [Floj. Walle.
Packing Material: Bubble Wrap Bubble	Bags None	Other	
Cooler Temperature 3.6'C Temp should be above freezing to 6'C	Type of Ice: Wet	Blue None [Is Frozen: Yes No Comments:	Samples on ice, cooling process has begun Date and initials of person examining contents:
Chain of Custody Present:	2765 ONO ONIA	1.	
Chain of Custody Filled Out:	ØYes □No □N/A	2.	
Chain of Custody Relinquished:	THES ONO ONIA	3.	
Sampler Name & Signature on COC:	BYes ONO ON/A	4.	
Samples Arrived within Hold Time:	ØYes □No □N/A	5.	
Short Hold Time Analysis (<72hr):	DYes ONO ONIA	6.	
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.	
Sufficient Volume:	TYes ONO ON/A	8.	
Correct Containers Used:	DYES ONO ONIA	9.	
-Pace Containers Used:	Tres ONO ONIA		X
Containers Intact:	EYes DNO DNIA	10.	
Filtered volume received for Dissolved tests	DYES DNO ENVA	11.	
Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked.	Ves ONO ONIA		
All containers needing preservation are found to be in compliance with EPA recommendation.	EVes ONO ONA		
exceptions: VOA, coliform, TCC, O&G, WI-DRO (water)	□Yes □H6	Initial when completed	Lol # of added preservative
Samples checked for dechlorination:	DYes DNo MINI	14.	
Headspace in VOA Vials (>6mm):	Clyes DNo EN	4 15.	
Trip Blank Present:	□Yes □No ☑N/	A 16.	
Trip Blank Custody Seals Present	□Yes □No ☑NA	A	
Pace Trip Blank Lot # (if purchased):		1	
Client Notification/ Resolution:			Field Data Required? Y-/-N
Person Contacted:	Date	e/Time:	
Comments/ Resolution:		//	
100 - 101 -		-	

Sample Condition Upon Recei

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

F-ALLC003rev.3. 11September2006

W0#:92491393

vertiled and within the acceptance range for preservation

Document Name:

Bottle Identification Form (BIF)

Document No.: F-CAR-CS-043-Rev.00

Project # *Check mark top half of box if pH and/or dechlorination is

Document Issued: March 14, 2019 Page 1 of 1

Issuing Authority:

Pace Carolinas Quality Office

PM: KLH1

Due Date: 09/02/20

Rpl	es.	v04	/OA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LUNg													CLIENT: GA-GA Power																		
	ttemf	BP4U-125 mL Plastic Unpreserved (N/A) (C)	893U-250 mL Plastic Unpreserved (N/A)	(N/A)	BP2U-500 mL Plastic Unpression	BP1U-1 liter Plastic Unpreserved (N/A)	22 225 ml Plastic H2504 (pH < 2) (G+)	dipolitical management of the control of the contro	BP3M-250 mL plastic HNO3 (pn < 1)	Plastic ZN Acetate & NaOH (>9)	BP42-123 (G-)	gp4C-125 mt Plastic Neum University	WGFU-Wide-mouthed class Jan	AG1U-1 liter Amber Unpreserved (N/N) 10-1		AGIRT INC. Indreserved (N/A) (CI-)	AG3U-250 mL Amber Org.	AGIS-1 liter Amber 1230-121	AG35-250 mL Amber H2504 (pH < 4)	AGSAIDGSA)-250 mL Amber NH4CI (N/A)ICI-1	(N/A)	DG9H-40 mil (N/A)	VG9T-40 mL VOA NACSTON	VG9U-40 mL VOA Unp (N/A)	ACOP 40 ML VOA H3PO4 (N/A)	6 vials per ldt)-5035 bt (N/A)	VOM (N/A)	V/GK (3 viets per my	SPST-125 mt Sterile Plastic (N/A	SP2T-250 mL Sterile Plastic (N/A - lab)		1	Amber Unpreserved vials (N/A)	AGGU-100 mt rain
+	ī	7	1	+	9	-	+	7	_	X	1	1			1	1		1	1	1	1	1	_	1	+	+	+	_	-	+	T	米	4	
1	2	1	1	7		T	1	1	1	0	1	/			1	7		7	1	1	1		-	+	+	+	-	_	1	+	太	米	t	7.0
1	3	K	1	T		T	1	1	1	1	/	1				1	1	7	1	1	Y	_	-	+	+	+	_	-	+	+	*	1	1	
	4	K	1	•		1	1	1	1	J	1	1	1	1		10		1	1	4	7	-	+	+	+	-	-	-	+	+	-	4	7	
	5	1	1	_	-	+		1	1	7	1	1	T	1		1		1	1	Z	Z		1	1			-	+	+	+	+	7	7	F
	6	K	1	-	+	+	_	1	1	7	1	1	1	1		1	1	1	1	7	7	1.	1	4			-	+	+	+	+	4	\sim	+
-	7	+	+		+	-	_	1	1	7	1	1	Ť	7		1	T	1	4	1	7	1	1				=	+	1	-	\exists	4	\rightleftharpoons	+
	8	+	4	=	+	_	_	K	7	7	*	4	1	_	-	X	1	1	V	1	1	1	1			-	1	1	_			7	-	4
_	19	-	7	-	+		-	+	7	1	*	1	1	_		1	1		/	7	1	J					1	•				7	1	4
			7	_	_	_	-	+	_	1	X	+	4	_	+	+	1	1	924	X	1	T			1	1	1	1		1		/	1	1

			justment Log for Pres	Time preservation	Amount of Preservative	
ample ID	Type of Preservative	pH upon receipt	Date preservation adjustes	adjusted	added	-
						+
						1
() () () () () ()			lina compliance samples, a copy.	+	V	1

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will Out of hold, Incorrect preservative, out of temp, incorrect containers.

Received by/Company. (Signature)

PM:

PB:

Non Conformance(s):

YES / NO

Page: 1

Date/Time

Relinquished by/Company: (Signature)

Pace Analytical*	CI		F-CUSTODY A							211	LAB US	E ONLY- AM	MO	#:92	2491393
Company: Georgia Power - Coal Combu	stion Residuals		Billing Information					-	1			ALLS	PM: K	LH1	Due Date: 09/02/20
Address: 2480 Maner Road			1						-		-	ainer Prese	CLIEN	T: GA-GA	D
Atlanta, GA 30339			1							1	Cont	aner Prese	00000	UH-UH	rower
Report To: Joju Abraham			Email To: scsinvoi	ces@south	ternco.com				** Pres		ypes [1] eits		furic acid, (3) h	rdrochlonc acid, (4)	SOOIUM representation and
Copy To: Golder			Site Collection Inf	o/Address	Plant Branch			-	[6] met	thanol, (7)	sodium bisul	fate, (8) sodie		(9) hexane, (A) asco	obic acid, (B) ammonium sulfate,
phone: (404) 506-7239			State: Georgia C	ity: Milleda	eville Time 2	one Collect	ed					Analy			Lab Profile/Line:
Email: jabraham@southernco.com					[]MT []CT		045		188	15			63	E 10	Lab Sample Receipt Checklist:
Phone: (404) 506-7239	Project Name:	Plant Bran	ch SCD Network		Pace Profile#				100						Custody Seals Present/Intact Y N NA
Email: jabraham@southernco.com	Project # CCR								12.0						Custody Signatures Present Y N NA
Collected By (print): Travis Martinez,	Purchase Orde	er 3			Pace Project	Manager		_	190						Collector Signature Present Y N NA Bottles Infact Y N NA
Andrea McClure	Quote #				kevin.herring		com		0.31						Correct Bottles Y N NA
Collected By high always 1	Turnaround D	ate Require	ed:		Immediately [X] Yes	Packed on I				1					Sufficient Volume Y N NA Samples Received on Ice Y N NA
most in the	Rush:	100			Field Filtered	-	L.L.	_	- 323	- 8			22 N	333	VOA - Headspace Acceptable Y N NA
	- 1	3 Day	r []Next Day]4 Day []5 Da harges Apply)	y		[]No	4 1			comments					USOA Regulated Soils YN NA Samples in Holding Time YN NA Residual Chlorine Present YN NA CI Strips: Sample pH Acceptable YN NA
 Matrix Codes (Insert in Matrix box be Product (P), Soil/Solid (SL), Oil (OL), W 		, Tissue (T	i), Bioassay (B), Wat	ter (WT), O						App IV - see		226.228			pH Strips: Sulfide Present Y N NA Lead Acetate Strips: LAB USE ONLY:
Customer Sample ID	Matrix *	Grab	Collected (or Co Start) Date	Time	Compo	site End Time	PH	Ctns	1000	Metals App	Fluoride	Radium	Mercury		Lab Sample # / Comments:
007.6.36	17	-			100000000000000000000000000000000000000	lane	-	ļ.,							924139
BRGWC-25I	Gw	6	8-19-2020				6.32	14	13	X	X	X	IX	5 P	004
BRGWC-29I	6w	6	8-19-2020	1050	1000000		4.67	4	1.32	X	X	X	X	351	203
BRGWC-29I BRGWC-27I	GW	6	8-19-2020			3-8	5.81		1	X	X	X	X	100	All the control of th
881116 276	Gw		3-49-2020		-	-									006
BRGWC-325	and the same of th	19				-	5.97			X	X	X	X	200	(0)
BRGWC-30I	Gw	6	8-14-2020	1505			6.36	7		X	X	X	X		00%
									3.5						
	-				65 P.35	1000			3	2					通常 医斯基 公顷,但是 7多 是实现的 公司 1000年20
										188					
				S-17					100	100	24	22	ST 13	图 降	· 经营业的企业 · · · · · · · · · · · · · · · · · · ·
(App IV Metals): Sb, As, Ba, Be, Cd, Cr,	Co, Hg, Pb, Li, Mo,	Se, TI	Type of Ice Used:	We	t Blue	Dry No	one	35.75	1125	SHORT	HOLDS PRES	ENT (<72 h	ours): Y 1	N/A	LAB Sample Temperature Info:
			Packing Material L	lsed:				Rei		Lab Trac		a su			Temp Blank Received: Y. N. N. Therm IDE: THE 230
			Radchem sample(s) screened	d (<\$00 cpm):	Y N	NA .			100	received v		ourier Pace	Courier	Cooler 1 Temp Upon Receipt 5 C Cooler 1 Therm Corr, Factor: 0 oC Cooler 1 Corrected Temp: 15 oC
Relinquished by/Company: (Signature)		₽.	10-2026 0		K.W.	WWH	ed F	ac	e		20/20	1003	MTJL LAB Table #:	USE ONLY	Comments:
Relinquished by/Company: (Signature)		Date	e/Time:	1	Aeceived by/C	ompayle (Si	ignature)				e/Time:		Acctnum: Template: Prelogin:		Trip Blank Received: Y N MA HCL MeOH TSP Other
Relinquished by/Company: (Signature)	Date	e/Time		Received by/Company: (Signature)					Date	e/Time:		PM: PB:		Non Conformance(s): Page: 1 YES / NO of: 1	

Pace Analytical			-CUSTODY Analy						-		LAB US	E ONLY-	Affix			gin Label Log-In Ru		List Pace Workorder Number or are
Company: Georgia Power - Coal Combust		Utain-01-U	Billing Information:	ng.m.	- Complete and	e-c	-					AL	LSH	ADED	AR	EAS ar	e for l	LAB USE ONLY
Address: 2480 Maner Road									-					tum Tum			-	Lab Project Manager:
Atlanta, GA 30339									-		Cont			tive Type	-	1 1	-	Go Project manager.
Report To: Joju Abraham			Email To scsinvoices@s	southe	ernco com			-		1			100					
neport ro. Joja noremen									** Pre	servative Ty	pes (1) min	ric acid, (2) sulfur	ic acid, [3] hydr	och one ac	5d, (4) sod	ium hydroxide, (5) zinc acetate
Copy To: Golder			Site Collection Info/Add	iness	Plant Branch					ethanol (7) s emonium hy		TSP, (U)	Unpres	erved, (O)			l ascounce	acid. (6) ammonium sulfate,
phone. (404) 506-7239			State Georgia City: Mi	Barlos	eville. Time 70	ne Collecte	ed.	-				A	nalyse	5	_	-		Lab Profile/Line:
prione: (404) 506-7235 Email: jabraham@southernco.com					IMT ICT									34	190		200	Lab Sample Receipt Checklist: Custody Seals Present/Intact Y N NA
Phone (404) 506-7239	Pro ect Name	Plant Bran	ch BCD Network		Pace Profiles				7							1	155	Custody Signatures Present Y N NA
Email: jabraham@southernco.com	Project # CCR	r admit brief	Con Deco Inclination													1 1		Collector Signature Present Y N NA
Collected By (print): Travis Martinez,	Purchase Orde	- 5			Pace Project M	anager:								a -	1	1 1	3	Bottles Intact Y N NA
Andrea McOure	Quote #				kevin.heming@		com			1 1	94 B				100	1 1		Correct Bottles YN NA
Collegged By (signature):	Turnaround Da	ate Require	d		Immediately Pa				1		14					1 1		Sufficient Volume Y N NA Samples Received on Ice Y N NA
ZM	1				[X] Yes [-	18	1 1	8	VOA - Headspace Acceptable Y N NA
	Rush:				Field Filtered (i		e).		7	90				i, i				USDA Regulated Soils YN NA
	[] 2 Day [13 Day	[] Next Day [] 4 Day [] 5 Day targes Apply()	1] No	280.5			comments					133			Samples in Holding Time Y N NA Residual Chlorine Present Y N NA Cl Sortos:
 Matrix Codes (Insert in Matrix box belo Product (P), Soil/Soild (SL), Oil (OL), Will 	pe (WP), Air (AR)	, Tissue (T	5), Bioassay (8), Water (W	νη, ο	ther (OT)		T -11	# of		App IV	0	000	977	>	À.			Suiside Present Y N NA Lead Acetate Strips: LAB USE ONALY:
Customer Sample ID	Matrix *	Grab	Start)	me	Composi	te End	pH	Ctrs	1	Metals	Fluoride		Kadıum	Mercury				12441343
1797 UE	7.4	1	8-20-2020 121			-	5.86	U	13	X	X		X	X	12	1 1		009
BBGWC - 45	GW	6		_		1	5.7		100		X		2	10	-	4 1		OLD
BRGWC - 47	(SW	6	8-20-202014			-			1	X				10	-	-		الله الله
BRGWC-50	Gw	6	8-20-2020 09					64		X	X		X	X	100			
BRGWC-52I	(SW	16	8-20-2020 09	45		10.	6.8	5 6	0.00	X	X		M	X	10		35	Rad-3 (+2 Radium)0
DvP-2	GW	6	8-20-2020 =				-	14	198	X	X	75	X	X	100		HDE.	00
60 2		7	3-20-2020 09				-	4		X	X		X	X	138		885	919
PB-4	WT	6			-	-	-	u	100	X	X		2	10	1		1000	DAS
EB-I	WT	6	8-20-2020 12	כי			ļ	4				1		1		H		
								F							100			
	-	+	+	-			1	+						8	1		Line .	
{App IV Metals} Sb, As, Ba, Be, Cd, Cr,	Co, Hg, Pb, U, Mo	o, Se, TI	Type of Ice Used:	We	et Blue	Dry N	one			SHORT	HOLDS PR	ESENT (72 ha	urs): 1	Y N	N/A		LAS Sample Temperature Info: Temp Slank Received: 4, N NA
			Packing Material Used		Jake 1			77.0		Lab Tra	cking #:							Therm ION. 33 Cooler 1 Temp Upon Receipt ToC
			Radchem sample(s) so	reene	ed (<500 cpm):	Y N	NA			Sample FEDE	s received X UPS		nt C	ourier i	Pace C	ourier		Cooler 1 Therm Corr. Factor O oC Cooler 1 Corrected Temp: 3 of oC
Refrauched by/Company (Signature)	rel Golds		121/7 - 1108		K. TANE	IN/	Town	20	ch	0a	3 21 8	0 1	108	MTJL Table #:		JSE ONLY		Comments:
Reinquished by/Company: (Signature)			le/Time:	/	Received by/Co	ompafy As	Signature)	100	20	Da	nt/Time:			Acctivum Templati Prelogini	e.			Trip Blank Received: Y N NA HCL MeOH TSP Other
Refinquished by/Company: (Signature)		Da	te/Time:		Received by/Co	ompany (S	Signature)			Da	te/Time			Prelogin: PM: PB:				Non Conformance(s): Page: 1 YES / NO of 1

Quality Control Sample Performance Assessment

Test: Ra-226 Analyst: LAL Date: 9/3/2020 55839 DW Worklist: Matrix:

Method Blank Assessment MB Sample ID 1989998 MB concentration: 0.135 M/B Counting Uncertainty: 0.113 MB MDC: 0.203 MB Numerical Performance Indicator: 2.34 MB Status vs Numerical Indicator; N/A MB Status vs. MDC: Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS55839	LCSD55839
Count Date:	9/4/2020	
Spike I.D.:		
Decay Corrected Spike Concentration (pCi/mL):	24.045	ļ
Volume Used (mL):		
Aliquot Volume (L, g, F):	0.502	
Target Conc. (pCi/L, g, F):	4.785	İ
Uncertainty (Calculated):	0.057	
Result (pCi/L, g, F):		[
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.782	
Numerical Performance Indicator:	-1.72	
Percent Recovery:		İ
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:		
Lower % Recovery Limits:	75%	

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F):	92491393012DUP 0.684 0.375 0.377	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): Are sample and/or duplicate results below RL?	See Below ##	
Duplicate Numerical Performance Indicator; Duplicate RPD:		92491393012 92491393012DUP
Duplicate Status vs Numerical Indicator:	N/A	
Duplicate Status vs RPD: % RPD Limit:	Fail*** 25%	

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL);		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator;		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		l i

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	!
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	-
MS/ MSD Duplicate Status vs Numerical Indicator;	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

m914/2020

4m9/4/2020

Page 68 of 73

TAR DW QC Printed: 9/4/2020 9:32 AM

TAR_55839_W.xls

Pace Analytical

Quality Control Sample Performance Assessment

Test: Ra-226
Analyst: LAL
Date: 9/3/2020
Worklist: 55839
Matrix: DW

Method Blank Assessment

MB Sample ID 1989998

MB concentration: 0.135

MB Counting Uncertainty: 0.113

MB MDC: 0.203

MB Numerical Performance Indicator: 2.34

MB Status vs Numerical Indicator: N/A

MB Status vs. MDC: Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS55839	LCSD55839
Count Date:		
Spike I.D.:		
Decay Corrected Spike Concentration (pCi/mL):	24.045	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):		
Target Conc. (pCi/L, g, F):	4.785	
Uncertainty (Calculated):	0,057	l
Result (pCi/L, g, F):		
LCS/LCSD Counting Uncertainty (pCi/L, g, F):		
Numerical Performance Indicator:	~1.72	
Percent Recovery:	85.64%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	125%	
Lower % Recovery Limits:	75%	

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): Are sample and/or duplicate results below RL?	92491663008DUP 0.467 0.143 0.359 0.256 See Below##	other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator; Duplicate RPD; Duplicate Status vs Numerical Indicator; Duplicate Status vs RPD;	26.34% N/A	92491663008 92491663008DUF
% RPD Limit:		

Analyst Must	Manually	Enter A	All Fields	Highlighted i	n Vellou
THE PROPERTY OF	manaany	FIRE A	111 1 10105	mumumea i	n renow

	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
-	Sample Collection Date:		
- 1	Sample I.D.		enter Artes
ı	Sample MS I.D.		
- 1	Sample MSD I.D.		
- 1	Spike I.D.:		
- 1	MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
- [Spike Volume Used in MS (mL):		
1	Spike Volume Used in MSD (mL):		
- 1	MS Aliquot (L, g, F):		
- 1	MS Target Conc.(pCi/L, g, F):		
-	MSD Aliquot (L, g, F):		
	MSD Target Conc. (pCi/L, g, F):		
٠l	MS Spike Uncertainty (calculated):		
H	MSD Spike Uncertainty (calculated):		
11	Sample Result:		
Ш	Sample Result Counting Uncertainty (pCi/L, g, F):		
П	Sample Matrix Spike Result:		
П	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Н	Sample Matrix Spike Duplicate Result:		
Н	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator:		
П	MSD Numerical Performance Indicator:		
П	MS Percent Recovery:		
П	MSD Percent Recovery:		
H	MS Status vs Numerical Indicator:		
П	MSD Status vs Numerical Indicator:		
П	MS Status vs Recovery:		
П	MSD Status vs Recovery:		
П	MS/MSD Upper % Recovery Limits:		
١L	MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	l i
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

***Batch must be re-prepped due to unaccoptable precision. N/F

um 9/4/2020

TAR_55839_W.xls Total Alpha Radium (R104-3 11Feb2019).xls

CMQ, 4, W

Pace Analytical*

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-226
Analyst:	LAL
Date:	9/8/2020
Worklist:	55962
Matrix:	DW

Method Blank Assessment	
MB Sample ID	1994519
MB concentration;	0,075
M/B Counting Uncertainty:	0,085
MB MDC:	0,159
MB Numerical Performance Indicator.	1.74
MB Status vs Numerical Indicator.	N/A
MB Status vs. MDC;	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS55962	LCSD55962
Count Date:	9/9/2020	9/9/2020
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.045	24.045
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.506	0.506
Target Conc. (pCi/L, g, F):	4.757	4,755
Uncertainty (Calculated):	0.057	0.057
Result (pCi/L, g, F):	4.703	4.482
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.784	0.767
Numerical Performance Indicator:	~0.13	-0.69
Percent Recovery:	98.88%	94.27%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:		Pass
Upper % Recovery Limits:		125%
Lower % Recovery Limits:	75%	75%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.		Enter Duplicate sample IDs if
Sample Result (pCl/L, g, F):	4.703	other than
Sample Result Counting Uncertainty (pCi/L, g, F):	0.784	LCS/LCSD in
Sample Duplicate Result (pCi/L, g, F):	4,482	the space below.
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):		
Are sample and/or duplicate results below RL?	NO	
Duplicate Numerical Performance Indicator:		
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:		
Duplicate Status vs Numerical Indicator:		
Duplicate Status vs RPD:		
% RPD Limit:	25%	1

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mt.):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		ĺ
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:	•	
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:		
IVIS/MISD LOWER 76 Recovery Limits.		L

1	Matrix Spike/Matrix Spike Duplicate Sample Assessment	
ı	Sample I,D,	
ı	Sample MS I.D.	
ı	Sample MSD I.D.	
ı	Sample Matrix Spike Result:	
ı	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	***
ı	Sample Matrix Spike Duplicate Result:	j
ı	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	1 1
1	Duplicate Numerical Performance Indicator:	1 1
1	(Based on the Percent Recovenes) MS/ MSD Duplicate RPD:	1 1
ı	MS/ MSD Duplicata Status vs Numerical indicator:	1 1
	MS/ MSD Duplicate Status vs RPD:	
	% RPD Limit:	

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Am 9/9/2020

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-226
Analyst:	LAL
Date:	9/8/2020
Worklist:	55962
Matrix:	DW

Method Blank Assessment	
M8 Sample iD	1994519
MB concentration:	0.075
M/B Counting Uncertainty:	0,085
MB MDC;	0,159
MB Numerical Performance Indicator:	1.74
MB Status vs Numerical Indicator.	N/A
MD Photos on MDCs	Посс

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS55962	LCSD55962
Count Date:	9/9/2020	
Spike I.D.:	19-033	
Decay Corrected Spike Concentration (pCi/mL):	24.045	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.506	
Target Conc. (pCi/L, g, F):	4.757	
Uncertainty (Calculated):	0.057	
Result (pCi/L, g, F):	4.703	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.784	
Numerical Performance indicator:	-0.13	
Percent Recovery:	98.88%	
Status vs Numerical Indicator:		
Status vs Recovery:		
Upper % Recovery Limits:		
Lower % Recovery Limits:	75%	1

Duplicate Sample Assessment		
Sample I,D.;	92491393007	Enter Duplicate
Dupilicate Sample I.D.	92491393007DUP	sample IDs if
Sample Result (pCi/L, g, F):	0,053	other than
Sample Result Counting Uncertainty (pCi/L, g, F):	880,0	LCS/LCSD in
Sample Duplicate Result (pCi/L, g, F):	0.094	the space below.
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.086	
Are sample and/or duplicate results below RL?	See Below ##	
Duplicate Numerical Performance Indicator:	-0.651	92491393007
Duplicate RPD;	55.49%	92491393007DUP
Duplicate Status vs Numerical Indicator:	N/A	
Duplicate Status vs RPD:	Fail***	
% RPD Limit:	25%	

San	nple Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
	Sample Collection Date:		
	Sample I.D.		
	Sample MS I.D.		
ł	Sample MSD I.D.		
	Spîke I.D.:		
	MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
	Spike Volume Used in MS (mL):		
	Spike Volume Used in MSD (mL):		
i	MS Aliquot (L, g, F):		
	MS Target Conc.(pCi/L, g, F):		
	MSD Aliquot (L, g, F):		
	MSD Target Conc. (pCi/L, g, F):		
	MS Spike Uncertainty (calculated):		
	MSD Spike Uncertainty (calculated):		
	Sample Result:		
	Sample Result Counting Uncertainty (pCi/L, g, F):		
	Sample Matrix Spike Result:		
	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
	Sample Matrix Spike Duplicate Result:		
l N	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
	MS Numerical Performance Indicator:		
	MSD Numerical Performance Indicator:		
	MS Percent Recovery:		
1	MSD Percent Recovery:		
1	MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:		
1	MSD Status vs Numerical Indicator. MS Status vs Recovery:		
	MSD Status vs Recovery:		
1	MS/MSD Upper % Recovery Limits:		
	MS/MSD Lower % Recovery Limits:		

1	Matrix Spike/Matrix Spike Duplicate Sample Assessment	
l		
L	Sample I.D.	
L	Sample MS I.D.	1
L	Sample MSD I.D.	
L	Sample Matrix Spike Result:	ļ
l	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	***
ı	Sample Matrix Spike Duplicate Result:	
ı	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
1	Duplicate Numerical Performance Indicator:	1
5	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	ļ
•	MS/ MSD Duplicate Status vs Numerical indicator:	
	MS/ MSD Duplicate Status vs RPD:	
	% RPD Limit:	

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

***Batch must be re-prepped due to unacceptable precision. NA

van 9/9/2020

TAR_55962_W.xls Total Alpha Radium (R104-3 11Feb2019).xls

Quality Control Sample Performance Assessment

Test: Ra-228 Analyst: VAL

Date: 9/2/2020 Worklist: 55853 Matrix: WT

 Method Blank Assessment
 MB Sample ID
 1990347

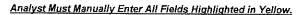
 MB concentration:
 0.274

 MB 2 Sigma CSU:
 0.326

 MB MDC:
 0.685

 MB Numerical Performance Indicator:
 1.65

 MB Status vs Numerical Indicator:
 Pass


Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS55853	LCSD55853
Count Date:	9/9/2020	9/9/2020
Spike I.D.:	20-030	20-030
Decay Corrected Spike Concentration (pCi/mL):	38.472	38.472
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):		0.812
Target Conc. (pCi/L, g, F);	4.748	4.736
Uncertainty (Calculated):	0.233	0.232
Result (pCi/L, g, F):		5.603
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):		1.205
Numerical Performance Indicator:	0.37	1.38
Percent Recovery:		118.30%
Status vs Numerical Indicator:	7 417 1	N/A
Status vs Recovery:		Pass
Upper % Recovery Limits:		135%
Lower % Recovery Limits:	60%	60%

MB Status vs. MDC:

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	LCSD55853 4,963 1,118 5,603	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Are sample and/or duplicate results below RL?		
Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:		
Duplicate Status vs Numerical Indicator:		7.7.7.
Duplicate Status vs RPD:		

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I,D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		:
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:	į	
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment		
Sample LD.		
Sample MS I.D.		l i
Sample MSD I.D.		ŀ
Sample Matrix Spike Result:		ľ
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigrna CSU (pCi/L, g, F):		
Duplicate Numerical Performance Indicator:		
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:		
MS/ MSD Duplicate Status vs Numerical Indicator:		l
MS/ MSD Duplicate Status vs RPD;		
- % RPD Limit:	•	

10/2/2019 10/0/2019

Pace Analytical www.powlate.com

Quality Control Sample Performance Assessment

Test: Ra-228
Analyst: VAL
Date: 9/3/2020
Worklist: 55854
Matrix: WT

 Method Blank Assessment
 MB Sample ID
 1990348

 MB concentration:
 0.805

 MB 2 Sigma CSU:
 0.381

 MB MDC:
 0.635

 MB Numerical Performance Indicator:
 4.14

 MB Status vs Numerical Indicator:
 Fail*

 MB Status vs. MDC:
 See Comment*

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS55854	LCSD55854
Count Date:	9/9/2020	9/9/2020
Spike I.D.:	20-030	20-030
Decay Corrected Spike Concentration (pCi/mL):	38.472	38.472
Volume Used (mi.):	0.10	0.10
Aliquot Volume (L, g, F):	0.815	0.812
Target Conc. (pCl/L, g, F):	4.718	4.741
Uncertainty (Calculated):	0.231	0.232
Result (pCi/L, g, F):	5.944	5.257
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.289	1.159
Numerical Performance Indicator:	1.83	0.86
Percent Recovery:	125.98%	110.89%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:		135%
Lower % Recovery Limits:	60%	60%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Are sample and/or duplicate results below RL?	LCSD55854 5.944 1.289 5.257	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:		
Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD:	Pass Pass	
% RPD Limit:	36%	

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS i.D.		
Sample MSD i.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	} I
Sample Matrix Spike Result:	
Matrix Spike Result 2 Sigma CSU (pCi/L., g, F):	, ,
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	I I
Duplicate Numerical Performance Indicator.	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	I I
MS/ MSD Duplicate Status vs Numerical Indicator.	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	I

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

1/100

^{*}The method blank result is below the reporting limit for this analysis and is acceptable.

September 11, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: **BRANCH BCD ASSESSMENT RADS**

Pace Project No.: 92491914

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on August 21, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring kevin.herring@pacelabs.com

Kan Lung

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder Ben Hodges, Georgia Power Jimmy Jones, Golder Associates Inc. Kristen Jurinko Julie Lehrman, Golder Associates Inc. Ms. Lauren Petty, Southern Co. Services Carolyn Powrozek, Golder Dawn Prell, Golder Associates Inc. Tim Richards, Golder Associates - Atlanta

Brian Steele, Golder

CERTIFICATIONS

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92491914

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Indiana Certification
Iowa Certification #: 391
Kansas/TNI Certification #: E-10358
Kentucky Certification #: KY90133

KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92491914

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92491914001	PZ-51S	Water	08/20/20 13:30	08/21/20 11:08
92491914002	PZ-51I	Water	08/20/20 11:45	08/21/20 11:08

SAMPLE ANALYTE COUNT

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92491914

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92491914001	PZ-51S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92491914002	PZ-51I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

SUMMARY OF DETECTION

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92491914

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92491914001	PZ-51S					
EPA 9315	Radium-226	0.0795 ± 0.170 (0.400) C:94% T:NA	pCi/L		09/04/20 07:31	
EPA 9320	Radium-228	1.11 ± 0.491 (0.779) C:66% T:80%	pCi/L		09/09/20 14:43	
Total Radium Calculation	Total Radium	1.19 ± 0.661 (1.18)	pCi/L		09/10/20 15:16	
92491914002	PZ-51I					
EPA 9315	Radium-226	0.237 ± 0.130 (0.209) C:87% T:NA	pCi/L		09/08/20 17:44	
EPA 9320	Radium-228	0.700 ± 0.436 (0.811) C:69% T:82%	pCi/L		09/09/20 14:43	
Total Radium Calculation	Total Radium	0.937 ± 0.566 (1.02)	pCi/L		09/10/20 15:16	

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92491914

Sample: PZ-51S PWS:	Lab ID: 9249 Site ID:	1914001 Collected: 08/20/20 13:30 Sample Type:	Received:	08/21/20 11:08	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0795 ± 0.170 (0.400) C:94% T:NA	pCi/L	09/04/20 07:3	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.11 ± 0.491 (0.779) C:66% T:80%	pCi/L	09/09/20 14:4	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.19 ± 0.661 (1.18)	pCi/L	09/10/20 15:1	6 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92491914

Sample: PZ-51I PWS:	Lab ID: 9249 Site ID:	1914002 Collected: 08/20/20 11:45 Sample Type:	Received:	08/21/20 11:08 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.237 ± 0.130 (0.209) C:87% T:NA	pCi/L	09/08/20 17:44	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.700 ± 0.436 (0.811) C:69% T:82%	pCi/L	09/09/20 14:43	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.937 ± 0.566 (1.02)	pCi/L	09/10/20 15:16	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92491914

QC Batch: 411439 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92491914001, 92491914002

METHOD BLANK: 1990347 Matrix: Water

Associated Lab Samples: 92491914001, 92491914002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.274 ± 0.326 (0.685) C:63% T:88%
 pCi/L
 09/09/20 12:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

EPA 9315

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92491914

QC Batch: 412359

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92491914002

METHOD BLANK: 1994519 Matrix: Water

Associated Lab Samples: 92491914002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0753 ± 0.0856 (0.159) C:96% T:NA
 pCi/L
 09/08/20 17:44

Analysis Method:

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD ASSESSMENT RADS

EPA 9315

Pace Project No.: 92491914

QC Batch Method:

QC Batch: 411375

> Analysis Description: 9315 Total Radium

Analysis Method:

Pace Analytical Services - Greensburg

EPA 9315

Laboratory:

Associated Lab Samples: 92491914001

METHOD BLANK: 1989998 Matrix: Water

Associated Lab Samples: 92491914001

Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers Parameter Radium-226 0.135 ± 0.115 (0.203) C:91% T:NA pCi/L 09/03/20 16:47

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92491914

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 09/11/2020 11:51 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92491914

Date: 09/11/2020 11:51 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92491914001	PZ-51S	EPA 9315	411375		
92491914002	PZ-51I	EPA 9315	412359		
92491914001	PZ-51S	EPA 9320	411439		
92491914002	PZ-51I	EPA 9320	411439		
92491914001	PZ-51S	Total Radium Calculation	413385		
92491914002	PZ-51I	Total Radium Calculation	413385		

5	nple Condition	and the same	WO#:92491914
. Pace Analytical Client Name	(9A100	ver	11 8 11 8 11 8 1 1 8 1 8 1 8 1 8 1 8 1
Gara Gues Gues Gar		[] p Oher	
ourier: Fed Ex UPS USPS Delier	nt Commercial	Pace Other	92491914 Proj. Name:
ustody Seal on Cooler/Box Present:	no Seals	intact: Tyes	□ no
acking Material: Bubble Wrap Bubble	Bags None	Other	
hermometer Used 230	Type of Ice: Wel	Blue None	Samples on ice, cooling process has begun
emp should be above freezing to 6°C	Biological Tissue	is Frozen: Yes No Comments:	Date and initials of person examining contents:
hain of Custody Present:	Ores Ono On/A	1.	
hain of Custody Filled Out:	☐Yes ☐No ☐N/A	2.	
hain of Custody Relinquished:	AYes ONO ONIA	3.	
ampler Name & Signature on COC:	ÆYes □No □N/A	4.	
amples Arrived within Hold Time:	ØYes □No □N/A	5.	
hort Hold Time Analysis (<72hr):	□Yes ÆN6 □N/A	6.	
sush Turn Around Time Requested:	□Yes □N/A	7.	
ufficient Volume:	ØYes □No □N/A	8.	
Correct Containers Used:	THE DNO. DNIA	9.	
-Pace Containers Used:	ØYes □No □N/A		
Containers Intact:	Des ONO ONIA	10.	
iltered volume received for Dissolved tests	□Yes □No ØN/A	11	
Sample Labels match COC:	Tres ONO ONIA	12.	
-Includes date/time/ID/Analysis Matrix:	W		
Il containers needing preservation have been checked.	GYES DNO DNIA	13.	
If containers needing preservation are found to be in ompliance with EPA recommendation.	EYes ONO ONIA		
xceptions: VOA, colform, TOC, O&G, WI-DRO (water)	□Yes ☑No	Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No □NÃ	14.	
Headspace in VOA Vials (>6mm):	□Yes □No ☑N/A	15.	
rip Blank Present:	□Yes □No ØNIA	16.	
Trip Blank Custody Seals Present	DYES DNO ZINIA	1	
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Date	Time:	
Comments/ Resolution:	- T (0)	100 100 to 100 t	
Comments/ resolution.			
	STATE OF THE STATE OF		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

Date:

ice Analytical*

Document Name:

Bottle Identification Form (BIF)

Document No.:

F-CAR-CS-043-Rev.00

Document Issued: March 14, 2019 Page 1 of 1

Issuing Authority: Pare Carolinae Oustine C

PM: KLH1

Project #

Due Date: 09/14/20

CLIENT: GA-GA Power

*Checks nark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

Matrix	ttem#	8P4U-125 mL Plastic Unpresented 1999	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BPTU-1 liter Plastic Unpreserved (N/A)	8945-125 mL Plastic H2504 (pH < 2) (CI-)	Annual 250 mL plastic HNO3 (pH < 2)	Security of mt Plastic ZN Acetate & NaOH (>9)	Describe me Plastic NaCH (pH > 12) (G-)	winger. Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HG (pH < 2)	CONTRACTOR OF CONTRACTOR (N/A) (CI-)	AGSC-1 liter Amber H2504 (pH < 2)	. 4635-250 mL Amber H2504 (pH < 2)	AGSA[DG3A]-250 mL Amber NH4CI [N/A][CI-]	DESH-40 mL VOA HCI (N/A)		cell 40 mL VOA Unp (N/A)	COME AD ME VOA H3PO4 (N/A)	DOST THE LANGE DOST MAT SO35 KIR (N/A)	VOAN (3 Vials per ktt)-VPH/Gas kit (N/A)	COST. 175 mL Sterile Plastic (N/A - lab)	CD37-350 mt Sterife Plastic (N/A - lab)	32W	BP3A-250 mL Plastic (NH2)2504 (9-3-3-4)	AGOU-100 mL Amber University
-	1	7	1	1	1	1	Ti	1	1	1	+	1	4	+	*	*	+	+	+	+	+	+	1	1	2	1	-
	2	7	_	1	1	+	1	X	K	4	+	+	1	+	1	1	1	1	1	1			1	1	1	1	-
	3		1	1	4	1	4	4	K	4	+	+	1	1	1	T	J	1						1	-	1	1
	5		1	-	-	-	4	H	7	1	=	\Rightarrow	7		7	J	1						-		-	*	+
	6	1	1	-	-	-	7	5	1	1			7		1	V	1	•			_	_	_	-	-	X	+
_	7	+	4	-	-		/	1	K	1			1		1	1			L	1	1	1	1	1.	1-1	X	4
	8	+	4	-	-	-	1	K	K	K	1		1	T	1	1	1	1	-	1	1	1	+	+	+	X	4
_	9	1	K	_	-	-	4	K	X	X	1	1	1	T	1	1	1	1	1	1	1	1	+	+	+-	H	4
_		10	7	-	+	+	K	X	1	X	1	1	1	1	1		1	1	1	1	1	1	+	+	+	H	4
1	1	11	7	-	+	+	+	X	1	1	1	1	1	1	1	1	1	1	1	1	4	1	+	+	+	H	7
1	1		1	1_	1	1	+	X	+	*	+	+	1	T	1	1	1		1	1	1	1		-	1	77	7

Time preservation Date preservation adjusted added pH upon receipt adjusted Type of Preservative Sample 1D Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification i

Pace Analytical*			-CUSTODY As	157 entermo						LAS	USE O	NLY- Affo	ix Workorder/Login Label Here or U MTJL Log-in Number Her SHADED AREAS are for U			lere					
ompany: Georgia Power - Coal Combus			Billing Information					7				ALL S	HADI	ED A	REAS	San	e for	LAB U	SE ONLY		
ddress: 2480 Maner Road tlanta, GA 30339											ontain	er Presen	-	ype *	_	_	_	Lab P	roject Manag	r:	
leport To: Joju Abraham			Email To: scs'invoic	es@south	nernco.com	-			1		١	1			٠.		1		Ten IFI oleans	ata ta	-
									* Preservation of methanol.	e Types: [1] (7) sodium	mone as bisuffate	cid, (2) sufi t, (8) sodiu	m thiosu	ilfate, (orochio: 9) hexan	ec (A)	i, (4) soo ascorbic	acid, (6) a	wide, (5) zinc ac mmonium sulfa	te,	
opy Ta: Golder		- 1	Site Collection Info	:/Address	: Plant Branch) ammonium			, (U) Unpre	eserved,								
hone. (404) 506-7239			State: Georgia Cit	ty: Milledg	eville Time Zo	one Collecte	d:	-			_	Analy	ses		_	-	-	-	rafile/Line: male Receipt O	artiflets	
mail: jabraham@southernco.com					MT CT							1 1				1			ly Seals Present		
hone: (404) 506-7239		Yant Brand	ch BCD Assessment		Pace Profile#							1 1	- 1						ty Signatures Pr		
mail: jabraham@southernco.com	Project # CCR Purchase Order	-			David David 10			-			1	1 1				1			tor Signature Pr s Intact	esent YN NA YN NA	
collected By (print): Travis Martinez, andrea McClure	Quote #				Pace Project M kevin.herring@		nm.	- 1			1	1 1	- 1			1			t Bottles	YNNA	- 13.5
Collected By (signature):	Turnaround Dat	te Require	d:		Immediately P			-											ent Volume	YNNA	
androva					[X]Yes [1	1 1						es Received on Headspace Aco			
	Rush;				Field Filtered (r):		2								USDA	Regulated Solls	YNNA		
	70.000.000.000.000.000		Next Day 4 Day 5 Day		[] Tes [No		- 1	comments		1	1 1	P.				es in Holding Th al Chlorine Pres				
			anges Apply()		Analysis:				Ē							a stra		85-190			
		- 17		-	-			-	0		1	1 1	San		Sample pH Str	e pH Acceptable	THNA				
* Matrix Codes (Insert in Matrix box be	owl: Drinking Wat	er (DW), 0	Fround Water (GW)	Wastew	ater (WW)				200			00						YNNA	1		
Product (P), Soil/Solid (SL), Oil (OL), V									≥		1	228		- 1		- 1		Sulfide Present Y N NA Lead Acetate Strips:			
									App			226.				1			SE ONLY:		454.95
								_	1 7	5.6		100	- 1	~	- 1	- 1		UNBU	SE CHILL		
		Comp /	Collected for Co	omposite	Common		pH	# of	1 %	1 1 5	3	18		51		- 1		LabSa	mple # / Comm	ents:	
Customer Sample ID	Matrix *	Comp / Grab	Start)		Composi		pH	# of Cens	stals A			dium		ercur				Lab Sa	mple # / Comm		116161
Customer Sample ID	Matrix *	Grab	Start) Date	Time	Date	ite End		Cens	Metals	Chuorida		Radium		Mercury				Lab Sa	mple # / Comm		249191
		Grab	Start) Date	Time	Date		615	Cens	X. Metals		4	X Radium		X Mercun			-	Lab Sa	mgie # / Comm		249191
		Grab	Start) Date 8-20-2020	Time 1330	Date		615	Ctres	X. Metals	1						-	-	LibSa	mple # / Comm		249191
PZ - 515 PZ - 511	Gw Gw	Grab	Start) Date	Time 1330	Date			Ctres	Metals	1	4	X				-		Lab Sa	mple # / Comm		249191
		Grab	Start) Date 8-20-2020	Time 1330	Date		615	Ctres	X. Metals	1	4	X				-		Lib Sa	mgie # / Comm		249191
		Grab	Start) Date 8-20-2020	Time 1330	Date		615	Ctres	X. Metals	1	4	X						Lab Sa	mple # / Comm		249191
		Grab	Start) Date 8-20-2020	Time 1330	Date		615	Ctres	X. Metals	1	4	X						Lab Sa	mgie # / Comm		244191
		Grab	Start) Date 8-20-2020	Time 1330	Date		615	Ctres	X. Metals	1	4	X						Lab Sa	mgie # / Comm		244141
		Grab	Start) Date 8-20-2020	Time 1330	Date		615	Ctres	X. Metals	1	4	X						Libb Sa	mgie # / Comm		249191
		Grab	Start) Date 8-20-2020	Time 1330	Date		615	Ctres	X. Metals	1	4	X						Lub Sa	mgie # / Comm		244141
•		Grab	Start) Date 8-20-2020	Time 1330	Date		615	Ctres	X. Metals	1	4	X						List Sa	mgie # / Comm		244141
		Grab	Start) Date 8-20-2020	Time 1330	Date		615	Ctres	X. Metals	1	4	X						Lub Sa		40	
PZ-51s PZ-511	Cm	G G	Start) Date 8-20-2020	Time 1330 1145	Date	Time	615 5.57	Ctres	X X Metals	1	X	X		X	N N	VA		Lub Sa	UAB Sample	Femperatur	re Info:
•	Cm	G G	Start) Date 8-20-2020 8-20-2020 Type of ice Used:	Time 1330 1145	Date	Time	615 5.57	Ctres	K X Wetals	ORTHOLD	S PRESI	X		X	N N	WA		Lish Sa	UAB Sample Temp 8tink Pj	Femperatur velocit & N	re Info:
PZ-51s PZ-511	Cm	G G	Start) Date 8-20-2020	Time 1330 1145	Date	Time	615 5.57	Ctres	K X Wetals		S PRESI	X		X	N N	VA		Lub Sa	LAB Sample Temp Blank R Therm HOS Cooler 1 Temp	Femperatur reliad to N	re linfoc I NA
PZ-51s PZ-511	Cm	G G	Start) Date 8-20-2020 8-20-2020 Type of ice Used: Packing Material	Time 1330 1145 W Used:	Date Date	Time	615 5.57	Ctres	PHS PHS	ORT HOLD b Tracking	S PRESI	X X X ENT (<72	hours)	X				Lub Sa	UAB Sample Temp Blank Ry Therm IOE _ g Cooler 1 Temp Cooler 1 Temp	Femperatur relieft & N	re info:
PZ-51s PZ-511	Cm	G G	Start) Date 8-20-2020 8-20-2020 Type of ice Used:	Time 1330 1145 W Used:	Date Date	Time	615 5.57	Ctres	SH KN KN KN KN KN KN KN KN KN KN KN KN KN	ORT HOLD b Tracking	S PRESI	X X ENT (<72	hours)	X				Lub Sa	UAB Sample Temp Blank Ry Therm 104: Cooler 1 Temp Cooler 1 Com	Femperatur relieft & N	re info:
PZ - 5\S PZ - 5\II (App IV Metals): Sb, As, Ba, Be, Cd, Cr	Co. Hg. Pb. U, Mo	G G G G G G G G G G G G G G G G G G G	Start) Date 8-20-2020 8-20-2020 Type of ice Used: Packing Material Radchem sample	Time 1330 1145 W Used:	Date Date	Time Dry No	6.15 5.57	Ctres	SH KN KN KN KN KN KN KN KN KN KN KN KN KN	ORT HOLD Tracking mples rece FEDEX Oute/Tim	S PRESI	X X X X X X X X X X X X X X X X X X X	hours) :	X X X Y Pac		ier		Lub Sa	UAB Sample Temp Blank Ry Therm IOE _ g Cooler 1 Temp Cooler 1 Temp	Femperatur relieft & N	re info:
PZ - 5\S PZ - 5\II	Co. Hg. Pb. U, Mo	G G G G G G G G G G G G G G G G G G G	Start) Date 8-20-2020 8-20-2020 Type of ice Used: Packing Material Radchem sample	Time 1330 1145 W Used:	Date Date Let Blue Let Slue	Time Dry No	6.15 5.57	Ctres	SH KN KN KN KN KN KN KN KN KN KN KN KN KN	ORT HOLD Tracking imples received a content of the	S PRESI	X X X X X X X X X X X X X X X X X X X	Courie MY Table	X Y Par Y Pa	e Couri	ier		Lub Sa	LAB Sample Temp Blank Ry Therm 104 Cooler 1 Time Cooler 1 Com Comments:	Temperatur relief & N Upon Recap in Corr. Factor cited Temp	re info: I NA
PZ - 5\S PZ - 5\I	Co, Hg. Pb. U, Mo	G G G G G G G G G G G G G G G G G G G	Start) Date 8-20-2020 8-20-2020 Type of ice Used: Packing Material Radchem sample	Time 1330 1145 W Used:	Date Date Let Blue Let Slue	Dry No	6.15 5.57	Ctres	SH KN KN KN KN KN KN KN KN KN KN KN KN KN	ORT HOLD Tracking mples rece FEDEX Oute/Tim	S PRESI	X X X X X X X X X X X X X X X X X X X	Courie M Table	X Y Par Par Par Par Par Par Par Par Par Par	e Couri	ier		Lub Sa	UAB Sample Temp Blank Ry Therm IOE Cooler 1 Therm Cooler 1 Com Comments:	Femperatur religit is N Upon Recast in Corr. Factor cted Tenso	re linfoc i MA Loc C oc Lifo oc
PZ - 51S PZ - 51I (App IV Metals): Sb, As, Ba, Be, Cd, Cr Relinquished by/Cgmosny: (Signature Out Mark 14 - 1	Co, Hg. Pb. U, Mo	G G G G G G G G G G G G G G G G G G G	Start) Date 8-20-2020 8-20-2020 Type of ice Used: Packing Material Radchem sample	Time 1330 1145 W Used:	Date Date Tet Blue Ded (<\$00 cpm): Received by/ Received by/	Dry No	6.15 5.57	Ctres	SH KN KN KN KN KN KN KN KN KN KN KN KN KN	ORT HOLD Tracking imples received a content of the	S PRESI	X X X X X X X X X X X X X X X X X X X	Courie M Table Acctr Temp	X : Y Factor of the second of	e Couri	ier		Lub Sa	UAB Sample Temp Blank Ry Therm IOE Cooler 1 Therm Cooler 1 Com Comments:	Femperatur religit is N Upon Recast in Corr. Factor cted Tenso	re info: I NA
PZ - 51S PZ - 51I (App IV Metals): Sb, As, Ba, Be, Cd, Cr Relinquished by/Cgmosny: (Signature Out Mark 14 - 1	Co, Hg. Pb. U, Mo	G G G G G G G G G G G G G G G G G G G	Start) Date 8-20-2020 8-20-2020 Type of ice Used: Packing Material Radchem sample	Time 1330 1145 W Used:	Date Date Tet Blue Ded (<\$00 cpm): Received by/ Received by/	Dry No	615 5-57	Ctres	SH KN KN KN KN KN KN KN KN KN KN KN KN KN	ORT HOLD Tracking imples received a content of the	S PRESI	X X X X X X X X X X X X X X X X X X X	Courie M Table	X : Y Factor of the second of	e Couri	ier		Lub Sa	UAB Sample Temp Blank Ry Therm IOE Cooler 1 Tem Cooler 1 Com Comments: Trip 8 HCI	Femperatur religit is N Upon Recast in Corr. Factor cted Tenso	re info: i MA

September 09, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on August 21, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring@pacela

kevin.herring@pacelabs.com 1(704)875-9092

Kain Lung

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder
Ben Hodges, Georgia Power
Jimmy Jones, Golder Associates Inc.
Kristen Jurinko
Julie Lehrman, Golder Associates Inc.
Ms. Lauren Petty, Southern Co. Services
Carolyn Powrozek, Golder
Dawn Prell, Golder Associates Inc.
Tim Richards, Golder Associates - Atlanta
Brian Steele. Golder

CERTIFICATIONS

BRANCH BCD ASSESSMENT Project:

Pace Project No.: 92491917

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092

Florida DOH Certification #: E87315

Georgia DW Inorganics Certification #: 812

Georgia DW Microbiology Certification #: 812

South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001

Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381

Virginia Certification #: 460204

South Carolina Certification #: 98011001

SAMPLE SUMMARY

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92491917001	PZ-51S	Water	08/20/20 13:30	08/21/20 11:08
92491917002	PZ-51I	Water	08/20/20 11:45	08/21/20 11:08

SAMPLE ANALYTE COUNT

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92491917001	PZ-51S	EPA 6020B	CW1	12
		EPA 7470A	VB	1
		EPA 300.0 Rev 2.1 1993	CDC	1
92491917002	PZ-51I	EPA 6020B	CW1	12
		EPA 7470A	VB	1
		EPA 300.0 Rev 2.1 1993	CDC	1

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92491917001	PZ-51S					
	рН	6.15	Std. Units		09/09/20 17:02	
EPA 6020B	Barium	0.030	mg/L	0.010	08/28/20 15:53	
EPA 6020B	Chromium	0.00063J	mg/L	0.010	08/28/20 15:53	
EPA 6020B	Cobalt	0.0039J	mg/L	0.0050	08/28/20 15:53	
EPA 300.0 Rev 2.1 1993	Fluoride	0.056J	mg/L	0.10	08/25/20 20:05	
2491917002	PZ-51I					
	рН	5.57	Std. Units		09/09/20 17:02	
EPA 6020B	Antimony	0.0017J	mg/L	0.0030	08/28/20 16:16	
EPA 6020B	Barium	0.013	mg/L	0.010	08/28/20 16:16	
EPA 6020B	Beryllium	0.000077J	mg/L	0.0030	08/28/20 16:16	
EPA 6020B	Cadmium	0.0019J	mg/L	0.0025	08/28/20 16:16	
EPA 6020B	Cobalt	0.020	mg/L	0.0050	08/28/20 16:16	
EPA 6020B	Lithium	0.019J	mg/L	0.030	08/28/20 16:16	
EPA 7470A	Mercury	0.000099J	mg/L	0.00020	08/27/20 10:24	

ANALYTICAL RESULTS

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

Date: 09/09/2020 05:03 PM

Sample: PZ-51S	Lab ID:	92491917001	Collecte	ed: 08/20/20	13:30	Received: 08/	21/20 11:08 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Analy	ytical Services	- Charlotte	;					
Н	6.15	Std. Units			1		09/09/20 17:02		
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Analy	ytical Services	- Peachtre	e Corners, C	§A				
Antimony	ND	mg/L	0.0030	0.00028	1	08/27/20 17:10	08/28/20 15:53	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/27/20 17:10	08/28/20 15:53	7440-38-2	
Barium	0.030	mg/L	0.010	0.00071	1	08/27/20 17:10	08/28/20 15:53	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	08/27/20 17:10	08/28/20 15:53	7440-41-7	
Cadmium	ND	mg/L	0.0025	0.00012	1	08/27/20 17:10	08/28/20 15:53	7440-43-9	
Chromium	0.00063J	mg/L	0.010	0.00055	1	08/27/20 17:10	08/28/20 15:53	7440-47-3	
Cobalt	0.0039J	mg/L	0.0050	0.00038	1	08/27/20 17:10	08/28/20 15:53	7440-48-4	
₋ead	ND	mg/L	0.0050	0.000036	1	08/27/20 17:10	08/28/20 15:53	7439-92-1	
_ithium	ND	mg/L	0.030	0.00081	1	08/27/20 17:10	08/28/20 15:53	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/27/20 17:10	08/28/20 15:53	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/27/20 17:10	08/28/20 15:53	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	08/27/20 17:10	08/28/20 15:53	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Prep	paration Met	hod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	€A				
Mercury	ND	mg/L	0.00020	0.000078	1	08/26/20 12:00	08/27/20 10:14	7439-97-6	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Analy	ytical Services	- Asheville						
Fluoride	0.056J	mg/L	0.10	0.050	1		08/25/20 20:05	16984-48-8	

ANALYTICAL RESULTS

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

Date: 09/09/2020 05:03 PM

Sample: PZ-51I	Lab ID:	92491917002	Collecte	ed: 08/20/20	11:45	Received: 08/	21/20 11:08 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical I	Method:							
	Pace Analy	tical Services	- Charlotte	;					
рН	5.57	Std. Units			1		09/09/20 17:02		
6020 MET ICPMS	Analytical I	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Analy	tical Services	- Peachtre	e Corners, C	SA.				
Antimony	0.0017J	mg/L	0.0030	0.00028	1	08/27/20 17:10	08/28/20 16:16	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	08/27/20 17:10	08/28/20 16:16	7440-38-2	
Barium	0.013	mg/L	0.010	0.00071	1	08/27/20 17:10	08/28/20 16:16	7440-39-3	
Beryllium	0.000077J	mg/L	0.0030	0.000046	1	08/27/20 17:10	08/28/20 16:16	7440-41-7	
Cadmium	0.0019J	mg/L	0.0025	0.00012	1	08/27/20 17:10	08/28/20 16:16	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	08/27/20 17:10	08/28/20 16:16	7440-47-3	
Cobalt	0.020	mg/L	0.0050	0.00038	1	08/27/20 17:10	08/28/20 16:16	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	08/27/20 17:10	08/28/20 16:16	7439-92-1	
Lithium	0.019J	mg/L	0.030	0.00081	1	08/27/20 17:10	08/28/20 16:16	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	08/27/20 17:10	08/28/20 16:16	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	08/27/20 17:10	08/28/20 16:16	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	08/27/20 17:10	08/28/20 16:16	7440-28-0	
7470 Mercury	Analytical I	Method: EPA 7	470A Prep	paration Met	hod: EF	PA 7470A			
	Pace Analy	tical Services	- Peachtre	e Corners, C	S A				
Mercury	0.000099J	mg/L	0.00020	0.000078	1	08/26/20 12:00	08/27/20 10:24	7439-97-6	
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Analy	tical Services	- Asheville						
Fluoride	ND	mg/L	0.10	0.050	1		08/25/20 20:20	16984-48-8	

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

Date: 09/09/2020 05:03 PM

QC Batch: 562831 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92491917001, 92491917002

METHOD BLANK: 2984655 Matrix: Water

Associated Lab Samples: 92491917001, 92491917002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00028	08/28/20 15:42	
Arsenic	mg/L	ND	0.0050	0.00078	08/28/20 15:42	
Barium	mg/L	ND	0.010	0.00071	08/28/20 15:42	
Beryllium	mg/L	ND	0.0030	0.000046	08/28/20 15:42	
Cadmium	mg/L	ND	0.0025	0.00012	08/28/20 15:42	
Chromium	mg/L	ND	0.010	0.00055	08/28/20 15:42	
Cobalt	mg/L	ND	0.0050	0.00038	08/28/20 15:42	
_ead	mg/L	ND	0.0050	0.000036	08/28/20 15:42	
_ithium	mg/L	ND	0.030	0.00081	08/28/20 15:42	
Molybdenum	mg/L	ND	0.010	0.00069	08/28/20 15:42	
Selenium	mg/L	ND	0.010	0.0016	08/28/20 15:42	
Гhallium	mg/L	ND	0.0010	0.00014	08/28/20 15:42	

LABORATORY CONTROL SAMPLE:	2984656					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.095	95	80-120	
Arsenic	mg/L	0.1	0.094	94	80-120	
Barium	mg/L	0.1	0.093	93	80-120	
Beryllium	mg/L	0.1	0.096	96	80-120	
Cadmium	mg/L	0.1	0.096	96	80-120	
Chromium	mg/L	0.1	0.097	97	80-120	
Cobalt	mg/L	0.1	0.095	95	80-120	
Lead	mg/L	0.1	0.089	89	80-120	
Lithium	mg/L	0.1	0.094	94	80-120	
Molybdenum	mg/L	0.1	0.094	94	80-120	
Selenium	mg/L	0.1	0.097	97	80-120	
Thallium	mg/L	0.1	0.089	89	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2984	657		2984658							
			MS	MSD								
	9	92491917001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.097	0.095	97	95	75-125	2	20	
Arsenic	mg/L	ND	0.1	0.1	0.094	0.094	94	94	75-125	0	20	
Barium	mg/L	0.030	0.1	0.1	0.12	0.12	94	89	75-125	4	20	
Beryllium	mg/L	ND	0.1	0.1	0.098	0.096	98	96	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

Date: 09/09/2020 05:03 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 2984	657 MS	MSD	2984658							
	9	92491917001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	mg/L	ND ND	0.1	0.1	0.097	0.095	97	95	75-125	3	20	
Chromium	mg/L	0.00063J	0.1	0.1	0.098	0.095	98	94	75-125	4	20	
Cobalt	mg/L	0.0039J	0.1	0.1	0.10	0.098	96	94	75-125	3	20	
Lead	mg/L	ND	0.1	0.1	0.090	0.088	90	88	75-125	2	20	
Lithium	mg/L	ND	0.1	0.1	0.098	0.096	97	96	75-125	2	20	
Molybdenum	mg/L	ND	0.1	0.1	0.097	0.095	97	95	75-125	2	20	
Selenium	mg/L	ND	0.1	0.1	0.093	0.093	93	93	75-125	1	20	
Thallium	mg/L	ND	0.1	0.1	0.090	0.089	90	89	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

Date: 09/09/2020 05:03 PM

QC Batch: 562436 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92491917001, 92491917002

METHOD BLANK: 2982834 Matrix: Water

Associated Lab Samples: 92491917001, 92491917002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00050 0.000078 08/27/20 10:10

LABORATORY CONTROL SAMPLE: 2982835

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury mg/L 0.0025 0.0025 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2982836 2982837

MS MSD

92491917001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec **RPD** RPD Qual Result % Rec Limits ND 0.0025 Mercury mg/L 0.0025 0.0025 0.0024 97 96 75-125 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

QC Batch Method:

Fluoride

QC Batch: 562094

EPA 300.0 Rev 2.1 1993

Analysis Method:

EPA 300.0 Rev 2.1 1993

Analysis Description: Laboratory:

300.0 IC Anions
Pace Analytical Services - Asheville

Associated Lab Samples: 92491917001, 92491917002

METHOD BLANK: 2981303

Date: 09/09/2020 05:03 PM

Matrix: Water

Associated Lab Samples: 92491917001, 92491917002

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 mg/L
 ND
 0.10
 0.050
 08/25/20 12:53

LABORATORY CONTROL SAMPLE: 2981304

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Fluoride 2.5 2.7 108 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2981305 2981306

MS MSD

92492088001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result **RPD** RPD Result % Rec % Rec Limits Qual ND Fluoride mg/L 2.5 2.5 2.6 2.6 104 105 90-110 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2981307 2981308

MS MSD 92491393009 Spike Spike

MS MSD MS MSD % Rec Spike Spike Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Fluoride 2.5 ND 2.5 2.6 2.6 103 103 0 10 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 09/09/2020 05:03 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92491917

Date: 09/09/2020 05:03 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92491917001 92491917002	PZ-51S PZ-51I				
92491917001	PZ-51S	EPA 3005A	562831	EPA 6020B	562944
92491917002	PZ-51I	EPA 3005A	562831	EPA 6020B	562944
92491917001	PZ-51S	EPA 7470A	562436	EPA 7470A	562585
92491917002	PZ-51I	EPA 7470A	562436	EPA 7470A	562585
92491917001	PZ-51S	EPA 300.0 Rev 2.1 1993	562094		
92491917002	PZ-51I	EPA 300.0 Rev 2.1 1993	562094		

57	nple Condition L	Jpon Receipt	WO#:92491917
Pace Analytical Client Name	97110n	ocy	
Courier: Fed Ex UPS USPS DETICE	nt Commercial [Pace Other	92491917 Proj. Name:
Custody Seal on Cooler/Box Present: Tyes	no Seals in	ntact: Tyes [) no
Packing Material: Bubble Wrap Bubble	Bags None	Other	
Thermometer Used 230	Type of Ice: Vet		Samples on ice, cooling process has begun Date and initials, of person examining
Cooler Temperature 2.6	Biological Tissue is	s Frozen: Yes No Comments:	contents 2/2/20 04
Chain of Custody Present:	Dres Ono ON/A	1	
Chain of Custody Filled Out:	Yes ONO ONIA	2	
Chain of Custody Relinquished:	DYes Ono ON/A	3.	
Sampler Name & Signature on COC:	ØYes □No □N/A	4.	
Samples Arrived within Hold Time:	ØYes □No □N/A	5	
Short Hold Time Analysis (<72hr):	□Yes ÆNG □N/A	6	
Rush Turn Around Time Requested:	□Yes □No □N/A	7.	
Sufficient Volume:	DYes ONO ONIA	8.	
Correct Containers Used:	Pros ONO ONA	9.	
-Pace Containers Used:	Dres □No □N/A		
Containers Intact:	Dres □No □N/A	10.	
Filtered volume received for Dissolved tests	□Yes □No ☑NIA	11.	
Sample Labels match COC: -Includes date/time/ID/Analysis Matrix:	WYes ONO ONIA	12.	
All containers needing preservation have been checked.	Gres Ono ONA	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	EYes ONO ONIA		
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes ☑No	Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No □N/A	14.	
Headspace in VOA Vials (>6mm):	□Yes □No □N/A	15	
Trip Blank Present:	□Yes □No ØNIA	16.	
Trip Blank Custody Seals Present	□Yes □No ØNIA	1	
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted: Comments/ Resolution:		/Time:	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

Date:

Page Analytical Page Landing College Project is page 1 post of post if ph angl/or dechlorination is project and within the acceptance range for preservation project. While the project is project in the project in project in the pr		Pace Analytical .	Document Name: Bottle Identification Form (BIF) Document No.: F-CAR-CS-043-Rev.00	Page 1 of 1 Issuing Authority: Pace Carolinas Quality Office
AMOUNT OF CALL MAN CONTROL	rip	les.	ge for preservation	
	*80	11 01 6 9 2 4 9 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hamber Janes Hard (MA) (G-) AG10-3 liter Amber Unpreserved (MA) (G-) AG30-350 mL Amber H2504 (pH < 2) AG35-250 mL Amber H2504 (pH < 2) AG35-250 mL Amber H2504 (pH < 2) AG35-250 mL Amber H2504 (pH < 2)	Preserved Samples Amount of Preservative

Pace Analytical			CUSTODY At							LAB USE			м	TJL Lo	g-in No	umber H	ere	orkarder Number or
mpany: Georgia Power Coal Combu	stion Residuals		Billing Information:							ALL	SHA	DED /	ARE	AS at	re for	LAB USE		
Idress: 2480 Maner Road									Container Preservative Type **							Lab Project Manager:		
lanta, GA 30339			Email To: scs invoices@southernco.com					1		1		3						
port To: Joju Abraham		3	Email 10: SES INVOIC	.656.000	serial o'com				Preservative	Types: (1) nitr	ic acid, (2) s	offunc :	acid, (3) f	hydrach	donic ac	id, (4) sod I asmebic	fium hydroxide acid, (6) ammo	, (5) zinc acetate, onium sulfate.
ppy To: Golder			Site Collection Info	o/Address:	: Plant Branch		2.1	10	ammonium	hydraxide, (C)	TSP, (U) Un	preserv	ed, (0) 0	kher_				
	-			ate: Georgia City: Mrlledgeville Time Zone Collected:							An	alyses		-			Lab Profil	e/Line: e Receipt Checklist:
none: (404) 506-7239 nai: jabraham@southernco.com			State: Georgia Cit		IMT CT												rais Present/Intact Y N NA	
one: (404) 506-7239	04) 506-7239 Project Name: Plant B raham@southernco.com Project # CCR				Pace Profile#								1	1			Custody Si	gnatures Present. Y N NA
ail: jabraham@southernco.com											1			1			Collector S Bottles Int	Agnature Present Y N NA act Y N NA
lected By (print): Travis Martinez,	Purchase Order				Pace Project M			1	11 1	1		1	1				Correct Bo	
drea McClure	Quote #				kevin herring 8	Carried Control of the Control of th		-					1 1	1			Sufficient	
ollected By (signature):	Turnaround Da	te Require	o:		[X]Yes								1					eceived on ice YN NA dispace Acceptable YN NA
mon Non	Rush:			_	Field Filtered		e):						1 1				USDA Reg	ulated Solls YNNA
		Same Day	Next Day		1 000 100 000 000 000 000 000 000 000 0	1 No			· see comments	1 1		1						Holding Time YNNA
	[]2 Day [13 Day (4 Day 5 Da	ıy					٤				1		i		G Str ps	Morine Present Y N NA
		Expedite Ch	arges Apply(Analysis:				0		1		1	1		1		Acceptable YNNA
	-								9				1 1				pH Strips. Sulfide Pro	The second secon
Product [P], Soil/Solid (S.), Oil (OL), 1	Wipe (WP), Air (AR)	(WP), Air (AR), Tissue (TS), Bioassay (B), Water (WT), Other (OT)				LAB USE O												
ustomer Sample ID	Matrix *	Grab	Start) Date	100	Compos	Time	-	Ctns	Metal	Fluoride	Radium		Mercury					GZIKIGIT
D7 .51c	1.w	162	8-20-2020	1330	1	1	615	4	X	X	1×		X					
PZ-515 PZ-511	Gw Gw	6	8-20-2020	1145			5.57	4	X	X	×		X					
12-311	-0-		0 00 000										1	_		-		
											-	-	-	-	-	+		
							-	-	_		-	+	+	-	-	\vdash	-	
				_		-	-	1	_		-		+		-			
				-		-	-	\vdash	-		-	+	+	-				A CONTRACT OF THE PARTY OF THE
		-	-	-		-		-					+					
		-	-	-	+	-	-	+				+	+					
		- Fo T			line of the	Doy M	one	1	ISHO	ORT HOLDS PI	RESENT (<	72 hou	urs): Y	N	N/A			8 Sample Temperature Info:
(App IV Metals): Sb, As, Ba, Be, Cd, C	r, co, mg, ro, u, M	u, se, 11	Type of ice Used: Wet Blue Dry None						Tracking #:		_				-		em lot 232	
			Packing Material	Osed:					-									soler 1 Temp Upon Recogsts DoC
			-	_		72.105			Sam	ples receive					557			ooler 1 Therm Corr. Factor oC
			Radchem sample	e(s) screer	ned (<500 cpm):	YN	NA		FI	EDEX UP	S Œien	t Co	urier P					ooler 1 Corrected Temp 16 0C
Relinquished by/Company: (Signatur	re)		ce/Time:		Received by/	Company: (Signature)	_		Date/Time:	11	1	MTJL	LAB U	SE ONL	Y		
aur While.	Malure/Gu	older	1 .2/12/18	108	KINI	Uhr-	tal	YOU	e_	8 21/	20 II		able #:		-	_		Trip Blank Received: Y N NA
Relinquished by/Company: (Senature)		Da	ite/Time/		Received by/	Compark: Y	Signafure		200	Daté/Timé		Acctnum: Template: Prelogin:						HCL MeOH TSP Other

October 19, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory between September 16, 2020 and September 18, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com 1(704)875-9092

Kan Lung

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder
Ben Hodges, Georgia Power
Jimmy Jones, Golder Associates Inc.
Kristen Jurinko
Julie Lehrman, Golder Associates Inc.
Ms. Lauren Petty, Southern Co. Services
Carolyn Powrozek, Golder
Dawn Prell, Golder Associates Inc.
Tim Richards, Golder Associates - Atlanta

Brian Steele, Golder

CERTIFICATIONS

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92495649001	BRGWA-12S	Water	09/15/20 13:15	09/16/20 09:45
92495649002	BRGWA-12I	Water	09/15/20 11:13	09/16/20 09:45
92495649003	BRGWA-23S	Water	09/15/20 16:10	09/16/20 09:45
92495649004	BRGWC-25I	Water	09/15/20 17:20	09/16/20 09:45
92495649005	BRGWC-29I	Water	09/15/20 17:41	09/16/20 09:45
92495649006	BRGWC-32S	Water	09/16/20 09:16	09/17/20 10:00
92495649007	BRGWC-30I	Water	09/16/20 10:16	09/17/20 10:00
92495649008	BRGWC-47	Water	09/16/20 11:39	09/17/20 10:00
92495649009	BRGWC-45	Water	09/16/20 13:07	09/17/20 10:00
92495649010	BRGWC-27I	Water	09/16/20 14:35	09/17/20 10:00
92495649011	DUP-1	Water	09/16/20 00:00	09/17/20 10:00
92495649012	EB-1	Water	09/16/20 15:11	09/17/20 10:00
92495649013	BRGWC-50	Water	09/17/20 10:24	09/18/20 10:15
92495649014	BRGWC-52I	Water	09/17/20 10:07	09/18/20 10:15
92495649015	FB-2	Water	09/17/20 10:20	09/18/20 10:15

SAMPLE ANALYTE COUNT

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92495649001	BRGWA-12S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA
92495649002	BRGWA-12I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA
92495649003	BRGWA-23S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA
92495649004	BRGWC-25I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA
92495649005	BRGWC-29I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA
92495649006	BRGWC-32S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495649007	BRGWC-30I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495649008	BRGWC-47	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495649009	BRGWC-45	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495649010	BRGWC-27I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495649011	DUP-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495649012	EB-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495649013	BRGWC-50	EPA 9315	LAL	1	PASI-PA

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495649014	BRGWC-52I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495649015	FB-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92495649001	BRGWA-12S					
EPA 9315	Radium-226	0.158 ±	pCi/L	10	0/07/20 07:04	
		0.206 (0.428)				
		C:87% T:NA				
EPA 9320	Radium-228	0.201 ±	pCi/L	10	0/07/20 10:50	
		0.461 (1.02)				
		C:72%				
		T:75%				
Total Radium Calculation	Total Radium	0.359 ± 0.667	pCi/L	10	0/09/20 14:09	
		(1.45)				
2495649002	BRGWA-12I	,				
EPA 9315	Radium-226	0.407 ±	pCi/L	10	0/07/20 07:04	
21710010	Radiani 220	0.277	PONE		0/01/20 01:04	
		(0.441)				
EPA 9320	Radium-228	C:93% T:NA 0.355 ±	pCi/L	10	0/07/20 10:50	
EFA 9320	Radiuiii-220	0.459	pC//L	П	3/07/20 10.50	
		(0.980)				
		C:70% T:85%				
Total Radium Calculation	Total Radium	0.762 ±	pCi/L	1(0/09/20 14:09	
Total Radiani Galoulation	rotal readam	0.736	PONE		0/00/20 14.00	
		(1.42)				
2495649003	BRGWA-23S					
EPA 9315	Radium-226	0.153 ±	pCi/L	10	0/07/20 07:04	
		0.255 (0.571)				
		C:89% T:NA				
EPA 9320	Radium-228	0.884 ±	pCi/L	10	0/07/20 10:50	
		0.492				
		(0.904) C:73%				
		T:77%				
Total Radium Calculation	Total Radium	1.04 ±	pCi/L	10	0/09/20 14:09	
		0.747 (1.48)				
2495649004	BRGWC-25I	(5)				
EPA 9315	Radium-226	0.205 ±	pCi/L	10	0/07/20 07:04	
L1710010	Nadidili 220	0.212	PO//L	T.	0,01120 01.04	
		(0.404)				
EPA 9320	Padium 229	C:92% T:NA -0.0970 ±	nCi/I	47	7/07/20 10:50	
EFA 9320	Radium-228	-0.0970 ± 0.479	pCi/L	10	0/07/20 10:50	
		(1.12)				
		C:73%				
Total Radium Calculation	Total Radium	T:70% 0.205 ±	pCi/L	1/	0/09/20 14:09	
iolai Nauluili GalculatiON	iolai Naululii	0.203 ± 0.691	po/L	П	J/U3/20 14.U3	
		(1.52)				

REPORT OF LABORATORY ANALYSIS

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Lab Sample ID	Client Sample ID				
Method	Parameters	Result	Units	Report Limit Analyz	zed Qualifiers
92495649005	BRGWC-29I				
EPA 9315	Radium-226	0.216 ± 0.249 (0.508)	pCi/L	10/07/20	07:04
EPA 9320	Radium-228	C:89% T:NA 1.01 ± 0.593 (1.12) C:74%	pCi/L	10/07/20	10:50
Total Radium Calculation	Total Radium	T:69% 1.23 ± 0.842 (1.63)	pCi/L	10/09/20	14:09
2495649006	BRGWC-32S				
EPA 9315	Radium-226	0.104 ± 0.148 (0.303)	pCi/L	10/06/20	17:29
EPA 9320	Radium-228	C:80% T:NA 0.0907 ± 0.382 (0.868) C:76%	pCi/L	10/16/20	14:41
Total Radium Calculation	Total Radium	T:81% 0.195 ± 0.530 (1.17)	pCi/L	10/19/20	09:49
92495649007	BRGWC-30I				
EPA 9315	Radium-226	0.177 ± 0.167 (0.320) C:84% T:NA	pCi/L	10/06/20	17:29
EPA 9320	Radium-228	0.253 ± 0.455 (0.995) C:71% T:77%	pCi/L	10/16/20	14:41
Total Radium Calculation	Total Radium	0.430 ± 0.622 (1.32)	pCi/L	10/19/20	09:49
2495649008	BRGWC-47				
EPA 9315	Radium-226	0.160 ± 0.140 (0.259)	pCi/L	10/06/20	17:30
EPA 9320	Radium-228	C:89% T:NA 0.350 ± 0.400 (0.839) C:73%	pCi/L	10/16/20	14:41
Total Radium Calculation	Total Radium	T:79% 0.510 ± 0.540 (1.10)	pCi/L	10/19/20	09:49

REPORT OF LABORATORY ANALYSIS

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92495649009	BRGWC-45					
EPA 9315	Radium-226	-0.00362 ± 0.148	pCi/L		10/06/20 17:30	
EPA 9320	Radium-228	(0.341) C:86% T:NA 0.254 ± 0.452 (0.989)	pCi/L		10/16/20 14:41	
Total Radium Calculation	Total Radium	C:73% T:78% 0.254 ± 0.600 (1.33)	pCi/L		10/19/20 09:49	
92495649010	BRGWC-27I	(/				
EPA 9315	Radium-226	0.175 ± 0.261 (0.563) C:82% T:NA	pCi/L		10/06/20 17:30	
EPA 9320	Radium-228	-0.0837 ± 0.369 (0.878) C:72%	pCi/L		10/16/20 14:41	
Total Radium Calculation	Total Radium	T:81% 0.175 ± 0.630 (1.44)	pCi/L		10/19/20 09:49	
92495649011	DUP-1					
EPA 9315	Radium-226	0.184 ± 0.179 (0.346) C:79% T:NA	pCi/L		10/06/20 17:32	
EPA 9320	Radium-228	0.119 ± 0.445 (1.00) C:71%	pCi/L		10/16/20 14:42	
Total Radium Calculation	Total Radium	T:83% 0.303 ± 0.624 (1.35)	pCi/L		10/19/20 09:49	
92495649012	EB-1					
EPA 9315	Radium-226	-0.0240 ± 0.137 (0.425) C:87% T:NA	pCi/L		10/07/20 07:04	
EPA 9320	Radium-228	0.369 ± 0.523 (1.12) C:68% T:77%	pCi/L		10/16/20 14:42	
Total Radium Calculation	Total Radium	0.369 ± 0.660 (1.55)	pCi/L		10/19/20 09:49	

REPORT OF LABORATORY ANALYSIS

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92495649013	BRGWC-50					
EPA 9315	Radium-226	0.469 ± 0.288 (0.425) C:92% T:NA	pCi/L		10/07/20 07:04	
EPA 9320	Radium-228	0.248 ± 0.403 (0.875) C:68%	pCi/L		10/16/20 14:42	
Total Radium Calculation	Total Radium	T:76% 0.717 ± 0.691 (1.30)	pCi/L		10/19/20 09:49	
92495649014	BRGWC-52I					
EPA 9315	Radium-226	0.895 ± 0.390 (0.442) C:89% T:NA	pCi/L		10/07/20 07:04	
EPA 9320	Radium-228	0.493 (0.792) C:72% T:79%	pCi/L		10/16/20 14:42	
Total Radium Calculation	Total Radium	2.04 ± 0.883 (1.23)	pCi/L		10/19/20 09:49	
92495649015	FB-2					
EPA 9315	Radium-226	0.155 ± 0.224 (0.482) C:86% T:NA	pCi/L		10/07/20 07:04	
EPA 9320	Radium-228	-0.0257 ± 0.323 (0.759) C:74% T:87%	pCi/L		10/16/20 14:42	
Total Radium Calculation	Total Radium	0.155 ± 0.547 (1.24)	pCi/L		10/19/20 09:49	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWA-12S PWS:	Lab ID: 9249 Site ID:	5649001 Collected: 09/15/20 13:15 Sample Type:	Received:	09/16/20 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.158 ± 0.206 (0.428) C:87% T:NA	pCi/L	10/07/20 07:04	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.201 ± 0.461 (1.02) C:72% T:75%	pCi/L	10/07/20 10:50	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.359 ± 0.667 (1.45)	pCi/L	10/09/20 14:09	7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWA-12I PWS:	Lab ID: 924956- Site ID:	49002 Collected: 09/15/20 11:13 Sample Type:	Received:	09/16/20 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg			_	
Radium-226	EPA 9315	0.407 ± 0.277 (0.441) C:93% T:NA	pCi/L	10/07/20 07:04	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	0.355 ± 0.459 (0.980) C:70% T:85%	pCi/L	10/07/20 10:50	15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.762 ± 0.736 (1.42)	pCi/L	10/09/20 14:09	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWA-23S PWS:	Lab ID: 924956 Site ID:	649003 Collected: 09/15/20 16:10 Sample Type:	Received:	09/16/20 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg			_	,
Radium-226	EPA 9315	0.153 ± 0.255 (0.571) C:89% T:NA	pCi/L	10/07/20 07:04	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	0.884 ± 0.492 (0.904) C:73% T:77%	pCi/L	10/07/20 10:50	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.04 ± 0.747 (1.48)	pCi/L	10/09/20 14:09	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWC-25I PWS:	Lab ID: 924956 Site ID:	49004 Collected: 09/15/20 17:20 Sample Type:	Received:	09/16/20 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg		,		
Radium-226	EPA 9315	0.205 ± 0.212 (0.404) C:92% T:NA	pCi/L	10/07/20 07:04	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	-0.0970 ± 0.479 (1.12) C:73% T:70%	pCi/L	10/07/20 10:50	15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.205 ± 0.691 (1.52)	pCi/L	10/09/20 14:09	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWC-29I PWS:	Lab ID: 9249564 Site ID:	O005 Collected: 09/15/20 17:41 Sample Type:	Received:	09/16/20 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	vices - Greensburg				
Radium-226	EPA 9315	0.216 ± 0.249 (0.508) C:89% T:NA	pCi/L	10/07/20 07:04	13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 9320	1.01 ± 0.593 (1.12) C:74% T:69%	pCi/L	10/07/20 10:50	15262-20-1	
	Pace Analytical Serv	rices - Greensburg				
Total Radium	Total Radium Calculation	1.23 ± 0.842 (1.63)	pCi/L	10/09/20 14:09	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWC-32S PWS:	Lab ID: 9249 Site ID:	5649006 Collected: 09/16/20 09:16 Sample Type:	Received:	09/17/20 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.104 ± 0.148 (0.303) C:80% T:NA	pCi/L	10/06/20 17:29	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.0907 ± 0.382 (0.868) C:76% T:81%	pCi/L	10/16/20 14:41	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.195 ± 0.530 (1.17)	pCi/L	10/19/20 09:49	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWC-30I PWS:	Lab ID: 9249 Site ID:	5649007 Collected: 09/16/20 10:16 Sample Type:	Received:	09/17/20 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			_	
Radium-226	EPA 9315	0.177 ± 0.167 (0.320) C:84% T:NA	pCi/L	10/06/20 17:29	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.253 ± 0.455 (0.995) C:71% T:77%	pCi/L	10/16/20 14:41	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.430 ± 0.622 (1.32)	pCi/L	10/19/20 09:49	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWC-47 PWS:	Lab ID: 92495 Site ID:	6649008 Collected: 09/16/20 11:39 Sample Type:	Received:	09/17/20 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 9315	0.160 ± 0.140 (0.259) C:89% T:NA	pCi/L	10/06/20 17:30	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	0.350 ± 0.400 (0.839) C:73% T:79%	pCi/L	10/16/20 14:4	15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	0.510 ± 0.540 (1.10)	pCi/L	10/19/20 09:49	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWC-45 PWS:	Lab ID: 924956 Site ID:	49009 Collected: 09/16/20 13:07 Sample Type:	Received:	09/17/20 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg		•		
Radium-226	EPA 9315	-0.00362 ± 0.148 (0.341) C:86% T:NA	pCi/L	10/06/20 17:30	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	0.254 ± 0.452 (0.989) C:73% T:78%	pCi/L	10/16/20 14:41	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.254 ± 0.600 (1.33)	pCi/L	10/19/20 09:49	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWC-27I PWS:	Lab ID: 9249 Site ID:	5649010 Collected: 09/16/20 14:35 Sample Type:	Received:	09/17/20 10:00 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.175 ± 0.261 (0.563) C:82% T:NA	pCi/L	10/06/20 17:30	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	-0.0837 ± 0.369 (0.878) C:72% T:81%	pCi/L	10/16/20 14:41	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.175 ± 0.630 (1.44)	pCi/L	10/19/20 09:49	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: DUP-1 PWS:	Lab ID: 924956 4 Site ID:	19011 Collected: 09/16/20 00:00 Sample Type:	Received:	09/17/20 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg			_	
Radium-226	EPA 9315	0.184 ± 0.179 (0.346) C:79% T:NA	pCi/L	10/06/20 17:32	2 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	0.119 ± 0.445 (1.00) C:71% T:83%	pCi/L	10/16/20 14:42	2 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.303 ± 0.624 (1.35)	pCi/L	10/19/20 09:49	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: EB-1 PWS:	Lab ID: 9249 Site ID:	5649012 Collected: 09/16/20 15:11 Sample Type:	Received:	09/17/20 10:00 N	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	-0.0240 ± 0.137 (0.425) C:87% T:NA	pCi/L	10/07/20 07:04	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.369 ± 0.523 (1.12) C:68% T:77%	pCi/L	10/16/20 14:42	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.369 ± 0.660 (1.55)	pCi/L	10/19/20 09:49	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWC-50 PWS:	Lab ID: 9249 : Site ID:	5649013 Collected: 09/17/20 10:24 Sample Type:	Received:	09/18/20 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.469 ± 0.288 (0.425) C:92% T:NA	pCi/L	10/07/20 07:04	4 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.248 ± 0.403 (0.875) C:68% T:76%	pCi/L	10/16/20 14:42	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.717 ± 0.691 (1.30)	pCi/L	10/19/20 09:49	9 7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: BRGWC-52I PWS:	Lab ID: 924956 Site ID:	649014 Collected: 09/17/20 10:07 Sample Type:	Received:	09/18/20 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	0.895 ± 0.390 (0.442) C:89% T:NA	pCi/L	10/07/20 07:04	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	1.14 ± 0.493 (0.792) C:72% T:79%	pCi/L	10/16/20 14:42	2 15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	2.04 ± 0.883 (1.23)	pCi/L	10/19/20 09:49	7440-14-4	

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Sample: FB-2 Lab ID: 92495649015 Collected: 09/17/20 10:20 Received: 09/18/20 10:15 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 9315 $0.155 \pm 0.224 \quad (0.482)$ Radium-226 pCi/L 10/07/20 07:04 13982-63-3 C:86% T:NA Pace Analytical Services - Greensburg EPA 9320 -0.0257 ± 0.323 (0.759) Radium-228 pCi/L 10/16/20 14:42 15262-20-1 C:74% T:87% Pace Analytical Services - Greensburg Total Radium Total Radium 0.155 ± 0.547 (1.24) pCi/L 10/19/20 09:49 7440-14-4 Calculation

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

QC Batch: 415615 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92495649001, 92495649002, 92495649003, 92495649004, 92495649005, 92495649006, 92495649007, 92495649008, 92495649009, 92495649010, 92495649011, 92495649012, 92495649013, 92495649014,

92495649015

METHOD BLANK: 2009755 Matrix: Water

Associated Lab Samples: 92495649001, 92495649002, 92495649003, 92495649004, 92495649005, 92495649006, 92495649007,

92495649008, 92495649009, 92495649010, 92495649011, 92495649012, 92495649013, 92495649014,

92495649015

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.119 ± 0.160 (0.326) C:94% T:NA
 pCi/L
 10/06/20 17:26

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

QC Batch: 415618 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92495649001, 92495649002, 92495649003, 92495649004, 92495649005

METHOD BLANK: 2009758 Matrix: Water

Associated Lab Samples: 92495649001, 92495649002, 92495649003, 92495649004, 92495649005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.318 ± 0.350 (0.730) C:76% T:82%
 pCi/L
 10/07/20 10:48

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

QC Batch: 418037 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92495649006, 92495649007, 92495649008, 92495649009, 92495649010, 92495649011, 92495649012,

92495649013, 92495649014, 92495649015

METHOD BLANK: 2021120 Matrix: Water

Associated Lab Samples: 92495649006, 92495649007, 92495649008, 92495649009, 92495649010, 92495649011, 92495649012,

92495649013, 92495649014, 92495649015

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.335 ± 0.463 (0.993) C:71% T:73%
 pCi/L
 10/16/20 14:41

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 10/19/2020 06:20 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD NETWORK RADS

Pace Project No.: 92495649

Date: 10/19/2020 06:20 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92495649001	BRGWA-12S	EPA 9315	415615		
2495649002	BRGWA-12I	EPA 9315	415615		
2495649003	BRGWA-23S	EPA 9315	415615		
2495649004	BRGWC-25I	EPA 9315	415615		
2495649005	BRGWC-29I	EPA 9315	415615		
2495649006	BRGWC-32S	EPA 9315	415615		
2495649007	BRGWC-30I	EPA 9315	415615		
2495649008	BRGWC-47	EPA 9315	415615		
2495649009	BRGWC-45	EPA 9315	415615		
2495649010	BRGWC-27I	EPA 9315	415615		
2495649011	DUP-1	EPA 9315	415615		
2495649012	EB-1	EPA 9315	415615		
2495649013	BRGWC-50	EPA 9315	415615		
2495649014	BRGWC-52I	EPA 9315	415615		
2495649015	FB-2	EPA 9315	415615		
2495649001	BRGWA-12S	EPA 9320	415618		
2495649002	BRGWA-12I	EPA 9320	415618		
2495649003	BRGWA-23S	EPA 9320	415618		
2495649004	BRGWC-25I	EPA 9320	415618		
2495649005	BRGWC-29I	EPA 9320	415618		
2495649006	BRGWC-32S	EPA 9320	418037		
2495649007	BRGWC-30I	EPA 9320	418037		
2495649008	BRGWC-47	EPA 9320	418037		
2495649009	BRGWC-45	EPA 9320	418037		
2495649010	BRGWC-27I	EPA 9320	418037		
2495649011	DUP-1	EPA 9320	418037		
2495649012	EB-1	EPA 9320	418037		
2495649013	BRGWC-50	EPA 9320	418037		
2495649014	BRGWC-52I	EPA 9320	418037		
2495649015	FB-2	EPA 9320	418037		
2495649001	BRGWA-12S	Total Radium Calculation	417873		
2495649002	BRGWA-12I	Total Radium Calculation	417873		
2495649003	BRGWA-23S	Total Radium Calculation	417873		
2495649004	BRGWC-25I	Total Radium Calculation	417873		
2495649005	BRGWC-29I	Total Radium Calculation	417873		
2495649006	BRGWC-32S	Total Radium Calculation	419126		
2495649007	BRGWC-30I	Total Radium Calculation	419126		
2495649008	BRGWC-47	Total Radium Calculation	419126		
2495649009	BRGWC-45	Total Radium Calculation	419126		
2495649010	BRGWC-27I	Total Radium Calculation	419126		
2495649011	DUP-1	Total Radium Calculation	419126		
2495649012	EB-1	Total Radium Calculation	419126		
2495649013	BRGWC-50	Total Radium Calculation	419126		
2495649014	BRGWC-52I	Total Radium Calculation	419126		
2495649015	FB-2	Total Radium Calculation	419126		

Sample Condition Upon Receipt WO#: 92495649 Client Name: GA Power Courier: Fed Ex UPS USPS Client Commercial Pace C Tracking #: MAN CONTRACTOR OF TAMES Custody Seal on Cooler/Box Present: yes Seals intact: ves no Bubble Bags Mone Other Packing Material: Bubble Wrap Type of Ice: Wel Blue None Samples on ice, cooling process has begun Thermometer Used Date and Initials of Biological Tissue is Frozen: Yes No Cooler Temperature contents: Comments: Temp should be above freezing to 6°C Pres ONO ONA 1 Chain of Custody Present: Yes ONO ON/A Chain of Custody Filled Out: Yes DNo □N/A Chain of Custody Relinquished: TYOS DNO □N/A Sampler Name & Signature on COC: Yes ONo □N/A Samples Arrived within Hold Time: □Yes BNo ONIA 6 Short Hold Time Analysis (<72hr): TYes SNo □N/A Rush Turn Around Time Requested: Yes ONo □N/A 8 Sufficient Volume: Yes ONo □N/A Correct Containers Used: Yes DNo DN/A -Pace Containers Used: PYes DNo □N/A Containers Intact: □Yes QNo -□N/A Filtered volume received for Dissolved tests Yes ONO ON/A Sample Labels match COC: -Includes date/time/ID/Analysis All containers needing preservation have been checked. CHARLE CONT. CONTR. All containers needing preservation are found to be in ZYes ONO ON/A compliance with EPA recommendation. Lot # of added Initial when □Yes □Ko completed preservative exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)

Client Notification/ Resolution:

Person Contacted:

Comments/ Resolution:

Project Manager Review:

Field Data Required? Y / N

Date/Time:

Date/Time:

Date/Time:

Date:

DNA

DNIA

BN/A

DAVA 15.

14

16.

☐Yes ☐No

☐Yes ☐No

☐Yes ☐No

☐Yes ☐No

Samples checked for dechlorination:

Headspace in VOA Vials (>6mm):

Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased):

Trip Blank Present:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Pace	Analytical ·	Document Name: Bottle Identification For Document No.: F-CAR-CS-043-Rev	m (BIF)	Page 1 (Issuing Aut Pace Carolinas C	hority: quality Office
erified and within simples.	the acceptance ran m, TOC, Oil and Grease, O ox is to list number	or dechlorination is ge for preservation RO/8015 (water) DOC, LLHg of bottle	Project #	WO#: 92	Due Date: 10/0//20
11811	1 8	BP4C-125 mL Plastic NaOH (pH > 12) (C-) WGFU-Wide-mouthed Glass Jar Unpreserved WGFU-Wide-mouthed Glass Jar Unpreserved AG3U-1 liter Amber Unpreserved (N/A) (C-) AG3U-250 mL Amber Unpreserved (N/A) (C-)	AG35-250 mL Amber H2504 (pH < 2) AG35-250 mL Amber H24CH (N/A)(C-) AG36(DG3A)-250 mL Amber NH4CI (N/A)(C-) AG36(DG3A)-250 mL Amber NH4CI (N/A)(C-)	Served Page 40 mt voa ha25203 (N/A) VG91-40 mt voa ha25203 (N/A) DG99-40 mt voa H3P04 (N/A) VOAK (6 viels per htt)-5035 Et (N/A)	V/GK (3 viels per lett)-VPH/Gas att (V/A – lab) SP5T-125 mL Sterile Plastic (N/A – lab) SP2T-250 mL Sterile Plastic (N/A – lab) SP3T-250 mL Sterile Plastic (N/A – lab) SP3T-250 mL Sterile Plastic (N/A – lab) AG0U-100 mL Amber Unpreserved vials (N/A)
Sample ID	Type of Preservative	pH Adjustmen pH upon receipt Date pres	arvation adjusted	Time preservation adjusted	Amount of Preservative added
			co camples a copy	of this form will be sent to	the North Carolina DEHNR Certifica

of 1

YES / NO

PB:

Pace Analytical

Quality Control Sample Performance Assessment

Test: Ra-226
Analyst: LAL
Date: 10/6/2020
Worklist: 56393
Matrix: DW

 Method Blank Assessment
 MB Sample ID
 2009755

 MB concentration:
 0.119

 MB Counting Uncertainty:
 0.159

 MB MDC:
 0.326

 MB Numerical Performance Indicator:
 1.46

 MB Status vs Numerical Indicator:
 N/A

 MB Status vs. MDC:
 Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS56393	LCSD56393
Count Date:	10/7/2020	
Spike I.D.:	19-033	
Decay Corrected Spike Concentration (pCi/mL):	24.044	
Volume Used (mL);	0.10	
Aliquot Volume (L, g, F):	0,505	
Target Conc. (pCi/L, g, F);	4.763	
Uncertainty (Calculated):	0.057	
Result (pCi/L, g, F):	4.553	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.770	
Numerical Performance Indicator;	-0.53	
Percent Recovery:	95.58%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	125%	
Lower % Recovery Limits:	75%	1

Duplicate Sample Assessment		
Sample I.D.;	92495649004	Enter Duplicate
Duplicate Sample I.D.	92495649004DUP	sample IDs if
Sample Result (pCi/L, g, F):	0.205	other than
Sample Result Counting Uncertainty (pCi/L, g, F):	0.210	LCS/LCSD in
Sample Duplicate Result (pCi/L, g, F):	0.239	the space below.
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.276	
Are sample and/or duplicate results below RL?	See Below ##	
Duplicate Numerical Performance Indicator:	-0,193	92495649004
Duplicate RPD:	15.40%	92495649004DUF
Duplicate Status vs Numerical Indicator:	N/A	
Duplicate Status vs RPD:	Pass	
% RPD Limit:	25%	

Analyst Must Manually	Enter All Fields	Highlighted in Vallow
Analyst Must manually	LIREI AII I JEIUS	inginiquiteu in Tenuw.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS 1.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result;		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		İ
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:		
MSD Status vs Numerical indicator: MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	1

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

um 10/7/2020

Q10.7.w

36

Quality Control Sample Performance Assessment

Test: Ra-226 Analyst: LAL 10/6/2020 Date: Worklist: Matrix: 56393 DW

Method Blank Assessment MB Sample ID 2009755 MB concentration: 0,119 M/B Counting Uncertainty: 0.159 MB MDC: 0.326 MB Numerical Performance Indicator: 1,46 MB Status vs Numerical Indicator: N/A MB Status vs. MDC: Pass

Laboratory Control Sample Assessment	1.000.0/ 100	
Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS56393	LCSD56393
Count Date:	10/7/2020	10/7/2020
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.044	24.044
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):		0.510
Target Conc. (pCi/L, g, F):	4,763	4.718
Uncertainty (Calculated):	0.057	0.057
Result (pCi/L, g, F):		4.593
LCS/LCSD Counting Uncertainty (pCi/L, g, F):		0,790
Numerical Performance Indicator:	-0.53	-0.31
Percent Recovery:		97.35%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:		125%
Lower % Recovery Limits:	75%	75%

Duplicate Sample Assessment		
Sample I.D.; Duplicate Sample I.D.; Sample Result (pCi/L, g, F); Sample Result Counting Uncertainty (pCi/L, g, F); Sample Duplicate Result (pCi/L, g, F); Sample Duplicate Result (pCi/L, g, F);	LCSD56393 4.553 0.770 4.593 0.790	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD;	-0,071	92495649004 92495649004DUP
Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit:	N/A	22.103043004201

Analyst Must Manually Enter All Fields Highlighted	in Yellow.
--	------------

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (ml.):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MSD Numerical Performance indicator: MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery		
MSD Status vs Recovery		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

VAM 10/7/2020

TAR_56393_W.xls

Pace Analytical*

Quality Control Sample Performance Assessment

Test:	Ra-228
Analyst:	VAL
Date:	10/14/2020
Worklist:	56680
Matrix:	WT

Method Blank Assessmer	nt .	
	MB Sample ID	2021120
	MB concentration:	0.335
	M/B 2 Sigma CSU:	0.463
	MB MDC:	0.993
	MB Numerical Performance Indicator:	1.42
	MB Status vs Numerical Indicator:	Pass
	MR Statue ve MDC	Page

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
	LC\$56680	LCSD56680
Count Date:	10/16/2020	10/16/2020
Spike I.D.:	20-030	20-030
Decay Corrected Spike Concentration (pCi/mL):	38.004	38.004
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.814	0,821
Target Conc. (pCi/L, g, F):	4,668	4.627
Uncertainty (Calculated):	0.229	0.227
Result (pCi/L, g, F):	3.950	4.745
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.924	1.105
Numerical Performance Indicator:	-1.48	0.20
Percent Recovery:	84.63%	102.54%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:		135%
Lower % Recovery Limits:	60%	60%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RL?	LCSD56680 3.950 0.924 4.745 1.105	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:		
Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD i imit*	Pass	

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		1
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery: MS Status vs Numerical Indicator:		
MSD Status vs Numerical indicator:		
MSD Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

٨	Matrix Spike/Matrix Spike Duplicate Sample Assessment	
	Sample I.D. Sample MS I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

[1410/19/2020

Quality Control Sample Performance Assessment

Test: Analyst: Ra-228 VAL

10/5/2020 Date: 56396 WT Worklist: Matrix:

Method Blank Assessment

MB Sample ID 2009758 MB concentration: 0.318 M/B 2 Sigma CSU: 0.350 MB MDC: 0.730

MB Numerical Performance Indicator: 1.79 MB Status vs Numerical Indicator: MB Status vs. MDC: Pass Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
·	LC\$56396	LCSD56396
Count Date:	10/7/2020	10/7/2020
Spike I.D.:	20-030	20-030
Decay Corrected Spike Concentration (pCi/mL):	38.119	38.119
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.811	808.0
Target Conc. (pCi/L, g, F):	4.699	4.716
Uncertainty (Calculated):	0.230	0.231
Result (pCi/L, g, F):	3.815	3.363
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.942	0.842
Numerical Performance Indicator:	-1.79	-3.04
Percent Recovery:	81.20%	71.31%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	135%	135%
Lower % Recovery Limits:	60%	60%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RI.? Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit	LCSD56396 3.815 0.942 3.363 0.842 NO 0.702 12.97% Pass Pass	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCVL, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	1
MS/ MSD Duplicate Status vs RPD:	İ
% RPD <u>Limit:</u>	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

September 30, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory between September 16, 2020 and September 18, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

cc: Daniela Herrera, Golder

Kai Lung

1(704)875-9092

HORIZON Database Administrator

Enclosures

Ben Hodges, Georgia Power
Jimmy Jones, Golder Associates Inc.
Kristen Jurinko
Julie Lehrman, Golder Associates Inc.
Ms. Lauren Petty, Southern Co. Services
Carolyn Powrozek, Golder

Dawn Prell, Golder Associates Inc. Tim Richards, Golder Associates - Atlanta Brian Steele, Golder

CERTIFICATIONS

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92495653001	BRGWA-12S	Water	09/15/20 13:15	09/16/20 09:45
92495653002	BRGWA-12I	Water	09/15/20 11:13	09/16/20 09:45
92495653003	BRGWA-23S	Water	09/15/20 16:10	09/16/20 09:45
92495653004	BRGWC-25I	Water	09/15/20 17:20	09/16/20 09:45
92495653005	BRGWC-29I	Water	09/15/20 17:41	09/16/20 09:45
92495653006	BRGWC-32S	Water	09/16/20 09:16	09/17/20 10:00
92495653007	BRGWC-30I	Water	09/16/20 10:16	09/17/20 10:00
92495653008	BRGWC-47	Water	09/16/20 11:39	09/17/20 10:00
92495653009	BRGWC-45	Water	09/16/20 13:07	09/17/20 10:00
92495653010	BRGWC-27I	Water	09/16/20 14:35	09/17/20 10:00
92495653011	DUP-1	Water	09/16/20 00:00	09/17/20 10:00
92495653012	EB-1	Water	09/16/20 15:11	09/17/20 10:00
92495653013	BRGWC-50	Water	09/17/20 10:24	09/18/20 10:15
92495653014	BRGWC-52I	Water	09/17/20 10:07	09/18/20 10:15
92495653015	FB-2	Water	09/17/20 10:20	09/18/20 10:15

SAMPLE ANALYTE COUNT

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

92495653001 BRGWA-12S	Lab ID	Sample ID	Method	Analysts	Analytes Reported
Part Part	92495653001	BRGWA-12S	EPA 6010D	<u> </u>	1
SM 24505-2011 AW1 1			EPA 6020B	CW1	13
P2495653002 PA PR PA PA PA PA PA PA PA PA PA PA PA PA PA			EPA 7470A	VB	1
92495653002 BRGWA-12I EPA 6010D KH 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 CDC 3 92495653003 BRGWA-23S EPA 6010D KH 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 300.0 Rev 2.1 1993 CDC 3 92495653004 BRGWC-25I EPA 6010D KH 1 EPA 300.0 Rev 2.1 1993 CDC 3 92495653004 BRGWC-25I EPA 6010D KH 1 EPA 300.0 Rev 2.1 1993 CDC 3 92495653005 BRGWC-29I EPA 6010D KH 1 EPA 300.0 Rev 2.1 1993 CDC 3 92495653006 BRGWC-29I EPA 6010D KH 1 1 EPA 300.0 Rev 2.1 1993 CDC 3 92495653006 BRGWC-32S EPA 6010D DRB 1			SM 2450C-2011	AW1	1
PA 6020B CW1 13 13 14 14 14 14 14 1			EPA 300.0 Rev 2.1 1993	CDC	3
PATH PATH	92495653002	BRGWA-12I	EPA 6010D	KH	1
SM 2450C-2011			EPA 6020B	CW1	13
92495653003			EPA 7470A	VB	1
92495653003 BRGWA-23S EPA 6010D KH 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 P2495653004 BRGWC-25I EPA 300.0 Rev 2.1 1993 CDC 3 P2495653004 BRGWC-25I EPA 6020B CW1 13 EPA 7470A VB 1 M1 1 SM 2450C-2011 AW1 1 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2495653005 BRGWC-29I EPA 6010D KH 1 EPA 6020B CW1 13 EPA 6020B			SM 2450C-2011	AW1	1
PAR HER HER HER HER HER HER HER HER HER HE			EPA 300.0 Rev 2.1 1993	CDC	3
PAPA 7470A VB 1 1 1 1 1 1 1 1 1	92495653003	BRGWA-23S	EPA 6010D	KH	1
SM 2450C-2011 AW1 1			EPA 6020B	CW1	13
P2495653004 BRGWC-251 BRGWC-251 BRGWC-251 BRGWC-251 BRGWC-251 BRGWC-251 BRGWC-251 BRGWC-251 BRGWC-251 BRGWC-2011 AW1 1 1 1 1 1 1 1 1 1			EPA 7470A	VB	1
92495653004 BRGWC-25I EPA 6010D KH 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2495653005 BRGWC-29I EPA 6010D KH 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2495653006 BRGWC-32S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2495653007 BRGWC-30I AW1 1 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B C			SM 2450C-2011	AW1	1
BPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 SPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 CDC 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 SM 2450C-2011 AW1 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 CDC 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 SM 2450C-2011 AW1 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011			EPA 300.0 Rev 2.1 1993	CDC	3
BERA 7470A VB 1 SM 2450C-2011 AW1 1 1 1 1 1 1 1 1 1	92495653004	BRGWC-25I	EPA 6010D	KH	1
SM 2450C-2011			EPA 6020B	CW1	13
92495653005 BRGWC-29I EPA 300.0 Rev 2.1 1993 CDC 3 92495653005 BRGWC-29I EPA 6010D KH 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 92495653006 BRGWC-32S EPA 6010D DRB 1 EPA 7470A VB 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 CDC 3 92495653007 BRGWC-30I EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 11 EPA 300.0 Rev 2.1 1993 CDC 3 92495653007 BRGWC-30I EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB			EPA 7470A	VB	1
92495653005 BRGWC-29I EPA 6010D KH 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2495653006 BRGWC-32S EPA 6010D DRB 1 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2495653007 BRGWC-30I EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1			SM 2450C-2011	AW1	1
PA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2495653006 BRGWC-32S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2495653007 BRGWC-30I EPA 6010D DRB 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2495653007 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 P2495653008 BRGWC-47 EPA 6010D DRB 1			EPA 300.0 Rev 2.1 1993	CDC	3
EPA 7470A	92495653005	BRGWC-29I	EPA 6010D	KH	1
SM 2450C-2011			EPA 6020B	CW1	13
EPA 300.0 Rev 2.1 1993 CDC 3 92495653006 BRGWC-32S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 92495653007 BRGWC-30I EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1			EPA 7470A	VB	1
92495653006 BRGWC-32S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2495653007 BRGWC-30I EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1			SM 2450C-2011	AW1	1
EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 92495653007 BRGWC-30I EPA 6010D DRB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1			EPA 300.0 Rev 2.1 1993	CDC	3
BRGWC-30I BRGWC-30I FPA 6010D DRB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1	92495653006	BRGWC-32S	EPA 6010D	DRB	1
SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 CDC 3 92495653007 BRGWC-30I EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1			EPA 6020B	CW1	13
92495653007 BRGWC-30I EPA 300.0 Rev 2.1 1993 CDC 3 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1			EPA 7470A	VB	1
92495653007 BRGWC-30I EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1			SM 2450C-2011	AW1	1
EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1			EPA 300.0 Rev 2.1 1993	CDC	3
EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1	92495653007	BRGWC-30I	EPA 6010D	DRB	1
SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1			EPA 6020B	CW1	13
EPA 300.0 Rev 2.1 1993 BRJ 3 92495653008 BRGWC-47 EPA 6010D DRB 1			EPA 7470A	VB	1
92495653008 BRGWC-47 EPA 6010D DRB 1			SM 2450C-2011	AW1	1
			EPA 300.0 Rev 2.1 1993	BRJ	3
EPA 6020B CW1 13	92495653008	BRGWC-47	EPA 6010D	DRB	1
			EPA 6020B	CW1	13

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

_ab ID	Sample ID	Method	Analysts	Analytes Reported	
		EPA 7470A		1	
		SM 2450C-2011	ALW	1	
		EPA 300.0 Rev 2.1 1993	BRJ	3	
92495653009	BRGWC-45	EPA 6010D	DRB	1	
		EPA 6020B	CW1	13	
		EPA 7470A	VB	1	
		SM 2450C-2011	AW1	1	
		EPA 300.0 Rev 2.1 1993	BRJ	3	
2495653010	BRGWC-27I	EPA 6010D	DRB	1	
		EPA 6020B	CW1	13	
		EPA 7470A	VB	1	
		SM 2450C-2011	AW1	1	
		EPA 300.0 Rev 2.1 1993	BRJ	3	
92495653011 D	DUP-1	EPA 6010D	DRB	1	
		EPA 6020B	CW1	13	
		EPA 7470A	VB	1	
		SM 2450C-2011	AW1	1	
		EPA 300.0 Rev 2.1 1993	BRJ	3	
2495653012	EB-1	EPA 6010D	DRB	1	
		EPA 6020B	CW1	13	
		EPA 7470A	VB	1	
		SM 2450C-2011	AW1	1	
		EPA 300.0 Rev 2.1 1993	BRJ	3	
2495653013	BRGWC-50	EPA 6010D	DRB	1	
		EPA 6020B	CW1	13	
		EPA 7470A	FFP	1	
		SM 2450C-2011	ALW	1	
		EPA 300.0 Rev 2.1 1993	BRJ	3	
2495653014	BRGWC-52I	EPA 6010D	DRB	1	
		EPA 6020B	CW1	13	
		EPA 7470A	FFP	1	
		SM 2450C-2011	ALW	1	
		EPA 300.0 Rev 2.1 1993	BRJ	3	
2495653015	FB-2	EPA 6010D	DRB	1	
		EPA 6020B	CW1	13	
		EPA 7470A	FFP	1	
		SM 2450C-2011	ALW	1	

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 300.0 Rev 2.1 1993	BRJ	3

PASI-A = Pace Analytical Services - Asheville
PASI-C = Pace Analytical Services - Charlotte
PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifier
2495653001	BRGWA-12S					
	рН	6.00	Std. Units		09/22/20 12:29	
EPA 6010D	Calcium	5.7	mg/L	1.0	09/17/20 17:55	
EPA 6020B	Barium	0.058	mg/L	0.010	09/21/20 15:38	
PA 6020B	Chromium	0.0025J	mg/L	0.010	09/21/20 15:38	
SM 2450C-2011	Total Dissolved Solids	60.0	mg/L	10.0	09/16/20 14:22	
PA 300.0 Rev 2.1 1993	Chloride	3.5	mg/L	1.0	09/18/20 20:02	
2495653002	BRGWA-12I					
	рН	6.01	Std. Units		09/22/20 12:29	
PA 6010D	Calcium	14.5	mg/L	1.0	09/17/20 18:21	
PA 6020B	Antimony	0.010	mg/L	0.0030	09/21/20 16:01	
PA 6020B	Barium	0.059	mg/L	0.010	09/21/20 16:01	
PA 6020B	Boron	0.0071J	mg/L	0.10	09/21/20 16:01	
PA 6020B	Chromium	0.00096J	mg/L	0.010	09/21/20 16:01	
PA 6020B	Lithium	0.0037J	mg/L	0.030	09/21/20 16:01	
M 2450C-2011	Total Dissolved Solids	95.0	mg/L	10.0	09/16/20 14:22	
PA 300.0 Rev 2.1 1993	Chloride	2.4	mg/L	1.0	09/18/20 20:17	
PA 300.0 Rev 2.1 1993	Fluoride	0.062J	mg/L	0.10	09/18/20 20:17	
PA 300.0 Rev 2.1 1993	Sulfate	1.7	mg/L	1.0	09/18/20 20:17	
2495653003	BRGWA-23S					
	рH	5.72	Std. Units		09/22/20 12:29	
PA 6010D	Calcium	10.7	mg/L	1.0	09/17/20 18:25	
PA 6020B	Antimony	0.00033J	mg/L	0.0030	09/21/20 16:06	
PA 6020B	Barium	0.086	mg/L	0.010	09/21/20 16:06	
PA 6020B	Boron	0.033J	mg/L	0.10	09/21/20 16:06	
PA 6020B	Chromium	0.0019J	mg/L	0.010	09/21/20 16:06	
PA 6020B	Cobalt	0.00076J	mg/L	0.0050	09/21/20 16:06	
PA 6020B	Lithium	0.011J	mg/L	0.030	09/21/20 16:06	
PA 6020B	Selenium	0.0028J	mg/L	0.010	09/21/20 16:06	
M 2450C-2011	Total Dissolved Solids	109	mg/L	10.0	09/16/20 14:23	
PA 300.0 Rev 2.1 1993	Chloride	3.1	mg/L	1.0	09/23/20 23:18	
PA 300.0 Rev 2.1 1993	Sulfate	41.5	mg/L	1.0	09/23/20 23:18	
2495653004	BRGWC-25I		· ·			
	рН	6.00	Std. Units		09/22/20 12:29	
PA 6010D	Calcium	40.1	mg/L	1.0	09/17/20 18:29	
PA 6020B	Barium	0.024	mg/L	0.010		
PA 6020B	Boron	1.2	mg/L		09/21/20 16:12	
PA 6020B	Cobalt	0.0035J	mg/L	0.0050		
PA 6020B	Molybdenum	0.00080J	mg/L	0.010		
M 2450C-2011	Total Dissolved Solids	272	mg/L	10.0		
PA 300.0 Rev 2.1 1993	Chloride	4.9	mg/L	1.0	09/18/20 20:32	
EPA 300.0 Rev 2.1 1993	Fluoride	0.15	mg/L	0.10	09/18/20 20:32	
			-			
		120	mg/L	3.0	03/13/20 00.42	
1490003000		4.50	مناسا المائد		00/22/20 40:20	
'DA 0040D	•			4.5		
PA 6010D	Calcium	55.1	mg/L	1.0	09/17/20 18:34	
EPA 300.0 Rev 2.1 1993 92495653005 EPA 6010D	Sulfate BRGWC-29I pH Calcium	126 4.53 55.1	mg/L Std. Units mg/L	3.0	09/19/20 08:42 09/22/20 12:29 09/17/20 18:34	

REPORT OF LABORATORY ANALYSIS

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2495653005	BRGWC-29I					
PA 6020B	Barium	0.017	mg/L	0.010	09/21/20 16:18	
PA 6020B	Beryllium	0.00071J	mg/L	0.0030	09/21/20 16:18	
PA 6020B	Boron	1.1	mg/L	0.10	09/21/20 16:18	
PA 6020B	Cobalt	0.0064	mg/L	0.0050	09/21/20 16:18	
PA 6020B	Lead	0.00029J	mg/L	0.0050	09/21/20 16:18	
PA 6020B	Lithium	0.0030J	mg/L	0.030	09/21/20 16:18	
PA 6020B	Thallium	0.00016J	mg/L	0.0010	09/21/20 16:18	
M 2450C-2011	Total Dissolved Solids	281	mg/L	10.0	09/16/20 14:23	
PA 300.0 Rev 2.1 1993	Chloride	5.5	mg/L	1.0	09/18/20 20:46	M1
PA 300.0 Rev 2.1 1993	Fluoride	0.057J	mg/L	0.10	09/18/20 20:46	M1
PA 300.0 Rev 2.1 1993	Sulfate	241	mg/L	5.0	09/19/20 08:56	
495653006	BRGWC-32S					
	рН	5.79	Std. Units		09/22/20 12:29	
PA 6010D	Calcium	43.1	mg/L	1.0	09/22/20 20:40	M1
PA 6020B	Barium	0.024	mg/L	0.010	09/22/20 17:02	
PA 6020B	Boron	1.4	mg/L	0.10	09/22/20 17:02	
PA 6020B	Chromium	0.0025J	mg/L	0.010	09/22/20 17:02	
PA 6020B	Lithium	0.0022J	mg/L	0.030	09/22/20 17:02	
PA 6020B	Selenium	0.12	mg/L	0.010	09/22/20 17:02	
M 2450C-2011	Total Dissolved Solids	428	mg/L	10.0	09/17/20 15:20	
PA 300.0 Rev 2.1 1993	Chloride	5.6	mg/L	1.0	09/19/20 00:00	
PA 300.0 Rev 2.1 1993	Sulfate	255	mg/L	5.0	09/19/20 09:55	
2495653007	BRGWC-30I					
	рН	6.29	Std. Units		09/22/20 12:29	
PA 6010D	Calcium	106	mg/L	1.0	09/22/20 20:57	
PA 6020B	Barium	0.022	mg/L	0.010	09/22/20 17:08	
PA 6020B	Boron	1.7	mg/L	0.10	09/22/20 17:08	
PA 6020B	Chromium	0.014	mg/L	0.010	09/22/20 17:08	
PA 6020B	Cobalt	0.00080J	mg/L	0.0050	09/22/20 17:08	
PA 6020B	Lead	0.00011J	mg/L	0.0050	09/22/20 17:08	
PA 6020B	Lithium	0.016J	mg/L	0.030	09/22/20 17:08	
PA 6020B	Molybdenum	0.0022J	mg/L	0.010	09/22/20 17:08	
M 2450C-2011	Total Dissolved Solids	634	mg/L	10.0	09/17/20 15:20	
PA 300.0 Rev 2.1 1993	Chloride	4.4	mg/L	1.0	09/19/20 15:53	
PA 300.0 Rev 2.1 1993	Fluoride	0.13	mg/L	0.10	09/19/20 15:53	
PA 300.0 Rev 2.1 1993	Sulfate	334	mg/L	7.0	09/20/20 02:34	M6
2495653008	BRGWC-47					
	рН	5.76	Std. Units		09/22/20 12:29	
PA 6010D	Calcium	309	mg/L	10.0	09/23/20 12:15	
PA 6020B	Antimony	0.00035J	mg/L	0.0030	09/22/20 17:13	В
PA 6020B	Barium	0.028	mg/L	0.010	09/22/20 17:13	
PA 6020B	Boron	0.47	mg/L	0.10	09/22/20 17:13	
PA 6020B	Cobalt	0.00053J	mg/L	0.0050	09/22/20 17:13	
PA 6020B	Lead	0.000066J	mg/L	0.0050	09/22/20 17:13	
PA 6020B	Lithium	0.039	mg/L	0.030	09/22/20 17:13	
PA 6020B	Selenium	0.0020J	mg/L	0.010	09/22/20 17:13	

REPORT OF LABORATORY ANALYSIS

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
2495653008	BRGWC-47					
SM 2450C-2011	Total Dissolved Solids	2090	mg/L	20.0	09/21/20 16:27	
EPA 300.0 Rev 2.1 1993	Chloride	4.1	mg/L	1.0	09/19/20 16:38	
EPA 300.0 Rev 2.1 1993	Sulfate	1360	mg/L	27.0	09/20/20 03:48	
92495653009	BRGWC-45					
	рH	5.27	Std. Units		09/22/20 12:29	
EPA 6010D	Calcium	39.7	mg/L	1.0	09/22/20 21:06	
EPA 6020B	Antimony	0.0012J	mg/L	0.0030	09/22/20 17:19	В
EPA 6020B	Barium	0.085	mg/L	0.010	09/22/20 17:19	
EPA 6020B	Boron	0.028J	mg/L	0.10	09/22/20 17:19	
EPA 6020B	Chromium	0.0014J	mg/L	0.010	09/22/20 17:19	
EPA 6020B	Cobalt	0.0049J	mg/L	0.0050	09/22/20 17:19	
EPA 6020B	Lead	0.000053J	mg/L	0.0050	09/22/20 17:19	
EPA 6020B	Lithium	0.0036J	mg/L	0.030	09/22/20 17:19	
SM 2450C-2011	Total Dissolved Solids	275	mg/L	10.0	09/17/20 15:20	
EPA 300.0 Rev 2.1 1993	Chloride	54.9	mg/L	1.0	09/19/20 16:53	
EPA 300.0 Rev 2.1 1993	Fluoride	0.052J	mg/L	0.10	09/19/20 16:53	
EPA 300.0 Rev 2.1 1993	Sulfate	103	mg/L	2.0	09/20/20 04:03	
2495653010	BRGWC-27I	.00	9/ =	2.0	00/20/20 0 1100	
2 1000000 10	pH	5.81	Std. Units		09/22/20 12:29	
EPA 6010D	Calcium	62.5	mg/L	1.0		
EPA 6020B	Barium	0.016	mg/L	0.010	09/22/20 17:25	
EPA 6020B	Beryllium	0.00011J	mg/L	0.0030	09/22/20 17:25	
EPA 6020B	Boron	1.2	mg/L	0.10	09/22/20 17:25	
EPA 6020B	Cobalt	0.0080	mg/L	0.0050	09/22/20 17:25	
EPA 6020B	Lithium	0.0014J	mg/L	0.030	09/22/20 17:25	
EPA 6020B	Selenium	0.00143 0.0042J	•	0.030	09/22/20 17:25	
SM 2450C-2011	Total Dissolved Solids	301	mg/L	10.0	09/22/20 17:25	
		5.4	mg/L		09/17/20 15:20	
EPA 300.0 Rev 2.1 1993	Chloride		mg/L	1.0		
EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993	Fluoride Sulfate	0.15	mg/L	0.10 4.0	09/19/20 17:08 09/20/20 04:17	
		190	mg/L	4.0	09/20/20 04:17	
2495653011	DUP-1	400	/l	4.0	00/00/00 04.00	
EPA 6010D	Calcium	108	mg/L	1.0		
EPA 6020B	Barium	0.022	mg/L	0.010	09/22/20 17:31	
EPA 6020B	Boron	1.7	mg/L		09/22/20 17:31	
EPA 6020B	Cobalt	0.00065J	mg/L		09/22/20 17:31	
EPA 6020B	Lithium	0.016J	mg/L		09/22/20 17:31	
EPA 6020B	Molybdenum	0.00076J	mg/L		09/22/20 17:31	
SM 2450C-2011	Total Dissolved Solids	622	mg/L		09/18/20 09:58	
EPA 300.0 Rev 2.1 1993	Chloride	4.4	mg/L		09/19/20 17:23	
EPA 300.0 Rev 2.1 1993	Fluoride	0.13	mg/L		09/19/20 17:23	
EPA 300.0 Rev 2.1 1993	Sulfate	343	mg/L	7.0	09/20/20 04:32	
2495653012	EB-1					
EPA 6020B	Boron	0.0066J	mg/L	0.10	09/22/20 17:36	

REPORT OF LABORATORY ANALYSIS

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Lab Sample ID	Client Sample ID						
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers	
2495653013	BRGWC-50						
	рH	4.41	Std. Units		09/22/20 12:29		
EPA 6010D	Calcium	206	mg/L	1.0	09/22/20 22:02		
EPA 6020B	Antimony	0.00041J	mg/L	0.0030	09/23/20 20:05		
EPA 6020B	Barium	0.020	mg/L	0.010	09/23/20 20:05		
EPA 6020B	Beryllium	0.0065	mg/L	0.0030	09/24/20 17:33		
EPA 6020B	Boron	0.36	mg/L	0.10	09/24/20 17:33		
EPA 6020B	Cadmium	0.021	mg/L	0.0025	09/23/20 20:05		
EPA 6020B	Chromium	0.00098J	mg/L	0.010	09/23/20 20:05		
EPA 6020B	Cobalt	1.4	mg/L	0.050	09/24/20 17:07		
EPA 6020B	Lead	0.00015J	mg/L	0.0050	09/23/20 20:05		
EPA 6020B	Lithium	0.052	mg/L	0.030	09/24/20 17:33		
SM 2450C-2011	Total Dissolved Solids	1910	mg/L	50.0	09/24/20 11:49	D6,H1	
EPA 300.0 Rev 2.1 1993	Chloride	20.1	mg/L	1.0	09/22/20 01:20		
EPA 300.0 Rev 2.1 1993	Fluoride	0.46	mg/L	0.10	09/22/20 01:20		
EPA 300.0 Rev 2.1 1993	Sulfate	1330	mg/L	26.0	09/22/20 14:58		
2495653014	BRGWC-52I						
	pН	6.12	Std. Units		09/22/20 12:29		
EPA 6010D	Calcium	35.4	mg/L	1.0	09/22/20 22:15		
EPA 6020B	Barium	0.020	mg/L	0.010	09/23/20 20:10		
EPA 6020B	Boron	1.9	mg/L	0.10	09/24/20 14:08		
EPA 6020B	Cobalt	0.00046J	mg/L	0.0050	09/23/20 20:10		
EPA 6020B	Lithium	0.0058J	mg/L	0.030	09/24/20 14:08		
EPA 6020B	Molybdenum	0.00070J	mg/L	0.010	09/23/20 20:10		
SM 2450C-2011	Total Dissolved Solids	329	mg/L	10.0	09/21/20 16:30		
EPA 300.0 Rev 2.1 1993	Chloride	6.3	mg/L	1.0	09/22/20 02:04		
EPA 300.0 Rev 2.1 1993	Fluoride	0.074J	mg/L	0.10	09/22/20 02:04		
EPA 300.0 Rev 2.1 1993	Sulfate	165	mg/L	4.0	09/22/20 15:13		
2495653015	FB-2						
EPA 6020B	Boron	0.0097J	mg/L	0.10	09/24/20 14:14		
			J				

ANALYTICAL RESULTS

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWA-12S	Lab ID:	92495653001	Collecte	ed: 09/15/20	13:15	Received: 09/	16/20 09:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
pΗ	6.00	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	6010D Pre	paration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	ЭΑ				
Calcium	5.7	mg/L	1.0	0.070	1	09/16/20 15:14	09/17/20 17:55	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
••••••••••••••••••••••••••••••••••••••		lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/16/20 18:16	09/21/20 15:38	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/16/20 18:16	09/21/20 15:38	7440-38-2	
Barium	0.058	mg/L	0.010	0.00071	1	09/16/20 18:16	09/21/20 15:38	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/16/20 18:16		7440-41-7	
Boron	ND	mg/L	0.10	0.0052	1		09/21/20 15:38	-	
Cadmium	ND	mg/L	0.0025	0.00012	1		09/21/20 15:38		
Chromium	0.0025J	mg/L	0.010	0.00055	1		09/21/20 15:38		
Cobalt	ND	mg/L	0.0050	0.00038	1		09/21/20 15:38		
Lead	ND	mg/L	0.0050	0.000036	1		09/21/20 15:38		
Lithium	ND	mg/L	0.030	0.00081	1		09/21/20 15:38		
Molybdenum	ND	mg/L	0.010	0.00069	1		09/21/20 15:38		
Selenium	ND	mg/L	0.010	0.0016	1		09/21/20 15:38		
Thallium	ND	mg/L	0.0010	0.00014	1		09/21/20 15:38		
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	A 7470A			
•	Pace Ana	lytical Services	- Peachtre	e Corners, 0	3A				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:07	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	3A				
Total Dissolved Solids	60.0	mg/L	10.0	10.0	1		09/16/20 14:22		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	3.5	mg/L	1.0	0.60	1		09/18/20 20:02	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/18/20 20:02		
Sulfate	ND	mg/L	1.0	0.50	1		09/18/20 20:02		

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWA-12I	Lab ID:	92495653002	Collecte	ed: 09/15/20	0 11:13	Received: 09/	16/20 09:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte)					
Н	6.01	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GΑ				
Calcium	14.5	mg/L	1.0	0.070	1	09/16/20 15:14	09/17/20 18:21	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	thod: El	PA 3005A			
		lytical Services							
Antimony	0.010	mg/L	0.0030	0.00028	1	09/16/20 18:16	09/21/20 16:01	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/16/20 18:16	09/21/20 16:01	7440-38-2	
Barium	0.059	mg/L	0.010	0.00071	1		09/21/20 16:01	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/16/20 18:16	09/21/20 16:01	7440-41-7	
Boron	0.0071J	mg/L	0.10	0.0052	1	09/16/20 18:16	09/21/20 16:01	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/16/20 18:16	09/21/20 16:01	7440-43-9	
Chromium	0.00096J	mg/L	0.010	0.00055	1	09/16/20 18:16	09/21/20 16:01	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	09/16/20 18:16	09/21/20 16:01	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	09/16/20 18:16	09/21/20 16:01	7439-92-1	
Lithium	0.0037J	mg/L	0.030	0.00081	1	09/16/20 18:16	09/21/20 16:01	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/16/20 18:16	09/21/20 16:01	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/16/20 18:16	09/21/20 16:01	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/16/20 18:16	09/21/20 16:01	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Pre	paration Met	thod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GΑ				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:09	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GA				
Total Dissolved Solids	95.0	mg/L	10.0	10.0	1		09/16/20 14:22		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	2.4	mg/L	1.0	0.60	1		09/18/20 20:17	16887-00-6	
Fluoride	0.062J	mg/L	0.10	0.050	1		09/18/20 20:17		
Sulfate	1.7	mg/L	1.0	0.50	1		09/18/20 20:17		

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWA-23S	Lab ID:	92495653003	B Collecte	ed: 09/15/20	16:10	Received: 09/	16/20 09:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	s - Charlotte)					
pΗ	5.72	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	hod: El	PA 3010A			
	Pace Ana	lytical Services	s - Peachtre	e Corners, C	SA.				
Calcium	10.7	mg/L	1.0	0.070	1	09/16/20 15:14	09/17/20 18:25	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: Ef	PA 3005A			
	-	lytical Services							
Antimony	0.00033J	mg/L	0.0030	0.00028	1	09/16/20 18:16	09/21/20 16:06	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00028	1	09/16/20 18:16	09/21/20 16:06		
Barium	0.086	mg/L	0.000	0.00070	1		09/21/20 16:06		
Beryllium	ND	mg/L	0.0030	0.00071	1		09/21/20 16:06		
Boron	0.033J	mg/L	0.0030	0.0052	1		09/21/20 16:06		
Cadmium	ND	mg/L	0.0025	0.00012	1		09/21/20 16:06		
Chromium	0.0019J	mg/L	0.0023	0.00012	1		09/21/20 16:06		
Cobalt	0.0076J	mg/L	0.0050	0.00038	1		09/21/20 16:06		
_ead	ND	mg/L	0.0050	0.000036	1		09/21/20 16:06		
_ithium	0.011J	mg/L	0.030	0.00081	1		09/21/20 16:06		
Molybdenum	ND	mg/L	0.010	0.00069	1		09/21/20 16:06		
Selenium	0.0028J	mg/L	0.010	0.0016	1		09/21/20 16:06		
Thallium	ND	mg/L	0.0010	0.0014	1		09/21/20 16:06		
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: FF	PA 7470A			
. Tro moroury	-	lytical Services							
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:23	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2450C-2011						
	•	lytical Services		e Corners, C	SA.				
Total Dissolved Solids	109	mg/L	10.0	10.0	1		09/16/20 14:23		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
•	Pace Ana	lytical Services	s - Asheville						
Chloride	3.1	mg/L	1.0	0.60	1		09/23/20 23:18	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/23/20 23:18		
Sulfate	41.5	mg/L	1.0	0.50	1		09/23/20 23:18		

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWC-25I	Lab ID:	92495653004	Collecte	ed: 09/15/20	17:20	Received: 09/	16/20 09:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte	;					
ЭΗ	6.00	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	hod: EF	PA 3010A			
	Pace Anal	lytical Services	- Peachtre	e Corners, 0	βA				
Calcium	40.1	mg/L	1.0	0.070	1	09/16/20 15:14	09/17/20 18:29	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/16/20 18:16	09/21/20 16:12	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/16/20 18:16	09/21/20 16:12	7440-38-2	
Barium	0.024	mg/L	0.010	0.00071	1	09/16/20 18:16	09/21/20 16:12	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1		09/21/20 16:12		
Boron	1.2	mg/L	0.10	0.0052	1		09/21/20 16:12	-	
Cadmium	ND	mg/L	0.0025	0.00012	1		09/21/20 16:12		
Chromium	ND	mg/L	0.010	0.00055	1		09/21/20 16:12		
Cobalt	0.0035J	mg/L	0.0050	0.00038	1		09/21/20 16:12		
Lead	ND	mg/L	0.0050	0.000036	1		09/21/20 16:12		
Lithium	ND	mg/L	0.030	0.00081	1		09/21/20 16:12		
Molybdenum	0.00080J	mg/L	0.010	0.00069	1		09/21/20 16:12		
Selenium	ND	mg/L	0.010	0.0016	1		09/21/20 16:12		
Thallium	ND	mg/L	0.0010	0.00014	1		09/21/20 16:12		
7470 Mercury	Analytical	Method: EPA 7	470A Pre	paration Met	hod: EF	PA 7470A			
•	Pace Anal	lytical Services	- Peachtre	e Corners, 0	S A				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:26	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Anal	lytical Services	- Peachtre	e Corners, 0	€A				
Total Dissolved Solids	272	mg/L	10.0	10.0	1		09/16/20 14:23		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Anal	lytical Services	- Asheville						
Chloride	4.9	mg/L	1.0	0.60	1		09/18/20 20:32	16887-00-6	
Fluoride	0.15	mg/L	0.10	0.050	1		09/18/20 20:32	16984-48-8	
Sulfate	126	mg/L	3.0	1.5	3		09/19/20 08:42	14808-79-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWC-29I	Lab ID:	92495653005	Collecte	ed: 09/15/20	0 17:41	Received: 09/	16/20 09:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
Н	4.53	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	thod: El	PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, 0	GΑ				
Calcium	55.1	mg/L	1.0	0.070	1	09/16/20 15:14	09/17/20 18:34	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	thod: Ef	PA 3005A			
	-	ytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/16/20 18:16	09/21/20 16:18	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1		09/21/20 16:18		
Barium	0.017	mg/L	0.010	0.00071	1	09/16/20 18:16			
Beryllium	0.00071J	mg/L	0.0030	0.000046	1		09/21/20 16:18		
Boron	1.1	mg/L	0.10	0.0052	1		09/21/20 16:18	-	
Cadmium	ND	mg/L	0.0025	0.00012	1		09/21/20 16:18		
Chromium	ND	mg/L	0.010	0.00055	1		09/21/20 16:18		
Cobalt	0.0064	mg/L	0.0050	0.00038	1		09/21/20 16:18		
Lead	0.00029J	mg/L	0.0050	0.000036	1		09/21/20 16:18		
Lithium	0.0030J	mg/L	0.030	0.00081	1		09/21/20 16:18		
Molybdenum	ND	mg/L	0.010	0.00069	1		09/21/20 16:18		
Selenium	ND	mg/L	0.010	0.0016	1		09/21/20 16:18		
Thallium	0.00016J	mg/L	0.0010	0.00014	1		09/21/20 16:18		
7470 Mercury	Analytical	Method: EPA 7	470A Prei	paration Met	thod: EF	PA 7470A			
•	•	ytical Services							
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:28	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Anal	ytical Services	- Peachtre	e Corners, 0	GΑ				
Total Dissolved Solids	281	mg/L	10.0	10.0	1		09/16/20 14:23		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
-	Pace Anal	ytical Services	- Asheville						
Chloride	5.5	mg/L	1.0	0.60	1		09/18/20 20:46	16887-00-6	M1
Fluoride	0.057J	mg/L	0.10	0.050	1		09/18/20 20:46		M1
Sulfate	241	mg/L	5.0	2.5	5		09/19/20 08:56		

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWC-32S	Lab ID:	92495653006	Collecte	d: 09/16/20	0 09:16	Received: 09/	17/20 10:00 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Falameters		———— -			- DI	- Frepareu	- Analyzeu		– Quai
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
рН	5.79	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	e Corners, C	βA				
Calcium	43.1	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 20:40	7440-70-2	M1
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: EF	PA 3005A			
		lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 17:02	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 17:02	7440-38-2	
Barium	0.024	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 17:02	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 17:02	7440-41-7	
Boron	1.4	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 17:02	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 17:02	7440-43-9	
Chromium	0.0025J	mg/L	0.010	0.00055	1	09/18/20 11:00	09/22/20 17:02	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 17:02	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 17:02	7439-92-1	
Lithium	0.0022J	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 17:02	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 17:02	7439-98-7	
Selenium	0.12	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 17:02	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 17:02	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtree	e Corners, C	SA.				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:30	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Ana	lytical Services	- Peachtree	e Corners, C	S A				
Total Dissolved Solids	428	mg/L	10.0	10.0	1		09/17/20 15:20		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	5.6	mg/L	1.0	0.60	1		09/19/20 00:00	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/20 00:00	16984-48-8	
Sulfate	255	mg/L	5.0	2.5	5		09/19/20 09:55	14808-79-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWC-30I	Lab ID:	92495653007	Collecte	ed: 09/16/20	10:16	Received: 09/	/17/20 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
pΗ	6.29	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Calcium	106	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 20:57	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	-	ytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 17:08	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 17:08	7440-38-2	
Barium	0.022	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 17:08	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 17:08	7440-41-7	
Boron	1.7	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 17:08	-	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 17:08		
Chromium	0.014	mg/L	0.010	0.00055	1	09/18/20 11:00			
Cobalt	0.00080J	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 17:08		
Lead	0.00011J	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 17:08		
Lithium	0.016J	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 17:08		
Molybdenum	0.0022J	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 17:08		
Selenium	ND	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 17:08		
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 17:08		
7470 Mercury	Analytical	Method: EPA 7	470A Prei	paration Met	hod: EF	PA 7470A			
,	•	ytical Services							
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:33	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	634	mg/L	10.0	10.0	1		09/17/20 15:20		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	4.4	mg/L	1.0	0.60	1		09/19/20 15:53	16887-00-6	
Fluoride	0.13	mg/L	0.10	0.050	1		09/19/20 15:53	16984-48-8	
Sulfate	334	mg/L	7.0	3.5	7		09/20/20 02:34	14808-79-8	M6

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWC-47	Lab ID:	92495653008	Collected	d: 09/16/20	11:39	Received: 09/	17/20 10:00 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
рН	5.76	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	Corners, C	SA.				
Calcium	309	mg/L	10.0	0.70	10	09/22/20 14:15	09/23/20 12:15	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
		lytical Services							
Antimony	0.00035J	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 17:13	7440-36-0	В
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 17:13	7440-38-2	
Barium	0.028	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 17:13	7440-39-3	
Beryllium	ND	mg/L		0.000046	1	09/18/20 11:00	09/22/20 17:13		
Boron	0.47	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 17:13		
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00			
Chromium	ND	mg/L	0.010	0.00055	1	09/18/20 11:00			
Cobalt	0.00053J	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 17:13		
Lead	0.000066J	mg/L		0.000036	1	09/18/20 11:00	09/22/20 17:13		
Lithium	0.039	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 17:13		
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 17:13		
Selenium	0.0020J	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 17:13		
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 17:13		
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
-	Pace Ana	lytical Services	- Peachtree	Corners, C	SA.				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:35	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Ana	lytical Services	- Peachtree	Corners, C	βA				
Total Dissolved Solids	2090	mg/L	20.0	20.0	1		09/21/20 16:27		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.	1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	4.1	mg/L	1.0	0.60	1		09/19/20 16:38	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/20 16:38	16984-48-8	
Sulfate	1360	mg/L	27.0	13.5	27		09/20/20 03:48	14808-79-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWC-45	Lab ID:	92495653009	• Collecte	ed: 09/16/20	0 13:07	Received: 09/	/17/20 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	s - Charlotte)					
рН	5.27	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	s - Peachtre	e Corners, 0	ЭΑ				
Calcium	39.7	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:06	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	thod: Ef	PA 3005A			
	-	lytical Services							
Antimony	0.0012J	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 17:19	7440-36-0	В
Arsenic	0.00123 ND	mg/L	0.0050	0.00028	1	09/18/20 11:00	09/22/20 17:19		ь
Barium	0.085	mg/L	0.0030	0.00076	1	09/18/20 11:00	09/22/20 17:19		
Beryllium	0.009 ND	mg/L	0.0030	0.00071	1	09/18/20 11:00	09/22/20 17:19		
Boron	0.028J	mg/L	0.0030	0.0052	1	09/18/20 11:00	09/22/20 17:19		
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 17:19		
Chromium	0.0014J	mg/L	0.010	0.00055	1	09/18/20 11:00			
Cobalt	0.0049J	mg/L	0.0050	0.00038	1	09/18/20 11:00			
_ead	0.000053J	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 17:19		
_ithium	0.0036J	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 17:19	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 17:19	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 17:19	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 17:19	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
·	-	lytical Services							
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:37	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2450C-2011						
	Pace Ana	lytical Services	s - Peachtre	e Corners, 0	ЭΑ				
Total Dissolved Solids	275	mg/L	10.0	10.0	1		09/17/20 15:20		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
-	Pace Ana	lytical Services	s - Asheville	!					
Chloride	54.9	mg/L	1.0	0.60	1		09/19/20 16:53	16887-00-6	
Fluoride	0.052J	mg/L	0.10	0.050	1		09/19/20 16:53		
Sulfate	103	mg/L	2.0	1.0	2		09/20/20 04:03		

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWC-27I	Lab ID:	92495653010	Collecte	ed: 09/16/20	14:35	Received: 09/	17/20 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte	:					
ЭΗ	5.81	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Calcium	62.5	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:10	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	-	ytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 17:25	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 17:25	7440-38-2	
Barium	0.016	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 17:25	7440-39-3	
Beryllium	0.00011J	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 17:25	7440-41-7	
Boron	1.2	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 17:25	-	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00			
Chromium	ND	mg/L	0.010	0.00055	1	09/18/20 11:00			
Cobalt	0.0080	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 17:25		
Lead	ND	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 17:25		
Lithium	0.0014J	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 17:25		
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 17:25		
Selenium	0.0042J	mg/L	0.010	0.0005	1	09/18/20 11:00	09/22/20 17:25		
Thallium	0.00423 ND	mg/L	0.0010	0.0010	1	09/18/20 11:00	09/22/20 17:25		
7470 Mercury	Analytical	Method: EPA 7	'470A Prei	naration Met	hod: FF	PA 7470A			
oo. ou. ,	•	ytical Services							
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:40	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	301	mg/L	10.0	10.0	1		09/17/20 15:20		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	5.4	mg/L	1.0	0.60	1		09/19/20 17:08	16887-00-6	
Fluoride	0.15	mg/L	0.10	0.050	1		09/19/20 17:08	16984-48-8	
Sulfate	190	mg/L	4.0	2.0	4		09/20/20 04:17		

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: DUP-1	Lab ID:	92495653011	I Collecte	ed: 09/16/2	0 00:00	Received: 09/	/17/20 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Me	thod: El	PA 3010A			
	Pace Anal	ytical Service	s - Peachtre	e Corners, 0	GA				
Calcium	108	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:23	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Me	thod: El	PA 3005A			
	Pace Anal	ytical Service	s - Peachtre	e Corners, (GA				
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 17:31	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 17:31	7440-38-2	
Barium	0.022	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 17:31	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 17:31	7440-41-7	
Boron	1.7	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 17:31	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 17:31		
Chromium	ND	mg/L	0.010	0.00055	1	09/18/20 11:00	09/22/20 17:31	7440-47-3	
Cobalt	0.00065J	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 17:31	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 17:31	7439-92-1	
Lithium	0.016J	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 17:31	7439-93-2	
Molybdenum	0.00076J	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 17:31	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 17:31	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 17:31	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	thod: EF	PA 7470A			
•	Pace Anal	ytical Service	s - Peachtre	e Corners, 0	GA				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:47	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2450C-2011						
	•	ytical Service		e Corners, 0	GA				
Total Dissolved Solids	622	mg/L	10.0	10.0	1		09/18/20 09:58		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Service	s - Asheville						
Chloride	4.4	mg/L	1.0	0.60	1		09/19/20 17:23	16887-00-6	
Fluoride	0.13	mg/L	0.10	0.050	1		09/19/20 17:23	16984-48-8	
Sulfate	343	mg/L	7.0	3.5	7		09/20/20 04:32	14808-79-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: EB-1	Lab ID:	92495653012	Collecte	ed: 09/16/20	15:11	Received: 09/	17/20 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	hod: EF	PA 3010A			
	Pace Analy	ytical Services	- Peachtre	e Corners, 0	€A				
Calcium	ND	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:27	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Analy	ytical Services	- Peachtre	e Corners, 0	S A				
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 17:36	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 17:36	7440-38-2	
Barium	ND	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 17:36	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 17:36	7440-41-7	
Boron	0.0066J	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 17:36	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 17:36	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	09/18/20 11:00	09/22/20 17:36	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 17:36	7440-48-4	
₋ead	ND	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 17:36	7439-92-1	
_ithium	ND	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 17:36	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 17:36	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 17:36	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 17:36	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prej	paration Met	hod: EF	A 7470A			
	Pace Analy	ytical Services	- Peachtre	e Corners, 0	βA				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:49	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	-	ytical Services		e Corners, 0	SA.				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		09/18/20 09:58		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		09/19/20 17:37	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/20 17:37		
Sulfate	ND	mg/L	1.0	0.50	1		09/19/20 17:37		

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWC-50	Lab ID:	92495653013	Collecte	ed: 09/17/20	10:24	Received: 09/	18/20 10:15 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL_	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	s - Charlotte)					
рН	4.41	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	•	Method: EPA lytical Services		•		PA 3010A			
Calcium	206	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 22:02	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: Fl	PA 3005A			
5525 III.2 1 151 III.6	-	lytical Services				7.00007.			
Antimony	0.00041J	mg/L	0.0030	0.00028	1	09/23/20 13:53	09/23/20 20:05	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/23/20 13:53			
Barium	0.020	mg/L	0.010	0.00071	1		09/23/20 20:05		
Beryllium	0.0065	mg/L	0.0030	0.000046	1		09/24/20 17:33		
Boron	0.36	mg/L	0.10	0.0052	1	09/23/20 13:53			
Cadmium	0.021	mg/L	0.0025	0.00012	1	09/23/20 13:53		7440-43-9	
Chromium	0.00098J	mg/L	0.010	0.00055	1		09/23/20 20:05		
Cobalt	1.4	mg/L	0.050	0.0038	10		09/24/20 17:07		
Lead	0.00015J	mg/L	0.0050	0.000036	1	09/23/20 13:53	09/23/20 20:05	7439-92-1	
Lithium	0.052	mg/L	0.030	0.00081	1	09/23/20 13:53	09/24/20 17:33	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/23/20 13:53	09/23/20 20:05	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/23/20 13:53	09/23/20 20:05	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/23/20 13:53	09/23/20 20:05	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
•	-	lytical Services							
Mercury	ND	mg/L	0.00050	0.000078	1	09/22/20 11:15	09/23/20 09:25	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	s - Peachtre	e Corners, C	SA.				
Total Dissolved Solids	1910	mg/L	50.0	50.0	1		09/24/20 11:49		D6,H1
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	s - Asheville						
Chloride	20.1	mg/L	1.0	0.60	1		09/22/20 01:20	16887-00-6	
Fluoride	0.46	mg/L	0.10	0.050	1		09/22/20 01:20		
Sulfate	1330	mg/L	26.0	13.0	26		09/22/20 14:58		

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: BRGWC-52I	Lab ID:	9249565301	4 Collecte	ed: 09/17/20	10:07	Received: 09/	18/20 10:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Service	s - Charlotte)					
pΗ	6.12	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	hod: El	PA 3010A			
	Pace Ana	lytical Service	s - Peachtre	e Corners, C	€A				
Calcium	35.4	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 22:15	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: Ef	PA 3005A			
	-	lytical Service							
Antimony	ND	mg/L	0.0030	0.00028	1	09/23/20 13:53	09/23/20 20:10	7440-26 0	
Anumony Arsenic	ND ND	mg/L	0.0030	0.00028	1	09/23/20 13:53	09/23/20 20:10		
Barium	0.020	mg/L	0.0030	0.00078	1		09/23/20 20:10		
	0.020 ND	mg/L	0.0030	0.00071	1	09/23/20 13:53			
Beryllium Boron	1.9	-	0.0030	0.00046	1	09/23/20 13:53			
	_	mg/L							
Cadmium	ND ND	mg/L	0.0025	0.00012	1		09/23/20 20:10		
Chromium		mg/L	0.010	0.00055	1		09/23/20 20:10		
Cobalt	0.00046J	mg/L	0.0050	0.00038	1		09/23/20 20:10		
Lead	ND 0.0058.1	mg/L	0.0050	0.000036	1		09/23/20 20:10		
Lithium	0.0058J	mg/L	0.030	0.00081	1		09/24/20 14:08		
Molybdenum	0.00070J	mg/L	0.010	0.00069	1		09/23/20 20:10		
Selenium	ND	mg/L	0.010	0.0016	1	09/23/20 13:53	09/23/20 20:10		
Thallium	ND	mg/L	0.0010	0.00014	1	09/23/20 13:53	09/23/20 20:10	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Service	s - Peachtre	e Corners, C	€A				
Mercury	ND	mg/L		0.000078	1	09/22/20 11:15	09/23/20 09:27	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2450C-2011						
	•	lytical Service		e Corners, C	βA				
Total Dissolved Solids	329	mg/L	10.0	10.0	1		09/21/20 16:30		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
•	Pace Ana	lytical Service	s - Asheville						
Chloride	6.3	mg/L	1.0	0.60	1		09/22/20 02:04	16887-00-6	
Fluoride	0.074J	mg/L	0.10	0.050	1		09/22/20 02:04		
Sulfate	165	mg/L	4.0	2.0	4		09/22/20 02:04		

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Sample: FB-2	Lab ID:	9249565301	5 Collecte	ed: 09/17/2	0 10:20	Received: 09/	18/20 10:15 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL_	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Me	thod: El	PA 3010A			
	Pace Anal	ytical Service	s - Peachtre	e Corners, 0	GΑ				
Calcium	ND	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 22:20	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Me	thod: El	PA 3005A			
	Pace Analy	ytical Service	s - Peachtre	e Corners, 0	GA				
Antimony	ND	mg/L	0.0030	0.00028	1	09/23/20 13:53	09/23/20 20:16	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/23/20 13:53	09/23/20 20:16	7440-38-2	
Barium	ND	mg/L	0.010	0.00071	1	09/23/20 13:53	09/23/20 20:16	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/23/20 13:53	09/24/20 14:14	7440-41-7	
Boron	0.0097J	mg/L	0.10	0.0052	1	09/23/20 13:53	09/24/20 14:14	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/23/20 13:53	09/23/20 20:16	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	09/23/20 13:53	09/23/20 20:16	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	09/23/20 13:53	09/23/20 20:16	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	09/23/20 13:53	09/23/20 20:16	7439-92-1	
Lithium	ND	mg/L	0.030	0.00081	1	09/23/20 13:53	09/24/20 14:14	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/23/20 13:53	09/23/20 20:16	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/23/20 13:53	09/23/20 20:16	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/23/20 13:53	09/23/20 20:16	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	thod: EF	PA 7470A			
·	Pace Analy	ytical Service	s - Peachtre	e Corners, 0	GΑ				
Mercury	ND	mg/L	0.00050	0.000078	1	09/22/20 11:15	09/23/20 09:30	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2450C-2011						
	Pace Analy	ytical Service	s - Peachtre	e Corners, 0	GΑ				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		09/21/20 16:30		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Service	s - Asheville						
Chloride	ND	mg/L	1.0	0.60	1		09/22/20 02:19	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/22/20 02:19	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		09/22/20 02:19	14808-79-8	

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

QC Batch: 566871 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495653001, 92495653002, 92495653003, 92495653004, 92495653005

METHOD BLANK: 3003868 Matrix: Water

Associated Lab Samples: 92495653001, 92495653002, 92495653003, 92495653004, 92495653005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Calcium mg/L ND 1.0 0.070 09/17/20 17:42

LABORATORY CONTROL SAMPLE: 3003869

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L Calcium 0.93J 93 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3003870 3003871

MSD MS 92495653001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Qual Result Conc. % Rec % Rec Limits Calcium mg/L 5.7 6.6 6.6 89 87 75-125 0 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

QC Batch: 568100 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495653006, 92495653007, 92495653008, 92495653010, 92495653011, 92495653012,

92495653013, 92495653014, 92495653015

METHOD BLANK: 3010230 Matrix: Water

Associated Lab Samples: 92495653006, 92495653007, 92495653008, 92495653009, 92495653010, 92495653011, 92495653012,

92495653013, 92495653014, 92495653015

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Calcium mg/L ND 1.0 0.070 09/22/20 20:31

LABORATORY CONTROL SAMPLE: 3010231

LCS LCS % Rec Spike Units Result % Rec Limits Qualifiers Parameter Conc. Calcium mg/L 0.92J 92 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3010232 3010233

MS MSD

92495653006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 20 M1 Calcium 43.1 1 44.0 43.4 83 22 75-125 mg/L

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

QC Batch: 566966 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495653001, 92495653002, 92495653003, 92495653004, 92495653005

METHOD BLANK: 3004543 Matrix: Water

Associated Lab Samples: 92495653001, 92495653002, 92495653003, 92495653004, 92495653005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00028	09/21/20 15:26	
Arsenic	mg/L	ND	0.0050	0.00078	09/21/20 15:26	
Barium	mg/L	ND	0.010	0.00071	09/21/20 15:26	
Beryllium	mg/L	ND	0.0030	0.000046	09/21/20 15:26	
Boron	mg/L	ND	0.10	0.0052	09/21/20 15:26	
Cadmium	mg/L	ND	0.0025	0.00012	09/21/20 15:26	
Chromium	mg/L	ND	0.010	0.00055	09/21/20 15:26	
Cobalt	mg/L	ND	0.0050	0.00038	09/21/20 15:26	
Lead	mg/L	ND	0.0050	0.000036	09/21/20 15:26	
Lithium	mg/L	ND	0.030	0.00081	09/21/20 15:26	
Molybdenum	mg/L	ND	0.010	0.00069	09/21/20 15:26	
Selenium	mg/L	ND	0.010	0.0016	09/21/20 15:26	
Thallium	mg/L	ND	0.0010	0.00014	09/21/20 15:26	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	 mg/L	0.1	0.099	99	80-120	
Arsenic	mg/L	0.1	0.099	99	80-120	
Barium	mg/L	0.1	0.099	99	80-120	
Beryllium	mg/L	0.1	0.10	105	80-120	
Boron	mg/L	1	1.1	109	80-120	
Cadmium	mg/L	0.1	0.099	99	80-120	
Chromium	mg/L	0.1	0.10	105	80-120	
Cobalt	mg/L	0.1	0.10	101	80-120	
Lead	mg/L	0.1	0.099	99	80-120	
Lithium	mg/L	0.1	0.11	107	80-120	
Molybdenum	mg/L	0.1	0.099	99	80-120	
Selenium	mg/L	0.1	0.098	98	80-120	
Thallium	mg/L	0.1	0.097	97	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3004	545		3004546							
		92495653001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.10	0.097	100	97	75-125	2	20	
Arsenic	mg/L	ND	0.1	0.1	0.10	0.096	101	96	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 3004		1400	3004546							
Parameter	Units	92495653001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.058	0.1	0.1	0.16	0.15	99	95	75-125	2	20	
Beryllium	mg/L	ND	0.1	0.1	0.10	0.096	102	96	75-125	6	20	
Boron	mg/L	ND	1	1	1.0	0.98	103	97	75-125	5	20	
Cadmium	mg/L	ND	0.1	0.1	0.10	0.096	100	96	75-125	4	20	
Chromium	mg/L	0.0025J	0.1	0.1	0.11	0.099	103	96	75-125	7	20	
Cobalt	mg/L	ND	0.1	0.1	0.10	0.097	100	97	75-125	2	20	
Lead	mg/L	ND	0.1	0.1	0.099	0.096	99	96	75-125	3	20	
Lithium	mg/L	ND	0.1	0.1	0.10	0.10	104	100	75-125	4	20	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.097	100	97	75-125	3	20	
Selenium	mg/L	ND	0.1	0.1	0.098	0.10	98	99	75-125	1	20	
Thallium	mg/L	ND	0.1	0.1	0.097	0.094	97	94	75-125	4	20	

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

QC Batch: 567397 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495653006, 92495653007, 92495653008, 92495653009, 92495653010, 92495653011, 92495653012

METHOD BLANK: 3006748 Matrix: Water

Associated Lab Samples: 92495653006, 92495653007, 92495653008, 92495653009, 92495653010, 92495653011, 92495653012

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	0.00033J	0.0030	0.00028	09/22/20 15:42	
Arsenic	mg/L	ND	0.0050	0.00078	09/22/20 15:42	
Barium	mg/L	ND	0.010	0.00071	09/22/20 15:42	
Beryllium	mg/L	ND	0.0030	0.000046	09/22/20 15:42	
Boron	mg/L	ND	0.10	0.0052	09/22/20 15:42	
Cadmium	mg/L	ND	0.0025	0.00012	09/22/20 15:42	
Chromium	mg/L	ND	0.010	0.00055	09/22/20 15:42	
Cobalt	mg/L	ND	0.0050	0.00038	09/22/20 15:42	
Lead	mg/L	ND	0.0050	0.000036	09/22/20 15:42	
Lithium	mg/L	ND	0.030	0.00081	09/22/20 15:42	
Molybdenum	mg/L	ND	0.010	0.00069	09/22/20 15:42	
Selenium	mg/L	ND	0.010	0.0016	09/22/20 15:42	
Thallium	mg/L	ND	0.0010	0.00014	09/22/20 15:42	

LABORATORY CONTROL SAMPLE:	3006749					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.11	106	80-120	
Arsenic	mg/L	0.1	0.099	99	80-120	
Barium	mg/L	0.1	0.10	100	80-120	
Beryllium	mg/L	0.1	0.11	106	80-120	
Boron	mg/L	1	1.1	112	80-120	
Cadmium	mg/L	0.1	0.10	100	80-120	
Chromium	mg/L	0.1	0.10	103	80-120	
Cobalt	mg/L	0.1	0.099	99	80-120	
Lead	mg/L	0.1	0.10	101	80-120	
Lithium	mg/L	0.1	0.10	105	80-120	
Molybdenum	mg/L	0.1	0.098	98	80-120	
Selenium	mg/L	0.1	0.10	101	80-120	
Thallium	mg/L	0.1	0.10	101	80-120	

MATRIX SPIKE & MATRIX SF	PIKE DUPL	ICATE: 3006	750		3006751							
		92495870002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.10	0.11	104	106	75-125	2	20	
Arsenic	mg/L	ND	0.1	0.1	0.098	0.098	98	98	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3006		MOD	3006751							
Parameter	Units	92495870002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.019	0.1	0.1	0.12	0.12	97	99	75-125	2	20	
Beryllium	mg/L	ND	0.1	0.1	0.10	0.10	101	101	75-125	0	20	
Boron	mg/L	0.0053J	1	1	1.0	1.0	100	101	75-125	1	20	
Cadmium	mg/L	ND	0.1	0.1	0.098	0.096	98	96	75-125	1	20	
Chromium	mg/L	0.00086J	0.1	0.1	0.10	0.10	103	104	75-125	1	20	
Cobalt	mg/L	ND	0.1	0.1	0.098	0.098	98	98	75-125	0	20	
Lead	mg/L	ND	0.1	0.1	0.098	0.098	98	98	75-125	1	20	
Lithium	mg/L	ND	0.1	0.1	0.10	0.10	100	100	75-125	0	20	
Molybdenum	mg/L	ND	0.1	0.1	0.096	0.096	95	96	75-125	0	20	
Selenium	mg/L	ND	0.1	0.1	0.099	0.096	99	96	75-125	3	20	
Thallium	mg/L	ND	0.1	0.1	0.098	0.099	98	99	75-125	1	20	

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

QC Batch: 568417 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495653013, 92495653014, 92495653015

METHOD BLANK: 3011604 Matrix: Water

Associated Lab Samples: 92495653013, 92495653014, 92495653015

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00028	09/23/20 18:33	
Arsenic	mg/L	ND	0.0050	0.00078	09/23/20 18:33	
Barium	mg/L	ND	0.010	0.00071	09/23/20 18:33	
Beryllium	mg/L	ND	0.0030	0.000046	09/23/20 18:33	
Boron	mg/L	ND	0.10	0.0052	09/23/20 18:33	
Cadmium	mg/L	ND	0.0025	0.00012	09/23/20 18:33	
Chromium	mg/L	ND	0.010	0.00055	09/23/20 18:33	
Cobalt	mg/L	ND	0.0050	0.00038	09/23/20 18:33	
Lead	mg/L	ND	0.0050	0.000036	09/23/20 18:33	
Lithium	mg/L	ND	0.030	0.00081	09/23/20 18:33	
Molybdenum	mg/L	ND	0.010	0.00069	09/23/20 18:33	
Selenium	mg/L	ND	0.010	0.0016	09/23/20 18:33	
Thallium	mg/L	ND	0.0010	0.00014	09/23/20 18:33	

LABORATORY CONTROL SAMPLE:	3011605					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.10	105	80-120	
Arsenic	mg/L	0.1	0.098	98	80-120	
Barium	mg/L	0.1	0.099	99	80-120	
Beryllium	mg/L	0.1	0.10	102	80-120	
Boron	mg/L	1	1.0	104	80-120	
Cadmium	mg/L	0.1	0.10	101	80-120	
Chromium	mg/L	0.1	0.10	105	80-120	
Cobalt	mg/L	0.1	0.10	105	80-120	
Lead	mg/L	0.1	0.10	101	80-120	
Lithium	mg/L	0.1	0.11	106	80-120	
Molybdenum	mg/L	0.1	0.10	103	80-120	
Selenium	mg/L	0.1	0.097	97	80-120	
Thallium	mg/L	0.1	0.099	99	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3011	606		3011607							
		92495876001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L		0.1	0.1	0.10	0.099	101	99	75-125		20	
Arsenic	mg/L	ND	0.1	0.1	0.097	0.095	97	95	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 30110	606		3011607							
Parameter	Units	92495876001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.030	0.1	0.1	0.13	0.13	96	95	75-125	1	20	
Beryllium	mg/L	0.00012J	0.1	0.1	0.098	0.095	98	95	75-125	2	20	
Boron	mg/L	0.0065J	1	1	1.0	0.98	100	97	75-125	3	20	
Cadmium	mg/L	0.00016J	0.1	0.1	0.10	0.098	100	98	75-125	2	20	
Chromium	mg/L	ND	0.1	0.1	0.10	0.10	103	103	75-125	0	20	
Cobalt	mg/L	ND	0.1	0.1	0.10	0.10	101	101	75-125	1	20	
Lead	mg/L	0.00065J	0.1	0.1	0.098	0.099	97	99	75-125	2	20	
Lithium	mg/L	0.0014J	0.1	0.1	0.10	0.10	101	100	75-125	0	20	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.10	101	100	75-125	1	20	
Selenium	mg/L	ND	0.1	0.1	0.097	0.096	96	95	75-125	1	20	
Thallium	mg/L	ND	0.1	0.1	0.096	0.097	96	97	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Mercury

Date: 09/30/2020 11:31 AM

QC Batch: 567375
QC Batch Method: EPA 7470A

Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

EPA 7470A

Associated Lab Samples: 92495653001, 92495653002, 92495653003, 92495653004, 92495653005, 92495653006, 92495653007,

Analysis Method:

92495653008, 92495653009, 92495653010, 92495653011, 92495653012

METHOD BLANK: 3006615 Matrix: Water

Associated Lab Samples: 92495653001, 92495653002, 92495653003, 92495653004, 92495653005, 92495653006, 92495653007,

92495653008, 92495653009, 92495653010, 92495653011, 92495653012

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Mercury
 mg/L
 ND
 0.00050
 0.000078
 09/18/20 14:02

LABORATORY CONTROL SAMPLE: 3006616

LCS LCS % Rec Spike Units Result % Rec Limits Qualifiers Parameter Conc. mg/L 0.0025 0.0024 96 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3006617 3006618

MS MSD

92495653002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual ND 0.0025 0.0025 20 Mercury 0.0025 0.0026 100 103 75-125 3 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

QC Batch: 568004 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495653013, 92495653014, 92495653015

METHOD BLANK: 3009596 Matrix: Water

Associated Lab Samples: 92495653013, 92495653014, 92495653015

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00050 0.000078 09/23/20 08:40

LABORATORY CONTROL SAMPLE: 3009597

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury mg/L 0.0025 0.0025 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3009598 3009599

MS MSD

92496275006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result **RPD** RPD Qual Result % Rec % Rec Limits ND 0.0025 Mercury mg/L 0.0025 0.0025 0.0024 98 94 75-125 5 20

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

QC Batch: 566772 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495653001, 92495653002, 92495653003, 92495653004, 92495653005

METHOD BLANK: 3003519 Matrix: Water

Associated Lab Samples: 92495653001, 92495653002, 92495653003, 92495653004, 92495653005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 09/16/20 14:20

LABORATORY CONTROL SAMPLE: 3003520

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 392 98 84-108 mg/L

SAMPLE DUPLICATE: 3003521

92495054002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 90.0 **Total Dissolved Solids** mg/L 94.0 4 10

SAMPLE DUPLICATE: 3003522

Date: 09/30/2020 11:31 AM

Parameter Units Parameter Units Parameter Units Dup Result Result RPD RPD Qualifiers

Total Dissolved Solids mg/L ND ND 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

BRANCH BCD NETWORK Project:

Pace Project No.: 92495653

Total Dissolved Solids

QC Batch: 567147 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

> Laboratory: Pace Analytical Services - Peachtree Corners, GA

> > 10.0

09/17/20 15:18

Associated Lab Samples: 92495653006, 92495653007, 92495653009, 92495653010

METHOD BLANK: Matrix: Water

Associated Lab Samples: 92495653006, 92495653007, 92495653009, 92495653010

> Blank Reporting

MDL Qualifiers Parameter Units Result Limit Analyzed

10.0

ND

mg/L

LABORATORY CONTROL SAMPLE: 3005363

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 400 384 96 84-108 mg/L

SAMPLE DUPLICATE: 3005364

92495870005 Dup Max Parameter Units Result Result **RPD RPD**

Qualifiers ND **Total Dissolved Solids** ND mg/L 10

SAMPLE DUPLICATE: 3005365

Date: 09/30/2020 11:31 AM

92495900007 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 1890 2 mg/L 1860 10

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

QC Batch: 567372 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495653011, 92495653012

METHOD BLANK: 3006601 Matrix: Water

Associated Lab Samples: 92495653011, 92495653012

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 09/18/20 09:58

LABORATORY CONTROL SAMPLE: 3006602

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 387 97 84-108

SAMPLE DUPLICATE: 3006603

92495653011 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 622 **Total Dissolved Solids** mg/L 654 5 10

SAMPLE DUPLICATE: 3006604

Date: 09/30/2020 11:31 AM

92495900008 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 1220 mg/L 1250 3 10

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

QC Batch: 567882 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495653008, 92495653014, 92495653015

METHOD BLANK: 3009251 Matrix: Water

Associated Lab Samples: 92495653008, 92495653014, 92495653015

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 09/21/20 16:27

LABORATORY CONTROL SAMPLE: 3009252

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 400 412 103 84-108 mg/L

SAMPLE DUPLICATE: 3009253

92495653008 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 2090 **Total Dissolved Solids** 2 mg/L 2130 10

SAMPLE DUPLICATE: 3009254

Date: 09/30/2020 11:31 AM

92495870011 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 25.0 10 D6 mg/L 18.0 33

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

QC Batch: 569364 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495653013

METHOD BLANK: 3016819 Matrix: Water

Associated Lab Samples: 92495653013

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 10.0 09/24/20 11:49

LABORATORY CONTROL SAMPLE: 3016820

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 400 388 97 84-108

SAMPLE DUPLICATE: 3016821

Date: 09/30/2020 11:31 AM

92495653013 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1910 **Total Dissolved Solids** mg/L 10 D6,H1 2160 13

Project: BRANCH BCD NETWORK

LABORATORY CONTROL CAMPLE: 2007525

Pace Project No.:

92495653

QC Batch: 56

567529 Analysis Method:

EPA 300.0 Rev 2.1 1993

QC Batch Method:

EPA 300.0 Rev 2.1 1993

Analysis Description: 300.0 IC Anions

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

92495653001, 92495653002, 92495653004, 92495653005, 92495653006

METHOD BLANK: 3007534

Matrix: Water

Associated Lab Samples:

Date: 09/30/2020 11:31 AM

 $92495653001,\,92495653002,\,92495653004,\,92495653005,\,92495653006$

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/18/20 16:46	
Fluoride	mg/L	ND	0.10	0.050	09/18/20 16:46	
Sulfate	mg/L	ND	1.0	0.50	09/18/20 16:46	

LABORATORT CONTROL SAMPLE.	3007333					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	52.2	104	90-110	
Fluoride	mg/L	2.5	2.7	106	90-110	
Sulfate	mg/L	50	52.4	105	90-110	

MATRIX SPIKE & MATRIX SP		3007537										
			MS	MSD								
		92496029001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	13.6	50	50	68.1	69.2	109	111	90-110	2	10	M1
Fluoride	mg/L	0.10	2.5	2.5	2.8	2.9	109	112	90-110	3	10	M1
Sulfate	mg/L	7.4	50	50	62.2	63.3	110	112	90-110	2	10	M1

MATRIX SPIKE & MATRIX SP	538		3007539									
			MS	MSD								
		92495653005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD Qu	ıal
Chloride	mg/L	5.5	50	50	58.5	62.8	106	115	90-110		10 M1	
Fluoride	mg/L	0.057J	2.5	2.5	2.8	3.0	108	116	90-110	7	10 M1	
Sulfate	mg/L	241	50	50	287	291	91	100	90-110	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

QC Batch: 567607 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92495653007, 92495653008, 92495653009, 92495653010, 92495653011, 92495653012

METHOD BLANK: 3008004 Matrix: Water

Associated Lab Samples: 92495653007, 92495653008, 92495653009, 92495653010, 92495653011, 92495653012

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/19/20 15:23	
Fluoride	mg/L	ND	0.10	0.050	09/19/20 15:23	
Sulfate	mg/L	ND	1.0	0.50	09/19/20 15:23	

LABORATORY CONTROL SAMPLE:	3008005					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	52.3	105	90-110	
Fluoride	mg/L	2.5	2.7	106	90-110	
Sulfate	mg/L	50	52.5	105	90-110	

MATRIX SPIKE & MATRIX SP		3008007										
			MS	MSD								
		92495653007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.4	50	50	57.4	58.2	106	108	90-110	1	10	
Fluoride	mg/L	0.13	2.5	2.5	2.8	2.8	107	109	90-110	1	10	
Sulfate	mg/L	334	50	50	389	385	111	103	90-110	1	10	M6

MATRIX SPIKE & MATRIX SP	800		3008009									
			MS	MSD								
		92495964005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	7.9	50	50	61.3	62.0	107	108	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.7	2.7	107	108	90-110	1	10	
Sulfate	mg/L	256	50	50	298	299	85	87	90-110	0	10	M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

QC Batch: 567942 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92495653013, 92495653014, 92495653015

METHOD BLANK: 3009478 Matrix: Water

Associated Lab Samples: 92495653013, 92495653014, 92495653015

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	09/21/20 23:05	
Fluoride	mg/L	ND	0.10	0.050	09/21/20 23:05	
Sulfate	mg/L	ND	1.0	0.50	09/21/20 23:05	

LABORATORY CONTROL SAMPLE: 3009479 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 50 mg/L 52.8 106 90-110 Fluoride 2.5 108 mg/L 2.7 90-110 Sulfate mg/L 50 52.8 106 90-110

MATRIX SPIKE & MATRIX SP	480		3009481									
			MS	MSD								
		92495047013	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	1.7	50	50	53.8	53.6	104	104	90-110	0	10	
Fluoride	mg/L	ND	2.5	2.5	2.6	2.6	104	103	90-110	0	10	
Sulfate	mg/L	8.6	50	50	60.9	60.8	105	104	90-110	0	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3009	482		3009483							
			MS	MSD								
		92495870010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	0.97J	50	50	53.1	53.5	104	105	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.6	2.6	104	105	90-110	2	10	
Sulfate	mg/L	ND	50	50	52.3	52.7	104	105	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

QC Batch: 568234

QC Batch Method: EPA 300.0 Rev 2.1 1993

Analysis Method: EPA 300.0 Rev 2.1 1993

Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92495653003

METHOD BLANK: 3010905

LABORATORY CONTROL SAMPLE: 2010006

Date: 09/30/2020 11:31 AM

Associated Lab Samples: 92495653003

Matrix: Water

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/23/20 17:04	
Fluoride	mg/L	ND	0.10	0.050	09/23/20 17:04	
Sulfate	mg/L	ND	1.0	0.50	09/23/20 17:04	

LABORATORY CONTROL SAMPLE.	3010906					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	53.0	106	90-110	
Fluoride	mg/L	2.5	2.7	109	90-110	
Sulfate	mg/L	50	53.2	106	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3010	909		3010910							
			MS	MSD								
		92496730002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	364	50	50	389	389	249	249	90-110	0	10	
Fluoride	mg/L	0.60	2.5	2.5	3.3	3.4	110	110	90-110	1	10	
Sulfate	mg/L	3.0	50	50	57.3	57.3	109	109	90-110	0	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3011	115		3011116							
			MS	MSD								
		92496730004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	109	50	50	158	158	97	97	90-110	0	10	
Fluoride	mg/L	0.43	2.5	2.5	3.1	3.2	108	109	90-110	1	10	
Sulfate	mg/L	79.4	50	50	120	120	81	81	90-110	0	10	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/30/2020 11:31 AM

B Analyte was detected in the associated method blank.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

H1 Analysis conducted outside the EPA method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92495653001	BRGWA-12S				
92495653002	BRGWA-12I				
2495653003	BRGWA-23S				
2495653004	BRGWC-25I				
2495653005	BRGWC-29I				
2495653006	BRGWC-32S				
2495653007	BRGWC-30I				
2495653008	BRGWC-47				
2495653009	BRGWC-45				
2495653010	BRGWC-27I				
2495653013	BRGWC-50				
2495653014	BRGWC-52I				
		EDA 2040A	E66074	EDA 6010D	ECCOO
2495653001	BRGWA-12S	EPA 3010A	566871 566871	EPA 6010D	566908
2495653002	BRGWA-12I	EPA 3010A	566871	EPA 6010D	566908
2495653003	BRGWA-23S	EPA 3010A	566871	EPA 6010D	566908
2495653004	BRGWC-25I	EPA 3010A	566871	EPA 6010D	566908
2495653005	BRGWC-29I	EPA 3010A	566871	EPA 6010D	566908
2495653006	BRGWC-32S	EPA 3010A	568100	EPA 6010D	568125
2495653007	BRGWC-30I	EPA 3010A	568100	EPA 6010D	568125
2495653008	BRGWC-47	EPA 3010A	568100	EPA 6010D	568125
2495653009	BRGWC-45	EPA 3010A	568100	EPA 6010D	568125
2495653010	BRGWC-27I	EPA 3010A	568100	EPA 6010D	568125
2495653011	DUP-1	EPA 3010A	568100	EPA 6010D	568125
2495653012	EB-1	EPA 3010A	568100	EPA 6010D	568125
2495653013	BRGWC-50	EPA 3010A	568100	EPA 6010D	568125
2495653014	BRGWC-52I	EPA 3010A	568100	EPA 6010D	568125
2495653015	FB-2	EPA 3010A	568100	EPA 6010D	568125
2495653001	BRGWA-12S	EPA 3005A	566966	EPA 6020B	566971
2495653002	BRGWA-12I	EPA 3005A	566966	EPA 6020B	566971
2495653003	BRGWA-23S	EPA 3005A	566966	EPA 6020B	566971
2495653004	BRGWC-25I	EPA 3005A	566966	EPA 6020B	566971
2495653005	BRGWC-29I	EPA 3005A	566966	EPA 6020B	566971
2495653006	BRGWC-32S	EPA 3005A	567397	EPA 6020B	567512
2495653007	BRGWC-30I	EPA 3005A	567397	EPA 6020B	567512
2495653008	BRGWC-47	EPA 3005A	567397	EPA 6020B	567512
2495653009	BRGWC-45	EPA 3005A	567397	EPA 6020B	567512
2495653010	BRGWC-27I	EPA 3005A	567397	EPA 6020B	567512
2495653011	DUP-1	EPA 3005A	567397	EPA 6020B	567512
2495653012	EB-1	EPA 3005A	567397	EPA 6020B	567512
2495653013	BRGWC-50	EPA 3005A	568417	EPA 6020B	568454
2495653013 2495653014	BRGWC-52I	EPA 3005A	568417	EPA 6020B	568454
2495653014 2495653015	FB-2	EPA 3005A EPA 3005A	568417	EPA 6020B	568454
2495653001	BRGWA-12S	EPA 7470A	567375	EPA 7470A	567456
2495653002	BRGWA-12I	EPA 7470A	567375	EPA 7470A	567456
2495653003	BRGWA-23S	EPA 7470A	567375	EPA 7470A	567456
2495653004	BRGWC-25I	EPA 7470A	567375	EPA 7470A	567456

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD NETWORK

Pace Project No.: 92495653

Date: 09/30/2020 11:31 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92495653005	BRGWC-29I	EPA 7470A	567375	EPA 7470A	567456
92495653006	BRGWC-32S	EPA 7470A	567375	EPA 7470A	567456
2495653007	BRGWC-30I	EPA 7470A	567375	EPA 7470A	567456
2495653008	BRGWC-47	EPA 7470A	567375	EPA 7470A	567456
2495653009	BRGWC-45	EPA 7470A	567375	EPA 7470A	567456
2495653010	BRGWC-27I	EPA 7470A	567375	EPA 7470A	567456
2495653011	DUP-1	EPA 7470A	567375	EPA 7470A	567456
2495653012	EB-1	EPA 7470A	567375	EPA 7470A	567456
2495653013	BRGWC-50	EPA 7470A	568004	EPA 7470A	568115
2495653014	BRGWC-52I	EPA 7470A	568004	EPA 7470A	568115
2495653015	FB-2	EPA 7470A	568004	EPA 7470A	568115
2495653001	BRGWA-12S	SM 2450C-2011	566772		
2495653002	BRGWA-12I	SM 2450C-2011	566772		
2495653003	BRGWA-23S	SM 2450C-2011	566772		
2495653004	BRGWC-25I	SM 2450C-2011	566772		
2495653005	BRGWC-29I	SM 2450C-2011	566772		
2495653006	BRGWC-32S	SM 2450C-2011	567147		
2495653007	BRGWC-30I	SM 2450C-2011	567147		
2495653008	BRGWC-47	SM 2450C-2011	567882		
2495653009	BRGWC-45	SM 2450C-2011	567147		
2495653010	BRGWC-27I	SM 2450C-2011	567147		
2495653011	DUP-1	SM 2450C-2011	567372		
2495653012	EB-1	SM 2450C-2011	567372		
2495653013	BRGWC-50	SM 2450C-2011	569364		
2495653014	BRGWC-52I	SM 2450C-2011	567882		
2495653015	FB-2	SM 2450C-2011	567882		
2495653001	BRGWA-12S	EPA 300.0 Rev 2.1 1993	567529		
2495653002	BRGWA-12I	EPA 300.0 Rev 2.1 1993	567529		
2495653003	BRGWA-23S	EPA 300.0 Rev 2.1 1993	568234		
2495653004	BRGWC-25I	EPA 300.0 Rev 2.1 1993	567529		
2495653005	BRGWC-29I	EPA 300.0 Rev 2.1 1993	567529		
2495653006	BRGWC-32S	EPA 300.0 Rev 2.1 1993	567529		
2495653007	BRGWC-30I	EPA 300.0 Rev 2.1 1993	567607		
2495653008	BRGWC-47	EPA 300.0 Rev 2.1 1993	567607		
2495653009	BRGWC-45	EPA 300.0 Rev 2.1 1993	567607		
2495653010	BRGWC-27I	EPA 300.0 Rev 2.1 1993	567607		
2495653011	DUP-1	EPA 300.0 Rev 2.1 1993	567607		
2495653012	EB-1	EPA 300.0 Rev 2.1 1993	567607		
2495653013	BRGWC-50	EPA 300.0 Rev 2.1 1993	567942		
2495653014	BRGWC-52I	EPA 300.0 Rev 2.1 1993	567942		
2495653015	FB-2	EPA 300.0 Rev 2.1 1993	567942		

San	nple Condition	Upon Recei	
Pace Analytical Client Name	GA Pou	200	W0#:92495653
Client Name:	- GH POL	rer_	11 THE 11 TO 11 THE 2011
	1 1 Commercial	□ Bass Othe	
Courier: Fed Ex UPS USPS Clien	it Commercial	☐ Pace Offic	92495653
Custody Seal on Cooler/Box Present: yes	no Seals	intact: yes	no Proj. Name.
		Other	
Packing Material: Bubble Wrap Bubble Thermometer Used	Type of Ice: Wel	7 -	Samples on ice, cooling process has begun
1	Biological Tissue		Date and initials of person examining
Cooler Temperature (), % Temp should be above freezing to 6°C	2.0.0	Comments:	No contents: 9/16/20 COM
Chain of Custody Present:	ENGS DNO DN/A	1.	
Chain of Custody Filled Out:	MYes ONO ON/A	2.	
Chain of Custody Relinquished:	Yes ONO ONIA	3.	
Sampler Name & Signature on COC:	TYOS DNO DNIA	4.	
Samples Arrived within Hold Time:	ØYes □No □N/A	777	
Short Hold Time Analysis (<72hr):	□Yes BNo □N/A		
Rush Turn Around Time Requested:	DYes ONO DNIA	7.	
Sufficient Volume:	Yes ONO ON/A	8.	
Correct Containers Used:	ZYes ONO ONIA	9.	
-Pace Containers Used:	Yes DNo DNA		
Containers Infact:	PYes ONO ONIA	10.	
Filtered volume received for Dissolved tests	□Yes □No '□N/A	11.	
Sample Labels match COC:	DYes ONO ON/A	12.	
-Includes date/time/ID/Analysis Matrix:	N/		
All containers needing preservation have been checked.	Graf Ding Diss	13	
All containers needing preservation are found to be in	MYes ONO ONA		
compliance with EPA recommendation.	ares and and	Initial when	Lot # of added
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □Mo	completed	preservative
Samples checked for dechlorination:	□Yes □No □N	14.	
Headspace in VOA Vials (>6mm):	□Yes □No □NII	7 15.	
Trip Blank Present:	□Yes □No □NI	16.	
Trip Blank Custody Seals Present	□Yes □No ØN/		
Pace Trip Blank Lot # (if purchased):			2
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Date	/Time:	50 TO 1998
Comments/ Resolution:			
Comments/ Nesolution.			
	72 72 72		
Project Manager Review:			Date:
Project manager Neview.			

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

-	150	e Analytical	Bottle Identi Doc F-CAR-	nent Name: fication Form (BIF) umant No.: CS-043-Rev.00 on is Project #	Document Issued: Page 1 Issuing Ar Pace Carolinas WO#: 92	of 1 othority: Ouality Office	
verific	and within	alf of box if pH and, the acceptance rai m, TOC, Oil and Grease, I pox is to list numbe	ORO/8015 (water) DC	tion	PM: KLH1 CLIENT: GA-GA	Due Date: 09/30/2	20
Maurite Manuel M	6	App. 1-1 liter Plastic Unpreserved (N/A) BP.1U-1 liter Plastic Unpreserved (N/A) BP.1U-1 liter Plastic Unpreserved (N/A) BP.1U-1 liter Plastic Unpreserved (N/A) BP.1U-1 liter Plastic Unpreserved (N/A) BP.1U-1 liter Plastic Unpreserved (N/A) BP.1U-1 liter Plastic Unpreserved (N/A) BP.1U-1 liter Plastic Unpreserved (N/A) BP.1U-1 liter Plastic Unpreserved (N/A)	BP4C-125 mt Plastic NaOH (pH > 12) (G-) WIGFU-Wide-mouthed Glass Jar Unpreserved AG3U-1 liter Amber Unpreserved (N/A) (G-)	instruent roll (N/A)(Cl-1 AG3H-1 liter Amber H2504 (pH < 2) AG31-250 mL Amber H2504 (pH < 2) AG35-250 mL Amber H2504 (pH < 2) AG35-250 mL Amber H2504 (pH < 2) AG35-250 mL Amber H2604 (pH < 2) AG35-250 mL Amber H2604 (pH < 2)		Wick (3 viels per kth-vPH/Gas kit (N/A – lab) Sp57-125 mL Sterile Plastic (N/A – lab) Sp27-250 mL Sterile Plastic (N/A – lab) Sp27-250 mL Sterile Plastic (N/A – lab)	AGBU-100 mL Amber Unpreserved visits (14/4)
	Jempie in		-				+
	-	·			·		土
	-	1		ina compliance samples, a copy ntainers.	of this form will be sent t	to the North Carolina DEHNR Cer	tification

PB:

YES / NO

of 1

October 08, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 16, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring kevin.herring@pacelabs.com

Kan Lung

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder
 Ben Hodges, Georgia Power
 Jimmy Jones, Golder Associates Inc.
 Kristen Jurinko
 Julie Lehrman, Golder Associates Inc.
 Ms. Lauren Petty, Southern Co. Services
 Carolyn Powrozek, Golder
 Dawn Prell, Golder Associates Inc.
 Tim Richards, Golder Associates - Atlanta

Brian Steele, Golder

CERTIFICATIONS

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92495654001	BRGWA-6S	Water	09/15/20 09:45	09/16/20 09:45
92495654002	BRGWA-5S	Water	09/15/20 13:20	09/16/20 09:45
92495654003	BRGWA-5I	Water	09/15/20 14:02	09/16/20 09:45
92495654004	BRGWA-2S	Water	09/15/20 15:01	09/16/20 09:45
92495654005	BRGWA-2I	Water	09/15/20 16:07	09/16/20 09:45

SAMPLE ANALYTE COUNT

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92495654001	BRGWA-6S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495654002	BRGWA-5S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495654003	BRGWA-5I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495654004	BRGWA-2S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92495654005	BRGWA-2I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

SUMMARY OF DETECTION

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92495654001	BRGWA-6S					
EPA 9315	Radium-226	0.00810 ± 0.162	pCi/L	09/	/30/20 07:18	
EPA 9320	Radium-228	(0.444) C:88% T:NA 0.466 ± 0.418 (0.851)	pCi/L	10,	/05/20 15:06	
Total Radium Calculation	Total Radium	C:71% T:86% 0.474 ± 0.580 (1.30)	pCi/L	10/	/06/20 14:01	
92495654002	BRGWA-5S					
EPA 9315	Radium-226	0.0906 ± 0.218 (0.520) C:87% T:NA	pCi/L	09/	/30/20 07:18	
EPA 9320	Radium-228	0.459 ± 0.553 (1.17) C:71%	pCi/L	10/	/05/20 17:44	
Total Radium Calculation	Total Radium	7:84% 0.550 ± 0.771 (1.69)	pCi/L	10/	/06/20 14:01	
92495654003	BRGWA-5I	()				
EPA 9315	Radium-226	0.0999 ± 0.226 (0.535)	pCi/L	09/	/30/20 07:18	
EPA 9320	Radium-228	C:87% T:NA 0.115 ± 0.622 (1.42) C:66%	pCi/L	10/	/05/20 17:44	
Total Radium Calculation	Total Radium	T:76% 0.215 ± 0.848 (1.96)	pCi/L	10/	/06/20 14:01	
92495654004	BRGWA-2S					
EPA 9315	Radium-226	0.109 ± 0.177 (0.389) C:91% T:NA	pCi/L	09/	/30/20 07:18	
EPA 9320	Radium-228	0.470 ± 0.606 (1.29) C:63% T:77%	pCi/L	10/	/05/20 17:44	
Total Radium Calculation	Total Radium	0.579 ± 0.783 (1.68)	pCi/L	10/	/06/20 14:01	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
92495654005	BRGWA-2I					
EPA 9315	Radium-226	-0.0263 ± 0.159 (0.461) C:94% T:NA	pCi/L		09/30/20 07:18	
EPA 9320	Radium-228	0.0583 ± 0.776 (1.80) C:44% T:84%	pCi/L		10/05/20 17:44	
Total Radium Calculation	Total Radium	0.0583 ± 0.935 (2.26)	pCi/L		10/06/20 14:01	

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Sample: BRGWA-6S PWS:	Lab ID: 9249 Site ID:	5654001 Collected: 09/15/20 09:45 Sample Type:	Received:	09/16/20 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.00810 ± 0.162 (0.444) C:88% T:NA	pCi/L	09/30/20 07:18	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.466 ± 0.418 (0.851) C:71% T:86%	pCi/L	10/05/20 15:06	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.474 ± 0.580 (1.30)	pCi/L	10/06/20 14:01	7440-14-4	

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Sample: BRGWA-5S PWS:	Lab ID: 92495 Site ID:	5654002 Collected: 09/15/20 13:20 Sample Type:	Received:	09/16/20 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0906 ± 0.218 (0.520) C:87% T:NA	pCi/L	09/30/20 07:18	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.459 ± 0.553 (1.17) C:71% T:84%	pCi/L	10/05/20 17:44	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.550 ± 0.771 (1.69)	pCi/L	10/06/20 14:01	7440-14-4	

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Sample: BRGWA-5I PWS:	Lab ID: 9249 Site ID:	5654003 Collected: 09/15/20 14:02 Sample Type:	Received:	09/16/20 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0999 ± 0.226 (0.535) C:87% T:NA	pCi/L	09/30/20 07:18	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.115 ± 0.622 (1.42) C:66% T:76%	pCi/L	10/05/20 17:4	4 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.215 ± 0.848 (1.96)	pCi/L	10/06/20 14:0	1 7440-14-4	

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Sample: BRGWA-2S PWS:	Lab ID: 9249 Site ID:	5654004 Collected: 09/15/20 15:01 Sample Type:	Received:	09/16/20 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.109 ± 0.177 (0.389) C:91% T:NA	pCi/L	09/30/20 07:18	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.470 ± 0.606 (1.29) C:63% T:77%	pCi/L	10/05/20 17:44	4 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.579 ± 0.783 (1.68)	pCi/L	10/06/20 14:01	1 7440-14-4	

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Sample: BRGWA-2I PWS:	Lab ID: 92495 Site ID:	5654005 Collected: 09/15/20 16:07 Sample Type:	Received:	09/16/20 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	-0.0263 ± 0.159 (0.461) C:94% T:NA	pCi/L	09/30/20 07:18	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.0583 ± 0.776 (1.80) C:44% T:84%	pCi/L	10/05/20 17:44	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.0583 ± 0.935 (2.26)	pCi/L	10/06/20 14:01	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

QC Batch: 415401 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92495654001, 92495654002, 92495654003, 92495654004, 92495654005

METHOD BLANK: 2008969 Matrix: Water

Associated Lab Samples: 92495654001, 92495654002, 92495654003, 92495654004, 92495654005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.804 ± 0.467 (0.852) C:69% T:78%
 pCi/L
 10/05/20 15:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

QC Batch: 415400 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92495654001, 92495654002, 92495654003, 92495654004, 92495654005

METHOD BLANK: 2008968 Matrix: Water

Associated Lab Samples: 92495654001, 92495654002, 92495654003, 92495654004, 92495654005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0938 ± 0.181 (0.415) C:94% T:NA
 pCi/L
 09/30/20 07:18

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 10/08/2020 12:09 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD/E BACKGROUND RADS

Pace Project No.: 92495654

Date: 10/08/2020 12:09 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92495654001	BRGWA-6S	EPA 9315	415400		
92495654002	BRGWA-5S	EPA 9315	415400		
92495654003	BRGWA-5I	EPA 9315	415400		
92495654004	BRGWA-2S	EPA 9315	415400		
92495654005	BRGWA-2I	EPA 9315	415400		
92495654001	BRGWA-6S	EPA 9320	415401		
92495654002	BRGWA-5S	EPA 9320	415401		
92495654003	BRGWA-5I	EPA 9320	415401		
92495654004	BRGWA-2S	EPA 9320	415401		
92495654005	BRGWA-2I	EPA 9320	415401		
92495654001	BRGWA-6S	Total Radium Calculation	417208		
92495654002	BRGWA-5S	Total Radium Calculation	417208		
92495654003	BRGWA-5I	Total Radium Calculation	417208		
92495654004	BRGWA-2S	Total Radium Calculation	417208		
92495654005	BRGWA-2I	Total Radium Calculation	417208		

,		WO#: 92495654
. Pace Analytical Client Name	: GA Por	rer namenannini
courier: Fed Ex UPS USPS Clie	ent Commercial	Pace Oth 92495654 [Proj. Due Date: Proj. Name:
ustody Seal on Cooler/Box Present:	no Seals	intact: Ves no
Packing Material: Bubble Wrap Bubbl	e Bags Mone	Other
Thermometer Used 214	Type of Ice: Wel	Blue None Samples on ice, cooling process has begun
Cooler Temperature	Biological Tissue	Date and Initials of posson examining contents:
emp should be above freezing to 6°C		Comments:
Chain of Custody Present:	EFFES ONO ONIA	1.
Chain of Custody Filled Out:	ØYes □No □N/A	2.
Chain of Custody Relinquished:	Yes ONO ONIA	3.
Sampler Name & Signature on COC:	OYes □No □N/A	4.
Samples Arrived within Hold Time:	OYes □No □N/A	5.
Short Hold Time Analysis (<72hr):	□Yes BNo □N/A	6.
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.
Sufficient Volume:	Yes ONO ON/A	8.
Correct Containers Used:	ZYes ONO ON/A	9.
-Pace Containers Used:	EYes DNO DN/A	
Containers Intact:	Yes ONO ONIA	10.
Filtered volume received for Dissolved tests	□Yes □No □N/A	11.
Sample Labels match COC:	DYes DNo DN/A	12.
-Includes date/time/ID/Analysis Matrix:	W	
All containers needing preservation have been checked.	- OTOS ONOS ONA	43.
All containers needing preservation are found to be in	Yes ONO ONIA	
compliance with EPA recommendation.	ZIES CHO CHEA	Initial when Lot # of added
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □¥o	completed preservative
Samples checked for dechlorination:	□Yes □No □NIA	14.
Headspace in VOA Vials (>6mm):	□Yes □No □NIA	15.
Trip Blank Present:	□Yes □No □NIA	16.
Trip Blank Custody Seals Present	□Yes □No ØN/A	
Pace Trip Blank Lot # (if purchased):	FELSE 05	
		Ciald Data Danuirad
Client Notification/ Resolution:	Data	Field Data Required? Y / N /Time:
Person Contacted: Comments/ Resolution:		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

ace Analytical

Document Name:

Bottle Identification Form (BIF)

Document No.: F-CAR-CS-043-Rev.00 Document Issued: March 14, 2019 Page 1 of 1

Issuing Authority

Pace Carolinas Quality Office

PM: KLH1

Project #

Due Date: 09/30/20

CLIENT: GA-GA Power

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRD/8015 (water) DOC, LLHg

- Control of the Cont	remer observed (N/A) (O-)	8P4U-125 mt reserve	8P3U-250 mL Plastic Unpreserved (1975)	BP2U-500 mL Plastic Unpreserved (N/A)	RP111-1 liker Plastic Unpreserved (N/A)	and 125 ml Plastic H25O4 (pH < 2) (G-)	Drest And Plastic HWO3 (pH < 2)	BP3N-25 mi Plastic ZN Acetate & NaOH (>9)	Bruch 12 mi Plastic NaOH (pH > 12) (O-)	west. Wide-mouthed Glass far Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (G-)	AG19-1 liter Amber HCl (pH < 2)	Amber Unpreserved (N/A) (CI-)	AG3U-250 Heer Amber H2504 (pH < 2)	AG35-250 ml Amber H2504 (pH < 2)	AGSATOGSA)-250 mL Amber NH4CI (N/A)(C)-	NAME OF THE PART (N/A)	DGST-40 mL VOA NA25203 (N/A)	WEST-40 ML VOA UNP (N/A)	CONTRACT NON H3PO4 (N/A)	COAR (6 vials per hit)-5035 Lit (N/A)	VOICE 13 vials per kit)-VPH/Gas kit (N/A)	Vocation Sterile Plastic (N/A - lab)	State and Sterile Plastic (N/A - lab)	Moor	8P9A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGGU-100 mL Amber Unpreserved vials (N/A)
1	1	1	1	1	I		1	1	1	1	1	-	1	+	X	X	4	+	+	+	+	+	+	+	- 5	T	1
2	1	1	1	Ti	1	1	1	N	7	1	4	1	X	+	X	X	4	+	+	+	+	1	1	7	3	T	T
13	1	1	1	T	I		1	N	7	7	1	1	- 1	7	4	X	K	+	+	1	1	-	7	1	-	27	1
+		7	T	+	H	7	Z	N	1	7	_	1	7		A	4	1	-	-	_	=	=				À	1
+	5-	1	T	+	F		1	X	1	1			7		Z	X	7		_	_	==	-	-	-	1	4	1
+	6	K	1	+	1		K	K	1					_	7	7	7	-	-	-	-	-	-	1.	-	7	1
-	7	K	+	1	-		1	X	1	N			1	1	7	7	7	1	1	-	-	+	+	+	-	H	7
+	8	1	+	-		-	K	X	X	V				1	7	1	1	1	1	1	+	+	+	+	+-	1	7
-	9	K	4		-	+	K	1	X	T	T	T	1	1	1	1	1	1	1	1	+	+	1	+	+	4	4
	10	+	4		-	+	K	X	1	1	1	1	T	T	杨		1	1	1	1	1	+	+	+	+	+	1
_	1	1	K		+	+	+	X	1	1	1	+	1	1	1	1	1	V	1	1	1	1	1	+	+	+	1
ő	1	-	1		1	1	+	+	X	X	+	+	-	1	1	T	1		1	1	1	1	1	1	1	1	1

			justment Log for Pres	Time preservation	Amount of Preservative
iample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	adjusted	added
02.57	1				
			-		-
			lina compliance samples, a copy	1	

Note: Whenever there is a discrepancy affecting North Carolina compliance samp Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical		Chain-of-	Custody is a LEGAL D	OCUMEN	T Complete all re-	levent	fields		3											
Company Georgia Power - Coal Combu	stion Residuals		Billing information				1		1											
Address: 2480 Manter Road							2					2000				45 are	tor LA	B USE ONLY		
Atlanta, GA 30339							ì		_		Cont	ainer Pre	serval	tive Ty	pe **			Lab Project Manager:		
Report To Joyu Abraham			Email To scsinvoid	es@sout	hernco.com	-4				1		1		1						
opy To Golder			-			_												hydroxide (5) noc acetate.		
app in court			Site Collection Info	/Addres	s Plant Branch				(C) ann	nunci, (7) nonum h	sodium binu ydrawde, (O)	TSP (U) U	novese	hiesulfa rved. (O	itc, (9) her i Other	ane, [A] ass	corbic acid,	(6) ammon um sulfato.		
phone (404) 506-7239	-		State: Georgia Cir	or Miles	essile Time Year				_				alyses				Ti	Lab Profile/Line:		
ima l. jabraham@southernco.com					I MI ET		1					1	T	T	TT	7	_	Lab Sample Receipt Checklist:		
thone: (404) 506-7239	Project Name	: Plant Bra	nch BCD/E Backgroun	d	Pace Profile#	-			1 1		1			1	1 1			Custody Seals Present/Intact Y N NA		
mail: jabraham@southernco.com	Project # CCR	3rd Semi-J	Annual		200000000000000000000000000000000000000				1 1				1		1 1			Custody Signatures Present Y N NA		
collected By (print): Travis Martinez,	Purchase Ord	er #			Pace Project Mar	nager	-		1 1	-		1						Collector Signature Present Y N MA Bottles Intact Y N NA		
Indrea McClure	Quote #				kevin herring@p	acelab	com		1 1	comments	1 1			1	10 1	1		Correct Bottles YN NA		
Collected By (signature):	Turnaround 0	late Requir	ed		Immediately Pac	ked on	ke		7	Ĕ	1 1	- 1	1	1				Afficient Volume Y N NA		
	-					No			1 1	E	1 1			1	1 1	- 1	1	amples Received on Ice YN NA		
	Rush:				Field Fattered (if a	1.0	le)		1 1	0	1 1		1	1		i i		/OA - Headspace Acceptable YN NA ISOA Regulated Soils YN NA		
			y Next Day		[] Yes []	No	1		1 1	See								amples in Holding Time YN NA		
	1 12 044		[4 Day 5 Day havges Apply)	r			!		1 !	0	1 1	2	Chirodie/Fluoride/Sulfate						Re	lesidual Chlorine Present YN NA
		tradecast, C	-20,-0993		Analysis				1 1	4	1 1	1 2	1	1	1			Strips:		
Matrix Codes (insert in Matrix box bei	mult Driet	des from	· · · · · · · · · · · · · · · · · · ·				1			Metals 6010/6020/7470		/Su	1			1		ample pH Acceptable Y N NA H Strips:		
Product (P), Soil/Solid (SL), Oil (OL), W	for IMPL Air IAD	Tierra (T	Stroung Water (GW)	Wastewa	ster (WW),				1	001	1 1	p	1	82		1		ulfide Present Y N NA		
in the same party on torth in	the fact Twee feet	il sussee [4	of piggszäl (RT Mati	er (W1), 0	Other [OT]		1		1 1	8	1 1	9	1	122	1 1		L	ead Acetate Strips:		
	_	76	1		-		<u> </u>		1 1	6	1 1	重	1	226.	1	i	1 1	AB USE ONLY:		
ustomer Sample ID	Matrix *	Comp /	Collected (or Cor	nposite	Composite	End	рн	# of	1 1	20		1 8		Ε				ab Sample 8 / Comments.		
	INGILIA.	Grab	Start) Date	-			Н	Cors	1 1	2	10	ě	1	12	1 1					
00/14 /-	7	-		Time	Date	Time		1		ž	Tos	- 5	1	Radium				9249565		
DKGWA-65	GW	6	9-15-2020				643	5		X	X	X		X		1				
BRGWA-65 BRGWA-55	GW	16	9-15-20201	320			6.25			*	X	TX	1	X	-	+	++			
BRGWA-52	GW	1/-	9-15-20201	רחע		_	6.27				_	_	-				-			
BRGWA-25	6w	6	9-15-2020	70.	-	_				*	X	×	-	X		_				
BRGWA-2I			0 15 2020	201			6.01			*	X	X		X						
DUG. YT	Gw	G	9-15-2020	607			6.64	15		X	X	X		X						
											1	_					1			
								-	-	-	++	-	-	-	-	+	1			
		-	-		-	-	-	-	-		+		-	-	-	-	1			
	 	-		-		_	-		-	-	+	_								
	-	-								_				1				11		
												1	1							
				- 3													1			
	1								-	-	1	-			-	-	1			
									1	-	1-1-	-				-	-			
			-	ATTENDA		-	-	-	-	-	-	-	-	-		-	-			
Metals): As, B, Ba, Be, Ca, Cd, Co, Cr, Mc	Ph Sh Sa II T	1 He					1				1	1								
	, , s, se, se, U, 1	4.16	Type of ice Used:	Wet	t Blue Dry	N	one		SHORT HOLDS PRESENT (<72 hours): Y N N/A		LAS Sample Temperature Info:									
			Packing Material Us	ed:					L	ab Track	ing #:							Temp Blank Received: Y N NA		
												JOHN 188						Therm IDE:Cooler 1 Temp Upon Receipt:oC		
			Radchem sample(s)	screened	(<500 cpm)- v	N	NA		5		received via						in some is	Cooler 1 Therm Corr. FactoroC		
der de de la					- Coordinate I		- III		_ {	FEDEX	UPS	Client	Couri	er Pa	ce Couri	er .		Cooler 1 Corrected Temp:oC		
elinquished by/Company (Signature)		Quite	16-2020/0	Pa I	confed Wicons	iny: (S	(Pylore)	1		Date	Firme A		-	MTJLL	AB USE O	NLY		Commercia.		
				100	(land	0	Free	U	-	1116	200	445						-		
elinquished by/Company: [Signature]		Date	/Time·	-	ecewes by/Comp	15	future!	-	7	l et	Time:	111	Acct	mum:	_			Trip Blank Received: Y N NA		
				1		1							Tem	plate:				HCL MeOH TSP Other		
elinquished by/Company (Signature)							-			1			Prek	ogin:						
condensate all combant 128,00006		Date	Time		Received by/Compa	my is	naturel			Date	Time		PM:					Non Conformance(s): Page 1		
						- 4							PB.							

Pace Analytical

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test: Ra-226
Analyst: LAL
Date: 9/29/2020
Worklist: 56344
Matrix: DW

 Method Blank Assessment
 MB Sample ID
 2008968

 MB concentration:
 0.094

 MB Counting Uncertainty:
 0.180

 MB MDC:
 0.415

 MB Numerical Performance Indicator:
 1.02

 MB Status vs. Numerical Indicator:
 N/A

 MB Status vs. MDC:
 Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
·	LCS56344	LCSD56344
Count Date:	9/30/2020	9/30/2020
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.044	24.044
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.509	0.505
Target Conc. (pCi/L, g, F):	4.723	4.761
Uncertainty (Calculated):	0.057	0.057
Result (pCi/L, g, F):	3.880	3.912
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.699	0.693
Numerical Performance Indicator:	-2.36	-2.39
Percent Recovery:	82.15%	82.18%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:		Pass
Upper % Recovery Limits:		125%
Lower % Recovery Limits:	75%	75%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result (pci/L, g, F): Are sample and/or duplicate results below RL?	LCSD56344 3.880 0.699 3.912 0.693	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator; (Based on the LCS/LCSD Percant Recoveries) Duplicate RPD: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit:	-0.065 0.04% N/A	92495960001 92495960001DUP

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.;		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery: MS Status vs Numerical Indicator:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator: MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:	
	Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Result Matrix Spike Result Counting Uncertainty (PCi/I., g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (PCi/I., g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator:

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Mi0/1/2020

um 10/1/2020

Face Analytical"

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-226
Analyst:	I AI
Analyst. Date:	9/29/2020
Worklist:	56344
Matrix:	DW

Method Blank Assessment	
MB Sample ID	2008968
MB concentration:	0.094
M/B Counting Uncertainty:	0.180
MB MDC:	0.415
MB Numerical Performance Indicator:	1.02
MB Status vs Numerical Indicator:	N/A
MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS56344	LCSD56344
Count Date:	9/30/2020	
Spike I.D.:	19-033	
Decay Corrected Spike Concentration (pCi/mL):	24.044	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0,509	
Target Conc. (pCi/L, g, F):	4.723	
Uncertainty (Calculated):	0.057	
Result (pCi/L, g, F):	3,880	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.699	
Numerical Performance Indicator:	-2.36	
Percent Recovery:	82.15%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	125%	
Lower % Recovery Limits:	75%	ì

Duplicate Sample Assessment		
Sample I.D.; Duplicate Sample I.D.; Sample Result (pCi/L, g, F); Sample Result Counting Uncertainty (pCi/L, g, F);	92495960001DUP 0.399	Enter Duplicate sample IDs if other than LCS/LCSD in
Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.152	the space below.
Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator:	1 -	92495960001
Duplicate RPD:	89.47%	92495960001DUP
Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD:		
% RPD Limit:		

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I,D,		
Sampla MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

1	Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Ш	Sample I.D.	
H	Sample MS I.D.	
П	Sample MSD I.D.	
Н	Sample Matrix Spike Result:	
П	Matrix Spike Result Counting Uncartainty (pCi/L, g, F):	
П	Sample Matrix Spike Duplicate Result:	
H	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Н	Duplicate Numerical Performance Indicator:	
;	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
١	MS/ MSD Duplicate Status vs Numerical Indicator;	
- 1	MS/ MSD Duplicate Status vs RPD:	
-	% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

"Batch must be re-prepped due to unacceptable procision. N/A" 10/1/2020

Mus/1/2020

UAM 10/1/2020

Quality Control Sample Performance Assessment

Test: Ra-228 VAL Analyst: Date: 9/29/2020

56345 WT Worklist: Matrix:

Method Blank Assessment 2008969 MB Sample ID MB concentration: 0.804 M/B 2 Sigma CSU: 0.467 MB MDC: 0.852 MB Numerical Performance Indicator: 3.38 MB Status vs Numerical Indicator; Fail* MB Status vs. MDC: Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
	LCS56345	LCSD56345
Count Date:	10/5/2020	10/5/2020
Spike I.D.:	20-030	20-030
Decay Corrected Spike Concentration (pCi/mL):	38.140	38.140
Vojume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.819	0.806
Target Conc. (pCi/L, g, F):	4.659	4.732
Uncertainty (Calculated):	0.228	0.232
Result (pCi/L, g, F):	4.491	4.137
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.317	1,305
Numerical Performance Indicator.	-0.25	-0,88
Percent Recovery:	96.38%	87.43%
Status vs Numerical Indicator;	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	135%	135%
Lower % Recovery Limits:	60%	60%

Duplicate Sample Assessment		İ
Semple I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RL?	LCSD56345 4.491 1.317 4.137 1.305	Enter Duplicate sample IDs if other than LCS/LCSD in the space below,
Duplicate Numerical Performance Indicator: (Besed on the LCS/LCSD Percent Recoverles) Duplicate RPD:	0.373	
Duplicate Status vs Numerical Indicator:		
Duplicate Status vs RPD:		
% RPD Limit:	36%	ŀ

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery: MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	į
Duplicate Numerical Performance Indicator:	
(Besed on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:
*If the lowest activity sample in this batch is greater than ten times the blank value, the blank is acceptable; otherwise this batch must be repulsiped.

*N2
11:05 AM

Page 21 of

Ra-228_56345_W.xls Ra-228 (R086-8 04Sep2019).xls

Ra-228 NELAC DW2

September 27, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 16, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092

Kain Lung

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder
Ben Hodges, Georgia Power
Jimmy Jones, Golder Associates Inc.
Kristen Jurinko
Julie Lehrman, Golder Associates Inc.
Ms. Lauren Petty, Southern Co. Services
Carolyn Powrozek, Golder
Dawn Prell, Golder Associates Inc.
Tim Richards, Golder Associates - Atlanta
Brian Steele. Golder

CERTIFICATIONS

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706

North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92495656001	BRGWA-6S	Water	09/15/20 09:45	09/16/20 09:45
92495656002	BRGWA-5S	Water	09/15/20 13:20	09/16/20 09:45
92495656003	BRGWA-5I	Water	09/15/20 14:02	09/16/20 09:45
92495656004	BRGWA-2S	Water	09/15/20 15:01	09/16/20 09:45
92495656005	BRGWA-2I	Water	09/15/20 16:07	09/16/20 09:45

SAMPLE ANALYTE COUNT

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Lab ID Sample ID		Method	Analysts	Analytes Reported
92495656001	BRGWA-6S	EPA 6010D	<u> </u>	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92495656002	BRGWA-5S	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92495656003	BRGWA-5I	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92495656004	BRGWA-2S	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92495656005	BRGWA-2I	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	CDC	3

PASI-A = Pace Analytical Services - Asheville

PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

SUMMARY OF DETECTION

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Lab Sample ID	Client Sample ID	_				_
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
92495656001	BRGWA-6S					
	рН	6.43	Std. Units		09/22/20 12:29	
EPA 6010D	Calcium	3.7	mg/L	1.0	09/17/20 18:38	
EPA 6020B	Barium	0.013	mg/L	0.010	09/21/20 16:55	
EPA 6020B	Chromium	0.014	mg/L	0.010	09/21/20 16:55	
EPA 6020B	Lithium	0.0027J	mg/L	0.030	09/21/20 16:55	
SM 2450C-2011	Total Dissolved Solids	79.0	mg/L	10.0	09/17/20 15:25	
EPA 300.0 Rev 2.1 1993	Chloride	2.3	mg/L	1.0	09/23/20 23:33	
2495656002	BRGWA-5S					
	рН	6.25	Std. Units		09/22/20 12:29	
EPA 6010D	Calcium	16.8	mg/L	1.0	09/17/20 18:43	
EPA 6020B	Barium	0.038	mg/L	0.010	09/21/20 17:00	
EPA 6020B	Chromium	0.0048J	mg/L	0.010	09/21/20 17:00	
EPA 6020B	Lead	0.000043J	mg/L	0.0050	09/21/20 17:00	
SM 2450C-2011	Total Dissolved Solids	116	mg/L	10.0	09/17/20 15:26	
EPA 300.0 Rev 2.1 1993	Chloride	3.7	mg/L	1.0	09/23/20 23:48	
EPA 300.0 Rev 2.1 1993	Fluoride	0.051J	mg/L	0.10	09/23/20 23:48	
2495656003	BRGWA-5I					
	рН	6.27	Std. Units		09/22/20 12:29	
EPA 6010D	Calcium	12.7	mg/L	1.0	09/17/20 18:47	
EPA 6020B	Barium	0.022	mg/L	0.010	09/21/20 17:06	
EPA 6020B	Chromium	0.0069J	mg/L	0.010	09/21/20 17:06	
EPA 6020B	Cobalt	0.00050J	mg/L	0.0050	09/21/20 17:06	
EPA 6020B	Lead	0.0013J	mg/L	0.0050	09/21/20 17:06	
EPA 6020B	Lithium	0.0010J	mg/L	0.030	09/21/20 17:06	
EPA 6020B	Molybdenum	0.0015J	mg/L	0.010	09/21/20 17:06	
SM 2450C-2011	Total Dissolved Solids	100	mg/L	10.0	09/17/20 15:26	
EPA 300.0 Rev 2.1 1993	Chloride	3.7	mg/L	1.0	09/24/20 00:03	
EPA 300.0 Rev 2.1 1993	Sulfate	1.7	mg/L	1.0	09/24/20 00:03	
2495656004	BRGWA-2S					
	рН	6.01	Std. Units		09/22/20 12:29	
EPA 6010D	Calcium	3.9	mg/L	1.0	09/17/20 19:00	
PA 6020B	Barium	0.0094J	mg/L	0.010	09/21/20 17:12	
EPA 6020B	Chromium	0.0082J	mg/L	0.010	09/21/20 17:12	
EPA 6020B	Cobalt	0.0010J	mg/L	0.0050	09/21/20 17:12	
SM 2450C-2011	Total Dissolved Solids	69.0	mg/L	10.0	09/17/20 15:26	
EPA 300.0 Rev 2.1 1993	Chloride	1.7	mg/L	1.0	09/24/20 00:48	
2495656005	BRGWA-2I					
	рН	6.64	Std. Units		09/22/20 12:29	
EPA 6010D	Calcium	14.1	mg/L	1.0	09/17/20 19:04	
EPA 6020B	Barium	0.0083J	mg/L	0.010	09/21/20 17:18	
EPA 6020B	Lithium	0.033	mg/L	0.030	09/21/20 17:18	
PA 6020B	Molybdenum	0.00070J	mg/L	0.010	09/21/20 17:18	
SM 2450C-2011	Total Dissolved Solids	116	mg/L	10.0	09/17/20 15:26	
EPA 300.0 Rev 2.1 1993	Chloride	1.9	mg/L	1.0	09/24/20 07:27	
EPA 300.0 Rev 2.1 1993	Sulfate	5.9	mg/L		09/24/20 07:27	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

Sample: BRGWA-6S	Lab ID:	92495656001	Collecte	ed: 09/15/20	0 09:45	Received: 09/	16/20 09:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
рН	6.43	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	6010D Pre	paration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	ЭΑ				
Calcium	3.7	mg/L	1.0	0.070	1	09/16/20 15:14	09/17/20 18:38	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/16/20 18:16	09/21/20 16:55	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/16/20 18:16	09/21/20 16:55	7440-38-2	
Barium	0.013	mg/L	0.010	0.00071	1	09/16/20 18:16	09/21/20 16:55	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/16/20 18:16	09/21/20 16:55	7440-41-7	
Boron	ND	mg/L	0.10	0.0052	1		09/21/20 16:55	-	
Cadmium	ND	mg/L	0.0025	0.00012	1		09/21/20 16:55		
Chromium	0.014	mg/L	0.010	0.00055	1		09/21/20 16:55		
Cobalt	ND	mg/L	0.0050	0.00038	1		09/21/20 16:55		
Lead	ND	mg/L	0.0050	0.000036	1		09/21/20 16:55		
Lithium	0.0027J	mg/L	0.030	0.00081	1		09/21/20 16:55		
Molybdenum	ND	mg/L	0.010	0.00069	1		09/21/20 16:55		
Selenium	ND	mg/L	0.010	0.0016	1		09/21/20 16:55		
Thallium	ND	mg/L	0.0010	0.00014	1		09/21/20 16:55		
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	PA 7470A			
·	Pace Ana	lytical Services	- Peachtre	e Corners, 0	3A				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 12:58	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	3A				
Total Dissolved Solids	79.0	mg/L	10.0	10.0	1		09/17/20 15:25		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	2.3	mg/L	1.0	0.60	1		09/23/20 23:33	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/23/20 23:33	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		09/23/20 23:33		

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

Sample: BRGWA-5S	Lab ID:	92495656002	Collecte	ed: 09/15/20	13:20	Received: 09/	16/20 09:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte	;					
рН	6.25	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	hod: EF	PA 3010A			
	Pace Anal	Pace Analytical Services - Peachtree Corners, GA							
Calcium	16.8	mg/L	1.0	0.070	1	09/16/20 15:14	09/17/20 18:43	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
		ytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/16/20 18:16	09/21/20 17:00	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/16/20 18:16	09/21/20 17:00		
Barium	0.038	mg/L	0.010	0.00071	1	09/16/20 18:16	09/21/20 17:00	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/16/20 18:16			
Boron	ND	mg/L	0.10	0.0052	1		09/21/20 17:00	-	
Cadmium	ND	mg/L	0.0025	0.00012	1		09/21/20 17:00		
Chromium	0.0048J	mg/L	0.010	0.00055	1		09/21/20 17:00		
Cobalt	ND	mg/L	0.0050	0.00038	1		09/21/20 17:00		
Lead	0.000043J	mg/L	0.0050	0.000036	1		09/21/20 17:00		
Lithium	ND	mg/L	0.030	0.00081	1		09/21/20 17:00		
Molybdenum	ND	mg/L	0.010	0.00069	1		09/21/20 17:00		
Selenium	ND	mg/L	0.010	0.0016	1		09/21/20 17:00		
Thallium	ND	mg/L	0.0010	0.00014	1		09/21/20 17:00		
7470 Mercury	Analytical	Method: EPA 7	470A Prei	paration Met	hod: EF	PA 7470A			
,	•	ytical Services							
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 13:07	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Anal	ytical Services	- Peachtre	e Corners, 0	€A				
Total Dissolved Solids	116	mg/L	10.0	10.0	1		09/17/20 15:26		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
-	Pace Anal	ytical Services	- Asheville						
Chloride	3.7	mg/L	1.0	0.60	1		09/23/20 23:48	16887-00-6	
Fluoride	0.051J	mg/L	0.10	0.050	1		09/23/20 23:48	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		09/23/20 23:48		

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

Sample: BRGWA-5I	Lab ID:	92495656003	Collecte	d: 09/15/20	14:02	Received: 09/	16/20 09:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
рН	6.27	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	e Corners, 0	βA				
Calcium	12.7	mg/L	1.0	0.070	1	09/16/20 15:14	09/17/20 18:47	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/16/20 18:16	09/21/20 17:06	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/16/20 18:16	09/21/20 17:06	7440-38-2	
Barium	0.022	mg/L	0.010	0.00071	1	09/16/20 18:16	09/21/20 17:06	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/16/20 18:16	09/21/20 17:06	7440-41-7	
Boron	ND	mg/L	0.10	0.0052	1		09/21/20 17:06		
Cadmium	ND	mg/L	0.0025	0.00012	1		09/21/20 17:06		
Chromium	0.0069J	mg/L	0.010	0.00055	1		09/21/20 17:06		
Cobalt	0.00050J	mg/L	0.0050	0.00038	1		09/21/20 17:06		
Lead	0.0013J	mg/L	0.0050	0.000036	1	09/16/20 18:16	09/21/20 17:06	7439-92-1	
Lithium	0.0010J	mg/L	0.030	0.00081	1	09/16/20 18:16	09/21/20 17:06	7439-93-2	
Molybdenum	0.0015J	mg/L	0.010	0.00069	1	09/16/20 18:16	09/21/20 17:06	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/16/20 18:16	09/21/20 17:06	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/16/20 18:16	09/21/20 17:06	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
·	Pace Ana	lytical Services	- Peachtree	e Corners, 0	3A				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 13:10	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	Pace Ana	lytical Services	- Peachtree	e Corners, 0	βA				
Total Dissolved Solids	100	mg/L	10.0	10.0	1		09/17/20 15:26		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	3.7	mg/L	1.0	0.60	1		09/24/20 00:03	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/24/20 00:03	16984-48-8	
Sulfate	1.7	mg/L	1.0	0.50	1		09/24/20 00:03	14808-79-8	

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

Sample: BRGWA-2S	Lab ID:	92495656004	Collecte	d: 09/15/20	15:01	Received: 09/	16/20 09:45 M	atrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua	
Field Data	Analytical	Method:								
	Pace Ana	lytical Services	- Charlotte							
рН	6.01	Std. Units			1		09/22/20 12:29			
6010D ATL ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3010A									
	Pace Ana	lytical Services	- Peachtree	Corners, C	βA					
Calcium	3.9	mg/L	1.0	0.070	1	09/16/20 15:14	09/17/20 19:00	7440-70-2		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A				
	-	lytical Services								
Antimony	ND	mg/L	0.0030	0.00028	1	09/16/20 18:16	09/21/20 17:12	7440-36-0		
Arsenic	ND	mg/L	0.0050	0.00078	1	09/16/20 18:16	09/21/20 17:12	7440-38-2		
Barium	0.0094J	mg/L	0.010	0.00071	1	09/16/20 18:16	09/21/20 17:12	7440-39-3		
Beryllium	ND	mg/L	0.0030	0.000046	1	09/16/20 18:16	09/21/20 17:12	7440-41-7		
Boron	ND	mg/L	0.10	0.0052	1	09/16/20 18:16	09/21/20 17:12	7440-42-8		
Cadmium	ND	mg/L	0.0025	0.00012	1	09/16/20 18:16	09/21/20 17:12	7440-43-9		
Chromium	0.0082J	mg/L	0.010	0.00055	1	09/16/20 18:16	09/21/20 17:12	7440-47-3		
Cobalt	0.0010J	mg/L	0.0050	0.00038	1	09/16/20 18:16	09/21/20 17:12	7440-48-4		
Lead	ND	mg/L	0.0050	0.000036	1	09/16/20 18:16	09/21/20 17:12	7439-92-1		
Lithium	ND	mg/L	0.030	0.00081	1	09/16/20 18:16	09/21/20 17:12	7439-93-2		
Molybdenum	ND	mg/L	0.010	0.00069	1	09/16/20 18:16	09/21/20 17:12	7439-98-7		
Selenium	ND	mg/L	0.010	0.0016	1	09/16/20 18:16	09/21/20 17:12	7782-49-2		
Thallium	ND	mg/L	0.0010	0.00014	1	09/16/20 18:16	09/21/20 17:12	7440-28-0		
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A				
	Pace Ana	lytical Services	- Peachtree	Corners, C	€A					
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 13:12	7439-97-6		
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011							
	Pace Ana	lytical Services	- Peachtree	Corners, C	S A					
Total Dissolved Solids	69.0	mg/L	10.0	10.0	1		09/17/20 15:26			
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	.1 1993						
	Pace Ana	lytical Services	- Asheville							
Chloride	1.7	mg/L	1.0	0.60	1		09/24/20 00:48	16887-00-6		
Fluoride	ND	mg/L	0.10	0.050	1		09/24/20 00:48	16984-48-8		
Sulfate	ND	mg/L	1.0	0.50	1		09/24/20 00:48	14808-79-8		

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

Sample: BRGWA-2I	Lab ID:	92495656005	Collected	d: 09/15/20	16:07	Received: 09/	16/20 09:45 M	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
рН	6.64	Std. Units			1		09/22/20 12:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	Corners, G	SA.				
Calcium	14.1	mg/L	1.0	0.070	1	09/16/20 15:14	09/17/20 19:04	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
•••••	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/16/20 18:16	09/21/20 17:18	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/16/20 18:16	09/21/20 17:18	7440-38-2	
Barium	0.0083J	mg/L	0.010	0.00071	1	09/16/20 18:16	09/21/20 17:18	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/16/20 18:16	09/21/20 17:18	7440-41-7	
Boron	ND	mg/L	0.10	0.0052	1	09/16/20 18:16	09/21/20 17:18	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/16/20 18:16	09/21/20 17:18	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	09/16/20 18:16	09/21/20 17:18	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	09/16/20 18:16	09/21/20 17:18	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	09/16/20 18:16	09/21/20 17:18	7439-92-1	
Lithium	0.033	mg/L	0.030	0.00081	1	09/16/20 18:16	09/21/20 17:18	7439-93-2	
Molybdenum	0.00070J	mg/L	0.010	0.00069	1	09/16/20 18:16	09/21/20 17:18	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/16/20 18:16	09/21/20 17:18	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/16/20 18:16	09/21/20 17:18	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Metl	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtree	Corners, G	S A				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 13:14	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	Pace Ana	lytical Services	- Peachtree	Corners, C	SA.				
Total Dissolved Solids	116	mg/L	10.0	10.0	1		09/17/20 15:26		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.9	mg/L	1.0	0.60	1		09/24/20 07:27	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/24/20 07:27	16984-48-8	
Sulfate	5.9	mg/L	1.0	0.50	1		09/24/20 07:27	14808-79-8	

QUALITY CONTROL DATA

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

QC Batch: 566871 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495656001, 92495656002, 92495656003, 92495656004, 92495656005

METHOD BLANK: 3003868 Matrix: Water

Associated Lab Samples: 92495656001, 92495656002, 92495656003, 92495656004, 92495656005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Calcium mg/L ND 1.0 0.070 09/17/20 17:42

LABORATORY CONTROL SAMPLE: 3003869

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L Calcium 0.93J 93 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3003870 3003871

MSD MS 92495653001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Qual Result Conc. % Rec % Rec Limits Calcium mg/L 5.7 6.6 6.6 89 87 75-125 0 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

QC Batch: 566966 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495656001, 92495656002, 92495656003, 92495656004, 92495656005

METHOD BLANK: 3004543 Matrix: Water

Associated Lab Samples: 92495656001, 92495656002, 92495656003, 92495656004, 92495656005

		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
Antimony	mg/L	ND	0.0030	0.00028	09/21/20 15:26		
Arsenic	mg/L	ND	0.0050	0.00078	09/21/20 15:26		
Barium	mg/L	ND	0.010	0.00071	09/21/20 15:26		
Beryllium	mg/L	ND	0.0030	0.000046	09/21/20 15:26		
Boron	mg/L	ND	0.10	0.0052	09/21/20 15:26		
Cadmium	mg/L	ND	0.0025	0.00012	09/21/20 15:26		
Chromium	mg/L	ND	0.010	0.00055	09/21/20 15:26		
Cobalt	mg/L	ND	0.0050	0.00038	09/21/20 15:26		
Lead	mg/L	ND	0.0050	0.000036	09/21/20 15:26		
Lithium	mg/L	ND	0.030	0.00081	09/21/20 15:26		
Molybdenum	mg/L	ND	0.010	0.00069	09/21/20 15:26		
Selenium	mg/L	ND	0.010	0.0016	09/21/20 15:26		
Thallium	mg/L	ND	0.0010	0.00014	09/21/20 15:26		

LABORATORY CONTROL SAMPLE:	3004544					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.099	99	80-120	
Arsenic	mg/L	0.1	0.099	99	80-120	
Barium	mg/L	0.1	0.099	99	80-120	
Beryllium	mg/L	0.1	0.10	105	80-120	
Boron	mg/L	1	1.1	109	80-120	
Cadmium	mg/L	0.1	0.099	99	80-120	
Chromium	mg/L	0.1	0.10	105	80-120	
Cobalt	mg/L	0.1	0.10	101	80-120	
Lead	mg/L	0.1	0.099	99	80-120	
Lithium	mg/L	0.1	0.11	107	80-120	
Molybdenum	mg/L	0.1	0.099	99	80-120	
Selenium	mg/L	0.1	0.098	98	80-120	
Thallium	mg/L	0.1	0.097	97	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3004545					3004546							
			MS	MSD								
		92495653001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.10	0.097	100	97	75-125	2	20	
Arsenic	mg/L	ND	0.1	0.1	0.10	0.096	101	96	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3004	545		3004546							
Parameter	Units	92495653001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.058	0.1	0.1	0.16	0.15	99	95	75-125	2	20	
Beryllium	mg/L	ND	0.1	0.1	0.10	0.096	102	96	75-125	6	20	
Boron	mg/L	ND	1	1	1.0	0.98	103	97	75-125	5	20	
Cadmium	mg/L	ND	0.1	0.1	0.10	0.096	100	96	75-125	4	20	
Chromium	mg/L	0.0025J	0.1	0.1	0.11	0.099	103	96	75-125	7	20	
Cobalt	mg/L	ND	0.1	0.1	0.10	0.097	100	97	75-125	2	20	
Lead	mg/L	ND	0.1	0.1	0.099	0.096	99	96	75-125	3	20	
Lithium	mg/L	ND	0.1	0.1	0.10	0.10	104	100	75-125	4	20	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.097	100	97	75-125	3	20	
Selenium	mg/L	ND	0.1	0.1	0.098	0.10	98	99	75-125	1	20	
Thallium	mg/L	ND	0.1	0.1	0.097	0.094	97	94	75-125	4	20	

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

QC Batch: 567255 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495656001, 92495656002, 92495656003, 92495656004, 92495656005

METHOD BLANK: 3006139 Matrix: Water

Associated Lab Samples: 92495656001, 92495656002, 92495656003, 92495656004, 92495656005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00050 0.000078 09/18/20 12:53

LABORATORY CONTROL SAMPLE: 3006140

Spike LCS LCS % Rec Result Conc. % Rec Limits Qualifiers Parameter Units Mercury 0.0025 0.0026 102 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3006141 3006142

MS MSD

92495656001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result % Rec **RPD** RPD Qual Result Conc. Result % Rec Limits 0.0025 Mercury mg/L ND 0.0025 0.0026 0.0025 102 100 75-125 2 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

QC Batch: 567139 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495656001, 92495656002, 92495656003, 92495656004, 92495656005

METHOD BLANK: 3005336 Matrix: Water

Associated Lab Samples: 92495656001, 92495656002, 92495656003, 92495656004, 92495656005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 10.0 09/17/20 15:22

LABORATORY CONTROL SAMPLE: 3005337

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 400 420 105 84-108 mg/L

SAMPLE DUPLICATE: 3005338

92494171032 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 146 **Total Dissolved Solids** 3 mg/L 142 10

SAMPLE DUPLICATE: 3005339

Date: 09/27/2020 06:18 PM

92495656003 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 100 mg/L 95.0 5 10

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

QC Batch: 568234 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92495656001, 92495656002, 92495656003, 92495656004

METHOD BLANK: 3010905 Matrix: Water

Associated Lab Samples: 92495656001, 92495656002, 92495656003, 92495656004

Parameter	Units	Blank Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/23/20 17:04	
Fluoride	mg/L	ND	0.10	0.050	09/23/20 17:04	
Sulfate	mg/L	ND	1.0	0.50	09/23/20 17:04	

LABORATORY CONTROL SAMPLE: 3010906 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 50 53.0 106 90-110 Fluoride mg/L 2.5 2.7 109 90-110 Sulfate mg/L 50 53.2 106 90-110

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3010	909		3010910							
			MS	MSD								
		92496730002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	264	50	50	389	389	249	249	90-110	0	10	
Fluoride	mg/L	0.60	2.5	2.5	3.3	3.4	110	110	90-110	1	10	
Sulfate	mg/L	3.0	50	50	57.3	57.3	109	109	90-110	0	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3011	115		3011116							
			MS	MSD								
		92496730004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	109	50	50	158	158	97	97	90-110	0	10	
Fluoride	mg/L	0.43	2.5	2.5	3.1	3.2	108	109	90-110	1	10	
Sulfate	mg/L	79.4	50	50	120	120	81	81	90-110	0	10	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

QC Batch: 568377

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

EPA 300.0 Rev 2.1 1993

Associated Lab Samples: 92495656005

METHOD BLANK: 3011350 Matrix: Water

Associated Lab Samples: 92495656005

LABORATORY CONTROL SAMPLE: 2011251

Date: 09/27/2020 06:18 PM

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/24/20 06:58	
Fluoride	mg/L	ND	0.10	0.050	09/24/20 06:58	
Sulfate	mg/L	ND	1.0	0.50	09/24/20 06:58	

Analysis Method:

LABORATORY CONTROL SAMPLE.	3011351	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	50.7	101	90-110	
Fluoride	mg/L	2.5	2.6	102	90-110	
Sulfate	mg/L	50	50.1	100	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3011:	352		3011353							
			MS	MSD								
		92495656005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	1.9	50	50	55.8	56.2	108	109	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.8	2.8	109	110	90-110	1	10	
Sulfate	mg/L	5.9	50	50	59.3	59.6	107	108	90-110	1	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3011	354		3011355							
			MS	MSD								
		92496524001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.6	50	50	56.8	57.6	108	110	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.7	2.8	108	110	90-110	2	10	
Sulfate	mg/L	1.0	50	50	54.0	54.8	106	108	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/27/2020 06:18 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD/E BACKGROUND

Pace Project No.: 92495656

Date: 09/27/2020 06:18 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92495656001	BRGWA-6S				
92495656002	BRGWA-5S				
92495656003	BRGWA-5I				
92495656004	BRGWA-2S				
92495656005	BRGWA-2I				
92495656001	BRGWA-6S	EPA 3010A	566871	EPA 6010D	566908
92495656002	BRGWA-5S	EPA 3010A	566871	EPA 6010D	566908
92495656003	BRGWA-5I	EPA 3010A	566871	EPA 6010D	566908
92495656004	BRGWA-2S	EPA 3010A	566871	EPA 6010D	566908
92495656005	BRGWA-2I	EPA 3010A	566871	EPA 6010D	566908
92495656001	BRGWA-6S	EPA 3005A	566966	EPA 6020B	566971
92495656002	BRGWA-5S	EPA 3005A	566966	EPA 6020B	566971
92495656003	BRGWA-5I	EPA 3005A	566966	EPA 6020B	566971
92495656004	BRGWA-2S	EPA 3005A	566966	EPA 6020B	566971
92495656005	BRGWA-2I	EPA 3005A	566966	EPA 6020B	566971
92495656001	BRGWA-6S	EPA 7470A	567255	EPA 7470A	567454
92495656002	BRGWA-5S	EPA 7470A	567255	EPA 7470A	567454
92495656003	BRGWA-5I	EPA 7470A	567255	EPA 7470A	567454
92495656004	BRGWA-2S	EPA 7470A	567255	EPA 7470A	567454
92495656005	BRGWA-2I	EPA 7470A	567255	EPA 7470A	567454
92495656001	BRGWA-6S	SM 2450C-2011	567139		
92495656002	BRGWA-5S	SM 2450C-2011	567139		
92495656003	BRGWA-5I	SM 2450C-2011	567139		
92495656004	BRGWA-2S	SM 2450C-2011	567139		
92495656005	BRGWA-2I	SM 2450C-2011	567139		
92495656001	BRGWA-6S	EPA 300.0 Rev 2.1 1993	568234		
92495656002	BRGWA-5S	EPA 300.0 Rev 2.1 1993	568234		
92495656003	BRGWA-5I	EPA 300.0 Rev 2.1 1993	568234		
92495656004	BRGWA-2S	EPA 300.0 Rev 2.1 1993	568234		
92495656005	BRGWA-2I	EPA 300.0 Rev 2.1 1993	568377		

9	inple Condition		WO#: 9249	5656
Pace Analytical Client Name	: GA Pou	10.5		
8				
Courier: Fed Ex UPS USPS Clie	ont Commercial	Pace Other	92495656 Proj. Name:	en en sena
Custody Seal on Cooler/Box Present: Vyes	no Seals	intact: byes	□ no	Seattle Control
Packing Material: Bubble Wrap Bubble	Bags Mone	Other		
Thermometer Used 214	Type of Ice: (We)	Blue None	Samples on ice, cooling pr	
Cooler Temperature	Biological Tissue	is Frozen: Yes N	Date and Initials of po	120 Carry
emp should be above freezing to 6°C	- Participant	Comments:		
Chain of Custody Present:	ETES ONO ON/A	1.		
Chain of Custody Filled Out:	ØYes □No □N/A	2.		
Chain of Custody Relinquished:	AYes ONO ONIA	3.		
Sampler Name & Signature on COC:	Yes ONO ON/A	4.		
Samples Arrived within Hold Time:	ØYes □No □N/A	5.		
Short Hold Time Analysis (<72hr):	□Yes BNo □N/A	6.		
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.		
Sufficient Volume:	Oves □No □N/A	8.		
Correct Containers Used:	EYes ONO ON/A	9.	navanisas	
-Pace Containers Used:	Yes ONO ON/A			
Containers Intact:	ØYes □No □N/A	10.		
Filtered volume received for Dissolved tests	□Yes □No □N/A	11.		
Sample Labels match COC:	TYes ONO ON/A	12.		
-Includes date/time/ID/Analysis Matrix:	W/			
All containers needing preservation have been checked.	BYGS DNGS DNA	13.		
All containers needing preservation are found to be in	<u> </u>	10000		
compliance with EPA recommendation.	ZYes □No □N/A			200-0
exceptions: VOA, collorm, TOC, O&G, WI-DRO (water)	□Yes □¥6	Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	□Yes □No □NIA	14.		
Headspace in VOA Vials (>6mm):	□Yes □No □N/A			
Trip Blank Present:	□Yes □No □N/A	16.		
Trip Blank Custody Seals Present	□Yes □No □N/A			
Pace Trip Blank Lot # (if purchased):		1		
Client Notification/ Resolution:		Terre	Field Data Required?	Y / N
		Time:		
Comments/ Resolution:	#			-
Person Contacted: Comments/ Resolution:		Time:		
Project Manager Review:			Date:	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, Incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

**Checker mark top half of box if pH seqf or dechlorination is vortified and within the acceptance range for preservation applications. **Consideration of the physical sequence of the physical se	Pace Analytical .	Document Name: Bottle Identification Form Document No.: F-CAR-CS-043-Rev.00	(BIF) Pa	ued: March 14, 2019 age 1 of 1 ng Authority: linas Quality Office	
N/M seasonal states in societies and states and states and states and states in societies and states in societies and states in societies and states and states and states in societies and states in societies and states and states and states in societies and states and states in societies and stat	*Check mark top half of box if pH and verified and within the acceptance raisingles.	or dechlorination is age for preservation pro/8015 (water) DOC, LLHg	Project # WO#:	Due Date: 09/3	0/20
i i i i i i i i i i i i i i i i i i i	Treems I reams BP2U-125 ml Plastic Unpreserved (N/A) (C) BP2U-250 ml Plastic Unpreserved (N/A) BP2U-250 ml Plastic Unpreserved (N/A) BP2U-250 ml Plastic H2504 (pH < 2) (C) BP2U-250 ml Plastic H2504 (pH < 2) (C) BP2U-250 ml Plastic H2504 (pH < 2) (C) BP2U-250 ml Plastic H2504 (pH < 2) (C) BP2U-250 ml Plastic H2504 (pH < 2) (C) BP2U-250 ml Plastic H2504 (pH < 2) (C)	The matter of the state of the	og for Preserved Sample	es amount of Preservative	
· · · · · · · · · · · · · · · · · · ·	·				+
this form will be sent to the North Carolina DEHNR Certification			of this form will be St	ent to the North Carolina DEHNR Cer	tification (

Pace Analytical	r	Chia	MIN-O	OF-CUSTODY Analytical Request Document Custody is a LEGAL DOCUMENT. Complete all relevent 6			ment				LAB USE ONLY- Attix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here									
/-		Ch	ain-of-C	Custody is a LEGAL C	OCUMEN	T Complete all rele	vent f	elds												
Company Georgia Power - Coal Combs Address: 2480 Maner Road	istion Residuals	Residuals		Billing Informatio	n		-			7			ALL S	SHAD	ED A	REAS	are for	r LAB L	USE ONLY	
Atlanta, GA 30339							- 1			-		Cont	ainer Prese	realine	Tune *			liabi	Project Manager:	
leport To Joyu Abraham			_	Email To scanyo	resiliani	theraco com				$+$ \top	1	TT	4		IT	-	TI	_	roject manager.	
						and a com-				** Prese	reative Ty	pes (1) estre		Muric acid	(3) be	drochlore	acid, [4] so	dum hydro	onde, (5) noc acetate,	
opy To Golder				Site Collection in	fa/Addres	s Plant Branch	-			76) meth.	-nol. 17; s	odium bisul		um thres	Mate.	9) hexane			ammon om selfate.	
shone (404) 506-7239		V2.000-07/10		State: Georgia C	ity Miles	geville Time Zone	Collect	ted		-			Anal	yses				Lab P	Profile/Line:	
mall_jabraham@southernco.com	-				[]2	TI MTI JCT IX									T	7	T		ample Receipt Checklist.	
hone: (404) 506-7239				nch BCD/E Backgrou	ind	Pace Profile#				7 [- 1		1		ody Seals Present/Intact Y i ody Signatures Present Y I	
mail: jabraham@southernco.com		oject # CCR 3rd		Annual						1 1					1	- 11			ctor Signature Present Y N	
ollected By [print]: Travis Martinez, indrea McClure	Quote #	inchase Order #				Pace Project Mana					2						4 1		es intact Y N NA	
	-		-	-		kevin herring@pac	_			4 1	5	1 1	1 1		- 1	1	1 1		ect Bottles YN NA	
ollected By (segnature):	Ternaround D	rnaround Date	windama	ea		Immediately Packs		n ice		1 1	comments		1 1		1		1 1	40.000	dent Volume Y N NA ples Received on Ice Y N	
	Rush	sh			_	[X] Yes [] No Field Filtered [if applical				4 1	5				i	- 1	1 1		- Headspace Acceptable 1	
			ame Da	y Next Day		[]Yes [] No		et.			200		1 1				1 1	USDA	Regulated Soils YNN	MA.
				[]4 Day []5 Da	w	1 16	-			1 1	-						1 1		ries in Holding Time Y N	
				harges Apply)	pos Apphyl Analysis:		Mss				2	1 1	1 25					CIStri	ual Chlorine Present YN	MA.
	-								=			4 1	6010/6020/7470	1	Chirodie/Fluoride/Sulfate					
Matrix Codes (Insert in Matrix box be	low! Drinking to	Drinking Water	Inus a	General Winese (Cont.)	Interior	and the same	1			1 3	20	1 1	S	- 9	1			pH Str	rlps.	
Product (P), So I/Solid (SL), Oil (OL), W	Fine PAP1 Air (48	MPI Air (481 Ti	icon IT	Stourio Water (GW)	, wastew	ater (WW),	- 1			1 13	001	1 1	무	:	22	1	1 1		e Present T N NA.	
and the second s	the tree from from	to the feet free to	crosses (1)	of oreassey (o), wa	ter (w)],	Other [OI]	- 3			1 1	6		9		7	1	; i	Lead A	Acetate Strips.	
	1						_			1 3	5		프		270.778		1	TAR IN	SE ONLY:	
ustomer Sample ID	Matrix *		Comp / Grab	1	imposite	Composite E	nd	pH	201	1 13	2		1 8	- 13	E				ample # / Comments.	
	- Marine		Graq	Start) Date		-	_	4	Ctrs	1 1	Metals	8	2	1.	Kadica		1 1			11/1-12
000	-	,			Time	Date	Time				žΙ	105	6		2	1			96	495650
BKGWA-65	GW	GW	6	4-15-2020	0945			643	15		X	X	X		X					-
BRGWA-65 BRGWA-55	Gw	GW I		9-15-2020			-	6.25			4	Ŷ	X		1	+	-	-		-
BR GWA-ST	(sw		6	9-15-2020	hun?		\rightarrow									-	-	_		
BRGWA-SI BRGWA-25		-		9 15-2020	1907	-	-	6.27			4	X	X	12	_	-				
BOCKET OF	Gw		6	9-15-2020	1201		_	6.01			(1	X		<l< td=""><td></td><td></td><td></td><td></td><td></td></l<>					
BRGWA-2I	Gw	GW (6	9-15-2020	1607			6.64	15	1	X	X	X	X						
																				at water as
											_	1	-1	\neg	+	-		_		
				-	-	1	-	-	+-	-	-!-	1	+	-	+	+-	-	-		
	+		-				\rightarrow	-	-	-	-1-	-	-	_	1			1		
	-		_				_								1					
	-							1			1		1 1	- 1	1					Service Sealing
															T					
													-	\rightarrow	1	1		1	750	
							-	1		-	-	1	\rightarrow	-	+	+		-		
	1	-					-+	1		-	+-	-	++	-	-	+	-	+-	and the same	
	_						-	-	-	-	+	-	- 1	-	1	_	-	-		
Metals): As, B, Ba, Be, Ca, Cd, Co, Cr, M	o Oh Sh Sa Li S	Ch Ca ti Ti ti	-					1			1				1				To the same	
	w, ra, 30, 30, U, I	20, 20, II, N	8	Type of ice Used:	We	t Blue Dry	No	me		S	HORT H	OLDS PRESS	ENT (<72 h	ours):	Y N	N/A		L	LAB Sample Temperatu	are Info:
				Packing Material Used:					_	sb Track				_				Temp Blank Received: Y 1	N NA	
										(S)(S)						1	Therm IOF:	-		
				Radchem sample(s) screened (cS00 cmm) - V N NA					Sa	amples r	eceived via	k						Cooler 1 Temp Upon Recei Cooler 1 Therm Corr. Facto		
				Radchem sample(s) screened (<500 cpm): Y N NA			NA					Client (courier	Pace	Courier			Cooler 1 Corrected Temp		
elinquished by Come you (Signaphyre)		- 00	Quite	4-16-2020 /0800 Profigurary 1500		(pare)	1		Date	Firme 4		MTI	LAB	USE ONL	ν .		Comments.			
			H-	10-1050/0	1800	66.0	2	Are	11	9	1111	100	945	Table 4						
elinquished by/Company: (Signature)		7	Date/Time: Received by Company Diggratur		muture]	_	- 4	166	Time:	11)	Acctnon	2	_		-	Trio Plank Rosels	ed Y N NA			
			Received by Company 13 drints		/		- 1	1		- 1	Templat					HCL MeOH				
									2.9	Prelogin				- 1	-					
elinquished by/Company (Signature)	inquished by/Company (Signature) Date/Time Received by/Company: (Signature)			naturel			Date/	Time						- 1	Non Conformance(s):	Page 1				
usey time			1	- 170			1000	0.00						. 1		of 1				
reinquished by/Company: [Signature]							Î			7	Date/				ie:					1

October 01, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: BRANCH E NETWORK

Pace Project No.: 92495964

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory between September 17, 2020 and September 18, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tyler Forney for Kevin Herring

tella Pager

kevin.herring@pacelabs.com

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder

Ben Hodges, Georgia Power

Jimmy Jones, Golder Associates Inc.

Kristen Jurinko

Julie Lehrman, Golder Associates Inc.

Ms. Lauren Petty, Southern Co. Services

Carolyn Powrozek, Golder

Dawn Prell, Golder Associates Inc.

Tim Richards, Golder Associates - Atlanta

Brian Steele, Golder

CERTIFICATIONS

Project: **BRANCH E NETWORK**

Pace Project No.: 92495964

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812

North Carolina Certification #: 381 South Carolina Certification #: 98011001 Virginia Certification #: 460204

SAMPLE SUMMARY

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92495964001	BRGWC-35S	Water	09/16/20 09:05	09/17/20 10:00
92495964002	BRGWC-34S	Water	09/16/20 09:59	09/17/20 10:00
92495964003	BRGWC-33S	Water	09/16/20 11:02	09/17/20 10:00
92495964004	BRGWC-17S	Water	09/16/20 12:30	09/17/20 10:00
92495964005	BRGWC-36S	Water	09/16/20 15:21	09/17/20 10:00
92495964006	BRGWC-37S	Water	09/16/20 16:09	09/17/20 10:00
92495964007	FB-1	Water	09/16/20 10:10	09/17/20 10:00
92495964008	DUP-2	Water	09/16/20 00:00	09/17/20 10:00
92495964009	BRGWC-38S	Water	09/17/20 11:26	09/18/20 10:15

SAMPLE ANALYTE COUNT

Project: BRANCH E NETWORK

Pace Project No.: 92495964

92495964001 BRGWC-35S	Lab ID	Sample ID	Method	Analysts	Analytes Reported
Part Part	92495964001	BRGWC-35S	EPA 6010D	DRB	1
SM 2450F-2011 AW1 1 1 1 1 1 1 1 1 1			EPA 6020B	CW1	13
PA PA PA PA PA PA PA PA			EPA 7470A	VB	1
92495964002 BRGWC-34S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 SM 2450C-2011 AW1 1 PPA 300.0 Rev 2.1 1993 BRJ 3 92495964003 BRGWC-33S EPA 6010D DRB 1 EPA 6020B CW1 13 1 EPA 500.0 Rev 2.1 1993 BRJ 3 92495964004 BRGWC-17S EPA 6010D DRB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 3 92495964004 BRGWC-17S EPA 6010D DRB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 3 92495964004 BRGWC-36S EPA 6010D DRB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 3 92495964005 BRGWC-36S EPA 6010D DRB 1 EPA 5000.0 Rev 2.1 1993 BRJ 3 3 92495964006 BRGWC-37S			SM 2450C-2011	AW1	1
PA 6020B CW1 13 EPA 7470A VB 1 1 EPA 7470A VB 1 1 EPA 7470A VB 1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 3 3 EPA 6020B CW1 13 EPA 7470A VB 1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 3 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 3 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 3 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 EPA 7470A VB 1 EPA 7470A VB EPA 7470A VB EPA 7470A VB EPA 7470A VB EPA 7470A			EPA 300.0 Rev 2.1 1993	BRJ	3
PAT PAT PAT PAT PAT	92495964002	BRGWC-34S	EPA 6010D	DRB	1
SM 2450C-2011			EPA 6020B	CW1	13
92495964003			EPA 7470A	VB	1
92495964003 BRGWC-33S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 P2495964004 BRGWC-17S EPA 300.0 Rev 2.1 1993 BRJ 3 92495964004 BRGWC-17S EPA 6020B CW1 13 EPA 7470A VB 1 1 SM 2450C-2011 AW1 1 EPA 6020B CW1 13 EPA 6020B CW1 14 EPA 6020B CW1 14<			SM 2450C-2011	AW1	1
PA 6020B CW1 13 PA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 PA 6020B CW1 13 PA 6020B CW1 13 PA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 PA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 PA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 7470A VB 1			EPA 300.0 Rev 2.1 1993	BRJ	3
PAPA 7470A VB 1 1 1 1 1 1 1 1 1	92495964003	BRGWC-33S	EPA 6010D	DRB	1
SM 2450C-2011 AW1 1			EPA 6020B	CW1	13
Page Page			EPA 7470A	VB	1
92495964004 BRGWC-17S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964005 BRGWC-36S EPA 6010D DRB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964006 BRGWC-37S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964007 FB-1 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA			SM 2450C-2011	AW1	1
BPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SPA 6020B BRGWC-36S EPA 6010D DRB 1 EPA 300.0 Rev 2.1 1993 BRJ 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SPA 92495964006 BRGWC-37S EPA 6010D DRB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 EPA 470A VB 1 EPA 4020B CW1 13 EPA 470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SPA 92495964007 FB-1 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 470A VB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 500.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SM 2450			EPA 300.0 Rev 2.1 1993	BRJ	3
BERA 7470A VB 1 SM 2450C-2011 AW1 1 1 SM 2450C-2011 AW1 1 1 SM 2450C-2011 AW1 1 1 SM 2450C-201	92495964004	BRGWC-17S	EPA 6010D	DRB	1
SM 2450C-2011			EPA 6020B	CW1	13
EPA 300.0 Rev 2.1 1993 BRJ 3 92495964005 BRGWC-36S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964006 BRGWC-37S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964007 FB-1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B CW1 13			EPA 7470A	VB	1
92495964005 BRGWC-36S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964006 BRGWC-37S EPA 6010D DRB 1 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964007 FB-1 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1			SM 2450C-2011	AW1	1
EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SEPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 SEPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A SEPA 6020B CW1 13 EPA 7470A FEPA 6020B CW1 13 EPA 7470A FEPA 6020B CW1 13 EPA 7470A FEPA 6020B CW1 13 EPA 7470A FEPA 7470A FEPA 7470A FEPA 7470A PA 7470A FE			EPA 300.0 Rev 2.1 1993	BRJ	3
EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964006 BRGWC-37S EPA 6010D DRB 1 EPA 7470A VB 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964007 FB-1 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3	92495964005	BRGWC-36S	EPA 6010D	DRB	1
SM 2450C-2011			EPA 6020B	CW1	13
EPA 300.0 Rev 2.1 1993 BRJ 3 92495964006 BRGWC-37S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964007 FB-1 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964008 DUP-2 EPA 6010D DRB 1			EPA 7470A	VB	1
92495964006 BRGWC-37S EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 P2495964007 FB-1 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964008 DUP-2 EPA 6010D DRB 1			SM 2450C-2011	AW1	1
EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964007 FB-1 EPA 6010D DRB 1 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1 EPA 7470A DRB 1			EPA 300.0 Rev 2.1 1993	BRJ	3
P2495964007 FB-1 EPA 300.0 Rev 2.1 1993 BRJ 3 EPA 6010D DRB 1 EPA 7470A VB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 P2495964008 DUP-2 EPA 6010D DRB 1	92495964006	BRGWC-37S	EPA 6010D	DRB	1
SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964007 FB-1 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964008 DUP-2 EPA 6010D DRB 1			EPA 6020B	CW1	13
P2495964007 FB-1 EPA 300.0 Rev 2.1 1993 BRJ 3 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 P2495964008 DUP-2 EPA 6010D DRB 1			EPA 7470A	VB	1
92495964007 FB-1 EPA 6010D DRB 1 EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964008 DUP-2 EPA 6010D DRB 1			SM 2450C-2011	AW1	1
EPA 6020B CW1 13 EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964008 DUP-2 EPA 6010D DRB 1			EPA 300.0 Rev 2.1 1993	BRJ	3
EPA 7470A VB 1 SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964008 DUP-2 EPA 6010D DRB 1	92495964007	FB-1	EPA 6010D	DRB	1
SM 2450C-2011 AW1 1 EPA 300.0 Rev 2.1 1993 BRJ 3 92495964008 DUP-2 EPA 6010D DRB 1			EPA 6020B	CW1	13
EPA 300.0 Rev 2.1 1993 BRJ 3 92495964008 DUP-2 EPA 6010D DRB 1			EPA 7470A	VB	1
92495964008 DUP-2 EPA 6010D DRB 1			SM 2450C-2011	AW1	1
			EPA 300.0 Rev 2.1 1993	BRJ	3
EPA 6020B CW1 13	92495964008	DUP-2	EPA 6010D	DRB	1
			EPA 6020B	CW1	13

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 7470A		1
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	BRJ	3
92495964009	BRGWC-38S	EPA 6010D	DRB	1
		EPA 6020B	CW1	13
		EPA 7470A	FFP	1
		SM 2450C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	BRJ	3

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

SUMMARY OF DETECTION

Project: BRANCH E NETWORK

Pace Project No.: 92495964

	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2495964001	BRGWC-35S					
	pН	5.96	Std. Units		09/29/20 12:27	
EPA 6010D	Calcium	61.8	mg/L	1.0	09/22/20 21:32	
PA 6020B	Barium	0.033	mg/L	0.010	09/22/20 17:42	
PA 6020B	Beryllium	0.00014J	mg/L	0.0030	09/22/20 17:42	
PA 6020B	Boron	1.9	mg/L	0.10	09/22/20 17:42	
PA 6020B	Chromium	0.0058J	mg/L	0.010	09/22/20 17:42	
PA 6020B	Lead	0.00012J	mg/L	0.0050	09/22/20 17:42	
PA 6020B	Lithium	0.0020J	mg/L	0.030	09/22/20 17:42	
SM 2450C-2011	Total Dissolved Solids	474	mg/L	10.0	09/18/20 09:58	
PA 300.0 Rev 2.1 1993	Chloride	6.0	mg/L	1.0	09/19/20 18:22	
PA 300.0 Rev 2.1 1993	Fluoride	0.062J	mg/L	0.10	09/19/20 18:22	
PA 300.0 Rev 2.1 1993	Sulfate	270	mg/L	6.0	09/20/20 04:47	
2495964002	BRGWC-34S					
	рН	5.81	Std. Units		09/29/20 12:27	
PA 6010D	Calcium	77.7	mg/L	1.0	09/22/20 21:37	
PA 6020B	Barium	0.023	mg/L	0.010	09/22/20 17:48	
PA 6020B	Beryllium	0.00014J	mg/L	0.0030	09/22/20 17:48	
PA 6020B	Boron	2.2	mg/L	0.10	09/22/20 17:48	
PA 6020B	Cadmium	0.00017J	mg/L	0.0025	09/22/20 17:48	
PA 6020B	Cobalt	0.0042J	mg/L	0.0050	09/22/20 17:48	
SM 2450C-2011	Total Dissolved Solids	392	mg/L	10.0	09/18/20 09:58	
EPA 300.0 Rev 2.1 1993	Chloride	6.6	mg/L	1.0	09/19/20 18:37	
EPA 300.0 Rev 2.1 1993	Fluoride	0.077J	mg/L	0.10	09/19/20 18:37	
EPA 300.0 Rev 2.1 1993	Sulfate	283	mg/L	6.0	09/20/20 05:01	
2495964003	BRGWC-33S					
	рН	4.78	Std. Units		09/29/20 12:27	
PA 6010D	Calcium	37.9	mg/L	1.0	09/22/20 21:41	
PA 6020B	Barium	0.019	mg/L	0.010	09/22/20 17:53	
PA 6020B	Beryllium	0.0015J	mg/L	0.0030	09/22/20 17:53	
PA 6020B	Boron	1.1	mg/L	0.10	09/22/20 17:53	
	Cadmium		mg/L	0.0025	09/22/20 17:53	
PA 6020B		0.000323				
		0.00032J 0.034	•		09/22/20 17:53	
PA 6020B	Cobalt	0.034	mg/L	0.0050	09/22/20 17:53 09/22/20 17:53	
PA 6020B PA 6020B	Cobalt Lead	0.034 0.000063J	mg/L mg/L	0.0050 0.0050	09/22/20 17:53	
PA 6020B PA 6020B PA 6020B	Cobalt Lead Lithium	0.034 0.000063J 0.0089J	mg/L mg/L mg/L	0.0050 0.0050 0.030	09/22/20 17:53 09/22/20 17:53	
PA 6020B PA 6020B PA 6020B PA 6020B	Cobalt Lead Lithium Selenium	0.034 0.000063J 0.0089J 0.0028J	mg/L mg/L mg/L mg/L	0.0050 0.0050 0.030 0.010	09/22/20 17:53 09/22/20 17:53 09/22/20 17:53	
PA 6020B PA 6020B PA 6020B PA 6020B PA 6020B	Cobalt Lead Lithium Selenium Thallium	0.034 0.000063J 0.0089J 0.0028J 0.00018J	mg/L mg/L mg/L mg/L mg/L	0.0050 0.0050 0.030 0.010 0.0010	09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/22/20 17:53	
PA 6020B PA 6020B PA 6020B PA 6020B PA 6020B M 2450C-2011	Cobalt Lead Lithium Selenium Thallium Total Dissolved Solids	0.034 0.000063J 0.0089J 0.0028J 0.00018J 88.0	mg/L mg/L mg/L mg/L mg/L mg/L	0.0050 0.0050 0.030 0.010 0.0010 10.0	09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/18/20 09:59	
PA 6020B PA 6020B PA 6020B PA 6020B PA 6020B M 2450C-2011 PA 300.0 Rev 2.1 1993	Cobalt Lead Lithium Selenium Thallium Total Dissolved Solids Chloride	0.034 0.000063J 0.0089J 0.0028J 0.00018J 88.0 4.1	mg/L mg/L mg/L mg/L mg/L mg/L	0.0050 0.0050 0.030 0.010 0.0010 10.0	09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/18/20 09:59 09/19/20 18:52	
PA 6020B PA 6020B PA 6020B PA 6020B PA 6020B M 2450C-2011 PA 300.0 Rev 2.1 1993 PA 300.0 Rev 2.1 1993	Cobalt Lead Lithium Selenium Thallium Total Dissolved Solids	0.034 0.000063J 0.0089J 0.0028J 0.00018J 88.0	mg/L mg/L mg/L mg/L mg/L mg/L	0.0050 0.0050 0.030 0.010 0.0010 10.0	09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/18/20 09:59	
EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993	Cobalt Lead Lithium Selenium Thallium Total Dissolved Solids Chloride Fluoride	0.034 0.000063J 0.0089J 0.0028J 0.00018J 88.0 4.1 0.085J	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0050 0.0050 0.030 0.010 0.0010 10.0 1.0	09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/18/20 09:59 09/19/20 18:52 09/19/20 18:52	
EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993	Cobalt Lead Lithium Selenium Thallium Total Dissolved Solids Chloride Fluoride Sulfate BRGWC-17S	0.034 0.000063J 0.0089J 0.0028J 0.00018J 88.0 4.1 0.085J	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0050 0.0050 0.030 0.010 0.0010 10.0 1.0	09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/18/20 09:59 09/19/20 18:52 09/19/20 18:52 09/20/20 05:16	
EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 3000B EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993	Cobalt Lead Lithium Selenium Thallium Total Dissolved Solids Chloride Fluoride Sulfate BRGWC-17S pH	0.034 0.000063J 0.0089J 0.0028J 0.00018J 88.0 4.1 0.085J 154	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0050 0.0050 0.030 0.010 0.0010 10.0 1.0 0.10 3.0	09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/18/20 09:59 09/19/20 18:52 09/19/20 18:52 09/20/20 05:16	
EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993 EPA 6010D	Cobalt Lead Lithium Selenium Thallium Total Dissolved Solids Chloride Fluoride Sulfate BRGWC-17S pH Calcium	0.034 0.000063J 0.0089J 0.0028J 0.00018J 88.0 4.1 0.085J 154	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0050 0.0050 0.030 0.010 0.0010 10.0 1.0 0.10 3.0	09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/18/20 09:59 09/19/20 18:52 09/19/20 18:52 09/20/20 05:16	
EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993 EPA 6010D EPA 6020B EPA 6020B EPA 6020B	Cobalt Lead Lithium Selenium Thallium Total Dissolved Solids Chloride Fluoride Sulfate BRGWC-17S pH	0.034 0.000063J 0.0089J 0.0028J 0.00018J 88.0 4.1 0.085J 154	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0050 0.0050 0.030 0.010 0.0010 10.0 1.0 0.10 3.0	09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/22/20 17:53 09/18/20 09:59 09/19/20 18:52 09/19/20 18:52 09/20/20 05:16	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Lab Sample ID	Client Sample ID	D dr	11.2	Daniel Co.	Amak — . d	Over-190
Method ————————————————————————————————————	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
92495964004	BRGWC-17S					
EPA 6020B	Lead	0.000054J	mg/L	0.0050		
EPA 6020B	Lithium	0.00096J	mg/L	0.030	09/22/20 18:11	
SM 2450C-2011	Total Dissolved Solids	316	mg/L	10.0	09/18/20 09:59	
EPA 300.0 Rev 2.1 1993	Chloride	4.2	mg/L	1.0	09/19/20 19:07	
EPA 300.0 Rev 2.1 1993	Fluoride	0.10	mg/L	0.10	09/19/20 19:07	
EPA 300.0 Rev 2.1 1993	Sulfate	151	mg/L	3.0	09/20/20 05:30	
2495964005	BRGWC-36S					
	рН	5.58	Std. Units		09/29/20 12:27	
PA 6010D	Calcium	45.9	mg/L	1.0	09/22/20 21:50	
PA 6020B	Barium	0.030	mg/L	0.010	09/22/20 18:16	
PA 6020B	Beryllium	0.000080J	mg/L	0.0030	09/22/20 18:16	
PA 6020B	Boron	0.99	mg/L	0.10	09/22/20 18:16	
PA 6020B	Chromium	0.0064J	mg/L	0.010	09/22/20 18:16	
PA 6020B	Lithium	0.0022J	mg/L	0.030	09/22/20 18:16	
PA 6020B	Selenium	0.0031J	mg/L	0.010		
M 2450C-2011	Total Dissolved Solids	463	mg/L	10.0	09/18/20 09:59	
PA 300.0 Rev 2.1 1993	Chloride	7.9	mg/L	1.0	09/19/20 19:22	
PA 300.0 Rev 2.1 1993	Sulfate	256	mg/L	5.0	09/20/20 06:15	M6
2495964006	BRGWC-37S					
	рН	5.84	Std. Units		09/29/20 12:27	
PA 6010D	Calcium	3.2	mg/L	1.0	09/22/20 21:54	
PA 6020B	Barium	0.024	mg/L	0.010	09/22/20 18:22	
PA 6020B	Boron	0.0062J	mg/L	0.10	09/22/20 18:22	
PA 6020B	Chromium	0.0018J	mg/L	0.010	09/22/20 18:22	
M 2450C-2011	Total Dissolved Solids	31.0	mg/L	10.0	09/18/20 09:59	
PA 300.0 Rev 2.1 1993	Chloride	1.8	mg/L	1.0	09/19/20 20:07	
2495964008	DUP-2					
PA 6010D	Calcium	47.6	mg/L	1.0	09/25/20 19:00	
PA 6020B	Barium	0.030	mg/L	0.010	09/22/20 18:34	
PA 6020B	Beryllium	0.000085J	mg/L	0.0030	09/22/20 18:34	
PA 6020B	Boron	1.0	mg/L	0.10	09/22/20 18:34	
PA 6020B	Chromium	0.0067J	mg/L	0.010	09/22/20 18:34	
PA 6020B	Lithium	0.0023J	mg/L	0.030	09/22/20 18:34	
PA 6020B	Selenium	0.0040J	mg/L	0.010	09/22/20 18:34	
SM 2450C-2011	Total Dissolved Solids	462	mg/L	10.0	09/18/20 09:59	
PA 300.0 Rev 2.1 1993	Chloride	7.9	mg/L	1.0	09/19/20 20:36	
PA 300.0 Rev 2.1 1993	Sulfate	251	mg/L	5.0	09/20/20 06:59	
2495964009	BRGWC-38S					
	рН	4.17	Std. Units		09/29/20 12:27	
EPA 6010D	Calcium	33.1	mg/L	1.0	09/25/20 19:26	
PA 6020B	Arsenic	0.0015J	mg/L	0.0050	09/22/20 20:22	
PA 6020B	Barium	0.014	mg/L	0.010	09/22/20 20:22	
PA 6020B	Beryllium	0.0073	mg/L	0.0030	09/22/20 20:22	
			•			
PA 6020B	Boron	1.4	mg/L	0.10	09/22/20 20:22	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92495964009	BRGWC-38S					
EPA 6020B	Chromium	0.0042J	mg/L	0.010	09/22/20 20:22	
EPA 6020B	Cobalt	0.20	mg/L	0.0050	09/22/20 20:22	
EPA 6020B	Lead	0.00032J	mg/L	0.0050	09/22/20 20:22	
EPA 6020B	Lithium	0.020J	mg/L	0.030	09/22/20 20:22	
EPA 6020B	Selenium	0.029	mg/L	0.010	09/22/20 20:22	
EPA 6020B	Thallium	0.00017J	mg/L	0.0010	09/22/20 20:22	
EPA 7470A	Mercury	0.00011J	mg/L	0.00050	09/23/20 10:43	
SM 2450C-2011	Total Dissolved Solids	587	mg/L	10.0	09/21/20 16:29	
EPA 300.0 Rev 2.1 1993	Chloride	6.1	mg/L	1.0	09/22/20 12:31	
EPA 300.0 Rev 2.1 1993	Fluoride	0.68	mg/L	0.10	09/22/20 12:31	
EPA 300.0 Rev 2.1 1993	Sulfate	356	mg/L	7.0	09/22/20 18:55	

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Sample: BRGWC-35S	Lab ID:	92495964001	Collecte	ed: 09/16/20	0 09:05	Received: 09/	17/20 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte)					
рН	5.96	Std. Units			1		09/29/20 12:27		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GΑ				
Calcium	61.8	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:32	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	thod: El	PA 3005A			
		lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 17:42	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 17:42	7440-38-2	
Barium	0.033	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 17:42	7440-39-3	
Beryllium	0.00014J	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 17:42	7440-41-7	
Boron	1.9	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 17:42	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 17:42	7440-43-9	
Chromium	0.0058J	mg/L	0.010	0.00055	1	09/18/20 11:00	09/22/20 17:42	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 17:42	7440-48-4	
Lead	0.00012J	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 17:42	7439-92-1	
Lithium	0.0020J	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 17:42	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 17:42	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 17:42	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 17:42	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	thod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GΑ				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:52	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	-	lytical Services		e Corners, 0	GΑ				
Total Dissolved Solids	474	mg/L	10.0	10.0	1		09/18/20 09:58		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	6.0	mg/L	1.0	0.60	1		09/19/20 18:22	16887-00-6	
Fluoride	0.062J	mg/L	0.10	0.050	1		09/19/20 18:22		
Sulfate	270	mg/L	6.0	3.0	6		09/20/20 04:47		

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Sample: BRGWC-34S	Lab ID:	92495964002	Collecte	ed: 09/16/20	09:59	Received: 09/	17/20 10:00 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
рН	5.81	Std. Units			1		09/29/20 12:27		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Calcium	77.7	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:37	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	•	ytical Services		•					
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 17:48	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 17:48	7440-38-2	
Barium	0.023	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 17:48	7440-39-3	
Beryllium	0.00014J	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 17:48	7440-41-7	
Boron	2.2	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 17:48	7440-42-8	
Cadmium	0.00017J	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 17:48	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	09/18/20 11:00	09/22/20 17:48	7440-47-3	
Cobalt	0.0042J	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 17:48	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 17:48	7439-92-1	
Lithium	ND	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 17:48	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 17:48	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 17:48	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 17:48	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Pre	paration Met	hod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:54	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	392	mg/L	10.0	10.0	1		09/18/20 09:58		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	6.6	mg/L	1.0	0.60	1		09/19/20 18:37	16887-00-6	
Fluoride	0.077J	mg/L	0.10	0.050	1		09/19/20 18:37		
Sulfate	283	mg/L	6.0	3.0	6		09/20/20 05:01		

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Sample: BRGWC-33S	Lab ID:	92495964003	Collected	d: 09/16/20	11:02	Received: 09/	17/20 10:00 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	-	lytical Services	- Charlotte						
рН	4.78	Std. Units			1		09/29/20 12:27		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	Corners, C	SA.				
Calcium	37.9	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:41	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 17:53	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 17:53	7440-38-2	
Barium	0.019	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 17:53	7440-39-3	
Beryllium	0.0015J	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 17:53	7440-41-7	
Boron	1.1	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 17:53	7440-42-8	
Cadmium	0.00032J	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 17:53	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	09/18/20 11:00	09/22/20 17:53	7440-47-3	
Cobalt	0.034	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 17:53	7440-48-4	
Lead	0.00063J	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 17:53	7439-92-1	
Lithium	0.0089J	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 17:53	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 17:53	7439-98-7	
Selenium	0.0028J	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 17:53	7782-49-2	
Thallium	0.00018J	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 17:53	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtree	Corners, C	βA				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:56	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Ana	lytical Services	- Peachtree	Corners, C	SA.				
Total Dissolved Solids	88.0	mg/L	10.0	10.0	1		09/18/20 09:59		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	.1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	4.1	mg/L	1.0	0.60	1		09/19/20 18:52	16887-00-6	
Fluoride	0.085J	mg/L	0.10	0.050	1		09/19/20 18:52	16984-48-8	
Sulfate	154	mg/L	3.0	1.5	3		09/20/20 05:16	14808-79-8	

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Sample: BRGWC-17S	Lab ID:	92495964004	Collecte	d: 09/16/20	12:30	Received: 09/	17/20 10:00 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	-	lytical Services	- Charlotte						
рН	6.26	Std. Units			1		09/29/20 12:27		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	e Corners, C	€A				
Calcium	37.9	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:45	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 18:11	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 18:11	7440-38-2	
Barium	0.044	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 18:11	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 18:11	7440-41-7	
Boron	0.0066J	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 18:11	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 18:11	7440-43-9	
Chromium	0.012	mg/L	0.010	0.00055	1	09/18/20 11:00	09/22/20 18:11	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 18:11	7440-48-4	
_ead	0.000054J	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 18:11	7439-92-1	
_ithium	0.00096J	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 18:11	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 18:11	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 18:11	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 18:11	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtree	e Corners, C	SA.				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 14:59	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	- Peachtree	e Corners, C	βA				
Total Dissolved Solids	316	mg/L	10.0	10.0	1		09/18/20 09:59		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	4.2	mg/L	1.0	0.60	1		09/19/20 19:07	16887-00-6	
Fluoride	0.10	mg/L	0.10	0.050	1		09/19/20 19:07		
Sulfate	151	mg/L	3.0	1.5	3		09/20/20 05:30	14808-79-8	

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Sample: BRGWC-36S	Lab ID:	92495964005	Collected	d: 09/16/20	15:21	Received: 09/	17/20 10:00 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
рН	5.58	Std. Units			1		09/29/20 12:27		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	Corners, C	iΑ				
Calcium	45.9	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:50	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	nod: EF	PA 3005A			
	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 18:16	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 18:16	7440-38-2	
Barium	0.030	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 18:16	7440-39-3	
Beryllium	0.000080J	mg/L		0.000046	1	09/18/20 11:00	09/22/20 18:16		
Boron	0.99	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 18:16		
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00			
Chromium	0.0064J	mg/L	0.010	0.00055	1	09/18/20 11:00			
Cobalt	ND	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 18:16	-	
_ead	ND	mg/L		0.000036	1	09/18/20 11:00	09/22/20 18:16		
_ithium	0.0022J	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 18:16		
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 18:16		
Selenium	0.0031J	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 18:16		
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 18:16		
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	nod: EF	PA 7470A			
,	-	lytical Services							
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 15:01	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	Pace Ana	lytical Services	- Peachtree	Corners, G	iΑ				
Total Dissolved Solids	463	mg/L	10.0	10.0	1		09/18/20 09:59		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
·	Pace Ana	lytical Services	- Asheville						
Chloride	7.9	mg/L	1.0	0.60	1		09/19/20 19:22	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/20 19:22		
Sulfate	256	mg/L	5.0	2.5	5		09/20/20 06:15		M6

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Sample: BRGWC-37S	Lab ID:	92495964006	Collected	d: 09/16/20	16:09	Received: 09/	17/20 10:00 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	- ——— - Analytical	Method:				•		_	
ricia bata	-	lytical Services	- Charlotte						
рН	5.84	Std. Units			1		09/29/20 12:27		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	Corners, C	SA.				
Calcium	3.2	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:54	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 18:22	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 18:22	7440-38-2	
Barium	0.024	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 18:22	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 18:22	7440-41-7	
Boron	0.0062J	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 18:22	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 18:22	7440-43-9	
Chromium	0.0018J	mg/L	0.010	0.00055	1	09/18/20 11:00	09/22/20 18:22	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 18:22	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 18:22	7439-92-1	
Lithium	ND	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 18:22	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 18:22	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 18:22	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 18:22	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtree	Corners, C	SA.				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 15:03	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Ana	lytical Services	- Peachtree	Corners, C	SA.				
Total Dissolved Solids	31.0	mg/L	10.0	10.0	1		09/18/20 09:59		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.8	mg/L	1.0	0.60	1		09/19/20 20:07	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/20 20:07	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		09/19/20 20:07		

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Sample: FB-1	Lab ID:	92495964007	Collecte	ed: 09/16/20	10:10	Received: 09/	17/20 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	S A				
Calcium	ND	mg/L	1.0	0.070	1	09/22/20 14:15	09/22/20 21:58	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	A 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	€A				
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 18:28	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 18:28		
Barium	ND	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 18:28	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 18:28	7440-41-7	
Boron	ND	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 18:28	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 18:28	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	09/18/20 11:00	09/22/20 18:28	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 18:28	7440-48-4	
₋ead	ND	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 18:28	7439-92-1	
_ithium	ND	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 18:28	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 18:28	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 18:28	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 18:28	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prej	paration Met	hod: EP	A 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	€A				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 15:06	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		09/18/20 09:59		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		09/19/20 20:21	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/20 20:21		
Sulfate	ND	mg/L	1.0	0.50	1		09/19/20 20:21		

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Sample: DUP-2	Lab ID:	92495964008	3 Collecte	ed: 09/16/2	0 00:00	Received: 09/	/17/20 10:00 Ma	atrix: Water	
5 .	5 "	11.5	Report	MBI	5.5	5 .		0404	_
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Me	thod: El	PA 3010A			
	Pace Analy	ytical Services	s - Peachtre	e Corners, 0	GA				
Calcium	47.6	mg/L	1.0	0.070	1	09/24/20 14:17	09/25/20 19:00	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Me	thod: Ef	PA 3005A			
	Pace Analy	ytical Services	s - Peachtre	e Corners, (GA				
Antimony	ND	mg/L	0.0030	0.00028	1	09/18/20 11:00	09/22/20 18:34	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/18/20 11:00	09/22/20 18:34	7440-38-2	
Barium	0.030	mg/L	0.010	0.00071	1	09/18/20 11:00	09/22/20 18:34	7440-39-3	
Beryllium	0.000085J	mg/L	0.0030	0.000046	1	09/18/20 11:00	09/22/20 18:34	7440-41-7	
Boron	1.0	mg/L	0.10	0.0052	1	09/18/20 11:00	09/22/20 18:34	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/18/20 11:00	09/22/20 18:34	7440-43-9	
Chromium	0.0067J	mg/L	0.010	0.00055	1	09/18/20 11:00	09/22/20 18:34	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	09/18/20 11:00	09/22/20 18:34	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	09/18/20 11:00	09/22/20 18:34	7439-92-1	
Lithium	0.0023J	mg/L	0.030	0.00081	1	09/18/20 11:00	09/22/20 18:34	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/18/20 11:00	09/22/20 18:34	7439-98-7	
Selenium	0.0040J	mg/L	0.010	0.0016	1	09/18/20 11:00	09/22/20 18:34	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/18/20 11:00	09/22/20 18:34	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	thod: EF	PA 7470A			
·	Pace Analy	ytical Services	s - Peachtre	e Corners, 0	GA				
Mercury	ND	mg/L	0.00050	0.000078	1	09/18/20 08:30	09/18/20 15:08	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	•	ytical Services		e Corners, 0	GA				
Total Dissolved Solids	462	mg/L	10.0	10.0	1		09/18/20 09:59		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
-	Pace Analy	ytical Services	s - Asheville						
Chloride	7.9	mg/L	1.0	0.60	1		09/19/20 20:36	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/19/20 20:36	16984-48-8	
Sulfate	251	mg/L	5.0	2.5	5		09/20/20 06:59	14808-79-8	

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Sample: BRGWC-38S	Lab ID:	92495964009	Collecte	d: 09/17/20	11:26	Received: 09/	18/20 10:15 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
		ytical Services	- Charlotte						
рН	4.17	Std. Units			1		09/29/20 12:27		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	ytical Services	- Peachtree	Corners, C	βA				
Calcium	33.1	mg/L	1.0	0.070	1	09/24/20 14:17	09/25/20 19:26	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	-	ytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/21/20 14:30	09/22/20 20:22	7440-36-0	
Arsenic	0.0015J	mg/L	0.0050	0.00078	1	09/21/20 14:30	09/22/20 20:22	7440-38-2	
Barium	0.014	mg/L	0.010	0.00071	1	09/21/20 14:30	09/22/20 20:22	7440-39-3	
Beryllium	0.0073	mg/L	0.0030	0.000046	1	09/21/20 14:30	09/22/20 20:22	7440-41-7	
Boron	1.4	mg/L	0.10	0.0052	1	09/21/20 14:30			
Cadmium	0.00050J	mg/L	0.0025	0.00012	1		09/22/20 20:22		
Chromium	0.0042J	mg/L	0.010	0.00055	1		09/22/20 20:22		
Cobalt	0.20	mg/L	0.0050	0.00038	1		09/22/20 20:22		
Lead	0.00032J	mg/L		0.000036	1	09/21/20 14:30			
Lithium	0.020J	mg/L	0.030	0.00081	1	09/21/20 14:30			
Molybdenum	ND	mg/L	0.010	0.00069	1	09/21/20 14:30			
Selenium	0.029	mg/L	0.010	0.0016	1	09/21/20 14:30			
Thallium	0.00017J	mg/L	0.0010	0.00014	1	09/21/20 14:30			
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
•	-	ytical Services							
Mercury	0.00011J	mg/L	0.00050	0.000078	1	09/22/20 11:15	09/23/20 10:43	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Ana	ytical Services	- Peachtree	Corners, C	βA				
Total Dissolved Solids	587	mg/L	10.0	10.0	1		09/21/20 16:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	.1 1993					
-	Pace Ana	ytical Services	- Asheville						
Chloride	6.1	mg/L	1.0	0.60	1		09/22/20 12:31	16887-00-6	
Fluoride	0.68	mg/L	0.10	0.050	1		09/22/20 12:31	16984-48-8	
Sulfate	356	mg/L	7.0	3.5	7		09/22/20 18:55	14808-79-8	

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

QC Batch: 568100 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495964001, 92495964002, 92495964003, 92495964004, 92495964005, 92495964006, 92495964007

METHOD BLANK: 3010230 Matrix: Water

Associated Lab Samples: 92495964001, 92495964002, 92495964003, 92495964004, 92495964005, 92495964006, 92495964007

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Calcium mg/L ND 1.0 0.070 09/22/20 20:31

LABORATORY CONTROL SAMPLE: 3010231

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Calcium 0.92J 92 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3010232 3010233

MS MSD

92495653006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result RPD Qual Result Conc. % Rec % Rec Limits **RPD** 20 M1 Calcium mg/L 43.1 44.0 43.4 83 22 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

QC Batch: 568747 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495964008, 92495964009

METHOD BLANK: 3013294 Matrix: Water

Associated Lab Samples: 92495964008, 92495964009

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Calcium mg/L ND 1.0 0.070 09/25/20 18:16

LABORATORY CONTROL SAMPLE: 3013295

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Calcium mg/L 0.98J 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3013296 3013297

MS MSD

92495904004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 75.8 74.9 20 M1 Calcium mg/L 75.7 -84 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

QC Batch: 567397 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495964001, 92495964002, 92495964003, 92495964004, 92495964005, 92495964006, 92495964007,

92495964008

METHOD BLANK: 3006748 Matrix: Water

Associated Lab Samples: 92495964001, 92495964002, 92495964003, 92495964004, 92495964005, 92495964006, 92495964007,

92495964008

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	0.00033J	0.0030	0.00028	09/22/20 15:42	
Arsenic	mg/L	ND	0.0050	0.00078	09/22/20 15:42	
Barium	mg/L	ND	0.010	0.00071	09/22/20 15:42	
Beryllium	mg/L	ND	0.0030	0.000046	09/22/20 15:42	
Boron	mg/L	ND	0.10	0.0052	09/22/20 15:42	
Cadmium	mg/L	ND	0.0025	0.00012	09/22/20 15:42	
Chromium	mg/L	ND	0.010	0.00055	09/22/20 15:42	
Cobalt	mg/L	ND	0.0050	0.00038	09/22/20 15:42	
Lead	mg/L	ND	0.0050	0.000036	09/22/20 15:42	
Lithium	mg/L	ND	0.030	0.00081	09/22/20 15:42	
Molybdenum	mg/L	ND	0.010	0.00069	09/22/20 15:42	
Selenium	mg/L	ND	0.010	0.0016	09/22/20 15:42	
Thallium	mg/L	ND	0.0010	0.00014	09/22/20 15:42	

LABORATORY CONTROL SAM	IPLE: 3006749										
		Spike	LC	S	LCS	% R	ec				
Parameter	Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
Antimony	 mg/L	0.	1	0.11	106	3	30-120				
Arsenic	mg/L	0.	1	0.099	99	8	30-120				
Barium	mg/L	0.	1	0.10	100	8	30-120				
Beryllium	mg/L	0.	1	0.11	106	8	30-120				
Boron	mg/L	•	1	1.1	112	8	30-120				
Cadmium	mg/L	0.	1	0.10	100	8	30-120				
Chromium	mg/L	0.	1	0.10	103	8	30-120				
Cobalt	mg/L	0.	1	0.099	99	8	30-120				
Lead	mg/L	0.	1	0.10	101	8	30-120				
Lithium	mg/L	0.	1	0.10	105	8	30-120				
Molybdenum	mg/L	0.	1	0.098	98	8	30-120				
Selenium	mg/L	0.1	1	0.10	101	8	30-120				
Thallium	mg/L	0.	1	0.10	101	3	30-120				
MATRIX SPIKE & MATRIX SPIK	KE DUPLICATE: 300	06750		3006751							
	00.405070000	MS	MSD	140	MOD	140	MOD	0/ D			
Parameter	92495870002 Units Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony –	mg/L NI	0.1	0.1	0.10	0.11	104	106	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

MATRIX SPIKE & MATRIX	01 1112 201 2	ICATE: 3006	MS	MSD	3006751							
		92495870002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	ND	0.1	0.1	0.098	0.098	98	98	75-125	0	20	
Barium	mg/L	0.019	0.1	0.1	0.12	0.12	97	99	75-125	2	20	
Beryllium	mg/L	ND	0.1	0.1	0.10	0.10	101	101	75-125	0	20	
Boron	mg/L	0.0053J	1	1	1.0	1.0	100	101	75-125	1	20	
Cadmium	mg/L	ND	0.1	0.1	0.098	0.096	98	96	75-125	1	20	
Chromium	mg/L	0.00086J	0.1	0.1	0.10	0.10	103	104	75-125	1	20	
Cobalt	mg/L	ND	0.1	0.1	0.098	0.098	98	98	75-125	0	20	
Lead	mg/L	ND	0.1	0.1	0.098	0.098	98	98	75-125	1	20	
Lithium	mg/L	ND	0.1	0.1	0.10	0.10	100	100	75-125	0	20	
Molybdenum	mg/L	ND	0.1	0.1	0.096	0.096	95	96	75-125	0	20	
Selenium	mg/L	ND	0.1	0.1	0.099	0.096	99	96	75-125	3	20	
Thallium	mg/L	ND	0.1	0.1	0.098	0.099	98	99	75-125	1	20	

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

QC Batch: 567743 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495964009

METHOD BLANK: 3008588 Matrix: Water

Associated Lab Samples: 92495964009

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND -	0.0030	0.00028	09/22/20 17:54	
Arsenic	mg/L	ND	0.0050	0.00028	09/22/20 17:54	
Barium	mg/L	ND	0.010	0.00070	09/22/20 17:54	
Beryllium	mg/L	ND	0.0030	0.000046	09/22/20 17:54	
Boron	mg/L	ND	0.10	0.0052	09/22/20 17:54	
Cadmium	mg/L	ND	0.0025	0.00012	09/22/20 17:54	
Chromium	mg/L	ND	0.010	0.00055	09/22/20 17:54	
Cobalt	mg/L	ND	0.0050	0.00038	09/22/20 17:54	
Lead	mg/L	ND	0.0050	0.000036	09/22/20 17:54	
Lithium	mg/L	ND	0.030	0.00081	09/22/20 17:54	
Molybdenum	mg/L	ND	0.010	0.00069	09/22/20 17:54	
Selenium	mg/L	ND	0.010	0.0016	09/22/20 17:54	
Thallium	mg/L	ND	0.0010	0.00014	09/22/20 17:54	

LABORATORY CONTROL SAMPLE:	3008589					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.10	100	80-120	
Arsenic	mg/L	0.1	0.093	93	80-120	
Barium	mg/L	0.1	0.095	95	80-120	
Beryllium	mg/L	0.1	0.092	92	80-120	
Boron	mg/L	1	0.96	96	80-120	
Cadmium	mg/L	0.1	0.098	98	80-120	
Chromium	mg/L	0.1	0.10	104	80-120	
Cobalt	mg/L	0.1	0.099	99	80-120	
Lead	mg/L	0.1	0.099	99	80-120	
Lithium	mg/L	0.1	0.093	93	80-120	
Molybdenum	mg/L	0.1	0.10	100	80-120	
Selenium	mg/L	0.1	0.092	92	80-120	
Thallium	mg/L	0.1	0.099	99	80-120	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	ATE: 3008	590		3008591							
			MS	MSD								
	9:	2496275001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.10	0.10	101	105	75-125	3	20	
Arsenic	mg/L	ND	0.1	0.1	0.099	0.10	96	98	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	ATE: 3008		1400	3008591							
Parameter	9 Units	2496275001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	57.5 ug/L	0.1	0.1	0.15	0.16	94	101	75-125	4	20	
Beryllium	mg/L	ND	0.1	0.1	0.087	0.092	87	92	75-125	6	20	
Boron	mg/L	244 ug/L	1	1	1.1	1.2	89	98	75-125	8	20	
Cadmium	mg/L	ND	0.1	0.1	0.094	0.096	94	96	75-125	2	20	
Chromium	mg/L	ND	0.1	0.1	0.10	0.11	102	104	75-125	2	20	
Cobalt	mg/L	ND	0.1	0.1	0.095	0.099	95	99	75-125	4	20	
Lead	mg/L	ND	0.1	0.1	0.092	0.093	92	93	75-125	1	20	
Lithium	mg/L	ND	0.1	0.1	0.094	0.097	89	92	75-125	4	20	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.11	99	104	75-125	5	20	
Selenium	mg/L	ND	0.1	0.1	0.095	0.096	95	96	75-125	1	20	
Thallium	mg/L	ND	0.1	0.1	0.091	0.093	91	93	75-125	2	20	

Project: **BRANCH E NETWORK**

Pace Project No.: 92495964

QC Batch: 567375 Analysis Method: EPA 7470A QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

> Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495964001, 92495964002, 92495964003, 92495964004, 92495964005, 92495964006, 92495964007,

92495964008

METHOD BLANK: 3006615 Matrix: Water

92495964001, 92495964002, 92495964003, 92495964004, 92495964005, 92495964006, 92495964007, Associated Lab Samples:

92495964008

Blank Reporting Parameter Units Limit MDL Qualifiers Result Analyzed mg/L ND 0.00050 0.000078 09/18/20 14:02

Mercury

LABORATORY CONTROL SAMPLE: 3006616

Date: 10/01/2020 10:19 AM

Spike LCS LCS % Rec Parameter Units Result % Rec Limits Qualifiers Conc. 96 Mercury mg/L 0.0025 0.0024 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3006617 3006618

> MS MSD

92495653002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual ND 0.0025 0.0025 0.0025 20 Mercury 0.0026 100 103 75-125 3 mg/L

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

QC Batch: 568007 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495964009

METHOD BLANK: 3009608 Matrix: Water

Associated Lab Samples: 92495964009

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00050 0.00078 09/23/20 09:49

LABORATORY CONTROL SAMPLE: 3009609

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury mg/L 0.0025 0.0025 100 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3009610 3009611

MSD MS 92496278002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits ND 0.0025 20 Mercury mg/L 0.0025 0.0024 0.0025 95 99 75-125

Project: BRANCH E NETWORK

Pace Project No.: 92495964

QC Batch: 567372 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495964001, 92495964002, 92495964003, 92495964004, 92495964005, 92495964006, 92495964007,

92495964008

METHOD BLANK: 3006601 Matrix: Water

Associated Lab Samples: 92495964001, 92495964002, 92495964003, 92495964004, 92495964005, 92495964006, 92495964007,

92495964008

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND10.010.009/18/20 09:58

LABORATORY CONTROL SAMPLE: 3006602

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. Total Dissolved Solids mg/L 400 387 97 84-108

SAMPLE DUPLICATE: 3006603

92495653011 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers **Total Dissolved Solids** 622 654 5 10 mg/L

SAMPLE DUPLICATE: 3006604

Date: 10/01/2020 10:19 AM

92495900008 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** mg/L 1220 1250 3 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH E NETWORK

Pace Project No.: 92495964

QC Batch: 567882 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92495964009

METHOD BLANK: 3009251 Matrix: Water

Associated Lab Samples: 92495964009

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 09/21/20 16:27

LABORATORY CONTROL SAMPLE: 3009252

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 412 103 84-108

SAMPLE DUPLICATE: 3009253

92495653008 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 2090 **Total Dissolved Solids** 2 mg/L 2130 10

SAMPLE DUPLICATE: 3009254

Date: 10/01/2020 10:19 AM

92495870011 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 25.0 10 D6 mg/L 18.0 33

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

QC Batch: 567607 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92495964001, 92495964002, 92495964003, 92495964004, 92495964005, 92495964006, 92495964007,

92495964008

METHOD BLANK: 3008004 Matrix: Water

Associated Lab Samples: 92495964001, 92495964002, 92495964003, 92495964004, 92495964005, 92495964006, 92495964007,

92495964008

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/19/20 15:23	
Fluoride	mg/L	ND	0.10	0.050	09/19/20 15:23	
Sulfate	mg/L	ND	1.0	0.50	09/19/20 15:23	

LABORATORY CONTROL SAMPLE:	3008005					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	52.3	105	90-110	
Fluoride	mg/L	2.5	2.7	106	90-110	
Sulfate	mg/L	50	52.5	105	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3008	006		3008007							
			MS	MSD								
		92495653007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.4	50	50	57.4	58.2	106	108	90-110	1	10	
Fluoride	mg/L	0.13	2.5	2.5	2.8	2.8	107	109	90-110	1	10	
Sulfate	mg/L	334	50	50	389	385	111	103	90-110	1	10	M6

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3008	800		3008009							
			MS	MSD								
		92495964005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	7.9	50	50	61.3	62.0	107	108	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.7	2.7	107	108	90-110	1	10	
Sulfate	mg/L	256	50	50	298	299	85	87	90-110	0	10	M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH E NETWORK

Pace Project No.: 92495964

QC Batch: 567943

QC Batch Method: EPA 300.0 Rev 2.1 1993

Analysis Method: EPA 300.0 Rev 2.1 1993

Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92495964009

METHOD BLANK: 3009484

Date: 10/01/2020 10:19 AM

Matrix: Water

Associated Lab Samples: 92495964009

LABORATORY CONTROL SAMPLE: 2000405

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	09/22/20 07:03	
Fluoride	mg/L	ND	0.10	0.050	09/22/20 07:03	
Sulfate	mg/L	ND	1.0	0.50	09/22/20 07:03	

LABORATORY CONTROL SAMPLE.	3009465					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	54.8	110	90-110	_
Fluoride	mg/L	2.5	2.7	110	90-110	
Sulfate	mg/L	50	54.9	110	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 3009	486		3009487							
			MS	MSD								
		92495894011	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	105	50	50	152	155	94	101	90-110	2	10	
Fluoride	mg/L	0.10	2.5	2.5	2.7	2.7	103	104	90-110	1	10	
Sulfate	mg/L	209	50	50	255	261	92	103	90-110	2	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3009	488		3009489							
			MS	MSD								
		92495900016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	52.8	52.5	106	105	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.6	2.6	105	104	90-110	1	10	
Sulfate	mg/L	ND	50	50	52.6	52.2	105	104	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH E NETWORK

Pace Project No.: 92495964

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/01/2020 10:19 AM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2495964001	BRGWC-35S				
92495964002	BRGWC-34S				
2495964003	BRGWC-33S				
2495964004	BRGWC-17S				
2495964005	BRGWC-36S				
2495964006	BRGWC-37S				
2495964009	BRGWC-38S				
2495964001	BRGWC-35S	EPA 3010A	568100	EPA 6010D	568125
2495964002	BRGWC-34S	EPA 3010A	568100	EPA 6010D	568125
2495964003	BRGWC-33S	EPA 3010A	568100	EPA 6010D	568125
2495964004	BRGWC-17S	EPA 3010A	568100	EPA 6010D	568125
2495964005	BRGWC-36S	EPA 3010A	568100	EPA 6010D	568125
2495964006	BRGWC-37S	EPA 3010A	568100	EPA 6010D	568125
2495964007	FB-1	EPA 3010A	568100	EPA 6010D	568125
2495964008	DUP-2	EPA 3010A	568747	EPA 6010D	568813
2495964009	BRGWC-38S	EPA 3010A	568747	EPA 6010D	568813
2495964001	BRGWC-35S	EPA 3005A	567397	EPA 6020B	567512
2495964002	BRGWC-34S	EPA 3005A	567397	EPA 6020B	567512
2495964003	BRGWC-33S	EPA 3005A	567397	EPA 6020B	567512
2495964004	BRGWC-17S	EPA 3005A	567397	EPA 6020B	567512
2495964005	BRGWC-36S	EPA 3005A	567397	EPA 6020B	567512
2495964006	BRGWC-37S	EPA 3005A	567397	EPA 6020B	567512
2495964007	FB-1	EPA 3005A	567397	EPA 6020B	567512
2495964008	DUP-2	EPA 3005A	567397	EPA 6020B	567512
2495964009	BRGWC-38S	EPA 3005A	567743	EPA 6020B	567850
2495964001	BRGWC-35S	EPA 7470A	567375	EPA 7470A	567456
2495964002	BRGWC-34S	EPA 7470A	567375	EPA 7470A	567456
2495964003	BRGWC-33S	EPA 7470A	567375	EPA 7470A	567456
2495964004	BRGWC-17S	EPA 7470A	567375	EPA 7470A	567456
2495964005	BRGWC-36S	EPA 7470A	567375	EPA 7470A	567456
2495964006	BRGWC-37S	EPA 7470A	567375	EPA 7470A	567456
2495964007	FB-1	EPA 7470A	567375	EPA 7470A	567456
2495964008	DUP-2	EPA 7470A	567375	EPA 7470A	567456
2495964009	BRGWC-38S	EPA 7470A	568007	EPA 7470A	568119
2495964001	BRGWC-35S	SM 2450C-2011	567372		
2495964002	BRGWC-34S	SM 2450C-2011	567372		
2495964003	BRGWC-33S	SM 2450C-2011	567372		
2495964004	BRGWC-17S	SM 2450C-2011	567372		
2495964005	BRGWC-36S	SM 2450C-2011	567372		
2495964006	BRGWC-37S	SM 2450C-2011	567372		
2495964007	FB-1	SM 2450C-2011	567372		
2495964008	DUP-2	SM 2450C-2011	567372		
2495964009	BRGWC-38S	SM 2450C-2011	567882		
2495964001	BRGWC-35S	EPA 300.0 Rev 2.1 1993	567607		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH E NETWORK

Pace Project No.: 92495964

Date: 10/01/2020 10:19 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92495964002	BRGWC-34S	EPA 300.0 Rev 2.1 1993	567607	_	
92495964003	BRGWC-33S	EPA 300.0 Rev 2.1 1993	567607		
92495964004	BRGWC-17S	EPA 300.0 Rev 2.1 1993	567607		
92495964005	BRGWC-36S	EPA 300.0 Rev 2.1 1993	567607		
92495964006	BRGWC-37S	EPA 300.0 Rev 2.1 1993	567607		
92495964007	FB-1	EPA 300.0 Rev 2.1 1993	567607		
92495964008	DUP-2	EPA 300.0 Rev 2.1 1993	567607		
92495964009	BRGWC-38S	EPA 300.0 Rev 2.1 1993	567943		

Counter:	nt 🖽 Commerci	al 🗌 Pace (
racking #:		92/	495964
Custody Seal on Cooler/Box Present:	∐ no Se	als intact: 📥 yes	CI no Cina
Packing Material: Bubble Wrap _ Bubble	Bags H None		
Thermometer Used 214		Vet Blue None	Samples on ice, cooling process has begun Date and initiate of person examining
Cooler Temperature	Biological Tiss	ue is Frozen: Yes N	contents: 1/1/// OCOM
Temp should be above freezing td 6°C'		Comments:	
Chain of Custody Present:	DAGS ONO O		
Chain of Custody Filled Out:	11 11 11 21 11 1 11 11 11	N/A 2.	
Chain of Custody Relinquished:	Yes No 🗆		
Sampler Name & Signature on COC:	Yes DNo D		
Samples Arrived within Hold Time;	☐Yes ☐Ne ☐		
Short Hold Time Analysis (<72hr): Rush Turn Around Time Requested:	☐Yes ☐Mc ☐		
Sufficient Volume:	EYes DNo D		
Sufficient Volume. Correct Containers Used:	ÚYes □No □	111 11 111 111 111 111 111 111 111	
-Pace Containers Used:	⊕Yes □No □		
Containers Intact:	☐Yes ☐No ☐		
Filtered volume received for Dissolved tests	□Yes □No □		
Sample Labels match COC:	S¥es □No □		
-Includes date/time/ID/Analysis Matrix:	W		
All containers needing preservation have been checked.	AE-TES LINO L	N/A 113.	
All containers needing preservation are found to be in compliance with EPA recommendation.	DYES INO I	IN/A	
	□Yes □No	initial when	Lot # of added
exceptions: VOA, caliform, TOC, O&G, WI-DRO (water)		completed	peservauva
Samples checked for dechlorination:	□Yes □No ☑		
Headspace in VOA Vials (>6mm):	☐Yes ☐No ☐		
Trip Blank Present:	Yes □No □		
Trip Blank Custody Seals Present	LIGO LINO L	real to	
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:			Field Data Required? Y / N
	D	ate/Time;	
Comments/ Resolution:			

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Cartification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

October 12, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 18, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Kan Lung

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder
Ben Hodges, Georgia Power
Jimmy Jones, Golder Associates Inc.
Kristen Jurinko
Julie Lehrman, Golder Associates Inc.
Ms. Lauren Petty, Southern Co. Services
Carolyn Powrozek, Golder
Dawn Prell, Golder Associates Inc.
Tim Richards, Golder Associates - Atlanta
Brian Steele, Golder

CERTIFICATIONS

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888

New York TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92496249001	PZ-51S	Water	09/17/20 12:44	09/18/20 10:15
92496249002	PZ-51I	Water	09/17/20 13:02	09/18/20 10:15

SAMPLE ANALYTE COUNT

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92496249001	PZ-51S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92496249002	PZ-51I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

SUMMARY OF DETECTION

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92496249001	PZ-51S					
EPA 9315	Radium-226	0.241 ± 0.236 (0.445) C:80% T:NA	pCi/L		09/30/20 09:00	
EPA 9320	Radium-228	0.711 ± 0.513 (1.00) C:65% T:78%	pCi/L		10/06/20 11:53	
Total Radium Calculation	Total Radium	0.952 ± 0.749 (1.45)	pCi/L		10/07/20 15:56	
92496249002	PZ-51I					
EPA 9315	Radium-226	0.798 ± 0.353 (0.410) C:93% T:NA	pCi/L		09/30/20 09:00	
EPA 9320	Radium-228	0.960 ± 0.553 (1.02) C:64% T:77%	pCi/L		10/06/20 11:52	
Total Radium Calculation	Total Radium	1.76 ± 0.906 (1.43)	pCi/L		10/07/20 16:11	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

Sample: PZ-51S PWS:	Lab ID: 92496 Site ID:	6249001 Collected: 09/17/20 12:44 Sample Type:	Received:	09/18/20 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.241 ± 0.236 (0.445) C:80% T:NA	pCi/L	09/30/20 09:00	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.711 ± 0.513 (1.00) C:65% T:78%	pCi/L	10/06/20 11:53	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.952 ± 0.749 (1.45)	pCi/L	10/07/20 15:56	7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

Sample: PZ-51I PWS:	Lab ID: 9249 Site ID:	6249002 Collected: 09/17/20 13:02 Sample Type:	Received:	09/18/20 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.798 ± 0.353 (0.410) C:93% T:NA	pCi/L	09/30/20 09:00	0 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.960 ± 0.553 (1.02) C:64% T:77%	pCi/L	10/06/20 11:52	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.76 ± 0.906 (1.43)	pCi/L	10/07/20 16:11	1 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

QC Batch: 415402 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92496249001, 92496249002

METHOD BLANK: 2008971 Matrix: Water

Associated Lab Samples: 92496249001, 92496249002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0214 ± 0.170 (0.482) C:94% T:NA
 pCi/L
 09/30/20 08:23

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

QC Batch: 415403 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92496249001, 92496249002

METHOD BLANK: 2008973 Matrix: Water

Associated Lab Samples: 92496249001, 92496249002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.789 ± 0.460 (0.832) C:67% T:72%
 pCi/L
 10/06/20 11:47

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 10/12/2020 10:49 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD ASSESSMENT RADS

Pace Project No.: 92496249

Date: 10/12/2020 10:49 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92496249001	PZ-51S	EPA 9315	415402		
92496249002	PZ-51I	EPA 9315	415402		
92496249001	PZ-51S	EPA 9320	415403		
92496249002	PZ-51I	EPA 9320	415403		
92496249001	PZ-51S	Total Radium Calculation	417460		
92496249002	PZ-51I	Total Radium Calculation	417462		

Pace Analytical

Sample Condition Upon R

Client Name: GA Power

WO#: 92496249

Tracking #:	nt La-Commercial	Pace /	Proj. Name:
Custody Seal on Cooler/Box Present: yes	no Seals	intact: yes [no
Packing Material: Bubble Wrap Bubble	Bags None	Other	
Thermometer Used 214	Type of Ice: Wet	Blue None	Samples on ice cooling process has begun
Cooler Temperature 3.8 Temp should be above freezing to 6°C	Biological Tissue	is Frozen: Yes No Comments:	Date and initials of person examining contents:
Chain of Custody Present:	ATOS DNO DNA	1.	
Chain of Custody Filled Out:	GAGS DNO DNIA	2.	
Chain of Custody Relinquished:	DYES ONO ON/A	3.	
Sampler Name & Signature on COC:	PTES DNO DNA	4.	
Samples Arrived within Hold Time:	THE ONO ONA	5.	
Short Hold Time Analysis (<72hr):	□Yes □No □N/A	6.	in the state of th
Rush Turn Around Time Requested:	□Yes □N6 □N/A	7.	
Sufficient Volume:	OTES ONO ON/A	8.	
Correct Containers Used:	Yes ONO ONA	9.	
-Pace Containers Used:	TYPES ONO ON/A		
Containers Intact:	PYes ONO ONIA	10.	
Filtered volume received for Dissolved tests	□Yes □No □MA	11.	
Sample Labels match COC: -Includes date/time/ID/Analysis Matrix:	TYPES ONE ONIA	12.	
All containers needing preservation have been checked.	DYES ONO ON/A	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	Pres ONO ONIA		
exceptions: VOA, colform, TOC, O&G, WI-DRO (water)	□Yes ⊞No	Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No □NA	14.	- 112 - 12 - 12 - 12 - 12 - 12 - 12 - 1
Headspace in VOA Vials (>6mm):	□Yes □No □MA	15.	
Trip Blank Present:	Dyes ONO ZNIA	16.	
Trip Blank Custody Seals Present	DYes DNo DNA		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution: Person Contacted:	Date/	Time:	Field Data Required? Y / N
Comments/ Resolution:			
Project Manager Paylow			Date:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical

Document Name: Bottle Identification Form (BIF)

Document No.: F-CAR-CS-043-Rev.00 Document Issued: March 14, 2019 Page 1 of 1

Issuing Authority:
Pace Carolinas Quality Office

*Checkernark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

Project # WO#: 92496249

PM: KLH1

Due Date: 10/09/20

CLIENT: GA-GA Power

	(C) (N/A) (C+)	BP4U-125 mt research	BP3U-250 mL Plestic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	passes, liter Plastic Unpreserved (N/A)	(-D) (C-) (O-)	BP45-125 mL Plastic nasce use	BP3N-250 mL plastic HNO3 (pH < 2)	epez-125 ml Plastic ZN Acetate & NaOH (>9)	on one plastic NaOH (pH > 12) (G-)	uncer wide-mouthed Glass ar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (G-)	Lear Amber HCI (pH < 2)	AGITT MADE Unpreserved (N/A) (CI-)	AG3U-250 mic Amber H2504 (pH < 2)	AGLES 250 ml Amber H2504 (pH < 2)	ACRAIDGEAP-250 mL Amber NHACI (N/A)(CI-)	DESHAD ML YOA HCI (N/A)	VG9T-40 mL VOA NA25203 (N/A)	VG9U-40 mt VOA Unp (N/A)	DG9P-40 mt VOA H3POA (N/A)	VOAK (6 viels per kit)-5035 kit (N/A)	V/GK (3 vials per ktt)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	cp27-250 mt Sterile Plastic (N/A-lab)	ROIN	1	AGOU-100 mL Amber Unpreserved vials (N/A)	
1	1	1	1	1	T	1	7	1	*	1	1	I	-	1	-	1	1	1	+	+	+	+	+	+	+		K	+	-
2	1	J	1	1	T		/	1	1	1	1	1	-	4	-	X	1	4	+	+	+	+	+	+	+	+	1	+	-
3	1	1		T	1		1	1	1	1	V	1		7	-	Y	X	X	+	+	+	+	+	+	+	+	X.	+	-
1	1	1		1	1		1	1	1	V	V	1		1	1	M	1	1	+	+	+	+	+	+	-+	+	1	+	-
1	5	1		T	1		1	T	J	V	1			7		K,	Z	X	-	-	-	+	+	+	7	+	*	+	-
1	6	1	1	1	1		1	1	J					7		1	7	K	-		-	-	-	-	-	+	4	+	
†	7	1	1	1	7		1	1	V	1						7	7	7	_					-	•	-	4	4	-
+	8	1	1	1			1	1	1	1	1			∇	1	7	7	7			_	-	-				4	H	
1	9	1	1	1	_		1		1	1	1			1	1	7	7	7	-	_	-	-	1.	-	-		H	H	+
	10	1	1	-		1	1	/	1	K	1	T			1	1	1	1	1	L	1	1	1	1-	1-	-	7	1	+
_	11	+	1			t	1	/	1	1	1	T	T	1	1	1	1	1	1	1	1	1	1	1	1	+	1	1	1
_	12	+	4	_	1	+	+	7	X	1	1	1	T	K	T	1	1	1	1		1			1	1		17	77	1

	pH Adjustment Log for Pre	Time preservation	Amount of Preservative	1
Sample ID Type of Preservative pH up	n receipt Date preservation adjusted	adjusted	added	
		• (000)		-
			**	
		100 1	1	T

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification to Out of hold, incorrect preservative, out of temp/incorrect containers.

the state of the state of the

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-226
Analyst:	LAL
Date:	9/29/2020
Worklist:	56346
Matrix:	DW

Method Blank Assessment	
MB Sample ID	2008971
MB concentration:	-0.021
M/B Counting Uncertainty:	0,170
MB MDC:	0.482
MB Numerical Performance Indicator:	-0,25
MB Status vs Numerical Indicator:	N/A
MD Status us MDC:	Door

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS56346	LCSD56346
Count Date:	9/30/2020	9/30/2020
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.044	24.044
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0,504	0.508
Target Conc. (pCi/L, g, F):	4.774	4.731
Uncertainty (Calculated):	0,057	0.057
Result (pCI/L, g, F):	5.388	4.719
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.860	0.780
Numerical Performance Indicator:	1,40	-0.03
Percent Recovery:	112,87%	99.74%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	125%	125%
Lower % Recovery Limits:	75%	75%

Duplicate Sample Assessment		
Sample i.D.: Duplicate Sample I.D.	LCS56346 LCSD56346	Enter Duplicate sample IDs if
Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F):		other than LCS/LCSD in
Sample Duplicate Result (pCi/L, g, F):	4.719	the space below.
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): Are sample and/or duplicate results below RL?	0.780 NO	
Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	1.129 12.34%	92496249001 92496249001DUP
Duplicate Status vs Numericel Indicator:		
Duplicate Status vs RPD: % RPD Limit:	Pass 25%	

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS i.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Targat Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD;	
% RPD Limit:	[

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Mush/2020

AM 10/1/2020

Pace Analytical www.paculate.com

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-226
Analyst:	LAL
Date:	9/29/2020
Worklist:	56346
Matrix:	DW

Method Blank Assessme	nt	
	MB Sample ID	2008971
	MB concentration:	-0.021
	M/B Counting Uncertainty:	0.170
	MB MDC;	0.482
	MB Numerical Performance Indicator:	-0.25
	MB Status vs Numerical Indicator:	N/A
1	MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
· ·	LCS56346	LCSD56346
Count Date:	9/30/2020	
Spike I.D.:	19-033	
Decay Corrected Spike Concentration (pCi/mL):	24.044	
Volume Used (mL):	0,10	
Aliquot Volume (L, g, F):	0.504	
Target Conc. (pCi/L, g, F):	4.774	
Uncertainty (Calculated):	0.057	
Result (pCi/L, g, F):	5.388	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.860	
Numerical Performance Indicator:	1.40	
Percent Recovery:	112.87%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:		
Lower % Recovery Limits:	75%	

Duplicate Sample Assessment		
Sample I.D.:		Enter Duplicate
Duplicate Sample I.D.		
Sample Result (pCi/L, g, F):	0.241	other than
Sample Result Counting Uncertainty (pCi/L, g, F):	0.234	LCS/LCSD in
Sample Duplicate Result (pCi/L, g, F):	0,452	the space below.
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.344	
Are sample and/or duplicate results below RL?	See Below ##	
Duplicate Numerical Performance Indicator:	-0.992	92496249001
Duplicate RPD:	60.82%	92496249001DUP
Duplicate Status vs Numerical Indicator:	N/A	
Duplicate Status vs RPD:	Fail***	
% RPD Limit:	25%	

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		ŀ
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

П	Matrix Spike/Matrix Spike Duplicate Sample Assessment	
	Sample I.D. Sample MS I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

**:Batch must be re-propped due to unacceptable precision: の(A

on NA VAMICIIZEO (Mid1/2020

AM 10/1/2020

Pace Analytical

Quality Control Sample Performance Assessment

Test: Ra-228

Analyst: VAL Date: 9/29/2020

Pass

Worklist: 56347 Matrix: WT

Method Blank Assessment MB Sample ID 2008973 MB concentration; 0.789 M/B 2 Sigma CSU: 0.460 MB MDC: 0.832 MB Numerical Performance Indicator: 3.36 MB Status vs Numerical Indicator: Fail*

Laboratory Control Sample Assessment	LOCE OF THE	
Eaboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS56347	LCSD56347
Count Date:	10/6/2020	
Spike I.D.;	20-030	
Decay Corrected Spike Concentration (pCi/mL):	38.131	
Volume Used (ml_):	0.10	
Aliquot Volume (L, g, F):	0.814	
Target Conc. (pCi/L, g, F):	4.687	
Uncertainty (Calculated):	0.230	
Result (pCi/L, g, F):	6.664	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1,522	
Numerical Performance Indicator:	2.52	
Percent Recovery:	142.18%	
Status vs Numerical Indicator:	Warning	
Status vs Recovery:	Fail High**	
Upper % Recovery Limits:	135%	
Lower % Recovery Limits:	60%	l

MB Status vs. MDC:

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Are sample and/or duplicate results below RL?	92496249001DUP 0.711 0.513 0.232 0.545	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator: Duplicate RPD:	1.254	92496249001 92496249001DUP
Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit:	Fail***	

Analyst Must Manually Enter All Fields Highlighted in Yellow.

	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
	Sample Collection Date:		
	Sample I.D.		
	Sample MS I.D.		
	Sample MSD I.D.		
	Spike I.D.:		
	MS/MSD Decay Corrected Spike Concentration (pCi/mL);		
	Spike Volume Used in MS (mL):		
	Spike Volume Used in MSD (mL):		
	MS Aliquot (L, g, F):		
	MS Target Conc.(pCi/L, g, F):		
	MSD Aliquot (L, g, F):		
	MSD Target Conc. (pCi/L, g, F):		
	MS Spike Uncertainty (calculated):		
	MSD Spike Uncertainty (calculated):		
	Sample Result:		
	Sample Result 2 Sigma CSU (pCi/L, g, F):		
	Sample Matrix Spike Result:		
	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
	Sample Matrix Spike Duplicate Result:		
	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
ĺ	MS Numerical Performance Indicator:		
	MSD Numerical Performance Indicator:		
	MS Percent Recovery:		
	MSD Percent Recovery: MS Status vs Numerical Indicator:		
	MSD Status vs Numerical Indicator:		
	MS Status vs Recovery:		
	MSD Status vs Recovery:		
	MS/MSD Upper % Recovery Limits:		
	MS/MSD Lower % Recovery Limits:		

Mat	rix Spike/Matrix Spike Duplicate Sample Assessment	
0.1	Sample I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample MsD I.D. Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

*If the lowest activity sample in this batch is greater than ten times the blank value, the blank is acceptable; otherwise this batch must be re-prepped.

October 01, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 18, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tyler Forney for Kevin Herring

kevin.herring@pacelabs.com

tell Pager

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder
 Ben Hodges, Georgia Power
 Jimmy Jones, Golder Associates Inc.
 Kristen Jurinko
 Julie Lehrman, Golder Associates Inc.
 Ms. Lauren Petty, Southern Co. Services
 Carolyn Powrozek, Golder
 Dawn Prell, Golder Associates Inc.
 Tim Richards, Golder Associates - Atlanta
 Brian Steele, Golder

CERTIFICATIONS

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001 Virginia Certification #: 460204

SAMPLE SUMMARY

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92496260001	PZ-51S	Water	09/17/20 12:44	09/18/20 10:15
92496260002	PZ-51I	Water	09/17/20 13:02	09/18/20 10:15

SAMPLE ANALYTE COUNT

Project: **BRANCH BCD ASSESSMENT**

Pace Project No.: 92496260

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92496260001	PZ-51S	EPA 6010D	DRB	1
		EPA 6020B	CW1	13
		EPA 7470A	FFP	1
		SM 2450C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	BRJ	3
92496260002	PZ-51I	EPA 6010D	DRB	1
		EPA 6020B	CW1	13
		EPA 7470A	FFP	1
		SM 2450C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	BRJ	3

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

SUMMARY OF DETECTION

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers	
92496260001	PZ-51S						
	рН	5.77	Std. Units		09/18/20 11:29		
EPA 6010D	Calcium	7.7	mg/L	1.0	09/25/20 19:05		
EPA 6020B	Antimony	0.00043J	mg/L	0.0030	09/23/20 19:53		
EPA 6020B	Barium	0.033	mg/L	0.010	09/23/20 19:53		
EPA 6020B	Boron	0.0063J	mg/L	0.10	09/24/20 14:02		
EPA 6020B	Cobalt	0.0062	mg/L	0.0050	09/23/20 19:53		
SM 2450C-2011	Total Dissolved Solids	101	mg/L	10.0	09/21/20 16:29		
EPA 300.0 Rev 2.1 1993	Chloride	4.6	mg/L	1.0	09/22/20 13:00		
EPA 300.0 Rev 2.1 1993	Fluoride	0.062J	mg/L	0.10	09/22/20 13:00		
EPA 300.0 Rev 2.1 1993	Sulfate	0.53J	mg/L	1.0	09/22/20 13:00		
92496260002	PZ-51I						
	рH	4.93	Std. Units		09/18/20 11:29		
EPA 6010D	Calcium	168	mg/L	1.0	09/25/20 19:22		
EPA 6020B	Barium	0.015	mg/L	0.010	09/23/20 19:59		
EPA 6020B	Beryllium	0.000096J	mg/L	0.0030	09/24/20 17:27		
EPA 6020B	Boron	0.43	mg/L	0.10	09/24/20 17:27		
EPA 6020B	Cadmium	0.033	mg/L	0.0025	09/23/20 19:59		
EPA 6020B	Chromium	0.00098J	mg/L	0.010	09/23/20 19:59		
EPA 6020B	Cobalt	0.022	mg/L	0.0050	09/23/20 19:59		
EPA 6020B	Lead	0.00036J	mg/L	0.0050	09/23/20 19:59		
EPA 6020B	Lithium	0.021J	mg/L	0.030	09/24/20 17:27		
SM 2450C-2011	Total Dissolved Solids	1600	mg/L	10.0	09/21/20 16:29		
EPA 300.0 Rev 2.1 1993	Chloride	10.5	mg/L	1.0	09/22/20 13:15		
EPA 300.0 Rev 2.1 1993	Sulfate	1030	mg/L	21.0	09/22/20 19:09		

ANALYTICAL RESULTS

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Date: 10/01/2020 10:09 AM

Sample: PZ-51S	Lab ID:	92496260001	Collecte	d: 09/17/20	12:44	Received: 09/	18/20 10:15 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	-	lytical Services	- Charlotte						
рН	5.77	Std. Units			1		09/18/20 11:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	e Corners, C	3A				
Calcium	7.7	mg/L	1.0	0.070	1	09/24/20 14:17	09/25/20 19:05	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	-	lytical Services							
Antimony	0.00043J	mg/L	0.0030	0.00028	1	09/23/20 13:53	09/23/20 19:53	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/23/20 13:53	09/23/20 19:53	7440-38-2	
Barium	0.033	mg/L	0.010	0.00071	1	09/23/20 13:53	09/23/20 19:53	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000046	1	09/23/20 13:53	09/24/20 14:02	7440-41-7	
Boron	0.0063J	mg/L	0.10	0.0052	1	09/23/20 13:53	09/24/20 14:02	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	09/23/20 13:53	09/23/20 19:53	7440-43-9	
Chromium	ND	mg/L	0.010	0.00055	1	09/23/20 13:53	09/23/20 19:53	7440-47-3	
Cobalt	0.0062	mg/L	0.0050	0.00038	1	09/23/20 13:53	09/23/20 19:53	7440-48-4	
Lead	ND	mg/L	0.0050	0.000036	1	09/23/20 13:53	09/23/20 19:53	7439-92-1	
Lithium	ND	mg/L	0.030	0.00081	1	09/23/20 13:53	09/24/20 14:02	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/23/20 13:53	09/23/20 19:53	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/23/20 13:53	09/23/20 19:53	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/23/20 13:53	09/23/20 19:53	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtree	Corners, C	βA				
Mercury	ND	mg/L	0.00050	0.000078	1	09/22/20 11:15	09/23/20 09:44	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Ana	lytical Services	- Peachtree	e Corners, C	S A				
Total Dissolved Solids	101	mg/L	10.0	10.0	1		09/21/20 16:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	.1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	4.6	mg/L	1.0	0.60	1		09/22/20 13:00	16887-00-6	
Fluoride	0.062J	mg/L	0.10	0.050	1		09/22/20 13:00	16984-48-8	
Sulfate	0.53J	mg/L	1.0	0.50	1		09/22/20 13:00		

ANALYTICAL RESULTS

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Date: 10/01/2020 10:09 AM

Sample: PZ-51I	Lab ID:	92496260002	Collecte	d: 09/17/20	13:02	Received: 09/	18/20 10:15 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
рН	4.93	Std. Units			1		09/18/20 11:29		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	e Corners, 0	3A				
Calcium	168	mg/L	1.0	0.070	1	09/24/20 14:17	09/25/20 19:22	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
-	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	09/23/20 13:53	09/23/20 19:59	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	09/23/20 13:53	09/23/20 19:59	7440-38-2	
Barium	0.015	mg/L	0.010	0.00071	1	09/23/20 13:53	09/23/20 19:59	7440-39-3	
Beryllium	0.000096J	mg/L	0.0030	0.000046	1	09/23/20 13:53	09/24/20 17:27	7440-41-7	
Boron	0.43	mg/L	0.10	0.0052	1	09/23/20 13:53			
Cadmium	0.033	mg/L	0.0025	0.00012	1		09/23/20 19:59		
Chromium	0.00098J	mg/L	0.010	0.00055	1	09/23/20 13:53	09/23/20 19:59	7440-47-3	
Cobalt	0.022	mg/L	0.0050	0.00038	1	09/23/20 13:53			
Lead	0.00036J	mg/L	0.0050	0.000036	1	09/23/20 13:53	09/23/20 19:59	7439-92-1	
Lithium	0.021J	mg/L	0.030	0.00081	1	09/23/20 13:53	09/24/20 17:27	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00069	1	09/23/20 13:53	09/23/20 19:59	7439-98-7	
Selenium	ND	mg/L	0.010	0.0016	1	09/23/20 13:53	09/23/20 19:59	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00014	1	09/23/20 13:53	09/23/20 19:59	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtree	e Corners, 0	βA				
Mercury	ND	mg/L	0.00050	0.000078	1	09/22/20 11:15	09/23/20 09:46	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	Pace Ana	lytical Services	- Peachtree	e Corners, 0	βA				
Total Dissolved Solids	1600	mg/L	10.0	10.0	1		09/21/20 16:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	10.5	mg/L	1.0	0.60	1		09/22/20 13:15	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/22/20 13:15	16984-48-8	
Sulfate	1030	mg/L	21.0	10.5	21		09/22/20 19:09		

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Date: 10/01/2020 10:09 AM

QC Batch: 568747 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92496260001, 92496260002

METHOD BLANK: 3013294 Matrix: Water

Associated Lab Samples: 92496260001, 92496260002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Calcium mg/L ND 1.0 0.070 09/25/20 18:16

LABORATORY CONTROL SAMPLE: 3013295

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Calcium mg/L 0.98J 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3013296 3013297

MS MSD

92495904004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 75.8 74.9 20 M1 Calcium mg/L 75.7 -84 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Date: 10/01/2020 10:09 AM

QC Batch: 568417 Analysis Method:
QC Batch Method: EPA 3005A Analysis Description:

Laboratory: Pace Analytical Services - Peachtree Corners, GA

EPA 6020B

6020 MET

Associated Lab Samples: 92496260001, 92496260002

METHOD BLANK: 3011604 Matrix: Water

Associated Lab Samples: 92496260001, 92496260002

·	0240020001, 02400200002	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00028	09/23/20 18:33	
Arsenic	mg/L	ND	0.0050	0.00078	09/23/20 18:33	
Barium	mg/L	ND	0.010	0.00071	09/23/20 18:33	
Beryllium	mg/L	ND	0.0030	0.000046	09/23/20 18:33	
Boron	mg/L	ND	0.10	0.0052	09/23/20 18:33	
Cadmium	mg/L	ND	0.0025	0.00012	09/23/20 18:33	
Chromium	mg/L	ND	0.010	0.00055	09/23/20 18:33	
Cobalt	mg/L	ND	0.0050	0.00038	09/23/20 18:33	
Lead	mg/L	ND	0.0050	0.000036	09/23/20 18:33	
Lithium	mg/L	ND	0.030	0.00081	09/23/20 18:33	
Molybdenum	mg/L	ND	0.010	0.00069	09/23/20 18:33	
Selenium	mg/L	ND	0.010	0.0016	09/23/20 18:33	
Thallium	mg/L	ND	0.0010	0.00014	09/23/20 18:33	

LABORATORY CONTROL SAMPLE:	3011605					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.10	105	80-120	
Arsenic	mg/L	0.1	0.098	98	80-120	
Barium	mg/L	0.1	0.099	99	80-120	
Beryllium	mg/L	0.1	0.10	102	80-120	
Boron	mg/L	1	1.0	104	80-120	
Cadmium	mg/L	0.1	0.10	101	80-120	
Chromium	mg/L	0.1	0.10	105	80-120	
Cobalt	mg/L	0.1	0.10	105	80-120	
Lead	mg/L	0.1	0.10	101	80-120	
Lithium	mg/L	0.1	0.11	106	80-120	
Molybdenum	mg/L	0.1	0.10	103	80-120	
Selenium	mg/L	0.1	0.097	97	80-120	
Thallium	mg/L	0.1	0.099	99	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3011	606		3011607							
		92495876001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.10	0.099	101	99	75-125	2	20	
Arsenic	mg/L	ND	0.1	0.1	0.097	0.095	97	95	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Date: 10/01/2020 10:09 AM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3011	606 MS	MSD	3011607							
Parameter	Units	92495876001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.030	0.1	0.1	0.13	0.13	96	95	75-125	1	20	
Beryllium	mg/L	0.00012J	0.1	0.1	0.098	0.095	98	95	75-125	2	20	
Boron	mg/L	0.0065J	1	1	1.0	0.98	100	97	75-125	3	20	
Cadmium	mg/L	0.00016J	0.1	0.1	0.10	0.098	100	98	75-125	2	20	
Chromium	mg/L	ND	0.1	0.1	0.10	0.10	103	103	75-125	0	20	
Cobalt	mg/L	ND	0.1	0.1	0.10	0.10	101	101	75-125	1	20	
Lead	mg/L	0.00065J	0.1	0.1	0.098	0.099	97	99	75-125	2	20	
Lithium	mg/L	0.0014J	0.1	0.1	0.10	0.10	101	100	75-125	0	20	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.10	101	100	75-125	1	20	
Selenium	mg/L	ND	0.1	0.1	0.097	0.096	96	95	75-125	1	20	
Thallium	mg/L	ND	0.1	0.1	0.096	0.097	96	97	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Date: 10/01/2020 10:09 AM

QC Batch: 568004 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92496260001, 92496260002

METHOD BLANK: 3009596 Matrix: Water

Associated Lab Samples: 92496260001, 92496260002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00050 0.00078 09/23/20 08:40

LABORATORY CONTROL SAMPLE: 3009597

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury mg/L 0.0025 0.0025 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3009598 3009599

MS MSD

92496275006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec **RPD** RPD Qual Result % Rec Limits ND 0.0025 Mercury mg/L 0.0025 0.0025 0.0024 98 94 75-125 5 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

QC Batch: 567882 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92496260001, 92496260002

METHOD BLANK: 3009251 Matrix: Water

Associated Lab Samples: 92496260001, 92496260002

Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 09/21/20 16:27

LABORATORY CONTROL SAMPLE: 3009252

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 400 412 103 84-108 mg/L

SAMPLE DUPLICATE: 3009253

92495653008 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 2090 **Total Dissolved Solids** 2 mg/L 2130 10

SAMPLE DUPLICATE: 3009254

Date: 10/01/2020 10:09 AM

92495870011 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 25.0 10 D6 mg/L 18.0 33

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Date: 10/01/2020 10:09 AM

QC Batch: 567943

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis

Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

EPA 300.0 Rev 2.1 1993

Associated Lab Samples: 92496260001, 92496260002

METHOD BLANK: 3009484 Matrix: Water

Associated Lab Samples: 92496260001, 92496260002

LABORATORY CONTROL SAMPLE: 2000405

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	09/22/20 07:03	
Fluoride	mg/L	ND	0.10	0.050	09/22/20 07:03	
Sulfate	mg/L	ND	1.0	0.50	09/22/20 07:03	

Analysis Method:

LABORATORY CONTROL SAMPLE.	3009465	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	54.8	110	90-110	
Fluoride	mg/L	2.5	2.7	110	90-110	
Sulfate	mg/L	50	54.9	110	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3009	486		3009487							
		00405004044	MS	MSD	140	MOD		MOD	0/ D			
		92495894011	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	105	50	50	152	155	94	101	90-110	2	10	
Fluoride	mg/L	0.10	2.5	2.5	2.7	2.7	103	104	90-110	1	10	
Sulfate	mg/L	209	50	50	255	261	92	103	90-110	2	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3009	488		3009489							
			MS	MSD								
		92495900016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	52.8	52.5	106	105	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.6	2.6	105	104	90-110	1	10	
Sulfate	mg/L	ND	50	50	52.6	52.2	105	104	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/01/2020 10:09 AM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRANCH BCD ASSESSMENT

Pace Project No.: 92496260

Date: 10/01/2020 10:09 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92496260001 92496260002	PZ-51S PZ-51I			_	
92496260001	PZ-51S	EPA 3010A	568747	EPA 6010D	568813
92496260002	PZ-51I	EPA 3010A	568747	EPA 6010D	568813
92496260001	PZ-51S	EPA 3005A	568417	EPA 6020B	568454
92496260002	PZ-51I	EPA 3005A	568417	EPA 6020B	568454
92496260001	PZ-51S	EPA 7470A	568004	EPA 7470A	568115
92496260002	PZ-51I	EPA 7470A	568004	EPA 7470A	568115
92496260001	PZ-51S	SM 2450C-2011	567882		
92496260002	PZ-51I	SM 2450C-2011	567882		
92496260001	PZ-51S	EPA 300.0 Rev 2.1 1993	567943		
92496260002	PZ-51I	EPA 300.0 Rev 2.1 1993	567943		

Pace Analytical

Sample Condition Upon Rece

Client Name: GA Power

WO#: 92496260

	ш	Ш	Ш	Ш	
IIII				ш	
924	962	90			

Tracking #:	. <u>(200</u> 1	~	2495250 Proj. Name:
Custody Seal on Cooler/Box Present:		als intact: yes	no language and the second sec
Packing Material: Bubble Wrap Bubble		~ _	
Thermometer Used	Type of Ice: (V		Samples on ice, cooling process has begun Date and Initials of person examining
Cooler Temperature 3.8	Biological Tiss	ue is Frozen: Yes No Comments:	contents: 9/7/20(0)
Chain of Custody Present:	AYes DNo D	N/A 1.	
Chain of Custody Filled Out:	Des DNo DI	N/A 2.	
Chain of Custody Relinquished:	Pres ONO O	N/A 3.	
Sampler Name & Signature on COC:	PATES ONO OF	N/A 4.	
Samples Arrived within Hold Time:	GYES ONO O	N/A 5	
Short Hold Time Analysis (<72hr):	□Yes ØÑo □	NIA 6.	
Rush Turn Around Time Requested:	□Yes □No □	N/A 7.	
Sufficient Volume:	Lives ONO O	N/A 8.	
Correct Containers Used:	TYes ONO O	N/A 9.	
-Pace Containers Used:	To Ses ONO O	N/A	
Containers Intact:	ØYes ONO O	N/A 10.	
Filtered volume received for Dissolved tests	□Yes □No □	MA 11.	
Sample Labels match COC: -Includes date/time/ID/Analysis Matrix:	Yes ONer O	N/A 12.	
All containers needing preservation have been checked.	DYes Ono O	N/A 13.	200
All containers needing preservation are found to be in compliance with EPA recommendation.	Des ONO ON	N/A	
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes ੴNo	Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No □	NA 14.	
Headspace in VOA Vials (>6mm):	□Yes □No □	MÁ 15.	
Trip Blank Present:	□Yes □No Ø	N/A 16.	
Trip Blank Custody Seals Present	□Yes □No ♀	MA	
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Da	ite/Time:	25 C
Comments/ Resolution:			· · · · · · · · · · · · · · · · · · ·
Project Manager Review:			Date:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical

Document Name: Bottle Identification Form (81F)

Document No.: F-CAR-CS-043-Rev.00 Document Issued: March 14, 2019 Page 1 of 1

Issuing Authority:

Pace Carolinas Occalino WO#:92496260

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Examples.

Poceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Buttom half of box is to list number of bottle

PM: KLH1

Project #

Due Date: 10/02/20

CLIENT: GA-GA Power

BP3U-250 mL Plastic Unpreserved (N/A)	1	1		Z	74	1	_	AG1U-1 liter Amber Unpreserved (N/A) (G-)	AG1H-1 litter Amber HCI (pH < 2)	AG3U-250 mt. Almer AG3S-3 liter Amber H2504 (pH < 2)	AG35-250 ml Amber H2504 (pH < 2)	AGSA(DGSA)-250 mL Amber NH4G (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG91-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 viels per Mt)-5035 Lit (N/A)	V/GK (3 vials per kit)-vPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterlie Plastic (N/A-lab)		AGOL-100 ML Amber Unpreserved vials (N/A)
1	1	i		K-X	11	V	V		V		1	1	1	+	+	1	+	+	1	*	+-
			1	N	X	1	V		N	1	1	1	1		+	+	+	+	+	*	+1
1		Ť	1	K	V	7	J		N	0	7	1	1-1	1	+	+	+	+	+	X	+
1		\vdash	1	K	V	V	V		12	1	1	1	1	1	+	-	+	+	+	X	+
7		1	+	K	K	1	J		1		1	1	1		1	+	+	+	+	X	+
1	1	+	+	K	X	K	V		1		1	1	1.		-	4	+	+	4-	X	4
7	+	+	+	K	X	X	N	T	1		V	1	1			4	1	-1	+	X	4
N	+	+	+	K	X	X	N			1	N	7	1	-		-	-	+	+	H	4
	+	+	+	1	1	X	X		1	1	N	V	1	1			•	-	-	H	4
1	+	+	+	1	1	1	X	1	1	1		N	1	1				\vdash	+	17	4
1	+	+	+	-4	1	1	X	1	1	1	1	N	V	1	-	_		\square	-	7	4
	1	-	+	+	1	1	1	1	1	1	1	N	V	1						77	\square
1	/	1											THAN AND	THAN HA	THAN AND			THAN ANH	THAN ANHIE	PH Adjustment Log for Preserved Samples	THAN ANH HILL

			justment Log for Pres	Time preservation	Amount of Preservative	Lot
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	adjusted	added	
				- Walani		17
			173			1
			lina sompliance samples, a copy of	404		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to Out of hold, incorrect preservative, out of temp, incorrect containers.

S. Le do I

November 11, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: PLANT BRANCH

Pace Project No.: 92502483

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on October 28, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092

Kain Lung

HORIZON Database Administrator

Enclosures

cc: Daniela Herrera, Golder
 Ben Hodges, Georgia Power
 Jimmy Jones, Golder Associates Inc.
 Kristen Jurinko
 Julie Lehrman, Golder Associates Inc.
 Ms. Lauren Petty, Southern Co. Services
 Carolyn Powrozek, Golder
 Dawn Prell, Golder Associates Inc.
 Tim Richards, Golder Associates - Atlanta
 Brian Steele, Golder

CERTIFICATIONS

Project: PLANT BRANCH

Pace Project No.: 92502483

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706

North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092

Florida DOH Certification #: E87315

Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40

South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: PLANT BRANCH

Pace Project No.: 92502483

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92502483001	PZ-50D	Water	10/27/20 09:40	10/28/20 09:00
92502483002	PZ-51D	Water	10/27/20 12:45	10/28/20 09:00
92502483003	PZ-51I	Water	10/27/20 14:10	10/28/20 09:00
92502483004	FB	Water	10/27/20 10:00	10/28/20 09:00
92502483005	EB	Water	10/27/20 11:20	10/28/20 09:00
92502483006	FD	Water	10/27/20 00:00	10/28/20 09:00

SAMPLE ANALYTE COUNT

Project: PLANT BRANCH

Pace Project No.: 92502483

Lab ID	Sample ID	Method	Analysts	Analytes Reported	
92502483001	PZ-50D	EPA 6010D	DRB	4	
		EPA 6020B	CW1	3	
		SM 2450C-2011	AW1	1	
		SM 2320B-2011	ECH	1	
		EPA 300.0 Rev 2.1 1993	CDC	3	
92502483002	PZ-51D	EPA 6010D	DRB	4	
		EPA 6020B	CW1	3	
		SM 2450C-2011	AW1	1	
		SM 2320B-2011	ECH	1	
		EPA 300.0 Rev 2.1 1993	CDC	3	
92502483003	PZ-51I	EPA 6010D	DRB	4	
		EPA 6020B	CW1	3	
		SM 2450C-2011	AW1	1	
		SM 2320B-2011	ECH	1	
		EPA 300.0 Rev 2.1 1993	CDC	3	
92502483004	FB	EPA 6010D	DRB	4	
		EPA 6020B	CW1	3	
		SM 2450C-2011	AW1	1	
		SM 2320B-2011	ECH	1	
		EPA 300.0 Rev 2.1 1993	CDC	3	
92502483005	EB	EPA 6010D	DRB	4	
		EPA 6020B	CW1	3	
		SM 2450C-2011	AW1	1	
		SM 2320B-2011	ECH	1	
		EPA 300.0 Rev 2.1 1993	CDC	3	
92502483006	FD	EPA 6010D	DRB	4	
		EPA 6020B	CW1	3	
		SM 2450C-2011	AW1	1	
		SM 2320B-2011	ECH	1	
		EPA 300.0 Rev 2.1 1993	CDC	3	

PASI-A = Pace Analytical Services - Asheville

PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

SUMMARY OF DETECTION

Project: PLANT BRANCH

Pace Project No.: 92502483

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92502483001	PZ-50D					
	Performed by	CUSTOME R			10/28/20 15:41	
	рН	6.47	Std. Units		10/28/20 15:41	
EPA 6010D	Potassium	9.7	mg/L	0.20	11/04/20 21:28	
EPA 6010D	Sodium	31.9	mg/L	1.0	11/04/20 21:28	
EPA 6010D	Calcium	159	mg/L	1.0	11/04/20 21:28	
EPA 6010D	Magnesium	49.2	mg/L	0.050	11/04/20 21:28	
EPA 6020B	Boron	0.15	mg/L	0.10	10/28/20 18:43	
EPA 6020B	Cobalt	0.0037J	mg/L	0.0050	10/28/20 18:43	
SM 2450C-2011	Total Dissolved Solids	914	mg/L	20.0	10/28/20 18:53	
SM 2320B-2011	Alkalinity, Total as CaCO3	90.2	mg/L	5.0	11/10/20 14:52	
EPA 300.0 Rev 2.1 1993	Chloride	5.6	mg/L	1.0	10/30/20 13:08	
EPA 300.0 Rev 2.1 1993	Fluoride	0.28	mg/L	0.10	10/30/20 13:08	
EPA 300.0 Rev 2.1 1993	Sulfate	492	mg/L	11.0	10/31/20 00:28	
2502483002	PZ-51D					
	Performed by	CUSTOME R			10/28/20 15:41	
	Hq	6.79	Std. Units		10/28/20 15:41	
EPA 6010D	Potassium	8.7	mg/L	0.20	11/04/20 21:33	
EPA 6010D	Sodium	25.2	mg/L	1.0	11/04/20 21:33	
EPA 6010D	Calcium	132	mg/L	1.0	11/04/20 21:33	
EPA 6010D	Magnesium	32.5	mg/L	0.050	11/04/20 21:33	
EPA 6020B	Boron	0.029J	mg/L	0.10	10/28/20 19:01	
EPA 6020B	Cobalt	0.00041J	mg/L	0.0050	10/28/20 19:01	
SM 2450C-2011	Total Dissolved Solids	680	mg/L	20.0	10/28/20 18:53	
SM 2320B-2011	Alkalinity, Total as CaCO3	116	mg/L	5.0	11/10/20 15:03	
EPA 300.0 Rev 2.1 1993	Chloride	6.3	mg/L	1.0	10/30/20 13:22	
EPA 300.0 Rev 2.1 1993	Fluoride	0.21	mg/L	0.10	10/30/20 13:22	
EPA 300.0 Rev 2.1 1993	Sulfate	357	mg/L	8.0	10/31/20 00:42	
92502483003	PZ-51I		· ·			
	Performed by	CUSTOME R			10/28/20 15:41	
	рН	5.49	Std. Units		10/28/20 15:41	
EPA 6010D	Potassium	10.9	mg/L	0.20	11/04/20 21:38	
EPA 6010D	Sodium	42.6	mg/L	1.0	11/04/20 21:38	
EPA 6010D	Calcium	183	mg/L	1.0	11/04/20 21:38	
EPA 6010D	Magnesium	111	mg/L	0.050	11/04/20 21:38	
EPA 6020B	Boron	0.37	mg/L	0.10	10/28/20 19:06	
EPA 6020B	Cadmium	0.0051	mg/L	0.0025	10/28/20 19:06	
EPA 6020B	Cobalt	0.020	mg/L	0.0050	10/28/20 19:06	
SM 2450C-2011	Total Dissolved Solids	1200	mg/L	50.0	10/28/20 18:53	
SM 2320B-2011	Alkalinity, Total as CaCO3	22.9	mg/L	5.0	11/10/20 15:28	
EPA 300.0 Rev 2.1 1993	Chloride	11.0	mg/L	1.0	10/30/20 13:37	
EPA 300.0 Rev 2.1 1993	Sulfate	893	mg/L	20.0	10/31/20 00:57	
92502483004	FB					
EPA 6020B	Boron	0.0054J	mg/L	0.10	10/28/20 19:29	
			-			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: PLANT BRANCH

Pace Project No.: 92502483

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92502483005	ЕВ					
EPA 6010D	Potassium	0.067J	mg/L	0.20	11/04/20 21:59	В
92502483006	FD					
EPA 6010D	Potassium	10.8	mg/L	0.20	11/04/20 22:04	
EPA 6010D	Sodium	42.4	mg/L	1.0	11/04/20 22:04	
EPA 6010D	Calcium	183	mg/L	1.0	11/04/20 22:04	
EPA 6010D	Magnesium	111	mg/L	0.050	11/04/20 22:04	
EPA 6020B	Boron	0.32	mg/L	0.10	10/28/20 19:41	
EPA 6020B	Cadmium	0.0043	mg/L	0.0025	10/28/20 19:41	
EPA 6020B	Cobalt	0.018	mg/L	0.0050	10/28/20 19:41	
SM 2450C-2011	Total Dissolved Solids	1390	mg/L	50.0	10/28/20 18:55	
SM 2320B-2011	Alkalinity, Total as CaCO3	23.0	mg/L	5.0	11/10/20 15:45	
EPA 300.0 Rev 2.1 1993	Chloride	11.0	mg/L	1.0	10/30/20 15:47	
EPA 300.0 Rev 2.1 1993	Sulfate	892	mg/L	20.0	10/31/20 01:11	

Date: 11/11/2020 09:39 AM

ANALYTICAL RESULTS

Project: PLANT BRANCH
Pace Project No.: 92502483

Sample: PZ-50D	Lab ID:	92502483001	Collected	d: 10/27/20	0 09:40	Received: 10/	28/20 09:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Pace Anal	Method: lytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/28/20 15:41		
рН	6.47	Std. Units			1		10/28/20 15:41		
6010D ATL ICP	-	Method: EPA 6 ytical Services				PA 3010A			
Potassium	9.7	mg/L	0.20	0.056	1	11/04/20 09:30	11/04/20 21:28	7440-09-7	
Sodium	31.9	mg/L	1.0	0.26	1	11/04/20 09:30	11/04/20 21:28	7440-23-5	
Calcium	159	mg/L	1.0	0.070	1	11/04/20 09:30	11/04/20 21:28	7440-70-2	
Magnesium	49.2	mg/L	0.050	0.0076	1	11/04/20 09:30	11/04/20 21:28	7439-95-4	
6020 MET ICPMS	-	Method: EPA 6 ytical Services				PA 3005A			
Boron	0.15	mg/L	0.10	0.0052	1	10/28/20 13:12	10/28/20 18:43	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	10/28/20 13:12	10/28/20 18:43	7440-43-9	
Cobalt	0.0037J	mg/L	0.0050	0.00038	1	10/28/20 13:12	10/28/20 18:43	7440-48-4	
2540C Total Dissolved Solids	•	Method: SM 24 lytical Services		Corners, C	GA				
Total Dissolved Solids	914	mg/L	20.0	20.0	1		10/28/20 18:53		
2320B Alkalinity	•	Method: SM 23 lytical Services							
Alkalinity, Total as CaCO3	90.2	mg/L	5.0	5.0	1		11/10/20 14:52		
300.0 IC Anions 28 Days	•	Method: EPA 3		1 1993					
Chloride	5.6	mg/L	1.0	0.60	1		10/30/20 13:08	16887-00-6	
Fluoride	0.28	mg/L	0.10	0.050	1		10/30/20 13:08	16984-48-8	
Sulfate	492	mg/L	11.0	5.5	11		10/31/20 00:28	14808-79-8	

Date: 11/11/2020 09:39 AM

ANALYTICAL RESULTS

Project: PLANT BRANCH
Pace Project No.: 92502483

Sample: PZ-51D	Lab ID:	92502483002	Collecte	d: 10/27/20	12:45	Received: 10/	28/20 09:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Dranarad	Analyzad	CAS No.	Qua
Parameters	— Results	———·		IVIDL		Prepared	Analyzed		- Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/28/20 15:41		
pH	6.79	Std. Units			1		10/28/20 15:41		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Peachtree	Corners, C	βA				
Potassium	8.7	mg/L	0.20	0.056	1	11/04/20 09:30	11/04/20 21:33	7440-09-7	
Sodium	25.2	mg/L	1.0	0.26	1	11/04/20 09:30	11/04/20 21:33	7440-23-5	
Calcium	132	mg/L	1.0	0.070	1	11/04/20 09:30	11/04/20 21:33	7440-70-2	
Magnesium	32.5	mg/L	0.050	0.0076	1	11/04/20 09:30	11/04/20 21:33	7439-95-4	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtree	Corners, C	βA				
Boron	0.029J	mg/L	0.10	0.0052	1	10/28/20 13:12	10/28/20 19:01	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	10/28/20 13:12	10/28/20 19:01	7440-43-9	
Cobalt	0.00041J	mg/L	0.0050	0.00038	1	10/28/20 13:12	10/28/20 19:01	7440-48-4	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Anal	ytical Services	- Peachtree	Corners, C	βA				
Total Dissolved Solids	680	mg/L	20.0	20.0	1		10/28/20 18:53		
2320B Alkalinity	Analytical	Method: SM 2	320B-2011						
•	-	ytical Services							
Alkalinity, Total as CaCO3	116	mg/L	5.0	5.0	1		11/10/20 15:03		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	.1 1993					
	-	ytical Services							
Chloride	6.3	mg/L	1.0	0.60	1		10/30/20 13:22	16887-00-6	
Fluoride	0.21	mg/L	0.10	0.050	1		10/30/20 13:22	16984-48-8	
Sulfate	357	mg/L	8.0	4.0	8		10/31/20 00:42	14808-79-8	

Date: 11/11/2020 09:39 AM

ANALYTICAL RESULTS

Project: PLANT BRANCH
Pace Project No.: 92502483

Sample: PZ-51I	Lab ID:	92502483003	Collected	d: 10/27/20	14:10	Received: 10/	28/20 09:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	CUSTOME R				1		10/28/20 15:41		
рН	5.49	Std. Units			1		10/28/20 15:41		
6010D ATL ICP	•	Method: EPA 6 ytical Services	•			PA 3010A			
Potassium	10.9	mg/L	0.20	0.056	1	11/04/20 09:30	11/04/20 21:38	7440-09-7	
Sodium	42.6	mg/L	1.0	0.26	1	11/04/20 09:30	11/04/20 21:38	7440-23-5	
Calcium	183	mg/L	1.0	0.070	1	11/04/20 09:30	11/04/20 21:38	7440-70-2	
Magnesium	111	mg/L	0.050	0.0076	1	11/04/20 09:30	11/04/20 21:38	7439-95-4	
6020 MET ICPMS	-	Method: EPA 6 ytical Services				PA 3005A			
Boron	0.37	mg/L	0.10	0.0052	1	10/28/20 13:12	10/28/20 19:06	7440-42-8	
Cadmium	0.0051	mg/L	0.0025	0.00012	1	10/28/20 13:12	10/28/20 19:06	7440-43-9	
Cobalt	0.020	mg/L	0.0050	0.00038	1	10/28/20 13:12	10/28/20 19:06	7440-48-4	
2540C Total Dissolved Solids	•	Method: SM 2- ytical Services		Corners, C	θA				
Total Dissolved Solids	1200	mg/L	50.0	50.0	1		10/28/20 18:53		
2320B Alkalinity	•	Method: SM 2							
Alkalinity, Total as CaCO3	22.9	mg/L	5.0	5.0	1		11/10/20 15:28		
300.0 IC Anions 28 Days		Method: EPA 3		1 1993					
Chloride	11.0	mg/L	1.0	0.60	1		10/30/20 13:37	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		10/30/20 13:37	16984-48-8	
Sulfate	893	mg/L	20.0	10.0	20		10/31/20 00:57	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 92502483

Date: 11/11/2020 09:39 AM

Sample: FB	Lab ID:	92502483004	Collected	d: 10/27/20	10:00	Received: 10/	28/20 09:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical I	Method: EPA 6	010D Prepa	aration Me	hod: EF	PA 3010A			
	Pace Analy	ytical Services	- Peachtree	Corners, C	βA				
Potassium	ND	mg/L	0.20	0.056	1	11/04/20 09:30	11/04/20 21:54	7440-09-7	
Sodium	ND	mg/L	1.0	0.26	1	11/04/20 09:30	11/04/20 21:54	7440-23-5	
Calcium	ND	mg/L	1.0	0.070	1	11/04/20 09:30	11/04/20 21:54	7440-70-2	
Magnesium	ND	mg/L	0.050	0.0076	1	11/04/20 09:30	11/04/20 21:54	7439-95-4	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3005A			
	Pace Analy	ytical Services	- Peachtree	Corners, C	βA				
Boron	0.0054J	mg/L	0.10	0.0052	1	10/28/20 13:12	10/28/20 19:29	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	10/28/20 13:12	10/28/20 19:29	7440-43-9	
Cobalt	ND	mg/L	0.0050	0.00038	1	10/28/20 13:12	10/28/20 19:29	7440-48-4	
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	Pace Analy	ytical Services	- Peachtree	Corners, C	βA				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		10/28/20 18:54		
2320B Alkalinity	Analytical I	Method: SM 23	320B-2011						
	Pace Analy	ytical Services	- Asheville						
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		11/10/20 15:37		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	00.0 Rev 2.	1 1993					
-	Pace Analy	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		10/30/20 13:51	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		10/30/20 13:51	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		10/30/20 13:51	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 92502483

Date: 11/11/2020 09:39 AM

Sample: EB	Lab ID:	92502483005	Collected	d: 10/27/20	11:20	Received: 10/	28/2 <mark>0 09:00 Ma</mark>	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical	Method: EPA 6	010D Prepa	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Peachtree	Corners, C	SA.				
Potassium	0.067J	mg/L	0.20	0.056	1	11/04/20 09:30	11/04/20 21:59	7440-09-7	В
Sodium	ND	mg/L	1.0	0.26	1	11/04/20 09:30	11/04/20 21:59	7440-23-5	
Calcium	ND	mg/L	1.0	0.070	1	11/04/20 09:30	11/04/20 21:59	7440-70-2	
Magnesium	ND	mg/L	0.050	0.0076	1	11/04/20 09:30	11/04/20 21:59	7439-95-4	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtree	Corners, C	S A				
Boron	ND	mg/L	0.10	0.0052	1	10/28/20 13:12	10/28/20 19:35	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00012	1	10/28/20 13:12	10/28/20 19:35	7440-43-9	
Cobalt	ND	mg/L	0.0050	0.00038	1	10/28/20 13:12	10/28/20 19:35	7440-48-4	
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	Pace Anal	ytical Services	- Peachtree	Corners, C	S A				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		10/28/20 18:54		
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
·	Pace Anal	ytical Services	- Asheville						
Alkalinity, Total as CaCO3	ND	mg/L	5.0	5.0	1		11/10/20 15:41		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		10/30/20 15:04	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		10/30/20 15:04	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		10/30/20 15:04	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 92502483

Date: 11/11/2020 09:39 AM

Sample: FD	Lab ID:	92502483006	Collected	d: 10/27/20	00:00	Received: 10/	28/20 09:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	hod: EF	PA 3010A			
	Pace Analy	ytical Services	- Peachtree	Corners, C	βA				
Potassium	10.8	mg/L	0.20	0.056	1	11/04/20 09:30	11/04/20 22:04	7440-09-7	
Sodium	42.4	mg/L	1.0	0.26	1	11/04/20 09:30	11/04/20 22:04	7440-23-5	
Calcium	183	mg/L	1.0	0.070	1	11/04/20 09:30	11/04/20 22:04	7440-70-2	
Magnesium	111	mg/L	0.050	0.0076	1	11/04/20 09:30	11/04/20 22:04	7439-95-4	
6020 MET ICPMS	Analytical I	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3005A			
	Pace Analy	ytical Services	- Peachtree	Corners, C	βA				
Boron	0.32	mg/L	0.10	0.0052	1	10/28/20 13:12	10/28/20 19:41	7440-42-8	
Cadmium	0.0043	mg/L	0.0025	0.00012	1	10/28/20 13:12	10/28/20 19:41	7440-43-9	
Cobalt	0.018	mg/L	0.0050	0.00038	1	10/28/20 13:12	10/28/20 19:41	7440-48-4	
2540C Total Dissolved Solids	Analytical I	Method: SM 24	450C-2011						
	Pace Analy	ytical Services	- Peachtree	Corners, 0	βA				
Total Dissolved Solids	1390	mg/L	50.0	50.0	1		10/28/20 18:55		
2320B Alkalinity	Analytical I	Method: SM 23	320B-2011						
	Pace Analy	ytical Services	- Asheville						
Alkalinity, Total as CaCO3	23.0	mg/L	5.0	5.0	1		11/10/20 15:45		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	300.0 Rev 2.	1 1993					
	Pace Analy	ytical Services	- Asheville						
Chloride	11.0	mg/L	1.0	0.60	1		10/30/20 15:47	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		10/30/20 15:47	16984-48-8	
Sulfate	892	mg/L	20.0	10.0	20		10/31/20 01:11	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 92502483

Date: 11/11/2020 09:39 AM

QC Batch: 577828 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92502483001, 92502483002, 92502483003, 92502483004, 92502483005, 92502483006

METHOD BLANK: 3057104 Matrix: Water

Associated Lab Samples: 92502483001, 92502483002, 92502483003, 92502483004, 92502483005, 92502483006

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND ND	1.0	0.070	11/04/20 20:25	
Magnesium	mg/L	ND	0.050	0.0076	11/04/20 20:25	
Potassium	mg/L	0.060J	0.20	0.056	11/04/20 20:25	
Sodium	mg/L	ND	1.0	0.26	11/04/20 20:25	

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers
Calcium mg/L 1 1.0 103 80-120
Magnesium mg/L 1 1.0 103 80-120
Potassium mg/L 1 1.1 109 80-120
Sodium mg/L 1 1.1 111 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3057106 3057107												
			MS	MSD								
		92502714002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	ND	1	1	1.5	1.5	101	103	75-125	1	20	
Magnesium	mg/L	0.54	1	1	1.6	1.6	103	107	75-125	2	20	
Potassium	mg/L	1.2	1	1	2.2	2.3	104	116	75-125	5	20	
Sodium	mg/L	2.0	1	1	3.0	3.0	102	103	75-125	0	20	

MATRIX SPIKE & MATRIX SI	PIKE DUPI	LICATE: 3057	108		3057109							
			MS	MSD								
		92502714004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	1.5	1	1	180	178	17900	17700	75-125	1	20	M1
Magnesium	mg/L	0.76	1	1	110	109	10900	10800	75-125	1	20	M1
Potassium	mg/L	2.6	1	1	11.8	11.7	915	913	75-125	0	20	M1
Sodium	mg/L	3.3	1	1	42.8	42.3	3940	3900	75-125	1	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 92502483

Date: 11/11/2020 09:39 AM

QC Batch: 576372 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92502483001, 92502483002, 92502483003, 92502483004, 92502483005, 92502483006

METHOD BLANK: 3050232 Matrix: Water

Associated Lab Samples: 92502483001, 92502483002, 92502483003, 92502483004, 92502483005, 92502483006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	mg/L	ND	0.10	0.0052	10/28/20 17:52	
Cadmium	mg/L	ND	0.0025	0.00012	10/28/20 17:52	
Cobalt	mg/L	ND	0.0050	0.00038	10/28/20 17:52	

LABORATORY CONTROL SAMPLE: 3050233 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron mg/L 1 0.98 98 80-120 Cadmium 0.1 80-120 mg/L 0.10 100 Cobalt 0.098 mg/L 0.1 98 80-120

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 3050	234		3050235							
			MS	MSD								
	(92502483003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	mg/L	0.37	1	1	1.2	1.2	79	83	75-125	3	20	
Cadmium	mg/L	0.0051	0.1	0.1	0.10	0.10	99	100	75-125	1	20	
Cobalt	mg/L	0.020	0.1	0.1	0.12	0.12	98	95	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 92502483

QC Batch: 576299 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92502483001, 92502483002, 92502483003, 92502483004, 92502483005, 92502483006

METHOD BLANK: 3049857 Matrix: Water

Associated Lab Samples: 92502483001, 92502483002, 92502483003, 92502483004, 92502483005, 92502483006

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 10.0 10/28/20 11:28

LABORATORY CONTROL SAMPLE: 3049858

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 406 102 84-108 mg/L

SAMPLE DUPLICATE: 3049859

92502386001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 285 **Total Dissolved Solids** mg/L 300 5 10

SAMPLE DUPLICATE: 3053735

Date: 11/11/2020 09:39 AM

92502714018 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 232 10 D6 mg/L 262 12

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 92502483

Date: 11/11/2020 09:39 AM

QC Batch: 578902 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92502483001, 92502483002, 92502483003, 92502483004, 92502483005, 92502483006

METHOD BLANK: 3063052 Matrix: Water

Associated Lab Samples: 92502483001, 92502483002, 92502483003, 92502483004, 92502483005, 92502483006

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L ND 5.0 11/10/20 13:25

LABORATORY CONTROL SAMPLE: 3063053

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 53.6 107 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3063054 3063055

MS MSD

92503383001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result **RPD** RPD Result Conc. Conc. Result % Rec % Rec Limits Qual ND 25 Alkalinity, Total as CaCO3 mg/L 50 50 56.8 56.6 105 104 80-120 0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3063056 3063057

MS MSD

92502483002 MS MSD MS MSD % Rec Spike Spike Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual 50 50 95 Alkalinity, Total as CaCO3 116 164 162 92 25 mg/L 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

LABORATORY CONTROL CAMPLE: 2052722

Date: 11/11/2020 09:39 AM

Pace Project No.: 92502483

QC Batch: 576824 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92502483001, 92502483002, 92502483003, 92502483004, 92502483005, 92502483006

METHOD BLANK: 3052721 Matrix: Water

Associated Lab Samples: 92502483001, 92502483002, 92502483003, 92502483004, 92502483005, 92502483006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	10/30/20 12:39	
Fluoride	mg/L	ND	0.10	0.050	10/30/20 12:39	
Sulfate	mg/L	ND	1.0	0.50	10/30/20 12:39	

LABORATORT CONTROL SAMPLE.	3032722	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	50.6	101	90-110	
Fluoride	mg/L	2.5	2.5	98	90-110	
Sulfate	mg/L	50	49.3	99	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3052	723		3052724							
			MS	MSD					_			
		92502483004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	50.0	50.1	100	100	90-110	0	10	
Fluoride	mg/L	ND	2.5	2.5	2.5	2.5	99	100	90-110	1	10	
Sulfate	mg/L	ND	50	50	48.2	48.3	96	96	90-110	0	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3052	725		3052726							
			MS	MSD								
		92502483005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	50.1	50.3	100	101	90-110	0	10	
Fluoride	mg/L	ND	2.5	2.5	2.3	2.4	93	97	90-110	4	10	
Sulfate	mg/L	ND	50	50	48.2	48.4	96	97	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: PLANT BRANCH

Pace Project No.: 92502483

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 11/11/2020 09:39 AM

B Analyte was detected in the associated method blank.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PLANT BRANCH

Pace Project No.: 92502483

Date: 11/11/2020 09:39 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92502483001	PZ-50D				
92502483002	PZ-51D				
92502483003	PZ-51I				
92502483001	PZ-50D	EPA 3010A	577828	EPA 6010D	577926
92502483002	PZ-51D	EPA 3010A	577828	EPA 6010D	577926
92502483003	PZ-51I	EPA 3010A	577828	EPA 6010D	577926
92502483004	FB	EPA 3010A	577828	EPA 6010D	577926
92502483005	EB	EPA 3010A	577828	EPA 6010D	577926
92502483006	FD	EPA 3010A	577828	EPA 6010D	577926
92502483001	PZ-50D	EPA 3005A	576372	EPA 6020B	576467
92502483002	PZ-51D	EPA 3005A	576372	EPA 6020B	576467
92502483003	PZ-51I	EPA 3005A	576372	EPA 6020B	576467
92502483004	FB	EPA 3005A	576372	EPA 6020B	576467
92502483005	EB	EPA 3005A	576372	EPA 6020B	576467
92502483006	FD	EPA 3005A	576372	EPA 6020B	576467
92502483001	PZ-50D	SM 2450C-2011	576299		
92502483002	PZ-51D	SM 2450C-2011	576299		
92502483003	PZ-51I	SM 2450C-2011	576299		
92502483004	FB	SM 2450C-2011	576299		
92502483005	EB	SM 2450C-2011	576299		
92502483006	FD	SM 2450C-2011	576299		
92502483001	PZ-50D	SM 2320B-2011	578902		
92502483002	PZ-51D	SM 2320B-2011	578902		
92502483003	PZ-51I	SM 2320B-2011	578902		
92502483004	FB	SM 2320B-2011	578902		
92502483005	EB	SM 2320B-2011	578902		
92502483006	FD	SM 2320B-2011	578902		
92502483001	PZ-50D	EPA 300.0 Rev 2.1 1993	576824		
92502483002	PZ-51D	EPA 300.0 Rev 2.1 1993	576824		
92502483003	PZ-51I	EPA 300.0 Rev 2.1 1993	576824		
92502483004	FB	EPA 300.0 Rev 2.1 1993	576824		
92502483005	EB	EPA 300.0 Rev 2.1 1993	576824		
92502483006	FD	EPA 300.0 Rev 2.1 1993	576824		

Sample Condition Upon F Client Name: GA POWLE Courier: Fed Ex UPS USPS Client Commercial Pace Tracking #: Custody Seal on Cooler/Box Present: yes

Packing Material: Bubble Wrap

Temp should be above freezing to 6°C

Thermometer Used

Cooler Temperature

Sufficient Volume:

Containers Intact:

Correct Containers Used:

-Pace Containers Used:

Sample Labels match COC:

Chain of Custody Present:

Chain of Custody Filled Out:

Chain of Custody Relinquished:

Sampler Name & Signature on COC:

Samples Arrived within Hold Time:

Short Hold Time Analysis (<72hr):

Rush Turn Around Time Requested:

Filtered volume received for Dissolved tests

All containers needing preservation have been checked.

All containers needing preservation are found to be in

exceptions: VOA, cotform, TOC, O&G, WI-DRO (water)

-Includes date/time/ID/Analysis

compliance with EPA recommendation.

Samples checked for dechlorination:

Headspace in VOA Vials (>6mm):

Trip Blank Custody Seals Present

Trip Blank Present:

☐ Bubble Bags ☐ None ☐ Other

Matrix:

1	□ Pace Other	02483	
	intact: yes [Proj. Dùe Date: Proj. Name:	
ype of Ice: 🐠 Biological Tissue I	Blue None	Date and Initials of perso contents:	
Sves Ono Onia	1.		
Ives □No □N/A	2.		
Ares ONO ON/A	3.		
Yes ONO ON/A	4.		
HES DNO DN/A	5.		
Yes THO DNIA	6.		
Yes Who ON/A	7.	.*	
Tres ONO ON/A	8.		
Tyes ONo ON/A	9.		
EVES ONO ON/A			
Tes Ono ON/A	10.		
IYes ONO THA	11.		
Syes ONO ON/A			
W_			
Fres ONO ONIA	13.		
Stes Ono Onia			
□Yes □No	Initial when completed	Lot # of added preservative	
Yes Ono Dark			
DYes DNo CHA			
DYES DNO GINIA			
DYOS DNO GNIA	10.		
Cies Cino William	1		
		Field Data Required?	YIN

Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Date/Time: Person Contacted: Comments/ Resolution: Date: Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

F-ALLC003rev.3, 11September2008

1	Pace Analy		Battle Ident Dox F-CAR	ment Name: lification Form (BIF) cumpnt No.: -CS-043-Rev.00	Document Issued: M Page 1 o Issuing Auth Pace Carolinas Q	nority uality Office	
ified and	within the	cceptance i	d/or dechlorination ange for preserve (c, ORO/8015 (water) © per-of-bottle	7	MOH . ACO	ue Date: 11/11/20 puer	1 1
3	BP3U-250 mL Plastic Unpreserved (N/A) BP2U-500 mL Plastic Unpreserved (N/A)	(-) H(>9)	BP42-125 mL Plastic Na Acetate WGFU-Wide-mouthed Glass Jar Unpreserved AG1U-1 liter Amber Unpreserved [N/A] [G-1	AG3H-1 liter Amber HCI (pri * 2) AG3U-250 mt Amber H2504 (pH * 2) AG31-250 mt Amber H2504 (pH * 2) AG31-250 mt Amber H2504 (pH * 2) AG31-250 mt Amber H2504 (pH * 2)		W/GK (3 vials per kit). VPH/Cas mit in the lastic (N/A - lab) Sp37-325 mt Sterile Plastic (N/A - lab) Sp37-350 mt Sterile Plastic (N/A - lab) Sp37-350 mt Sterile Plastic (N/A - lab)	AGDU-100 ml Amber Unpreserved variable

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Of Out of hold, incorrect preservative, out of temp. Ancorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

:tion	A Client Information:	Section B Required P	ralas	1 India	em selie e :				-		tion					-						_	_		_		F					-
ngan		Report To:	_	_	nkara.				-	_	ntion		nation		_			_	_	_				_			LF	Page:	1	8	Of	1
Dess		Copy Ta:	Feet	and Mari	-53 E				_	-	_	y Nan	~	_				_	-	_				\rightarrow								
ding	100, Suite 300, Alianta, GA 30341						_		_		ness:				_			_	_					-			-				1000	Faul 17
at	karim_minkara@colder.com	Purchase 0	irdet i							-	e Qu					_		_		_	_			-			-	Regu	letory A	gency	_	-
me.	(615)586-1402 Fax	Project Nam	ne:	Plan	nt Branch	1			7	Pao	e Pro	jest N	Aanag	er:	ice	vin.be	errino	Gos	oriat	5 60	9			\neg		150	200	Stat	e / Loca	tion	-	CS2/-F3
pues?	ted Due Date:	Project #:										die #		0838													_		GA	2011	_	312/44
_																				F	eque	sted A	unalys	is Fin	ered	(MM)	225	-512		SHE	-2-	920.1
	Wee	gwaet owt wat: wat: wat: wat:	(see valid codes to left)	(G-CRAI) G-COMP)	Da			IME No	L GOX L'ESTON	z			Pres	erva	tive	5		Tost Y/N			a, Mg. K	1	I					IVAN				
I EM	One Character per box. Wood (A-Z, 0-91, - AC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	483 483	MATIEX CODE (SAMPLE 1994; .	DATE	THIE	DATE		SAMINE TOMP AT GOXLEGION	и Он СОИТАМЕНЯ	Unpreserved	H2504	INOS	NaOH	Nazszoa	Methonol	Other	Analyson Tost	CI, F. SOHAIK	TOS	B, Ca, Ca, Co, Na, Mg.							Residual Chloring (Yat)				
1	PZ-50D		W	6	10-2	-20	sq.	10 9%		3	2	П	1		Т	T			X	X	x	1	T	П					101	12	64	7
2	PZ-51 D		in	6	10-17	-20	-	12.45	-	3	2	Н	1	†	t	t			X	K	X	+	†	Н	+	+	+	Н	-	12		
3	PZ-51I		W		10.2	7-20		14.10		3	2	Н	1	+	t	t		П	×	K		+	t	Н	+	+	+	Н		1 =		
4	FB		W	12	10-2	7-20		10:00		-	2	Н	7	+	t	t		П	X	X		+	+	Н	+	+	+	Н	121		2	-
5	FB		W	G	V-2	-10		11:20		3	2	T		†	t	t		П	x	X	X	+	†	Н	\forall	+	+	Н	\vdash		_	
6	FO		w	6	10-2	7-20		-		3	2	\exists	(†	t	t			X	x	X	+	+	Н	+	+	+	Н	\vdash		_	_
7			t							H		1	+	+	t	t			^		+	+	+	Н	+	+	+	Н	\vdash		_	_
8			t						H	Н		1	+	+	t	t					+	$^{+}$	+	Н	+	+		Н				_
9			t	Н						Н	1	+	1	$^{+}$	t	H			Н		+	+	+	Н	+	+		H	\vdash			_
10			t	Н						Н	\forall	+	+	+	t	H			1		+	+	t	Н	+	+		Н	\vdash			_
11			t	Н						Н	\forall	7	+	+	†	\vdash			\exists		+	$^{+}$	t	Н	+	+		Н	\vdash			-
12			t							Н		1	+	+	t	H			H		+	$^{+}$	t	Н	+	+		Н			_	_
1	ADDITIONAL COMMENTS		RELIN	ous	ED BY !	AFFILIATIO	M	DATE			TME		23		ACI	EPTE	DEV	LAFE	R.IA	non	1	1	100	DATE		TIM	E		SAMP	LE COND	ITIONS	000000
		20	2	2	110	Solde		p 28	-0	US	roq		1	1.	1	11	10	1	to	1	HO	12	10	221	0	190	00	3.1	IY		NI	Y
					60							-					,	-					1	-	1					+		
						SAMPLE	RNAME	AND SIGN	VATI	JRE		_		13	300					- 2		2			1		88			+		
					.3	PRIN	NT Name	of SAMPL	LER:	K	ar :	de,	11	w.		- 1				- 2					A I F			D E	Received on	AG.	19	63
					i ii	SIG	NATURE	of SAMPL	ER:	- 1.5		2	3	_		_				DATE	Sign	ed:	0-,	27 -	2 :	20		TEMPING	Recei	Custody Gustody	Cooto (Y/N)	Bamples Intacti:

October 29, 2020

Kelley Sharpe ARCADIS - Atlanta 2839 Paces Ferry Rd STE 900 Atlanta, GA 30339

RE: Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Dear Kelley Sharpe:

Enclosed are the analytical results for sample(s) received by the laboratory on October 22, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maiya Parks maiya.parks@pacelabs.com (770)734-4200

Project Manager

Enclosures

cc: Ben Hodges, Georgia Power Warren Johnson, ARCADIS - Atlanta

CERTIFICATIONS

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804
Florida/NELAP Certification #: E87648
Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001 Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
92501802001	LR-1	Water	10/22/20 12:10	10/22/20 15:14	
92501802002	LR+8	Water	10/22/20 12:25	10/22/20 15:14	
92501802003	LR+9	Water	10/22/20 12:30	10/22/20 15:14	
92501802004	LR+10	Water	10/22/20 12:38	10/22/20 15:14	

SAMPLE ANALYTE COUNT

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92501802001	LR-1	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	KH	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		EPA 9040C	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92501802002	LR+8	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	KH	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		EPA 9040C	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92501802003	LR+9	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	KH	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		EPA 9040C	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92501802004	LR+10	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	KH	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		EPA 9040C	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A

PASI-A = Pace Analytical Services - Asheville

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

Sample: LR-1	Lab ID: 9250	01802001	Collected: 10/22/2	20 12:10	Received: 10)/22/20 15:14	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	010D Preparation Me	ethod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Sodium	4.4	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:13	3 7440-23-5	
Calcium	3.7	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:13	3 7440-70-2	
Magnesium	2.0	mg/L	0.050	1	10/23/20 14:00	10/24/20 00:13	7439-95-4	
Potassium	2.7	mg/L	0.20	1	10/23/20 14:00	10/27/20 13:38	3 7440-09-7	M1
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	ethod: El	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	10/23/20 14:04	10/26/20 13:50	7440-42-8	
Cadmium	ND	mg/L	0.00050	1	10/23/20 14:04	10/26/20 13:50	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	10/23/20 14:04	10/26/20 13:50	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 24	50C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	59.0	mg/L	10.0	1		10/23/20 16:53	3	
9040 pH	Analytical Meth	od: EPA 90)40C					
	Pace Analytical	Services -	Peachtree Corners,	GA				
pH at 25 Degrees C	7.1	Std. Units	0.10	1		10/23/20 14:57	7	H3,H6
2320B Alkalinity	Analytical Meth	od: SM 23	20B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity, Bicarbonate (CaCO3)	24.2	mg/L	5.0	1		10/28/20 13:19)	
Alkalinity, Total as CaCO3	24.2	mg/L	5.0	1		10/28/20 13:19)	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	00.0 Rev 2.1 1993					
	Pace Analytical	Services -	Asheville					
Chloride	3.3	mg/L	1.0	1		10/25/20 22:08	3 16887-00-6	
Fluoride	ND	mg/L	0.10	1		10/25/20 22:08	3 16984-48-8	
Sulfate	2.1	mg/L	1.0	1		10/25/20 22:08	3 14808-79-8	

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

Sample: LR+8	Lab ID: 92501802002		Collected: 10/22/20 12:25		Received: 10	0/22/20 15:14	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3010A							
	Pace Analytical Services - Peachtree Corners, GA							
Sodium	4.9	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:3	7440-23-5	
Calcium	4.2	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:3	7440-70-2	
Magnesium	2.1	mg/L	0.050	1	10/23/20 14:00	10/24/20 00:31	7439-95-4	
Potassium	2.8	mg/L	0.20	1	10/23/20 14:00	10/27/20 13:43	3 7440-09-7	
6020 MET ICPMS	Analytical Method: EPA 6020B Preparation Method: EPA 3005A							
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	10/23/20 14:04	10/26/20 14:12	7440-42-8	
Cadmium	ND	mg/L	0.00050	1	10/23/20 14:04	10/26/20 14:12	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	10/23/20 14:04	10/26/20 14:12	7440-48-4	
2540C Total Dissolved Solids	Analytical Method: SM 2450C-2011							
	Pace Analytical Services - Peachtree Corners, GA							
Total Dissolved Solids	60.0	mg/L	10.0	1		10/23/20 16:53	3	
9040 pH	Analytical Method: EPA 9040C							
	Pace Analytical Services - Peachtree Corners, GA							
pH at 25 Degrees C	7.2	Std. Units	0.10	1		10/23/20 15:14	1	H3,H6
2320B Alkalinity	Analytical Method: SM 2320B-2011							
	Pace Analytical Services - Asheville							
Alkalinity,Bicarbonate (CaCO3)	25.6	mg/L	5.0	1		10/28/20 13:25	5	
Alkalinity, Total as CaCO3	25.6	mg/L	5.0	1		10/28/20 13:25	5	
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993							
	Pace Analytical Services - Asheville							
Chloride	3.7	mg/L	1.0	1		10/25/20 22:54	16887-00-6	
Fluoride	ND	mg/L	0.10	1		10/25/20 22:54	16984-48-8	
Sulfate	2.5	mg/L	1.0	1		10/25/20 22:54	14808-79-8	

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

Sample: LR+9	Lab ID: 925	01802003	Collected: 10	22/20 12	2:30	Received:	10/22/20 15:14	Matrix: Water	
Parameters	Results	Units	Report Lin	nit DF	=	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	nod: EPA 60	10D Preparatio	n Method	l: EP/	A 3010A			
	Pace Analytica	l Services -	Peachtree Corn	ers, GA					
Sodium	4.9	mg/L		1.0 1	1	10/23/20 14:0	0 10/24/20 00:3	5 7440-23-5	
Calcium	4.3	mg/L		1.0 1	1	10/23/20 14:0	0 10/24/20 00:3	5 7440-70-2	
Magnesium	2.1	mg/L	0.0	50 1	1	10/23/20 14:0	0 10/24/20 00:3	5 7439-95-4	
Potassium	2.9	mg/L	0	20 1	1	10/23/20 14:0	00 10/27/20 13:4	8 7440-09-7	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20B Preparation	Method	l: EP/	A 3005A			
	Pace Analytica	l Services -	Peachtree Corn	ers, GA					
Boron	ND	mg/L	0.0	40 1	1	10/23/20 14:0	04 10/26/20 14:1	8 7440-42-8	
Cadmium	ND	mg/L	0.000	50 1	1	10/23/20 14:0	04 10/26/20 14:1	8 7440-43-9	
Cobalt	ND	mg/L	0.00	50 1	1	10/23/20 14:0	04 10/26/20 14:1	8 7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 245	50C-2011						
	Pace Analytica	l Services -	Peachtree Corn	ers, GA					
Total Dissolved Solids	57.0	mg/L	1	0.0 1			10/23/20 16:5	i3	
9040 pH	Analytical Meth	nod: EPA 90	40C						
	Pace Analytica	l Services -	Peachtree Corn	ers, GA					
pH at 25 Degrees C	7.2	Std. Units	0	10 1			10/23/20 15:1	8	H3,H6
2320B Alkalinity	Analytical Meth	nod: SM 232	20B-2011						
	Pace Analytica	l Services -	Asheville						
Alkalinity,Bicarbonate (CaCO3)	25.8	mg/L		5.0 1			10/28/20 13:3	31	
Alkalinity, Total as CaCO3	25.8	mg/L		5.0 1			10/28/20 13:3	31	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0 Rev 2.1 199	3					
-	Pace Analytica	l Services -	Asheville						
Chloride	3.8	mg/L		1.0 1			10/25/20 23:1	0 16887-00-6	
Fluoride	ND	mg/L		10 1				0 16984-48-8	
Sulfate	2.6	mg/L		1.0 1			10/25/20 23:1	0 14808-79-8	

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

Sample: LR+10	Lab ID: 9250	1802004	Collected: 10/22/2	20 12:38	Received: 10)/22/20 15:14	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation M	ethod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Potassium	2.8	mg/L	0.20	1	10/23/20 14:00	10/27/20 13:54	1 7440-09-7	
Sodium	5.1	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:49	7440-23-5	
Calcium	4.5	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:49	7440-70-2	
Magnesium	2.1	mg/L	0.050	1	10/23/20 14:00	10/24/20 00:49	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	ethod: El	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	10/23/20 14:04	10/26/20 14:24	1 7440-42-8	
Cadmium	ND	mg/L	0.00050	1	10/23/20 14:04	10/26/20 14:24	1 7440-43-9	
Cobalt	ND	mg/L	0.0050	1	10/23/20 14:04	10/26/20 14:24	1 7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	50C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	59.0	mg/L	10.0	1		10/23/20 16:53	3	
9040 pH	Analytical Meth	od: EPA 90	40C					
•	Pace Analytical	Services -	Peachtree Corners,	GA				
pH at 25 Degrees C	7.1	Std. Units	0.10	1		10/23/20 15:20)	H3,H6
2320B Alkalinity	Analytical Meth	od: SM 232	20B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	26.5	mg/L	5.0	1		10/28/20 13:37	7	
Alkalinity, Total as CaCO3	26.5	mg/L	5.0	1		10/28/20 13:37	7	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
- -	Pace Analytical	Services -	Asheville					
Chloride	4.0	mg/L	1.0	1		10/25/20 23:25	16887-00-6	
Fluoride	ND	mg/L	0.10	1		10/25/20 23:25	16984-48-8	
Sulfate	2.6	mg/L	1.0	1		10/25/20 23:25	14808-79-8	

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

QC Batch: 575392 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

METHOD BLANK: 3045814 Matrix: Water
Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Calcium	mg/L	ND ND	1.0	10/24/20 00:04	
Magnesium	mg/L	ND	0.050	10/24/20 00:04	
Potassium	mg/L	ND	0.20	10/27/20 13:27	
Sodium	ma/L	ND	1.0	10/24/20 00:04	

Parameter Units Spike Conc. LCS Result LCS % Rec Limits % Rec Limits Qualifiers Calcium mg/L 1 .98J 98 80-120 Magnesium mg/L 1 1.0 101 80-120 Potassium mg/L 1 1.0 101 80-120 Sodium mg/L 1 1.0 103 80-120	LABORATORY CONTROL SAMPLE:	3045815					
Calcium mg/L 1 .98J 98 80-120 Magnesium mg/L 1 1.0 101 80-120 Potassium mg/L 1 1.0 101 80-120	Doromotor	lloito	•				Ouglifians
Magnesium mg/L 1 1.0 101 80-120 Potassium mg/L 1 1.0 101 80-120	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Potassium mg/L 1 1.0 101 80-120	Calcium	mg/L	1	.98J	98	80-120	
· · · · · · · · · · · · · · · · · · ·	Magnesium	mg/L	1	1.0	101	80-120	
Sodium mg/L 1 1.0 103 80-120	Potassium	mg/L	1	1.0	101	80-120	
	Sodium	mg/L	1	1.0	103	80-120	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 3045		3045817								
			MS	MSD								
	9	2501802001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	3.7	1	1	4.5	4.9	85	124	75-125	8	20	
Magnesium	mg/L	2.0	1	1	2.9	3.1	92	115	75-125	8	20	
Potassium	mg/L	2.7	1	1	3.8	4.1	116	137	75-125	6	20	M1
Sodium	mg/L	4.4	1	1	5.3	5.6	83	119	75-125	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Cobalt

Date: 10/29/2020 03:11 PM

QC Batch: 575391 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

mg/L

Laboratory: Pace Analytical Services - Peachtree Corners, GA

10/26/20 13:38

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

METHOD BLANK: 3045807 Matrix: Water
Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Boron mg/L ND 0.040 10/26/20 13:38 Cadmium mg/L ND 0.00050 10/26/20 13:38

LABORATORY CONTROL SAMPLE: 3045808

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	mg/L	1	0.98	98	80-120	_
Cadmium	mg/L	0.1	0.099	99	80-120	
Cobalt	mg/L	0.1	0.097	97	80-120	

ND

0.0050

MATRIX SPIKE & MATRIX SP	ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3045809 3045810 MS MSD 92501802001 Spike Spike MS MSD MS MSD % Rec Max											
			_	_								
	9	92501802001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	mg/L	ND	1	1	0.95	1.0	94	99	75-125	5	20	
Cadmium	mg/L	ND	0.1	0.1	0.094	0.095	94	95	75-125	1	20	
Cobalt	mg/L	ND	0.1	0.1	0.092	0.095	92	94	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

QC Batch: 575357 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

METHOD BLANK: 3045601 Matrix: Water

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 10/23/20 16:52

LABORATORY CONTROL SAMPLE: 3045602

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 400 404 101 84-108

SAMPLE DUPLICATE: 3045603

Date: 10/29/2020 03:11 PM

Parameter Units Parameter Units Parameter Units Dup Max Result Result RPD Qualifiers Total Dissolved Solids mg/L 375 390 4 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

QC Batch: 575360 Analysis Method: EPA 9040C QC Batch Method: EPA 9040C Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

SAMPLE DUPLICATE: 3045620

Date: 10/29/2020 03:11 PM

92501802001 Dup Max Parameter Units Result RPD RPD Qualifiers Result 7.1 pH at 25 Degrees C 7.1 9 H3,H6 Std. Units 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

QC Batch: 576297

QC Batch Method: SM 2320B-2011

Analysis Method: SM 2320B-2011
Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

METHOD BLANK: 3049850 Matrix: Water

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 ND
 5.0
 10/28/20 12:39

 Alkalinity, Bicarbonate (CaCO3)
 mg/L
 ND
 5.0
 10/28/20 12:39

LABORATORY CONTROL SAMPLE: 3049851

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 52.4 105 80-120 mg/L 50

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3049852 3049853

MS MSD

92500569012 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 mg/L ND 50 50 51.8 51.6 104 103 80-120 0 25

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3049854 3049855

MS MSD

92501837008 MS MSD MS MSD Spike Spike % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 146 50 50 195 197 99 104 80-120 25 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

LABORATORY CONTROL SAMPLE:

Date: 10/29/2020 03:11 PM

QC Batch: 575544 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

METHOD BLANK: 3046842 Matrix: Water

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

3046843

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	10/25/20 21:37	
Fluoride	mg/L	ND	0.10	10/25/20 21:37	
Sulfate	mg/L	ND	1.0	10/25/20 21:37	

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 50 52.4 105 90-110 mg/L

 Chloride
 mg/L
 50
 52.4
 105
 90-110

 Fluoride
 mg/L
 2.5
 2.7
 108
 90-110

 Sulfate
 mg/L
 50
 52.4
 105
 90-110

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3046	844		3046845							
			MS	MSD								
		92501802001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.3	50	50	56.6	57.1	107	108	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.7	2.7	106	106	90-110	0	10	
Sulfate	mg/L	2.1	50	50	55.3	55.5	106	107	90-110	0	10	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3046846 3046847 MS MSD 92501621017 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Chloride mg/L 6.0 50 50 59.5 60.3 107 109 90-110 10 Fluoride mg/L 0.096J 2.5 2.5 2.7 2.8 105 108 90-110 2 10 Sulfate mg/L 224 50 50 270 271 92 93 90-110 0 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/29/2020 03:11 PM

H3 Sample was received or analysis requested beyond the recognized method holding time.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92501802001	 LR-1	EPA 3010A	<u>575392</u>	EPA 6010D	<u>575424</u>
92501802002	LR+8	EPA 3010A	575392	EPA 6010D	575424
92501802003	LR+9	EPA 3010A	575392	EPA 6010D	575424
92501802004	LR+10	EPA 3010A	575392	EPA 6010D	575424
92501802001	LR-1	EPA 3005A	575391	EPA 6020B	575422
92501802002	LR+8	EPA 3005A	575391	EPA 6020B	575422
92501802003	LR+9	EPA 3005A	575391	EPA 6020B	575422
92501802004	LR+10	EPA 3005A	575391	EPA 6020B	575422
92501802001	LR-1	SM 2450C-2011	575357		
92501802002	LR+8	SM 2450C-2011	575357		
92501802003	LR+9	SM 2450C-2011	575357		
92501802004	LR+10	SM 2450C-2011	575357		
92501802001	LR-1	EPA 9040C	575360		
92501802002	LR+8	EPA 9040C	575360		
92501802003	LR+9	EPA 9040C	575360		
92501802004	LR+10	EPA 9040C	575360		
92501802001	LR-1	SM 2320B-2011	576297		
92501802002	LR+8	SM 2320B-2011	576297		
92501802003	LR+9	SM 2320B-2011	576297		
92501802004	LR+10	SM 2320B-2011	576297		
92501802001	LR-1	EPA 300.0 Rev 2.1 1993	575544		
92501802002	LR+8	EPA 300.0 Rev 2.1 1993	575544		
92501802003	LR+9	EPA 300.0 Rev 2.1 1993	575544		
92501802004	LR+10	EPA 300.0 Rev 2.1 1993	575544		

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	= 5	-			T		12	11	5	9	00	7	6	Ø1	4	ω	2	100	ITEM#	Kaques	Phone:	Email:		Address	Company:	Section A
	ZAOTACZE: #OM	D# - DDE04 000				ADDITIONAL COMMENTS						-	:		LR+10	LR+9	LR+8	LR-1	SAMPLE ID Che Character per box. (A-Z, 0-9 i, -) Sample ids must be unique Tiesue	Requested Due Date: Standard TAT	64830	HIN			Y: Geomia Power Company	Section A Required Citert Information:
			1	<u> </u>	(Made	2	L								WT	WT	wr	wr	## ## ## ## ## ## ## ## ## ## ## ## ##	Project #:	Project Name:	Purchase Order#:			Report To: Be	Section B Required Project Information:
		2			8	Ę	⊩	╁╌	╁	╁	╁╌	╁	┢	╁	G	ດ ເ	<u>ດ</u>	G	SAMPLE TYPE (G=GRAB C=COMP)			1 #1			Ben Hodoes	로
					desig s	RELINGUISHED BY / AFFILATION			T						10:22:	652.7	220		D _A .		Branch Surface Water Sampling	SCS10382775			Q	ormation:
ſ	S D	SAMPL			hing well Ascadis	() AFFILATI			T						2012:38	912:30	12:25	01:21 01:20	START		e Water Sa	2775				
	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE			adi 5	NO.									10-22-2012:38 10/22/2020	12:30 10222020	10/22/2020	10/22/2020	COLLECTED END		Buldur	:				
	OF SAMPLE	ND SIGNA		2	62.20	DATE									į	١	١	í	TIME							
	ST.	忌		+		100	L	+	╄	╄	╄	+	┡	╄	+	-	┝	╄	# OF CONTAINERS		91 3	, ₂	<u>></u>	ଚ	≥	3 %
		339		ì	5	T M		╁	┿	┿	╀	+	╁	┿	╁	╁	⊢	╀╌	Unpreserved	1		Pace Quote:	Address:	3	Attention:	Section C Invoice in
	3/2				12.14	i		+	╁	+	╁┈	╅	t	1	╅╌	<u> </u>	十	T	H2SO4		Pace Profile #	6		1 61	ä	Section C Invoice information:
	d Tourling &	120		十	1									1					HNO3		* 3	5		9	Accounts Payable	
0	Serving Se				14	K			\perp	1	1_	Į.	╄	╄	_		-	╀	HNO3 Programmer Progra	H	9	ŧ		9		a
1					2			+	-	╄	+-	-	╀	┿	+	-	┝	╀	NaOH Stive			,		Po	ayab	
				ĺ	K	ACCE	1-	+	╁╌	+-	╫	╁┈	╁┈	╁	╁	╁	\vdash	╁	Methanol		III aaya.	į			ě	
	\			۔ ا		O STEED		+-	十	T	+	+	t		\top		L	士	Other	1,00	Na S	į		ompany		
	_			- `	H	1 2	F					_	_				Ļ		Analyses Test Y/N Appendix IV metals (cobalt		ball value handles in the second	3		₹		
		194		\	1/4	1		_	┸	丄	\perp	\bot	╄	1	×	<u>×</u> _	×	×	and cadmium only) Appendix III (B, Ca, Cl,	3	90	2	l			
) ATE	A S				1/3		╀		4	╄	4_	╄	╀	×	×	×	×	SO4, F, pH, TDS) Major lons (Mg, Na, K, Total	고 호	9.5	3	l	Н		
	DATE Signed:	155		Ì			8_	4	\bot	╄	 	+	╀	╀-	- <u> </u> ×	×	×	×	alkalinity, Bicarbonate	Requested Analysis Filtered	ŀ	§		Н	H	
	. .				1		H		╫	┿	┿	╁	╁	╁╴	╫	╁	╁	+		Ž				Ш		
	10.22.21	023	H	-	The state of		1	+	\top	+	十	T	t	十	十	†	t	+		lysis	Ì	1				
	2											I		I	Ţ	L		Ţ			4	╀	Ļ	Н	Ľ	i
	81		\sqcup	\dashv	<u> </u>			4	+	+	╄-	+	╀	┿	╀	+	╄	╀	 	NVA) pe		П		Н		
			ll		37	١,		+	+	+	╫	+	+	╫	+	╁╴	+	╁		3			Ī	ı		
			li		1			十		╅┈	+	+	╁	T	十	十	t	十		Ø	1		Į,	L		2
	TEMP in	_	П	T	10.0	3		上		1		l	Ţ		Ι.		I					2	Reg	L		Page :
			Щ	_	₽	-11		_			_	-	_		-	1		_	Residual Chlorine (Y/N)		g	3	U ATO			
	Receive Ice	d on			L	4							1		1					3	>	State / Location	Regulatory Agency			-
	(Y/N) Custody		 	\dashv	+		NAME CONDITIONS													1/2		3	MCY			
	Sealed Cooler				2	4	DITIO																			2
	(Y/N) Samples		H	\dashv	+	-	2				-					1						=	Line			
	intact (Y/N)				-	4											1									
	,,		ш					_						_	_				-		_	_		_		

Sample Condition Upon Receipt

Face Analytical Client Name:	GA PO	WEN	WO#:92501802
: courier: 🗌 Fed Ex 🔲 UPS 🗎 USPS 💋 Clier	I nt □ Commercial	Pace Other	PM: MP Due Date: 10/29/20 CLIENT: GA-ArcadAtl
racking #:	× -		
custody Seal on Cooler/Box Present: yes	no Seals	_	
acking Material: Bubble Wrap Bubble	Bags	Other Z	1Ploc
hermometer Used THE 214	Type of Ice:	Blue None	Samples on ice, cooling process has begun Date and Initials of person examining
Cooler Temperature 10.8	Biological Tissue	is Frozen: Yes Comments:	contents: LOW 10 22 20
Chain of Custody Present:	ØYes □No □N/A	1	
Chain of Custody Filled Out:	Ø¥es □No □N/A	2.	+
Chain of Custody Relinquished:	dres □No □N/A	3	
Sampler Name & Signature on COC:	ATes ONO ON/A	4.	
Samples Arrived within Hold Time:	ØYES □No □N/A	5.	
Short Hold Time Analysis (<72hr):	□Yes ØNe □N/A	6.	
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.Stando	and.
Sufficient Volume:	Ares □No □N/A	8.	
Correct Containers Used:	s □No □N/A	9.	
-Pace Containers Used:	Oves □No □N/A		
Containers Intact:	ÆYes □No □N/A	10.	
Filtered volume received for Dissolved tests	□Yes □No € N#	11,	
Sample Labels match COC:	Ores □No □N/	A 12.	99
-Includes date/time/ID/Analysis Matrix:	WT_		8
All containers needing preservation have been checked.	Gres □No □N//	A 13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	ØYES □NO □N/		Lot # of added
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No	Initial when completed	preservative
Samples checked for dechlorination:	□Yes □No ØM	× 14.	
Headspace in VOA Vials (>6mm):	□Yes □No 🕮	A 15.	
Trip Blank Present:	□Yes □No €N	/A 16.	
Trip Blank Custody Seals Present	□Yes □No €N	ÍA	
Pace Trip Blank Lot # (if purchased):		<u> </u>	
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Dat	te/Time:	
Comments/ Resolution:		7	
£2			
(8)			
		<u> </u>	
8			Date:
Project Manager Review:	<u> </u>		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

February 11, 2021

Kelley Sharpe ARCADIS - Atlanta 2839 Paces Ferry Rd STE 900 Atlanta, GA 30339

RE: Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Dear Kelley Sharpe:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maiya Parks maiya.parks@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Joju Abraham, Georgia Power-CCR Ben Hodges, Georgia Power Warren Johnson, ARCADIS - Atlanta

CERTIFICATIONS

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001

SAMPLE SUMMARY

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92520473001	LR-1	Water	02/04/21 12:30	02/04/21 15:40
92520473002	LR+8	Water	02/04/21 12:20	02/04/21 15:40
92520473003	LR+9	Water	02/04/21 12:05	02/04/21 15:40
92520473004	LR-9A	Water	02/04/21 12:15	02/04/21 15:40
92520473005	LR-10	Water	02/04/21 11:55	02/04/21 15:40

SAMPLE ANALYTE COUNT

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92520473001	LR-1	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92520473002	LR+8	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92520473003	LR+9	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92520473004	LR-9A	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92520473005	LR-10	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A

PASI-A = Pace Analytical Services - Asheville

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Sample: LR-1	Lab ID: 9252	20473001	Collected: 02/04/2	1 12:30	Received: 02	/04/21 15:40 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	thod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Potassium	2.3	mg/L	0.20	1	02/05/21 11:58	02/08/21 18:14	7440-09-7	
Sodium	4.5	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:14	7440-23-5	
Calcium	4.8	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:14	7440-70-2	
Magnesium	2.2	mg/L	0.050	1	02/05/21 11:58	02/08/21 18:14	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	02/10/21 10:04	02/10/21 13:54	7440-42-8	
Cadmium	ND	mg/L	0.00012	1	02/10/21 10:04	02/10/21 13:54	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	02/10/21 10:04	02/10/21 13:54	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	0C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	70.0	mg/L	10.0	1		02/09/21 15:03		
2320B Alkalinity	Analytical Meth	od: SM 232	0B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	25.8	mg/L	5.0	1		02/10/21 14:12		
Alkalinity, Total as CaCO3	25.8	mg/L	5.0	1		02/10/21 14:12		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
-	Pace Analytical	Services -	Asheville					
Chloride	3.7	mg/L	1.0	1		02/06/21 03:56	16887-00-6	
Fluoride	ND	mg/L	0.10	1		02/06/21 03:56	16984-48-8	
Sulfate	2.8	mg/L	1.0	1		02/06/21 03:56		

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Sample: LR+8	Lab ID: 9252	20473002	Collected: 02/04/2	21 12:20	Received: 02	2/04/21 15:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	ethod: E	PA 3010A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Potassium	2.5	mg/L	0.20	1	02/05/21 11:58	02/08/21 18:44	7440-09-7	
Sodium	4.4	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:44	7440-23-5	
Calcium	4.7	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:44	7440-70-2	
Magnesium	2.1	mg/L	0.050	1	02/05/21 11:58	02/08/21 18:44	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	02/10/21 10:04	02/10/21 14:17	7440-42-8	
Cadmium	ND	mg/L	0.00012	1	02/10/21 10:04	02/10/21 14:17	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	02/10/21 10:04	02/10/21 14:17	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	50C-2011					
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Total Dissolved Solids	52.0	mg/L	10.0	1		02/09/21 15:04		
2320B Alkalinity	Analytical Meth	od: SM 232	20B-2011					
•	Pace Analytica	l Services -	Asheville					
Alkalinity, Bicarbonate (CaCO3)	24.3	mg/L	5.0	1		02/10/21 14:19		
Alkalinity, Total as CaCO3	24.3	mg/L	5.0	1		02/10/21 14:19		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
•	Pace Analytica	l Services -	Asheville					
Chloride	3.8	mg/L	1.0	1		02/06/21 04:11	16887-00-6	
Fluoride	ND	mg/L	0.10	1		02/06/21 04:11		
Sulfate	3.2	mg/L	1.0	1		02/06/21 04:11		

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Sample: LR+9	Lab ID: 9252	20473003	Collected: 02/04/2	1 12:05	Received: 02	/04/21 15:40 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	thod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Potassium	2.5	mg/L	0.20	1	02/05/21 11:58	02/08/21 18:49	7440-09-7	
Sodium	4.4	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:49	7440-23-5	
Calcium	4.6	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:49	7440-70-2	
Magnesium	2.1	mg/L	0.050	1	02/05/21 11:58	02/08/21 18:49	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	02/10/21 10:04	02/10/21 14:23	7440-42-8	
Cadmium	ND	mg/L	0.00012	1	02/10/21 10:04	02/10/21 14:23	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	02/10/21 10:04	02/10/21 14:23	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	0C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	76.0	mg/L	10.0	1		02/09/21 15:04		
2320B Alkalinity	Analytical Meth	od: SM 232	0B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	24.2	mg/L	5.0	1		02/10/21 14:26		
Alkalinity, Total as CaCO3	24.2	mg/L	5.0	1		02/10/21 14:26		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
-	Pace Analytical	Services -	Asheville					
Chloride	3.8	mg/L	1.0	1		02/06/21 04:25	16887-00-6	
Fluoride	ND	mg/L	0.10	1		02/06/21 04:25	16984-48-8	
Sulfate	3.2	mg/L	1.0	1		02/06/21 04:25		

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Sample: LR-9A	Lab ID: 9252	20473004	Collected: 02/04/2	1 12:15	Received: 02	2/04/21 15:40 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	thod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Potassium	2.5	mg/L	0.20	1	02/05/21 11:58	02/08/21 18:53	7440-09-7	
Sodium	4.4	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:53	7440-23-5	
Calcium	4.8	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:53	7440-70-2	
Magnesium	2.2	mg/L	0.050	1	02/05/21 11:58	02/08/21 18:53	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	02/10/21 10:04	02/10/21 14:29	7440-42-8	
Cadmium	ND	mg/L	0.00012	1	02/10/21 10:04	02/10/21 14:29	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	02/10/21 10:04	02/10/21 14:29	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	0C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	59.0	mg/L	10.0	1		02/09/21 15:05		
2320B Alkalinity	Analytical Meth	od: SM 232	0B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	24.9	mg/L	5.0	1		02/10/21 14:33		
Alkalinity, Total as CaCO3	24.9	mg/L	5.0	1		02/10/21 14:33		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
•	Pace Analytical	Services -	Asheville					
Chloride	3.7	mg/L	1.0	1		02/06/21 04:40	16887-00-6	
Fluoride	ND	mg/L	0.10	1		02/06/21 04:40	16984-48-8	
Sulfate	3.4	mg/L	1.0	1		02/06/21 04:40		

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Sample: LR-10	Lab ID: 9252	20473005	Collected: 02/04/2	1 11:55	Received: 02	/04/21 15:40 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	thod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Potassium	2.6	mg/L	0.20	1	02/05/21 11:58	02/08/21 18:58	7440-09-7	
Sodium	4.7	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:58	7440-23-5	
Calcium	4.6	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:58	7440-70-2	
Magnesium	2.0	mg/L	0.050	1	02/05/21 11:58	02/08/21 18:58	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	02/10/21 10:04	02/10/21 14:34	7440-42-8	
Cadmium	ND	mg/L	0.00012	1	02/10/21 10:04	02/10/21 14:34	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	02/10/21 10:04	02/10/21 14:34	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	0C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	49.0	mg/L	10.0	1		02/09/21 15:05		
2320B Alkalinity	Analytical Meth	od: SM 232	0B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	24.6	mg/L	5.0	1		02/10/21 14:53		
Alkalinity, Total as CaCO3	24.6	mg/L	5.0	1		02/10/21 14:53		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
-	Pace Analytical	Services -	Asheville					
Chloride	4.3	mg/L	1.0	1		02/06/21 04:54	16887-00-6	
Fluoride	ND	mg/L	0.10	1		02/06/21 04:54	16984-48-8	
Sulfate	3.3	mg/L	1.0	1		02/06/21 04:54		

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

QC Batch: 598003 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

METHOD BLANK: 3153305 Matrix: Water

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Calcium	mg/L	ND	1.0	02/08/21 17:59	
Magnesium	mg/L	ND	0.050	02/08/21 17:59	
Potassium	mg/L	ND	0.20	02/08/21 17:59	
Sodium	mg/L	ND	1.0	02/08/21 17:59	

LABORATORY CONTROL SAMPLE:	3133306	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Calcium	mg/L		.99J	99	80-120	
Magnesium	mg/L	1	1.0	100	80-120	
Potassium	mg/L	1	0.94	94	80-120	
Sodium	mg/L	1	1.0	101	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	CATE: 3153	307		3153308							
			MS	MSD								
	9	2520473001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	4.8	1	1	6.0	5.9	116	104	75-125	2	20	
Magnesium	mg/L	2.2	1	1	3.3	3.2	110	103	75-125	2	20	
Potassium	mg/L	2.3	1	1	3.4	3.3	109	102	75-125	2	20	
Sodium	mg/L	4.5	1	1	5.7	5.6	121	109	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

QC Batch: 598953 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

METHOD BLANK: 3157542 Matrix: Water

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Boron	mg/L	ND	0.040	02/10/21 13:43	
Cadmium	mg/L	ND	0.00012	02/10/21 13:43	
Cobalt	ma/L	ND	0.0050	02/10/21 13:43	

LABORATORY CONTROL SAMPLE: 3157543

Date: 02/11/2021 03:50 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	mg/L		1.1	105	80-120	
Cadmium	mg/L	0.1	0.10	100	80-120	
Cobalt	mg/L	0.1	0.096	96	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3157	544		3157545							
			MS	MSD								
		92520473001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	mg/L	ND	1	1	0.99	0.97	97	95	75-125	2	20	_
Cadmium	mg/L	ND	0.1	0.1	0.097	0.099	97	99	75-125	2	20	
Cobalt	mg/L	ND	0.1	0.1	0.094	0.096	94	95	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

QC Batch: 598669 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

METHOD BLANK: 3156226 Matrix: Water

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 02/09/21 15:02

LABORATORY CONTROL SAMPLE: 3156227

Spike LCS LCS % Rec Result Conc. % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 400 401 100 84-108 mg/L

SAMPLE DUPLICATE: 3156760

92520473001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 70.0 **Total Dissolved Solids** 7 mg/L 65.0 10

SAMPLE DUPLICATE: 3156765

Date: 02/11/2021 03:50 PM

92520915002 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 145 mg/L 151 4 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

QC Batch: 599004 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

METHOD BLANK: 3157872 Matrix: Water

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Alkalinity, Total as CaCO3 mg/L ND 5.0 02/10/21 13:15 Alkalinity, Bicarbonate (CaCO3) mg/L ND 5.0 02/10/21 13:15

LABORATORY CONTROL SAMPLE: 3157873

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 51.6 103 80-120 mg/L 50

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3157876 3157877

MS MSD 92519331003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 mg/L ND 50 50 56.7 56.4 106 105 80-120 25

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3157975 3157976

MS MSD 92520337004 MS MSD MS MSD Spike Spike % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 ND 50 50 50.1 50.1 100 100 80-120 0 25 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

QC Batch: 597982 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

> Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: $92520473001,\,92520473002,\,92520473003,\,92520473004,\,92520473005$

METHOD BLANK: 3153152 Matrix: Water

Associated Lab Samples: $92520473001,\,92520473002,\,92520473003,\,92520473004,\,92520473005$

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	02/06/21 01:47	
Fluoride	mg/L	ND	0.10	02/06/21 01:47	
Sulfate	mg/L	ND	1.0	02/06/21 01:47	

LADORATORT CONTINUE CAMILLE.	0100100	
		Sniko

LABORATORY CONTROL SAMPLE: 3153153

Date: 02/11/2021 03:50 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	50	52.2	104	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	50	54.8	110	90-110	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3153		3153155								
Parameter	Units	92520465002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	ND	50	50	52.4	53.0	104	106	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.5	2.6	100	102	90-110	2	10	
Sulfate	ma/l	ND	50	50	52.2	53.0	103	105	90-110	2	10	

MATRIX SPIKE & MATRIX S	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3153156 3153157												
Parameter	Units	92519913001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual	
Chloride	mg/L	7.2	50	50	59.8	60.5	105	106	90-110	1	10		
Fluoride	mg/L	0.58	2.5	2.5	3.2	3.1	103	102	90-110	1	10		
Sulfate	mg/L	23.0	50	50	73.7	74.0	101	102	90-110	0	10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 02/11/2021 03:50 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92520473001	 LR-1	EPA 3010A	598003	EPA 6010D	 598100
92520473002	LR+8	EPA 3010A	598003	EPA 6010D	598100
92520473003	LR+9	EPA 3010A	598003	EPA 6010D	598100
92520473004	LR-9A	EPA 3010A	598003	EPA 6010D	598100
92520473005	LR-10	EPA 3010A	598003	EPA 6010D	598100
92520473001	LR-1	EPA 3005A	598953	EPA 6020B	599040
92520473002	LR+8	EPA 3005A	598953	EPA 6020B	599040
92520473003	LR+9	EPA 3005A	598953	EPA 6020B	599040
92520473004	LR-9A	EPA 3005A	598953	EPA 6020B	599040
92520473005	LR-10	EPA 3005A	598953	EPA 6020B	599040
92520473001	LR-1	SM 2450C-2011	598669		
92520473002	LR+8	SM 2450C-2011	598669		
92520473003	LR+9	SM 2450C-2011	598669		
92520473004	LR-9A	SM 2450C-2011	598669		
92520473005	LR-10	SM 2450C-2011	598669		
92520473001	LR-1	SM 2320B-2011	599004		
92520473002	LR+8	SM 2320B-2011	599004		
92520473003	LR+9	SM 2320B-2011	599004		
92520473004	LR-9A	SM 2320B-2011	599004		
92520473005	LR-10	SM 2320B-2011	599004		
92520473001	LR-1	EPA 300.0 Rev 2.1 1993	597982		
92520473002	LR+8	EPA 300.0 Rev 2.1 1993	597982		
92520473003	LR+9	EPA 300.0 Rev 2.1 1993	597982		
92520473004	LR-9A	EPA 300.0 Rev 2.1 1993	597982		
92520473005	LR-10	EPA 300.0 Rev 2.1 1993	597982		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

			A Service	2		ō		00	7	COMMITTEE OF THE PERSON NAMED IN	5 LR-10	LR-9A	3 LR+9	LR+8	LR-1	ITEM#		decough true trains.	one:	all: warren, or	ortess:	mpany:
	WO#:92520473		ADDITIONAL COMMENTS								10	9A	Ď	Č	-	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique		ed Parc.	678 H85-5298 Fax	warren, o nson@arcadis.com	2839 Paces Ferry Rd SE	ARCADIS - Atlanta
	0473															Ornolog Water DWO Water WT0 Waster Water WWO Product SLD Solf-Sold SLD OND WP0 WP0 AFD OtherD OTD Tissue 13	MATRIX D COI	Intoject #.	Project Name:	Purchas	Сору	Report To:
		Vack	RE	L		0.000			4		T.W	TW	WT	TW	TW	MATRIX CODE (see valid code		{ [*]	Name:	Purchase Order #:		
		1	S S									1000 J	,,,,,		1000	SAMPLE TYPE (G-GRAB C	СОМР)	11	Pa	7		Ten_
		1	RELINQUISHED BY / AFFILIATION								5.42	Rha	242	243	24.4	DATE		П	nt Brai			Warren Johnson
	9	P. 6.	N N	_			100			-	_		_	-	-	START		Ш	navc		1	š
φ 3	AMPI	1	FILA	ı						-	3211	1215	1205	020	23	TIME	ဋ	Ш	CR-A	×4	Т	П
PRINT Name of SAMPLER:	SAMPLER NAME AND SKONATURE	1	2	H			_			f	7	-	1		0	DATE	COLLECTED	Ш	Plant Branch/CCR-Ash Pond Closure		۱	П
TRE of	¥		100	L					_	_	-1	1	1	+	1	H Z	Ö	П	Closu			П
S AN	8	24.21	DATE								1	'	,	1	,	TIME		Ш	ē		1	П
	NA I	12	#	H		-		-		\dashv						SAMPLE TEMP AT COLLECTION	N N	11				П
	2	2	5350					\Box	\neg	\neg						# OF CONTAINERS		1 1	N N	P	इ ह	a
127	900	15.40	1													Unpreserved		Face Frome #:	Pace Project Manager:	Pace Quote:	Company Name:	Attention:
22		10				100								2 11		H2SO4			ject N	ě	Nan	
10	100	B	(C)(9C							_						HNO3	Preservatives	ш	3		18	П
021		1						\sqcup	_	_			_			HCI	Serv	12/69	ger:			П
	503	1		<u> </u>		-	_	\vdash	-	-	_		_	_		NaOH	ativ	١١	1 1	1		П
2		10	ACCEP	<u> </u>			_	\rightarrow	-	+	_	_			_	Na2S2O3	S.	П	mal a.			Н
Sal	(69)	02	B	H			_	-	\dashv	\dashv				-	-	Methanol Other		П	R			П
(100	1.8	N S	⊢				-		_	_			_	-	Analyses Test	Y/N	80	8			Н
7 1		1	PTED BY / AFFILIATION	\vdash					\neg	7	×	×	×	×	×	Alkalinity (Total/Bicarb), CI,		ш	.partugpacelabs.com			П
2	200	1	OEL					\dashv		٦,	×	×	×	×	×	App. III Metals + Mg, Na, K		111	S.00			П
DATE Signed:	50	18	100							7	×	×	×	×	×	TDS		Requested Anal	3		П	П
	200	4	30																П			П
-					3					\Box												П
4	CERT	10	网																П			Н
t	95	1	DATE																Ц	4	┸	Ш
4.200			200															Filtered Y/N	Ш	11	1	
9	100	1540	100					\Box									_	3	П	М	ı.	
	588	40	i ii	_		_	_	\dashv	_	_	-	_					_	M	П	ч	ı.	
	200		963	\vdash	\vdash			\dashv	-	+	_		-					ш	2	,		
TEMP in C		11.7		E		_			_	_				_		Residual Chlorine (Y/N)	TO BE		State /	Megalian		
Received o	on	×	SAMP	Г						٦					V7		1	S A	State / Location	Service Services		
(Y/N) Custody	+		LE CO														100	4	Hon	and I		
Sealed⊡ Cooler⊡			SAMPLE CONDITIONS																NEWS			
(Y/N) Samples			200														PARTY.	1				
ntact		1	1000	ı	ΙÍ				- 1						1		11/3	ш.	100		1	

Pace Analytical*

Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020

Page 1 of 2 Issuing Authority: Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden Greenwood	Huntersville Ral	aleigh Mechanicsville Atlanta Kernersville
Sample Condition Client Name:		Project #: WO#: 92520473
Courier: Fed Ex UPS Commercial Pace	Other:	PM: MP Due Date: 02/11/21 CLIENT: GA-ArcadAti
Custody Seal Present? Yes Avo Seal:	i Intact? Yes	No Date/Initials Person Examining Contents: 2/4/2/ KIEW
Packing Material: Bubble Wrap Bu Thermometer: HR Gun ID: HBB 14 Correction Factor Add/Subtract (*	Type of Ice:	Temp should be above freezing to 6°C Biological Tissue Frozen? □Yes □N/A □N/A N/A
Cooler Temp Corrected (°C): //- USDA Regulated Soil (N/A, water sample)		Samples out of temp criteria. Samples on ice, cooling process has begun
Did samples originate in a quarantine zone within the Uni Yes No	ted States: CA, NY, or SC (check	including Hawaii and Puerto Rico)? Yes No
		Comments/Discrepancy:
Chain of Custody Present?		A 1.
Samples Arrived within Hold Time?	Zeres □No □N/A	'A 2.
Short Hold Time Analysis (<72 hr.)?	Yes 4 ☐N/A	'A 3.
Rush Turn Around Time Requested?	☐Yes ☐Mo ☐N/A	/A 4.
Sufficient Volume?	☐Yes □No □N/A	/A 5.
Correct Containers Used? -Pace Containers Used?	#es □No □N/A ##es □No □N/A	
Containers Intact?	✓ Yes □No □N/A	/A 7.
Dissolved analysis: Samples Field Filtered?	□Yes □No ←□N/A	A 8.
Sample Labels Match COC?	ØYes □No □N/A	/A 9.
-Includes Date/Time/ID/Analysis Matrix:	W7	
Headspace in VOA Vials (>5-6mm)?	□Yes □No ☐N/A	
Trip Blank Present?	∐Yes □No ZN/A	
Trip Blank Custody Seals Present? COMMENTS/SAMPLE DISCREPANCY	□Yes □NO ☐NTA	Field Data Required? Yes No
		Lot ID of split containers:
CLIENT NOTIFICATION/RESOLUTION		
Person contacted:	Date	te/Time:
Project Manager SCURF Review:		Date:
Project Manager SRF Review:		Date:

COMMONWEALTH of VIRGINIA

Department of General Services

Division of Consolidated Laboratory Services

600 North 5th Street Richmond, Virginia 23219-3691 (804) 648-4480 FAX (804) 692-0416

06/10/2020

Craig Tronzo
Pace Analytical Services, LLC- Asheville NC
2225 Riverside Drive
Asheville NC 28804

VELAP ID: 460222

Dear Craig Tronzo:

The Division of Consolidated Laboratory Services (DCLS) has accredited Pace Analytical Services, LLC - Asheville NC pursuant to the provisions of 1VAC30-46 and The NELAC Institute (TNI) 2009 Standard. Certificate number 10807 and the corresponding Scope of Accreditation are enclosed. This certificate expires 06/14/2021. The certificate must be conspicuously displayed in the laboratory along with the associated Scope of Accreditation.

Please note that your laboratory is required to notify the Virginia Environmental Laboratory Accreditation Program (VELAP) in writing of any changes in key accreditation criteria within 30 calendar days of the change per 1VAC30-46-90 A. This requirement includes changes in ownership, location, key personnel, and major instrumentation.

To maintain accreditation, the laboratory must continue to comply with 1VAC30-46. This includes ongoing satisfactory proficiency testing. The method checklists used by VELAP in the on-site assessment process are available upon request as a supplement to internal audits.

Please direct all correspondences and questions regarding accreditation to your laboratory's lead assessor, Ila Meyer-Fritzsche, at ila.meyer-fritzsche@dgs.virginia.gov or (804) 648-4480 x306.

Sincerely yours,

Cathy Westerman Manager, Laboratory Certification Program

Enclosures cc: Felicia Grogan

COMMONWEALTH OF VIRGINIA DEPARTMENT OF GENERAL SERVICES DIVISION OF CONSOLIDATED LABORATORY SERVICES

Certifies that

VA Laboratory ID#: 460222
Pace Analytical Services, LLC - Asheville NC

2225 Riverside Drive Asheville, NC 28804

Owner: PAS PARENT, LLC

Operator: PACE ANALYTICAL SERVICES, LLC Responsible Official: FELICIA GROGAN

Having met the requirements of 1 VAC 30-46 and having been found compliant with the 2009 TNI Standard approved by The NELAC Institute is hereby approved as an

Accredited Environmental Laboratory

As more fully described in the attached Scope of Accreditation

Effective Date: June 15, 2020
Expiration Date: June 14, 2021
Certificate # 10807

Continued accreditation status depends on successful ongoing participation in the program. Certificate to be conspicuously displayed at the laboratory.

Not valid unless accompanied by a valid Virginia Environmental Laboratory Accreditation Program (VELAP) Scope of Accreditation.

Customers are urged to verify the laboratory's current accreditation status.

Denise M. Toney, Ph.D., HCLD DGS Deputy Director for Laboratories

Surrender Upon Revocation

Department of General Services
Division of Consolidated Laboratory Services

Scope of Accreditation

VELAP Certificate No.: 10807

Pace Analytical Services, LLC - Asheville NC 2225 Riverside Drive Asheville, NC 28804

Virginia Laboratory ID: 460222 Effective Date: June 15, 2020 Expiration Date: June 14, 2021

DRINKING WATER

METHOD	ANALYTE	PRIMARY	METHOD	ANALYTE	PRIMARY
EPA 200.8 REV 5.4	COPPER	VA	EPA 200.8 REV 5.4	LEAD	VA
EPA 353 2 REV 2 (AS LACHAT 10-107-04-1 A + C)	NITRATE AS N	VA	EPA 353 2 REV 2 (AS LACHAT 10-107-04-1-A)	NITRITE AS N	VA
SM 2320 B-2011	ALKALINITY AS CACO3	VA	SM 9223 COLISURE®	ESCHERICHIA COLI	VA
SM 9223 COLISURE®	TOTAL COLIFORMS	VA			

NON-POTABLE WATER

METHOD	ANALYTE	PRIMARY	METHOD	ANALYTE	PRIMARY
EPA 1010	FLASHPOINT	VA	EPA 120.1	CONDUCTIVITY	VA
EPA 160.4	RESIDUE-VOLATILE	VA	EPA 1631 E	MERCURY	VA
EPA 180.1 REV 2	TURBIDITY	VA	EPA 200.7 REV 4.4	ALUMINUM	VA
EPA 200.7 REV 4.4	ANTIMONY	VA	EPA 200.7 REV 4.4	ARSENIC	VA
EPA 200.7 REV 4.4	BARIUM	VA	EPA 200.7 REV 4.4	BERYLLIUM	VA
EPA 200.7 REV 4.4	BORON	VA	EPA 200.7 REV 4.4	CADMIUM	VA
EPA 200.7 REV 4.4	CALCIUM	VA	EPA 200.7 REV 4.4	CHROMIUM	VA
EPA 200.7 REV 4.4	COBALT	VA	EPA 200.7 REV 4.4	COPPER	VA
EPA 200.7 REV 4.4	IRON	VA	EPA 200.7 REV 4.4	LEAD	VA
EPA 200.7 REV 4.4	MAGNESIUM	VA	EPA 200.7 REV 4.4	MANGANESE	VA
EPA 200.7 REV 4.4	MOLYBDENUM	VA	EPA 200.7 REV 4.4	NICKEL	VA
EPA 200.7 REV 4.4	POTASSIUM	VA	EPA 200.7 REV 4.4	SELENIUM	VA
EPA 200 7 REV 4 4	SILICA AS SIO2	VA	EPA 200.7 REV 4.4	SILVER	VA
EPA 200.7 REV 4.4	SODIUM	VA	EPA 200.7 REV 4.4	THALLIUM	VA
EPA 200.7 REV 4.4	TIN	VA	EPA 200.7 REV 4.4	TITANIUM	VA
EPA 200.7 REV 4.4	VANADIUM	VA	EPA 200.7 REV 4.4	ZINC	VA
EPA 200.8 REV 5.4	ALUMINUM	VA	EPA 200.8 REV 5.4	ANTIMONY	VA
EPA 200.8 REV 5.4	ARSENIC	VA	EPA 200.8 REV 5.4	BARIUM	VA
EPA 200.8 REV 5.4	BERYLLIUM	VA	EPA 200.8 REV 5.4	CADMIUM	VA
EPA 200.8 REV 5.4	CHROMIUM	VA	EPA 200.8 REV 5.4	COBALT	VA
EPA 200.8 REV 5.4	COPPER	VA	EPA 200.8 REV 5.4	LEAD	VA
EPA 200.8 REV 5.4	MANGANESE	VA	EPA 200.8 REV 5.4	MOLYBDENUM	VA
EPA 200.8 REV 5.4	NICKEL	VA	EPA 200.8 REV 5.4	SELENIUM	VA
EPA 200 8 REV 5.4	SILVER	VA	EPA 200 8 REV 5.4	THALLIUM	VA
EPA 200 8 REV 5.4	VANADIUM	VA	EPA 200.8 REV 5.4	ZINC	VA
EPA 200.8 REV 5.4 - EXTENDED	BORON	VA	EPA 200.8 REV 5.4 - EXTENDED	CALCIUM	VA
EPA 200.8 REV 5.4 - EXTENDED	IRON	VA	EPA 200.8 REV 5.4 - EXTENDED	MAGNESIUM	VA
EPA 200.8 REV 5.4 - EXTENDED	POTASSIUM	VA	EPA 200.8 REV 5.4 - EXTENDED	SODIUM	VA

Department of General Services
Division of Consolidated Laboratory Services

Scope of Accreditation

VELAP Certificate No.: 10807

Pace Analytical Services, LLC - Asheville NC 2225 Riverside Drive Asheville, NC 28804

Virginia Laboratory ID: 460222 Effective Date: June 15, 2020 Expiration Date: June 14, 2021

NON-POTABLE WATER

METHOD EPA 200.8 REV 5.4 - EXTENDED	ANALYTE TIN	PRIMARY VA	METHOD EPA 200,8 REV 5,4 - EXTENDED	ANALYTE TITANIUM	PRIMARY VA
EPA 218.6 REV 3.3	CHROMIUM VI	VA	EPA 245.1 REV 3	MERCURY	VA
EPA 300.0 REV 2.1	BROMIDE	VA	EPA 300.0 REV 2.1	CHLORIDE	VA
EPA 300.0 REV 2.1	FLUORIDE	VA	EPA 300.0 REV 2.1	NITRATE AS N	VA
EPA 300.0 REV 2.1	NITRATE/NITRITE	VA	EPA 300.0 REV 2.1	NITRITE AS N	VA
EPA 300.0 REV 2.1	ORTHOPHOSPHATE AS P	VA	EPA 300.0 REV 2.1	SULFATE	VA
EPA 3005 A	PREP: ACID DIGESTION OF WATERS FOR TOTAL RECOVERABLE OR DISSOLVED METALS	VA	EPA 3010 A	PREP: ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TOTAL METALS	VA
EPA 350.1 REV 2	AMMONIA AS N	VA	EPA 351,2 REV 2 (AS LACHAT 10-107-06-2-D)	KJELDAHL NITROGEN - TOTAL (TKN)	VA
EPA 353.2 REV 2 (AS LACHAT 10-107-04-1 A + C)	NITRATE AS N	VA	EPA 353 2 REV 2 (AS LACHAT 10-107-04-1-A)	NITRATE/NITRITE	VA
EPA 353.2 REV 2 (AS LACHAT 10-107-04-1-A)	NITRITE AS N	VA	EPA 365.1 REV 2 (AS LACHAT 10-115-01-1-E)	PHOSPHORUS, TOTAL	VA
EPA 420.4 REV 1 (AS LACHAT 10-210-00-1-X)	TOTAL PHENOLICS	VA	EPA 6010 D	ALUMINUM	VA
EPA 6010 D	ANTIMONY	VA	EPA 6010 D	ARSENIC	VA
EPA 6010 D	BARIUM	VA	EPA 6010 D	BERYLLIUM	VA
EPA 6010 D	BORON	VA	EPA 6010 D	CADMIUM	VA
EPA 6010 D	CALCIUM	VA	EPA 6010 D	CHROMIUM	VA
EPA 6010 D	COBALT	VA	EPA 6010 D	COPPER	VA
EPA 6010 D	IRON	VA	EPA 6010 D	LEAD	VA
EPA 6010 D	LITHIUM	VA	EPA 6010 D	MAGNESIUM	VA
EPA 6010 D	MANGANESE	VA	EPA 6010 D	MOLYBDENUM	VA
EPA 6010 D	NICKEL	VA	EPA 6010 D	POTASSIUM	VA
EPA 6010 D	SELENIUM	VA	EPA 6010 D	SILICA AS SIO2	VA
EPA 6010 D	SILVER	VA	EPA 6010 D	SODIUM	VA
EPA 6010 D	STRONTIUM	VA	EPA 6010 D	THALLIUM	VA
EPA 6010 D	TIN	VA	EPA 6010 D	TITANIUM	VA
EPA 6010 D	VANADIUM	VA	EPA 6010 D	ZINC	VA
EPA 6010 D - EXTENDED	SILICON	VA	EPA 6020 B	ALUMINUM	VA
EPA 6020 B	ANTIMONY	VA	EPA 6020 B	ARSENIC	VA
EPA 6020 B	BARIUM	VA	EPA 6020 B	BERYLLIUM	VA
EPA 6020 B	CADMIUM	VA	EPA 6020 B	CALCIUM	VA
EPA 6020 B	CHROMIUM	VA	EPA 6020 B	COBALT	VA
EPA 6020 B	COPPER	VA	EPA 6020 B	IRON	VA
EPA 6020 B	LEAD	VA	EPA 6020 B	MAGNESIUM	VA
EPA 6020 B	MANGANESE	VA	EPA 6020 B	MOLYBDENUM	VA

Department of General Services
Division of Consolidated Laboratory Services

Scope of Accreditation

VELAP Certificate No.: 10807

Pace Analytical Services, LLC - Asheville NC 2225 Riverside Drive Asheville, NC 28804


Virginia Laboratory ID: 460222 Effective Date: June 15, 2020 Expiration Date: June 14, 2021

NON-POTABLE WATER

METHOD	ANALYTE	PRIMARY	METHOD	ANALYTE	PRIMARY
EPA 6020 B	NICKEL	VA	EPA 6020 B	POTASSIUM	VA
EPA 6020 B	SELENIUM	VA	EPA 6020 B	SILVER	VA
EPA 6020 B	SODIUM	VA	EPA 6020 B	THALLIUM	VA
EPA 6020 B	TIN	VA	EPA 6020 B	VANADIUM	VA
EPA 6020 B	ZINC	VA	EPA 6020 B - EXTENDED	BISMUTH	VA
EPA 6020 B - EXTENDED	BORON	VA	EPA 6020 B - EXTENDED	LITHIUM	VA
EPA 6020 B - EXTENDED	STRONTIUM	VA	EPA 6020 B - EXTENDED	TITANIUM	VA
EPA 6020 B - EXTENDED	URANIUM	VA	EPA 7196 A	CHROMIUM VI	VA
EPA 7470 A	MERCURY	VA	EPA 9010 C	PREP: CYANIDE DISTILLATION	VA
EPA 9012 B	TOTAL CYANIDE	VA	EPA 9040 C	PH	VA
EPA 9056 A	BROMIDE	VA	EPA 9056 A	CHLORIDE	VA
EPA 9056 A	FLUORIDE	VA	EPA 9056 A	NITRATE AS N	VA
EPA 9056 A	NITRITE AS N	VA	EPA 9056 A	ORTHOPHOSPHATE AS P	VA
EPA 9056 A	SULFATE	VA	EPA 9056 A - EXTENDED	NITRATE/NITRITE	VA
EPA 9060 A	TOTAL ORGANIC CARBON (TOC)	VA	EPA 9095 B	FREE LIQUID	VA
LACHAT QUIKCHEM 10-204-00-1-X	CYANIDE	VA	SM 2320 B-2011	ALKALINITY AS CACO3	VA
SM 2340 B-2011	TOTAL HARDNESS AS CACO3	VA	SM 2540 B-2011	RESIDUE-TOTAL (TS)	VA
SM 2540 C-2011	RESIDUE-FILTERABLE (TDS)	VA	SM 2540 D-2011	RESIDUE-NONFILTERABLE (TSS)	VA
SM 2540 F-2011	RESIDUE-SETTLEABLE	VA	SM 3500-CR B-2011	CHROMIUM VI	VA
SM 4500-CL E-2011	CHLORIDE	VA	SM 4500-CN E-2011	CYANIDE	VA
SM 4500-P E-2011	ORTHOPHOSPHATE AS P	VA	SM 4500-S2 D-2011	SULFIDE	VA
SM 5210 B-2011	BIOCHEMICAL OXYGEN DEMAND (BOD)	VA	SM 5210 B-2011	CARBONACEOUS BOD (CBOD)	VA
SM 5220 D-2011	CHEMICAL OXYGEN DEMAND (COL	D) VA	SM 5310 B-2011	TOTAL ORGANIC CARBON (TOC)	VA

SOLID AND CHEMICAL MATERIALS

METHOD	ANALYTE	PRIMARY	METHOD	ANALYTE	PRIMARY
EPA 1010 A	FLASHPOINT	VA	EPA 1311	PREP: TOXICITY CHARACTERISTIC LEACHING PROCEDURE	VA
EPA 1312	PREP: SYNTHETIC PRECIPITATION LEACHING PROCEDURE	VA	EPA 3010 A	PREP: ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TOTAL METALS	VA
EPA 3050 B	PREP: ACID DIGESTION OF SEDIMENTS, SLUDGES, AND SOILS	VA S	EPA 6010 D	ALUMINUM	VA
EPA 6010 D	ANTIMONY	VA	EPA 6010 D	ARSENIC	VA
EPA 6010 D	BARIUM	VA	EPA 6010 D	BERYLLIUM	VA
EPA 6010 D	BORON	VA	EPA 6010 D	CADMIUM	VA
EPA 6010 D	CALCIUM	VA	EPA 6010 D	CHROMIUM	VA
EPA 6010 D	COBALT	VA	EPA 6010 D	COPPER	VA
EPA 6010 D	IRON	VA	EPA 6010 D	LEAD	VA

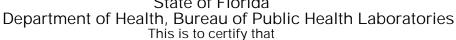
Department of General Services
Division of Consolidated Laboratory Services

Scope of Accreditation

VELAP Certificate No.: 10807

Pace Analytical Services, LLC - Asheville NC 2225 Riverside Drive Asheville, NC 28804

Virginia Laboratory ID: 460222 Effective Date: June 15, 2020 Expiration Date: June 14, 2021


SOLID AND CHEMICAL MATERIALS

METHOD EPA 6010 D	ANALYTE MAGNESIUM	PRIMARY VA
EPA 6010 D	MOLYBDENUM	VA
EPA 6010 D	POTASSIUM	VA
EPA 6010 D	SILVER	VA
EPA 6010 D	STRONTIUM	VA
EPA 6010 D	TITANIUM	VA
EPA 6010 D	ZINC	VA
EPA 7471 B	MERCURY	VA
EPA 9060	TOTAL ORGANIC CARBON (TOC)	VA
EPA 9065	TOTAL PHENOLICS	VA

METHOD EPA 6010 D	ANALYTE MANGANESE	PRIMARY VA
EPA 6010 D	NICKEL	VA
EPA 6010 D	SELENIUM	VA
EPA 6010 D	SODIUM	VA
EPA 6010 D	THALLIUM	VA
EPA 6010 D	VANADIUM	VA
EPA 6010 D - EXTENDED	SILICON	VA
EPA 9045 D	PH	VA
EPA 9060 A	TOTAL ORGANIC CARBON (TOC)	VA
EPA 9095 B	FREE LIQUID	VA

E87315

PACE ANALYTICAL SERVICES, LLC- ATLANTA GA 110 TECHNOLOGY PARKWAY PEACHTREE CORNERS, GA 30092

has complied with Florida Administrative Code 64E-1, for the examination of environmental samples in the following categories

DRINKING WATER - MICROBIOLOGY, DRINKING WATER - PRIMARY INORGANIC CONTAMINANTS, DRINKING WATER - SECONDARY INORGANIC CONTAMINANTS, NON-POTABLE WATER - GENERAL CHEMISTRY, NON-POTABLE WATER - METALS, NON-POTABLE WATER - MICROBIOLOGY, SOLID AND CHEMICAL MATERIALS - GENERAL CHEMISTRY, SOLID AND CHEMICAL MATERIALS - METALS, SOLID AND CHEMICAL MATERIALS -**MICROBIOLOGY**

> Continued certification is contingent upon successful on-going compliance with the NELAC Standards and FAC Rule 64E-1 regulations. Specific methods and analytes certified are cited on the Laboratory Scope of Accreditation for this laboratory and are on file at the Bureau of Public Health Laboratories, P. O. Box 210, Jacksonville, Florida 32231. Clients and customers are urged to verify with this agency the laboratory's certification status in Florida for particular methods and analytes.

Date Issued: October 06, 2020 Expiration Date: June 30, 2021

Patty A. Lewandowski, MBA, MT(ASCP) Chief Bureau of Public Health Laboratories DH Form 1697, 7/04 NON-TRANSFERABLE E87315-49-10/06/2020

Supersedes all previously issued certificates

Page 1

Expiration Date: 6/30/2021

e 1 of 8

Attachment to Certificate #: E87315-49, expiration date June 30, 2021. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87315 EPA Lab Code: GA00051 (770) 734-4200

Matrix: Drinking Water			G 4:6 4:		
Analyte	Method/Tech	Category	Certification Type	Effective Date	
Color	SM 2120 B	Secondary Inorganic Contaminants	NELAP	4/10/2002	
Escherichia coli	SM 9223 B	Microbiology	NELAP	4/10/2002	
Escherichia coli	SM 9223 B /QUANTI-TRAY	Microbiology	NELAP	11/4/2010	
Heterotrophic plate count	SIMPLATE	Microbiology	NELAP	5/29/2012	
Nitrate	EPA 353.2	Primary Inorganic Contaminants	NELAP	4/17/2020	
Nitrite	EPA 353.2	Primary Inorganic Contaminants	NELAP	4/17/2020	
Orthophosphate as P	SM 4500-P E	Primary Inorganic Contaminants	NELAP	4/10/2002	
рН	SM 4500-H+-B	Primary Inorganic Contaminants,Secondary Inorganic Contaminants	NELAP	4/10/2002	
Residual free chlorine	SM 4500-Cl G	Primary Inorganic Contaminants	NELAP	11/4/2010	
Total coliforms	SM 9223 B	Microbiology	NELAP	4/10/2002	
Total coliforms	SM 9223 B /QUANTI-TRAY	Microbiology	NELAP	11/4/2010	
Total nitrate-nitrite	EPA 353.2	Primary Inorganic Contaminants	NELAP	4/17/2020	
Total residual chlorine	SM 4500-Cl G	Primary Inorganic Contaminants	NELAP	11/4/2010	
Turbidity	EPA 180.1	Secondary Inorganic Contaminants	NELAP	4/10/2002	

Page 2

Expiration Date: 6/30/2021

of 8

Attachment to Certificate #: E87315-49, expiration date June 30, 2021. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87315 EPA Lab Code: GA00051 (770) 734-4200

Matrix: Non-Potable Water			C4:6:4:	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Aluminum	EPA 200.7	Metals	NELAP	4/10/2002
Aluminum	EPA 200.8	Metals	NELAP	8/30/2004
Aluminum	EPA 6010	Metals	NELAP	7/1/2003
Aluminum	EPA 6020	Metals	NELAP	8/30/2004
Amenable cyanide	EPA 9010/9014	General Chemistry	NELAP	7/1/2003
Amenable cyanide	SM 4500-CN- G	General Chemistry	NELAP	10/15/2007
Antimony	EPA 200.7	Metals	NELAP	4/10/2002
Antimony	EPA 200.8	Metals	NELAP	8/30/2004
Antimony	EPA 6010	Metals	NELAP	7/1/2003
Antimony	EPA 6020	Metals	NELAP	8/30/2004
Arsenic	EPA 200.7	Metals	NELAP	4/10/2002
Arsenic	EPA 200.8	Metals	NELAP	8/30/2004
Arsenic	EPA 6010	Metals	NELAP	4/10/2002
Arsenic	EPA 6020	Metals	NELAP	8/30/2004
Barium	EPA 200.7	Metals	NELAP	4/10/2002
Barium	EPA 200.8	Metals	NELAP	8/30/2004
Barium	EPA 6010	Metals	NELAP	7/1/2003
Barium	EPA 6020	Metals	NELAP	8/30/2004
Beryllium	EPA 200.7	Metals	NELAP	4/10/2002
Beryllium	EPA 200.8	Metals	NELAP	8/30/2004
Beryllium	EPA 6010	Metals	NELAP	7/1/2003
Beryllium	EPA 6020	Metals	NELAP	8/30/2004
Biochemical oxygen demand	SM 5210 B	General Chemistry	NELAP	4/10/2002
Boron	EPA 200.7	Metals	NELAP	4/10/2002
Boron	EPA 200.8	Metals	NELAP	11/6/2014
Boron	EPA 6010	Metals	NELAP	7/1/2003
Boron	EPA 6020	Metals	NELAP	8/30/2004
Cadmium	EPA 200.7	Metals	NELAP	4/10/2002
Cadmium	EPA 200.8	Metals	NELAP	8/30/2004
Cadmium	EPA 6010	Metals	NELAP	4/10/2002
Cadmium	EPA 6020	Metals	NELAP	8/30/2004
Calcium	EPA 200.7	Metals	NELAP	4/10/2002
Calcium	EPA 200.8	Metals	NELAP	11/6/2014
Calcium	EPA 6010	Metals	NELAP	7/1/2003
Calcium	EPA 6020	Metals	NELAP	8/30/2004
Carbonaceous BOD (CBOD)	SM 5210 B	General Chemistry	NELAP	4/10/2002

Page 3

Expiration Date: 6/30/2021

3 of 8

Attachment to Certificate #: E87315-49, expiration date June 30, 2021. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87315 EPA Lab Code: GA00051 (770) 734-4200

Matrix: Non-Potable Water			G C	_
Analyte	Method/Tech	Category	Certification Type	Effective Date
Chromium	EPA 200.7	Metals	NELAP	4/10/2002
Chromium	EPA 200.8	Metals	NELAP	8/30/2004
Chromium	EPA 6010	Metals	NELAP	7/1/2003
Chromium	EPA 6020	Metals	NELAP	8/30/2004
Chromium VI	SM 3500-Cr B (20th/21st/22nd Ed.)/UV-VIS	General Chemistry	NELAP	7/28/2009
Cobalt	EPA 200.7	Metals	NELAP	4/10/2002
Cobalt	EPA 200.8	Metals	NELAP	8/30/2004
Cobalt	EPA 6010	Metals	NELAP	7/1/2003
Cobalt	EPA 6020	Metals	NELAP	8/30/2004
Color	SM 2120 B	General Chemistry	NELAP	4/10/2002
Copper	EPA 200.7	Metals	NELAP	4/10/2002
Copper	EPA 200.8	Metals	NELAP	8/30/2004
Copper	EPA 6010	Metals	NELAP	4/10/2002
Copper	EPA 6020	Metals	NELAP	8/30/2004
Corrosivity (pH)	EPA 9040	General Chemistry	NELAP	7/1/2003
Cyanide	SM 4500-CN E	General Chemistry	NELAP	10/15/2007
Escherichia coli	SM 9223 B /QUANTI-TRAY	Microbiology	NELAP	11/4/2010
Fecal coliforms	COLILERT®-18 (Fecal Coliforms)	Microbiology	NELAP	11/6/2014
Fecal coliforms	SM 9222 D	Microbiology	NELAP	2/21/2002
Hardness	SM 2340 B	General Chemistry	NELAP	7/28/2009
Hardness (calc.)	EPA 200.7	Metals	NELAP	6/6/2002
Heterotrophic plate count	SIMPLATE	Microbiology	NELAP	5/29/2012
Iron	EPA 200.7	Metals	NELAP	4/10/2002
Iron	EPA 200.8	Metals	NELAP	11/6/2014
Iron	EPA 6010	Metals	NELAP	7/1/2003
Iron	EPA 6020	Metals	NELAP	8/30/2004
Iron	SM 3500-Fe D (18th/19th Ed.)/UV-VIS	General Chemistry	NELAP	2/5/2002
Iron-(II) (Ferrous Iron)	SM 3500-Fe B (20th/21st Ed.)/UV-VIS	General Chemistry	NELAP	7/28/2009
Lead	EPA 200.7	Metals	NELAP	4/10/2002
Lead	EPA 200.8	Metals	NELAP	8/30/2004
Lead	EPA 6010	Metals	NELAP	4/10/2002
Lead	EPA 6020	Metals	NELAP	8/30/2004
Lithium	EPA 200.8	Metals	NELAP	10/6/2016

Page 4

Expiration Date: 6/30/2021

of 8

Attachment to Certificate #: E87315-49, expiration date June 30, 2021. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: **E87315** EPA Lab Code: GA00051 (770) 734-4200

Analyte Method/Tech Category Type Eff Lithium EPA 6020 Metals NELAP Magnesium EPA 200.8 Metals NELAP Magnesium EPA 200.8 Metals NELAP Magnesium EPA 6010 Metals NELAP Magnesium EPA 6020 Metals NELAP Manganese EPA 200.7 Metals NELAP Manganese EPA 200.8 Metals NELAP Manganese EPA 6010 Metals NELAP Manganese EPA 6020 Metals NELAP Mercury EPA 245.1 Metals NELAP Mercury EPA 247.0 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 6010 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6010 Metals NELAP	otable Water			Certification		
Magnesium EPA 200.7 Metals NELAP Magnesium EPA 200.8 Metals NELAP Magnesium EPA 6010 Metals NELAP Magnesium EPA 6010 Metals NELAP Manganese EPA 200.7 Metals NELAP Manganese EPA 6010 Metals NELAP Manganese EPA 6010 Metals NELAP Manganese EPA 6020 Metals NELAP Mercury EPA 245.1 Metals NELAP Mercury EPA 200.7 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 200.8 Metals NELAP Molybdenum EPA 6010 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6020 Metals NELAP Nickel EPA 353.2 General Chemistry NELAP		Method/Tech	Category		Effective Date	
Magnesium EPA 200.8 Metals NELAP Magnesium EPA 6010 Metals NELAP Magnesium EPA 6020 Metals NELAP Manganese EPA 200.7 Metals NELAP Manganese EPA 200.8 Metals NELAP Manganese EPA 6010 Metals NELAP Manganese EPA 6020 Metals NELAP Mercury EPA 245.1 Metals NELAP Mercury EPA 247.0 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 200.8 Metals NELAP Molybdenum EPA 6010 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Niktel EPA 6010 Metals NELAP Nitrate		EPA 6020	Metals	NELAP	10/6/2016	
Magnesium EPA 6010 Metals NELAP Magnesium EPA 6020 Metals NELAP Manganese EPA 200.7 Metals NELAP Manganese EPA 200.8 Metals NELAP Manganese EPA 6010 Metals NELAP Manganese EPA 6020 Metals NELAP Mercury EPA 245.1 Metals NELAP Mercury EPA 7470 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 200.8 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Mickel EPA 6020 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6010 Metals NELAP Nitrate as N EPA 535.2 General Chemistry NELAP		EPA 200.7	Metals	NELAP	4/10/2002	
Magnesium EPA 6020 Metals NELAP Manganese EPA 200.7 Metals NELAP Manganese EPA 200.8 Metals NELAP Manganese EPA 6010 Metals NELAP Manganese EPA 6020 Metals NELAP Mercury EPA 245.1 Metals NELAP Mercury EPA 7470 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 200.8 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6010 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP		EPA 200.8	Metals	NELAP	11/6/2014	
Manganese EPA 200.7 Metals NELAP Manganese EPA 200.8 Metals NELAP Manganese EPA 6010 Metals NELAP Manganese EPA 6020 Metals NELAP Mercury EPA 245.1 Metals NELAP Mercury EPA 7470 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 200.8 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Nickel EPA 6020 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6010 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP <td></td> <td>EPA 6010</td> <td>Metals</td> <td>NELAP</td> <td>7/1/2003</td>		EPA 6010	Metals	NELAP	7/1/2003	
Manganese EPA 200.8 Metals NELAP Manganese EPA 6010 Metals NELAP Manganese EPA 6020 Metals NELAP Mercury EPA 245.1 Metals NELAP Mercury EPA 2470 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6010 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chem		EPA 6020	Metals	NELAP	8/30/2004	
Manganese EPA 6010 Metals NELAP Manganese EPA 6020 Metals NELAP Mercury EPA 245.1 Metals NELAP Mercury EPA 7470 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 200.8 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate a N EPA 353.2 General Chemistry NELAP Nitrate a N EPA 353.2 General Chemistry NELAP Nitrate a N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-O E General Chemistry <td></td> <td>EPA 200.7</td> <td>Metals</td> <td>NELAP</td> <td>4/10/2002</td>		EPA 200.7	Metals	NELAP	4/10/2002	
Manganese EPA 6020 Metals NELAP Mercury EPA 245.1 Metals NELAP Mercury EPA 7470 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrite as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C		EPA 200.8	Metals	NELAP	8/30/2004	
Mercury EPA 245.1 Metals NELAP Mercury EPA 7470 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Molybdenum EPA 6020 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nickel EPA 6020 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved SM 4500-O G <		EPA 6010	Metals	NELAP	7/1/2003	
Mercury EPA 7470 Metals NELAP Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 200.8 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Orthophosphate as P SM 4500-O G General Chemistry NELAP Oxygen, dissolved ASTM D888-OC General Chemistry NELAP Oxygen, dissolved SM 4500-H+B General Chemistry NELAP OH SM 4500-H+B General Chemistry NELAP		EPA 6020	Metals	NELAP	8/30/2004	
Molybdenum EPA 200.7 Metals NELAP Molybdenum EPA 200.8 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Molybdenum EPA 6020 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrite as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Obygen, dissolved SM 4500-O G General Chemistry NELAP pH EPA 9040 General Chemistry NELAP Phosphorus, total EPA 200.7 Metals NELAP		EPA 245.1	Metals	NELAP	4/10/2002	
Molybdenum EPA 200.8 Metals NELAP Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Molybdenum EPA 6020 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP ObH EPA 9040 General Chemistry NELAP ObH SM 4500-H+-B General Chemistry NELAP Phosphorus, total EPA 200.7 Metals NELAP Phosphorus, total EPA 6010 Metals NELAP		EPA 7470	Metals	NELAP	4/10/2002	
Molybdenum EPA 6010 Metals NELAP Molybdenum EPA 6020 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP pH EPA 9040 General Chemistry NELAP pH SM 4500-H+-B General Chemistry NELAP Phosphorus, total EPA 200.7 Metals NELAP Phosphorus, total EPA 6010 Metals NELAP		EPA 200.7	Metals	NELAP	4/10/2002	
Molybdenum EPA 6020 Metals NELAP Nickel EPA 200.7 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH H EPA 9040 General Chemistry NELAP OH H EPA 9040 General Chemistry NELAP OH H EPA 9040 General Chemistry NELAP OH H EPA 9040 General Chemistry NELAP OH H EPA 9040 General Chemistry NELAP OH H EPA 9040 General Chemistry NELAP OH H EPA 9040 General Chemistry NELAP OH H EPA 9040 General Chemistry NELAP OH H EPA 9040 General Chemistry NELAP OH H H EPA 9040 General Chemistry NELAP OH H H H H H H H H H H H H		EPA 200.8	Metals	NELAP	8/30/2004	
Nickel EPA 200.7 Metals NELAP Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrite as N EPA 353.2 General Chemistry NELAP Northophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Daygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP OH SM 4500-H-B General Chemistry NELAP OH SM 4500-TH Metals NELAP Otosphorus, total EPA 200.7 Metals NELAP Otosphorus, total EPA 200.7 Metals NELAP Otosphorus, total EPA 200.8 Metals NELAP Otosphorus EPA 6010 Metals NELAP Otosphorus EPA 6010 Metals NELAP Otosphorus EPA 6010 Metals NELAP Otosphorus EPA 6010 Metals NELAP		EPA 6010	Metals	NELAP	4/10/2002	
Nickel EPA 200.8 Metals NELAP Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrite as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP OPOsphorus, total EPA 200.7 Metals NELAP OPOsphorus, total EPA 200.7 Metals NELAP OPOsassium EPA 200.8 Metals NELAP OPOsassium EPA 6010 Metals NELAP OPOsassium EPA 6010 Metals NELAP OPOsassium EPA 6010 Metals NELAP OPOsassium EPA 6010 Metals NELAP		EPA 6020	Metals	NELAP	8/30/2004	
Nickel EPA 6010 Metals NELAP Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrite as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP Orthosphorus, total EPA 200.7 Metals NELAP Orthosphorus, total EPA 200.7 Metals NELAP Orthosphorus, total EPA 200.8 Metals NELAP Orthosphorus PA 200.8 Metals NELAP Orthosphorus PA 200.8 Metals NELAP Orthosphorus PA 200.8 Metals NELAP Orthosphorus PA 200.9 Metals NELAP		EPA 200.7	Metals	NELAP	4/10/2002	
Nickel EPA 6020 Metals NELAP Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrite as N EPA 353.2 General Chemistry NELAP Northophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP Oh SM 4500-H+-B General Chemistry NELAP Oh SM 4500-H+-B General Chemistry NELAP Ohosphorus, total EPA 200.7 Metals NELAP Otassium EPA 200.7 Metals NELAP Otassium EPA 200.8 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP		EPA 200.8	Metals	NELAP	8/30/2004	
Nitrate as N EPA 353.2 General Chemistry NELAP Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrite as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP Ohosphorus, total EPA 200.7 Metals NELAP Otosphorus, total EPA 6010 Metals NELAP Otosphorus, total EPA 200.7 Metals NELAP Otosphorus, total EPA 200.7 Metals NELAP Otosphorus, total EPA 200.8 Metals NELAP Otosphorus, total EPA 6010 Metals NELAP Otosphorus, total EPA 6010 Metals NELAP Otosphorus, total EPA 6010 Metals NELAP Otosphorus, total EPA 6010 Metals NELAP Otosphorus, total EPA 6010 Metals NELAP Otosphorus, total EPA 6010 Metals NELAP Otosphorus, total EPA 6010 Metals NELAP		EPA 6010	Metals	NELAP	4/10/2002	
Nitrate-nitrite EPA 353.2 General Chemistry NELAP Nitrite as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP Oh SM 4500-H+-B General Chemistry NELAP Oh SM 4500-H+-B General Chemistry NELAP Ohosphorus, total EPA 200.7 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 200.8 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP		EPA 6020	Metals	NELAP	8/30/2004	
Nitrite as N EPA 353.2 General Chemistry NELAP Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP Oh SM 4500-H+-B General Chemistry NELAP Oh SM 4500-H+-B General Chemistry NELAP Oh SM 4500-HB General Chemistry NEL		EPA 353.2	General Chemistry	NELAP	4/17/2020	
Orthophosphate as P SM 4500-P E General Chemistry NELAP Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP OH Phosphorus, total EPA 200.7 Metals NELAP Potassium EPA 200.7 Metals NELAP Potassium EPA 200.8 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP		EPA 353.2	General Chemistry	NELAP	4/17/2020	
Oxygen, dissolved ASTM D888-09C General Chemistry NELAP Oxygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP OHOSPHORUS, total EPA 200.7 Metals NELAP Otassium EPA 200.7 Metals NELAP Otassium EPA 200.8 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP Otassium EPA 6010 Metals NELAP		EPA 353.2	General Chemistry	NELAP	4/17/2020	
Daygen, dissolved SM 4500-O G General Chemistry NELAP OH EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP Phosphorus, total EPA 200.7 Metals NELAP Potassium EPA 200.7 Metals NELAP Potassium EPA 200.8 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP		SM 4500-P E	General Chemistry	NELAP	4/10/2002	
EPA 9040 General Chemistry NELAP OH SM 4500-H+-B General Chemistry NELAP Phosphorus, total EPA 200.7 Metals NELAP Phosphorus, total EPA 6010 Metals NELAP Potassium EPA 200.7 Metals NELAP Potassium EPA 200.8 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6010 Metals NELAP		ASTM D888-09C	General Chemistry	NELAP	11/6/2014	
SM 4500-H+-B General Chemistry NELAP Phosphorus, total Phosphorus, total Phosphorus, total Phosphorus, total Phosphorus, total EPA 6010 Metals NELAP Potassium EPA 200.7 Metals NELAP Potassium EPA 200.8 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6020 Metals NELAP		SM 4500-O G	General Chemistry	NELAP	4/10/2002	
Phosphorus, total EPA 200.7 Metals NELAP Phosphorus, total EPA 6010 Metals NELAP Potassium EPA 200.7 Metals NELAP Potassium EPA 200.8 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6020 Metals NELAP		EPA 9040	General Chemistry	NELAP	7/1/2003	
Phosphorus, total EPA 6010 Metals NELAP Potassium EPA 200.7 Metals NELAP Potassium EPA 200.8 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6020 Metals NELAP		SM 4500-H+-B	General Chemistry	NELAP	10/15/2007	
Potassium EPA 200.7 Metals NELAP Potassium EPA 200.8 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6020 Metals NELAP		EPA 200.7	Metals	NELAP	9/27/2002	
Potassium EPA 200.8 Metals NELAP Potassium EPA 6010 Metals NELAP Potassium EPA 6020 Metals NELAP		EPA 6010	Metals	NELAP	7/1/2003	
Potassium EPA 6010 Metals NELAP Potassium EPA 6020 Metals NELAP		EPA 200.7	Metals	NELAP	4/10/2002	
Potassium EPA 6020 Metals NELAP		EPA 200.8	Metals	NELAP	11/6/2014	
		EPA 6010	Metals	NELAP	4/10/2002	
Residual free chlorine SM 4500-Cl G General Chemistry NELAP		EPA 6020	Metals	NELAP	8/30/2004	
		SM 4500-Cl G	General Chemistry	NELAP	11/4/2010	
Residue-filterable (TDS) SM 2540 C General Chemistry NELAP	S)	SM 2540 C	General Chemistry	NELAP	10/15/2007	
Residue-nonfilterable (TSS) SM 2540 D General Chemistry NELAP	TSS)	SM 2540 D	General Chemistry	NELAP	10/15/2007	

Page 5

Expiration Date: 6/30/2021

of 8

Attachment to Certificate #: E87315-49, expiration date June 30, 2021. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: **E87315** EPA Lab Code: GA00051 (770) 734-4200

Matrix: Non-Potable Water			Certification	
Analyte	Method/Tech	Category	Type	Effective Date
Residue-settleable	SM 2540 F	General Chemistry	NELAP	10/15/2007
Residue-total	SM 2540 B	General Chemistry	NELAP	10/15/2007
Residue-volatile	SM 2540 E	General Chemistry	NELAP	10/6/2016
Selenium	EPA 200.7	Metals	NELAP	4/10/2002
Selenium	EPA 200.8	Metals	NELAP	8/30/2004
Selenium	EPA 6010	Metals	NELAP	4/10/2002
Selenium	EPA 6020	Metals	NELAP	8/30/2004
Silicon	EPA 200.7	Metals	NELAP	4/10/2002
Silicon	EPA 6010	Metals	NELAP	7/1/2003
Silver	EPA 200.7	Metals	NELAP	4/10/2002
Silver	EPA 200.8	Metals	NELAP	8/30/2004
Silver	EPA 6010	Metals	NELAP	7/1/2003
Silver	EPA 6020	Metals	NELAP	8/30/2004
odium	EPA 200.7	Metals	NELAP	4/10/2002
odium	EPA 200.8	Metals	NELAP	11/6/2014
odium	EPA 6010	Metals	NELAP	7/1/2003
odium	EPA 6020	Metals	NELAP	8/30/2004
trontium	EPA 200.7	Metals	NELAP	9/27/2002
trontium	EPA 6010	Metals	NELAP	7/1/2003
trontium	EPA 6020	Metals	NELAP	8/30/2004
Thallium	EPA 200.7	Metals	NELAP	4/10/2002
hallium	EPA 200.8	Metals	NELAP	8/30/2004
Thallium	EPA 6010	Metals	NELAP	7/1/2003
`hallium	EPA 6020	Metals	NELAP	8/30/2004
ìin	EPA 200.7	Metals	NELAP	4/10/2002
ìin	EPA 200.8	Metals	NELAP	11/6/2014
in .	EPA 6010	Metals	NELAP	7/1/2003
ìin	EPA 6020	Metals	NELAP	8/30/2004
Citanium Citanium	EPA 200.7	Metals	NELAP	4/10/2002
Citanium Citanium	EPA 200.8	Metals	NELAP	11/6/2014
'itanium	EPA 6010	Metals	NELAP	7/1/2003
itanium	EPA 6020	Metals	NELAP	8/30/2004
Total coliforms	SM 9223 B /QUANTI-TRAY	Microbiology	NELAP	11/4/2010
Total cyanide	EPA 9010/9014	General Chemistry	NELAP	7/1/2003
Total residual chlorine	SM 4500-Cl G	General Chemistry	NELAP	11/4/2010
Γotal, fixed, and volatile residue	SM 2540 G	General Chemistry	NELAP	9/27/2002

Page 6

Expiration Date: 6/30/2021

of 8

Attachment to Certificate #: E87315-49, expiration date June 30, 2021. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: **E87315** EPA Lab Code: GA00051 (770) 734-4200

Matrix: Non-Potable Water				
Analyte	Method/Tech	Category	Certification Type	Effective Date
Turbidity	EPA 180.1	General Chemistry	NELAP	4/10/2002
/anadium	EPA 200.7	Metals	NELAP	4/10/2002
⁷ anadium	EPA 200.8	Metals	NELAP	8/30/2004
⁷ anadium	EPA 6010	Metals	NELAP	7/1/2003
anadium	EPA 6020	Metals	NELAP	8/30/2004
inc	EPA 200.7	Metals	NELAP	4/10/2002
inc	EPA 200.8	Metals	NELAP	8/30/2004
inc	EPA 6010	Metals	NELAP	4/10/2002
Zinc	EPA 6020	Metals	NELAP	8/30/2004

Page 7

Expiration Date: 6/30/2021

7 of 8

Attachment to Certificate #: E87315-49, expiration date June 30, 2021. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87315 EPA Lab Code: GA00051 (770) 734-4200

E87315 Pace Analytical Services, LLC- Atlanta GA 110 Technology Parkway Peachtree Corners, GA 30092

Matrix: Solid and Chemical Mate	erials		C4:6:4:	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Aluminum	EPA 6010	Metals	NELAP	4/10/2002
Antimony	EPA 6010	Metals	NELAP	4/10/2002
Arsenic	EPA 6010	Metals	NELAP	4/10/2002
Barium	EPA 6010	Metals	NELAP	4/10/2002
Beryllium	EPA 6010	Metals	NELAP	4/10/2002
Boron	EPA 6010	Metals	NELAP	4/10/2002
Cadmium	EPA 6010	Metals	NELAP	4/10/2002
Calcium	EPA 6010	Metals	NELAP	4/10/2002
Chromium	EPA 6010	Metals	NELAP	4/10/2002
Cobalt	EPA 6010	Metals	NELAP	4/10/2002
Copper	EPA 6010	Metals	NELAP	4/10/2002
Fecal coliforms	SM 9222 D	Microbiology	NELAP	7/28/2009
Fixed Residue	SM 2540 G-2011	General Chemistry	NELAP	10/1/2020
fron	EPA 6010	Metals	NELAP	4/10/2002
Lead	EPA 6010	Metals	NELAP	4/10/2002
Magnesium	EPA 6010	Metals	NELAP	4/10/2002
Manganese	EPA 6010	Metals	NELAP	4/10/2002
Mercury	EPA 7471	Metals	NELAP	4/10/2002
Molybdenum	EPA 6010	Metals	NELAP	4/10/2002
Nickel	EPA 6010	Metals	NELAP	4/10/2002
ьН	EPA 9045	General Chemistry	NELAP	4/10/2002
Phosphorus, total	EPA 6010	Metals	NELAP	4/10/2002
Potassium	EPA 6010	Metals	NELAP	4/10/2002
Residue-total	SM 2540 G-2011	General Chemistry	NELAP	10/1/2020
Residue-volatile	SM 2540 G-2011	General Chemistry	NELAP	10/1/2020
Selenium	EPA 6010	Metals	NELAP	4/10/2002
Silicon	EPA 6010	Metals	NELAP	4/10/2002
Silver	EPA 6010	Metals	NELAP	4/10/2002
Sodium	EPA 6010	Metals	NELAP	7/9/2002
Strontium	EPA 6010	Metals	NELAP	4/10/2002
Гhallium	EPA 6010	Metals	NELAP	4/10/2002
Гin	EPA 6010	Metals	NELAP	4/10/2002
Titanium	EPA 6010	Metals	NELAP	9/27/2002
Toxicity Characteristic Leaching Procedure (TCLP)	EPA 1311	General Chemistry	NELAP	4/10/2002
Vanadium	EPA 6010	Metals	NELAP	4/10/2002
Zinc	EPA 6010	Metals	NELAP	4/10/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 10/6/2020

Ron DeSantis Governor

Laboratory Scope of Accreditation

Page 8 of 8

Expiration Date: 6/30/2021

APPENDIX A

FIELD DATA FORMS

Date: 2020-08-18 10:48:15

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

Travis Martinez
Golder
Plant Branch
Plant Branch
O° 0' 0"

0° 0' 0"

613229

Pump Information:

Pump Model/Type
Tubing Type
Tubing Diameter
Tubing Length

polyethylene 0.17 in 61.96 ft

QED Well Wizard

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

61.96 ft

Well Information:

Well IDBRGWA-2IWell diameter2 inWell Total Depth66.96 ftScreen Length10 ftDepth to Water14.51 ft

Pumping Information:

Final Pumping Rate 140 mL/min
Total System Volume 0.5698708 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 12.72 in
Total Volume Pumped 3.5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	10:25:28	300.03	21.69	6.45	177.10	6.49	15.95	0.42	90.36
Last 5	10:30:28	600.02	21.74	6.51	174.19	3.55	16.17	0.21	91.14
Last 5	10:35:28	900.02	21.91	6.59	173.69	2.21	16.18	0.15	87.65
Last 5	10:40:28	1200.03	22.31	6.60	174.62	1.50	16.09	0.12	86.54
Last 5	10:45:31	1503.03	22.54	6.59	174.99	1.68	15.57	0.11	85.00
Variance 0			0.17	0.08	-0.50			-0.06	-3.49
Variance 1			0.40	0.01	0.93			-0.02	-1.11
Variance 2			0.23	-0.01	0.37			-0.01	-1.54

Notes

Date: 2020-08-18 11:39:38

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Company Name
Plant Branch
Plant Branch
O° 0' 0"
Company Name
Plant Branch
O° 0' 0"
Company Name
Plant Branch
O° 0' 0"
Company Name
Plant Branch
O° 0' 0"
Company Name
Plant Branch
O° 0' 0"
Company Name
Plant Branch
O° 0' 0"

Pump Information:

Pump Model/Type
Tubing Type
Tubing Diameter
Tubing Length

QED Well Wizard polyethylene

0.17 in 42.39 ft

Sonde SN 613229

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC 42.3

42.39 ft

Well Information:

Well ID BRGWA-2S
Well diameter 2 in
Well Total Depth 47.39 ft
Screen Length 10 ft
Depth to Water 14.67 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.4825216 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 1.44 in
Total Volume Pumped 5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	n		+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	11:17:52	300.03	23.54	6.19	62.00	3.09	14.73	1.37	44.07
Last 5	11:22:52	600.02	22.46	6.05	62.42	2.25	14.76	0.73	43.15
Last 5	11:27:52	900.03	22.18	6.06	62.43	2.07	14.76	0.39	39.67
Last 5	11:32:52	1200.03	22.00	6.02	62.21	1.26	14.79	0.31	40.09
Last 5	11:37:52	1500.03	21.63	6.06	61.63	0.78	14.79	0.28	39.15
Variance 0			-0.29	0.01	0.01			-0.34	-3.47
Variance 1			-0.18	-0.04	-0.22			-0.09	0.42
Variance 2			-0.36	0.04	-0.58			-0.03	-0.95

Notes

Date: 2020-08-18 09:43:36

Project Information:

Operator Name Travis Martinez
Company Name Golder
Project Name Plant Branch
Site Name Plant Branch
Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 613229

Pump Information:

Pump Model/Type Tubing Type Tubing Diameter Tubing Length QED Well Wizard polyethylene 0.17 in

58.82 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC 58.82 ft

Well Information:

Well ID BRGWA-5I
Well diameter 2 in
Well Total Depth 63.82 ft
Screen Length 10 ft
Depth to Water 11.24 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.5558556 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 1.92 in
Total Volume Pumped 5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	09:20:01	300.06	21.08	6.30	148.13	1.31	11.40	5.14	72.08
Last 5	09:25:01	600.02	21.10	6.24	147.10	1.90	11.40	5.89	68.32
Last 5	09:30:01	900.02	20.75	6.29	146.37	1.40	11.40	5.36	64.03
Last 5	09:35:01	1200.03	21.03	6.29	146.58	0.81	11.40	5.20	63.14
Last 5	09:40:01	1500.03	20.88	6.29	146.46	0.39	11.40	5.14	62.33
Variance 0			-0.35	0.05	-0.73			-0.53	-4.29
Variance 1			0.28	-0.01	0.21			-0.16	-0.90
Variance 2			-0.15	0.01	-0.12			-0.06	-0.81

Notes

Date: 2020-08-18 10:14:55

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder
Plant Branch
Plant Branch
O° 0' 0"

0° 0' 0"

642531

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene

Tubing Diameter .17 in Tubing Length 38 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

38 ft

Well Information:

Well ID BRGWA-5S
Well diameter 2 in
Well Total Depth 43.01 ft
Screen Length 10 ft
Depth to Water 11.31 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.271 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 1.44 in
Total Volume Pumped 10 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	09:52:47	1800.02	21.63	6.40	158.28	4.91	11.43	2.38	65.53
Last 5	09:57:47	2100.02	21.99	6.39	133.54	5.37	11.43	2.48	62.66
Last 5	10:02:48	2401.02	22.23	6.38	159.50	5.68	11.43	2.20	61.68
Last 5	10:07:48	2701.02	21.90	6.40	159.53	5.12	11.43	2.29	60.21
Last 5	10:12:48	3001.02	21.89	6.41	159.64	4.36	11.43	2.22	61.14
Variance 0			0.23	-0.01	25.96			-0.28	-0.98
Variance 1			-0.33	0.02	0.03			0.09	-1.47
Variance 2			-0.01	0.00	0.10			-0.07	0.94

Notes

Date: 2020-08-18 12:51:27

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude

Travis Martinez
Golder
Plant Branch
Plant Branch
0° 0' 0"

0° 0' 0"

Pump Information:

Pump Model/Type Tubing Type Tubing Diameter Tubing Length QED Well Wizard polyethylene

0.17 in 47.90 ft

Sonde SN 613229

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

47.90 ft

Well Information:

Well IDBRGWA-6SWell diameter2 inWell Total Depth52.90 ftScreen Length10 ftDepth to Water24.67 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.5071151 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 7.2 in
Total Volume Pumped 5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	12:28:27	300.06	21.68	6.32	56.31	2.84	25.21	6.95	47.49
Last 5	12:33:27	600.02	21.48	6.33	55.13	1.97	25.30	7.00	48.68
Last 5	12:38:27	900.03	21.66	6.30	55.01	2.68	25.27	6.88	51.37
Last 5	12:43:28	1201.03	21.73	6.35	54.96	2.73	25.28	6.84	51.09
Last 5	12:48:29	1502.03	21.82	6.33	55.30	3.15	25.27	6.75	52.98
Variance 0			0.18	-0.03	-0.12			-0.12	2.69
Variance 1			0.07	0.04	-0.06			-0.05	-0.28
Variance 2			0.09	-0.02	0.34			-0.09	1.89

Notes

Date: 2020-08-18 13:09:30

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder
Plant Branch
Plant Branch
O° 0' 0"

0° 0' 0"
642531

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene Tubing Diameter .17 in

Tubing Diameter .17 in Tubing Length .75 ft

Turbidity Make/Model LaMotte 2020we Pump placement from TOC

75 ft

Well Information:

Well ID BRGWA-12I
Well diameter 2 in
Well Total Depth 80.54 ft
Screen Length 10 ft
Depth to Water 51.06 ft

Pumping Information:

Final Pumping Rate 100 mL/min
Total System Volume 0.6057567 L
Calculated Sample Rate 300 sec
Stabilization Drawdown
Total Volume Pumped 10 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	12:44:08	4800.01	30.35	6.22	143.59	0.73	56.20	3.10	50.87
Last 5	12:49:08	5100.01	30.72	6.23	141.28	0.84	56.23	3.27	51.83
Last 5	12:54:12	5404.01	30.58	6.23	141.74	0.74	56.22	3.54	52.94
Last 5	12:59:12	5704.01	30.33	6.25	139.34	1.03	56.22	3.71	54.06
Last 5	13:04:12	6004.00	30.26	6.25	144.01	1.00	56.23	3.92	55.76
Variance 0			-0.14	-0.00	0.46			0.26	1.12
Variance 1			-0.25	0.02	-2.40			0.17	1.12
Variance 2			-0.07	0.00	4.67			0.22	1.70

Notes

Date: 2020-08-18 16:27:48

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder
Plant Branch
Plant Branch
O° 0' 0"

0° 0' 0"
642531

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene

Tubing Diameter .17 in Tubing Length 56 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

56 ft

Well Information:

Well ID BRGWA-12S
Well diameter 2 in
Well Total Depth 61.01 ft
Screen Length 10 ft
Depth to Water 51.23 ft

Pumping Information:

Final Pumping Rate 150 mL/min
Total System Volume 0.5209517 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 3.24 in
Total Volume Pumped 19.5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	า		+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	16:05:17	6600.00	28.17	5.97	88.98			6.25	69.05
Last 5	16:10:17	6900.00	31.43	5.87	82.77	0.87	51.38	6.12	69.49
Last 5	16:15:17	7200.00	25.10	5.94	88.96	0.78	51.49	6.39	73.08
Last 5	16:20:17	7500.00	24.40	5.96	88.11	0.69	51.49	6.46	72.12
Last 5	16:25:17	7800.00	24.62	5.95	88.96	0.60	51.50	6.54	70.67
Variance 0			-6.33	0.07	6.19			0.27	3.60
Variance 1			-0.71	0.02	-0.85			0.07	-0.96
Variance 2			0.22	-0.01	0.84			0.07	-1.45

Notes

Date: 2020-08-18 15:31:58

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

Travis Martinez
Golder
Plant Branch
Plant Branch
O° 0' 0"

0° 0' 0"

613229

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene

Tubing Diameter 0.17 in Tubing Length 37.80 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

37.80 ft

Well Information:

Well ID BRGWA-23S
Well diameter 2 in
Well Total Depth 43.80 ft
Screen Length 10 ft
Depth to Water 33.77 ft

Pumping Information:

Final Pumping Rate 165 mL/min
Total System Volume 0.4664979 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 31.56 in
Total Volume Pumped 18.6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	15:08:01	5403.04	23.52	5.56	129.67	0.37	36.27	3.62	95.00
Last 5	15:13:01	5703.04	23.43	5.55	130.85	0.19	36.30	3.63	95.91
Last 5	15:18:01	6003.04	23.48	5.52	131.15	0.05	36.34	3.65	97.92
Last 5	15:23:02	6304.04	23.12	5.57	131.25	0.10	36.33	3.64	95.72
Last 5	15:28:02	6604.04	23.39	5.56	133.00	0.03	36.40	3.66	96.44
Variance 0			0.04	-0.03	0.30			0.02	2.01
Variance 1			-0.36	0.05	0.10			-0.02	-2.20
Variance 2			0.27	-0.01	1.74			0.02	0.72

Notes

Purged three well volumes prior to sampling

Date: 2020-08-19 09:50:24

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder
Plant Branch
Plant Branch
O° 0' 0"

0° 0' 0"

642531

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene Tubing Diameter .17 in

Tubing Diameter .17 in Tubing Length 19 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

19 ft

Well Information:

Well ID BRGWC-25I
Well diameter 2 in
Well Total Depth 24.41 ft
Screen Length 10 ft
Depth to Water 8.79 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.355805 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 1.08 in
Total Volume Pumped 5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C pH SpCo		SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	09:28:22	300.09	20.57	6.41	462.63	10.41	8.86	0.90	81.85
Last 5	09:33:22	600.02	20.57	6.38	459.43	5.66	8.87	0.34	70.31
Last 5	09:38:22	900.02	20.52	6.35	463.69	3.25	8.87	0.21	65.51
Last 5	09:43:22	1200.01	20.54	6.33	467.67	2.72	8.87	0.16	62.52
Last 5	09:48:24	1502.01	20.52	6.32	469.65	1.24	8.88	0.13	60.25
Variance 0			-0.05	-0.03	4.26			-0.13	-4.80
Variance 1			0.02	-0.02	3.98			-0.05	-2.99
Variance 2			-0.02	-0.01	1.98			-0.04	-2.27

Notes

Date: 2020-08-19 12:09:20

Project Information:

Operator Name
Company Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder
Plant Branch
Plant Branch
O° 0' 0"

0° 0' 0"

642531

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene

Tubing Diameter .17 in Tubing Length 28 ft

Turbidity Make/Model LaMotte 2020we Pump placement from TOC 28 ft

Well Information:

Well ID BRGWC-27I
Well diameter 2 in
Well Total Depth 33.41 ft
Screen Length 10 ft
Depth to Water 4.32 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.3959758 L
Calculated Sample Rate 300 sec
Stabilization Drawdown
Total Volume Pumped 6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C			DTW ft	RDO mg/L	ORP mV	
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	11:46:36	600.02	21.82	5.67	483.18	0.96	4.37	1.21	87.38
Last 5	11:51:36	900.02	21.67	5.71	485.32	0.77	4.37	1.14	83.55
Last 5	11:56:36	1200.01	21.59	5.75	485.25	0.93	4.36	0.97	80.20
Last 5	12:01:36	1499.99	21.55	5.79	487.89	1.65	4.37	0.93	77.27
Last 5	12:06:36	1800.01	21.51	5.81	483.99	0.79	4.37	0.97	74.95
Variance 0			-0.08	0.04	-0.07			-0.17	-3.34
Variance 1			-0.04	0.03	2.65			-0.03	-2.93
Variance 2			-0.04	0.02	-3.90			0.03	-2.32

Notes

Date: 2020-08-19 10:51:12

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder
Plant Branch
Plant Branch
O° 0' 0"

0° 0' 0"

642531

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene Tubing Diameter .17 in

Tubing Diameter .1/ in Tubing Length 18 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

18 ft

Well Information:

Well IDBRGWC-29IWell diameter2 inWell Total Depth23.63 ftScreen Length10 ftDepth to Water9.88 ft

Pumping Information:

Final Pumping Rate 200 mL/min Total System Volume 0.3513416 L 300

Calculated Sample Rate sec
Stabilization Drawdown 0.72 in
Total Volume Pumped 5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	10:28:42	300.04	21.74	4.31	571.26	1.45	9.93	1.82	109.54
Last 5	10:33:42	600.02	21.59	4.55	553.91	0.92	9.94	1.04	101.83
Last 5	10:38:42	900.05	21.55	4.66	550.74	1.05	9.93	0.92	95.93
Last 5	10:43:42	1200.04	21.48	4.68	551.90	0.91	9.94	0.86	92.61
Last 5	10:48:42	1500.01	21.46	4.67	551.92	0.93	9.94	0.87	90.52
Variance 0			-0.04	0.12	-3.17			-0.12	-5.90
Variance 1			-0.07	0.02	1.15			-0.05	-3.33
Variance 2			-0.02	-0.01	0.03			0.01	-2.09

Notes

Date: 2020-08-19 15:08:37

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder
Plant Branch
Plant Branch
O° 0' 0"

0° 0' 0"
642531

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene Tubing Diameter .17 in

Tubing Diameter .17 in Tubing Length 17 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

17 ft

Well Information:

Well IDBRGWC-30IWell diameter2 inWell Total Depth22.35 ftScreen Length10 ftDepth to Water3.96 ft

Pumping Information:

Final Pumping Rate 250 mL/min
Total System Volume 0.3468782 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 2.16 in
Total Volume Pumped 10 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	14:46:26	1200.01	22.18	6.36	892.62	6.69	4.13	0.79	78.35
Last 5	14:51:26	1500.01	22.17	6.36	892.00	5.90	4.13	0.46	76.56
Last 5	14:56:26	1800.01	22.04	6.36	891.83	3.86	4.13	0.57	74.62
Last 5	15:01:26	2100.00	21.99	6.36	891.35	3.09	4.14	0.62	73.09
Last 5	15:06:26	2400.00	22.00	6.36	891.72	2.62	4.14	0.64	71.87
Variance 0			-0.13	0.00	-0.17			0.11	-1.94
Variance 1			-0.05	0.00	-0.48			0.05	-1.53
Variance 2			0.00	0.00	0.37			0.02	-1.22

Notes

Date: 2020-08-19 13:25:45

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder
Plant Branch
Plant Branch
O° 0' 0"

0° 0' 0"

642531

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene

Tubing Diameter .17 in Tubing Length 43 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC 43 ft

Well Information:

Well IDBRGWC-32SWell diameter2 inWell Total Depth48 ftScreen Length10 ftDepth to Water33.88 ft

Pumping Information:

Final Pumping Rate 120 mL/min
Total System Volume 0.4629272 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 7.2 in
Total Volume Pumped 3 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C pH SpC		SpCond µS	SpCond μS/cm Turb NTU		RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	13:03:43	300.03	21.66	6.00	610.57	1.60	34.38	5.48	89.68
Last 5	13:08:43	600.02	22.26	5.94	609.77	0.92	34.37	5.32	84.80
Last 5	13:13:43	900.02	21.46	5.96	614.75	1.34	34.43	4.99	81.41
Last 5	13:18:43	1200.01	21.47	5.96	617.44	1.00	34.45	4.85	79.22
Last 5	13:23:43	1500.01	21.36	5.97	619.27	0.96	34.48	4.70	77.28
Variance 0			-0.80	0.01	4.98			-0.33	-3.39
Variance 1			0.01	0.00	2.69			-0.14	-2.18
Variance 2			-0.11	0.01	1.82			-0.14	-1.94

Notes

Date: 2020-08-20 12:17:51

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

Travis Martinez
Golder
Plant Branch
Plant Branch
0° 0' 0"

0° 0' 0"

613229

Pump Information:

Pump Model/Type SamplePro
Tubing Type polyethylene
Tubing Diameter 0.17 in
Tubing Length 55.53 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC 55.53 ft

Well Information:

Well ID BRGWC-45
Well diameter 2 in
Well Total Depth 60.53 ft
Screen Length 10 ft
Depth to Water 11.52 ft

Pumping Information:

Final Pumping Rate 180 mL/min
Total System Volume 0.541171 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 4.32 in
Total Volume Pumped 18 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	, , , ,		DTW ft	RDO mg/L	ORP mV	
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	11:52:58	4805.05	24.51	5.86	482.19	7.85	11.88	0.07	73.19
Last 5	11:58:01	5108.05	24.57	5.86	479.54	8.52	11.88	0.07	72.85
Last 5	12:03:01	5408.05	24.81	5.85	476.18	4.94	11.88	0.06	72.55
Last 5	12:08:01	5708.05	24.47	5.86	477.81	4.67	11.88	0.06	71.93
Last 5	12:13:01	6008.05	24.16	5.86	474.80	4.75	11.88	0.05	71.86
Variance 0			0.24	-0.01	-3.36			-0.01	-0.30
Variance 1			-0.34	0.01	1.63			-0.00	-0.62
Variance 2			-0.31	-0.00	-3.01			-0.01	-0.07

Notes

Date: 2020-08-20 14:02:37

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

Travis Martinez
Golder
Plant Branch
Plant Branch
0° 0' 0"

0° 0' 0"

613229

LaMotte 2020we

Pump Information:

Pump Model/Type SamplePro
Tubing Type polyethylene
Tubing Diameter 0.17 in
Tubing Length 92.08 ft

Pump placement from TOC 92.08 ft

Well Information:

Turbidity Make/Model

Well ID BRGWC-47
Well diameter 2 in
Well Total Depth 97.08 ft
Screen Length 10 ft
Depth to Water 22.81 ft

Pumping Information:

Final Pumping Rate 100 mL/min
Total System Volume 0.7043091 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 7.32 in
Total Volume Pumped 4.5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	13:40:30	1500.02	23.87	5.74	2229.11	7.79	23.42	0.72	85.78
Last 5	13:45:30	1800.03	23.54	5.75	2227.63	7.35	23.41	0.63	85.89
Last 5	13:50:30	2100.03	23.41	5.75	2233.53	4.48	23.42	0.52	84.88
Last 5	13:55:30	2400.04	23.43	5.75	2237.67	3.26	23.42	0.46	83.51
Last 5	14:00:30	2700.04	23.45	5.75	2243.13	2.78	23.42	0.42	82.71
Variance 0			-0.13	0.00	5.91			-0.11	-1.00
Variance 1			0.02	0.00	4.14			-0.06	-1.37
Variance 2			0.02	-0.01	5.46			-0.04	-0.80

Notes

Date: 2020-08-20 09:34:11

Project Information:

Operator Name Travis Martinez
Company Name Golder
Project Name Plant Branch
Site Name Plant Branch
Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 613229

Pump Information:

Pump Model/Type SamplePro
Tubing Type polyethylene
Tubing Diameter 0.17 in
Tubing Length 63.76 ft

Turbidity Make/Model LaMotte 2020we Pump placement from TOC 63.76 ft

Well Information:

Well ID BRGWC-50
Well diameter 2 in
Well Total Depth 68.76 ft
Screen Length 10 ft
Depth to Water 37.11 ft

Pumping Information:

Final Pumping Rate 180 mL/min
Total System Volume 0.5779049 L
Calculated Sample Rate 300 sec
Stabilization Drawdown
Total Volume Pumped 4.5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Elapsed Temp C pH		SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	09:12:09	300.05	21.95	5.77	2225.45	3.09	37.28	0.84	108.98
Last 5	09:17:09	600.03	21.64	5.50	2242.60	4.11	37.22	0.38	104.97
Last 5	09:22:09	900.03	21.63	5.36	2247.29	2.17	37.22	0.24	103.95
Last 5	09:27:09	1200.03	21.56	5.29	2246.40	2.55	37.19	0.19	103.79
Last 5	09:32:09	1500.03	21.55	5.26	2244.36	2.65	37.19	0.16	103.45
Variance 0			-0.01	-0.14	4.69			-0.14	-1.02
Variance 1			-0.06	-0.06	-0.89			-0.05	-0.15
Variance 2			-0.01	-0.03	-2.04			-0.03	-0.34

Notes

Date: 2020-08-20 09:46:51

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder
Plant Branch
Plant Branch
O° 0' 0"

642531

Pump Information:

Pump Model/Type SamplePro Tubing Type polyethylene

Tubing Diameter .17 in Tubing Length 71 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

71 ft

Well Information:

Well IDBRGWC-52IWell diameter2 inWell Total Depth76.60 ftScreen Length10 ftDepth to Water38.20 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.5879031 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 5.04 in
Total Volume Pumped 7 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	09:23:58	900.02	20.85	6.61	479.83	2.58	38.55	0.25	-26.05
Last 5	09:28:58	1200.02	20.79	6.66	486.69	2.32	38.58	0.19	-31.73
Last 5	09:33:58	1500.03	20.59	6.79	497.96	2.04	38.59	0.21	-32.42
Last 5	09:38:58	1800.02	20.78	6.84	501.96	1.18	38.60	0.16	-33.05
Last 5	09:44:01	2103.02	20.61	6.85	503.53	0.82	38.62	0.14	-34.99
Variance 0			-0.20	0.13	11.27			0.02	-0.69
Variance 1			0.19	0.06	4.01			-0.05	-0.63
Variance 2			-0.16	0.01	1.57			-0.03	-1.94

Notes

Date: 2020-08-20 11:50:15

Project Information: Pump Information:

Operator Name A. McClure Pump Model/Type SamplePro Company Name Golder Tubing Type polyethylene

Project Name Plant Branch Tubing Diameter .17 in Site Name Plant Branch Tubing Length 65 ft

Latitude 0° 0' 0" Longitude 0° 0' 0" Sonde SN 642531

Turbidity Make/Model LaMotte 2020we Pump placement from TOC 65 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID PZ-51I 175 mL/min Well diameter 2 in Total System Volume 0.5521957 L Calculated Sample Rate Well Total Depth 68 ft 300 sec Screen Length 5 ft Stabilization Drawdown 6.72 in Depth to Water **Total Volume Pumped** 37.58 ft 6.65 L

Low-Flow Sampling Stabilization Summary

Time		Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	11:36:06	300.07	22.89	5.60	1824.11	0.80	38.13	0.22	33.87
Last 5	11:41:06	600.03	22.83	5.58	1819.50	0.98	38.13	0.20	35.27
Last 5	11:46:06	900.02	22.84	5.57	1814.39	0.97	38.14	0.19	36.51
Last 5									
Last 5									
Variance 0			nan	nan	nan			nan	nan
Variance 1			-0.06	-0.02	-4.61			-0.02	1.40
Variance 2			0.01	-0.01	-5.11			-0.02	1.24

Notes

Previously purged for 23min, all parameters were stable. iPad overheated & I started over taking 3 more readings

Date: 2020-08-20 13:35:53

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
O° 0' 0"
One of the control of the co

Pump Information: Pump Model/Type Tubing Type

SamplePro polyethylene .17 in

Tubing Diameter .17 in Tubing Length 44 ft

Longitude 0° 0' 0" Sonde SN 642531

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

44 ft

Well Information:

Well IDPZ-51SWell diameter2 inWell Total Depth47.98 ftScreen Length5 ftDepth to Water37.05 ft

Pumping Information:

Final Pumping Rate 100 mL/min
Total System Volume 0.4584638 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 11.88 in
Total Volume Pumped 3 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 0
Last 5	13:11:08	600.03	26.00	6.15	171.06	5.34	37.81	1.46	42.63
Last 5	13:16:08	900.02	25.87	6.15	172.17	5.21	37.90	1.27	42.17
Last 5	13:21:08	1200.02	27.28	6.15	171.27	5.04	37.97	1.14	41.59
Last 5	13:26:08	1500.02	26.00	6.16	167.29	3.05	38.01	1.08	42.94
Last 5	13:31:08	1800.02	25.35	6.15	167.24	2.48	38.04	1.01	42.82
Variance 0			1.41	-0.00	-0.90			-0.13	-0.58
Variance 1			-1.28	0.01	-3.98			-0.06	1.35
Variance 2			-0.64	-0.01	-0.05			-0.07	-0.12

Notes

Edit screen at 42.98' per B.Steele

Test Date / Time: 9/15/2020 3:22:54 PM

Project: Plant Branch

Operator Name: Travis Martinez

Location Name: BRGWA-2I

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 56.96 ft Total Depth: 66.96 ft

Initial Depth to Water: 14.34 ft

Pump Type: QED Well Wizard Tubing Type: Polyethylene

Pump Intake From TOC: 61.96 ft Estimated Total Volume Pumped:

6300 ml

Flow Cell Volume: 90 ml Final Flow Rate: 140 ml/min Final Draw Down: 1.79 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 5	+/- 5 %	+/- 10 %	+/- 5	+/- 25	+/- 0.3	
9/15/2020 3:22 PM	00:00	6.69 pH	24.76 °C	178.06 μS/cm	6.06 mg/L	1.38 NTU	67.0 mV	14.34 ft	180.00 ml/min
9/15/2020 3:27 PM	05:00	5.81 pH	20.36 °C	172.76 μS/cm	1.06 mg/L	1.89 NTU	29.3 mV	15.49 ft	140.00 ml/min
9/15/2020 3:32 PM	10:00	6.11 pH	20.34 °C	174.53 μS/cm	0.50 mg/L	2.85 NTU	35.2 mV	15.74 ft	140.00 ml/min
9/15/2020 3:37 PM	15:00	6.24 pH	20.17 °C	175.35 μS/cm	0.32 mg/L	2.77 NTU	38.8 mV	15.88 ft	140.00 ml/min
9/15/2020 3:42 PM	20:00	6.38 pH	20.04 °C	176.45 μS/cm	0.22 mg/L	2.32 NTU	35.0 mV	16.04 ft	140.00 ml/min
9/15/2020 3:47 PM	25:00	6.45 pH	20.05 °C	177.37 μS/cm	0.16 mg/L	0.73 NTU	26.5 mV	16.13 ft	140.00 ml/min
9/15/2020 3:52 PM	30:00	6.51 pH	20.09 °C	178.42 μS/cm	0.13 mg/L	0.79 NTU	14.0 mV	16.15 ft	140.00 ml/min
9/15/2020 3:57 PM	35:00	6.58 pH	19.95 °C	185.19 μS/cm	0.10 mg/L	0.67 NTU	5.1 mV	16.13 ft	140.00 ml/min
9/15/2020 4:02 PM	40:00	6.63 pH	19.77 °C	191.33 μS/cm	0.09 mg/L	0.67 NTU	-17.3 mV	16.13 ft	140.00 ml/min
9/15/2020 4:07 PM	45:00	6.64 pH	19.89 °C	188.68 μS/cm	0.07 mg/L	0.91 NTU	2.2 mV	16.13 ft	140.00 ml/min

Samples

Samp	ole ID:	Description:
BRG	WA-2I	

Test Date / Time: 9/15/2020 2:30:26 PM

Project: Plant Branch

Operator Name: Travis Martinez

Location Name: BRGWA-2S

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 37.39 ft Total Depth: 47.39 ft

Initial Depth to Water: 14.53 ft

Pump Type: QED Well Wizard Tubing Type: Polyethylene

Pump Intake From TOC: 42.39 ft Estimated Total Volume Pumped:

6801.667 ml

Flow Cell Volume: 90 ml Final Flow Rate: 220 ml/min Final Draw Down: 0.12 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 5	+/- 5 %	+/- 10 %	+/- 5	+/- 25	+/- 0.3	
9/15/2020 2:30 PM	00:00	5.25 pH	21.39 °C	66.23 μS/cm	2.74 mg/L	0.46 NTU	68.8 mV	14.53 ft	220.00 ml/min
9/15/2020 2:35 PM	05:00	5.62 pH	18.97 °C	67.73 µS/cm	1.38 mg/L	1.35 NTU	53.7 mV	14.74 ft	220.00 ml/min
9/15/2020 2:40 PM	10:00	5.91 pH	18.80 °C	67.11 µS/cm	0.77 mg/L	0.83 NTU	50.2 mV	14.65 ft	220.00 ml/min
9/15/2020 2:45 PM	15:00	5.99 pH	18.88 °C	66.37 µS/cm	0.57 mg/L	0.91 NTU	48.5 mV	14.65 ft	220.00 ml/min
9/15/2020 2:51 PM	20:55	6.02 pH	19.04 °C	66.51 µS/cm	0.64 mg/L	0.79 NTU	49.3 mV	14.65 ft	220.00 ml/min
9/15/2020 2:56 PM	25:55	5.97 pH	19.06 °C	65.86 µS/cm	0.55 mg/L	0.80 NTU	49.8 mV	14.65 ft	220.00 ml/min
9/15/2020 3:01 PM	30:55	6.01 pH	19.11 °C	65.68 µS/cm	0.58 mg/L	0.52 NTU	47.3 mV	14.65 ft	220.00 ml/min

Samples

Sample ID:	Description:
BRGWA-2S	

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 9/15/2020 1:42:18 PM

Project: Plant Branch

Operator Name: Travis Martinez

Location Name: BRGWA-5I

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 53.82 ft Total Depth: 63.82 ft

Initial Depth to Water: 11.63 ft

Pump Type: QED Well Wizard Tubing Type: Polyethylene

Pump Intake From TOC: 58.82 ft
Estimated Total Volume Pumped:

4600 ml

Flow Cell Volume: 90 ml Final Flow Rate: 230 ml/min Final Draw Down: 0.11 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 5	+/- 5 %	+/- 10 %	+/- 5	+/- 25	+/- 0.3	
9/15/2020 1:42 PM	00:00	5.50 pH	20.57 °C	157.12 μS/cm	2.89 mg/L	1.30 NTU	59.7 mV	11.63 ft	230.00 ml/min
9/15/2020	05.00	5 04 ml l	19.41 °C	450 40 uC/om	F 22 ma/l	0.86 NTU	54.4 mV	11.77 ft	230.00 ml/min
1:47 PM	05:00	5.91 pH	19.41 C	158.48 μS/cm	5.32 mg/L	0.00 1110	34.4 IIIV	11.77 10	230.00 111/111111
9/15/2020 1:52 PM	10:00	6.19 pH	19.19 °C	158.79 μS/cm	5.52 mg/L	0.50 NTU	53.9 mV	11.74 ft	230.00 ml/min
9/15/2020 1:57 PM	15:00	6.23 pH	19.19 °C	159.27 μS/cm	5.57 mg/L	0.61 NTU	55.0 mV	11.74 ft	230.00 ml/min
9/15/2020 2:02 PM	20:00	6.27 pH	19.14 °C	159.23 μS/cm	5.53 mg/L	0.62 NTU	54.6 mV	11.74 ft	230.00 ml/min

Samples

Sample ID:	Description:
BRGWA-5I	

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 9/15/2020 12:59:46 PM

Project: Plant Branch

Operator Name: Travis Martinez

Location Name: BRGWA-5S

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 33.01 ft Total Depth: 43.01 ft

Initial Depth to Water: 11.68 ft

Pump Type: QED Well Wizard Tubing Type: Polyethylene

Pump Intake From TOC: 38.01 m Estimated Total Volume Pumped:

4600 ml

Flow Cell Volume: 90 ml Final Flow Rate: 230 ml/min Final Draw Down: 0.06 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 5	+/- 5 %	+/- 10 %	+/- 5	+/- 25	+/- 0.3	
9/15/2020	00:00	6.18 pH	19.64 °C	163.98 μS/cm	1.97 mg/L	3.99 NTU	44.7 mV	11.68 ft	230.00 ml/min
12:59 PM 9/15/2020				-	-				
1:04 PM	05:00	6.19 pH	19.34 °C	159.39 µS/cm	1.84 mg/L	2.92 NTU	45.4 mV	11.85 ft	230.00 ml/min
9/15/2020	10:00	6.24 pH	19.32 °C	165.69 µS/cm	1.77 mg/L	1.90 NTU	42.4 mV	11.74 ft	230.00 ml/min
1:09 PM		<u> </u>		-	-				
9/15/2020 1:14 PM	15:00	6.24 pH	19.32 °C	165.18 μS/cm	1.80 mg/L	3.13 NTU	43.1 mV	11.74 ft	230.00 ml/min
9/15/2020 1:19 PM	20:00	6.25 pH	19.31 °C	164.34 μS/cm	1.78 mg/L	2.44 NTU	43.0 mV	11.74 ft	230.00 ml/min

Samples

Sample ID:	Description:
BRGWA-5S	

Created using VuSitu from In-Situ, Inc.

Date: 2020-09-15 09:46:57

Project Information:

Operator Name A. McClure Company Name **Golder Associates** Project Name Plant Branch Site Name Plant Branch 0° 0' 0" Latitude 0° 0' 0"

LaMotte 2020we

Pump Information:

Pump Model/Type QED Well Wizard **Tubing Type** polyethylene Tubing Diameter 0.170 in Tubing Length 47.9 ft

Longitude Sonde SN 465016

Pump placement from TOC

47.9 ft

Well Information:

Turbidity Make/Model

Well ID **BRGWA-6S** Well diameter 2 in Well Total Depth 52.90 ft Screen Length 10 ft Depth to Water 25.23 ft

Pumping Information:

Final Pumping Rate 300 mL/min Total System Volume 0.4937809 L Calculated Sample Rate 300 sec Stabilization Drawdown 10.92 in **Total Volume Pumped** 7.5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed Temp C pH SpCond μS/cm Turb NTU		DTW ft	RDO mg/L	ORP mV			
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	09:24:50	300.09	19.59	6.00	57.62	2.58	26.09	6.48	87.49
Last 5	09:29:49	600.00	19.63	6.30	56.99	0.89	26.09	6.64	73.88
Last 5	09:34:49	900.00	19.54	6.37	57.07	1.21	26.11	6.66	69.33
Last 5	09:39:49	1199.99	19.51	6.41	57.30	1.51	26.12	6.61	67.03
Last 5	09:44:52	1502.98	19.54	6.43	57.69	1.27	26.14	6.56	65.62
Variance 0			-0.09	0.07	0.09			0.02	-4.55
Variance 1			-0.03	0.04	0.22			-0.05	-2.30
Variance 2			0.03	0.02	0.39			-0.05	-1.41

Notes

Date: 2020-09-15 11:15:33

Project Information:

Operator Name A. McClure Company Name **Golder Associates** Project Name Plant Branch Site Name Plant Branch 0° 0' 0" Latitude 0° 0' 0" Longitude

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene Tubing Diameter 0.170 in 75.54 ft

Tubing Length

Sonde SN 465016 Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

75.54 ft

Well Information:

Well ID BRGWA-12I Well diameter 2 in Well Total Depth 80.54 ft Screen Length 10 ft Depth to Water 51.09 ft

Pumping Information:

Final Pumping Rate 100 mL/min Total System Volume 0.6187567 L Calculated Sample Rate 300 sec Stabilization Drawdown 28.32 in **Total Volume Pumped** 4 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	10:52:59	1199.99	21.10	5.99	169.12	0.17	53.02	2.39	56.09
Last 5	10:57:59	1499.98	21.54	6.01	168.95	0.13	53.05	3.28	59.13
Last 5	11:02:59	1799.97	21.86	5.99	166.02	0.09	53.20	2.82	59.50
Last 5	11:07:59	2099.97	21.68	6.00	167.72	0.19	53.31	2.81	60.52
Last 5	11:12:59	2399.96	21.65	6.01	167.58	0.44	53.45	2.76	58.14
Variance 0			0.32	-0.02	-2.94			-0.46	0.37
Variance 1			-0.18	0.01	1.71			-0.01	1.02
Variance 2			-0.03	0.00	-0.15			-0.04	-2.38

Notes

Date: 2020-09-15 13:17:48

Project Information:

Operator Name A. McClure Company Name **Golder Associates** Project Name Plant Branch Site Name Plant Branch 0° 0' 0" Latitude 0° 0' 0"

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene Tubing Diameter 0.170 in Tubing Length

56.01 ft

Longitude Sonde SN 465016

LaMotte 2020we

Pump placement from TOC 56.01 ft

Well Information:

Turbidity Make/Model

Well ID BRGWA-12S Well diameter 2 in Well Total Depth 61.01 ft Screen Length 10 ft Depth to Water 51.31 ft

Pumping Information:

Final Pumping Rate 225 mL/min Total System Volume 0.5339516 L Calculated Sample Rate 300 sec Stabilization Drawdown 5.88 in **Total Volume Pumped** 18 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS/cmTurb NTU		DTW ft	RDO mg/L +/- 10%	ORP mV +/- 10
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5			
Last 5	12:55:05	3602.92	20.12	6.00	83.90	0.32	51.79	6.83	64.34
Last 5	13:00:08	3905.92	20.12	6.01	83.79	0.26	51.79	6.83	65.22
Last 5	13:05:08	4205.91	20.11	6.01	84.88	0.10	51.80	6.80	63.92
Last 5	13:10:08	4505.90	20.08	6.00	85.50	0.12	51.80	6.81	67.56
Last 5	13:15:08	4805.87	20.13	6.00	85.22	0.05	51.80	6.79	64.06
Variance 0			-0.02	-0.00	1.09			-0.02	-1.29
Variance 1			-0.03	-0.01	0.62			0.01	3.63
Variance 2			0.05	0.00	-0.29			-0.01	-3.50

Notes

Date: 2020-09-15 16:13:18

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder Associates
Plant Branch
Plant Branch
O° 0' 0"

465016

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene Tubing Diameter 0.170 in Tubing Length 38.8 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC 38.8 ft

Well Information:

Well ID BRGWA-23S
Well diameter 2 in
Well Total Depth 43.80 ft
Screen Length 10 ft
Depth to Water 34.44 ft

Pumping Information:

Final Pumping Rate 150 mL/min
Total System Volume 0.4536101 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 24.72 in
Total Volume Pumped 18.75 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	15:50:26	6300.85	21.45	5.72	157.98	0.18	36.44	4.03	62.61
Last 5	15:55:26	6600.84	21.37	5.72	157.73	0.30	36.45	4.04	69.82
Last 5	16:00:26	6900.83	21.23	5.72	158.13	0.24	36.47	4.05	63.98
Last 5	16:05:26	7200.82	21.37	5.72	158.45	0.22	36.49	4.11	65.54
Last 5	16:10:26	7500.82	21.46	5.72	159.40	0.40	36.50	4.14	66.48
Variance 0			-0.13	0.00	0.40			0.01	-5.84
Variance 1			0.13	-0.00	0.32			0.05	1.56
Variance 2			0.09	0.00	0.95			0.03	0.94

Notes

Low-Flow Test Report:

Test Date / Time: 9/15/2020 5:00:35 PM

Project: Plant Branch

Operator Name: Travis Martinez

Location Name: BRGWC-25I

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 14.41 ft Total Depth: 24.41 ft

Initial Depth to Water: 8.99 ft

Pump Type: QED Well Wizard Tubing Type: Polyethylene

Pump Intake From TOC: 19.41 ft Estimated Total Volume Pumped:

4400 ml

Flow Cell Volume: 90 ml Final Flow Rate: 220 ml/min Final Draw Down: 0.1 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 5	+/- 5 %	+/- 10 %	+/- 5	+/- 25	+/- 0.3	
9/15/2020 5:00 PM	00:00	5.79 pH	22.40 °C	440.82 μS/cm	3.06 mg/L	2.27 NTU	7.7 mV	8.99 ft	220.00 ml/min
9/15/2020 5:05 PM	05:00	5.94 pH	20.51 °C	438.55 μS/cm	0.80 mg/L	2.58 NTU	25.9 mV	8.99 ft	220.00 ml/min
9/15/2020 5:10 PM	10:00	6.00 pH	20.44 °C	434.83 μS/cm	0.29 mg/L	1.91 NTU	26.9 mV	9.09 ft	220.00 ml/min
9/15/2020 5:15 PM	15:00	5.99 pH	20.43 °C	439.04 μS/cm	0.18 mg/L	1.39 NTU	31.5 mV	9.11 ft	220.00 ml/min
9/15/2020 5:20 PM	20:00	6.00 pH	20.36 °C	442.14 μS/cm	0.15 mg/L	0.69 NTU	33.1 mV	9.09 ft	220.00 ml/min

Samples

Sample ID:	Description:
BRGWC-25I	

Created using VuSitu from In-Situ, Inc.

Date: 2020-09-16 14:37:49

Project Information:

Operator Name A. McClure Company Name **Golder Associates** Project Name Plant Branch Site Name Plant Branch 0° 0' 0" Latitude 0° 0' 0" Longitude

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene Tubing Diameter 0.170 in

Tubing Length 28.41 ft

Sonde SN 465016 Turbidity Make/Model LaMotte 2020we

Pump placement from TOC 28.41 ft

Well Information:

Well ID BRGWC-27I Well diameter 2 in Well Total Depth 33.41 ft Screen Length 10 ft Depth to Water 4.85 ft

Pumping Information:

Final Pumping Rate 225 mL/min Total System Volume 0.4089758 L Calculated Sample Rate 300 sec Stabilization Drawdown 0.6 in **Total Volume Pumped** 5.63 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	14:15:00	300.02	20.79	5.53	484.14	0.40	4.89	1.59	49.30
Last 5	14:20:00	600.01	20.79	5.66	481.87	0.70	4.90	1.76	42.61
Last 5	14:25:00	900.00	20.75	5.73	483.19	0.62	4.90	1.46	39.73
Last 5	14:30:00	1199.99	20.76	5.78	484.11	0.13	4.90	1.26	38.69
Last 5	14:35:00	1499.98	20.77	5.81	484.18	0.12	4.90	1.38	38.44
Variance 0			-0.04	0.07	1.32			-0.31	-2.88
Variance 1			0.02	0.05	0.92			-0.20	-1.04
Variance 2			0.00	0.03	0.07			0.12	-0.25

Notes

Date: 2020-09-15 17:43:48

Tubing Length

Project Information:

Operator Name A. McClure Company Name **Golder Associates** Project Name Plant Branch Site Name Plant Branch 0° 0' 0" Latitude 0° 0' 0" Longitude

Pump Information: Pump Model/Type Tubing Type Tubing Diameter

QED Well Wizard polyethylene 0.170 in

465016

LaMotte 2020we

Pump placement from TOC

17.35 ft

17.35 ft

Well Information:

Turbidity Make/Model

Sonde SN

Well ID BRGWC-29I Well diameter 2 in Well Total Depth 23.63 ft Screen Length 10 ft Depth to Water 10.07 ft

Pumping Information:

Final Pumping Rate 200 mL/min Total System Volume 0.3643416 L Calculated Sample Rate 300 sec Stabilization Drawdown 0.72 in **Total Volume Pumped** 8 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization	1		+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	17:21:27	1200.00	21.73	4.49	554.69	0.20	10.12	0.60	63.13
Last 5	17:26:27	1499.98	21.69	4.51	553.03	0.21	10.12	0.79	57.77
Last 5	17:31:27	1799.98	21.66	4.53	556.45	0.11	10.12	0.49	55.77
Last 5	17:36:27	2099.97	21.64	4.53	557.30	0.76	10.12	0.67	54.44
Last 5	17:41:27	2399.96	21.59	4.53	555.43	0.40	10.13	0.51	55.06
Variance 0			-0.04	0.02	3.41			-0.30	-2.00
Variance 1			-0.02	0.00	0.85			0.18	-1.33
Variance 2			-0.04	-0.00	-1.87			-0.16	0.61

Notes

Date: 2020-09-16 10:18:32

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude

A. McClure
Golder Associates
Plant Branch
Plant Branch
0° 0' 0"

O° 0' 0"

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene Tubing Diameter 0.170 in Tubing Length 17.35 ft

Sonde SN 465016 Turbidity Make/Model LaMotte 2020we

Pump placement from TOC 17.35 ft

Well Information:

Well IDBRGWC-30IWell diameter2 inWell Total Depth22.35 ftScreen Length10 ftDepth to Water3.90 ft

Pumping Information:

Final Pumping Rate 225 mL/min
Total System Volume 0.3598782 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 1.92 in
Total Volume Pumped 5.63 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	/cmTurb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	10:01:18	600.02	20.94	6.23	864.78	4.05	4.05	0.40	39.46
Last 5	10:06:18	900.00	20.75	6.26	863.74	2.06	4.05	0.28	37.78
Last 5	10:11:18	1199.99	20.70	6.28	870.18	2.83	4.05	0.21	34.76
Last 5	10:16:18	1499.98	20.68	6.29	867.65	3.11	4.06	0.20	34.25
Last 5									
Variance 0			-0.19	0.03	-1.04			-0.12	-1.68
Variance 1			-0.05	0.02	6.44			-0.07	-3.02
Variance 2			-0.02	0.01	-2.53			-0.01	-0.51

Notes

first reading skipped; DUP-1 taken here

Date: 2020-09-16 09:18:53

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude

A. McClure
Golder Associates
Plant Branch
Plant Branch
O° 0' 0"

O° 0' 0"

Pump Information:

Pump Model/Type QED Well Wizard Tubing Type polyethylene Uning Diameter Uning Length QED Well Wizard polyethylene O.170 in 43 ft

Sonde SN 465016

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

43 ft

Well Information:

Well ID BRGWC-32S
Well diameter 2 in
Well Total Depth 48 ft
Screen Length 10 ft
Depth to Water 34.68 ft

Pumping Information:

Final Pumping Rate 120 mL/min
Total System Volume 0.4759272 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 7.32 in
Total Volume Pumped 3 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond μS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	08:56:21	300.10	19.39	5.53	598.26	0.74	35.22	5.34	84.83
Last 5	09:01:21	600.01	19.27	5.61	600.12	0.26	35.25	5.12	70.92
Last 5	09:06:21	900.00	19.23	5.71	604.22	0.16	35.27	4.86	63.65
Last 5	09:11:21	1200.02	19.17	5.77	604.84	0.24	35.28	4.69	59.65
Last 5	09:16:23	1502.01	19.18	5.79	607.34	0.19	35.29	4.63	57.89
Variance 0			-0.04	0.09	4.10			-0.25	-7.27
Variance 1			-0.06	0.06	0.62			-0.17	-4.00
Variance 2			0.01	0.02	2.50			-0.06	-1.75

Notes

Date: 2020-09-16 13:09:55

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder Associates
Plant Branch
Plant Branch
O° 0' 0"

465016

Pump Information:

Pump Model/Type QED Sample Pro
Tubing Type polyethylene
Tubing Diameter 0.170 in

Tubing Length 55.53 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

55.53 ft

Well Information:

Well ID BRGWC-45
Well diameter 2 in
Well Total Depth 60.53 ft
Screen Length 10 ft
Depth to Water 11.44 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.5294883 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 3.12 in
Total Volume Pumped 6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	12:47:25	600.01	21.51	5.51	525.78	8.15	11.69	0.72	33.87
Last 5	12:52:25	900.00	21.43	5.42	515.34	5.64	11.69	0.51	27.94
Last 5	12:57:25	1199.99	21.50	5.36	505.17	4.90	11.70	0.37	24.98
Last 5	13:02:25	1499.99	21.54	5.31	497.53	5.06	11.70	0.29	23.53
Last 5	13:07:25	1799.98	21.47	5.27	491.56	3.78	11.70	0.23	23.30
Variance 0			0.07	-0.06	-10.17			-0.14	-2.97
Variance 1			0.05	-0.05	-7.64			-0.09	-1.44
Variance 2			-0.08	-0.05	-5.97			-0.06	-0.23

Notes

Date: 2020-09-16 11:41:26

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder Associates
Plant Branch
Plant Branch
O° 0' 0"

465016

Pump Information:

Pump Model/Type QED Sample Pro
Tubing Type polyethylene
Tubing Diameter 0.170 in
Tubing Length 92 ft

Turbidity Make/Model LaMotte 2020we Pump placement from TOC

92 ft

Well Information:

Well ID BRGWC-47
Well diameter 2 in
Well Total Depth 97.08 ft
Screen Length 10 ft
Depth to Water 23.58 ft

Pumping Information:

Final Pumping Rate 120 mL/min
Total System Volume 0.6946349 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 7.2 in
Total Volume Pumped 3.6 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS,	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	11:18:43	600.01	20.10	5.80	2181.78	31.70	24.06	0.83	43.68
Last 5	11:23:43	900.00	19.99	5.78	2190.66	27.10	24.11	0.43	40.26
Last 5	11:28:43	1199.99	19.86	5.77	2197.89	13.22	24.14	0.27	41.07
Last 5	11:33:43	1499.99	19.77	5.77	2208.32	6.53	24.17	0.20	39.83
Last 5	11:38:43	1799.97	19.72	5.76	2213.55	4.23	24.18	0.16	39.89
Variance 0			-0.13	-0.01	7.24			-0.16	0.81
Variance 1			-0.09	-0.00	10.43			-0.08	-1.24
Variance 2			-0.05	-0.00	5.22			-0.04	0.06

Notes

Low-Flow Test Report:

Test Date / Time: 9/17/2020 9:14:57 AM

Project: Plant Branch

Operator Name: Travis Martinez

Location Name: BRGWC-50

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 58.76 ft Total Depth: 68.76 ft

Initial Depth to Water: 36.85 ft

Pump Type: QED Sample Pro Tubing Type: Polyethylene

Pump Intake From TOC: 63.76 ft
Estimated Total Volume Pumped:

10850 ml

Flow Cell Volume: 90 ml Final Flow Rate: 155 ml/min Final Draw Down: -0.07 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 5	+/- 5 %	+/- 10 %	+/- 5	+/- 25	+/- 0.3	
9/17/2020 9:14 AM	00:00	5.44 pH	23.08 °C	2,172.7 μS/cm	4.18 mg/L	4.80 NTU	50.0 mV	36.85 ft	155.00 ml/min
9/17/2020 9:19 AM	05:00	4.93 pH	21.94 °C	2,283.4 μS/cm	1.47 mg/L	17.10 NTU	66.9 mV	36.90 ft	155.00 ml/min
9/17/2020 9:24 AM	10:00	5.04 pH	21.76 °C	2,296.4 μS/cm	0.87 mg/L	8.09 NTU	98.3 mV	36.90 ft	155.00 ml/min
9/17/2020 9:29 AM	15:00	5.05 pH	21.73 °C	2,295.9 μS/cm	0.70 mg/L	6.59 NTU	99.7 mV	36.92 ft	155.00 ml/min
9/17/2020 9:34 AM	20:00	4.92 pH	21.78 °C	2,296.0 μS/cm	0.64 mg/L	9.00 NTU	97.3 mV	36.92 ft	155.00 ml/min
9/17/2020 9:39 AM	25:00	4.74 pH	21.79 °C	2,292.3 µS/cm	0.52 mg/L	10.11 NTU	81.1 mV	36.92 ft	155.00 ml/min
9/17/2020 9:44 AM	30:00	4.59 pH	21.75 °C	2,287.5 μS/cm	0.42 mg/L	10.38 NTU	45.4 mV	36.90 ft	155.00 ml/min
9/17/2020 9:49 AM	35:00	4.47 pH	21.82 °C	2,303.1 μS/cm	0.29 mg/L	11.10 NTU	55.0 mV	36.83 ft	155.00 ml/min
9/17/2020 9:54 AM	40:00	4.42 pH	21.96 °C	2,283.7 μS/cm	0.22 mg/L	9.97 NTU	48.5 mV	36.76 ft	155.00 ml/min
9/17/2020 9:59 AM	45:00	4.40 pH	22.00 °C	2,245.4 μS/cm	0.17 mg/L	8.61 NTU	34.6 mV	36.76 ft	155.00 ml/min
9/17/2020 10:04 AM	50:00	4.40 pH	22.02 °C	2,295.4 μS/cm	0.12 mg/L	11.66 NTU	28.9 mV	36.78 ft	155.00 ml/min
9/17/2020 10:09 AM	55:00	4.40 pH	22.05 °C	2,288.2 μS/cm	0.10 mg/L	6.67 NTU	27.8 mV	36.78 ft	155.00 ml/min
9/17/2020 10:14 AM	01:00:00	4.40 pH	21.94 °C	2,250.2 μS/cm	0.09 mg/L	4.88 NTU	24.3 mV	36.78 ft	155.00 ml/min
9/17/2020 10:19 AM	01:05:00	4.41 pH	21.74 °C	2,316.1 μS/cm	0.09 mg/L	4.69 NTU	25.8 mV	36.78 ft	155.00 ml/min
9/17/2020 10:24 AM	01:10:00	4.41 pH	21.69 °C	2,304.9 μS/cm	0.08 mg/L	4.12 NTU	26.0 mV	36.78 ft	155.00 ml/min

9/17/2020	01:11:01	4.41 pH	21.69 °C	2,291.3	0.08 mg/L	27.1 mV	36.78 ft	155.00 ml/min
10:25 AM	01.11.01	4.41 pm	21.09 C	μS/cm	0.06 mg/L	27.11110	30.76 11	155.00 1111/111111

Samples

Sample ID:	Description:
BRGWC-50	

Created using VuSitu from In-Situ, Inc.

Date: 2020-09-17 10:09:00

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

A. McClure
Golder Associates
Plant Branch
Plant Branch
O° 0' 0"

465016

Pump Information:

Pump Model/Type QED Sample Pro
Tubing Type polyethylene
Tubing Diameter 0.170 in
Tubing Length 71 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

71 ft

Well Information:

Well IDBRGWC-52IWell diameter2 inWell Total Depth76.6 ftScreen Length10 ftDepth to Water37.93 ft

Pumping Information:

Final Pumping Rate 220 mL/min
Total System Volume 0.6009031 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 5.88 in
Total Volume Pumped 13.2 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	09:41:56	2099.97	20.38	6.45	508.85	0.78	38.41	0.09	-34.83
Last 5	09:51:56	2699.95	20.35	6.30	500.29	0.56	38.41	0.07	-16.81
Last 5	09:56:56	2999.94	20.43	6.21	491.65	0.40	38.42	0.06	-13.18
Last 5	10:01:56	3299.93	20.52	6.17	487.07	0.39	38.42	0.06	-5.76
Last 5	10:06:56	3599.93	20.66	6.12	484.89	0.32	38.42	0.05	-0.50
Variance 0			0.08	-0.09	-8.64			-0.01	3.63
Variance 1			0.08	-0.05	-4.57			-0.01	7.42
Variance 2			0.14	-0.05	-2.18			-0.01	5.26

Notes

Date: 2020-09-17 13:04:18

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Company Name
Plant Branch
Plant Branch
O° 0' 0"

Company Name
Plant Branch
O° 0' 0"

Company Name
Plant Branch
O° 0' 0"

Company Name
O° 0' 0"

Pump Information:

Pump Model/Type QED Sample Pro
Tubing Type polyethylene
Tubing Diameter 0.170 in
Tubing Length 63 ft

Longitude 0° 0' 0" Sonde SN 465016

LaMotte 2020we Pump placement from TOC

63 ft

Well Information:

Turbidity Make/Model

Well IDPZ-51IWell diameter2 inWell Total Depth68 ftScreen Length5 ftDepth to Water37.16 ft

Pumping Information:

Final Pumping Rate 160 mL/min
Total System Volume 0.5651957 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 5.64 in
Total Volume Pumped 4 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0	+/- 0.1	+/- 5%	+/- 5		+/- 10%	+/- 10
Last 5	12:42:05	300.03	21.73	5.46	1809.15	11.23	37.57	0.78	57.00
Last 5	12:47:05	600.01	21.49	5.17	1821.21	8.12	37.59	0.61	55.51
Last 5	12:52:05	900.01	21.46	5.03	1824.66	6.92	37.60	0.49	51.86
Last 5	12:57:05	1200.00	21.45	4.97	1825.51	5.38	37.62	0.41	47.15
Last 5	13:02:05	1499.99	21.46	4.93	1821.79	3.99	37.63	0.35	42.34
Variance 0			-0.03	-0.15	3.46			-0.12	-3.65
Variance 1			-0.01	-0.06	0.84			-0.09	-4.71
Variance 2			0.00	-0.03	-3.72			-0.06	-4.81

Notes

Low-Flow Test Report:

Test Date / Time: 9/17/2020 12:09:03 PM

Project: Plant Branch

Operator Name: Travis Martinez

Location Name: PZ-51S
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 42.98 ft
Total Depth: 47.98 ft

Initial Depth to Water: 37.19 ft

Pump Type: QED Sample Pro
Tubing Type: Polyethylene
Pump Intake From TOC: 45 ft
Estimated Total Volume Pumped:

3450 ml

Flow Cell Volume: 90 ml Final Flow Rate: 115 ml/min Final Draw Down: 1.41 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Started purge at 1205

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 5	+/- 5 %	+/- 10 %	+/- 5	+/- 25	+/- 0.3	
9/17/2020 12:09 PM	00:00	6.04 pH	23.38 °C	187.20 μS/cm	1.52 mg/L	11.70 NTU	59.5 mV	37.19 ft	115.00 ml/min
9/17/2020 12:14 PM	05:00	5.95 pH	22.00 °C	186.31 μS/cm	0.90 mg/L	10.89 NTU	73.6 mV	38.02 ft	115.00 ml/min
9/17/2020 12:19 PM	10:00	5.88 pH	21.81 °C	185.51 μS/cm	0.75 mg/L	6.50 NTU	74.3 mV	38.33 ft	115.00 ml/min
9/17/2020 12:24 PM	15:00	5.84 pH	21.55 °C	183.99 μS/cm	0.52 mg/L	3.79 NTU	60.3 mV	38.48 ft	115.00 ml/min
9/17/2020 12:29 PM	20:00	5.81 pH	21.56 °C	182.37 μS/cm	0.35 mg/L	3.25 NTU	72.7 mV	38.52 ft	115.00 ml/min
9/17/2020 12:34 PM	25:00	5.77 pH	21.57 °C	181.78 μS/cm	0.32 mg/L	2.91 NTU	58.7 mV	38.60 ft	115.00 ml/min

Samples

Sample ID:	Description:
PZ-51S	

Created using VuSitu from In-Situ, Inc.

Date: 2020-10-26 17:05:39

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

K. Minkara
Golder
166625418
Plant Branch
0° 0' 0"
0° 0' 0"
597519

Pump Information:

Pump Model/Type SamplePro
Tubing Type polyethylene
Tubing Diameter 0.170 in
Tubing Length 105 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC

105 ft

Well Information:

Well IDPZ-50DWell diameter2 inWell Total Depth109.00 ftScreen Length10 ftDepth to Water36.95 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.6836594 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 751.08 in
Total Volume Pumped 47 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS,	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.5	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 10
Last 5	16:40:48	14714.08	20.87	6.65	1400.48	3.21	95.69	1.32	-270.29
Last 5	16:45:48	15014.08	20.88	6.65	1402.15	1.11	96.96	1.36	-264.37
Last 5	16:50:48	15314.08	20.88	6.66	1404.54	2.12	97.93	1.40	-252.38
Last 5	16:55:48	15614.09	20.86	6.66	1406.76	2.25	99.17	1.45	-240.95
Last 5	17:00:48	15914.09	20.89	6.66	1408.42	1.20	99.54	1.51	-230.95
Variance 0			-0.01	0.00	2.39			0.05	11.99
Variance 1			-0.02	0.01	2.23			0.05	11.43
Variance 2			0.03	0.00	1.65			0.05	10.00

Notes

NO SAMPLE TAKEN. Purged to top of screen. Initial WL = 36.95'. See purge form for flow rate changes for volume removed calculation.

Date: 2020-10-27 09:43:36

Pump Information:

Project Information:

Operator Name K. Minkara Pump Model/Type SamplePro Company Name Golder **Tubing Type** polyethylene Project Name Tubing Diameter 0.170 in 166625418 Tubing Length Site Name Plant Branch 105 ft

 Latitude
 0° 0' 0"

 Longitude
 0° 0' 0"

 Sonde SN
 597519

Turbidity Make/Model LaMotte 2020we Pump placement from TOC 105 ft

Well Information: Pumping Information:

Final Pumping Rate Well ID PZ-50D 0 mL/min Well diameter 2 in Total System Volume 0.6836594 L Calculated Sample Rate Well Total Depth 109.00 ft 45 sec Stabilization Drawdown Screen Length 10 ft 0 in Depth to Water 0 L 76.95 ft **Total Volume Pumped**

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.5	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 10
Last 5	09:41:51	45.05	20.93	6.47	1346.80	1.46	76.95	7.89	308.14
Last 5	09:42:36	90.03	20.94	6.53	1340.23			7.80	294.32
Last 5									
Last 5									
Last 5									
Variance 0			nan	nan	nan			nan	nan
Variance 1			0.02	0.06	-6.57			-0.09	-13.82
Variance 2			0.00	0.00	0.00			0.00	0.00

Notes

Sampled at 940. Purged to top of screen (99.54ft) on 10/26/2020, 17:00.

Date: 2020-10-27 12:48:29

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

K. Minkara
Golder
166625418
Plant Branch
0° 0' 0"

0° 0' 0"
597519

Pump Information:

Pump Model/Type SamplePro
Tubing Type polyethylene
Tubing Diameter 0.170 in
Tubing Length 105 ft

Turbidity Make/Model LaMotte 2020we Pump placement from TOC

105 ft

Well Information:

Well IDPZ-51DWell diameter2 inWell Total Depth110.15 ftScreen Length10 ftDepth to Water39.65 ft

Pumping Information:

Final Pumping Rate 100 mL/min
Total System Volume 0.6836594 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 161.64 in
Total Volume Pumped 17.5 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.5	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 10
Last 5	12:25:02	5704.05	22.09	6.78	973.67	1.13	52.43	0.59	29.05
Last 5	12:30:04	6006.05	21.94	6.79	976.58	2.14	52.68	0.54	46.54
Last 5	12:35:04	6306.05	22.26	6.79	984.87	1.70	52.84	0.55	60.56
Last 5	12:40:05	6607.05	22.23	6.78	989.23	1.52	53.03	0.52	70.51
Last 5	12:45:05	6907.05	22.16	6.79	988.42	1.73	53.12	0.50	80.90
Variance 0			0.32	-0.00	8.29			0.01	14.02
Variance 1			-0.04	-0.00	4.36			-0.03	9.95
Variance 2			-0.07	0.00	-0.81			-0.03	10.40

Notes

Sampled at 1245. See purge form for volume calculation

Date: 2020-10-27 14:13:51

Project Information:

Operator Name
Company Name
Project Name
Site Name
Latitude
Longitude
Sonde SN

K. Minkara
Golder
166625418
Plant Branch
0° 0' 0"

0° 0' 0"
597519

Pump Information:

Pump Model/Type SamplePro
Tubing Type polyethylene
Tubing Diameter 0.170 in
Tubing Length 60 ft

Turbidity Make/Model LaMotte 2020we

Pump placement from TOC 60 ft

Well Information:

Well IDPZ-51IWell diameter2 inWell Total Depth65 ftScreen Length10 ftDepth to Water38.32 ft

Pumping Information:

Final Pumping Rate 200 mL/min
Total System Volume 0.4828054 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 7.56 in
Total Volume Pumped 8 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.5	+/- 0.1	+/- 5%	+/- 10		+/- 10%	+/- 10
Last 5	13:50:57	1200.03	22.51	5.54	1807.77	1.89	38.95	1.18	206.64
Last 5	13:55:58	1501.03	22.86	5.52	1805.17	1.67	38.95	0.97	209.74
Last 5	14:00:58	1801.04	22.90	5.50	1803.92	1.33	38.95	0.83	214.20
Last 5	14:05:58	2101.04	22.94	5.49	1808.67	1.43	38.95	0.71	223.54
Last 5	14:10:58	2401.04	22.22	5.49	1810.39	0.78	38.95	0.63	231.21
Variance 0			0.04	-0.01	-1.24			-0.14	4.46
Variance 1			0.04	-0.01	4.74			-0.12	9.34
Variance 2			-0.71	-0.00	1.73			-0.08	7.68

Notes

Sampled at 1410. FD here

Plant Branch

D. Cox / T. Martinez Field Staff

9th Sample Event

Instrument Calibration

Date: 3-3-2026 Date: 3-4-2026 Date: 3-5-2026 Date: Time: 0719 Time: 0719 Time: 0744 Time:

Parameter	Units	Standard	SmarTROLL SN <u>646773</u>	SmarTROLL SN 646773	SmarTROLL SN <u>646773</u>	SmarTROLL SN
DO	% saturation	100	91.8%	91,2%	90.8%	
Conductivity	us/cm444t	1000 4490 m	4845	4381	4404	
рH	S.U.	4.00	4.46	4,45	4.52	
ρН	S.U.	7.00	M7-60 7.22	7.26	7,29	
ρH	S.U.	10.00	iD.00	10.00	10.03	
ORP	mV	228.00	235.3	233.9	233,8	

	Units	Standard	LaMotte SN	LaMotte SN	LaMotte SN	LaMotte SN
Turbidity	NTU	0.0				
1	NTU	1.0				
	NTU	10.0				

Date: Date: Date: Date: Time: Time: Time: Time: **SmarTROLL SmarTROLL SmarTROLL SmarTROLL Parameter** Units Standard SN SN SN SN_ DO % saturation 100 us/cm 4490 TA Conductivity S.U. рΗ 4.00 S.U. рΗ 7.00 S.U. 10.00 pН ORP mV 228.00 Maru 4 Mary 5 March 3 LaMotte SN LaMotte SN LaMotte SN LaMotte SN Units **Standard** 2289-2672 2289-2672 2289-2677

Turbidity NTU 0.0 -0.62 -0.07 0.01 1.04 NTU 1.0 80,1 :00 NTU 10.0 0.56

Plant Branch

Field Staff

D. Cox / T. Martinez

9th Sample Event

Instrument Calibration

Date: 3/3/2020 Date: 3-5-2020 Date: 3-5-2020 Date:

Time: 720 Time: 720 Time: 725 Time:

Parameter	Units	Standard	SmarTROLL SN <u>(43819</u>	SmarTROLL SN <u>(473), G</u>	SmarTROLL SN <u>643619</u>	
DO	% saturation	100	95.6	95.7	94.9	
Conductivity	us/cm	4100	9580	4268	4318	
pН	S.U.	4.00	4.71	4.67	4,91	
pН	S.U.	7.00	7.48	7,49	7.66	
pН	S.U.	10.00	10,19	10.21	16.33	
ORP	m∨	228.00	218,6	217.9	212.6	

	Units	Standard	LaMotte SN つらなり	LaMotte SN	LaMotte SN プロフ	LaMotte SN
Turbidity	NTU	0.0	0.0	0.0	0.0	
	NTU	1.0	1.12	1.07	0.99	
	NTU	10.0	9,27	9,41	9.78	

Date: Time:

Date: Time: Date: Time:

Date: Time:

Parameter	Units	Standard	SmarTROLL SN	SmarTROLL SN	SmarTROLL SN	SmarTROLL SN
DO	% saturation	100				
Conductivity	us/cm	A-64400 AA4			,	
pН	S.U.	4.00				
pН	S.U.	7.00				
pН	S.U.	10.00				
ORP	m∨	228.00				

Turbidity	Units	Standard	LaMotte SN	LaMotte SN	LaMotte SN	LaMotte SN
laiblaity	NTU	0.0				
	NTU	1.0				
	NTU	10.0				

Plant Branch

Field Staff

A. McClure/ T. Martinez

September App III/IV Event

Instrument Calibration

Date: 9-15-200 Date: 9-16-7 Date: 7-17 Date: Time: 0748 Time: 0700 Time: 0700 Time:

Parameter	Units	Standard	SmarTROLL SN 728550	SmarTROLL SN <u>72∦550</u>	SmarTROLL SN <u>ファルシン</u>	
DO	% saturation	100	101	98.44	98.54	
Conductivity	us/cm	4490	4217	4421	4450	
pН	S.U.	4.00	3.99	3,99	4.05	
pН	S.U.	7.00	7.37	7.00	6.98	
рН	S.U.	10.00	10.67	9.99	10.03	
ORP	mV	228.00	263.0	234.5	227.4	

	Units	Standard	LaMotte SN 1915 - 1916	LaMotte SN 7007-1416	LaMotte SN 7007.14/6	LaMotte SN
Turbidity	NTU	0.0	0.01	0.00	0.00	
	NTU	1.0	0.90	1.03	0.98	
	NTU	10.0	10.86	9,95	10,21	

Date:

Date:

Date:

Date: Time:

Time:

Time:

Time:

Parameter	Units	Standard	SmarTROLL SN	SmarTROLL SN	SmarTROLL SN	SmarTROLL SN
DO	% saturation	100				
Conductivity	us/cm	4490				
pН	S.U.	4.00				
pН	S.U.	7.00				
pН	S.U.	10.00				
ORP	mV	228.00				

2 1985	Units	Standard	LaMotte SN	LaMotte SN	LaMotte SN	LaMotte SN
Turbidity	NTU	0.0				
	NTU	1.0				
	NTU	10.0				

Project Field Staff

v

Plant Branch

A. McClure/ T. Martinez

September App III/IV Event

Instrument Calibration

Date: 9/15/20Date: 9/10/20 Date: 9/17/20Date: Time: 0 755 Time: 0 755 Time:

Parameter	Units	Standard	SmarTROLL SN465016	SmarTROLL SN 4 6 5016		
DO	% saturation	100	96.3	94.3	96.2	
Conductivity	us/cm	4490	4548	4483	4482	
pН	S.U.	4.00	4.04	4.09	4-12	
pН	S.U.	7.00	7.00	6.98	6-98	
pН	S.U.	10.00	9.95	9.89	9.86	
ORP	mV	228.00	219.3	224.0	224-0	

	Units	Standard	LaMotte SN 2279-2612	LaMotte SN 2279-2412	LaMotte SN 227 9-2612	LaMotte SN
Turbidity	NTU	0.0	0.00	0.00	0,00	
	NTU	1.0	1.07	1.04	1-12	
	NTU	10.0	9.90	9.86	10.03	

Date: Time: Date: Time: Date: Time: Date: Time:

Parameter	Units	Standard	SmarTROLL SN	SmarTROLL SN	SmarTROLL SN	SmarTROLL SN
DO	% saturation	100				
Conductivity	us/cm	4490				
pН	S.U.	4.00				
pН	S.U.	7.00				
pН	S.U.	10.00				
ORP	mV	228.00				

	Units	Standard	LaMotte SN	LaMotte SN	LaMotte SN	LaMotte SN
Turbidity -	NTU	0.0				
	NTU	1.0			4	
	NTU	10.0				

Plant Branch

Field Staff

D.Thomas

Instrument Calibration

Date: 10-13-20

Time: |200

Parameter	Units	Standard	SmarTROLL SN <u>643819</u> iPad # <u>79</u>	SmarTROLL SN iPad #	SmarTROLL SN iPad #	SmarTROLL SN iPad #
DO	% saturation	100	92.7			
Conductivity	us/cm	4490	4485			
pН	S.U.	4.00	974.00 4.12			
pН	S.U.	7.00	7.02			
pН	S.U.	10.00	9.89			
ORP	m∨	228.00	228.00			

Turbidity	Units	Standard	LaMotte SN 2453-0413	LaMotte SN	LaMotte SN	LaMotte SN
	NTU	0.0	0.0			
	NTU	1.0	1.0			
	NTU	10.0	10.0			

Date: 10-14-20

Time: 0810

Parameter	Units	Standard	SmarTROLL SN <u>(443819</u> iPad # <u>71</u>	SmarTROLL SN iPad #	SmarTROLL SN iPad #	SmarTROLL SN _ iPad #
DO	% saturation	100	91.3			and the second second
Conductivity	us/cm	4490	4255			
pН	S.U.	4.00	4.20			
pН	S.U.	7.00	7.04	1		
рН	S.U.	10.00	9.86			
ORP	mV	228.00	2322			

	Units	Standard	LaMotte SN 2953-0413	LaMotte SN	LaMotte SN	LaMotte SN
Turbidity	NTU	0.0	0.0			
	NTU	1.0	1.0			
	NTU	10.0	10.0			

Project Field Staff Plant Branch D.Thomas

Instrument Calibration

Date: 0830-1015-20Time: W

	DI	A Commercial Action
:	W-15-20	0830

Parameter	Units	Standard	SmarTROLL SN <u>643819</u> iPad # <u>7</u> 9	SmarTROLL SN iPad #	SmarTROLL SN iPad #	SmarTROLL SN iPad #
DO	% saturation	100	92.30			
Conductivity	us/cm	4490	4288			
pН	S.U.	4.00	14.16			
pН	S.U.	7.00	7.03			
pН	S.U.	10.00	9.90			
ORP	m∨	228.00	224.4			

	Units	Standard	LaMotte SN 2953-0413	LaMotte SN	LaMotte SN	LaMotte SN
Turbidity	NTU	0.0	0,0			
	NTU	1.0	1.0			
	NTU	10.0	10,0			

Date:

Time:

Parameter	Units	Standard	SmarTROLL SN iPad #	SmarTROLL SN iPad #	SmarTROLL SN iPad #	SmarTROLL SN iPad #
DO	% saturation	100				
Conductivity	us/cm	4490				
pН	S.U.	4.00				
pН	S.U.	7.00				
pН	S.U.	10.00				
ORP	mV	228.00				

	Units	Standard	LaMotte SN	LaMotte SN	LaMotte SN	LaMotte SN
Turbidity -	NTU	0.0				
Ī	NTU	1.0				
	NTU	10.0				

APPENDIX A

CERTIFIED WELL SURVEY REPORT

1469 HIGHWAY 20 WEST • McDonough, GA 30253 phone: 770-707-0777 fax: 770.707-0755 WWW.METRO-ENGINEERING.COM

SURVEYOR'S REPORT

SCOPE OF WORK:

Field survey of existing monitoring wells at Georgia Power Company, Plant Branch in Milledgeville, GA.

Horizontal and vertical datum were derived from RTK GPS observations with corrections from the eGPS network and conventional surveying equipment. Horizontal datum is Georgia State Plane, West Zone, NAD83(2011) and vertical datum is NAVD88.

EQUIPMENT USED TO ESTABLISH THE MONITORING WELL LOCATIONS:

Trimble R8 Dual Frequency GPS Receiver Leica TS16 Total Station Leica DNA10 Digital Level

CERTIFICATION:

I hereby certify that the center of well casing (PVC) has a horizontal accuracy of 0.5+/- feet or better using a Trimble R8 Dual Frequency RTK (survey-grade) global positioning system receiver referencing the Georgia State Plane, west zone, NAD83(2011) coordinate system in US survey feet. The top of well casing (PVC) elevation data was determined in feet above mean sea level based on the NAVD88 vertical datum. Vertical data was confirmed to be accurate within 0.01 foot through establishment of a closed level check loop with a Leica DNA10 digital level having a published accuracy of 0.9mm per dual-traverse kilometer.

dames R. Green R.L.S. No. 2543

Date: 11/4/20

Plant Branch
Monitoring Well Locations
November 3, 2020

	,		NAIL	NAIL	NAIL	PVC	,	PVC	ELEV AT BASE
Well ID	LATITUDE	LONGITUDE	NORTHING	EASTING	ELEVATION	NORTHING	PVC EASTING	ELEVATION	CONC/GRD
IW-E-1	N33.198117	W83.327753	1164319.1	2553199.5	436.39	1164318.5	2553200.4	439.49	436.4
IW-D-2	N33.192791	W83.311136	1162422.3	2558298.6	407.12	1162422.3	2558297.6	409.93	407.1
IW-D-1	N33.191078	W83.310119	1 161801. 4	2558614.9	403.61	1161801.5	2558614.0	406.44	403.6
IW-C-2	N33,190286	W83.305869	1161524.2	2559917.4	395.11	1161523.0	2559917.3	397.64	395.1
IW-C-1	N33.190367	W83.308256	1161547.4	2559187.0	395.35	1161546.3	2559186.8	398.00	395.4
IW-B-2	N33.193317	W83.304804	1162629.5	2560234.0	378.60	1162630.0	2560233.2	381.32	378.6
PZ-50D	N33.190410	W83.297817	1161589.4	2562380.3	378.32	1161588.9	2562381.2	380.86	378.3
PZ-51D	N33.190548	W83.297643	1161640.3	2562433.0	378.12	1161639.8	2562434.0	380.75	378.1
IW-B-1	N33,189085	W83.300799	1161099.7	2561472.0	376.29	1161100.8	2561471.6	379.01	376.3

APPENDIX A WELL INSPECTION LOGS

Well-ID	POSITION	LOCATION / IDENTIFICATION a. Is the well visible and accessible? b. Is the well property identified/Correct Well ID? c. Is the well in high traffic area require traffic Protection? d. Is the drainage around the well acceptable (No standing water)? (Y / N / NA)	PROTECTIVE CASING a. Is protective casing free from damage/ b. Is casing free of degradation or deterioration/ c. Does casing have functioning weep hole? d. Is the annual space clear of debirs and water, or filled with pea gravel? e. Is the well locked and in good condition? (Y / N / NA)	SURFACE PAD a. Pad in Good Condition b. Pad Sloped away from Well? c. In contact with Protective Casing? d. In Contact with Ground Surface and Stable? e. Free of Debris? (Y / N / NA)	INTERNAL CASING a. Does the cap prevent entry of foreign material? b. Is the casing free of kinks or bends or any obstruction from foreigh objects? c. Is the well property vented for equilibrium of air pressure? d. Is the survey point clearly marked on the inner casing? e. Is the depth of the well consistent with the well log? f. Is the casing stable? (Y / N / NA)	SAMPLING (Groundwater Wells Only) a. Does well recharge adequately when purged? b. If dedicated sampling equipment installed, is it in good condition and specified in the approved groundater plan for the facility? c. Does the well require redevelopment? (Y / N / NA)
PZ-49	↑ or ↓	J	J		1	NA
TW-Cz-7	SW-8-2			Slightly overgrown	/	
IW-8-1		J	J	Might Jovenjus 1	1	NA NA
IW-D-1	0.5	/	J	1	1	NA
IW-E-1		/	1	J	1	NA
WO27	W-C-1	Access difficult - Parts overson	n /	/		NA
IW-C-2		Access difficult- Brighin		V	7	NA
IW-D-2	HE PRI	1	1	1		NA
DW-01		Did not	check during	this	event	NA
DW-02		Did not	check during	this 1	event	NA
PB-15		/ · · ·	,			NA
PB-2D	/	NOTE: All O	t the PB we	1/5 are jus-	+ the	
PB-4S				-		
PB-4D		2" PVC	. No concrete p	ads, no well	rasings.	
PB-75			T.			
PB-8D		10	locks.			
PB-85						
PB-10D	1			CHARLES NO.		
PB-10S						
PB-13D						X SET THE VALUE OF
PB-13S		1	1		4	4

^{1.} Provide pictures of any deficiencies.

INSPECTOR/DATE 8-21-2020

Well-ID		LOCATION / IDENTIFICATION a. Is the well visible and accessible? b. Is the well property identified/Correct Well ID? c. Is the well in high traffic area require traffic Protection? d. Is the drainage around the well acceptable (No standing water)? (Y / N / NA)	protective casing a. Is protective casing free from damage/ b. Is casing free of degradation or deterioration/ c. Does casing have functioning weep hole? d. Is the annual space clear of debirs and water, or filled with pea gravel? e. Is the well locked and in good condition? (Y / N / NA)	SURFACE PAD a. Pad in Good Condition b. Pad Sloped away from Well? c. In contact with Protective Casing? d. In Contact with Ground Surface and Stable? e. Free of Debris? (Y / N / NA)	material?	SAMPLING (Groundwater Wells Only) a. Does well recharge adequately when purged? b. If dedicated sampling equipment installed, is it in good condition and specified in the approved groundater plan for the facility? c. Does the well require redevelopment? (Y / N / NA)
BRGWA-2S	↑ or ↓	J	J	J		
BRGWA-21	ŶΕ	J	J	J.		
BRGWA-5S	ΛE	1	Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan		J.	J,
BRGWA-51	ΛE	J.	J	J	Ji	
BRGWA-6S	ΛE		J	J	1,	
BRGWA-12S	↑BCD	· /	V			J.
BRGWA-12I	↑BCD	1,	/	/	J,	J,
BRGWA-23S	↑BCD	J,		/	J,	<i>J</i> ,
BRGWC-25I	↓BCD	1	1	V.	J.	V ,
BRGWC-27I	↓BCD	J,	J.	J,	<i>J</i> ,	
BRGWC-29I	↓BCD	1	<i>J</i> ,	J,	1,	
BRGWC-30I	↓BCD	J,	4	V/	3/	J,
BRGWC-32S	↓BCD	J,	Y	V ,	1	<i>J</i> ,
BRGWC-33S	↓E	J,	J./	J	J,	J/.
BRGWC-34S	↓E	1	1	1	9/	V/
BRGWC-35S	ΨE	, , , , , , , , , , , , , , , , , , ,		,	,	1 0-0-0-1
BRGWC-17S	ΨE			,		I no fund dedicated
BRGWC-36S	ΨE	1	V	<i>J</i> ,	1	I no funt dedicated
BRGWC-37S	↓E		1		,	1
BRGWC-38S	↓E	, , , , , , , , , , , , , , , , , , ,	7	3/	1//	1 0 0 0 10 100
BRGWC-45 BRGWC-47	↓BCD ↓BCD	7		Small CRACK in Pad	1	I no fing dedicated
BRGWC-47	↓BCD	,		- Manchard Man		J
PZ-515	↑E	1	7	1	Delth: 47.98 (5000 1.34)	1

9-21-2020

Well-ID		LOCATION / IDENTIFICATION a. Is the well visible and accessible? b. Is the well property identified/Correct Well ID? c. Is the well in high traffic area require traffic Protection? d. Is the drainage around the well acceptable (No standing water)? (Y / N / NA)	b. Is casing free of degradation or deterioration/ c. Does casing have functioning weep hole? d. Is the annual space clear of debirs and	SURFACE PAD a. Pad in Good Condition b. Pad Sloped away from Well? c. In contact with Protective Casing? d. In Contact with Ground Surface and Stable? e. Free of Debris? (Y / N / NA)	INTERNAL CASING a. Does the cap prevent entry of foreign material? b. Is the casing free of kinks or bends or any obstruction from foreigh objects? c. Is the well property vented for equilibrium of air pressure? d. Is the survey point clearly marked on the inner casing? e. Is the depth of the well consistent with the well log? f. Is the casing stable? (Y / N / NA)	SAMPLING (Groundwater Wells Only) a. Does well recharge adequately when purged? b. If dedicated sampling equipment installed, is it in good condition and specified in the approved groundater plan for the facility? c. Does the well require redevelopment? (Y / N / NA)
PZ-51I	↑ or ↓	./	./	- 1	depth = 68.00 (not 650	0 / 00 0 00 /0 /00
BRGWC-52I	↓BCD	./	V,	1	der 14 -00.00 (NOT 052) I no fimp dedica
PZ-52D	↓E	y	7	//	/	U T
PZ-53D	↓E	J.	./.			
PZ-54	↓E	<i>y</i>	· /	1	~	_
PZ-15	1		7		J	
PZ -11		J	7	1	/	_
PZ-1D	III CEAN				1	
PZ -35		J		J	1	
PZ - 31	DE LOS	J.				
PZ- 3D		J,		J		
PZ- 4S	The state of	J			1.	
PZ - 41		J.	1	1	7	
PZ-7S	1000		J		1	
PZ- 8S		1.	1	J.	~	_
PZ-9S				1	1,	
PZ-105				1	1	_
PZ-115	No.	1	1		1,	
PZ-12D		_	<i>J.</i>	1	V,	_
PZ-13S	N	J,		J,		- Contact State Stat
PZ-14S	Ī.	V,	J,	J,	No Cap	
PZ -141	N. Carlot		J	4	1,	
PZ-15S		J,	V.		J.	_
PZ -15I		<i>\</i> ,	, 1,	1,	/	7
PZ-55		J	J	V	1	NIA
P2-56			+		4	+ NIA

INSPECTOR/DATE 2 2 8-21-2020

Well-ID	POSITION	LOCATION / IDENTIFICATION a. Is the well visible and accessible? b. Is the well property identified/Correct Well ID? c. Is the well in high traffic area require traffic Protection? d. Is the drainage around the well acceptable (No standing water)? (Y / N / NA)	 b. Is casing free of degradation or deterioration/ c. Does casing have functioning weep hole? 	SURFACE PAD a. Pad in Good Condition b. Pad Sloped away from Well? c. In contact with Protective Casing? d. In Contact with Ground Surface and Stable? e. Free of Debris? (Y / N / NA)	INTERNAL CASING a. Does the cap prevent entry of foreign material? b. Is the casing free of kinks or bends or any obstruction from foreigh objects? c. Is the well property vented for equilibrium of air pressure? d. Is the survey point clearly marked on the inner casing? e. Is the depth of the well consistent with the well log? f. Is the casing stable? (Y / N / NA)	SAMPLING (Groundwater Wells Only) a. Does well recharge adequately when purged? b. If dedicated sampling equipment installed, is it in good condition and specified in the approved groundater plan for the facility? e. C. Does the well require redevelopment? (Y / N / NA)
PZ-16S	1014	J.		Pad not Stable		
PZ -16I			/	Pad not Stable		ETINES STORY
PZ -171		J.	1	1	1.	
PZ-185			1	1.	1	_
PZ -18I		1	V.	J.	7	_
PZ-195					V,	
PZ -191		1	V	1		_
PZ-205		5		1,	1/	
PZ -201			V.			_
PZ-215		1			V.	
PZ -211			V.	/	V,	_
PZ-225			V	V,	V,	_
PZ-24S		J,	<i>J</i>	J,	<i>J.</i>	
PZ-261		1	J,	V		_
PZ-281		S,	V,		J	_
PZ-315		,	V,	V,	7	
PZ-231		Y	V		V	_
PZ-40S		1	J,	J_{I}	,	_
PZ-415		1/	J,	V/	1	
PZ-425	1000	1	J	V .	7	98 7
PZ-43		J	No casing	No Pad	Not vented	_
PZ-44		1,	J,	J,	J,	
PZ-46		4	V,	V ,	V ,	
PZ-48		V	V	/		

INSPECTOR/DATE 8-21-2020 / 22

Well-ID	POSITION	LOCATION / IDENTIFICATION a. Is the well visible and accessible? b. Is the well property identified/Correct Well ID? c. Is the well in high traffic area require traffic Protection? d. Is the drainage around the well acceptable (No standing water)? (Y / N / NA)	a. Is protective casing free from damage/ b. Is casing free of degradation or deterioration/ c. Does casing have functioning weep hole? d. Is the annual space clear of debirs and	Stable? e. Free of Debris?	INTERNAL CASING a. Does the cap prevent entry of foreign material? b. Is the casing free of kinks or bends or any obstruction from foreigh objects? c. Is the well property vented for equilibrium of air pressure? d. Is the survey point clearly marked on the inner casing? e. Is the depth of the well consistent with the well log? f. Is the casing stable? (Y / N / NA)	installed, is it in good condition and specified in the approved groundater plan for the facility?
BRGWA-2S	ΛE	ok	ok	ok	ok	ok
BRGWA-2I	ΛE	ok	ok	ok	ok	ok
BRGWA-5S	ΛE	ok	ok	ok	ok	ok
BRGWA-5I	ΛE	ok	ok	ok	ok	ok
BRGWA-6S	ΛE	ok	ok	ok	ok	ok
BRGWA-12S	↑BCD	ok	ok	ok	ok	ok
BRGWA-12I	↑BCD	ok	ok	ok	ok	ok
BRGWA-23S	↑BCD	ok	ok	ok	ok	ok
BRGWC-25I	↓BCD	ok	ok	ok	ok	ok
BRGWC-27I	↓BCD	ok	ok	ok	ok	ok
BRGWC-29I	↓BCD	ok	ok	ok	ok	ok
BRGWC-30I	↓BCD	ok	ok	ok	ok	ok
BRGWC-32S	↓BCD	ok	ok	ok	ok	ok
BRGWC-33S	↓E	ok	ok	ok	ok	ok
BRGWC-34S	↓E	ok	ok	ok	ok	ok
BRGWC-35S	ψE	ok	ok	ok	ok	ok
BRGWC-17S	↓E	ok	ok	ok	ok	no dedicated pump - sampled via peri
BRGWC-36S	↓E	ok	ok	ok	ok	no dedicated pump - sampled via peri
BRGWC-37S	↓E	ok	ok	ok	ok	ok
BRGWC-38S	ψE	ok	ok	ok	ok	ok
BRGWC-45	↓BCD	ok	ok	ok	ok	no dedicated pump - samplepro
BRGWC-47	↓BCD	ok	ok	ok	ok	no dedicated pump - samplepro
BRGWC-50	↓BCD	ok	ok	ok	ok	no dedicated pump - samplepro

Well-ID	↑ or ↓	LOCATION / IDENTIFICATION a. Is the well visible and accessible? b. Is the well property identified/Correct Well ID? c. Is the well in high traffic area require traffic Protection? d. Is the drainage around the well acceptable (No standing water)? (Y / N / NA)	a. Is protective casing free from damage/b. Is casing free of degradation or deterioration/c. Does casing have functioning weep hole?d. Is the annual space clear of debirs and water, or filled with pea gravel?e. Is the well locked and in good condition?(Y/N/NA)	Stable? e. Free of Debris? (Y / N / NA)	INTERNAL CASING a. Does the cap prevent entry of foreign material? b. Is the casing free of kinks or bends or any obstruction from foreigh objects? c. Is the well property vented for equilibrium of air pressure? d. Is the survey point clearly marked on the inner casing? e. Is the depth of the well consistent with the well log? f. Is the casing stable? (Y / N / NA)	installed, is it in good condition and specified in the approved groundater plan for the facility? c. Does the well require redevelopment? (Y / N / NA)
PZ-51S	ψE	ok	ok	ok	ok	no dedicated pump - samplepro
PZ-51I	ψE	ok	ok	ok	ok	no dedicated pump - samplepro
BRGWC-52I	↓BCD	ok	ok	ok	ok	no dedicated pump - samplepro
PZ-1S		ok	ok	ok	ok	N/A
PZ -1I		ok	ok	ok	ok	N/A
PZ-1D		ok	ok	ok	ok	N/A
PZ -3S		ok	ok	ok	ok	N/A
PZ - 3I		ok	ok	ok	ok	N/A
PZ- 3D		ok	ok	ok	ok	N/A
PZ- 4S		ok	ok	ok	ok	N/A
PZ - 4I		ok	ok	ok	ok	N/A
PZ-7S		ok	ok	ok	ok	N/A
PZ- 8S		ok	ok	ok	ok	N/A
PZ-9S		ok	ok	ok	ok	N/A
PZ-10S		ok	ok	ok	ok	N/A
PZ-11S		ok	ok	ok	ok	N/A
PZ-12D		ok	ok	ok	ok	N/A
PZ-13S		ok	ok	ok	ok	N/A
PZ-14S		ok	ok	ok	ok	N/A
PZ -14I		ok	ok	ok	ok	N/A
PZ-15S		ok	ok	ok	ok	N/A
PZ -15I		ok	ok	ok	ok	N/A
PZ-16S		ok	ok	ok	ok	N/A
PZ -16I		ok	ok	ok	ok	N/A
PZ -17I		ok	ok	ok	ok	N/A

Well-ID		LOCATION / IDENTIFICATION a. Is the well visible and accessible? b. Is the well property identified/Correct Well ID? c. Is the well in high traffic area require traffic Protection? d. Is the drainage around the well acceptable (No standing water)? (Y / N / NA)	a. Is protective casing free from damage/b. Is casing free of degradation or deterioration/c. Does casing have functioning weep hole?d. Is the annual space clear of debirs and water, or filled with pea gravel?e. Is the well locked and in good condition?(Y/N/NA)	Stable? e. Free of Debris? (Y / N / NA)	INTERNAL CASING a. Does the cap prevent entry of foreign material? b. Is the casing free of kinks or bends or any obstruction from foreigh objects? c. Is the well property vented for equilibrium of air pressure? d. Is the survey point clearly marked on the inner casing? e. Is the depth of the well consistent with the well log? f. Is the casing stable? (Y / N / NA)	installed, is it in good condition and specified in the approved groundater plan for the facility? c. Does the well require redevelopment? (Y / N / NA)
PZ-18S		ok	ok	ok	ok	N/A
PZ -18I		ok	ok	ok	ok	N/A
PZ-19S		ok	ok	ok	ok	N/A
PZ -19I		ok	ok	ok	ok	N/A
PZ-20S		ok	ok	ok	ok	N/A
PZ -20I		ok	ok	ok	ok	N/A
PZ-21S		ok	ok	ok	ok	N/A
PZ -21I		ok	ok	ok	ok	N/A
PZ-22S		ok	ok	ok	ok	N/A
PZ-24S		ok	ok	ok	ok	N/A
PZ-26I		ok	ok	ok	ok	N/A
PZ-28I		ok	ok	ok	ok	N/A
PZ-31S		ok	ok	ok	ok	N/A
PZ-23I		ok	ok	ok	ok	N/A
PZ-40S		ok	ok	ok	ok	N/A
PZ-41S		ok	ok	ok	ok	N/A
PZ-42S		ok	ok	ok	ok	N/A
PZ-43		ok	no casing	no pad	ok	N/A
PZ-44		ok	ok	ok	ok	N/A
PZ-46		ok	ok	ok	ok	N/A
PZ-48		ok	ok	ok	ok	N/A
PZ-49		ok	ok	ok	ok	N/A
PZ-52D	↓E	ok	ok	ok	ok	N/A
PZ-53D	↓E	ok	ok	ok	ok	N/A
PZ-54	↓E	ok	ok	ok	ok	N/A

		LOCATION / IDENTIFICATION	PROTECTIVE CASING	SURFACE PAD	INTERNAL CASING	SAMPLING (Groundwater Wells Only)
		a. Is the well visible and accessible?	a. Is protective casing free from damage/	a. Pad in Good Condition	a. Does the cap prevent entry of foreign	a. Does well recharge adequately when
		b. Is the well property identified/Correct	b. Is casing free of degradation or	b. Pad Sloped away from Well?	material?	purged?
		Well ID?	deterioration/	c. In contact with Protective Casing?	b. Is the casing free of kinks or bends or any	
		c. Is the well in high traffic area require traffic Protection?	c. Does casing have functioning weep hole?d. Is the annual space clear of debirs and	Stable?	obstruction from foreigh objects? c. Is the well property vented for	installed, is it in good condition and specified in the approved groundater plan
			water, or filled with pea gravel?	e. Free of Debris?	equilibrium of air pressure?	for the facility?
Well-ID	POSITION	d. Is the drainage around the well acceptable (No standing water)?	e. Is the well locked and in good condition?		d. Is the survey point clearly marked on the	
		(Y / N / NA)	(Y / N / NA)	(T/N/NA)	inner casing?	(Y / N / NA)
		(T/N/NA)	(I / N / NA)		e. Is the depth of the well consistent with	(1 / N / NA)
					the well log?	
					f. Is the casing stable?	
					(Y / N / NA)	
	↑ or ↓					
PZ-55		ok	ok	ok	ok	N/A
PZ-56		ok	ok	ok	ok	N/A
IW-C-1		Path to well overgrown	ok	ok	ok	N/A
IW-B-1		ok	ok	ok	ok	N/A
IW-D-1		ok	ok	ok	ok	N/A
IW-E-1		ok	ok	ok	ok	N/A
IW-B-2		ok	ok	Pad partially overgrown	ok	N/A
IW-C-2		Path to well overgrown	ok	ok	ok	N/A
IW-D-2		ok	ok	ok	ok	N/A
PB-1S		no well tag	no well casing	no pad	ok	N/A
PB-2D		no well tag	no well casing	no pad	ok	N/A
PB-4S		no well tag	no well casing	no pad	ok	N/A
PB-4D		no well tag	no well casing	no pad	ok	N/A
PB-7S		no well tag	no well casing	no pad	ok	N/A
PB-8D		no well tag	no well casing	no pad	ok	N/A
PB-8S		no well tag	no well casing	no pad	ok	N/A
PB-10D		no well tag	no well casing	no pad	ok	N/A
PB-10S		no well tag	no well casing	no pad	ok	N/A
PB-13D		no well tag	no well casing	no pad	ok	N/A
PB-13S		no well tag	no well casing	no pad	ok	N/A

		LOCATION / IDENTIFICATION	PROTECTIVE CASING	SURFACE PAD	INTERNAL CASING	SAMPLING (Groundwater Wells Only)
		a. Is the well visible and accessible?	a. Is protective casing free from damage/	a. Pad in Good Condition	a. Does the cap prevent entry of foreign	a. Does well recharge adequately when
		b. Is the well property identified/Correct	b. Is casing free of degradation or	b. Pad Sloped away from Well?	material?	purged?
		Well ID?	deterioration/	c. In contact with Protective Casing?	b. Is the casing free of kinks or bends or any	b. If dedicated sampling equipment
		c. Is the well in high traffic area require	c. Does casing have functioning weep hole?	d. In Contact with Ground Surface and	obstruction from foreigh objects?	installed, is it in good condition and
		traffic Protection?	d. Is the annual space clear of debirs and	Stable?	c. Is the well property vented for	specified in the approved groundater plan
	POSITION	d. Is the drainage around the well	water, or filled with pea gravel?	e. Free of Debris?	equilibrium of air pressure?	for the facility?
Well-ID		acceptable (No standing water)?	e. Is the well locked and in good condition?	(Y / N / NA)	d. Is the survey point clearly marked on the	c. Does the well require redevelopment?
		(Y / N / NA)	(Y / N / NA)		inner casing?	(Y / N / NA)
					e. Is the depth of the well consistent with	
					the well log?	
					f. Is the casing stable?	
					(Y / N / NA)	
	↑ or ↓	-				

NOTES:

- 1) Provide pictures of any deficiencies.
- 2) Notify SCS /GPC of any noted deficiencies.
- 3) Provide additional comments as necessary to address any deficiencies.
- 4) -- = no information provided.
- 5) Well depths not checked during the September 2020 event.

APPENDIX A

DATA VALIDATION SUMMARIES

December 2020 166625418

Appendix A Quality Control Review of Analytical Data submitted by Pace Analytical Plant Branch CCR Ash Pond BCD

This narrative presents results of the quality control (QC) data review performed on analytical data submitted by Pace Analytical Services, LLC for groundwater samples collected at the Plant Branch CCR Ash Pond AP-BCD between August 18, 2020 and October 27, 2020. The chemical data were reviewed to identify quality issues which could affect the use of the data for decision making purposes.

Information regarding the primary sample locations, analytical parameters, QC samples, sampling dates, and laboratory sample delivery group (SDG) designations is summarized in Table 1. In accordance with groundwater monitoring and corrective action procedures discussed in Title 40 CFR, Subpart D - Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments, the samples were analyzed for detection monitoring constituents listed in 40 CFR, Part 257, Appendix III and IV. Test methods included Inductively Coupled Plasma - Mass Spectrometry (USEPA Method 6020B), Mercury in Liquid Wastes (USEPA Method 7470A), Inductively Coupled Plasma (6010D), Determination of Inorganic Anions By Ion Chromatography (USEPA Method 300.0), Total Dissolved Solids (Standard Methods 2540C), Radium-226 (USEPA Method 9315) and Radium-228 (USEPA Method 9320), and Alkalinity (Standard Methods SM2320B).

Data were reviewed in accordance with the US EPA Region IV Data Validation Standard Operating Procedures for Contract Laboratory Program (CLP) Inorganic Data by Inductively Coupled Plasma – Atomic Emission Spectroscopy and Inductively Coupled Plasma – Mass Spectroscopy (September 2011, Rev. 2.0), US EPA Region IV Data Validation Standard Operating Procedures for CLP Mercury Data by Cold Vapor Atomic Absorption (September 2011, Rev. 2.0), the National Functional Guidelines for Inorganic Superfund Methods Data Review (January 2017), and US Department of Energy, Evaluation of Radiochemical Data Usability (April 1997). The review included an assessment of the results for completeness, precision (laboratory duplicates, matrix spike/matrix spike duplicates), accuracy (laboratory control samples and matrix spike samples), and blank contamination (including field and laboratory blanks). Additionally, sample procedures, holding times and chains-of-custody were reviewed. Where there was a discrepancy between the QC criteria in the guidelines and the QC criterion established in the analytic methodology, method-specific criteria or professional judgment was used.

DATA QUALITY OBJECTIVES

Laboratory Precision: Laboratory goals for precision were met

Field Precision: Field goals for precision were met.

Accuracy: Laboratory goals for accuracy were met with the exception of chloride and fluoride

in SDG 92495653 and SDG 92491393 as described in the qualifications sections

below.

Detection Limits: Project goals for detection limits were met. Certain samples were diluted due to

the concentration of the target analytes. Dilutions do not require qualifications based on USEPA guidelines. Detection and reporting limits of non-detect compounds are elevated proportional to the dilution when undiluted sample results are not provided by the laboratory. The data usability of diluted results was

evaluated by the data user in the context of site-wide characterization.

Completeness: There were no rejected analytical results for this event, resulting in a completion

of 100%.

December 2020 166625418

Holding Times:

All holding time requirements were met with the exception of Total Dissolved Solids (TDS) in SDG 92495653.

QUALIFICATIONS

In general, chemical results for the samples collected at the Site were qualified on the basis of low precision or accuracy, or on the basis of professional judgment. The following definitions provide brief explanations of the qualifiers which may have been assigned to data by the laboratory during the data validation process.

The analyte was positively identified above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

U The analyte was not detected above the method detection limit.

The data generated as part of this sampling event met the QC criteria established in the respective analytical methods and data validation guidelines except as specified below. Although these qualifications were applied to some data from samples collected at the site and reported in SDGs 92491389, 92491393, 92491917, 92491914, 92495649, 92495653, 92495656, 92495654, 92495964, 92496260, 92496249, and 92502483 qualifications may not have been required or applied to all samples collected. A summary of sample qualifications can be found in Table 2.

- The fluoride result in BRGWC-25I and chloride and fluoride results in sample BRGWC-29I were qualified as estimated biased high (J+) as the associated matrix spike and/or matrix spike duplicate (MS/MSD) recovery was above the QC criteria.
- Certain antimony and boron results in SDGs 92495653 and 92502483 were qualified as non-detect (U) as the analyte was detected at a similar level in an associated blank sample. As shown in Table 2, when the original sample result was below the reporting limit (RL), the results were qualified as non-detect (U) and the results were raised to the RL.
- The TDS result in sample BRGWC-50 was qualified as estimated (J), when the sample was analyzed outside of hold time.

Golder reviewed the data from samples collected at the Plant Branch CCR Ash Ponds between August 18, 2020 and October 27, 2020 in accordance with the analytical methods, the laboratory specific QC criteria, and the guidelines. As described above, 100% of the results were acceptable for project use.

December 2020 166625418

REFERENCE

Paar J.G. and Porterfield D.R., April 1997, US Department of Energy, Evaluation of Radiochemical Data Usability.

USEPA, September 2011, Region 4, Science and Ecosystem Support Division, Quality Assurance Section, MTSB, Data Validation Standard Operating Procedures for Contract Laboratory Program Inorganic Data By Inductively Coupled Plasma – Atomic Emission Spectroscopy and Inductively Coupled Plasma – Mass Spectroscopy, Revision 2.0.

USEPA, January 2017, National, Office of Superfund Remediation and Technology Innovation, *National Functional Guidelines for Inorganic Superfund Methods Data Review,* Revision 0.0.

December 2020 166625418

TABLE 1 Sample Summary Table - Pond BCD SCS Plant Branch

									Analys	sis			
SDGs	Field Identification	Collection Date	Lab Identification	Matrix	QC Samples	Total Metals (EPA 6020B)	Mercury (EPA 7470)	Calcium (EPA 6010D)	Anions (EPA 300.0)	TDS (SM 2540C)	Radium-226 & 228 (EPA 9315 & 9320)	Metals (EPA 6010D)	Alkalinity (SM 2320B)
92491389	BRGWA-5I	8/18/2020	92491389001	GW	-	X	X	-	X	-	X	-	-
92491389	BRGWA-5S	8/18/2020	92491389002	GW	-	X	X	-	X	-	Х	-	-
92491389	BRGWA-2I	8/18/2020	92491389003	GW	-	X	X	-	X	-	X	-	-
92491389	BRGWA-2S	8/18/2020	92491389004	GW	-	X	X	-	X	-	X	-	-
92491389	BRGWA-6S	8/18/2020	92491389005	GW	-	X	X	-	X	-	X	-	-
92491393	BRGWA-12I	8/18/2020	92491393001	GW		X	X	-	X	-	X	-	-
92491393 92491393	BRGWA-12S BRGWA-23S	8/18/2020	92491393002 92491393003	GW	-	X	X	-	X	-	X	-	-
92491393	BRGWC-25I	8/18/2020 8/19/2020	92491393003	GW	-	X	X	-	X	-	X		-
92491393	BRGWC-29I	8/19/2020	92491393004	GW	-	X	X	-	X	-	X		-
92491393	BRGWC-27I	8/19/2020	92491393006	GW	-	X	X	_	X	_	X		
92491393	BRGWC-32S	8/19/2020	92491393007	GW	-	X	X	-	X	-	X	-	-
92491393	BRGWC-30I	8/19/2020	92491393008	GW	-	X	X	_	X	_	X		-
92491393	BRGWC-45	8/20/2020	92491393009	GW	-	X	X	-	X	-	X	-	-
92491393	BRGWC-47	8/20/2020	92491393010	GW	-	Х	X	-	Х	-	Х	-	-
92491393	BRGWC-50	8/20/2020	92491393011	GW	-	X	X	-	X	-	X	-	-
92491393	BRGWC-52I	8/20/2020	92491393012	GW	-	X	X	-	X	-	X	-	-
92491393	DUP-2	8/20/2020	92491393013	GW	FD (BRGWC-50)	X	X	-	Х	-	X	-	-
92491393	FB-2	8/20/2020	92491393014	WQ	FB (BRGWC-50)	X	X	-	X	-	X	-	-
92491393	EB-1	8/20/2020	92491393015	WQ	EB (BRGWC-45)	X	X	-	Х	-	X	-	
92491917	PZ-51S	8/20/2020	92491917001	GW	-	Х	X	-	Х	-	Х	-	
92491917	PZ-51I	8/20/2020	92491917002	GW	-	X	X	-	X	-	X	-	
92491914	PZ-51S	8/20/2020	92491914001	GW	-	X	X	-	Х	-	X	-	-
92491914	PZ-51I	8/20/2020	92491914002	GW	-	X	X	-	Х	-	X	-	-
92495649 92495649	BRGWA-12S	9/15/2020	92495649001	GW	-	-	-	-	-	-	X		
92495649	BRGWA-12I BRGWA-23S	9/15/2020 9/15/2020	92495649002 92495649003	GW	-			-	-	-	X		-
92495649	BRGWC-25I	9/15/2020	92495649004	GW	-			_			X		
92495649	BRGWC-29I	9/15/2020	92495649005	GW	-	_	-	_	-	_	X		-
92495649	BRGWC-32S	9/16/2020	92495649006	GW	-	-	-	-	-	-	X	-	-
92495649	BRGWC-30I	9/16/2020	92495649007	GW	-	-	-	-	-	-	X	-	-
92495649	BRGWC-47	9/16/2020	92495649008	GW	-	-	-	-	-	-	X	-	-
92495649	BRGWC-45	9/16/2020	92495649009	GW	-	-	-	-	-	-	X	-	-
92495649	BRGWC-27I	9/16/2020	92495649010	GW	- ED (DDO(MO 001)	-	-	-	-	-	X	-	-
92495649	DUP-1	9/16/2020	92495649011	GW	FD (BRGWC-30I)	-	-	-	-	-	X	-	
92495649 92495649	EB-1 BRGWC-50	9/16/2020 9/17/2020	92495649012 92495649013	WQ GW	EB (BRGWC-36S)	-	-	-	-	-	X	-	-
92495649	BRGWC-52I	9/17/2020	92495649014	GW		-	-	-		-	x	<u> </u>	
92495649	FB-2	9/17/2020	92495649015	WQ	FB (BRGWC-50)	-	-	-	-	-	X	-	-
92495653	BRGWA-12S	9/15/2020	92495653001	GW	-	Х	X	Х	Х	Х	-	-	-
92495653	BRGWA-12I	9/15/2020	92495653002	GW	-	X	X	Х	X	X	-	-	-
92495653	BRGWA-23S	9/15/2020	92495653003	GW	-	X	X	Х	X	Х	-	-	-
92495653	BRGWC-25I	9/15/2020	92495653004	GW	-	X	X	X	X	X	-	-	-
92495653	BRGWC-29I	9/15/2020	92495653005	GW	-	X	X	X	X	X	-	-	-
92495653	BRGWC-32S	9/16/2020	92495653006	GW	-	X	X	X	X	X	-	-	-
92495653 92495653	BRGWC-30I BRGWC-47	9/16/2020 9/16/2020	92495653007 92495653008	GW	-	X	X	X	X	X	-		
92495653	BRGWC-47	9/16/2020	92495653009	GW	-	X	X	X	X	X	-		-
92495653	BRGWC-27I	9/16/2020	92495653010	GW	-	X	X	X	X	X	_	_	-
92495653	DUP-1	9/16/2020	92495653011	GW	FD (BRGWC-30I)	X	X	X	X	X	-	-	-
92495653	EB-1	9/16/2020	92495653012	WQ	EB (BRGWC-36S)	Х	X	Х	Х	Х	-	-	-
92495653	BRGWC-50	9/17/2020	92495653013	GW	-	X	X	Х	X	X	-	-	-
92495653	BRGWC-52I	9/17/2020	92495653014	GW	-	X	X	X	Х	Х	-	-	
92495653	FB-2	9/17/2020	92495653015	WQ	FB (BRGWC-50)	X	X	X	X	X	-	-	-
92495656	BRGWA-6S	9/15/2020	92495656001	GW	-	X	X	X	X	X	-	-	
92495656 92495656	BRGWA-5S BRGWA-5I	9/15/2020 9/15/2020	92495656002 92495656003	GW	-	X	X	X	X	X	-		-
92495656	BRGWA-2S	9/15/2020	92495656004	GW	-	X	X	X	X	X	-		-
92495656	BRGWA-2I	9/15/2020	92495656005	GW	-	X	X	X	X	X	-	_	
92495654	BRGWA-6S	9/15/2020	92495654001	GW	-	-	-	-	-	-	Х	-	-
92495964	BRGWA-5S	9/15/2020	92495654002	GW	-	-	i	-	-	-	X	-	-
92495964	BRGWA-5I	9/15/2020	92495654003	GW	-	-		-	-	-	X	-	-
92495964	BRGWA-2S	9/15/2020	92495654004	GW	-	-	•	-	-	-	X	-	-
92495964	BRGWA-2I	9/15/2020	92495654005	GW	-	-	-	-	-	-	X	-	-
92496260	PZ-51S	9/17/2020	92496260001	GW	-	X	X	X	X	X	-	-	-
92496260 92496249	PZ-51I PZ-51S	9/17/2020	92496260002	GW	-	X	X	X	X	X	- X		-
92496249	PZ-51S PZ-51I	9/17/2020 9/17/2020	92496249001 92496249002	GW	-	-	-	-	-	-	X	-	-
92496249	PZ-511 PZ-50D	10/27/2020	92502483001	GW	-	X	-	-	X	X	-	X	X
92502483	PZ-51D	10/27/2020	92502483002	GW	-	X	-	-	X	X	-	X	X
92502483	PZ-51I	10/27/2020	92502483003	GW	-	X	-	-	X	X	-	X	X
92502483	FB	10/27/2020	92502483004	WQ	FB	Х	-	-	Х	Х	-	Х	Х
92502483	EB	10/27/2020	92502483005	WQ	EB	X	-	-	X	X	-	Χ	Х
92502483	FD	10/27/2020	92502483006	GW	FD (PZ-51I)	X	-	-	X	X	-	X	X

Abbreviations: FB - Field blank EB - Equipment Blank FD - Field duplicate GW - Groundwater WQ - Water Quality TDS - Total Dissolved Solids SDG - Sample Delivery Group QC - Quality Control

166625418 December 2020

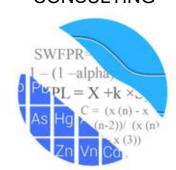
TABLE 2 **Qualifier Summary Table** Plant Branch AP-BCD

SDG	Sample Name	Constituent	New Result	New RL or MDC	Qualifier	Reason
92495653	BRGWC-50	Total Dissolved Solids	=	=	J	Analysis outside of hold time
92495653	BRGWC-47	Antimony	0.003	-	U	Method blank detection
92495653	BRGWC-45	Antimony	0.003	=	U	Method blank detection
92495653	BRGWC-29I	Chloride	-	-	J+	MSD above acceptance limit
92495653	BRGWC-29I	Fluoride	-	=	J+	MSD above acceptance limit
92491393	BRGWC-25I	Fluoride	=	=	J+	MS/MSD above acceptance limits
92502483	PZ-51D	Boron	0.1	-	U	Method blank detection

Abbreviations:
RL : Reporting limit
SDG : Sample delivery group
MS/MSD: Matrix spike/Matrix spike duplicate
MDC : Minimum Detectable Concentration

Qualifiers: U : Non-detect result J : Estimated value

J-+: Estimated value, bias high


APPENDIX B

STATISTICAL ANALYSES

GROUNDWATER STATS CONSULTING

February 23, 2021

Southern Company Services Attn: Mr. Joju Abraham 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308-3374

Re: Plant Branch Ponds B,C,D – September 2020 Statistical Analysis

Dear Mr. Abraham,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the September 2020 Semi-Annual Groundwater Monitoring and Corrective Action Statistical summary of groundwater data for Georgia Power Company's Plant Branch Ponds B, C, and D. The analysis complies with the Georgia Environmental Protection Division (EPD) Rules for Solid Waste Management Chapter 391-3-4-.10 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009). The site is in Assessment Monitoring.

Sampling began for Appendix III and IV parameters in 2016 for most wells. However, sampling for wells BRGWC-45, BRGWC-47, BRGWC-50 and BRGWC-52I began in 2018, and at least 8 background samples have been collected at each of the groundwater monitoring wells. Semi-annual sampling of the majority of constituents has been performed for several years in accordance with the Georgia Department of Natural Resources, Environmental Protection Division groundwater monitoring regulations.

The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient well: BRGWA-2I, BRGWA-2S, BRGWA-5I, BRGWA-5S, BRGWA-6S, BRGWA-12I, BRGWA-12S, and BRGWA-23S
- Downgradient wells: BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-50, BRGWC-52I
- Delineation wells: PZ-51I and PZ-51S

The CCR program consists of the following constituents:

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of well/constituent pairs with 100% nondetects follows this letter. A substitution of the most recent reporting limit is used for nondetect data.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Delineation well data are included on the time series graphs only. Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

In earlier analyses, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided with the previous screening to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations.

Summary of Statistical Methods – Appendix III Parameters:

Based on the earlier evaluation described above, the following method was selected:

• Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are nondetects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% nondetects in background, simple substitution of onehalf the reporting limit is utilized in the statistical analysis. The reporting limit utilized for nondetects is the practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% nondetects, the Kaplan-Meier nondetect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% nondetects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. In some cases, the earlier portion of data are deselected prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening – Conducted in March 2019

Outlier and Trend Testing

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified either visually or by Tukey's test, flagged in the computer database with "o" and deselected prior to construction of statistical limits. A list of flagged values is provided in the outlier summary. Although outliers are screened for all wells, only outliers in upgradient wells will affect the interwell prediction limits. The current list of outliers includes a few that were not included in the previous background screening list for Appendix III parameters.

When suspected outliers were evaluated using the Tukey box plot method during the previous screening, several outliers were identified. In cases where the most recent value was identified as an outlier, values were not flagged in the database as they may represent a future trend. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the Practical Quantitation Limit. However, these values are observed trace values (i.e. measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers.

When any values are flagged in the database as outliers, they are plotted in a disconnected and lighter symbol on the time series graph. A substitution of the most recent reporting limit was applied when varying detection limits existed in data. Note that the reporting limit for boron for this event was 0.1 mg/L; however, the historical reporting limit of 0.04 mg/L was substituted for all nondetects which provides more conservative (lower) statistical limits.

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses, included with the background screening report, showed a handful of statistically significant decreasing trends for the Appendix III parameters. All trends noted were relatively low in magnitude when compared to average concentrations; therefore, no adjustments were made to the data sets.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified no variation among upgradient well data for fluoride, making this constituent eligible for interwell analyses. Variation was noted for boron, calcium, chloride, pH, sulfate, and TDS. While data were further tested for intrawell eligibility during the screening, interwell methods will be used for all Appendix III constituents in accordance with Georgia EPD requirements.

Evaluation of Appendix III Parameters – September 2020

Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical upgradient well data through September 2020 (Figure D). Background

(upgradient) well data were re-assessed for potential outliers during this analysis and no new values were flagged. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to determine whether there are statistically significant increases (SSIs).

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When resamples confirm the initial exceedance, a statistically significant increase is identified, and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result; therefore, no exceedance is noted and no further action is necessary. If no resample is collected, the original result is considered a confirmed exceedance. Prediction limit exceedances were noted for several Appendix III parameters. A summary table of the prediction limits and exceedances follows this letter.

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure E). Upgradient wells are included in the trend analyses to identify whether similar patterns exist upgradient of the site which is an indication of natural variability in groundwater unrelated to practices at the site. While several statistically significant decreasing trends were noted in both upgradient and downgradient wells, only one statistically significant increasing trend was identified for calcium in downgradient well BRGWC-30I. A summary of the trend test results follows this letter.

Evaluation of Appendix IV Parameters – September 2020

Data from all wells for Appendix IV parameters are reassessed for outliers during each analysis and no new outliers were flagged. Interwell tolerance limits were used to calculate the site-specific background limits from pooled upgradient well data for Appendix IV constituents (Figure F). Parametric tolerance limits are used when data follow a normal or transformed-normal distribution such as for combined radium 226 + 228. When data contained greater than 50% nondetects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were used. The background limits were then used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and Georgia EPD Rule 391-3-4-.10(6)(a) (Figure G).

As described in 40 CFR §257.95(h) (1-3), the GWPS is:

- The maximum contaminant level (MCL) established under §141.62 and §141.66 of this title
- Where an MCL has not been established for a constituent, CCR-rule specified level have been specified for cobalt (0.006 mg/L), lead (0.015 mg/L), lithium (0.040 mg/L), and molybdenum (0.100 mg/L)
- The respective background level for a constituent when the background level is higher than the MCL or Federal CCR Rule identified GWPS

On July 30, 2018, USEPA revised the Federal CCR rule updating GWPS for cobalt, lead, lithium, and molybdenum as described above in 40 CFR §257.95(h)(2). Georgia EPD has not incorporated the updated GWPS into the current Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6)(a); therefore, for sites regulated under Georgia EPD Rules, the GWPS is:

- The MCL or
- The background concentration when an MCL is not established or when the background concentration is higher than the MCL.

Following the above Georgia EPD Rule requirements, GWPS were established for statistical comparison of Appendix IV constituents for the September 2020 sample event (Figure G).

To complete the statistical comparison to GWPS, confidence intervals were constructed for each of the Appendix IV constituents in each downgradient well (Figure H). The Sanitas software was used to calculate the tolerance limits and the confidence intervals. Those confidence intervals were compared to the GWPS established using the Georgia EPD Rules 391-3-4-.10(6)(a). Only when the entire confidence interval is above a GWPS is the downgradient well/constituent pair considered to exceed its respective standard. If there is an exceedance of the GWPS, a statistically significant level (SSL) exceedance is identified. Exceedances were noted for cadmium and cobalt in well BRGWC-50. A summary of the confidence intervals follows this letter.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Branch Ponds B, C, D. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,
Kristina Rayner

Kristina L. Rayner

Groundwater Statistician

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting.

100% Non-Detects

Analysis Run 11/1/2020 10:02 AM View: 100% Nondetects B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

Antimony (mg/L)

BRGWA-5I, BRGWA-6S, BRGWC-25I, BRGWC-27I, BRGWC-30I

Bervllium (ma/L

BRGWA-12I, BRGWA-12S, BRGWA-2I, BRGWA-2I, BRGWA-2S, BRGWA-5I, BRGWA-5S, BRGWA-6S, BRGWC-25I, BRGWC-30I, BRGWC-32S, BRGWC-52I

Boron (mg/L)

BRGWA-2S

Cadmium (mg/L)

BRGWA-12I, BRGWA-12S, BRGWA-2I, BRGWA-2S, BRGWA-5I, BRGWA-5S, BRGWC-25I, BRGWC-29I, BRGWC-29I, BRGWC-52I

Cobalt (mg/L)

BRGWA-12I, BRGWA-12S

Lead (mg/L)

BRGWA-12I, BRGWA-12S, BRGWC-32S, BRGWC-52I

Lithium (mg/L)

BRGWA-12S, BRGWA-2S, BRGWA-5S, BRGWC-25I

Mercury (mg/L)

BRGWA-12S, BRGWA-23S, BRGWA-5I, BRGWA-6S, BRGWC-45, BRGWC-47, BRGWC-52I, BRGWC-50

Molybdenum (mg/L)

BRGWA-12S, BRGWA-2S, BRGWA-5S, BRGWA-6S, BRGWC-27I, BRGWC-29I, BRGWC-32S, BRGWC-47

Selenium (ma/L)

BRGWA-12I, BRGWA-12S, BRGWA-2I, BRGWA-2S, BRGWA-5I, BRGWA-5S, BRGWA-6S, BRGWC-25I, BRGWC-52I

Thallium (mg/L)

BRGWA-12I, BRGWA-23S, BRGWA-23S, BRGWA-21, BRGWA-25, BRGWA-51, BRGWA-55, BRGWA-65, BRGWC-251, BRGWC-27I, BRGWC-301, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-52I, BRGWC-50

Federal Interwell Prediction Limit Summary - Significant Results

Data: Plant Branch AP Printed 11/1/2020, 9:29 AM Plant Branch Client: Southern Company Constituent Well Bg N Bg Mean Std. Dev. %NDs ND Adj. Upper Lim. Lower Lim. Date Sig. Method Boron (mg/L) BRGWC-25I 0.068 n/a 9/15/2020 1.2 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 Boron (mg/L) BRGWC-27 0.068 n/a 9/16/2020 1.2 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 Boron (mg/L) BRGWC-29I 0.068 n/a 9/15/2020 1.1 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 n/a Boron (mg/L) BRGWC-30 0.068 9/16/2020 1.7 96 n/a 57.29 n/a 0.0002102 NP Inter (NDs) 1 of 2 n/a Yes n/s Boron (mg/L) BRGWC-32S 0.068 n/a 9/16/2020 1.4 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 Boron (ma/L) BRGWC-47 0.068 n/a 9/16/2020 0.47 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 Boron (mg/L) BRGWC-52I 0.068 n/a 9/17/2020 1.9 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 9/17/2020 Boron (mg/L) BRGWC-50 0.068 n/a 0.36 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 0.0002014 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-25I 24 n/a 9/15/2020 40.1 Yes 98 n/a n/a 6.122 n/a n/a Calcium (mg/L) BRGWC-27I 62.5 0.0002014 NP Inter (normality) 1 of 2 24 n/a 9/16/2020 Yes 98 n/a n/a 6.122 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-29I 24 n/a 9/15/2020 55.1 Yes 98 n/a n/a 6.122 n/a n/a Calcium (mg/L) BRGWC-30I 24 9/16/2020 106 98 6.122 n/a 0.0002014 NP Inter (normality) 1 of 2 n/a Yes n/a n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-32S 24 n/a 9/16/2020 43.1 Yes 98 n/a n/a 6.122 n/a n/a Calcium (mg/L) BRGWC-45 39.7 0.0002014 NP Inter (normality) 1 of 2 24 9/16/2020 98 n/a 6.122 n/a n/a n/a Yes n/a BRGWC-47 9/16/2020 309 98 0.0002014 NP Inter (normality) 1 of 2 Calcium (mg/L) 24 n/a Yes n/a n/a 6.122 n/a n/a BRGWC-52I 9/17/2020 Calcium (mg/L) 24 35.4 98 6.122 n/a 0.0002014 NP Inter (normality) 1 of 2 n/a Yes n/a n/a n/a 9/17/2020 0.0002014 NP Inter (normality) 1 of 2 BRGWC-50 24 206 98 6.122 Calcium (mg/L) n/a Yes n/a n/a n/a n/a Chloride, Total (mg/L) BRGWC-27I 1.742 0.2583 0.0008358 Param Inter 1 of 2 5.036 9/16/2020 5.4 98 0 n/a Yes None sqrt(x) 0.0008358 Param Inter 1 of 2 Chloride, Total (mg/L) BRGWC-29I 5.036 9/15/2020 5.5 98 1.742 0 sqrt(x) n/a Yes None Chloride, Total (mg/L) BRGWC-32S 9/16/2020 5.6 98 1.742 0.2583 0.0008358 Param Inter 1 of 2 5.036 None sqrt(x) n/a Yes Chloride, Total (mg/L) BRGWC-45 9/16/2020 98 1.742 0.0008358 Param Inter 1 of 2 5.036 n/a Yes 0.2583 None sqrt(x) Chloride, Total (mg/L) BRGWC-52I 5.036 n/a 9/17/2020 6.3 1.742 0.2583 0.0008358 Param Inter 1 of 2 sqrt(x) Chloride, Total (mg/L) BRGWC-50 5.036 9/17/2020 20.1 sqrt(x) 0.0008358 Param Inter 1 of 2 n/a Yes BRGWC-50 Fluoride (mg/L) 9/17/2020 0.0001579 NP Inter (NDs) 1 of 2 pH, Field (S.U) BRGWC-29I 9/15/2020 4.53 6.332 0 0.0004179 Param Inter 1 of 2 BRGWC-45 0.0004179 Param Inter 1 of 2 pH, Field (S.U) 7.08 5.584 9/16/2020 5.27 6.332 0.3867 0 6.332 pH, Field (S.U) BRGWC-50 7.08 5.584 9/17/2020 4.41 0.3867 0 0.0004179 Param Inter 1 of 2 Sulfate as SO4 (mg/L) BRGWC-25I 9/15/2020 126 98 0.0002014 NP Inter (normality) 1 of 2 89 n/a 11.22 n/a Sulfate as SO4 (mg/L) BRGWC-27I 9/16/2020 190 98 11.22 0.0002014 NP Inter (normality) 1 of 2 89 Sulfate as SO4 (mg/L) BRGWC-29I 89 9/15/2020 241 98 11.22 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 n/a Yes n/a Sulfate as SO4 (mg/L) BRGWC-30I 9/16/2020 334 98 11.22 n/a 0.0002014 NP Inter (normality) 1 of 2 89 n/a Sulfate as SO4 (mg/L) BRGWC-32S 89 n/a 9/16/2020 255 Yes 98 n/a 11.22 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Sulfate as SO4 (mg/L) BRGWC-45 89 9/16/2020 103 98 n/a 11.22 n/a 0.0002014 NP Inter (normality) 1 of 2 n/a Sulfate as SO4 (mg/L) BRGWC-47 89 n/a 9/16/2020 1360 Yes 98 n/a 11.22 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Sulfate as SO4 (mg/L) BRGWC-52I 89 9/17/2020 165 98 11.22 n/a n/s 0.0002014 NP Inter (normality) 1 of 2 n/a Yes Sulfate as SO4 (mg/L) BRGWC-50 89 n/a 9/17/2020 1330 Yes 98 n/a n/a 11.22 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-27I 299 n/a 9/16/2020 301 Yes 98 n/a n/a 2.041 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-301 299 n/a 9/16/2020 634 Yes 98 n/a n/a 2.041 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-32S 299 n/a 9/16/2020 428 Yes 98 n/a n/a 2.041 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-47 299 n/a 9/16/2020 2090 Yes 98 n/a n/a 2.041 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-52I 299 n/a 9/17/2020 329 Yes 98 n/a n/a 2.041 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-50 9/17/2020 0.0002014 NP Inter (normality) 1 of 2 299 n/a 1910 Yes 98 n/a n/a 2.041 n/a n/a

Federal Interwell Prediction Limit Summary - All Results Plant Branch Client: Southern Company Data: Plant Branch AP Printed 11/1/2020, 9:29 AM

		Plant Bran	nch Client:	Southern Co	mpany D	ata: Pla	nt Br	anch AP	Printed 11/	1/2020,	9:29 AM			
Constituent	Well	Upper Lir	m. Lower Lim	. Date	Observ.	Sig.	Bg	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Boron (mg/L)	BRGWC-25I	0.068	n/a	9/15/2020	1.2	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-27I	0.068	n/a	9/16/2020	1.2	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-29I	0.068	n/a	9/15/2020	1.1	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-30I	0.068	n/a	9/16/2020	1.7	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-32S	0.068	n/a	9/16/2020	1.4	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-45	0.068	n/a	9/16/2020	0.028J	No	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-47	0.068	n/a	9/16/2020	0.47	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-52I	0.068	n/a	9/17/2020	1.9	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-50	0.068	n/a	9/17/2020	0.36	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BRGWC-25I	24	n/a	9/15/2020	40.1	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-27I	24	n/a	9/16/2020	62.5	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-29I	24	n/a	9/15/2020	55.1	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-30I	24	n/a	9/16/2020	106	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-32S	24	n/a	9/16/2020	43.1	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-45	24	n/a	9/16/2020	39.7	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-47	24	n/a	9/16/2020	309	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-52I	24	n/a	9/17/2020	35.4	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-50	24	n/a	9/17/2020	206	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BRGWC-25I	5.036	n/a	9/15/2020	4.9	No	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-27I	5.036	n/a	9/16/2020	5.4	Yes	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-29I	5.036	n/a	9/15/2020	5.5	Yes	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-30I	5.036	n/a	9/16/2020	4.4	No	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-32S	5.036	n/a	9/16/2020	5.6	Yes	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-45	5.036	n/a	9/16/2020	54.9	Yes	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-47	5.036	n/a	9/16/2020	4.1	No	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-52I	5.036	n/a	9/17/2020	6.3	Yes	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-50	5.036	n/a	9/17/2020	20.1	Yes		1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Fluoride (mg/L)	BRGWC-25I	0.42	n/a	9/15/2020	0.15	No	112	n/a	n/a	54.46	n/a	n/a		NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-27I	0.42	n/a	9/16/2020	0.15	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-29I	0.42	n/a	9/15/2020	0.057J	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-30I	0.42	n/a	9/16/2020	0.13	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-32S	0.42	n/a	9/16/2020	0.1ND	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-45	0.42	n/a	9/16/2020	0.052J	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-47	0.42	n/a	9/16/2020	0.1ND	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-52I	0.42	n/a	9/17/2020	0.074J	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-50	0.42	n/a	9/17/2020	0.46	Yes	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
pH, Field (S.U)	BRGWC-25I	7.08	5.584	9/15/2020	6	No	114	6.332	0.3867	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U)	BRGWC-27I	7.08	5.584	9/16/2020	5.81	No	114	6.332	0.3867	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U)	BRGWC-29I	7.08	5.584	9/15/2020	4.53	Yes	114	6.332	0.3867	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U)	BRGWC-30I	7.08	5.584	9/16/2020	6.29	No		6.332	0.3867	0	None	No		Param Inter 1 of 2
pH, Field (S.U)	BRGWC-32S	7.08	5.584	9/16/2020	5.79	No	114	6.332	0.3867	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U)	BRGWC-45	7.08	5.584	9/16/2020	5.27	Yes	114	6.332	0.3867	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U)	BRGWC-47	7.08	5.584	9/16/2020	5.76	No		6.332	0.3867	0	None	No		Param Inter 1 of 2
pH, Field (S.U)	BRGWC-52I	7.08	5.584	9/17/2020	6.12	No		6.332	0.3867	0	None	No		Param Inter 1 of 2
pH, Field (S.U)	BRGWC-50	7.08	5.584	9/17/2020	4.41	Yes		6.332	0.3867	0	None	No		Param Inter 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-25I	89	n/a	9/15/2020	126	Yes	98	n/a	n/a	11.22		n/a		NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-27I	89	n/a	9/16/2020	190	Yes	98	n/a	n/a	11.22		n/a		NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-29I	89	n/a	9/15/2020	241	Yes	98	n/a	n/a	11.22		n/a		NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-30I	89	n/a	9/16/2020	334	Yes	98	n/a	n/a	11.22		n/a		NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-32S	89	n/a	9/16/2020	255	Yes	98	n/a	n/a	11.22		n/a		NP Inter (normality) 1 of 2
· · · · · · · · · · · · · · · · · · ·														, ,,, ,

Page 2

Federal Interwell Prediction Limit Summary - All Results

		Plant Brand	ch Client:	Southern Cor	mpany Da	ata: Pla	int Br	anch AP	Printed 11/1	1/2020, 9	9:29 AM			
Constituent	Well	Upper Lim	n. Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Sulfate as SO4 (mg/L)	BRGWC-45	89	n/a	9/16/2020	103	Yes	98	n/a	n/a	11.22	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-47	89	n/a	9/16/2020	1360	Yes	98	n/a	n/a	11.22	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-52I	89	n/a	9/17/2020	165	Yes	98	n/a	n/a	11.22	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-50	89	n/a	9/17/2020	1330	Yes	98	n/a	n/a	11.22	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-25I	299	n/a	9/15/2020	272	No	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-27I	299	n/a	9/16/2020	301	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-29I	299	n/a	9/15/2020	281	No	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-30I	299	n/a	9/16/2020	634	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-32S	299	n/a	9/16/2020	428	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-45	299	n/a	9/16/2020	275	No	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-47	299	n/a	9/16/2020	2090	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-52I	299	n/a	9/17/2020	329	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-50	299	n/a	9/17/2020	1910	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2

Trend Test Summary - Significant Results

	Plant Branch C	Client: Southern Company	Data: Plant	Branch AP	Printe	d 11/1/2	020, 9:37	' AM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	BRGWC-27I	-0.2108	-47	-43	Yes	13	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-25I	-6.82	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-29I	-14.31	-46	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-30I	13.05	45	38	Yes	12	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-23S (bg) -0.08225	-56	-48	Yes	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-2I (bo	g) -0.1422	-59	-48	Yes	14	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-12I (b	og) -0.2968	-60	-43	Yes	13	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-12S (bg) -0.2094	-52	-43	Yes	13	15.38	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-25I	-46.07	-39	-38	Yes	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-27I	-26.6	-45	-38	Yes	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-29I	-70.06	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-32S	-50.85	-41	-38	Yes	12	0	n/a	n/a	0.01	NP

Trend Test Summary - All Results

	Tiend Test Summary - 7th Results										
F	Plant Branch Client: So	uthern Company D	ata: Plant I	Branch AP	Printe	d 11/3/20	020, 8:27	7 AM			
Constituent	Well	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	BRGWA-12I (bg)	-0.0004579	-13	-38	No	12	16.67	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-12S (bg)	0	-11	-38	No	12	83.33	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-23S (bg)	0.0004028	3	38	No	12	16.67	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-2I (bg)	-0.0003913	-9	-38	No	12	16.67	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-2S (bg)	0	0	38	No	12	100	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-5I (bg)	0	5	38	No	12	83.33	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-5S (bg)	0	-6	-38	No	12	66.67	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-6S (bg)	0	-2	-38	No	12	75	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-25I	-0.1013	-18	-38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-27I	-0.2108	-47	-43	Yes	13	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-29I	-0.1128	-25	-38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-30I	-0.005121	-10	-43	No	13	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-32S	0.02475	13	43	No	13	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-47	0.001853	3	43	No	13	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-52I	0.186	17	38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-50	0.01538	17	38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-12I (bg)	0.5525	19	43	No	13	7.692	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-12S (bg)	0.4903	32	43	No	13	7.692	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-23S (bg)	-1.169	-22	-38	No	12	8.333	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-2I (bg)	1.137	29	38	No	12	8.333	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-2S (bg)	-0.05889	-17	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-5I (bg)	-0.08584	-3	-38	No	12	8.333	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-5S (bg)	-0.153	-4	-38	No	12	8.333	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-6S (bg)	0.1455	32	38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-25I	-6.82	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-27I	-4.805	-30	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-29I	-14.31	-46	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-30I	13.05	45	38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-32S	-3.197	-22	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-45	-1.319	-21	-43	No	13	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-47	8.197	11	43	No	13	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-52I	5.226	11	34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-50	-0.6983	-2	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-12I (bg)	-0.2129	-42	-43	No	13	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-12S (bg)	0	-8	-43	No	13	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-23S (bg)	-0.2572	-26	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-2I (bg)	-0.02706	-7	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-2S (bg)	0	0	38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-5I (bg)	-0.1482	-21	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-5S (bg)	-0.01532	-6	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-6S (bg)	0.01532	12	38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWC-27I	-0.09698	-10	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWC-29I	-0.3063	-22	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L) Chloride, Total (mg/L)	BRGWC-32S	-0.2863	-24	-38	No	12	0	n/a	n/a	0.01	NP
											NP
Chloride, Total (mg/L)	BRGWC-45 BRGWC-52I	-3.833 -0.467	-24 -29	-43 -38	No	13	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)					No	12		n/a	n/a		
Chloride, Total (mg/L)	BRGWC-50	-1.541 -0.01658	-26 -20	-38 -48	No No	12	0 35.71	n/a n/a	n/a n/a	0.01	NP NP
Fluoride (mg/L)	BRGWA-12I (bg)	-0.01658	-29 10			14					
Fluoride (mg/L)	BRGWA-12S (bg)	0	19	48	No	14	71.43	n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-23S (bg)	0 01511	-15	-48	No	14	64.29	n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-2I (bg)	-0.01511	-39	-48	No	14	42.86	n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-2S (bg)	0	7	48	No	14	57.14	n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-5I (bg)	0	17	48	No	14		n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-5S (bg)	-0.01067	-29	-48	No	14	35.71	n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-6S (bg)	0	11	48	No	14	57.14	n/a	n/a	0.01	NP

Trend Test Summary - All Results

	Plant Branch	Client: Sou	uthern Company	Data: Plant	Branch AP	Printe	d 11/3/20	020, 8:27	7 AM			
Constituent	<u>Well</u>		Slope	Calc.	<u>Critical</u>	Sig.	N	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Fluoride (mg/L)	BRGWC-50		-0.2133	-32	-48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-12I ((bg)	-0.06443	-41	-58	No	16	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-12S	(bg)	-0.006874	-14	-53	No	15	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-23S	(bg)	-0.08225	-56	-48	Yes	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-2I (b	g)	-0.1422	-59	-48	Yes	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-2S (I	bg)	-0.04353	-47	-48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-5I (b	g)	-0.03452	-29	-48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-5S (I	bg)	-0.05503	-32	-48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-6S (I	bg)	-0.04101	-17	-43	No	13	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWC-29I		0.02098	14	48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWC-45		-0.04257	-13	-48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWC-50		-0.0137	-7	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-12I ((bg)	-0.2968	-60	-43	Yes	13	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-12S	(bg)	-0.2094	-52	-43	Yes	13	15.38	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-23S	(bg)	-1.903	-8	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-2I (b	g)	-0.1119	-11	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-2S (I	bg)	0.04767	13	38	No	12	25	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-5I (b	g)	-0.1873	-8	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-5S (bg)	-0.07276	-22	-38	No	12	25	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-6S (bg)	-0.01104	-8	-38	No	12	25	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-25I		-46.07	-39	-38	Yes	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-27I		-26.6	-45	-38	Yes	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-29I		-70.06	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-30I		16.01	16	38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-32S		-29.47	-32	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-45		-2.111	-11	-43	No	13	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-47		-45.1	-11	-43	No	13	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-52I		-7.328	-9	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-50		-74.11	-8	-34	No	11	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-12I ((bg)	-4.199	-25	-43	No	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-12S	(bg)	-1.357	-8	-43	No	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-23S	(bg)	-11.33	-18	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-2I (b	g)	-1.984	-2	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-2S (I	bg)	4.612	11	38	No	12	8.333	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-5I (b	g)	-3.347	-9	-38	No	12	8.333	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-5S (I	bg)	-3.649	-23	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-6S (I	bg)	0.4269	1	38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-27I		-25.62	-37	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-30I		44.87	24	38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-32S		-50.85	-41	-38	Yes	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-47		-32.65	-15	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-52I		-1.637	-2	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-50		-60.86	-28	-38	No	12	0	n/a	n/a	0.01	NP

Tolerance Limit Summary Table

		Plant Branch	Clie	nt: Southern Cor	npany Data: Pl	ant Branch AF	Printed 11/1/2	020, 10:40 AM	1	
Constituent	Well	Upper Lim.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.012	104	n/a	n/a	81.73	n/a	n/a	0.004822	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.005	104	n/a	n/a	72.12	n/a	n/a	0.004822	NP Inter(normality)
Barium (mg/L)	n/a	0.13	104	n/a	n/a	0	n/a	n/a	0.004822	NP Inter(normality)
Beryllium (mg/L)	n/a	0.003	104	n/a	n/a	100	n/a	n/a	0.004822	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.0025	106	n/a	n/a	98.11	n/a	n/a	0.004352	NP Inter(NDs)
Chromium (mg/L)	n/a	0.016	103	n/a	n/a	24.27	n/a	n/a	0.005076	NP Inter(normality)
Cobalt (mg/L)	n/a	0.0135	104	n/a	n/a	57.69	n/a	n/a	0.004822	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	n/a	1.672	104	0.8101	0.4489	0	None	No	0.05	Inter
Fluoride (mg/L)	n/a	0.42	112	n/a	n/a	54.46	n/a	n/a	0.003199	NP Inter(normality)
Lead (mg/L)	n/a	0.005	104	n/a	n/a	83.65	n/a	n/a	0.004822	NP Inter(NDs)
Lithium (mg/L)	n/a	0.089	104	n/a	n/a	44.23	n/a	n/a	0.004822	NP Inter(normality)
Mercury (mg/L)	n/a	0.0005	88	n/a	n/a	92.05	n/a	n/a	0.01096	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.01	101	n/a	n/a	79.21	n/a	n/a	0.005625	NP Inter(NDs)
Selenium (mg/L)	n/a	0.01	104	n/a	n/a	92.31	n/a	n/a	0.004822	NP Inter(NDs)
Thallium (mg/L)	n/a	0.001	104	n/a	n/a	100	n/a	n/a	0.004822	NP Inter(NDs)

PLANT BRANCH PONDS B,C,D GWPS												
		Background										
Constituent Name	MCL	Limit	GWPS									
Antimony, Total (mg/L)	0.006	0.012	0.012									
Arsenic, Total (mg/L)	0.01	0.005	0.01									
Barium, Total (mg/L)	2	0.13	2									
Beryllium, Total (mg/L)	0.004	0.003	0.004									
Cadmium, Total (mg/L)	0.005	0.0025	0.005									
Chromium, Total (mg/L)	0.1	0.016	0.1									
Cobalt, Total (mg/L)	n/a	0.014	0.014									
Combined Radium, Total (pCi/L)	5	1.67	5									
Fluoride, Total (mg/L)	4	0.42	4									
Lead, Total (mg/L)	n/a	0.005	0.005									
Lithium, Total (mg/L)	n/a	0.089	0.089									
Mercury, Total (mg/L)	0.002	0.0005	0.002									
Molybdenum, Total (mg/L)	n/a	0.01	0.01									
Selenium, Total (mg/L)	0.05	0.01	0.05									
Thallium, Total (mg/L)	0.002	0.001	0.002									

^{*}Highlighted cells indicate Background is higher than MCLs

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

Confidence Interval Summary - Significant Results

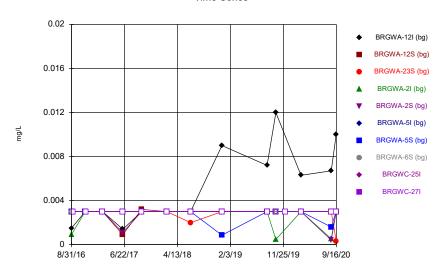
Plant Branch Client: Southern Company Data: Plant Branch AP Printed 11/1/2020, 10:13 AM

Constituent	Well	Upper Li	m.Lower Lim.	Compliance	Sig. N	<u>Mean</u>	Std. Dev.	<u>%ND</u>	s ND Adj.	Transform	Alpha	Method
Cadmium (mg/L)	BRGWC-50	0.0482	0.01365	0.005	Yes 13	0.03269	0.02633	0	None	sqrt(x)	0.01	Param.
Cobalt (mg/L)	BRGWC-50	1.5	1.3	0.014	Yes 13	1.392	0.06405	0	None	No	0.01	NP (normality)

Confidence Interval Summary - All Results Plant Branch Client: Southern Company Data: Plant Branch AP Printed 11/1/2020, 10:13 AM

		Plant Branch	Client: Southern	Company	Data: Pla	nt Branch AP	Printed 11	/1/2020	, 10:13 AM			
Constituent	Well	Upper Lin	n.Lower Lim.	Compliance	Sig. N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	BRGWC-29I	0.003	0.0007	0.012	No 13	0.002823	0.0006379	92.31	None	No	0.01	NP (NDs)
Antimony (mg/L)	BRGWC-32S	0.003	0.0014	0.012	No 13	0.002877	0.0004438	92.31	None	No	0.01	NP (NDs)
Antimony (mg/L)	BRGWC-45	0.0031	0.0012	0.012	No 14	0.002403	0.0009415	57.14	None	No	0.01	NP (normality)
Antimony (mg/L)	BRGWC-47	0.003	0.00035	0.012	No 14	0.002811	0.0007082	92.86	None	No	0.01	NP (NDs)
Antimony (mg/L)	BRGWC-52I	0.003	0.00085	0.012	No 13	0.002637	0.0008904	84.62	None	No	0.01	NP (NDs)
Antimony (mg/L)	BRGWC-50	0.003	0.00052	0.012	No 13	0.00261	0.0009522	84.62	None	No	0.01	NP (NDs)
Arsenic (mg/L)	BRGWC-25I	0.005	0.0006	0.01	No 13	0.003673	0.002073	69.23	None	No	0.01	NP (normality)
Arsenic (mg/L)	BRGWC-27I	0.005	0.0009	0.01	No 13	0.003777	0.001915	69.23	None	No	0.01	NP (normality)
Arsenic (mg/L)	BRGWC-29I	0.005	0.00051	0.01	No 13	0.003477	0.002047	61.54	None	No	0.01	NP (normality)
Arsenic (mg/L)	BRGWC-30I	0.005	0.00056	0.01	No 13	0.004658	0.001231	92.31	None	No	0.01	NP (NDs)
Arsenic (mg/L)	BRGWC-32S	0.005	0.00053	0.01	No 13	0.004656	0.00124	92.31	None	No	0.01	NP (NDs)
Arsenic (mg/L)	BRGWC-45	0.005	0.00075	0.01	No 14	0.003578	0.00201		None	No	0.01	NP (normality)
Arsenic (mg/L)	BRGWC-47		0.000854	0.01	No 14	0.002731	0.001842		Kaplan-Meie	er x^(1/3)	0.01	Param.
Arsenic (mg/L)	BRGWC-52I		0.001603	0.01	No 13	0.003398	0.001528		Kaplan-Meie	, ,	0.01	Param.
Arsenic (mg/L)	BRGWC-50	0.005	0.00074	0.01	No 13	0.004046	0.001823		Kaplan-Meie		0.01	NP (NDs)
Barium (mg/L)	BRGWC-25I	0.0379	0.02755	2	No 13	0.03272	0.006963	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-27I	0.01726	0.01514	2	No 13	0.0162	0.00142	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-29I	0.01993	0.01662	2	No 13	0.01833	0.002426		None	ln(x)	0.01	Param.
Barium (mg/L)	BRGWC-30I	0.02553	0.02141	2	No 13	0.02347	0.002773		None	No	0.01	Param.
Barium (mg/L)	BRGWC-32S	0.04652	0.02982	2	No 13	0.03817	0.01123	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-45	0.09884	0.08173	2	No 14	0.09029	0.011208	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-47	0.04541	0.03458	2	No 14	0.03999	0.007644	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-52I	0.02741	0.01659	2	No 13	0.022	0.00728	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-50	0.02109	0.0186	2	No 13	0.01985	0.00120	0	None	No	0.01	Param.
Beryllium (mg/L)	BRGWC-27I	0.02109	0.00011	0.004		0.0009578	0.001070	28.57		No	0.01	NP (normality)
	BRGWC-29I	0.003	0.00071	0.004	No 14 No 13		0.001341			No		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Beryllium (mg/L)	BRGWC-45	0.0014	0.00072	0.004	No 15		0.0008178		None None	No	0.01	NP (normality) NP (NDs)
Beryllium (mg/L)	BRGWC-47	0.003	0.000079	0.004	No 14	0.002368	0.001034		None	No	0.01	NP (NDs)
Beryllium (mg/L)	BRGWC-50		0.002802	0.004	No 13		0.001233		Kaplan-Meie		0.01	Param.
Beryllium (mg/L)	BRGWC-27I	0.004442	0.002802	0.004		0.003723	0.001166		None	,	0.01	
Cadmium (mg/L)						0.002219				No		NP (NDs)
Cadmium (mg/L)	BRGWC-32S	0.0025	0.001	0.005	No 14		0.0009155 0.0009871	80		No	0.01	NP (NDs)
Cadmium (mg/L)	BRGWC-45	0.0025	0.00014	0.005	No 15	0.002023			None	No No		NP (NDs)
Cadmium (mg/L)	BRGWC-47	0.0025	0.00015	0.005	No 14	0.001006	0.001156	35.71		No	0.01	NP (normality)
Cadmium (mg/L)	BRGWC-50 BRGWC-25I	0.0482	0.01365	0.005	Yes 13		0.02633	0	None	sqrt(x)	0.01	Param.
Chromium (mg/L)		0.01	0.0016	0.1	No 13		0.003273		None	No No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-27I	0.01	0.003	0.1	No 13	0.008769	0.003032		None	No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-29I	0.02	0.01	0.1	No 13	0.01077	0.002774		None	No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-30I	0.014	0.0051	0.1	No 13	0.009931	0.001825		None	No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-32S	0.01	0.0011	0.1	No 13	0.004808	0.004293		None	No	0.01	NP (normality)
Chromium (mg/L)	BRGWC-45	0.01	0.0014	0.1	No 14	0.008066	0.003846 0.00421		None	No No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-47	0.01	0.00092	0.1	No 14	0.007439			None	No No	0.01	NP (normality)
Chromium (mg/L)	BRGWC-52I	0.01	0.0017	0.1	No 13	0.009362	0.002302		None	No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-50	0.01	0.00065	0.1	No 13	0.006134	0.004467		None	No	0.01	NP (normality)
Cobalt (mg/L)	BRGWC-25I		0.004311	0.014	No 13	0.006038	0.002166		Kaplan-Meie		0.01	Param.
Cobalt (mg/L)	BRGWC-27I	0.0131	0.008	0.014	No 14	0.01199	0.008318		None	No	0.01	NP (normality)
Cobalt (mg/L)	BRGWC-29I	0.01039	0.006211	0.014	No 13	0.008392	0.002939		None	sqrt(x)	0.01	Param.
Cobalt (mg/L)	BRGWC-30I	0.005	0.00078	0.014	No 14		0.001708		None	No	0.01	NP (normality)
Cobalt (mg/L)	BRGWC-32S	0.01	0.0025	0.014	No 14	0.005179	0.001539		None	No	0.01	NP (NDs)
Cobalt (mg/L)	BRGWC-45	0.022	0.0071	0.014	No 15	0.01639	0.01698		None	No	0.01	NP (normality)
Cobalt (mg/L)	BRGWC-47		0.0007144	0.014	No 14	0.002832	0.003474		None	x^(1/3)	0.01	Param.
Cobalt (mg/L)	BRGWC-52I	0.005	0.00063	0.014	No 13	0.003345	0.001869		None	No	0.01	NP (normality)
Cobalt (mg/L)	BRGWC-50	1.5	1.3	0.014	Yes 13		0.06405	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BRGWC-25I	1.207	0.6677	5	No 13		0.3624	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-27I	1.209	0.5555	5	No 13	0.882	0.4391	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-29I	1.686	1.156	5	No 13	1.421	0.3561	0	None	No	0.01	Param.

Confidence Interval Summary - All Results


	-		01100 111			ч .		y / 11			,		
	Pla	ant Branch	Client: Southern	Company I	Data:	Plant	t Branch AP	Printed 11	/1/2020,	10:13 AM			
Constituent	Well	Upper Lin	n.Lower Lim.	Compliance	Sig.	N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	BRGWC-30I	1.205	0.6364	5	No	13	0.9209	0.3827	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-32S	1.163	0.4582	5	No	13	0.8107	0.474	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-45	0.8687	0.3896	5	No	14	0.6291	0.3382	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-47	1.536	0.897	5	No	14	1.217	0.4512	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-52I	2.148	1.297	5	No	13	1.722	0.5725	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-50	2.063	1.179	5	No	13	1.621	0.5942	0	None	No	0.01	Param.
Fluoride (mg/L)	BRGWC-25I	0.2994	0.1251	4	No	14	0.2243	0.1523	14.29	None	x^(1/3)	0.01	Param.
Fluoride (mg/L)	BRGWC-27I	0.273	0.1423	4	No	14	0.2189	0.09837	21.43	Kaplan-Meie	er No	0.01	Param.
Fluoride (mg/L)	BRGWC-29I	0.2537	0.09087	4	No	14	0.1927	0.1342	14.29	None	In(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-30I	0.415	0.1335	4	No	14	0.2908	0.2329	14.29	None	sqrt(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-32S	0.15	0.09	4	No	14	0.1257	0.06248	64.29	None	No	0.01	NP (normality)
Fluoride (mg/L)	BRGWC-45	0.19	0.066	4	No	15	0.1972	0.2569	60	None	No	0.01	NP (normality)
Fluoride (mg/L)	BRGWC-47	0.3418	0.09906	4	No	15	0.2689	0.2802	40	Kaplan-Meie	erln(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-52I	0.2457	0.1229	4	No	13	0.1843	0.0826	7.692	None	No	0.01	Param.
Fluoride (mg/L)	BRGWC-50	0.9237	0.3135	4	No	14	0.6529	0.5001	0	None	sqrt(x)	0.01	Param.
Lead (mg/L)	BRGWC-25I	0.005	0.00011	0.005	No	13	0.004624	0.001356	92.31	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-27I	0.005	0.000063	0.005	No	13	0.00462	0.001369	92.31	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-29I	0.0006	0.00027	0.005	No	12	0.0007483	0.001343	8.333	None	No	0.01	NP (normality)
Lead (mg/L)	BRGWC-30I	0.005	0.00011	0.005	No	13	0.004624	0.001356	92.31	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-45	0.005	0.00026	0.005	No	14	0.003966	0.002055	78.57	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-47	0.005	0.00012	0.005	No	14	0.003945	0.002096	78.57	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-50	0.005	0.000067	0.005	No	13	0.002407	0.002502	46.15	None	No	0.01	NP (normality)
Lithium (mg/L)	BRGWC-27I	0.0021	0.0014	0.089	No	13	0.005192	0.008793	15.38	None	No	0.01	NP (normality)
Lithium (mg/L)	BRGWC-29I	0.0043	0.0029	0.089		13	0.005054	0.006009	7.692		No	0.01	NP (normality)
Lithium (mg/L)	BRGWC-30I	0.01703	0.01143	0.089	No		0.01432	0.00404	7.692		sqrt(x)	0.01	Param.
Lithium (mg/L)	BRGWC-32S	0.025	0.002	0.089		13	0.005677	0.008577	15.38		No	0.01	NP (normality)
Lithium (mg/L)	BRGWC-45	0.003478		0.089	No		0.003269	0.000281	0	None	No	0.01	Param.
Lithium (mg/L)	BRGWC-47	0.04413	0.04021	0.089		14	0.04217	0.002763	0	None	No	0.01	Param.
Lithium (mg/L)	BRGWC-52I		0.003025	0.089	No		0.0064	0.005987	7.692		ln(x)	0.01	Param.
Lithium (mg/L)	BRGWC-50	0.04393	0.03761	0.089	No		0.04077	0.004246	0	None	No	0.01	Param.
Mercury (mg/L)	BRGWC-25I	0.0005	0.000083	0.002	No		0.0004203		81.82		No		NP (NDs)
Mercury (mg/L)	BRGWC-27I	0.0005	0.00005	0.002	No				81.82		No		NP (NDs)
Mercury (mg/L)	BRGWC-29I	0.0005	0.00007	0.002	No		0.0003825		72.73		No		NP (normality)
Mercury (mg/L)	BRGWC-30I	0.0005	0.00007	0.002	No		0.0003823		72.73		No		NP (normality)
Mercury (mg/L)	BRGWC-32S	0.0005	0.00009	0.002	No		0.0003884		72.73		No		NP (normality)
Molybdenum (mg/L)	BRGWC-25I	0.01	0.00081	0.002	No		0.008467	0.003579	83.33		No	0.000	NP (NDs)
Molybdenum (mg/L)	BRGWC-30I	0.01	0.00001	0.01	No		0.008582	0.003373	83.33		No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-301 BRGWC-45	0.01	0.0022	0.01	No		0.009289	0.003520	92.31		No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-43	0.01	0.00076	0.01	No		0.009289	0.002303	41.67		No	0.01	NP (normality)
	BRGWC-521	0.01	0.0012	0.01	No		0.000283		83.33			0.01	NP (NDs)
Molybdenum (mg/L)			0.0033		No			0.002832			No 		
Selenium (mg/L)	BRGWC-27I		0.001989	0.05	No		0.005192	0.003458		Kaplan-Meie	, ,	0.01	Param.
Selenium (mg/L)	BRGWC-29I	0.01		0.05			0.008069	0.002858	61.54		No	0.01	NP (normality)
Selenium (mg/L)	BRGWC-30I	0.01	0.0034	0.05	No		0.007962	0.003234	69.23		No No	0.01	NP (normality)
Selenium (mg/L)	BRGWC-32S	0.1	0.0019	0.05	No		0.04472	0.04778		None	No No	0.01	NP (normality)
Selenium (mg/L)	BRGWC-45	0.01	0.0029	0.05	No		0.009493	0.001898	92.86		No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-47	0.01	0.0017	0.05	No		0.007057	0.004099	64.29		No	0.01	NP (normality)
Selenium (mg/L)	BRGWC-50	0.01	0.002	0.05	No		0.006546	0.003914		None	No	0.01	NP (normality)
Thallium (mg/L)	BRGWC-29I	0.0005	0.00016	0.002	No	12	0.0002033	0.00009471	8.333	None	No	0.01	NP (normality)

Outlier Summary

Plant Branch Client: Southern Company Data: Plant Branch AP Printed 11/1/2020, 10:26 AM

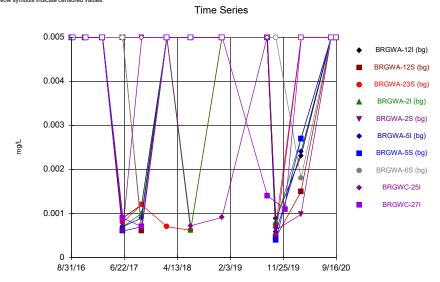
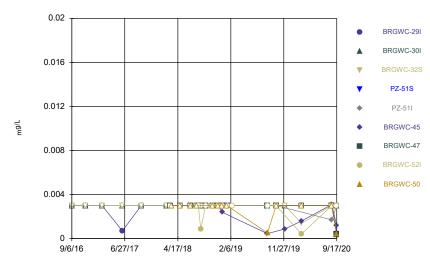
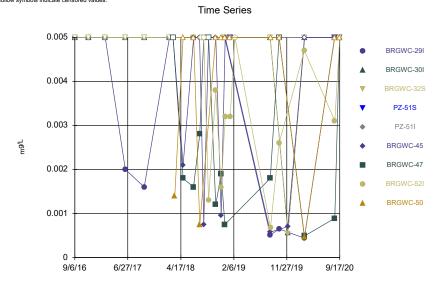

	FRGWC-521 C	_{alcium} (mg/L) BRGWA-5I Co	_{obalt (mg/L)} BRGWC-52l F	_{luoride} (mg/L) BRGWC-291 L	_{ead} (mg/L) BRGWC-45 Li'	_{thium} (mg/L) BRGWC-50 Si	_{ulfate} as SO4 (m BRGWC-29I T	ng/L) Thallium (mg/L) BRGWC-47 Tota	ll Dissolved Solids	[TDS] (mg/L)
9/8/2016							<0.001 (o)			
11/16/2016		<0.01 (o)								
2/13/2018		<0.01 (o)								
2/14/2018				<0.005 (o)						
6/27/2018								31 (OX)		
7/31/2018					<0.25 (o)					
8/10/2018	410 (O)		1.6 (O)							
1/16/2019						589 (O)				

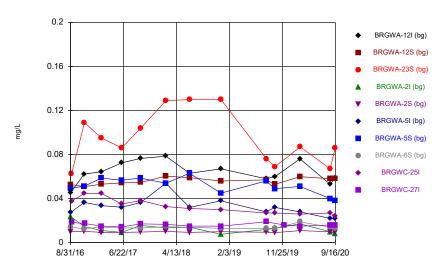
FIGURE A.


Constituent: Antimony Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Arsenic Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series

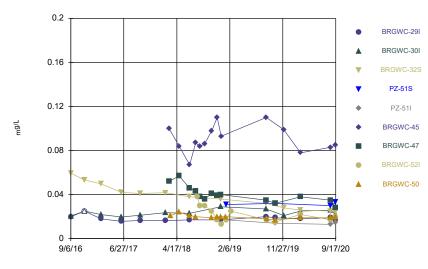


Constituent: Antimony Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Arsenic Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Barium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Constituent: Beryllium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series

Constituent: Barium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

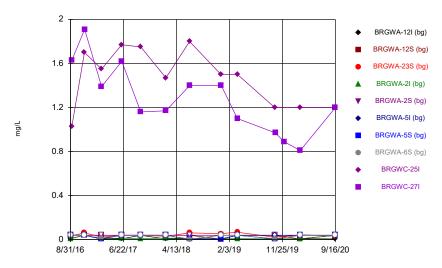
Time Series

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

9/6/16

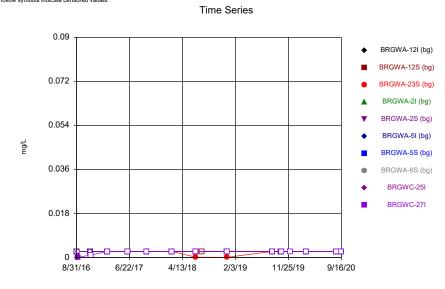
6/27/17

0.02 BRGWC-29I BRGWC-30I BRGWC-32S PZ-51S PZ-51I BRGWC-45 BRGWC-45 BRGWC-50 BRGWC-50

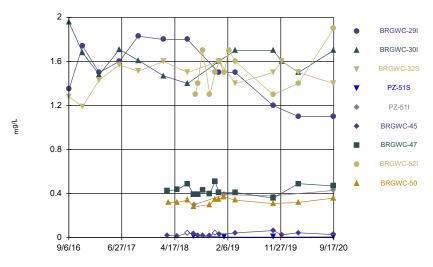

Constituent: Beryllium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

2/6/19

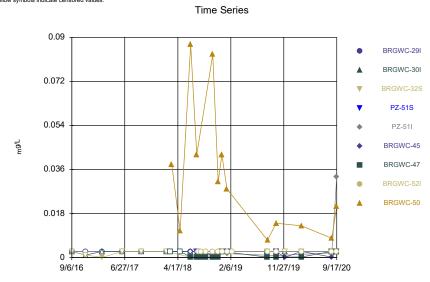
11/27/19


9/17/20

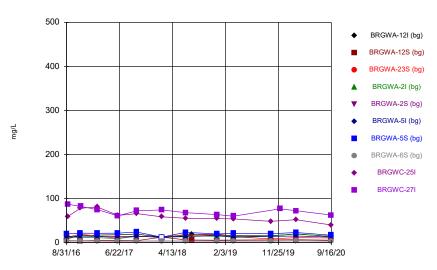
4/17/18


Constituent: Boron Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

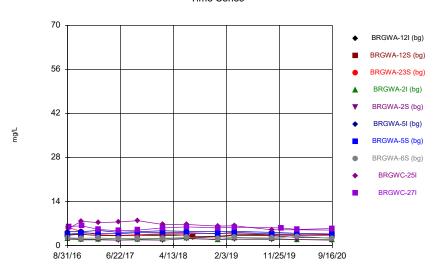

Constituent: Cadmium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series

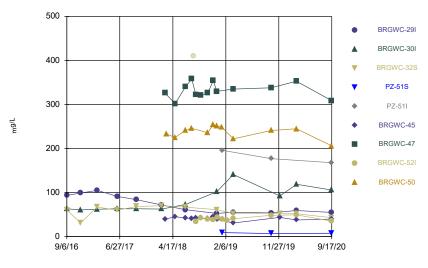


Constituent: Boron Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

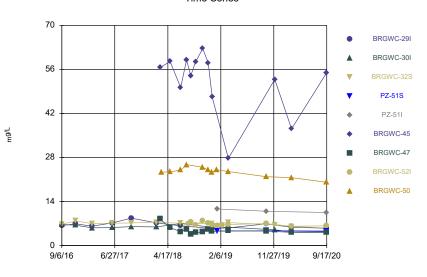

Constituent: Cadmium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

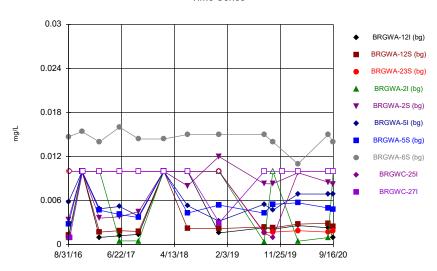
Constituent: Calcium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


$Sanitas^{\text{\tiny{IM}}} \text{ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG}$

Time Series

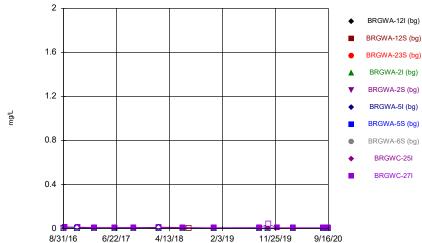
Constituent: Chloride, Total Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Time Series

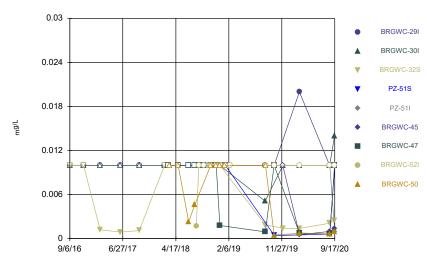

Constituent: Calcium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series


Constituent: Chloride, Total Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Chromium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

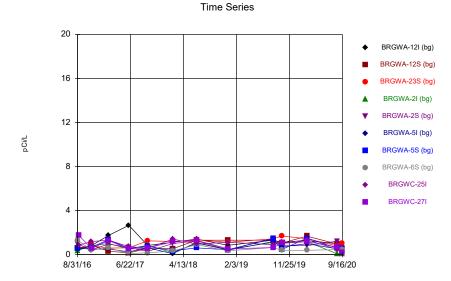

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

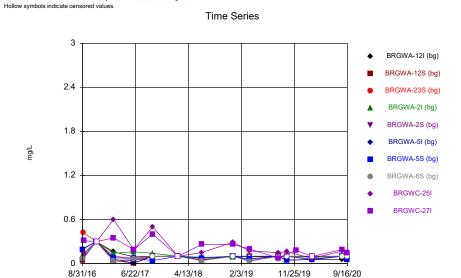
Constituent: Cobalt Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Time Series

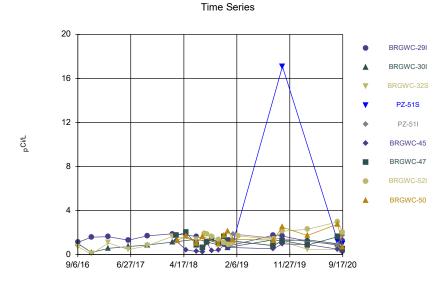
Constituent: Chromium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

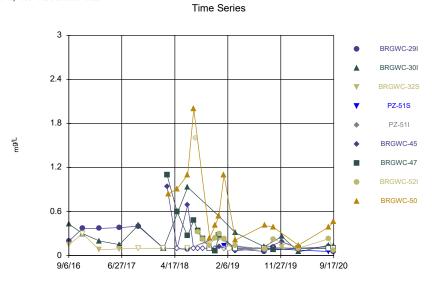

Constituent: Cobalt Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

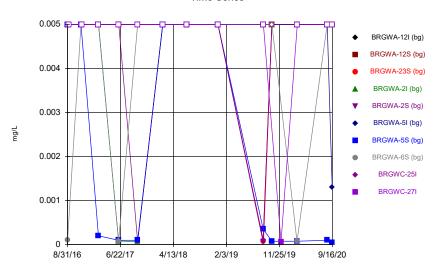


Constituent: Combined Radium 226 + 228 Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

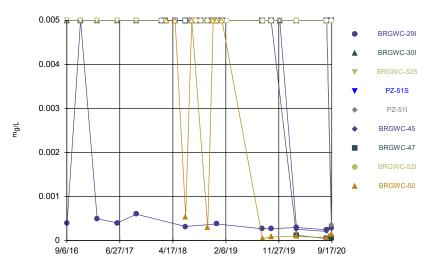


Constituent: Fluoride Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP



Constituent: Combined Radium 226 + 228 Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

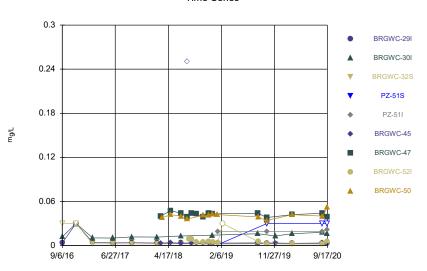
Constituent: Fluoride Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

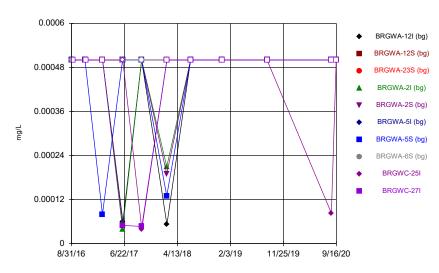

Constituent: Lead Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas $^{\text{\tiny{M}}}$ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series 0.3 BRGWA-12I (bg) BRGWA-12S (bg) 0.24 BRGWA-23S (bg) BRGWA-2I (bg) BRGWA-2S (bg) 0.18 BRGWA-5I (bg) mg/L BRGWA-5S (bg) 0.12 BRGWA-6S (bg) BRGWC-25I BRGWC-27I 0.06 8/31/16 6/22/17 4/13/18 2/3/19 11/25/19 9/16/20

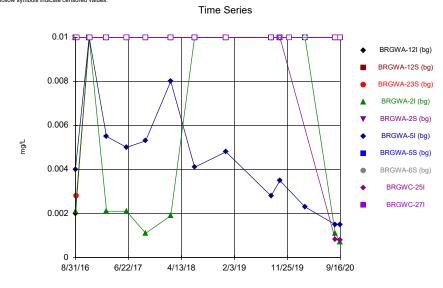
Constituent: Lithium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Time Series

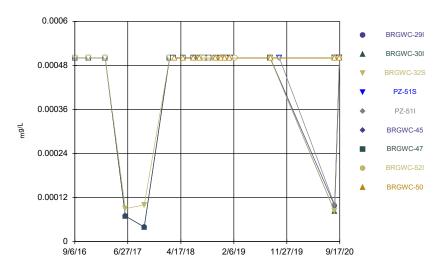

Constituent: Lead Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

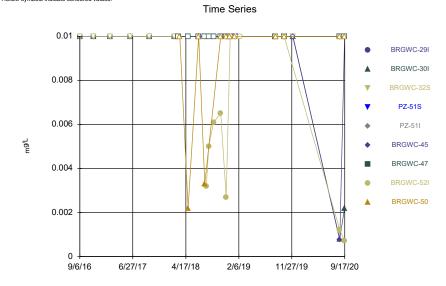
Time Series



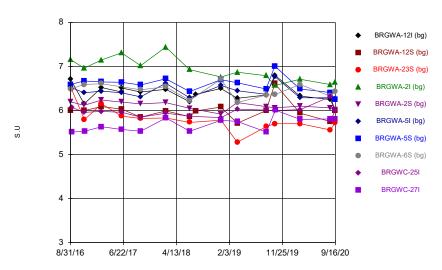
Constituent: Lithium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Mercury Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

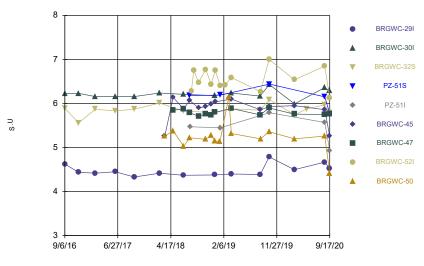

Constituent: Molybdenum Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series


Constituent: Mercury Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

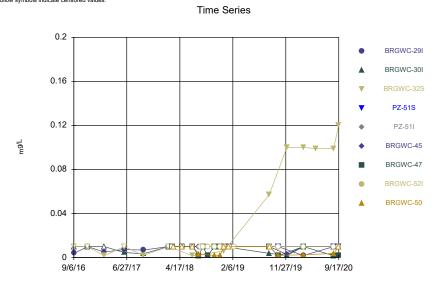
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Molybdenum Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

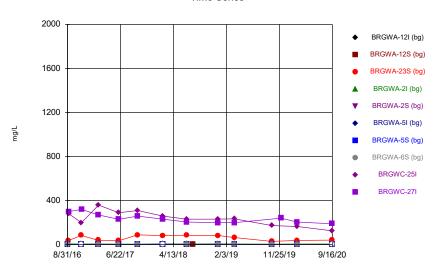

Constituent: pH, Field Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series 0.2 BRGWA-12I (bg) BRGWA-12S (bg) 0.16 BRGWA-23S (bg) BRGWA-2I (bg) BRGWA-2S (bg) 0.12 BRGWA-5I (bg) BRGWA-5S (bg) 0.08 BRGWA-6S (bg) BRGWC-25I BRGWC-27I 0.04 8/31/16 6/22/17 4/13/18 2/3/19 11/25/19 9/16/20


Constituent: Selenium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

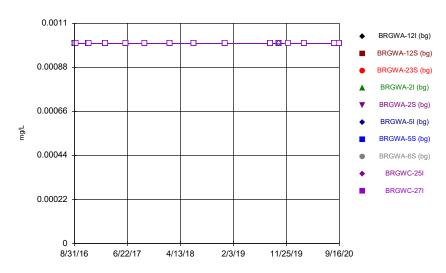
Time Series



Constituent: pH, Field Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

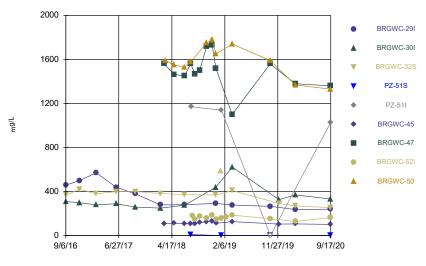
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Selenium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Sulfate as SO4 Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D

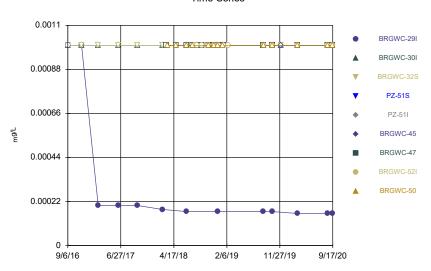
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG


Hollow symbols indicate censored values.

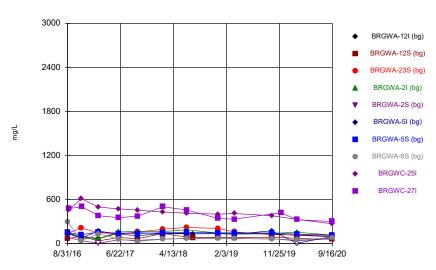
Time Series

Constituent: Thallium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Time Series

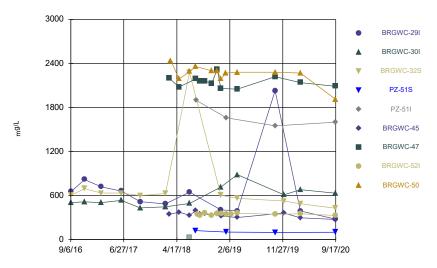
Constituent: Sulfate as SO4 Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Time Series

Constituent: Thallium Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG


Time Series

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 10:52 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Antimony (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				0.0009 (J)	<0.003	<0.003	<0.003		
9/1/2016	0.0015 (J)	<0.003						<0.003	
9/6/2016			<0.003						
9/8/2016									<0.003
11/15/2016							<0.003	<0.003	
11/16/2016	<0.003	<0.003 (J)		<0.003	<0.003	<0.003			
11/17/2016			<0.003						<0.003
2/20/2017						<0.003	<0.003	<0.003	
2/21/2017	<0.003	<0.003	<0.003	<0.003	<0.003				<0.003
6/12/2017				<0.003		<0.003	<0.003	<0.003	
6/13/2017		0.0009 (J)	<0.003		0.0011 (J)				<0.003
6/14/2017	0.0014 (J)								
9/26/2017	<0.003	0.0032	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
9/27/2017									<0.003
2/13/2018				<0.003	<0.003	<0.003	<0.003	<0.003	
2/14/2018	<0.003	<0.003	<0.003						<0.003
6/26/2018	<0.003	<0.003	0.002 (J)	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
12/18/2018	0.009	<0.003	<0.003	<0.003	<0.003	<0.003	0.00087 (J)	<0.003	<0.003
8/27/2019	0.0072	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/29/2019			<0.003						
10/15/2019	0.012	<0.003	<0.003	0.00047 (J)	<0.003	<0.003	<0.003	<0.003	<0.003
3/3/2020	0.0063	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	
3/4/2020			<0.003						<0.003
8/18/2020	0.0067	<0.003	<0.003	0.00054 (J)	0.00042 (J)	<0.003	0.0016 (J)	<0.003	
8/19/2020									<0.003
9/15/2020	0.01	<0.003	0.00033 (J)	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

Constituent: Antimony (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			<0.003						
9/8/2016	<0.003	<0.003		<0.003					
11/18/2016	<0.003								
11/21/2016		<0.003	<0.003	<0.003					
2/21/2017	<0.003								
2/22/2017		<0.003	<0.003	<0.003					
6/13/2017	<0.003								
6/14/2017		0.0007 (J)	<0.003	<0.003					
9/27/2017	<0.003	<0.003	<0.003	<0.003					
2/14/2018	<0.003	<0.003	<0.003	<0.003					
3/6/2018							<0.003	<0.003	
5/1/2018							<0.003	<0.003 (D)	
6/27/2018	<0.003	<0.003		<0.003				<0.003	
6/28/2018			<0.003				<0.003		
7/31/2018							<0.003		
8/1/2018								<0.003	
8/10/2018									<0.003
8/23/2018							<0.003	<0.003	0.00085 (J)
9/19/2018							<0.003	<0.003	<0.003
10/29/2018							<0.003	<0.003	<0.003
11/28/2018							<0.003	<0.003	<0.003
12/18/2018		<0.003	<0.003						
12/19/2018				<0.003				<0.003	
12/20/2018	<0.003						0.0024 (J)		<0.003
1/17/2019									<0.003
1/18/2019					<0.003				
1/19/2019						<0.003			
2/13/2019									<0.003
8/27/2019			<0.003	<0.003					
8/28/2019	<0.003	<0.003					0.00046 (J)	<0.003	
8/29/2019									<0.003
10/16/2019		<0.003						<0.003	<0.003
10/18/2019					<0.003	<0.003			
12/3/2019							0.00088 (J)		
12/4/2019	<0.003		<0.003	<0.003					
3/4/2020	<0.003	<0.003						<0.003	0.00043 (J)
3/5/2020			<0.003	0.0014 (J)			0.0016 (J)		
8/19/2020	<0.003	<0.003	<0.003	<0.003					
8/20/2020					<0.003	0.0017 (J)	0.0031	<0.003	<0.003
9/15/2020		<0.003							
9/16/2020	<0.003		<0.003	<0.003			0.0012 (J)	0.00035 (J)	
9/17/2020					0.00043 (J)	<0.003			<0.003

Constituent: Antimony (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	<0.003
5/1/2018	<0.003
6/28/2018	<0.003
8/1/2018	<0.003
10/29/2018	<0.003
11/28/2018	<0.003
12/19/2018	<0.003
1/16/2019	<0.003
8/29/2019	0.00052 (J)
10/16/2019	<0.003
3/4/2020	<0.003
8/20/2020	<0.003
9/17/2020	0.00041 (J)

Constituent: Arsenic (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-21 (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016	(-9)	(-9)	(-9)	<0.005	<0.005	<0.005	<0.005		
9/1/2016	<0.005	<0.005						<0.005	
9/6/2016			<0.005						
9/8/2016									<0.005
11/15/2016							<0.005	<0.005	
11/16/2016	<0.005	<0.005		<0.005	<0.005	<0.005			
11/17/2016			<0.005						<0.005
2/20/2017						<0.005	<0.005	<0.005	
2/21/2017	<0.005	<0.005	<0.005	<0.005	<0.005				<0.005
6/12/2017				0.0007 (J)		0.0007 (J)	0.0006 (J)	<0.005	
6/13/2017		<0.005	0.0008 (J)		<0.005				0.0006 (J)
6/14/2017	0.0009 (J)								
9/26/2017	0.0012 (J)	0.0006 (J)	0.0012 (J)	0.001 (J)	<0.005	0.0009 (J)	0.0007 (J)	0.0007 (J)	
9/27/2017									<0.005
2/13/2018				<0.005	<0.005	<0.005	<0.005	<0.005	
2/14/2018	<0.005	<0.005	0.0007 (J)						<0.005
6/26/2018	<0.005	<0.005	0.00062 (J)	0.00062 (J)	<0.005	<0.005	<0.005	<0.005	0.00072 (J)
12/18/2018	<0.005	<0.005	<0.005	<0.005	<0.005 (X)	<0.005 (X)	<0.005 (X)	<0.005 (X)	0.00091 (J)
8/27/2019	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2019			<0.005						
10/15/2019	0.00088 (J)	0.00046 (J)	0.00075 (J)	0.0008 (J)	0.00063 (J)	0.00058 (J)	0.00039 (J)	<0.005	0.00052 (J)
3/3/2020	0.0023 (J)	0.0015 (J)		0.0027 (J)	0.00098 (J)	0.0024 (J)	0.0027 (J)	0.0018 (J)	
3/4/2020			<0.005						<0.005
8/18/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/19/2020									<0.005
9/15/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Arsenic (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

0/6/	2016	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
		-0.005	-0.005	<0.005	-0.005					
	2016	<0.005	<0.005		<0.005					
	18/2016	<0.005								
	21/2016		<0.005 (J)	<0.005	<0.005					
	1/2017	<0.005								
	2/2017		<0.005	<0.005	<0.005					
	3/2017	0.0009 (J)								
	4/2017		0.002 (J)	<0.005	<0.005					
	7/2017	0.0007 (J)	0.0016 (J)	<0.005	<0.005					
2/14	4/2018	<0.005	<0.005	<0.005	<0.005					
3/6/	2018							<0.005 (X)	<0.005 (X)	
5/1/	2018							0.0021 (J)	0.0018 (JD)	
6/27	7/2018	<0.005	<0.005		<0.005				0.0016 (J)	
6/28	8/2018			<0.005 (X)				<0.005 (X)		
7/31	1/2018							<0.005		
8/1/	2018								0.0028 (J)	
8/10	0/2018									<0.005
8/23	3/2018							0.00075 (J)	<0.005	<0.005
9/19	9/2018							<0.005	<0.005	0.0013 (J)
10/2	29/2018							<0.005	0.0012 (J)	0.0038 (J)
11/2	28/2018							0.00096 (J)	0.0019 (J)	0.0016 (J)
12/1	18/2018		<0.005	<0.005						
12/1	19/2018				<0.005				0.00075 (J)	
12/2	20/2018	<0.005						<0.005		0.0032 (J)
1/17	7/2019									0.0032 (J)
1/18	8/2019					<0.005				
1/19	9/2019						<0.005			
2/13	3/2019									<0.005
8/27	7/2019			<0.005	<0.005					
8/28	3/2019	0.0014 (J)	0.00051 (J)					0.00058 (J)	0.0018 (J)	
8/29	9/2019									0.00067 (J)
10/1	16/2019		0.00065 (J)						<0.005	0.0026 (J)
10/1	18/2019					<0.005	<0.005			
12/3	3/2019							0.0007 (J)		
	4/2019	0.0011 (J)		0.00056 (J)	0.00053 (J)			, ,		
3/4/	2020	<0.005	0.00044 (J)	.,	. ,				0.00049 (J)	0.0047 (J)
3/5/	2020		. ,	<0.005	<0.005			<0.005	. ,	, ,
8/19	9/2020	<0.005	<0.005	<0.005	<0.005					
	0/2020					<0.005	<0.005	<0.005	0.00089 (J)	0.0031 (J)
	5/2020		<0.005						(-)	
	6/2020	<0.005		<0.005	<0.005			<0.005	<0.005	
	7/2020	0.000		0.000	5.555	<0.005	<0.005	0.000	5.555	<0.005
5/17	0_0					0.000	5.000			0.000

Constituent: Arsenic (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	0.0014 (J)
5/1/2018	<0.005
6/28/2018	<0.005
8/1/2018	0.00074 (J)
10/29/2018	<0.005
11/28/2018	<0.005
12/19/2018	<0.005
1/16/2019	<0.005
8/29/2019	<0.005
10/16/2019	<0.005
3/4/2020	0.00046 (J)
8/20/2020	<0.005
9/17/2020	< 0.005

Constituent: Barium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				0.0239	0.0099 (J)	0.0273	0.0495		
9/1/2016	0.0454	0.0528						0.0142	
9/6/2016			0.0624						
9/8/2016									0.0378
11/15/2016							0.0512	0.0126	
11/16/2016	0.0623	0.0509		0.0147	0.0102	0.0365			
11/17/2016			0.109						0.0448
2/20/2017						0.0336	0.0586	0.0142	
2/21/2017	0.0644	0.0531	0.095	0.0109	0.0094 (J)				0.0447
6/12/2017				0.0094 (J)		0.0322	0.0567	0.0134	
6/13/2017		0.0543	0.0861		0.0094 (J)				0.0351
6/14/2017	0.0726								
9/26/2017	0.0765	0.0547	0.104	0.0156	0.0096 (J)	0.0364	0.0586	0.0133	
9/27/2017									0.0383
2/13/2018				0.0134	0.0102	0.054	0.054	0.0145	
2/14/2018	0.0786	0.0603	0.129						0.0327
6/26/2018	0.063	0.059	0.13	0.014	0.0093 (J)	0.032	0.063	0.014	0.031
12/18/2018	0.067	0.056	0.13	0.0076 (J)	0.01	0.038	0.045	0.013	0.03
8/27/2019	0.058	0.057		0.012	0.0095 (J)	0.028	0.056	0.013	0.027
8/29/2019			0.076						
10/15/2019	0.06	0.053	0.069	0.013	0.0091 (J)	0.032	0.049	0.013	0.027
3/3/2020	0.076	0.06		0.017	0.011	0.028	0.051	0.019	
3/4/2020			0.087						0.026
8/18/2020	0.053	0.058	0.067	0.01 (J)	0.01	0.022	0.04	0.014	
8/19/2020									0.027
9/15/2020	0.059	0.058	0.086	0.0083 (J)	0.0094 (J)	0.022	0.038	0.013	0.024

Constituent: Barium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	0/0/2010	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
	9/6/2016	0.0404	0.0400	0.0206	0.0500					
	9/8/2016	0.0184	0.0199		0.0593					
	11/18/2016	0.0173								
	11/21/2016		<0.05 (JB)	<0.05 (JB)	0.0532 (BR)					
	2/21/2017	0.015								
	2/22/2017		0.0179	0.0219	0.0498					
	6/13/2017	0.0143								
	6/14/2017		0.0157	0.0197	0.0421					
	9/27/2017	0.017	0.0165	0.0213	0.0411					
:	2/14/2018	0.0166	0.0163	0.0236	0.0417					
;	3/6/2018							0.1	0.0519	
	5/1/2018							0.084	0.057 (D)	
(6/27/2018	0.015	0.017		0.038				0.046	
(6/28/2018			0.023				0.067		
	7/31/2018							0.087 (J+X)		
;	8/1/2018								0.043 (J+X)	
;	8/10/2018									0.038
	8/23/2018							0.084	0.038	0.03 (JX)
!	9/19/2018							0.086	0.036	0.03
	10/29/2018							0.098 (J+X)	0.041 (J+X)	0.025 (J+X)
	11/28/2018							0.11	0.039	0.017
	12/18/2018		0.017	0.029						
	12/19/2018				0.036				0.04	
	12/20/2018	0.015						0.093		0.013
	1/17/2019									0.017
	1/18/2019					0.031				
	1/19/2019						0.017			
:	2/13/2019									0.025
:	8/27/2019			0.027	0.032					
:	8/28/2019	0.019	0.02					0.11	0.035	
;	8/29/2019									0.017
	10/16/2019		0.019						0.032	0.015
	10/18/2019					0.032	0.014			
	12/3/2019							0.099		
	12/4/2019	0.016		0.021	0.028					
;	3/4/2020	0.015	0.018						0.038	0.022
	3/5/2020			0.025	0.026			0.078		
	8/19/2020	0.016	0.019	0.026	0.025					
	8/20/2020					0.03	0.013	0.083	0.035	0.017
	9/15/2020		0.017							
	9/16/2020	0.016		0.022	0.024			0.085	0.028	
	9/17/2020			-	-	0.033	0.015			0.02
										-

Constituent: Barium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-50
0.021
0.024
0.021
0.02 (J+X)
0.019 (J+X)
0.02
0.02
0.02
0.018
0.017
0.019
0.019
0.02

Constituent: Beryllium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				<0.003	<0.003	<0.003	<0.003		
9/1/2016	<0.003	<0.003						<0.003	
9/6/2016			<0.003						
9/8/2016									<0.003
11/15/2016							<0.003	<0.003	
11/16/2016	<0.003	<0.003		<0.003	<0.003	<0.003			
11/17/2016			<0.003						<0.003
2/20/2017						<0.003	<0.003	<0.003	
2/21/2017	<0.003	<0.003	<0.003	<0.003	<0.003				<0.003
6/12/2017				<0.003		<0.003	<0.003	<0.003	
6/13/2017		<0.003	<0.003		<0.003				<0.003
6/14/2017	<0.003								
9/26/2017	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
9/27/2017									<0.003
2/13/2018				<0.003	<0.003	<0.003	<0.003	<0.003	
2/14/2018	<0.003	<0.003	<0.003						<0.003
6/26/2018	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
12/18/2018	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/27/2019	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/29/2019			<0.003						
10/15/2019	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/3/2020	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	
3/4/2020			<0.003						<0.003
8/18/2020	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
8/19/2020									<0.003
9/15/2020	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

Constituent: Beryllium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			<0.003						
9/8/2016	0.0002 (J)	0.0011 (J)		<0.003					
11/18/2016	<0.003 (J)								
11/21/2016		<0.003 (J)	<0.003	<0.003					
2/21/2017	0.0002 (J)								
2/22/2017		0.0014 (J)	<0.003	<0.003					
6/13/2017	0.0002 (J)								
6/14/2017		0.0012 (J)	<0.003	<0.003					
9/27/2017	0.0001 (J)	0.001 (J)	<0.003	<0.003					
2/14/2018	<0.003	<0.003	<0.003	<0.003					
3/6/2018							<0.003	<0.003	
5/1/2018							<0.003	<0.003 (D)	
6/27/2018	0.00014 (J)	0.0008 (J)		<0.003				<0.003	
6/28/2018			<0.003				<0.003		
7/31/2018							<0.003		
8/1/2018								<0.003	
8/10/2018									<0.003
8/23/2018							7.9E-05 (J)	5.5E-05 (J)	<0.003
9/19/2018							<0.003	<0.003	<0.003
10/29/2018							<0.003	<0.003	<0.003
11/28/2018							<0.003	5.6E-05 (J)	<0.003
12/18/2018		0.00071 (J)	<0.003						
12/19/2018				<0.003				<0.003 (X)	
12/20/2018	<0.003 (X)						<0.003		<0.003
1/17/2019									<0.003
1/18/2019					<0.003				
1/19/2019						6.4E-05 (J)			
2/13/2019									<0.003
8/27/2019			<0.003	<0.003					
8/28/2019	0.00012 (J)	0.0008 (J)					<0.003	<0.003	
8/29/2019									<0.003
10/16/2019		0.00072 (J)						<0.003	<0.003
10/17/2019	<0.003		<0.003	<0.003			<0.003		
10/18/2019					<0.003	<0.003			
12/3/2019							<0.003		
12/4/2019	0.00012 (J)		<0.003	<0.003					
3/4/2020	0.00012 (J)	0.00073 (J)						<0.003	<0.003
3/5/2020	\-,'	(-)	<0.003	<0.003			<0.003		
8/19/2020	9.9E-05 (J)	0.00074 (J)	<0.003	<0.003					
8/20/2020	ν-/	(-)			<0.003	7.7E-05 (J)	4.6E-05 (J)	4.7E-05 (J)	<0.003
9/15/2020		0.00071 (J)				V-7	\-/	ν-/	
9/16/2020	0.00011 (J)	· · · · · · · · · · · · · · · · · · ·	<0.003	<0.003			<0.003	<0.003	
9/17/2020					<0.003	9.6E-05 (J)			<0.003
						(-)			

Constituent: Beryllium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	<0.003
5/1/2018	<0.003
6/28/2018	0.003 (J)
8/1/2018	0.0025 (J)
10/29/2018	0.0042
11/28/2018	0.0029 (J)
12/19/2018	0.0043
1/16/2019	0.0038
8/29/2019	0.0029 (J)
10/16/2019	0.0027 (J)
3/4/2020	0.0052
8/20/2020	0.0044
9/17/2020	0.0065

Constituent: Boron (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				0.0072 (J)	<0.04	<0.04	<0.04		
9/1/2016	0.0093 (J)	<0.04						<0.04	
9/6/2016			0.0362 (J)						
9/8/2016									1.03
11/15/2016							<0.04 (B)	<0.04 (B)	
11/16/2016	<0.04	<0.04		<0.04	<0.04	<0.04			
11/17/2016			0.0617						1.7
2/20/2017						0.0066 (J)	0.0093 (J)	0.0157 (J)	
2/21/2017	0.0071 (J)	<0.04	0.0245 (J)	0.0088 (J)	<0.04				1.55
6/12/2017				0.0133 (J)		<0.04	<0.04	<0.04	
6/13/2017		<0.04	<0.04		<0.04				1.77
6/14/2017	0.0078 (J)								
9/26/2017	<0.04	<0.04	<0.04	0.0093 (J)	<0.04	<0.04	<0.04	<0.04	
9/27/2017									1.75
2/13/2018				0.0141 (J)	<0.04	<0.04	<0.04	<0.04	
2/14/2018	0.0068 (J)	<0.04	0.0314 (J)						1.47
6/26/2018	0.008 (J)	<0.04	0.062	0.012 (J)	<0.04	0.0042 (J)	0.0056 (J)	0.0041 (J)	1.8
12/18/2018	0.0083 (J)	0.0053 (J)	0.055	0.0086 (J)	<0.04	<0.04	0.0062 (J)	<0.04	1.5
3/19/2019	0.008 (J)	<0.04	0.068	0.00565 (JD)	<0.04	<0.04	<0.04	<0.04	
3/20/2019									1.5 (D)
10/15/2019	0.006 (J)	<0.04	0.022 (J)	0.0067 (J)	<0.04	<0.04	0.006 (J)	0.01 (J)	1.2
3/3/2020	0.01 (J)	0.0065 (J)		0.0082 (J)	<0.04	<0.04	<0.04	<0.04	
3/4/2020			0.044 (J)						1.2
9/15/2020	0.0071 (J)	<0.04	0.033 (J)	<0.04	<0.04	<0.04	<0.04	<0.04	1.2

Constituent: Boron (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			1.96						
9/8/2016	1.63	1.35		1.28					
11/18/2016	1.91								
11/21/2016		1.74	1.68	1.19					
2/21/2017	1.39								
2/22/2017		1.5	1.48	1.43					
6/13/2017	1.62								
6/14/2017		1.6	1.71	1.57					
9/27/2017	1.16	1.83	1.61	1.51					
2/14/2018	1.17	1.8	1.47	1.6					
3/6/2018							0.0198 (J)	0.428	
5/1/2018							0.015 (J)	0.435 (D)	
6/27/2018	1.4 (J+X)	1.8 (J+X)		1.5 (J+X)				0.49 (J+X)	
6/28/2018			1.4				<0.04 (X)		
7/31/2018							0.035 (J)		
8/1/2018								0.39	
8/2/2018					0.016 (J)				
8/3/2018						0.3			
8/10/2018									1.3
8/23/2018							0.022 (J)	0.39	1.4
9/19/2018							0.021 (J)	0.43	1.7
10/29/2018							0.021 (J)	0.4	1.3
11/28/2018							<0.04 (X)	0.51	1.5
12/18/2018		1.5	1.6						
12/19/2018				1.6				0.41	
12/20/2018	1.4						0.028 (J)		1.6
1/17/2019									1.5
1/18/2019					0.0057 (J)				
1/19/2019						0.39			
2/13/2019									1.7
3/19/2019	1.1							0.41	
3/20/2019		1.5	1.7	1.4			0.043		1.6 (D)
10/16/2019		1.2						0.36	1.3
10/17/2019	0.97		1.7	1.5			0.064		
10/18/2019					0.0057 (J)	0.38			
12/3/2019					. ,		0.027 (J)		
12/4/2019	0.89		1.6	1.6			(-)		
3/4/2020	0.81	1.1						0.49	1.4
3/5/2020			1.5	1.5			0.044 (J)		
9/15/2020		1.1	-	-			(-)		
9/16/2020	1.2	***	1.7	1.4			0.028 (J)	0.47	
9/17/2020	· ·		***		0.0063 (J)	0.43	3.020 (0)	2	1.9
J JZ U					3.0000 (0)	30			

Constituent: Boron (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	0.32
5/1/2018	0.32
6/28/2018	0.34
8/1/2018	0.28
10/29/2018	0.3
11/28/2018	0.35
12/19/2018	0.35
1/16/2019	0.37
3/20/2019	0.34
10/16/2019	0.31
3/4/2020	0.32
9/17/2020	0.36

Constituent: Cadmium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				<0.0025	<0.0025	<0.0025	<0.0025		
9/1/2016	<0.0025	<0.0025						<0.0025	
9/6/2016			<0.0025						
9/8/2016									<0.0025
11/15/2016							<0.0025	<0.0025	
11/16/2016	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025			
11/17/2016			<0.0025						<0.0025
2/20/2017						<0.0025	<0.0025	<0.0025	
2/21/2017	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025				<0.0025
6/12/2017				<0.0025		<0.0025	<0.0025	<0.0025	
6/13/2017		<0.0025	<0.0025		<0.0025				<0.0025
6/14/2017	<0.0025								
9/26/2017	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	
9/27/2017									<0.0025
2/13/2018				<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	
2/14/2018	<0.0025	<0.0025	<0.0025						<0.0025
6/26/2018	<0.0025	<0.0025	0.00015 (J)	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
7/31/2018	<0.0025	<0.0025							
12/18/2018	<0.0025	<0.0025	0.0001 (J)	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
8/27/2019	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
8/29/2019			<0.0025						
10/15/2019	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
3/3/2020	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	
3/4/2020			<0.0025						<0.0025
8/18/2020	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	
8/19/2020									<0.0025
9/15/2020	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025

Constituent: Cadmium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

0/0/0040	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			<0.0025						
9/8/2016	7E-05 (J)	<0.0025		<0.0025					
11/18/2016	<0.001 (J)								
11/21/2016		<0.0025	<0.001 (J)	<0.001 (J)					
2/21/2017	<0.0025								
2/22/2017		<0.0025	<0.0025	0.0001 (J)					
6/13/2017	<0.0025								
6/14/2017		<0.0025	<0.0025	<0.0025					
9/27/2017	<0.0025	<0.0025	<0.0025	<0.0025					
2/14/2018	<0.0025	<0.0025	<0.0025	<0.0025					
3/6/2018							<0.0025	<0.0025	
5/1/2018							<0.0025	<0.0025 (D)	
6/27/2018	<0.0025	<0.0025		0.00011 (J)				0.00014 (J)	
6/28/2018			<0.0025				<0.0025		
7/31/2018							<0.0025		
8/1/2018								0.00011 (J)	
8/2/2018					<0.0025				
8/3/2018						0.0015			
8/10/2018									<0.0025
8/23/2018							<0.0025	0.00018 (J)	<0.0025
9/19/2018							<0.0025	0.00015 (J)	<0.0025
10/29/2018							9.8E-05 (J)	0.00019 (J)	<0.0025
11/28/2018							<0.0025	0.00022 (J)	<0.0025
12/18/2018		<0.0025	<0.0025						
12/19/2018				<0.0025 (X)				<0.0025	
12/20/2018	<0.0025						<0.0025 (X)		<0.0025
1/17/2019									<0.0025
1/18/2019					<0.0025				
1/19/2019						0.0016			
2/13/2019									<0.0025
8/27/2019			<0.0025	<0.0025					
8/28/2019	<0.0025	<0.0025					<0.0025	0.00017 (J)	
8/29/2019									<0.0025
10/16/2019		<0.0025						0.00018 (J)	<0.0025
10/17/2019	<0.0025		<0.0025	<0.0025			<0.0025		
10/18/2019					<0.0025	0.00083 (J)			
12/3/2019							0.00011 (J)		
12/4/2019	<0.0025		<0.0025	<0.0025					
3/4/2020	<0.0025	<0.0025						0.00024 (J)	<0.0025
3/5/2020			<0.0025	<0.0025			<0.0025		
8/19/2020	<0.0025	<0.0025	<0.0025	<0.0025					
8/20/2020					<0.0025	0.0019 (J)	0.00014 (J)	<0.0025	<0.0025
9/15/2020		<0.0025							
9/16/2020	<0.0025		<0.0025	<0.0025			<0.0025	<0.0025	
9/17/2020					<0.0025	0.033			<0.0025

Constituent: Cadmium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	0.038
5/1/2018	0.011
6/28/2018	0.087
8/1/2018	0.042
10/29/2018	0.083
11/28/2018	0.031
12/19/2018	0.042
1/16/2019	0.028
8/29/2019	0.0071
10/16/2019	0.014
3/4/2020	0.013
8/20/2020	0.0079
9/17/2020	0.021

Constituent: Calcium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				12.6	4.09	13.5	19.6		
9/1/2016	8.98	4.61						3.3	
9/6/2016			12.8						
9/8/2016									59.4
11/15/2016							21.7	3.44	
11/16/2016	15.4	4.17		12.1	4.25	14.9			
11/17/2016			19.2						78.4
2/20/2017						13.9	21.1	3.52	
2/21/2017	17.4	5	15.1	11.4	4.02				80.9
6/12/2017				9.34		13.7	21.5	3.11	
6/13/2017		4.98	10.2		3.84				62
6/14/2017	18.1								
9/26/2017	19.3	4.49	15	14.3	3.31	14.4	24	3.15	
9/27/2017									65.8
2/13/2018				<25	3.94	<25	<25	3.65	
2/14/2018	<25	<25	<25						58.8
6/26/2018	15.5 (J)	6.4	18.5 (J)	16 (J)	3.6	13.5 (J)	23.5 (J)	3.3	55.5
7/31/2018	18.2 (J)	6.1							
12/18/2018	18.7 (J)	5.5	16.8 (J)	14.5 (J)	3.8	16.4 (J)	19.8 (J)	3.5	54.7
3/19/2019	15.9 (J)	5.9	13.5 (J)	14.3 (JD)	3.9	12.3 (J)	21.4 (J)	3.6	
3/20/2019									53.95 (D)
10/15/2019	15.9	6.2	8.6	15.1	3.7	14.4	20	3.5	48.3
3/3/2020	19.4	6.8		20	4	14.9	23.2	5	
3/4/2020			11.5						52
9/15/2020	14.5	5.7	10.7	14.1	3.9	12.7	16.8	3.7	40.1

Constituent: Calcium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			63.3						
9/8/2016	87.2	93.9		60.5					
11/18/2016	82.4								
11/21/2016		99.1	60.7	31.1					
2/21/2017	75.1								
2/22/2017		105	62.1	67.3					
6/13/2017	61								
6/14/2017		91.3	63.5	60.2					
9/27/2017	72.6	84	63.5	68.4					
2/14/2018	74.1	72.1	62.8	70.2					
3/6/2018							39.5	326	
5/1/2018							45.5	302 (D)	
6/27/2018	68.2	61.1		67.1				340	
6/28/2018			73.3				41.9		
7/31/2018							41.5		
8/1/2018								358	
8/10/2018									410 (O)
8/23/2018							42.3	323	33.9
9/19/2018							41.9	321	42.3
10/29/2018							40.8	326	39.8
11/28/2018							45.1	354	38.2
12/18/2018		52.9	102						
12/19/2018				61.2				330	
12/20/2018	63.9						39		43.2
1/17/2019									39.4
1/18/2019					9.1				
1/19/2019						196			
2/13/2019									36.9
3/19/2019	60.2							335	
3/20/2019		55.4	141	52.8			31.2		40.85 (D)
10/16/2019		54						338	48.4
10/18/2019					7.1	177			
12/3/2019							43.7		
12/4/2019	76.8		92.6	52.7					
3/4/2020	72.3	59.3						353	49.5
3/5/2020			119	52.1			37.9		
9/15/2020		55.1							
9/16/2020	62.5		106	43.1			39.7	309	
9/17/2020					7.7	168			35.4

Constituent: Calcium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	233
5/1/2018	225
6/28/2018	242
8/1/2018	246
10/29/2018	236
11/28/2018	254
12/19/2018	252
1/16/2019	248
3/20/2019	222
10/16/2019	241
3/4/2020	245
9/17/2020	206

Constituent: Chloride, Total (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				2.3	2	4.4	3.6		
9/1/2016	3.3	3.5						2.5	
9/6/2016			5.8						
9/8/2016									5.5
11/15/2016							4	2.3	
11/16/2016	3.6	3.6		2	1.8	4.4			
11/17/2016			4.3						7.7
2/20/2017						4.8	3.9	2.4	
2/21/2017	3.2	3.2	3.5	2	1.8				7.3
6/12/2017				2.1		4.2	3.8	2.2	
6/13/2017		3.3	3.2		1.7				7.5
6/14/2017	3.1								
9/26/2017	3.3	3.3	3.5	2	1.8	4.4	4.1	2.3	
9/27/2017									7.9
2/13/2018				2.1	1.7	4.7	4.1	2.3	
2/14/2018	3.1	3.5	3.8						6.7
6/26/2018	3.4	3.4	3.8	2.4	2.2	4.5	4.1	2.6	6.7
7/31/2018	2.6	2.9							
12/18/2018	2.8	2.9	3.9	1.8	1.9	4.5	3.8	2.3	6.2
3/19/2019	3.2	3.5	3.8	2.45 (D)	2	4.5	4.2	2.6	
3/20/2019									6.3 (D)
10/15/2019	3.1	3.4	3.5	2.2	1.9	4.2	3.7	2.4	5
3/3/2020	2.6	3.2		1.9	1.9	3.9	3.6	2.9	
3/4/2020			3.3						5
9/15/2020	2.4	3.5	3.1	1.9	1.7	3.7	3.7	2.3	4.9

Constituent: Chloride, Total (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			6.7						
9/8/2016	6	6.4		6.8					
11/18/2016	6.3								
11/21/2016		6.9	6.5	7.8					
2/21/2017	5.1								
2/22/2017		6.2	5.6	7					
6/13/2017	4.7								
6/14/2017		7.2	5.7	7.1					
9/27/2017	4.9	8.7	6	7.2					
2/14/2018	5.6	7.2	5.9	7.4					
3/6/2018							56.6	8.4	
5/1/2018							58.5	5.7 (D)	
6/27/2018	5.9	6.3		7.1				4.4	
6/28/2018			7 (J-X)				50.2 (J-X)		
7/31/2018							59		
8/1/2018								5.2	
8/10/2018									6.9
8/23/2018							54	3.6	7.5
9/19/2018							58.4	4.1	6.6
10/29/2018							62.6	4.3	7.8
11/28/2018							58.1	5.1	7.2
12/18/2018		5.4	5.8						
12/19/2018				7 (J-X)				4.5 (J-X)	
12/20/2018	5.6 (J-X)						47.2 (J-X)		6.6 (J-X)
1/17/2019									6.4
1/18/2019					4.6				
1/19/2019						11.6			
2/13/2019									6.5
3/19/2019	5.8							4.7	
3/20/2019		5.6	5.8	7.3			27.7		6.7 (D)
10/16/2019		6.9						4.6	7
10/18/2019					4.7	10.9			
12/3/2019							52.8		
12/4/2019	5.6		5	6.6					
3/4/2020	5.1	5.8						4.2	6.1
3/5/2020			4.3	6			37.1		
9/15/2020		5.5							
9/16/2020	5.4		4.4	5.6			54.9	4.1	
9/17/2020					4.6	10.5			6.3

Constituent: Chloride, Total (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	23.3
5/1/2018	23.4
6/28/2018	24 (J-X)
8/1/2018	25.7
10/29/2018	24.9
11/28/2018	24
12/19/2018	23.3 (J-X)
1/16/2019	24.1
3/20/2019	23.5
10/16/2019	21.9
3/4/2020	21.6
9/17/2020	20.1

Constituent: Chromium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				0.001 (J)	0.0034 (J)	0.0058 (J)	0.0028 (J)		
9/1/2016	0.0009 (J)	0.0013 (J)						0.0147	
9/6/2016			<0.01						
9/8/2016									<0.01
11/15/2016							<0.01 (JB)	0.0154 (B)	
11/16/2016	<0.01 (J)	<0.01		<0.01	<0.01 (J)	<0.01 (J)			
11/17/2016			<0.01						<0.01
2/20/2017						0.0049 (J)	0.0047 (J)	0.014	
2/21/2017	0.001 (J)	0.0017 (J)	<0.01	<0.01	0.0036 (J)				<0.01
6/12/2017				0.0005 (J)		0.0052 (J)	0.0041 (J)	0.016	
6/13/2017		0.0019 (J)	<0.01		0.0038 (J)				<0.01
6/14/2017	0.0012 (J)								
9/26/2017	0.0014 (J)	0.0018 (J)	<0.01	0.0005 (J)	0.0045 (J)	0.0039 (J)	0.0037 (J)	0.0144	
9/27/2017									<0.01
2/13/2018				<0.01	<0.01	<0.01	<0.01	0.0144	
2/14/2018	<0.01	<0.01	<0.01						<0.01
6/26/2018	<0.01	0.0022 (J)	<0.01	<0.01	0.008 (J)	0.0053 (J)	0.0043 (J)	0.015	<0.01
12/18/2018	0.0016 (J)	0.0022 (J)	<0.01	<0.01	0.012	0.0032 (J)	0.0054 (J)	0.015	<0.01
8/27/2019	0.0023 (J)	0.0024 (J)		0.0004 (J)	0.0083 (J)	0.0055 (J)	0.0043 (J)	0.015	0.0016 (J)
8/29/2019			0.0016 (J)						
10/15/2019	0.0021 (J)	0.0023 (J)	0.0017 (J)	<0.01	0.0083 (J)	0.0047 (J)	0.0055 (J)	0.014	0.00098 (J)
3/3/2020	0.0026 (J)	0.0028 (J)		0.00047 (J)	0.0098 (J)	0.0069 (J)	0.0057 (J)	0.011	
3/4/2020			0.0019 (J)						<0.01
8/18/2020	0.0023 (J)	0.0029 (J)	0.0017 (J)	0.00096 (J)	0.0085 (J)	0.0069 (J)	0.005 (J)	0.015	
8/19/2020									<0.01
9/15/2020	0.00096 (J)	0.0025 (J)	0.0019 (J)	<0.01	0.0082 (J)	0.0069 (J)	0.0048 (J)	0.014	<0.01

Constituent: Chromium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			<0.01						
9/8/2016	0.001 (J)	<0.01		<0.01					
11/18/2016	<0.01								
11/21/2016		<0.01	<0.01	<0.01					
2/21/2017	<0.01								
2/22/2017		<0.01	<0.01	0.0012 (J)					
6/13/2017	<0.01								
6/14/2017		<0.01	<0.01	0.0009 (J)					
9/27/2017	<0.01	<0.01	<0.01	0.0011 (J)					
2/14/2018	<0.01	<0.01	<0.01	<0.01					
3/6/2018							<0.01	<0.01	
5/1/2018							<0.01	<0.01 (D)	
6/27/2018	<0.01	<0.01		<0.01				<0.01	
6/28/2018			<0.01				<0.01		
7/31/2018							<0.01		
8/1/2018								<0.01	
8/10/2018									0.0017 (J)
8/23/2018							<0.01	<0.01	<0.01
9/19/2018							<0.01	<0.01	<0.01
10/29/2018							<0.01	<0.01	<0.01
11/28/2018							<0.01	<0.01	<0.01
12/18/2018		<0.01	<0.01						
12/19/2018				<0.01				0.0018 (J)	
12/20/2018	0.003 (J)						<0.01		<0.01
1/17/2019	. ,								<0.01
1/18/2019					<0.01				
1/19/2019						<0.01			
2/13/2019									<0.01
8/27/2019			0.0051 (J)	0.0019 (J)					
8/28/2019	<0.01	<0.01		(0)			<0.01	0.00092 (J)	
8/29/2019								(,,	<0.01
10/16/2019		<0.01						<0.01	<0.01
10/18/2019		0.01			0.00042 (J)	<0.01		0.01	0.01
12/3/2019					0.000 12 (0)	0.01	<0.01		
12/4/2019	<0.01		<0.01	0.0014 (J)			-0.01		
3/4/2020	<0.01	0.02	0.01	0.0011(0)				0.00078 (J)	<0.01
3/5/2020	-0.01	0.02	<0.01	0.0014 (J)			0.00053 (J)	0.00070 (0)	-0.01
8/19/2020	<0.01	<0.01	<0.01	0.0014 (J)			0.00033 (3)		
8/20/2020	-0.01	-0.01	-0.01	0.0021 (0)	0.00063 (J)	<0.01	0.001 (J)	0.00064 (J)	<0.01
9/15/2020		<0.01			0.00003 (3)	50.01	0.001 (0)	0.00004 (0)	-0.0 i
9/15/2020	<0.01	~ 0.01	0.014	0.002E (I)			0.0014 (1)	<0.01	
9/16/2020	~ 0.01		0.014	0.0025 (J)	<0.01	0.00009 / 1/	0.0014 (J)	<0.01	<0.01
9/1//2020					<0.01	0.00098 (J)			<0.01

Constituent: Chromium (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-50
<0.01
<0.01
0.0023 (J)
0.0046 (J)
<0.01
<0.01
<0.01
<0.01
<0.01
0.0005 (J)
0.00071 (J)
0.00065 (J)
0.00098 (J)

Constituent: Cobalt (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				0.0016 (J)	0.0034 (J)	0.0013 (J)	<0.005		
9/1/2016	<0.005	<0.005						<0.005	
9/6/2016			0.0028 (J)						
9/8/2016									0.0073 (J)
11/15/2016							<0.005	<0.005	
11/16/2016	<0.005	<0.005		<0.005	<0.005	<0.01 (o)			
11/17/2016			<0.01 (J)						<0.01 (J)
2/20/2017						0.0012 (J)	0.0009 (J)	<0.005	
2/21/2017	<0.005	<0.005	0.0045 (J)	<0.005	0.0028 (J)				0.0079 (J)
6/12/2017				<0.005		0.0011 (J)	0.0006 (J)	0.0003 (J)	
6/13/2017		<0.005	0.0036 (J)		0.0025 (J)				0.0083 (J)
6/14/2017	<0.005								
9/26/2017	<0.005	<0.005	0.0037 (J)	<0.005	0.002 (J)	0.0016 (J)	0.0005 (J)	0.0003 (J)	
9/27/2017									0.0087 (J)
2/13/2018				<0.005	<0.005	<0.01 (o)	<0.005	<0.005	
2/14/2018	<0.005	<0.005	0.0135						<0.005
6/26/2018	<0.005	<0.005	0.0098 (J)	<0.005	0.0019 (J)	0.0009 (J)	0.00052 (J)	<0.005	0.006 (J)
7/31/2018	<0.005	<0.005							
12/18/2018	<0.005	<0.005	0.0057 (J)	<0.005	0.0032 (J)	0.00062 (J)	<0.005	<0.005	0.0055 (J)
8/27/2019	<0.005	<0.005		<0.005	0.0012 (J)	0.00068 (J)	0.00042 (J)	<0.005	0.0042 (J)
8/29/2019			0.0015 (J)						
10/15/2019	<0.005	<0.005	0.0011 (J)	<0.005	0.00097 (J)	0.00083 (J)	<0.005	<0.005	0.0043 (J)
3/3/2020	<0.005	<0.005		<0.005	0.0015 (J)	0.00043 (J)	<0.005	0.0011 (J)	
3/4/2020			0.0012 (J)						0.0039 (J)
8/18/2020	<0.005	<0.005	0.00067 (J)	<0.005	0.0014 (J)	0.00048 (J)	<0.005	0.00061 (J)	
8/19/2020									0.0039 (J)
9/15/2020	<0.005	<0.005	0.00076 (J)	<0.005	0.001 (J)	0.0005 (J)	<0.005	<0.005	0.0035 (J)

Constituent: Cobalt (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			0.0006 (J)						
9/8/2016	0.0149	0.0122		0.0025 (J)					
11/18/2016	0.0131								
11/21/2016		0.0122	<0.005	<0.01 (J)					
2/21/2017	0.0099 (J)								
2/22/2017		0.0136	0.0016 (J)	<0.005					
6/13/2017	0.0094 (J)								
6/14/2017		0.0113	0.0015 (J)	<0.005					
9/27/2017	0.0095 (J)	0.0094 (J)	0.0007 (J)	<0.005					
2/14/2018	0.0112	<0.005	<0.005	<0.005					
3/6/2018							0.0162	<0.005	
5/1/2018							0.015	0.0125 (D)	
6/27/2018	0.0093 (J)	0.0069 (J)		<0.005				0.0076 (J)	
6/28/2018			0.00078 (J)				0.01		
7/31/2018							0.0098 (J)		
8/1/2018								0.004 (J)	
8/2/2018					0.0079 (J)			()	
8/3/2018					()	0.041			
8/10/2018									0.0043 (J)
8/23/2018							0.0093 (J)	0.0016 (J)	0.0026 (J)
9/19/2018							0.0084 (J)	0.0018 (J)	0.0028 (J)
10/29/2018							0.0064 (J)	0.0014 (J)	0.0025 (J)
11/28/2018							0.0004 (J) 0.0071 (J)		0.0013 (J) 0.0012 (J)
		0.0067 (1)	0.0011 (J)				0.0071 (3)	0.0016 (J)	0.0012 (3)
12/18/2018		0.0067 (J)	0.0011 (3)	-0.005				0.0014 (1)	
12/19/2018	0.0004 (1)			<0.005			0.000	0.0014 (J)	.0.005
12/20/2018	0.0081 (J)						0.069		<0.005
1/17/2019									<0.005
1/18/2019					0.0082 (J)				
1/19/2019						0.018			
2/13/2019									<0.005
8/27/2019			0.0014 (J)	<0.005					
8/28/2019	0.01	0.0061					0.011	0.00037 (J)	
8/29/2019									0.00063 (J)
10/16/2019		0.0058						0.00032 (J)	<0.005
10/17/2019	<0.04 (J)		<0.005	<0.005			<0.04 (J)		
10/18/2019					0.0063	0.017			
12/3/2019							0.0076		
12/4/2019	0.0086		0.0012 (J)	<0.005					
3/4/2020	0.008	0.007						0.0011 (J)	<0.005
3/5/2020			0.0011 (J)	<0.005			0.0091		
8/19/2020	0.0078	0.0065	0.0008 (J)	<0.005					
8/20/2020			• •		0.0039 (J)	0.02	0.022	0.00043 (J)	<0.005
9/15/2020		0.0064			. ,			• •	
9/16/2020	0.008		0.0008 (J)	<0.005			0.0049 (J)	0.00053 (J)	
9/17/2020					0.0062	0.022	(-/		0.00046 (J)
J									

Constituent: Cobalt (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	1.3
5/1/2018	1.4
6/28/2018	1.3
8/1/2018	1.4
10/29/2018	1.4
11/28/2018	1.4
12/19/2018	1.5
1/16/2019	1.4
8/29/2019	1.3
10/16/2019	1.4
3/4/2020	1.5
8/20/2020	1.4
9/17/2020	1.4

 $Constituent: Combined \ Radium \ 226 + 228 \ (pCi/L) \\ Analysis \ Run \ 11/1/2020 \ 10:57 \ AM \\ View: \ Descriptive \ B,C,D \\ Analysis \ Run \ 11/1/2020 \ 10:57 \ AM \\ View: \ Descriptive \ B,C,D \\ View: \ Descrip$

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				0.351 (U)	1 (U)	0.62 (U)	0.603 (U)		
9/1/2016	0.428 (U)	0.566 (U)						1.33	
9/6/2016			0.585 (U)						
9/8/2016									0.862 (U)
11/15/2016							0.645 (U)	0.412 (U)	
11/16/2016	0.799 (U)	0.863 (U)		0.824 (U)	0.43 (U)	0.493 (U)			
11/17/2016			0.804 (U)						1.2 (U)
2/20/2017						0.534 (U)	1.36	0.633 (U)	
2/21/2017	1.75 (U)	0.318 (U)	0.595 (U)	1.01 (U)	0.96 (U)				1.31
6/12/2017				0.532 (U)		0.254 (U)	0.566 (U)	0.112 (U)	
6/13/2017		0.163 (U)	0.618 (U)		0.645 (U)				0.738 (U)
6/14/2017	2.66								
9/26/2017	0.841 (U)	0.56 (U)	1.26 (U)	0.845 (U)	0.299 (U)	0.62 (U)	0.762 (U)	0.167 (U)	
9/27/2017									0.583 (U)
2/13/2018				0.176 (U)	1.01 (U)	0.0914 (U)	0.349 (U)	0.347 (U)	
2/14/2018	1.13 (UX)	0.537 (U)	1.2 (U)						1.41 (J+X)
6/26/2018	1.42 (J+X)	1.31 (UX)	1.34 (U)	1.02 (U)	1.26 (J+X)	1.11 (U)	0.614 (U)	0.903 (U)	0.968 (U)
12/18/2018	0.855 (U)	1.31 (J+X)	1.13 (U)	0.487 (U)	0.44 (U)	0.42 (U)	0.445 (U)	0.353 (U)	1.13 (U)
8/27/2019	1.31	1.32		1.11	1.47	1.19	1.44	0.65 (U)	0.91 (U)
8/29/2019			1.45 (U)						
10/15/2019	1.13 (U)	1.05 (U)	1.69	1.02 (U)	0.807 (U)	0.714 (U)	0.467 (U)	0.402 (U)	1.06 (U)
3/3/2020	1.29 (U)	1.68		1.18 (U)	0.818 (U)	0.996 (U)	1.5	0.397 (U)	
3/4/2020			1.45						1.34
8/18/2020	0.988 (U)	0.969 (U)	0.784 (U)	0.0861 (U)	1.22 (U)	0.53 (U)	0.581 (U)	0.453 (U)	
8/19/2020									0.467 (U)
9/15/2020	0.762 (U)	0.359 (U)	1.04 (U)	0.0583 (U)	0.579 (U)	0.215 (U)	0.55 (U)	0.474 (U)	0.205 (U)

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			1.01 (U)						
9/8/2016	1.74	1.13		0.706 (U)					
11/18/2016	0.571 (U)								
11/21/2016		1.59	0.201 (U)	0.0569 (U)					
2/21/2017	1.28 (U)								
2/22/2017		1.64	0.57 (U)	1.07 (U)					
6/13/2017	0.521 (U)								
6/14/2017		1.32	0.726 (U)	0.459 (U)					
9/27/2017	0.595 (U)	1.7	0.884 (U)	0.807 (U)					
2/14/2018	1.18 (U)	1.89 (J+X)	1.14 (U)	1.67 (J+X)					
3/6/2018							1.25 (U)	1.75 (J+X)	
5/1/2018							0.423 (U)	2.02 (D)	
6/27/2018	1.3 (U)	1.66 (J+X)		1.34 (UX)				0.878 (U)	
6/28/2018			1.4 (UX)				0.283 (U)		
7/31/2018							0.243 (U)		
8/1/2018								0.638 (U)	
8/10/2018									1.91
8/23/2018							1.1 (U)	1.14 (U)	1.86 (J+X)
9/19/2018							0.369 (U)	1.45 (UX)	1.64 (UX)
10/29/2018							0.401 (U)	1.09 (U)	1.36 (U)
11/28/2018							0.901 (U)	1.67 (UX)	1.07 (U)
12/18/2018		0.759 (U)	0.661 (U)						
12/19/2018				1.21 (U)				1.3	
12/20/2018	0.527 (U)						0.657 (U)		0.892 (U)
1/17/2019									1.1 (U)
1/18/2019					1.22				
1/19/2019						1.86			
2/13/2019									1.68
8/27/2019			1.35	0.86 (U)					
8/28/2019	0.643 (U)	1.76					0.528 (U)	0.804 (U)	
8/29/2019	, ,						. ,	. ,	1.44
10/16/2019		1.69 (U)						1.28 (U)	2.13
10/17/2019	1.07 (U)		1.25 (U)	1.2 (U)			0.977 (U)		
10/18/2019	. ,		. ,	, ,	17.1 (U)		. ,		
3/4/2020	1.18	1.23			,			0.862 (U)	2.3
3/5/2020			1.35	0.483 (U)			0.921 (U)	. ,	
8/19/2020	0.684 (U)	0.876 (U)	1 (U)	0.482 (U)			. ,		
8/20/2020	ζ-/	\-/	` '	. ,	1.19	0.937 (U)	0.501 (U)	1.64	2.97
9/15/2020		1.23 (U)				` '	` '		
9/16/2020	0.175 (U)	. /	0.43 (U)	0.195 (U)			0.254 (U)	0.51 (U)	
9/17/2020	- (-/		- (-)	(-/	0.952 (U)	1.76	- \-/	\-/	2.04
					(3)	***			· · ·

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	1.31
5/1/2018	1.69 (J+X)
6/28/2018	1.04 (U)
8/1/2018	1.67
10/29/2018	0.992 (U)
11/28/2018	1.76 (UX)
12/19/2018	2.15 (J+X)
1/16/2019	1.39
8/29/2019	1.33
10/16/2019	2.51
3/4/2020	1.73
8/20/2020	2.78
9/17/2020	0.717 (U)

Constituent: Fluoride (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	, ,,	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				0.11 (J)	0.05 (J)	0.07 (J)	0.19 (J)		
9/1/2016	0.2 (J)	0.05 (J)						0.06 (J)	
9/6/2016			0.42						
9/8/2016									0.14 (J)
11/15/2016							<0.3 (J)	<0.3 (J)	
11/16/2016	<0.3 (J)	<0.3 (J)		<0.3 (J)	<0.3 (J)	<0.3 (J)			
11/17/2016			<0.3 (JB)						<0.3 (JB)
2/20/2017						0.06 (J)	0.08 (J)	0.04 (J)	
2/21/2017	0.16 (J)	0.04 (J)	0.1 (J)	0.14 (J)	0.05 (J)				0.6
6/12/2017				0.16 (J)		0.008 (J)	0.07 (J)	0.06 (J)	
6/13/2017		0.008 (J)	0.07 (J)		0.04 (J)				0.19 (J)
6/14/2017	0.09 (J)								
9/26/2017	0.1 (J)	<0.1	<0.1	0.14 (J)	<0.1	<0.1	0.04 (J)	<0.1	
9/27/2017									0.5
2/13/2018				<0.1	<0.1	<0.1	<0.1	<0.1	
2/14/2018	<0.1	<0.1	<0.1						<0.1
6/26/2018	0.079 (J)	0.042 (J)	0.053 (J)	0.085 (J)	0.048 (J)	0.045 (J)	0.072 (J)	0.041 (J)	0.15 (J)
12/18/2018	<0.1	<0.1	<0.1	0.085 (J)	<0.1	<0.1	<0.1	<0.1	0.29 (J)
3/19/2019	<0.1	<0.1	<0.1	0.0655 (JD)	0.037 (J)	<0.1	0.06 (J)	0.03 (J)	
3/20/2019									0.17 (JD)
8/27/2019	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	0.15 (J)
8/29/2019			0.084 (J)						
10/15/2019	0.047 (J)	<0.1	<0.1	<0.1	<0.1	<0.1	0.045 (J)	<0.1	0.16 (J)
3/3/2020	0.056 (J)	<0.1		0.066 (J)	0.05 (J)	<0.1	0.057 (J)	0.09 (J)	
3/4/2020			<0.1						0.07 (J)
8/18/2020	0.052 (J)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
8/19/2020									0.17
9/15/2020	0.062 (J)	<0.1	<0.1	<0.1	<0.1	<0.1	0.051 (J)	<0.1	0.15

Constituent: Fluoride (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			0.43						
9/8/2016	0.31	0.2 (J)		0.15 (J)					
11/18/2016	<0.3 (JB)								
11/21/2016		0.37	<0.3 (J)	<0.3 (J)					
2/21/2017	0.35								
2/22/2017		0.37	0.2 (J)	0.08 (J)					
6/13/2017	0.19 (J)								
6/14/2017		0.38	0.15 (J)	0.09 (J)					
9/27/2017	0.4	0.4	0.41	<0.1					
2/14/2018	<0.1	<0.1	<0.1	<0.1					
3/6/2018							0.94	1.1	
5/1/2018							<0.1	0.595 (D)	
6/27/2018	0.26 (J)	0.085 (J)		<0.1				0.27 (J)	
6/28/2018			0.93 (J+X)				0.69 (J+X)		
7/31/2018							<0.1		
8/1/2018								0.48	
8/10/2018									1.6 (O)
8/23/2018							<0.1	0.34	0.32
9/19/2018							<0.1	0.23 (J)	0.22 (J)
10/29/2018							<0.1	<0.1	0.14 (J)
11/28/2018							<0.1	0.063 (J)	0.24 (J)
12/18/2018		0.26 (J)	0.54						
12/19/2018				0.23 (J)				0.28 (J)	
12/20/2018	0.26 (J)						0.12 (J)		0.3
1/17/2019									0.23 (J)
1/18/2019					0.13 (J)				
1/19/2019						<0.1			
2/13/2019									<0.1
3/19/2019	0.2 (J)							<0.1	
3/20/2019		0.091 (J)	0.31	<0.1			0.066 (J)		0.135 (JD)
8/27/2019			0.12 (J)	<0.1					
8/28/2019	0.074 (J)	0.055 (J)					<0.1	<0.1	
8/29/2019									0.087 (J)
10/16/2019		0.11 (J)						0.076 (J)	0.22 (J)
10/18/2019					0.09 (J)	<0.1			
12/3/2019							0.19 (J)		
12/4/2019	0.18 (J)		0.26 (J)	0.11 (J)					
3/4/2020	<0.1	<0.1						<0.1	0.1 (J)
3/5/2020			0.051 (J)	<0.1			<0.1		
8/19/2020	0.19	0.12	0.14	<0.1					
8/20/2020					0.056 (J)	<0.1	<0.1	<0.1	0.23
9/15/2020		0.057 (J)							
9/16/2020	0.15		0.13	<0.1			0.052 (J)	<0.1	
9/17/2020					0.062 (J)	<0.1			0.074 (J)

Constituent: Fluoride (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	0.84 (JX)
5/1/2018	0.91
6/28/2018	1.1 (J+X)
8/1/2018	2
10/29/2018	0.24 (J)
11/28/2018	0.41
12/19/2018	0.54
1/16/2019	1.1
3/20/2019	0.21 (J)
8/29/2019	0.41
10/16/2019	0.39
3/4/2020	0.14 (J)
8/20/2020	0.39
9/17/2020	0.46

Constituent: Lead (mg/L) Analysis Run 11/1/2020 10:57 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				<0.005	<0.005	<0.005	<0.005		
9/1/2016	<0.005	<0.005						0.0001 (J)	
9/6/2016			<0.005						
9/8/2016									<0.005
11/15/2016							<0.005	<0.005	
11/16/2016	<0.005	<0.005		<0.005	<0.005	<0.005			
11/17/2016			<0.005						<0.005
2/20/2017						<0.005	0.0002 (J)	<0.005	
2/21/2017	<0.005	<0.005	<0.005	<0.005	<0.005				<0.005
6/12/2017				8E-05 (J)		<0.005	0.0001 (J)	8E-05 (J)	
6/13/2017		<0.005	<0.005		<0.005				<0.005
6/14/2017	<0.005								
9/26/2017	<0.005	<0.005	<0.005	7E-05 (J)	7E-05 (J)	<0.005	0.0001 (J)	<0.005	
9/27/2017									<0.005
2/13/2018				<0.005	<0.005	<0.005	<0.005	<0.005	
2/14/2018	<0.005	<0.005	<0.005						<0.005
6/26/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
12/18/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/27/2019	<0.005	<0.005		<0.005	5.8E-05 (J)	<0.005	0.00036 (J)	<0.005	0.00011 (J)
8/29/2019			7E-05 (J)						
10/15/2019	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	7.9E-05 (J)	<0.005	<0.005
3/3/2020	<0.005	<0.005		<0.005	<0.005	<0.005	7.9E-05 (J)	7.3E-05 (J)	
3/4/2020			<0.005						<0.005
8/18/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0001 (J)	<0.005	
8/19/2020									<0.005
9/15/2020	<0.005	<0.005	<0.005	<0.005	<0.005	0.0013 (J)	4.3E-05 (J)	<0.005	<0.005

Constituent: Lead (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			<0.005						
9/8/2016	<0.005	0.0004 (J)		<0.005					
11/18/2016	<0.005								
11/21/2016		<0.005 (J)	<0.005	<0.005					
2/21/2017	<0.005								
2/22/2017		0.0005 (J)	<0.005	<0.005					
6/13/2017	<0.005								
6/14/2017		0.0004 (J)	<0.005	<0.005					
9/27/2017	<0.005	0.0006 (J)	<0.005	<0.005					
2/14/2018	<0.005	<0.005 (o)	<0.005	<0.005					
3/6/2018							<0.005	<0.005	
5/1/2018							<0.005	<0.005 (D)	
6/27/2018	<0.005	0.00032 (J)		<0.005				<0.005	
6/28/2018			<0.005				<0.005		
7/31/2018							<0.005		
8/1/2018								<0.005	
8/10/2018									<0.005
8/23/2018							<0.005	<0.005	<0.005
9/19/2018							<0.005	<0.005	<0.005
10/29/2018							<0.005	<0.005	<0.005
11/28/2018							<0.005	<0.005	<0.005
12/18/2018		0.00038 (J)	<0.005						
12/19/2018				<0.005				<0.005	
12/20/2018	<0.005						<0.005		<0.005
1/17/2019									<0.005
1/18/2019					<0.005				
1/19/2019						<0.005			
2/13/2019									<0.005
8/27/2019			<0.005	<0.005					
8/28/2019	<0.005	0.00027 (J)					<0.005	<0.005	
8/29/2019									<0.005
10/16/2019		0.00027 (J)						<0.005	<0.005
10/18/2019					<0.005	<0.005			
12/3/2019							<0.005		
12/4/2019	6.3E-05 (J)		<0.005	<0.005					
3/4/2020	<0.005	0.0003 (J)						0.00012 (J)	<0.005
3/5/2020			<0.005	<0.005			0.00026 (J)		
8/19/2020	<0.005	0.00025 (J)	<0.005	<0.005					
8/20/2020					<0.005	<0.005	0.00021 (J)	4.8E-05 (J)	<0.005
9/15/2020		0.00029 (J)							
9/16/2020	<0.005		0.00011 (J)	<0.005			5.3E-05 (J)	6.6E-05 (J)	
9/17/2020					<0.005	0.00036 (J)			<0.005

Constituent: Lead (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	<0.005
5/1/2018	<0.005
6/28/2018	0.00054 (J)
8/1/2018	<0.005
10/29/2018	0.0003 (J)
11/28/2018	<0.005
12/19/2018	<0.005
1/16/2019	<0.005
8/29/2019	4.9E-05 (J)
10/16/2019	8.5E-05 (J)
3/4/2020	0.0001 (J)
8/20/2020	6.7E-05 (J)
9/17/2020	0.00015 (J)

Constituent: Lithium (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				0.0268 (J)	<0.03	<0.03	<0.03		
9/1/2016	0.0061 (J)	<0.03						0.003 (J)	
9/6/2016			0.0028 (J)						
9/8/2016									<0.03
11/15/2016							<0.03	<0.03	
11/16/2016	<0.03	<0.03		<0.03	<0.03	<0.03			
11/17/2016			<0.03						<0.03
2/20/2017						<0.03	<0.03	0.0025 (J)	
2/21/2017	0.0058 (J)	<0.03	0.0052 (J)	0.0128 (J)	<0.03				<0.03
6/12/2017				0.0245 (J)		0.0019 (J)	<0.03	0.0027 (J)	
6/13/2017		<0.03	0.0061 (J)		<0.03				<0.03
6/14/2017	0.0054 (J)								
9/26/2017	0.0037 (J)	<0.03	0.0087 (J)	0.0549	<0.03	0.0022 (J)	<0.03	0.0023 (J)	
9/27/2017									<0.03
2/13/2018				0.0595	<0.03	0.0041 (J)	<0.03	0.0027 (J)	
2/14/2018	0.0038 (J)	<0.03	0.0104 (J)						<0.03
6/26/2018	0.0045 (J)	<0.03	0.0095 (J)	0.089	<0.03	0.0025 (J)	<0.03	0.0029 (J)	<0.03
12/18/2018	0.0038 (J)	<0.03	0.0091 (J)	0.024 (J)	<0.03	0.0032 (J)	<0.03	0.0026 (J)	<0.03
8/27/2019	0.0039 (J)	<0.03		0.035	<0.03	0.0019 (J)	<0.03	0.0028 (J)	<0.03
8/29/2019			0.007 (J)						
10/15/2019	0.0037 (J)	<0.03	0.0069 (J)	0.028 (J)	<0.03	0.002 (J)	<0.03	0.0024 (J)	<0.03
3/3/2020	0.0033 (J)	<0.03		0.055	<0.03	0.0013 (J)	<0.03	0.0026 (J)	
3/4/2020			0.0074 (J)						<0.03
8/18/2020	0.0039 (J)	<0.03	0.0099 (J)	0.054	<0.03	0.00095 (J)	<0.03	0.0026 (J)	
8/19/2020									<0.03
9/15/2020	0.0037 (J)	<0.03	0.011 (J)	0.033	<0.03	0.001 (J)	<0.03	0.0027 (J)	<0.03

Constituent: Lithium (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

0/0/2010	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016	0.0004 (1)	0.004 (1)	0.0117 (J)	0.00					
9/8/2016	0.0021 (J)	0.004 (J)		<0.03					
11/18/2016	<0.03								
11/21/2016		<0.03	<0.03	<0.03					
2/21/2017	<0.03								
2/22/2017		0.0043 (J)	0.0103 (J)	0.0023 (J)					
6/13/2017	0.0017 (J)								
6/14/2017		0.0036 (J)	0.0101 (J)	0.0022 (J)					
9/27/2017	0.0016 (J)	0.0038 (J)	0.0116 (J)	0.0021 (J)					
2/14/2018	0.0018 (J)	0.0034 (J)	0.0115 (J)	0.0023 (J)					
3/6/2018							0.0031 (J)	0.0399 (J)	
5/1/2018							0.0038 (J)	0.0475 (D)	
6/27/2018	0.0016 (J)	0.0034 (J)		0.0023 (J)				0.044 (J)	
6/28/2018			0.013 (J)				0.0028 (J)		
7/31/2018							<0.25 (o)		
8/1/2018								0.039 (J)	
8/10/2018									0.0087 (J)
8/23/2018							0.0033 (J)	0.044 (J)	0.0089 (J)
9/19/2018							0.0033 (J)	0.043 (J)	0.005 (J)
10/29/2018							0.003 (J)	0.039 (J)	0.0048 (J)
11/28/2018							0.0035 (J)	0.044 (J)	0.0052 (J)
12/18/2018		0.0032 (J)	0.014 (J)						
12/19/2018				0.0018 (J)				0.043 (J)	
12/20/2018	0.0015 (J)			.,			0.003 (J)	, ,	0.0042 (J)
1/17/2019	. ,						, ,		0.0039 (J)
1/18/2019					0.0012 (J)				,
1/19/2019					· · ·	0.019 (J)			
2/13/2019						· · ·			<0.03
8/27/2019			0.016 (J)	0.0022 (J)					
8/28/2019	0.0016 (J)	0.0033 (J)	()	(-,			0.0034 (J)	0.044	
8/29/2019									0.0052 (J)
10/16/2019		0.0029 (J)						0.038	0.0023 (J)
10/18/2019		0.0020 (0)			<0.03	0.019 (J)		0.000	0.0020 (0)
12/3/2019					0.00	0.010 (0)	0.0033 (J)		
12/4/2019	0.0014 (J)		0.013 (J)	0.0022 (J)			0.0000 (0)		
3/4/2020	0.0014 (J)	0.0029 (J)	0.010 (0)	0.0022 (0)				0.042	0.002 (J)
3/5/2020	0.0014 (0)	0.0020 (0)	0.016 (J)	0.0022 (J)			0.003 (J)	0.042	0.002 (0)
8/19/2020	0.0014 (J)	0.0029 (J)	0.018 (J)	0.0022 (J)			0.003 (3)		
8/20/2020	0.0017(0)	0.0020 (0)	0.010(0)	0.002 (0)	<0.03	0.019 (J)	0.0034 (J)	0.044	0.0022 (J)
9/15/2020		0.003 (J)			-0.03	0.013 (0)	0.0004 (0)	0.077	0.0022 (0)
9/16/2020	0.001471	0.003 (3)	0.016 / 1\	0.0022 (1)			0.0036 (1)	0.030	
9/17/2020	0.0014 (J)		0.016 (J)	0.0022 (J)	<0.03	0.021 (1)	0.0036 (J)	0.039	0.0058 / 1)
9/1//2020					<0.03	0.021 (J)			0.0058 (J)

Constituent: Lithium (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	0.038 (J)
5/1/2018	0.042 (J)
6/28/2018	0.04 (J)
8/1/2018	0.036 (J)
10/29/2018	0.041 (J)
11/28/2018	0.041 (J)
12/19/2018	0.043 (J)
1/16/2019	0.042 (J)
8/29/2019	0.039
10/16/2019	0.034
3/4/2020	0.042
8/20/2020	0.04
9/17/2020	0.052

Constituent: Mercury (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				<0.0005	<0.0005	<0.0005	<0.0005		
9/1/2016	<0.0005	<0.0005						<0.0005	
9/6/2016			<0.0005						
9/8/2016									<0.0005
11/15/2016							<0.0005	<0.0005	
11/16/2016	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
11/17/2016			<0.0005						<0.0005
2/20/2017						<0.0005	8E-05 (J)	<0.0005	
2/21/2017	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				<0.0005
6/12/2017				4E-05 (J)		<0.0005	<0.0005	<0.0005	
6/13/2017		<0.0005	<0.0005		<0.0005				<0.0005
6/14/2017	6E-05 (J)								
9/26/2017	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
9/27/2017									4E-05 (J)
2/13/2018				0.00021	0.00019 (J)	<0.0005	0.00013 (J)	<0.0005	
2/14/2018	5.2E-05 (J)	<0.0005	<0.0005						<0.0005
6/26/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
12/18/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/27/2019	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/29/2019			<0.0005						
8/18/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
8/19/2020									8.3E-05 (J)
9/15/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

Constituent: Mercury (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

		BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9	9/6/2016			<0.0005						
9	9/8/2016	<0.0005	<0.0005		<0.0005					
1	1/18/2016	<0.0005								
1	1/21/2016		<0.0005	<0.0005	<0.0005					
2	2/21/2017	<0.0005								
2	2/22/2017		<0.0005	<0.0005	<0.0005					
6	5/13/2017	5E-05 (J)								
6	6/14/2017		7E-05 (J)	7E-05 (J)	9E-05 (J)					
9)/27/2017	4.7E-05 (J)	4E-05 (J)	4E-05 (J)	0.0001 (J)					
2	2/14/2018	<0.0005	<0.0005	<0.0005	<0.0005					
3	3/6/2018							<0.0005	<0.0005	
5	5/1/2018							<0.0005	<0.0005 (D)	
6	6/27/2018	<0.0005	<0.0005		<0.0005				<0.0005	
6	5/28/2018			<0.0005				<0.0005		
7	//31/2018							<0.0005		
8	3/1/2018								<0.0005	
8	3/10/2018									<0.0005
8	3/23/2018							<0.0005	<0.0005	<0.0005
9)/19/2018							<0.0005	<0.0005	<0.0005
1	0/29/2018							<0.0005	<0.0005	<0.0005
1	1/28/2018							<0.0005	<0.0005	<0.0005
1	2/18/2018		<0.0005	<0.0005						
1	2/19/2018				<0.0005				<0.0005	
1	2/20/2018	<0.0005						<0.0005		<0.0005
1	/17/2019									<0.0005
1	/18/2019					<0.0005				
1	/19/2019						<0.0005			
2	2/13/2019									<0.0005
8	3/27/2019			<0.0005	<0.0005					
8	3/28/2019	<0.0005	<0.0005					<0.0005	<0.0005	
8	3/29/2019									<0.0005
1	0/18/2019					<0.0005	<0.0005			
8	3/19/2020	<0.0005	9.8E-05 (J)	8.2E-05 (J)	8.2E-05 (J)					
8	3/20/2020					<0.0005	9.9E-05 (J)	<0.0005	<0.0005	<0.0005
9)/15/2020		<0.0005							
9)/16/2020	<0.0005		<0.0005	<0.0005			<0.0005	<0.0005	
9	9/17/2020					<0.0005	<0.0005			<0.0005

Constituent: Mercury (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-50
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005

Constituent: Molybdenum (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				0.0021 (J)	<0.01	0.004 (J)	<0.01		
9/1/2016	0.002 (J)	<0.01						<0.01	
9/6/2016			0.0028 (J)						
9/8/2016									<0.01
11/15/2016							<0.01	<0.01	
11/16/2016	<0.01	<0.01		<0.01	<0.01	<0.01 (J)			
11/17/2016			<0.01						<0.01
2/20/2017						0.0055 (J)	<0.01	<0.01	
2/21/2017	<0.01	<0.01	<0.01	0.0021 (J)	<0.01				<0.01
6/12/2017				0.0021 (J)		0.005 (J)	<0.01	<0.01	
6/13/2017		<0.01	<0.01		<0.01				<0.01
6/14/2017	<0.01								
9/26/2017	<0.01	<0.01	<0.01	0.0011 (J)	<0.01	0.0053 (J)	<0.01	<0.01	
9/27/2017									<0.01
2/13/2018				0.0019 (J)	<0.01	0.008 (J)	<0.01	<0.01	
2/14/2018	<0.01	<0.01	<0.01						<0.01
6/26/2018	<0.01	<0.01	<0.01	<0.01	<0.01	0.0041 (J)	<0.01	<0.01	<0.01
12/18/2018	<0.01	<0.01	<0.01	<0.01	<0.01	0.0048 (J)	<0.01	<0.01	<0.01
8/27/2019	<0.01	<0.01		<0.01	<0.01	0.0028 (J)	<0.01	<0.01	<0.01
8/29/2019			<0.01						
10/15/2019	<0.01	<0.01	<0.01	<0.01	<0.01	0.0035 (J)	<0.01	<0.01	<0.01
3/3/2020				<0.01	<0.01	0.0023 (J)	<0.01	<0.01	
8/18/2020	<0.01	<0.01	<0.01	0.0011 (J)	<0.01	0.0015 (J)	<0.01	<0.01	
8/19/2020									0.00081 (J)
9/15/2020	<0.01	<0.01	<0.01	0.0007 (J)	<0.01	0.0015 (J)	<0.01	<0.01	0.0008 (J)

Constituent: Molybdenum (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

9/6/2016	BRGWC-27I	BRGWC-29I	BRGWC-30I <0.01	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/8/2016	<0.01	<0.01	<0.01	<0.01					
11/18/2016	<0.01	\0.01		\0.01					
11/21/2016	<0.01	<0.01	<0.01	<0.01					
2/21/2017	<0.01	<0.01	<0.01	\0.01					
2/22/2017	<0.01	<0.01	<0.01	<0.01					
6/13/2017	<0.01	~0.01	~0.01	~0.01					
6/14/2017	40.01	<0.01	<0.01	<0.01					
9/27/2017	<0.01	<0.01	<0.01	<0.01					
2/14/2018	<0.01	<0.01	<0.01	<0.01					
3/6/2018	10.01	10.01	-0.01	10.01			<0.01	<0.01	
5/1/2018							<0.01	<0.01 (D)	
6/27/2018	<0.01	<0.01		<0.01			0.01	<0.01	
6/28/2018	0.01	0.01	<0.01	0.01			<0.01	0.01	
7/31/2018							<0.01		
8/1/2018								<0.01	
8/10/2018									0.0032 (J)
8/23/2018							<0.01	<0.01	0.005 (J)
9/19/2018							<0.01	<0.01	0.0061 (J)
10/29/2018							<0.01	<0.01	0.0065 (J)
11/28/2018							<0.01	<0.01	0.0027 (J)
12/18/2018		<0.01	<0.01						
12/19/2018				<0.01				<0.01	
12/20/2018	<0.01						<0.01		<0.01
1/17/2019									<0.01
1/18/2019					<0.01				
1/19/2019						<0.01			
2/13/2019									<0.01
8/27/2019			<0.01	<0.01					
8/28/2019	<0.01	<0.01					<0.01	<0.01	
8/29/2019									<0.01
10/16/2019		<0.01						<0.01	<0.01
10/18/2019					<0.01	<0.01			
12/3/2019							<0.01		
12/4/2019	<0.01		<0.01	<0.01					
8/19/2020	<0.01	<0.01	0.00078 (J)	<0.01					
8/20/2020					<0.01	<0.01	0.00076 (J)	<0.01	0.0012 (J)
9/15/2020		<0.01							
9/16/2020	<0.01		0.0022 (J)	<0.01			<0.01	<0.01	
9/17/2020					<0.01	<0.01			0.0007 (J)

Constituent: Molybdenum (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	<0.01
5/1/2018	0.0022 (J)
6/28/2018	<0.01
8/1/2018	0.0033 (J)
10/29/2018	<0.01
11/28/2018	<0.01
12/19/2018	<0.01
1/16/2019	<0.01
8/29/2019	<0.01
10/16/2019	<0.01
8/20/2020	<0.01
9/17/2020	<0.01

Constituent: pH, Field (S.U) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				7.16	6.2	6.53	6.59		
9/1/2016	6.71	6						6.49	
9/6/2016			6.49						
9/8/2016									6.07
11/15/2016							6.67	6.59	
11/16/2016	6.15	6		6.96	6.12	6.4			5.96
11/17/2016			5.79						
2/20/2017						6.44	6.65	6.61	
2/21/2017	6.52	6.09	6.15	7.15	6.24				5.98
6/12/2017				7.31		6.4	6.64		
6/13/2017	6.42	6.03	5.87		6.19				5.96
6/14/2017	6.51								
9/26/2017	6.42	5.85	5.82	7.02	6.15	6.31	6.58	6.47	
9/27/2017									5.85
2/13/2018				7.44	6.18	6.62	6.72	6.54	
2/14/2018	6.48	5.99	5.83						5.94
6/26/2018	6.2	5.86	5.73	6.93	6.05	6.29	6.43	6.23	5.87
7/31/2018	6.37	5.99							
12/18/2018	6.5	6.08	5.78	6.76	5.92	6.57	6.7	6.71	5.84
3/19/2019	6.28	5.71	5.28	6.87	6.18	6.45	6.63	6.18	
3/20/2019									6.03
8/27/2019	6.35	6		6.79	6.09	6.37	6.49	6.35	6.01
8/29/2019			5.64						
10/15/2019	6.8	6.61	5.7	6.57	6.06	6.77	7.01	6.36	6
3/3/2020	6.33	5.94		6.71	6.1	6.29	6.49	6.59	
3/4/2020			5.7						6.02
8/18/2020	6.25	5.75	5.56	6.59	6.06	6.29	6.41	6.33	
8/19/2020									6.32
9/15/2020	6.01	6	5.72	6.64	6.01	6.27	6.25	6.43	6

Constituent: pH, Field (S.U) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			6.23						
9/8/2016	5.51	4.62		5.89					
11/18/2016	5.53								
11/21/2016		4.44	6.23	5.56					
2/21/2017	5.63								
	3.03	4.42	6.16	5.87					
2/22/2017	5.53	4.42	0.10	5.67					
6/13/2017	5.57								
6/14/2017		4.45	6.16	5.83					
9/27/2017	5.53	4.33	6.16	5.87					
2/14/2018	5.83	4.42	6.24	6.01					
3/15/2018							5.26		
5/1/2018							6.14	5.85	
6/27/2018	5.53	4.37		5.83				5.87	
6/28/2018			6.21				5.88		
7/31/2018							6.07		
8/1/2018								5.79	
8/2/2018					6.18			0.70	
					0.10	E 47			
8/3/2018						5.47			
8/10/2018									6.28
8/23/2018									6.75
9/19/2018							5.9	5.71	6.48
10/29/2018							5.93	5.76	6.77
11/28/2018							5.99	5.74	6.44
12/18/2018		4.38	6.18						
12/19/2018				5.79				5.8	
12/20/2018	5.78						6.04		6.75
1/17/2019									6.41
1/18/2019					6.19				
1/19/2019						5.45			
2/13/2019						0.40			6.42
	E 7E							F 90	0.42
3/19/2019	5.75							5.89	
3/20/2019		4.4	6.24	5.88			6.1		6.59
8/27/2019			6.17	5.85					
8/28/2019	5.51	4.39					5.86	5.74	
8/29/2019									6.27
10/16/2019		4.79						5.9	7
10/17/2019	6.01 (D)		6.43	6.09			5.93		
10/18/2019					6.44	5.79			
3/4/2020	5.8	4.5						5.76	6.54
3/5/2020			5.99	5.74			5.95		
5/12/2020				5.88					
8/19/2020	5.81	4.67	6.36	5.97					
8/20/2020	0.01		5.50	J.J.	6.15	5.57	5.86	5.75	6.85
		4.52			0.10	5.57	5.00	5.75	0.00
9/15/2020	5.04	4.53	0.00	5.70			5.07	5.70	
9/16/2020	5.81		6.29	5.79			5.27	5.76	
9/17/2020					5.77	4.93			6.12

Constituent: pH, Field (S.U) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	5.26
5/1/2018	5.38
6/28/2018	5.03
8/1/2018	5.22
10/29/2018	5.19
11/28/2018	5.28
12/19/2018	5.15
1/16/2019	5.14
3/6/2019	6.15
3/20/2019	5.32
8/29/2019	5.2
10/16/2019	5.36
3/4/2020	5.2
8/20/2020	5.26
9/17/2020	4.41

Constituent: Selenium (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				<0.01	<0.01	<0.01	<0.01		
9/1/2016	<0.01	<0.01						<0.01	
9/6/2016			<0.01						
9/8/2016									<0.01
11/15/2016							<0.01	<0.01	
11/16/2016	<0.01	<0.01		<0.01	<0.01	<0.01			
11/17/2016			<0.01 (J)						<0.01
2/20/2017						<0.01	<0.01	<0.01	
2/21/2017	<0.01	<0.01	0.0018 (J)	<0.01	<0.01				<0.01
6/12/2017				<0.01		<0.01	<0.01	<0.01	
6/13/2017		<0.01	<0.01		<0.01				<0.01
6/14/2017	<0.01								
9/26/2017	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
9/27/2017									<0.01
2/13/2018				<0.01	<0.01	<0.01	<0.01	<0.01	
2/14/2018	<0.01	<0.01	<0.01						<0.01
6/26/2018	<0.01	<0.01	0.0036 (J)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
12/18/2018	<0.01	<0.01	0.0044 (J)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8/27/2019	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8/29/2019			0.0023 (J)						
10/15/2019	<0.01	<0.01	0.0022 (J)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/3/2020	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	
3/4/2020			0.0019 (J)						<0.01
8/18/2020	<0.01	<0.01	0.0033 (J)	<0.01	<0.01	<0.01	<0.01	<0.01	
8/19/2020									<0.01
9/15/2020	<0.01	<0.01	0.0028 (J)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Constituent: Selenium (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			<0.01						
9/8/2016	0.0043 (J)	0.0039 (J)		<0.01					
11/18/2016	<0.01 (J)								
11/21/2016		<0.01 (J)	<0.01	<0.01					
2/21/2017	0.0025 (J)								
2/22/2017		0.005 (J)	<0.01	0.0017 (J)					
6/13/2017	0.0036 (J)								
6/14/2017		0.0074 (J)	0.0045 (J)	<0.01					
9/27/2017	0.004 (J)	0.0068 (J)	0.0034 (J)	0.0019 (J)					
2/14/2018	<0.01	<0.01	<0.01	<0.01					
3/6/2018							<0.01	<0.01	
5/1/2018							<0.01	<0.01 (D)	
6/27/2018	0.0014 (J)	<0.01		0.0017 (J)				<0.01	
6/28/2018			<0.01				<0.01		
7/31/2018							<0.01		
8/1/2018								0.0015 (J)	
8/10/2018									<0.01
8/23/2018							<0.01	<0.01 (X)	<0.01
9/19/2018							<0.01	0.002 (J)	<0.01
10/29/2018							<0.01	<0.01	<0.01
11/28/2018							<0.01	<0.01	<0.01
12/18/2018		<0.01	<0.01						
12/19/2018				0.0059 (J)				<0.01	
12/20/2018	<0.01						<0.01		<0.01
1/17/2019									<0.01
1/18/2019					<0.01				
1/19/2019						<0.01			
2/13/2019									<0.01
8/27/2019			0.0038 (J)	0.057					
8/28/2019	0.0017 (J)	<0.01					<0.01	<0.01	
8/29/2019									<0.01
10/16/2019		<0.01						0.0017 (J)	<0.01
10/18/2019					<0.01	<0.01			
12/3/2019							0.0029 (J)		
12/4/2019	0.0036 (J)		0.0018 (J)	0.1					
3/4/2020	0.0022 (J)	0.0018 (J)						<0.01	<0.01
3/5/2020			<0.01	0.1			<0.01		
5/12/2020				0.0989					
8/19/2020	<0.01	<0.01	<0.01	0.099					
8/20/2020					<0.01	<0.01	<0.01	0.0016 (J)	<0.01
9/15/2020		<0.01							
9/16/2020	0.0042 (J)		<0.01	0.12			<0.01	0.002 (J)	
9/17/2020					<0.01	<0.01			<0.01

Constituent: Selenium (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	<0.01
5/1/2018	<0.01
6/28/2018	<0.01
8/1/2018	0.0031 (J)
10/29/2018	0.002 (J)
11/28/2018	0.0017 (J)
12/19/2018	<0.01
1/16/2019	<0.01
8/29/2019	<0.01
10/16/2019	0.002 (J)
3/4/2020	0.0026 (J)
8/20/2020	0.0037 (J)
9/17/2020	<0.01

Constituent: Sulfate as SO4 (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				7.5	0.38 (J)	2.7	0.81 (J)		
9/1/2016	2.7	1.7						0.6 (J)	
9/6/2016			38						
9/8/2016									280
11/15/2016							<1 (J)	<1 (J)	
11/16/2016	3.6	1.2		6.6	<1 (J)	3.4			
11/17/2016			84						200
2/20/2017						3.9 (B-01)	1 (B-01)	0.98 (J)	
2/21/2017	3	1.1	39	6.1	1.5				360
6/12/2017				5		3.7	0.94 (J)	0.54 (J)	
6/13/2017		1.1	35		0.67 (J)				290
6/14/2017	2.6								
9/26/2017	2.5	1.3	89	5.4	0.62 (J)	4.1	0.92 (J)	0.53 (J)	
9/27/2017									310
2/13/2018				4.7 (J)	<1	6.6	<1	<1	
2/14/2018	2.1 (J)	<1	82.2						260
6/26/2018	2	0.84 (J)	84.2	6.2	0.69 (J)	3.5	0.91 (J)	0.54 (J)	231
7/31/2018	1.9	0.63 (J)							
12/18/2018	2.1	0.66 (J)	83.4	5.9	0.72 (J)	4.3	0.68 (J)	0.39 (J)	231
3/19/2019	2.2	0.75 (J)	65	6 (D)	0.78 (J)	3	0.74 (J)	0.68 (J)	
3/20/2019									235 (D)
10/15/2019	1.9	0.61 (J)	30	5.2	0.47 (J)	3.8	0.68 (J)	0.48 (J)	174
3/3/2020	1.8	0.51 (J)		7.1	0.93 (J)	2.8	0.71 (J)	2.5	
3/4/2020			38.6						165
9/15/2020	1.7	<1	41.5	5.9	<1	1.7	<1	<1	126

Constituent: Sulfate as SO4 (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			310						
9/8/2016	300	460		370					
11/18/2016	320								
11/21/2016		500	300	420					
2/21/2017	270								
2/22/2017		570	280	380					
6/13/2017	230								
6/14/2017		440	290	400					
9/27/2017	260	380	260	400					
2/14/2018	232	280	250	383					
3/6/2018							111	1560	
5/1/2018							112	1465 (D)	
6/27/2018	205	281		372				1450	
6/28/2018			276				109		
7/31/2018							107		
8/1/2018								1560	
8/2/2018					8.9				
8/3/2018						1170			
8/10/2018									183
8/23/2018							108	1470	145
9/19/2018							117	1500	178
10/29/2018							127	1720	157
11/28/2018							133	1730	189
12/18/2018		293	440						
12/19/2018				370				1520	
12/20/2018	200						113		150
1/17/2019									157
1/18/2019					0.64 (J)				
1/19/2019						1140			
2/13/2019									169
3/19/2019	199							1100	
3/20/2019		278	623	409			127		186.5 (D)
10/16/2019		266						1560	155
10/18/2019					0.76 (J)	<1			
12/3/2019							105		
12/4/2019	241		327	293					
3/4/2020	205	238						1380	129
3/5/2020			369	269			106		
9/15/2020		241							
9/16/2020	190		334	255			103	1360	
9/17/2020					0.53 (J)	1030			165

Constituent: Sulfate as SO4 (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	1590
5/1/2018	1550
6/28/2018	1530
8/1/2018	1580
10/29/2018	1750
11/28/2018	1780
12/19/2018	1650
1/16/2019	589 (O)
3/20/2019	1740
10/16/2019	1590
3/4/2020	1370
9/17/2020	1330

Constituent: Thallium (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				<0.001	<0.001	<0.001	<0.001		
9/1/2016	<0.001	<0.001						<0.001	
9/6/2016			<0.001						
9/8/2016									<0.001
11/15/2016							<0.001	<0.001	
11/16/2016	<0.001	<0.001		<0.001	<0.001	<0.001			
11/17/2016			<0.001						<0.001
2/20/2017						<0.001	<0.001	<0.001	
2/21/2017	<0.001	<0.001	<0.001	<0.001	<0.001				<0.001
6/12/2017				<0.001		<0.001	<0.001	<0.001	
6/13/2017		<0.001	<0.001		<0.001				<0.001
6/14/2017	<0.001								
9/26/2017	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
9/27/2017									<0.001
2/13/2018				<0.001	<0.001	<0.001	<0.001	<0.001	
2/14/2018	<0.001	<0.001	<0.001						<0.001
6/26/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
12/18/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/27/2019	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/29/2019			<0.001						
10/15/2019	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/3/2020	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	
3/4/2020			<0.001						<0.001
8/18/2020	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/19/2020									<0.001
9/15/2020	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

Constituent: Thallium (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			<0.001						
9/8/2016	<0.001	<0.001 (o)		<0.001					
11/18/2016	<0.001								
11/21/2016		<0.001 (J)	<0.001	<0.001					
2/21/2017	<0.001								
2/22/2017		0.0002 (J)	<0.001	<0.001					
6/13/2017	<0.001								
6/14/2017		0.0002 (J)	<0.001	<0.001					
9/27/2017	<0.001	0.0002 (J)	<0.001	<0.001					
2/14/2018	<0.001	0.00018 (J)	<0.001	<0.001					
3/6/2018							<0.001	<0.001	
5/1/2018							<0.001	<0.001 (D)	
6/27/2018	<0.001	0.00017 (J)		<0.001				<0.001	
6/28/2018			<0.001				<0.001		
7/31/2018							<0.001		
8/1/2018								<0.001	
8/10/2018									<0.001
8/23/2018							<0.001	<0.001	<0.001
9/19/2018							<0.001	<0.001	<0.001
10/29/2018							<0.001	<0.001	<0.001
11/28/2018							<0.001	<0.001	<0.001
12/18/2018		0.00017 (J)	<0.001						
12/19/2018				<0.001				<0.001	
12/20/2018	<0.001						<0.001		<0.001
1/17/2019									<0.001
1/18/2019					<0.001				
1/19/2019						<0.001			
2/13/2019									<0.001
8/27/2019			<0.001	<0.001					
8/28/2019	<0.001	0.00017 (J)					<0.001	<0.001	
8/29/2019									<0.001
10/16/2019		0.00017 (J)						<0.001	<0.001
10/18/2019					<0.001	<0.001			
12/3/2019							<0.001		
12/4/2019	<0.001		<0.001	<0.001					
3/4/2020	<0.001	0.00016 (J)						<0.001	<0.001
3/5/2020			<0.001	<0.001			<0.001		
8/19/2020	<0.001	0.00016 (J)	<0.001	<0.001					
8/20/2020					<0.001	<0.001	<0.001	<0.001	<0.001
9/15/2020		0.00016 (J)							
9/16/2020	<0.001		<0.001	<0.001			<0.001	<0.001	
9/17/2020					<0.001	<0.001			<0.001

Constituent: Thallium (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

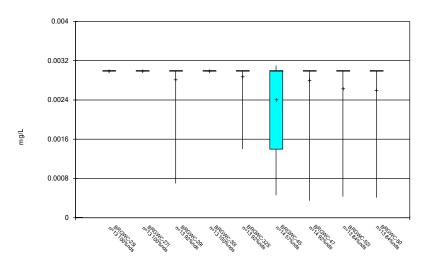
	BRGWC-50
3/15/2018	<0.001
5/1/2018	<0.001
6/28/2018	<0.001
8/1/2018	<0.001
10/29/2018	<0.001
11/28/2018	<0.001
12/19/2018	<0.001
1/16/2019	<0.001
8/29/2019	<0.001
10/16/2019	<0.001
3/4/2020	<0.001
8/20/2020	<0.001
9/17/2020	< 0.001

Constituent: Total Dissolved Solids [TDS] (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I
8/31/2016				151	88	138	154		
9/1/2016	142	69						299	
9/6/2016			146						
9/8/2016									460
11/15/2016							123	41	
11/16/2016	100	100		69	41	77			
11/17/2016			211						611
2/20/2017						170	158	133	
2/21/2017	71	37	151	68	<10				497
6/12/2017				161		132	142	61	
6/13/2017		84	130		53				474
6/14/2017	140								
9/26/2017	149	68	160	167	45	108	138	29	
9/27/2017									457
2/13/2018				165	63	141	150	61	
2/14/2018	137	138	194						431
6/26/2018	142	90	221	188	71	133	154	71	414
7/31/2018	133	83							
12/18/2018	135	85	208	145 (X)	78 (X)	138 (X)	147	70 (X)	401
3/19/2019	132 (JX)	82 (JX)	161 (JX)	146.5 (D)	68	130	146	72	
3/20/2019									410.5 (D)
10/15/2019	134	89	124	140	66	175	144	63	380
3/3/2020	115	72		155	41	<10	130	54	
3/4/2020			118						330

9/15/2020

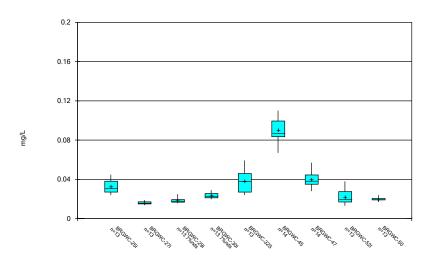
Constituent: Total Dissolved Solids [TDS] (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	PZ-51S	PZ-51I	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016			505						
9/8/2016	478	654		607					
11/18/2016	503								
11/21/2016		819	515	695					
2/21/2017	380								
2/22/2017		721	504	635					
6/13/2017	354								
6/14/2017		661	536	635					
9/27/2017	376	518	432	601					
2/14/2018	503 (JX)	487	448	628					
3/6/2018							346	2200	
5/1/2018							374	2080 (D)	
6/27/2018	458 (X)	648 (X)		2280				31 (OX)	
6/28/2018			494				333		
7/31/2018							393		
8/1/2018								2190	
8/2/2018					123				
8/3/2018						1900			
8/10/2018									344
8/23/2018							350	2160	333
9/19/2018							353	2160	364
10/29/2018							329	2130	334
11/28/2018							358	2320	357
12/18/2018		407	715						
12/19/2018				605				2060	
12/20/2018	344						322		355
1/17/2019									347
1/18/2019					103				
1/19/2019						1660			
2/13/2019									350
3/19/2019	334 (JX)							2050 (JX)	
3/20/2019		391	885	564			302		360 (D)
10/16/2019		2030						2220	346
10/18/2019					99	1550			
12/3/2019							362		
12/4/2019	422		612	526					
3/4/2020	326	391						2140	351
3/5/2020			681	489			297		
9/15/2020		281							
9/16/2020	301		634	428			275	2090	
9/17/2020					101	1600			329

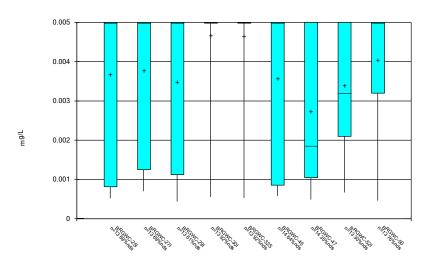
Constituent: Total Dissolved Solids [TDS] (mg/L) Analysis Run 11/1/2020 10:58 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-50
3/15/2018	2440
5/1/2018	2190
6/28/2018	2290
8/1/2018	2360
10/29/2018	2300
11/28/2018	2300
12/19/2018	2190
1/16/2019	2270
3/20/2019	2280
10/16/2019	2280
3/4/2020	2270
9/17/2020	1910

FIGURE B.

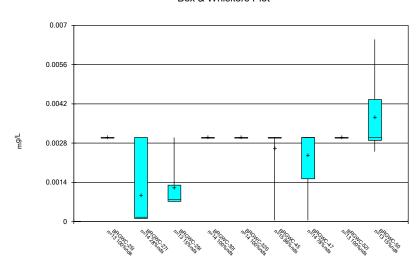

Box & Whiskers Plot

Constituent: Antimony Analysis Run 11/1/2020 10:18 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

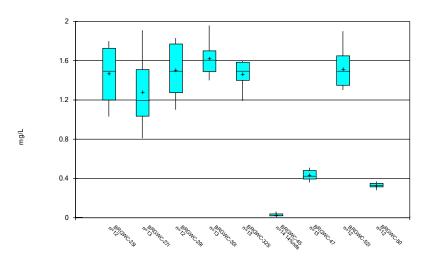

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Barium Analysis Run 11/1/2020 10:18 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

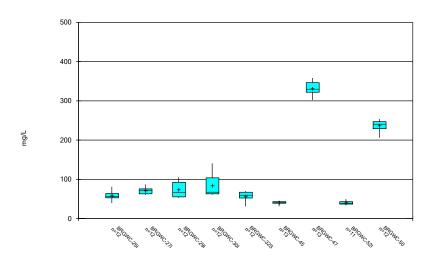

Box & Whiskers Plot

Constituent: Arsenic Analysis Run 11/1/2020 10:18 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

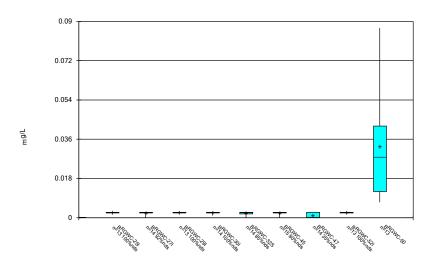

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Beryllium Analysis Run 11/1/2020 10:18 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

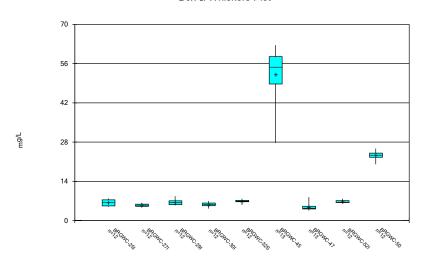

Box & Whiskers Plot

Constituent: Boron Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

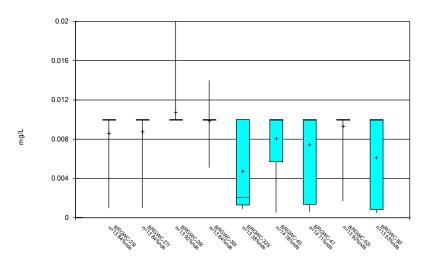

${\sf Sanitas^{\text{\tiny{IN}}}} \ {\sf v.9.6.27} \ {\sf Sanitas} \ {\sf software} \ {\sf utilized} \ {\sf by} \ {\sf Groundwater} \ {\sf Stats} \ {\sf Consulting.} \ {\sf UG}$

Box & Whiskers Plot

Constituent: Calcium Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

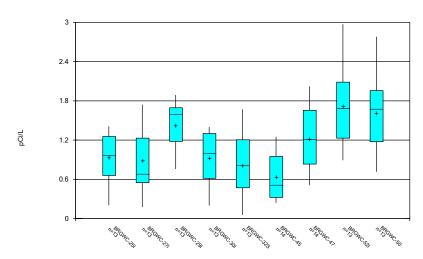

Box & Whiskers Plot

Constituent: Cadmium Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

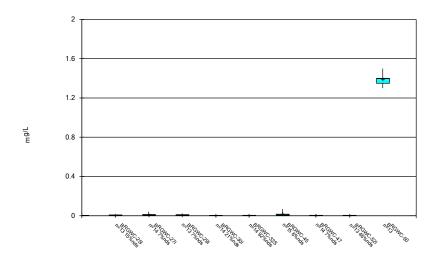

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Chloride, Total Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

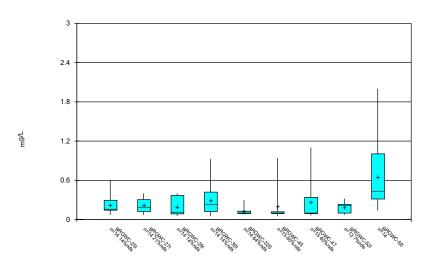

Box & Whiskers Plot

Constituent: Chromium Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

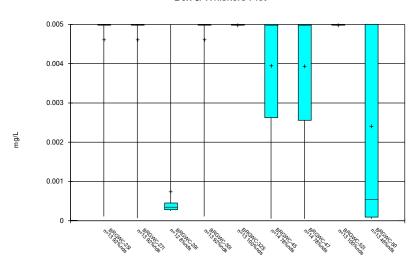

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

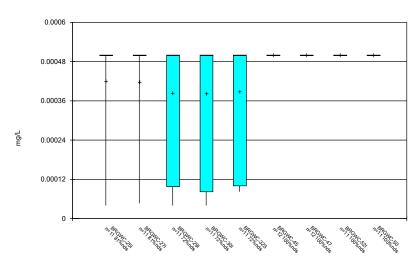

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

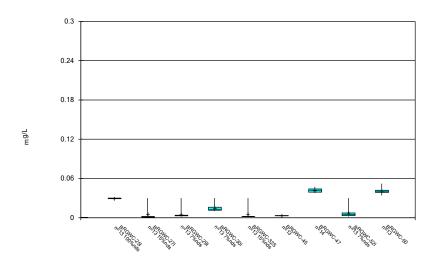

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

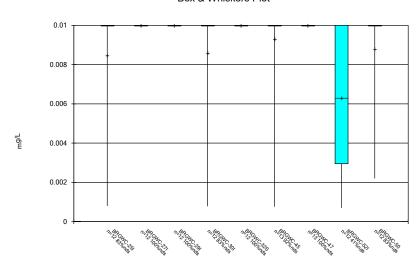


Constituent: Lead Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

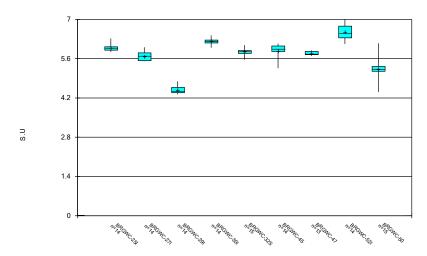

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Mercury Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

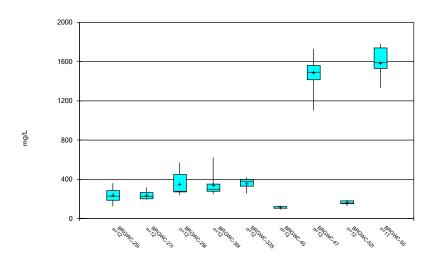

Box & Whiskers Plot

Constituent: Lithium Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

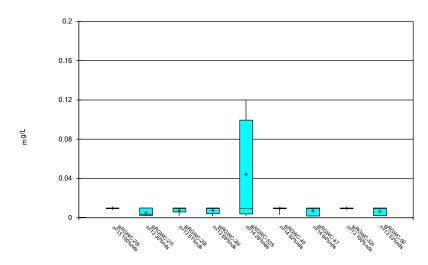

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Molybdenum Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

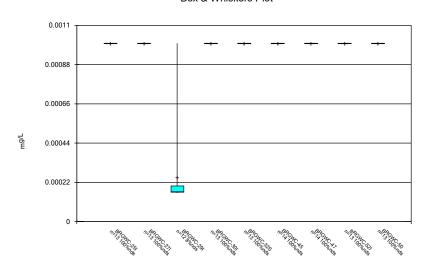

Box & Whiskers Plot

Constituent: pH, Field Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

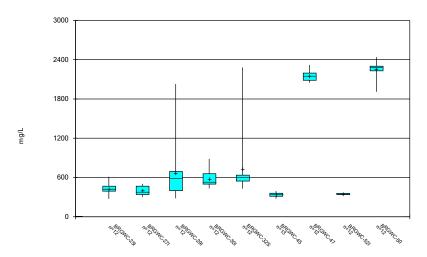

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Sulfate as SO4 Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Box & Whiskers Plot

Constituent: Selenium Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Thallium Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 10:19 AM View: Descriptive B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

FIGURE C.

Outlier Summary

Plant Branch Client: Southern Company Data: Plant Branch AP Printed 11/1/2020, 10:26 AM

	RGWC-521 C	_{Calcium} (mg/L) BRGWA-5I Co	_{obalt} (mg/L) BRGWC-52l F	- _{luoride} (mg/L) BRGWC-291 L	_{ead} (mg/L) BRGWC-45 L	_{ithium} (mg/L) BRGWC-50 S	ulfate as SO4 (n BRGWC-29I ⁷	_{ng} /L) Thallium (mg/L) BRGWC-47 Tota	_{al Dissolved} Solids	; _[TDS] (mg/L)	
9/8/2016							<0.001 (o)				
11/16/2016		<0.01 (o)									
2/13/2018		<0.01 (o)									
2/14/2018				<0.005 (o)							
6/27/2018								31 (OX)			
7/31/2018					<0.25 (o)						
8/10/2018	410 (O)		1.6 (O)								
1/16/2019						589 (O)					

FIGURE D.

Federal Interwell Prediction Limit Summary - Significant Results

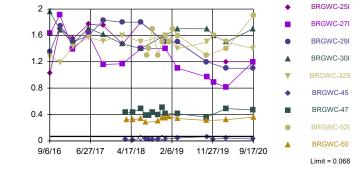
Data: Plant Branch AP Printed 11/1/2020, 9:29 AM Plant Branch Client: Southern Company Constituent Well Bg N Bg Mean Std. Dev. %NDs ND Adj. Upper Lim. Lower Lim. Date Sig. Method Boron (mg/L) BRGWC-25I 0.068 n/a 9/15/2020 1.2 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 Boron (mg/L) BRGWC-27 0.068 n/a 9/16/2020 1.2 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 Boron (mg/L) BRGWC-29I 0.068 n/a 9/15/2020 1.1 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 n/a Boron (mg/L) BRGWC-30 0.068 9/16/2020 1.7 96 n/a 57.29 n/a 0.0002102 NP Inter (NDs) 1 of 2 n/a Yes n/s Boron (mg/L) BRGWC-32S 0.068 n/a 9/16/2020 1.4 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 Boron (ma/L) BRGWC-47 0.068 n/a 9/16/2020 0.47 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 Boron (mg/L) BRGWC-52I 0.068 n/a 9/17/2020 1.9 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 9/17/2020 Boron (mg/L) BRGWC-50 0.068 n/a 0.36 Yes 96 n/a n/a 57.29 n/a n/a 0.0002102 NP Inter (NDs) 1 of 2 0.0002014 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-25I 24 n/a 9/15/2020 40.1 Yes 98 n/a n/a 6.122 n/a n/a Calcium (mg/L) BRGWC-27I 62.5 0.0002014 NP Inter (normality) 1 of 2 24 n/a 9/16/2020 Yes 98 n/a n/a 6.122 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-29I 24 n/a 9/15/2020 55.1 Yes 98 n/a n/a 6.122 n/a n/a Calcium (mg/L) BRGWC-30I 24 9/16/2020 106 98 6.122 n/a 0.0002014 NP Inter (normality) 1 of 2 n/a Yes n/a n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-32S 24 n/a 9/16/2020 43.1 Yes 98 n/a n/a 6.122 n/a n/a Calcium (mg/L) BRGWC-45 39.7 0.0002014 NP Inter (normality) 1 of 2 24 9/16/2020 98 n/a 6.122 n/a n/a n/a Yes n/a BRGWC-47 9/16/2020 309 98 0.0002014 NP Inter (normality) 1 of 2 Calcium (mg/L) 24 n/a Yes n/a n/a 6.122 n/a n/a BRGWC-52I 9/17/2020 Calcium (mg/L) 24 35.4 98 6.122 n/a 0.0002014 NP Inter (normality) 1 of 2 n/a Yes n/a n/a n/a 9/17/2020 0.0002014 NP Inter (normality) 1 of 2 BRGWC-50 24 206 98 6.122 Calcium (mg/L) n/a Yes n/a n/a n/a n/a Chloride, Total (mg/L) BRGWC-27I 1.742 0.2583 0.0008358 Param Inter 1 of 2 5.036 9/16/2020 5.4 98 0 n/a Yes None sqrt(x) 0.0008358 Param Inter 1 of 2 Chloride, Total (mg/L) BRGWC-29I 5.036 9/15/2020 5.5 98 1.742 0 sqrt(x) n/a Yes None Chloride, Total (mg/L) BRGWC-32S 9/16/2020 5.6 98 1.742 0.2583 0.0008358 Param Inter 1 of 2 5.036 None sqrt(x) n/a Yes Chloride, Total (mg/L) BRGWC-45 9/16/2020 98 1.742 0.0008358 Param Inter 1 of 2 5.036 n/a Yes 0.2583 None sqrt(x) Chloride, Total (mg/L) BRGWC-52I 5.036 n/a 9/17/2020 6.3 1.742 0.2583 0.0008358 Param Inter 1 of 2 sqrt(x) Chloride, Total (mg/L) BRGWC-50 5.036 9/17/2020 20.1 sqrt(x) 0.0008358 Param Inter 1 of 2 n/a Yes BRGWC-50 Fluoride (mg/L) 9/17/2020 0.0001579 NP Inter (NDs) 1 of 2 pH, Field (S.U) BRGWC-29I 9/15/2020 4.53 6.332 0 0.0004179 Param Inter 1 of 2 BRGWC-45 0.0004179 Param Inter 1 of 2 pH, Field (S.U) 7.08 5.584 9/16/2020 5.27 6.332 0.3867 0 6.332 pH, Field (S.U) BRGWC-50 7.08 5.584 9/17/2020 4.41 0.3867 0 0.0004179 Param Inter 1 of 2 Sulfate as SO4 (mg/L) BRGWC-25I 9/15/2020 126 98 0.0002014 NP Inter (normality) 1 of 2 89 n/a 11.22 n/a Sulfate as SO4 (mg/L) BRGWC-27I 9/16/2020 190 98 11.22 0.0002014 NP Inter (normality) 1 of 2 89 Sulfate as SO4 (mg/L) BRGWC-29I 89 9/15/2020 241 98 11.22 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 n/a Yes n/a Sulfate as SO4 (mg/L) BRGWC-30I 9/16/2020 334 98 11.22 n/a 0.0002014 NP Inter (normality) 1 of 2 89 n/a Sulfate as SO4 (mg/L) BRGWC-32S 89 n/a 9/16/2020 255 Yes 98 n/a 11.22 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Sulfate as SO4 (mg/L) BRGWC-45 89 9/16/2020 103 98 n/a 11.22 n/a 0.0002014 NP Inter (normality) 1 of 2 n/a Sulfate as SO4 (mg/L) BRGWC-47 89 n/a 9/16/2020 1360 Yes 98 n/a 11.22 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Sulfate as SO4 (mg/L) BRGWC-52I 89 9/17/2020 165 98 11.22 n/a n/s 0.0002014 NP Inter (normality) 1 of 2 n/a Yes Sulfate as SO4 (mg/L) BRGWC-50 89 n/a 9/17/2020 1330 Yes 98 n/a n/a 11.22 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-27I 299 n/a 9/16/2020 301 Yes 98 n/a n/a 2.041 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-301 299 n/a 9/16/2020 634 Yes 98 n/a n/a 2.041 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-32S 299 n/a 9/16/2020 428 Yes 98 n/a n/a 2.041 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-47 299 n/a 9/16/2020 2090 Yes 98 n/a n/a 2.041 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-52I 299 n/a 9/17/2020 329 Yes 98 n/a n/a 2.041 n/a n/a 0.0002014 NP Inter (normality) 1 of 2 Total Dissolved Solids [TDS] (mg/L) BRGWC-50 9/17/2020 0.0002014 NP Inter (normality) 1 of 2 299 n/a 1910 Yes 98 n/a n/a 2.041 n/a n/a

Federal Interwell Prediction Limit Summary - All Results Plant Branch Client: Southern Company Data: Plant Branch AP Printed 11/1/2020, 9:29 AM

		Plant Bran	nch Client:	Southern Co	mpany D	ata: Pla	nt Br	anch AP	Printed 11/	1/2020,	9:29 AM			
Constituent	Well	Upper Lir	m. Lower Lim	. Date	Observ.	Sig.	Bg l	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Boron (mg/L)	BRGWC-25I	0.068	n/a	9/15/2020	1.2	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-27I	0.068	n/a	9/16/2020	1.2	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-29I	0.068	n/a	9/15/2020	1.1	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-30I	0.068	n/a	9/16/2020	1.7	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-32S	0.068	n/a	9/16/2020	1.4	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-45	0.068	n/a	9/16/2020	0.028J	No	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-47	0.068	n/a	9/16/2020	0.47	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-52I	0.068	n/a	9/17/2020	1.9	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-50	0.068	n/a	9/17/2020	0.36	Yes	96	n/a	n/a	57.29	n/a	n/a	0.0002102	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BRGWC-25I	24	n/a	9/15/2020	40.1	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-27I	24	n/a	9/16/2020	62.5	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-29I	24	n/a	9/15/2020	55.1	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-30I	24	n/a	9/16/2020	106	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-32S	24	n/a	9/16/2020	43.1	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-45	24	n/a	9/16/2020	39.7	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-47	24	n/a	9/16/2020	309	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-52I	24	n/a	9/17/2020	35.4	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-50	24	n/a	9/17/2020	206	Yes	98	n/a	n/a	6.122	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BRGWC-25I	5.036	n/a	9/15/2020	4.9	No	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-27I	5.036	n/a	9/16/2020	5.4	Yes	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-29I	5.036	n/a	9/15/2020	5.5	Yes	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-30I	5.036	n/a	9/16/2020	4.4	No	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-32S	5.036	n/a	9/16/2020	5.6	Yes	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-45	5.036	n/a	9/16/2020	54.9	Yes	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-47	5.036	n/a	9/16/2020	4.1	No	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-52I	5.036	n/a	9/17/2020	6.3	Yes	98	1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Chloride, Total (mg/L)	BRGWC-50	5.036	n/a	9/17/2020	20.1	Yes		1.742	0.2583	0	None	sqrt(x)	0.0008358	Param Inter 1 of 2
Fluoride (mg/L)	BRGWC-25I	0.42	n/a	9/15/2020	0.15	No	112	n/a	n/a	54.46	n/a	n/a		NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-27I	0.42	n/a	9/16/2020	0.15	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-29I	0.42	n/a	9/15/2020	0.057J	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-30I	0.42	n/a	9/16/2020	0.13	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-32S	0.42	n/a	9/16/2020	0.1ND	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-45	0.42	n/a	9/16/2020	0.052J	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-47	0.42	n/a	9/16/2020	0.1ND	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-52I	0.42	n/a	9/17/2020	0.074J	No	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BRGWC-50	0.42	n/a	9/17/2020	0.46	Yes	112	n/a	n/a	54.46	n/a	n/a	0.0001579	NP Inter (NDs) 1 of 2
pH, Field (S.U)	BRGWC-25I	7.08	5.584	9/15/2020	6	No	114	6.332	0.3867	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U)	BRGWC-27I	7.08	5.584	9/16/2020	5.81	No	114	6.332	0.3867	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U)	BRGWC-29I	7.08	5.584	9/15/2020	4.53	Yes	114	6.332	0.3867	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U)	BRGWC-30I	7.08	5.584	9/16/2020	6.29	No		6.332	0.3867	0	None	No		Param Inter 1 of 2
pH, Field (S.U)	BRGWC-32S	7.08	5.584	9/16/2020	5.79	No	114	6.332	0.3867	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U)	BRGWC-45	7.08	5.584	9/16/2020	5.27	Yes	114	6.332	0.3867	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U)	BRGWC-47	7.08	5.584	9/16/2020	5.76	No		6.332	0.3867	0	None	No		Param Inter 1 of 2
pH, Field (S.U)	BRGWC-52I	7.08	5.584	9/17/2020	6.12	No		6.332	0.3867	0	None	No		Param Inter 1 of 2
pH, Field (S.U)	BRGWC-50	7.08	5.584	9/17/2020	4.41	Yes		6.332	0.3867	0	None	No		Param Inter 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-25I	89	n/a	9/15/2020	126	Yes	98	n/a	n/a	11.22		n/a		NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-27I	89	n/a	9/16/2020	190	Yes	98	n/a	n/a	11.22		n/a		NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-29I	89	n/a	9/15/2020	241	Yes	98	n/a	n/a	11.22		n/a		NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-30I	89	n/a	9/16/2020	334	Yes	98	n/a	n/a	11.22		n/a		NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-32S	89	n/a	9/16/2020	255	Yes	98	n/a	n/a	11.22		n/a		NP Inter (normality) 1 of 2
· · · · · · · · · · · · · · · · · · ·														, ,,, ,

Page 2

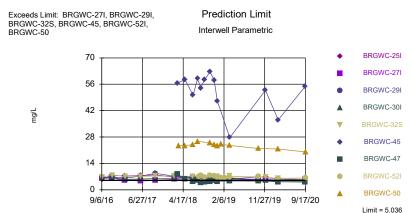
Federal Interwell Prediction Limit Summary - All Results


		Plant Brand	ch Client:	Southern Cor	mpany Da	ata: Pla	int Br	anch AP	Printed 11/1	1/2020, 9	9:29 AM			
Constituent	Well	Upper Lim	n. Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Sulfate as SO4 (mg/L)	BRGWC-45	89	n/a	9/16/2020	103	Yes	98	n/a	n/a	11.22	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-47	89	n/a	9/16/2020	1360	Yes	98	n/a	n/a	11.22	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-52I	89	n/a	9/17/2020	165	Yes	98	n/a	n/a	11.22	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Sulfate as SO4 (mg/L)	BRGWC-50	89	n/a	9/17/2020	1330	Yes	98	n/a	n/a	11.22	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-25I	299	n/a	9/15/2020	272	No	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-27I	299	n/a	9/16/2020	301	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-29I	299	n/a	9/15/2020	281	No	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-30I	299	n/a	9/16/2020	634	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-32S	299	n/a	9/16/2020	428	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-45	299	n/a	9/16/2020	275	No	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-47	299	n/a	9/16/2020	2090	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-52I	299	n/a	9/17/2020	329	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	BRGWC-50	299	n/a	9/17/2020	1910	Yes	98	n/a	n/a	2.041	n/a	n/a	0.0002014	NP Inter (normality) 1 of 2

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values

Exceeds Limit: BRGWC-25I, BRGWC-27I,

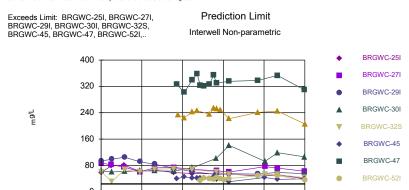
Prediction Limit Interwell Non-parametric


BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-47, BRGWC-52I, BRGWC-50

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 96 background values. 57.29% NDs. Annual per-constituent alpha = 0.003776. Individual comparison alpha = 0.0002102 (1 of 2). Comparing 9 points to limit.

> Constituent: Boron Analysis Run 11/1/2020 9:27 AM View: PL's B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting, UG


Background Data Summary (based on square root transformation): Mean=1.742, Std. Dev.=0.2583, n=98. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.966, critical = 0.966. Kappa = 1.943 (c=7, w=9, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0008358. Comparing 9 points to limit.

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

9/6/16

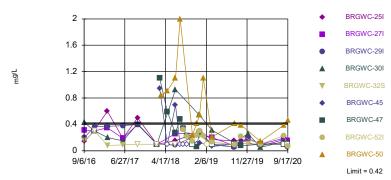
6/27/17

4/17/18

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 98 background values. 6.122% NDs. Annual perconstituent alpha = 0.003619. Individual comparison alpha = 0.0002014 (1 of 2). Comparing 9 points to limit.

2/6/19

11/27/19 9/17/20


BRGWC-50

Limit = 24

Constituent: Calcium Analysis Run 11/1/2020 9:27 AM View: PL's B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Exceeds Limit: BRGWC-50 Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 112 background values. 54.46% NDs. Annual per-constituent alpha = 0.002838. Individual comparison alpha = 0.0001579 (1 of 2). Comparing 9 points to limit.

	BRGWA-2S (bg)	BRGWA-2I (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWC-30I	BRGWA-23S (bg)
8/31/2016	<0.04	0.0072 (J)	<0.04	<0.04					
9/1/2016					<0.04	<0.04	0.0093 (J)		
9/6/2016								1.96	0.0362 (J)
9/8/2016									
11/15/2016				<0.04 (B)	<0.04 (B)				
11/16/2016	<0.04	<0.04	<0.04			<0.04	<0.04		
11/17/2016									0.0617
11/18/2016									
11/21/2016								1.68	
2/20/2017			0.0066 (J)	0.0093 (J)	0.0157 (J)				
2/21/2017	<0.04	0.0088 (J)				<0.04	0.0071 (J)		0.0245 (J)
2/22/2017								1.48	
6/12/2017		0.0133 (J)	<0.04	<0.04	<0.04				
6/13/2017	<0.04					<0.04			<0.04
6/14/2017							0.0078 (J)	1.71	
9/26/2017	<0.04	0.0093 (J)	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04
9/27/2017								1.61	
2/13/2018	<0.04	0.0141 (J)	<0.04	<0.04	<0.04				
2/14/2018						<0.04	0.0068 (J)	1.47	0.0314 (J)
3/6/2018									
3/15/2018									
5/1/2018									
6/26/2018	<0.04	0.012 (J)	0.0042 (J)	0.0056 (J)	0.0041 (J)	<0.04	0.008 (J)		0.062
6/27/2018									
6/28/2018								1.4	
7/31/2018									
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	<0.04	0.0086 (J)	<0.04	0.0062 (J)	<0.04	0.0053 (J)	0.0083 (J)	1.6	0.055
12/19/2018									
12/20/2018									
1/16/2019									
1/17/2019									
2/13/2019									
3/19/2019	<0.04	0.00565 (JD)	<0.04	<0.04	<0.04	<0.04	0.008 (J)		0.068
3/20/2019		, ,					, ,	1.7	
10/15/2019	<0.04	0.0067 (J)	<0.04	0.006 (J)	0.01 (J)	<0.04	0.006 (J)		0.022 (J)
10/16/2019		(,,		(-)	(5)		(5)		(-)
10/17/2019								1.7	
12/3/2019									
12/4/2019								1.6	
3/3/2020	<0.04	0.0082 (J)	<0.04	<0.04	<0.04	0.0065 (J)	0.01 (J)	1.0	
3/4/2020	5.04	0.0002 (0)	5.04	5.04	5.01	3.3000 (0)	5.51 (6)		0.044 (J)
3/5/2020								1.5	U.UTT (U)
9/15/2020	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.0071 (J)	1.0	0.033 (J)
9/16/2020	-0.04	-0.07	-0.07	-0.04	-0.04	-0.04	0.0071 (0)	1.7	0.000 (0)
9/17/2020									
3/ 1 //ZUZU									

	BRGWC-25I	BRGWC-29I	BRGWC-32S	BRGWC-27I	BRGWC-47	BRGWC-45	BRGWC-50	BRGWC-52I
8/31/2016								
9/1/2016								
9/6/2016								
9/8/2016	1.03	1.35	1.28	1.63				
11/15/2016								
11/16/2016								
11/17/2016	1.7							
11/18/2016				1.91				
11/21/2016		1.74	1.19					
2/20/2017		1.74	1.10					
2/21/2017	1.55			1.39				
2/22/2017	1.55	1.5	1.43	1.55				
6/12/2017		1.5	1.43					
	1 77			1.60				
6/13/2017	1.77	1.0	4.57	1.62				
6/14/2017		1.6	1.57					
9/26/2017	4.75	1.00	1.51	1.10				
9/27/2017	1.75	1.83	1.51	1.16				
2/13/2018								
2/14/2018	1.47	1.8	1.6	1.17				
3/6/2018					0.428	0.0198 (J)		
3/15/2018							0.32	
5/1/2018					0.435 (D)	0.015 (J)	0.32	
6/26/2018	1.8							
6/27/2018		1.8 (J+X)	1.5 (J+X)	1.4 (J+X)	0.49 (J+X)			
6/28/2018						<0.04 (X)	0.34	
7/31/2018						0.035 (J)		
8/1/2018					0.39		0.28	
8/10/2018								1.3
8/23/2018					0.39	0.022 (J)		1.4
9/19/2018					0.43	0.021 (J)		1.7
10/29/2018					0.4	0.021 (J)	0.3	1.3
11/28/2018					0.51	<0.04 (X)	0.35	1.5
12/18/2018	1.5	1.5						
12/19/2018			1.6		0.41		0.35	
12/20/2018				1.4		0.028 (J)		1.6
1/16/2019							0.37	
1/17/2019								1.5
2/13/2019								1.7
3/19/2019				1.1	0.41			
3/20/2019	1.5 (D)	1.5	1.4			0.043	0.34	1.6 (D)
10/15/2019	1.2							
10/16/2019		1.2			0.36		0.31	1.3
10/17/2019			1.5	0.97		0.064		
12/3/2019						0.027 (J)		
12/4/2019			1.6	0.89		- '-'		
3/3/2020			-					
3/4/2020	1.2	1.1		0.81	0.49		0.32	1.4
3/5/2020		•••	1.5	0.01	5.75	0.044 (J)	5.5 <u>E</u>	•••
9/15/2020	1.2	1.1	1.5			0.011 (0)		
9/16/2020	1.4	1.1	1.4	1.2	0.47	0.028 (J)		
			1.4	1.2	0.47	0.020 (3)	0.36	1.0
9/17/2020							0.36	1.9

	BRGWA-5S (bg)	BRGWA-5I (bg)	BRGWA-2S (bg)	BRGWA-2I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
8/31/2016	19.6	13.5	4.09	12.6					
9/1/2016					3.3	4.61	8.98		
9/6/2016								12.8	63.3
9/8/2016									
11/15/2016	21.7				3.44				
11/16/2016		14.9	4.25	12.1		4.17	15.4		
11/17/2016								19.2	
11/18/2016									
11/21/2016									60.7
2/20/2017	21.1	13.9			3.52				
2/21/2017			4.02	11.4		5	17.4	15.1	
2/22/2017									62.1
6/12/2017	21.5	13.7		9.34	3.11				
6/13/2017			3.84			4.98		10.2	
6/14/2017							18.1		63.5
9/26/2017	24	14.4	3.31	14.3	3.15	4.49	19.3	15	
9/27/2017									63.5
2/13/2018	<25	<25	3.94	<25	3.65				
2/14/2018						<25	<25	<25	62.8
3/6/2018									
3/15/2018									
5/1/2018									
6/26/2018	23.5 (J)	13.5 (J)	3.6	16 (J)	3.3	6.4	15.5 (J)	18.5 (J)	
6/27/2018									
6/28/2018									73.3
7/31/2018						6.1	18.2 (J)		
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	19.8 (J)	16.4 (J)	3.8	14.5 (J)	3.5	5.5	18.7 (J)	16.8 (J)	102
12/19/2018									
12/20/2018									
1/16/2019									
1/17/2019									
2/13/2019									
3/19/2019	21.4 (J)	12.3 (J)	3.9	14.3 (JD)	3.6	5.9	15.9 (J)	13.5 (J)	
3/20/2019									141
10/15/2019	20	14.4	3.7	15.1	3.5	6.2	15.9	8.6	
10/16/2019									
12/3/2019									
12/4/2019									92.6
3/3/2020	23.2	14.9	4	20	5	6.8	19.4		
3/4/2020		-				-		11.5	
3/5/2020								-	119
9/15/2020	16.8	12.7	3.9	14.1	3.7	5.7	14.5	10.7	
9/16/2020	. 3.0	,			=:*	±*			106
9/17/2020									

	BRGWC-29I	BRGWC-32S	BRGWC-27I	BRGWC-25I	BRGWC-45	BRGWC-47	BRGWC-50	BRGWC-52I
8/31/2016								
9/1/2016								
9/6/2016								
9/8/2016	93.9	60.5	87.2	59.4				
11/15/2016								
11/16/2016								
11/17/2016				78.4				
11/18/2016			82.4					
11/21/2016	99.1	31.1						
2/20/2017								
2/21/2017			75.1	80.9				
2/22/2017	105	67.3						
6/12/2017								
6/13/2017			61	62				
6/14/2017	91.3	60.2						
9/26/2017								
9/27/2017	84	68.4	72.6	65.8				
2/13/2018								
2/14/2018	72.1	70.2	74.1	58.8				
3/6/2018					39.5	326		
3/15/2018							233	
5/1/2018					45.5	302 (D)	225	
6/26/2018				55.5		,		
6/27/2018	61.1	67.1	68.2			340		
6/28/2018					41.9		242	
7/31/2018					41.5			
8/1/2018						358	246	
8/10/2018								410 (O)
8/23/2018					42.3	323		33.9
9/19/2018					41.9	321		42.3
10/29/2018					40.8	326	236	39.8
11/28/2018					45.1	354	254	38.2
12/18/2018	52.9			54.7	40.1	004	204	00.2
12/19/2018	02.0	61.2		04.7		330	252	
12/20/2018		01.2	63.9		39	330	202	43.2
1/16/2019			00.0		00		248	40.2
1/17/2019							240	39.4
2/13/2019								36.9
3/19/2019			60.2			335		00.0
3/20/2019	55.4	52.8	00.2	53.95 (D)	31.2	000	222	40.85 (D)
10/15/2019	55.4	52.0		48.3	31.2		222	40.00 (<i>b</i>)
10/16/2019	54			40.0		338	241	48.4
12/3/2019	J-1				43.7	550	271	70.7
12/3/2019		52.7	76.8		73.7			
3/3/2020		J2.1	70.0					
3/4/2020	59.3		72.3	52		353	245	49.5
3/5/2020	33.3	52.1	12.3	JZ	37.9	555	240	40.0
9/15/2020	55.1	JZ. I		40.1	37.3			
9/16/2020	JJ. I	43.1	62.5	40. 1	39.7	309		
9/17/2020		75.1	02.0		55.7	505	206	35.4
5/1//2020							200	00.4

0/01/0010	BRGWA-5S (bg)	BRGWA-5I (bg)	BRGWA-2S (bg)	BRGWA-2I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
8/31/2016	3.6	4.4	2	2.3	2.5	2.5	2.2		
9/1/2016					2.5	3.5	3.3	5.0	6.7
9/6/2016								5.8	6.7
9/8/2016									
11/15/2016	4				2.3				
11/16/2016		4.4	1.8	2		3.6	3.6		
11/17/2016								4.3	
11/18/2016									
11/21/2016									6.5
2/20/2017	3.9	4.8			2.4				
2/21/2017			1.8	2		3.2	3.2	3.5	
2/22/2017									5.6
6/12/2017	3.8	4.2		2.1	2.2				
6/13/2017			1.7			3.3		3.2	
6/14/2017							3.1		5.7
9/26/2017	4.1	4.4	1.8	2	2.3	3.3	3.3	3.5	
9/27/2017									6
2/13/2018	4.1	4.7	1.7	2.1	2.3				
2/14/2018						3.5	3.1	3.8	5.9
3/6/2018									
3/15/2018									
5/1/2018									
6/26/2018	4.1	4.5	2.2	2.4	2.6	3.4	3.4	3.8	
6/27/2018									
6/28/2018									7 (J-X)
7/31/2018						2.9	2.6		
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	3.8	4.5	1.9	1.8	2.3	2.9	2.8	3.9	5.8
12/19/2018	3.0	4.5	1.5	1.0	2.5	2.3	2.0	3.3	3.0
12/20/2018									
1/16/2019									
1/17/2019									
2/13/2019									
3/19/2019	4.2	4.5	2	2.4F (D)	2.6	2.5	2.2	2.0	
	4.2	4.5	2	2.45 (D)	2.6	3.5	3.2	3.8	F.0
3/20/2019	0.7	4.0	4.0	0.0	0.4	0.4	0.4	0.5	5.8
10/15/2019	3.7	4.2	1.9	2.2	2.4	3.4	3.1	3.5	
10/16/2019									
12/3/2019									_
12/4/2019									5
3/3/2020	3.6	3.9	1.9	1.9	2.9	3.2	2.6		
3/4/2020								3.3	
3/5/2020									4.3
9/15/2020	3.7	3.7	1.7	1.9	2.3	3.5	2.4	3.1	
9/16/2020									4.4
9/17/2020									

	BRGWC-29I	BRGWC-32S	BRGWC-27I	BRGWC-25I	BRGWC-47	BRGWC-45	BRGWC-50	BRGWC-52I	
8/31/2016									
9/1/2016									
9/6/2016									
9/8/2016	6.4	6.8	6	5.5					
11/15/2016									
11/16/2016									
11/17/2016				7.7					
11/18/2016			6.3						
11/21/2016	6.9	7.8							
2/20/2017	0.0	7.0							
2/21/2017			5.1	7.3					
2/22/2017	6.2	7	0.1	7.0					
6/12/2017	0.2	,							
6/13/2017			4.7	7.5					
	7.0	7.4	4.7	7.5					
6/14/2017 9/26/2017	7.2	7.1							
9/27/2017	8.7	7.2	4.9	7.9					
2/13/2018	6.7	7.2	4.9	7.9					
2/14/2018	7.2	7.4	5.6	6.7					
3/6/2018	7.2	7.4	3.0	0.7	8.4	56.6			
3/15/2018					0.4	30.0	23.3		
5/1/2018					F 7 (D)	58.5	23.4		
6/26/2018				6.7	5.7 (D)	36.3	23.4		
6/27/2018	6.3	7.1	5.9	0.7	4.4				
6/28/2018	0.5	7.1	5.9		4.4	50.2 (J-X)	24 (J-X)		
7/31/2018						59	24 (5-74)		
8/1/2018					5.2	55	25.7		
8/10/2018					0.2		20.7	6.9	
8/23/2018					3.6	54		7.5	
9/19/2018					4.1	58.4		6.6	
10/29/2018					4.3	62.6	24.9	7.8	
11/28/2018					5.1	58.1	24	7.2	
12/18/2018	5.4			6.2	3.1	30.1	24	7.2	
12/19/2018	5.4	7 (J-X)		0.2	4.5 (J-X)		23.3 (J-X)		
12/20/2018		7 (3-2)	5.6 (J-X)		4.5 (5-X)	47.2 (J-X)	25.5 (5-7)	6.6 (J-X)	
1/16/2019			0.0 (0 7.)			47.2 (0 71)	24.1	0.0 (0 7.)	
1/17/2019							24.1	6.4	
2/13/2019								6.5	
3/19/2019			5.8		4.7			2.0	
3/20/2019	5.6	7.3	5.5	6.3 (D)		27.7	23.5	6.7 (D)	
10/15/2019	0	: : :		5		=: • •	==.0	: \=/	
10/16/2019	6.9			-	4.6		21.9	7	
12/3/2019					-	52.8	-		
12/4/2019		6.6	5.6						
3/3/2020									
3/4/2020	5.8		5.1	5	4.2		21.6	6.1	
3/5/2020		6				37.1			
9/15/2020	5.5			4.9					
9/16/2020		5.6	5.4		4.1	54.9			
9/17/2020							20.1	6.3	

8/31/2016	BRGWA-5S (bg) 0.19 (J)	BRGWA-2I (bg) 0.11 (J)	BRGWA-2S (bg) 0.05 (J)	BRGWA-5I (bg) 0.07 (J)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWC-30I
9/1/2016	0.13 (0)	0.11 (0)	0.03 (0)	0.07 (0)	0.2 (J)	0.06 (J)	0.05 (J)		
9/6/2016					0.2 (0)	0.00 (0)	0.00 (0)	0.42	0.43
9/8/2016								0.42	0.43
11/15/2016	<0.2 (1)					<0.3 (J)			
	<0.3 (J)	<0.2 (1)	<0.2 (1)	<0.2 (1)	-0.2 (I)	~0.3 (3)	<0.2 (1)		
11/16/2016		<0.3 (J)	<0.3 (J)	<0.3 (J)	<0.3 (J)		<0.3 (J)	-0.0 (ID)	
11/17/2016								<0.3 (JB)	
11/18/2016									
11/21/2016									<0.3 (J)
2/20/2017	0.08 (J)			0.06 (J)		0.04 (J)			
2/21/2017		0.14 (J)	0.05 (J)		0.16 (J)		0.04 (J)	0.1 (J)	
2/22/2017									0.2 (J)
6/12/2017	0.07 (J)	0.16 (J)		0.008 (J)		0.06 (J)			
6/13/2017			0.04 (J)				0.008 (J)	0.07 (J)	
6/14/2017					0.09 (J)				0.15 (J)
9/26/2017	0.04 (J)	0.14 (J)	<0.1	<0.1	0.1 (J)	<0.1	<0.1	<0.1	
9/27/2017									0.41
2/13/2018	<0.1	<0.1	<0.1	<0.1		<0.1			
2/14/2018					<0.1		<0.1	<0.1	<0.1
3/6/2018									
3/15/2018									
5/1/2018									
6/26/2018	0.072 (J)	0.085 (J)	0.048 (J)	0.045 (J)	0.079 (J)	0.041 (J)	0.042 (J)	0.053 (J)	
6/27/2018									
6/28/2018									0.93 (J+X)
7/31/2018									
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	<0.1	0.085 (J)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.54
12/19/2018		. ,							
12/20/2018									
1/16/2019									
1/17/2019									
2/13/2019									
3/19/2019	0.06 (J)	0.0655 (JD)	0.037 (J)	<0.1	<0.1	0.03 (J)	<0.1	<0.1	
3/20/2019	0.00 (0)	0.0000 (02)	0.007 (0)			0.00 (0)			0.31
8/27/2019	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		0.12 (J)
8/28/2019	-0.1	-0.1	40.1	30.1	-0.1	40.1	-0.1		0.12 (0)
8/29/2019								0.084 (J)	
10/15/2019	0.045 (J)	<0.1	<0.1	<0.1	0.047 (J)	<0.1	<0.1	<0.1	
10/16/2019	0.045 (3)	<0.1	<0.1	<0.1	0.047 (3)	~ 0.1	<0.1	<0.1	
12/3/2019									0.26 (1)
12/4/2019	0.057 (1)	0.066 (1)	0.05 (1)	-0.1	0.056 (1)	0.00 (1)	-0.1		0.26 (J)
3/3/2020	0.057 (J)	0.066 (J)	0.05 (J)	<0.1	0.056 (J)	0.09 (J)	<0.1	-0.1	
3/4/2020								<0.1	0.051 (1)
3/5/2020	-0.4	-0.1	-0.1	-0.1	0.0507.0	-0.4	10.1	-0.4	0.051 (J)
8/18/2020	<0.1	<0.1	<0.1	<0.1	0.052 (J)	<0.1	<0.1	<0.1	0.14
8/19/2020									0.14

Page 2

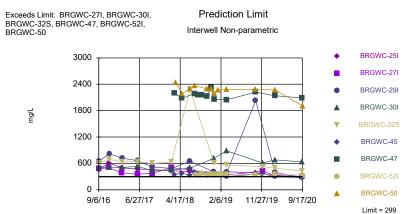
Prediction Limit

	BRGWA-5S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWC-30I
8/20/2020									
9/15/2020	0.051 (J)	<0.1	<0.1	<0.1	0.062 (J)	<0.1	<0.1	<0.1	
9/16/2020									0.13
9/17/2020									

		BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-50	BRGWC-52I
8/31/201	16								
9/1/2016	6								
9/6/2016	6								
9/8/2016	6 (0.14 (J)	0.31	0.2 (J)	0.15 (J)				
11/15/20									
11/16/20									
11/17/20		<0.3 (JB)							
11/18/20		, ,	<0.3 (JB)						
11/21/20			,	0.37	<0.3 (J)				
2/20/201					(-)				
2/21/201		0.6	0.35						
2/22/201				0.37	0.08 (J)				
6/12/201					(0)				
6/13/201		0.19 (J)	0.19 (J)						
6/14/201		(-)	(0)	0.38	0.09 (J)				
9/26/201					(0)				
9/27/201).5	0.4	0.4	<0.1				
2/13/201									
2/14/201		<0.1	<0.1	<0.1	<0.1				
3/6/2018				0		0.94	1.1		
3/15/201						0.01		0.84 (JX)	
5/1/2018						<0.1		0.91	
6/26/201).15 (J)				-0.1	0.000 (E)	0.51	
6/27/201		5.10 (0)	0.26 (J)	0.085 (J)	<0.1		0.27 (J)		
6/28/201			0.20 (0)	0.000 (0)	· · ·	0.69 (J+X)		1.1 (J+X)	
7/31/201						<0.1		(6 -74)	
8/1/2018						-0.1	0.48	2	
8/10/201							0.10	-	1.6 (O)
8/23/201						<0.1	0.34		0.32
9/19/201						<0.1	0.23 (J)		0.22 (J)
10/29/20						<0.1			0.14 (J)
11/28/20						<0.1			0.24 (J)
12/18/20).29 (J)		0.26 (J)			(,		
12/19/20		(-)		(0)	0.23 (J)		0.28 (J)	0.54	
12/20/20			0.26 (J)		(0)	0.12 (J)	(0)		0.3
1/16/201			(1)			(-)		1.1	
1/17/201									0.23 (J)
2/13/201									<0.1
3/19/201			0.2 (J)				<0.1		
3/20/201		0.17 (JD)	. ,	0.091 (J)	<0.1	0.066 (J)		0.21 (J)	0.135 (JD)
8/27/201).15 (J)		. ,	<0.1	. ,		, ,	• •
8/28/201		. ,	0.074 (J)	0.055 (J)		<0.1	<0.1		
8/29/201				. ,				0.41	0.087 (J)
10/15/20		0.16 (J)							
10/16/20		. ,		0.11 (J)			0.076 (J)	0.39	0.22 (J)
12/3/201						0.19 (J)			
12/4/201			0.18 (J)		0.11 (J)				
3/3/2020					• •				
3/4/2020		0.07 (J)	<0.1	<0.1			<0.1	0.14 (J)	0.1 (J)
3/5/2020		. ,			<0.1	<0.1		• •	
8/18/202									
8/19/202		0.17	0.19	0.12	<0.1				

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-50	BRGWC-52I
8/20/2020					<0.1	<0.1	0.39	0.23
9/15/2020	0.15		0.057 (J)					
9/16/2020		0.15		<0.1	0.052 (J)	<0.1		
9/17/2020							0.46	0.074 (J)

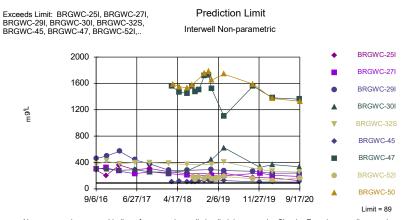
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit Exceeds Limits: BRGWC-29I, BRGWC-45. BRGWC-50 Interwell Parametric BRGWC-25I 8 BRGWC-27I BRGWC-29I BRGWC-30I BRGWC-32S BRGWC-45 3.2 BRGWC-47 1.6 BRGWC-50 I imit = 7 08 6/27/17 4/17/18 2/6/19 11/27/19 9/17/20 9/6/16

Background Data Summary: Mean=6.332, Std. Dev.=0.3867, n=114. Normality test: Chi Squared @alpha = 0.01, culculated = 3.018, critical = 14.07. Kappa = 1.934 (c=7, w=9, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0004179. Comparing 9 points to limit.

Limit = 5.584

Constituent: pH, Field Analysis Run 11/1/2020 9:27 AM View: PL's B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 98 background values. 2.041% NDs. Annual perconstituent alpha = 0.003619. Individual comparison alpha = 0.0002014 (1 of 2). Comparing 9 points to limit.

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:27 AM View: PL's B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 98 background values. I 1.22% NDs. Annual perconstituent alpha = 0.003619. Individual comparison alpha = 0.0002014 (1 of 2). Comparing 9 points to limit.

Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:27 AM View: PL's B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

0/04/0040	BRGWA-5S (bg)	BRGWA-5I (bg)	BRGWA-2S (bg)	BRGWA-2I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
8/31/2016	6.59	6.53	6.2	7.16	6.40	•	0.74		
9/1/2016					6.49	6	6.71	0.40	0.00
9/6/2016								6.49	6.23
9/8/2016									
11/15/2016	6.67				6.59				
11/16/2016		6.4	6.12	6.96		6	6.15		
11/17/2016								5.79	
11/18/2016									
11/21/2016									6.23
2/20/2017	6.65	6.44			6.61				
2/21/2017			6.24	7.15		6.09	6.52	6.15	
2/22/2017									6.16
6/12/2017	6.64	6.4		7.31					
6/13/2017			6.19			6.03	6.42	5.87	
6/14/2017							6.51		6.16
9/26/2017	6.58	6.31	6.15	7.02	6.47	5.85	6.42	5.82	
9/27/2017									6.16
2/13/2018	6.72	6.62	6.18	7.44	6.54				
2/14/2018						5.99	6.48	5.83	6.24
3/15/2018									
5/1/2018									
6/26/2018	6.43	6.29	6.05	6.93	6.23	5.86	6.2	5.73	
6/27/2018									
6/28/2018									6.21
7/31/2018						5.99	6.37		
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	6.7	6.57	5.92	6.76	6.71	6.08	6.5	5.78	6.18
12/19/2018	0.7	0.57	3.32	0.70	0.71	0.00	0.5	3.70	0.10
12/20/2018 1/16/2019									
1/17/2019									
2/13/2019									
3/6/2019	0.00	C 45	0.10	0.07	0.10	F 74	C 00	5.00	
3/19/2019	6.63	6.45	6.18	6.87	6.18	5.71	6.28	5.28	0.04
3/20/2019									6.24
8/27/2019	6.49	6.37	6.09	6.79	6.35	6	6.35		6.17
8/28/2019									
8/29/2019								5.64	
10/15/2019	7.01	6.77	6.06	6.57	6.36	6.61	6.8	5.7	
10/16/2019									
10/17/2019									6.43
3/3/2020	6.49	6.29	6.1	6.71	6.59	5.94	6.33		
3/4/2020								5.7	
3/5/2020									5.99
5/12/2020									
8/18/2020	6.41	6.29	6.06	6.59	6.33	5.75	6.25	5.56	
8/19/2020									6.36

Page 2

Prediction Limit

	BRGWA-5S (bg)	BRGWA-5I (bg)	BRGWA-2S (bg)	BRGWA-2I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
8/20/2020									
9/15/2020	6.25	6.27	6.01	6.64	6.43	6	6.01	5.72	
9/16/2020									6.29
9/17/2020									

	BRGWC-32S	BRGWC-25I	BRGWC-29I	BRGWC-27I	BRGWC-45	BRGWC-50	BRGWC-47	BRGWC-52I
8/31/2016								
9/1/2016								
9/6/2016								
9/8/2016	5.89	6.07	4.62	5.51				
11/15/2016								
11/16/2016		5.96						
11/17/2016								
11/18/2016				5.53				
11/21/2016	5.56		4.44					
2/20/2017								
2/21/2017		5.98		5.63				
2/22/2017	5.87		4.42					
6/12/2017								
6/13/2017		5.96		5.57				
6/14/2017	5.83		4.45					
9/26/2017	0.00							
9/27/2017	5.87	5.85	4.33	5.53				
2/13/2018	0.07	0.00		0.00				
2/14/2018	6.01	5.94	4.42	5.83				
3/15/2018	0.01	0.54	7.72	0.00	5.26	5.26		
5/1/2018					6.14		5.85	
6/26/2018		5.87			0.14	3.30	3.00	
6/27/2018	5.83		4.37	5.53			5.87	
6/28/2018	3.03		4.37	5.55	5.88	5.03	3.67	
7/31/2018					6.07	3.03		
8/1/2018					0.07	5.22	5.79	
8/10/2018						5.22	5.79	6.28
8/23/2018								6.75
					F.O.		E 71	
9/19/2018					5.9		5.71	6.48
10/29/2018					5.93		5.76	6.77
11/28/2018		E 0.4	4.20		5.99	5.28	5.74	6.44
12/18/2018	F 70	5.84	4.38			E 1E	F 0	
12/19/2018	5.79			F 70	0.04	5.15	5.8	0.75
12/20/2018				5.78	6.04	F 4.4		6.75
1/16/2019						5.14		0.44
1/17/2019								6.41
2/13/2019						6.15		6.42
3/6/2019				F 75		6.15	F 00	
3/19/2019	5.00	0.00		5.75	0.4		5.89	0.50
3/20/2019	5.88		4.4		6.1	5.32		6.59
8/27/2019	5.85	6.01	4.00	E E4	5.00		F 74	
8/28/2019			4.39	5.51	5.86		5.74	
8/29/2019		_				5.2		6.27
10/15/2019		6						_
10/16/2019			4.79			5.36	5.9	7
10/17/2019	6.09			6.01 (D)	5.93			
3/3/2020								
3/4/2020		6.02	4.5	5.8		5.2	5.76	6.54
3/5/2020	5.74				5.95			
5/12/2020	5.88							
8/18/2020								
8/19/2020	5.97	6.32	4.67	5.81				

	BRGWC-32S	BRGWC-25I	BRGWC-29I	BRGWC-27I	BRGWC-45	BRGWC-50	BRGWC-47	BRGWC-52I
8/20/2020					5.86	5.26	5.75	6.85
9/15/2020		6	4.53					
9/16/2020	5.79			5.81	5.27		5.76	
9/17/2020						4.41		6.12

8/31/2016	BRGWA-5S (bg) 0.81 (J)	BRGWA-5I (bg) 2.7	BRGWA-2S (bg) 0.38 (J)	BRGWA-2I (bg) 7.5	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
9/1/2016	0.61 (3)	2.7	0.38 (3)	7.5	0.6 (J)	1.7	2.7		
9/6/2016					0.0 (0)	1.7	2.7	38	310
9/8/2016								36	310
	-1 (1)				-1 (1)				
11/15/2016	<1 (J)	2.4	-1 (1)	6.6	<1 (J)	1.0	2.6		
11/16/2016		3.4	<1 (J)	6.6		1.2	3.6	0.4	
11/17/2016								84	
11/18/2016									
11/21/2016									300
2/20/2017	1 (B-01)	3.9 (B-01)			0.98 (J)		_		
2/21/2017			1.5	6.1		1.1	3	39	
2/22/2017									280
6/12/2017	0.94 (J)	3.7		5	0.54 (J)				
6/13/2017			0.67 (J)			1.1		35	
6/14/2017							2.6		290
9/26/2017	0.92 (J)	4.1	0.62 (J)	5.4	0.53 (J)	1.3	2.5	89	
9/27/2017									260
2/13/2018	<1	6.6	<1	4.7 (J)	<1				
2/14/2018						<1	2.1 (J)	82.2	250
3/6/2018									
3/15/2018									
5/1/2018									
6/26/2018	0.91 (J)	3.5	0.69 (J)	6.2	0.54 (J)	0.84 (J)	2	84.2	
6/27/2018									
6/28/2018									276
7/31/2018						0.63 (J)	1.9		
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	0.68 (J)	4.3	0.72 (J)	5.9	0.39 (J)	0.66 (J)	2.1	83.4	440
12/19/2018	. ,		. ,		. ,	, ,			
12/20/2018									
1/16/2019									
1/17/2019									
2/13/2019									
3/19/2019	0.74 (J)	3	0.78 (J)	6 (D)	0.68 (J)	0.75 (J)	2.2	65	
3/20/2019	0.7 . (0)		0.70 (0)	J (2)	0.00 (0)	0.70 (0)			623
10/15/2019	0.68 (J)	3.8	0.47 (J)	5.2	0.48 (J)	0.61 (J)	1.9	30	020
10/16/2019	0.00 (0)	0.0	0.47 (0)	0.2	0.40 (0)	0.01 (0)	1.0	00	
12/3/2019									
12/4/2019									327
3/3/2020	0.71 (J)	2.8	0.93 (J)	7.1	2.5	0.51 (J)	1.8		<i>5∠1</i>
3/4/2020	0.71(0)	∠.∪	0.33 (3)	7.1	۷.5	0.51 (0)	1.0	38.6	
								50.0	360
3/5/2020 9/15/2020	_1	1 7	-1	E O	<1	~1	1 7	41 5	369
	<1	1.7	<1	5.9	~1	<1	1.7	41.5	224
9/16/2020 9/17/2020									334
JI 1 11 Z U Z U									

	BRGWC-29I	BRGWC-32S	BRGWC-27I	BRGWC-25I	BRGWC-45	BRGWC-47	BRGWC-50	BRGWC-52I
8/31/2016								
9/1/2016								
9/6/2016								
9/8/2016	460	370	300	280				
11/15/2016								
11/16/2016								
11/17/2016				200				
11/18/2016			320					
11/21/2016	500	420						
2/20/2017								
2/21/2017			270	360				
2/22/2017	570	380						
6/12/2017								
6/13/2017			230	290				
6/14/2017	440	400						
9/26/2017								
9/27/2017	380	400	260	310				
2/13/2018								
2/14/2018	280	383	232	260				
3/6/2018	200	000	202	200	111	1560		
3/15/2018						1000	1590	
5/1/2018					112	1465 (D)	1550	
6/26/2018				231	112	1405 (D)	1550	
6/27/2018	281	372	205	231		1450		
6/28/2018	201	372	203		109	1430	1530	
7/31/2018					107		1550	
8/1/2018					107	1560	1580	
8/10/2018						1300	1300	183
8/23/2018					108	1470		145
9/19/2018					117	1500	1750	178
10/29/2018					127	1720	1750	157
11/28/2018	202			004	133	1730	1780	189
12/18/2018	293	270		231		1500	1050	
12/19/2018		370	200		110	1520	1650	150
12/20/2018			200		113		500 (0)	150
1/16/2019							589 (O)	457
1/17/2019								157
2/13/2019			100			1100		169
3/19/2019	070	400	199	005 (D)	107	1100	1710	400 F (D)
3/20/2019	278	409		235 (D)	127		1740	186.5 (D)
10/15/2019				174				
10/16/2019	266					1560	1590	155
12/3/2019					105			
12/4/2019		293	241					
3/3/2020								
3/4/2020	238		205	165		1380	1370	129
3/5/2020		269			106			
9/15/2020	241			126				
9/16/2020		255	190		103	1360		
9/17/2020							1330	165

	BRGWA-5S (bg)	BRGWA-5I (bg)	BRGWA-2S (bg)	BRGWA-2I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
8/31/2016	154	138	88	151					
9/1/2016					299	69	142		
9/6/2016								146	505
9/8/2016									
11/15/2016	123				41				
11/16/2016		77	41	69		100	100		
11/17/2016								211	
11/18/2016									
11/21/2016									515
2/20/2017	158	170			133				
2/21/2017			<10	68		37	71	151	
2/22/2017									504
6/12/2017	142	132		161	61				
6/13/2017			53			84		130	
6/14/2017							140		536
9/26/2017	138	108	45	167	29	68	149	160	
9/27/2017									432
2/13/2018	150	141	63	165	61				
2/14/2018						138	137	194	448
3/6/2018									
3/15/2018									
5/1/2018									
6/26/2018	154	133	71	188	71	90	142	221	
6/27/2018									
6/28/2018									494
7/31/2018						83	133		
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	147	138 (X)	78 (X)	145 (X)	70 (X)	85	135	208	715
12/19/2018		. ,	,	. ,	. ,				
12/20/2018									
1/16/2019									
1/17/2019									
2/13/2019									
3/19/2019	146	130	68	146.5 (D)	72	82 (JX)	132 (JX)	161 (JX)	
3/20/2019				(=)		5= (5: 4)	(-: -)		885
10/15/2019	144	175	66	140	63	89	134	124	
10/16/2019		.,,							
12/3/2019									
12/4/2019									612
3/3/2020	130	<10	41	155	54	72	115		
3/4/2020	.50		••	.50	· ·	·-		118	
3/5/2020								. 10	681
9/15/2020	116	100	69	116	79	60	95	109	001
9/16/2020	110	100	0.0	110	, ,	00	55	103	634
9/17/2020									· · · · · · · · · · · · · · · · · · ·
5/1//2020									

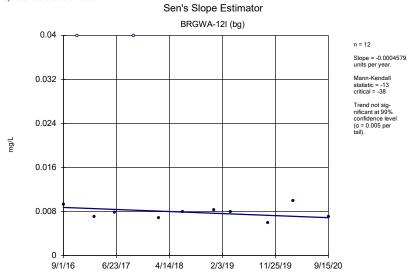
	BRGWC-29I	BRGWC-32S	BRGWC-27I	BRGWC-25I	BRGWC-45	BRGWC-47	BRGWC-50	BRGWC-52I
8/31/2016								
9/1/2016								
9/6/2016								
9/8/2016	654	607	478	460				
11/15/2016								
11/16/2016								
11/17/2016				611				
11/18/2016			503					
11/21/2016	819	695						
2/20/2017								
2/21/2017			380	497				
2/22/2017	721	635						
6/12/2017								
6/13/2017			354	474				
6/14/2017	661	635						
9/26/2017	001							
9/27/2017	518	601	376	457				
2/13/2018	0.10	001	070	407				
2/14/2018	487	628	503 (JX)	431				
3/6/2018	407	020	303 (37)	431	346	2200		
3/15/2018					340	2200	2440	
5/1/2018					374	2080 (D)	2190	
				414	3/4	2080 (D)	2190	
6/26/2018 6/27/2018	649 (V)	2280	458 (X)	414		21 (OV)		
	648 (X)	2280	456 (^)		222	31 (OX)	2200	
6/28/2018					333		2290	
7/31/2018 8/1/2018					393	2190	2360	
						2190	2300	244
8/10/2018					250	2160		344
8/23/2018					350	2160		333
9/19/2018					353	2160	2200	364
10/29/2018					329	2130	2300	334
11/28/2018	407			101	358	2320	2300	357
12/18/2018	407	005		401		0000	0400	
12/19/2018		605	244		202	2060	2190	255
12/20/2018			344		322		0070	355
1/16/2019							2270	0.47
1/17/2019								347
2/13/2019			004 (100			0050 (00		350
3/19/2019	004	504	334 (JX)	440.5 (D)	000	2050 (JX)	0000	000 (D)
3/20/2019	391	564		410.5 (D)	302		2280	360 (D)
10/15/2019				380				
10/16/2019	2030					2220	2280	346
12/3/2019					362			
12/4/2019		526	422					
3/3/2020								
3/4/2020	391		326	330		2140	2270	351
3/5/2020		489			297			
9/15/2020	281			272				
9/16/2020		428	301		275	2090		
9/17/2020							1910	329

FIGURE E.

Trend Test Summary - Significant Results

	Plant Branch C	Client: Southern Company	Data: Plant Branch AP		Printed 11/1/2020, 9:37 AM						
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	BRGWC-27I	-0.2108	-47	-43	Yes	13	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-25I	-6.82	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-29I	-14.31	-46	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-30I	13.05	45	38	Yes	12	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-23S (bg) -0.08225	-56	-48	Yes	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-2I (bo	g) -0.1422	-59	-48	Yes	14	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-12I (b	og) -0.2968	-60	-43	Yes	13	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-12S (bg) -0.2094	-52	-43	Yes	13	15.38	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-25I	-46.07	-39	-38	Yes	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-27I	-26.6	-45	-38	Yes	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-29I	-70.06	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-32S	-50.85	-41	-38	Yes	12	0	n/a	n/a	0.01	NP

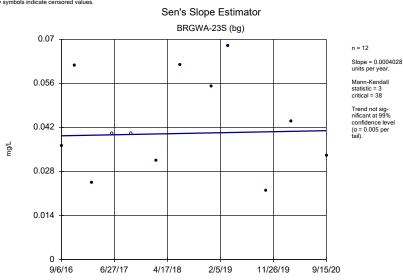
Trend Test Summary - All Results


	TICHG I	CSt Odiii	_			JJU	ıı				
F	Plant Branch Client: So	uthern Company D	ata: Plant I	Branch AP	Printe	d 11/3/20	020, 8:27	7 AM			
Constituent	Well	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	BRGWA-12I (bg)	-0.0004579	-13	-38	No	12	16.67	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-12S (bg)	0	-11	-38	No	12	83.33	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-23S (bg)	0.0004028	3	38	No	12	16.67	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-2I (bg)	-0.0003913	-9	-38	No	12	16.67	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-2S (bg)	0	0	38	No	12	100	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-5I (bg)	0	5	38	No	12	83.33	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-5S (bg)	0	-6	-38	No	12	66.67	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWA-6S (bg)	0	-2	-38	No	12	75	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-25I	-0.1013	-18	-38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-27I	-0.2108	-47	-43	Yes	13	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-29I	-0.1128	-25	-38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-30I	-0.005121	-10	-43	No	13	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-32S	0.02475	13	43	No	13	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-47	0.001853	3	43	No	13	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-52I	0.186	17	38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	BRGWC-50	0.01538	17	38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-12I (bg)	0.5525	19	43	No	13	7.692	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-12S (bg)	0.4903	32	43	No	13	7.692	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-23S (bg)	-1.169	-22	-38	No	12	8.333	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-2I (bg)	1.137	29	38	No	12	8.333	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-2S (bg)	-0.05889	-17	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-5I (bg)	-0.08584	-3	-38	No	12	8.333	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-5S (bg)	-0.153	-4	-38	No	12	8.333	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWA-6S (bg)	0.1455	32	38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-25I	-6.82	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-27I	-4.805	-30	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-29I	-14.31	-46	-38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-30I	13.05	45	38	Yes	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-32S	-3.197	-22	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-45	-1.319	-21	-43	No	13	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-47	8.197	11	43	No	13	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-52I	5.226	11	34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BRGWC-50	-0.6983	-2	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-12I (bg)	-0.2129	-42	-43	No	13	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-12S (bg)	0	-8	-43	No	13	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-23S (bg)	-0.2572	-26	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-2I (bg)	-0.02706	-7	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-2S (bg)	0	0	38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-5I (bg)	-0.1482	-21	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-5S (bg)	-0.01532	-6	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWA-6S (bg)	0.01532	12	38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWC-27I	-0.09698	-10	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BRGWC-29I	-0.3063	-22	-38	No	12	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L) Chloride, Total (mg/L)	BRGWC-32S	-0.2863	-24	-38	No	12	0	n/a	n/a	0.01	NP
											NP
Chloride, Total (mg/L)	BRGWC-45 BRGWC-52I	-3.833 -0.467	-24 -29	-43 -38	No	13	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)					No	12		n/a	n/a		
Chloride, Total (mg/L)	BRGWC-50	-1.541 -0.01658	-26 -20	-38 -48	No No	12	0 35.71	n/a n/a	n/a n/a	0.01	NP NP
Fluoride (mg/L)	BRGWA-12I (bg)	-0.01658	-29 10			14					
Fluoride (mg/L)	BRGWA-12S (bg)	0	19	48	No	14	71.43	n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-23S (bg)	0 01511	-15	-48	No	14	64.29	n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-2I (bg)	-0.01511	-39	-48	No	14	42.86	n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-2S (bg)	0	7	48	No	14	57.14	n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-5I (bg)	0	17	48	No	14		n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-5S (bg)	-0.01067	-29	-48	No	14	35.71	n/a	n/a	0.01	NP
Fluoride (mg/L)	BRGWA-6S (bg)	0	11	48	No	14	57.14	n/a	n/a	0.01	NP

Trend Test Summary - All Results

	Plant Branch	Client: Sou	uthern Company	Data: Plant	Branch AP	Printe	d 11/3/20	020, 8:27	7 AM			
Constituent	<u>Well</u>		Slope	Calc.	<u>Critical</u>	Sig.	N	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Fluoride (mg/L)	BRGWC-50		-0.2133	-32	-48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-12I ((bg)	-0.06443	-41	-58	No	16	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-12S	(bg)	-0.006874	-14	-53	No	15	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-23S	(bg)	-0.08225	-56	-48	Yes	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-2I (b	g)	-0.1422	-59	-48	Yes	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-2S (I	bg)	-0.04353	-47	-48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-5I (b	g)	-0.03452	-29	-48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-5S (I	bg)	-0.05503	-32	-48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWA-6S (I	bg)	-0.04101	-17	-43	No	13	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWC-29I		0.02098	14	48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWC-45		-0.04257	-13	-48	No	14	0	n/a	n/a	0.01	NP
pH, Field (S.U)	BRGWC-50		-0.0137	-7	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-12I ((bg)	-0.2968	-60	-43	Yes	13	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-12S	(bg)	-0.2094	-52	-43	Yes	13	15.38	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-23S	(bg)	-1.903	-8	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-2I (b	g)	-0.1119	-11	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-2S (I	bg)	0.04767	13	38	No	12	25	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-5I (b	g)	-0.1873	-8	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-5S (bg)	-0.07276	-22	-38	No	12	25	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWA-6S (bg)	-0.01104	-8	-38	No	12	25	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-25I		-46.07	-39	-38	Yes	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-27I		-26.6	-45	-38	Yes	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-29I		-70.06	-52	-38	Yes	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-30I		16.01	16	38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-32S		-29.47	-32	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-45		-2.111	-11	-43	No	13	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-47		-45.1	-11	-43	No	13	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-52I		-7.328	-9	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BRGWC-50		-74.11	-8	-34	No	11	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-12I ((bg)	-4.199	-25	-43	No	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-12S	(bg)	-1.357	-8	-43	No	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-23S	(bg)	-11.33	-18	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-2I (b	g)	-1.984	-2	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-2S (I	bg)	4.612	11	38	No	12	8.333	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-5I (b	g)	-3.347	-9	-38	No	12	8.333	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-5S (I	bg)	-3.649	-23	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWA-6S (I	bg)	0.4269	1	38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-27I		-25.62	-37	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-30I		44.87	24	38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-32S		-50.85	-41	-38	Yes	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-47		-32.65	-15	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-52I		-1.637	-2	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	BRGWC-50		-60.86	-28	-38	No	12	0	n/a	n/a	0.01	NP

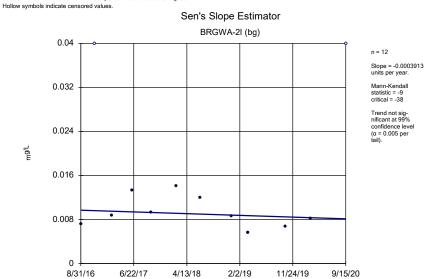
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG


Hollow symbols indicate censored values.

Constituent: Boron Analysis Run 11/1/2020 9:33 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

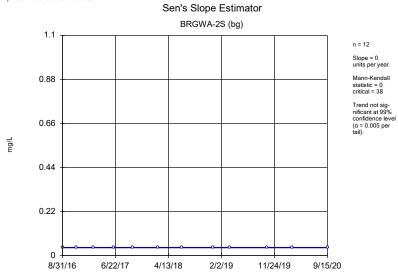
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.


Constituent: Boron Analysis Run 11/1/2020 9:33 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

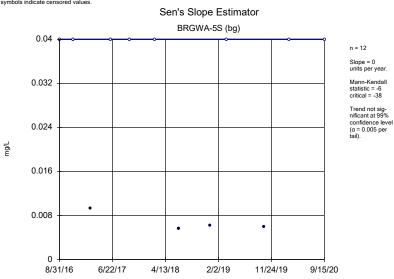
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Boron Analysis Run 11/1/2020 9:33 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Boron Analysis Run 11/1/2020 9:33 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

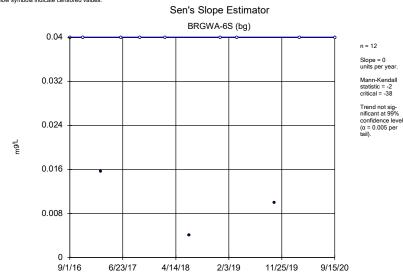
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG


Hollow symbols indicate censored values.

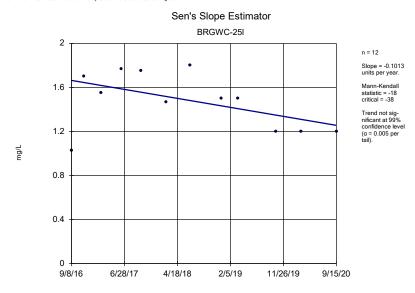
Constituent: Boron Analysis Run 11/1/2020 9:33 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

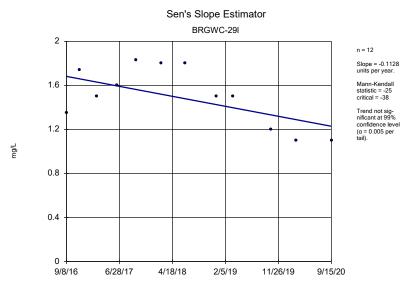

Constituent: Boron Analysis Run 11/1/2020 9:33 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 11/1/2020 9:33 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

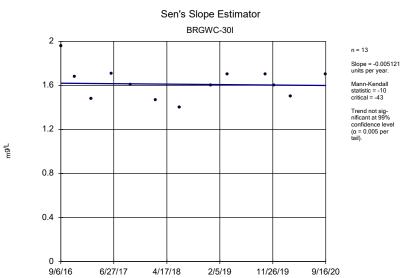
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



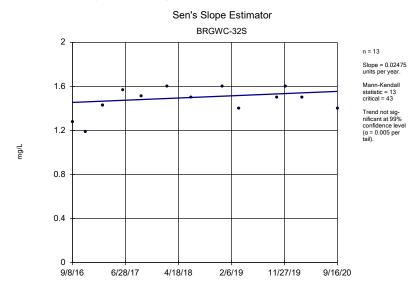
Constituent: Boron Analysis Run 11/1/2020 9:33 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Boron Analysis Run 11/1/2020 9:33 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

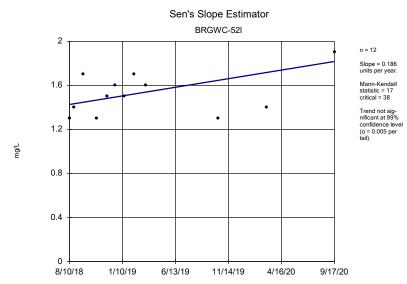


Constituent: Boron Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP



Constituent: Boron Analysis Run 11/1/2020 9:33 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

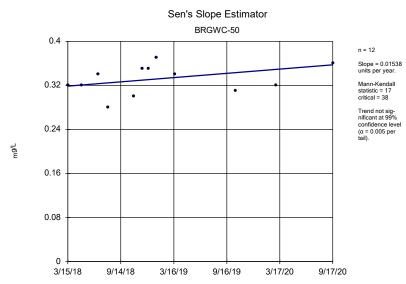


Constituent: Boron Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

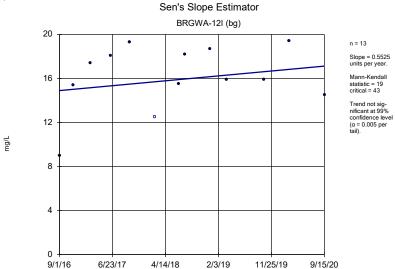


Constituent: Boron Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

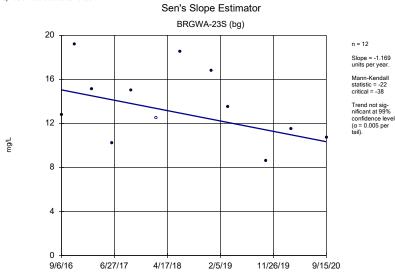


Constituent: Boron Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

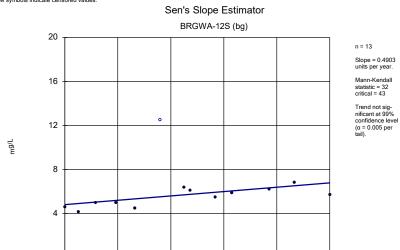

Constituent: Boron Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Boron Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Hollow symbols indicate censored values.

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

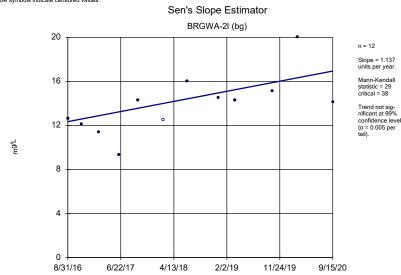
Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

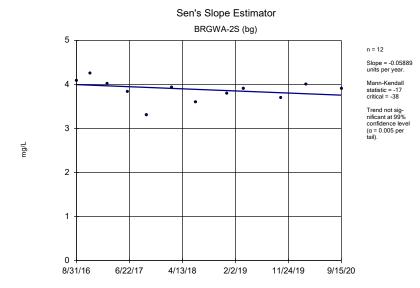
Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

2/3/19

4/14/18

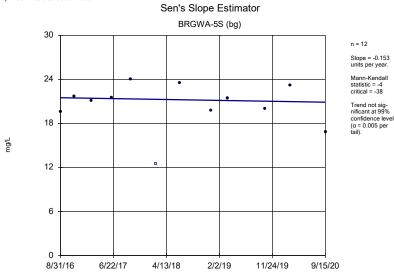

11/25/19

9/15/20

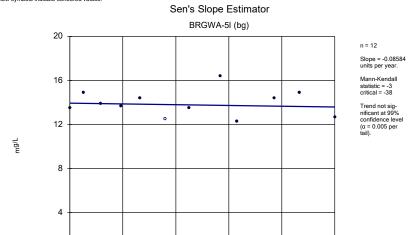

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

9/1/16

6/23/17



Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP



Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

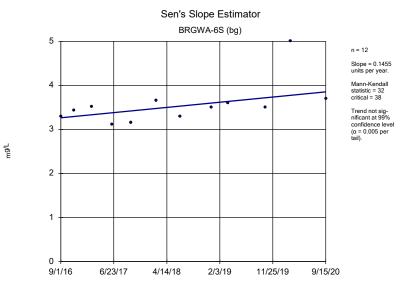
Hollow symbols indicate censored values.

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

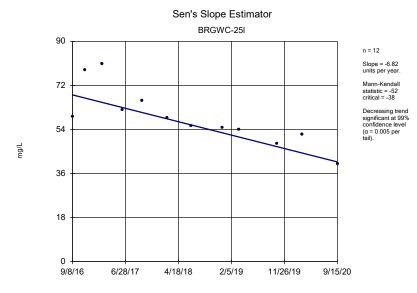
Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

2/2/19

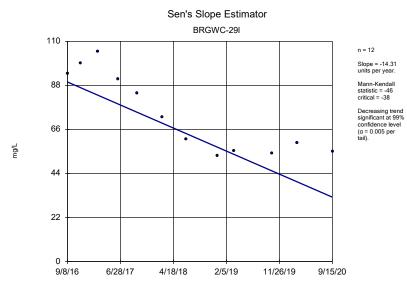
11/24/19

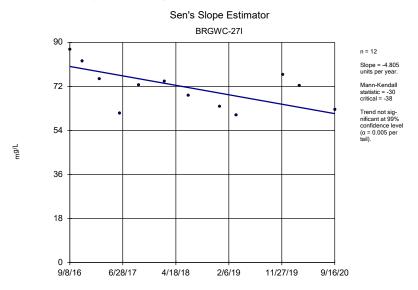

9/15/20

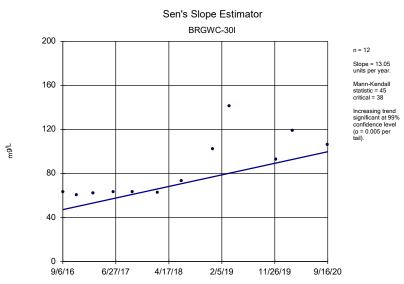
4/13/18

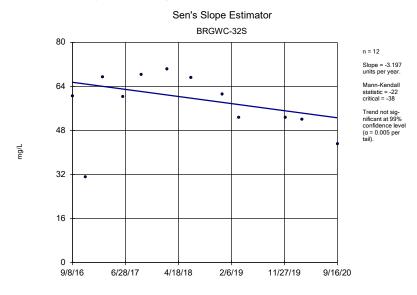

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

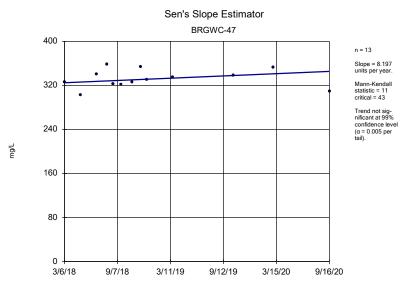
8/31/16


6/22/17

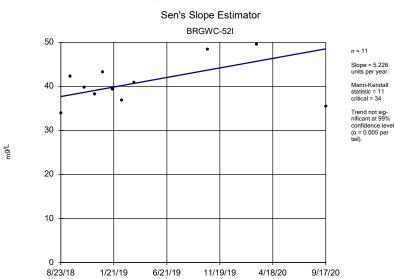

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

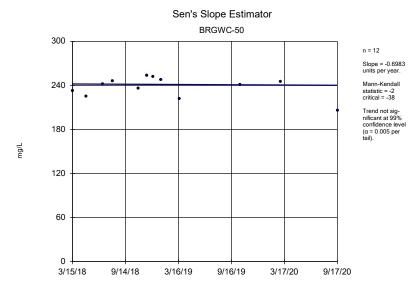

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

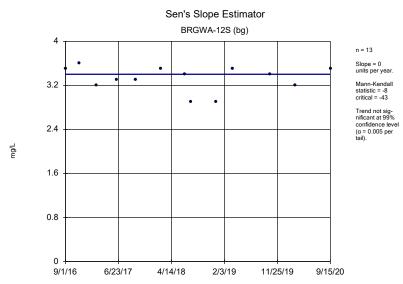

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

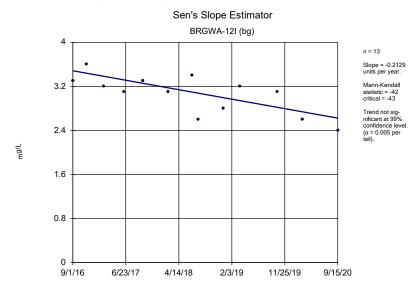

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

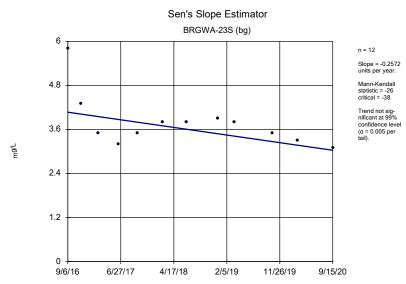
Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

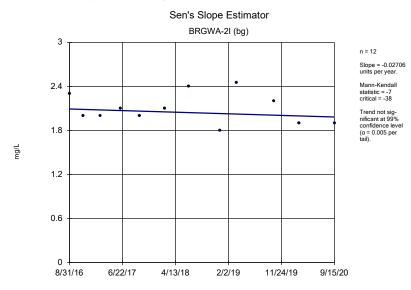

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

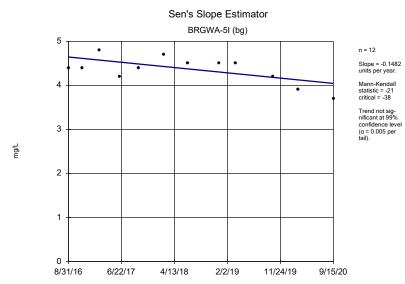

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

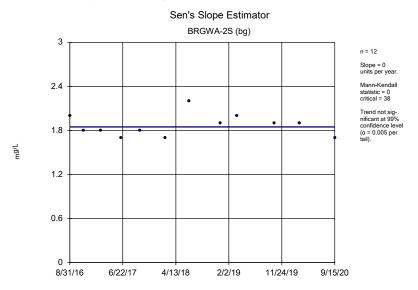

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

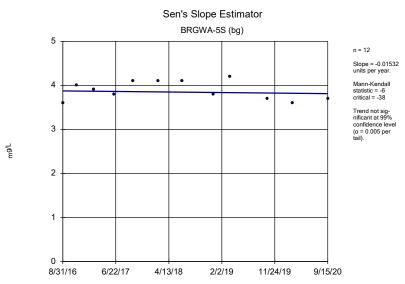

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

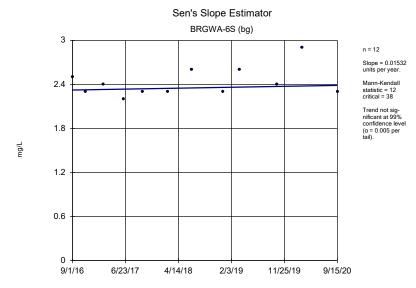

Constituent: Calcium Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

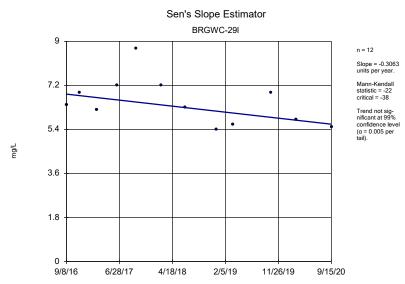

Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

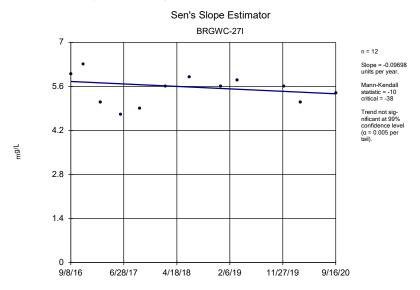

Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

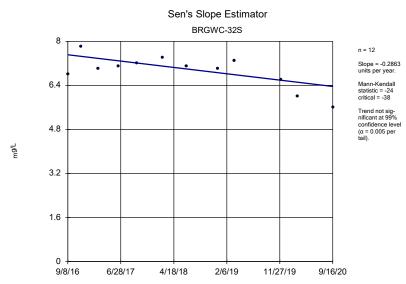

Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

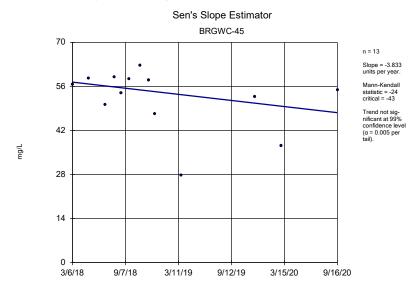

Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

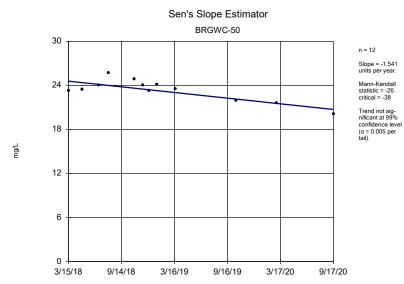

Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

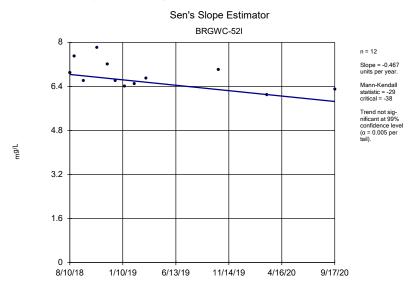

Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

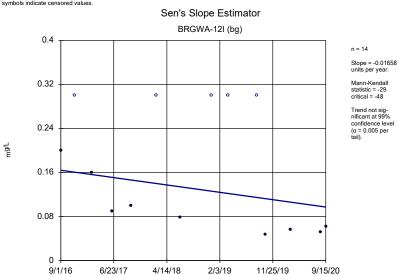

Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP



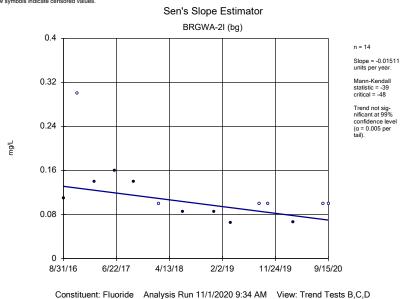
Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Chloride, Total Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

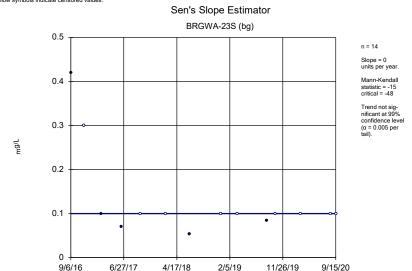
Constituent: Fluoride Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Hollow symbols indicate censored values.



Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Fluoride Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D


Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

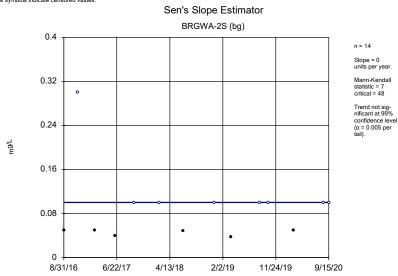
Hollow symbols indicate censored values.

Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

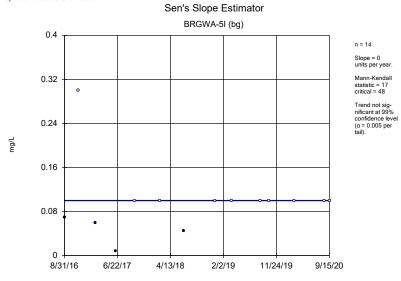
Constituent: Fluoride Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

2/5/19


11/26/19

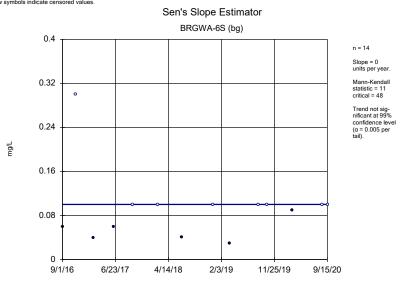
4/17/18

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

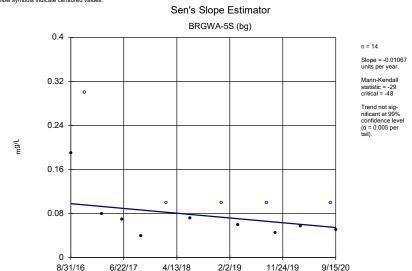

9/6/16

6/27/17

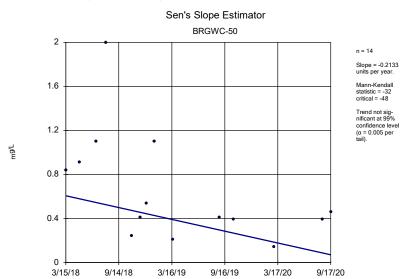
Constituent: Fluoride Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP


Hollow symbols indicate censored values.

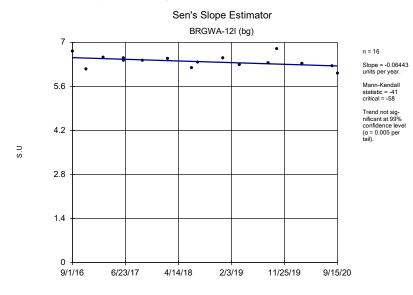
Constituent: Fluoride Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

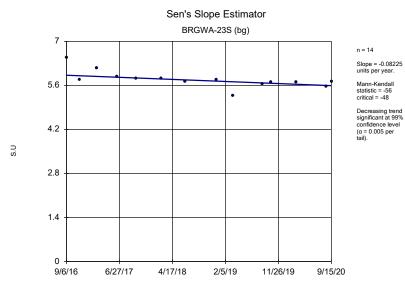

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

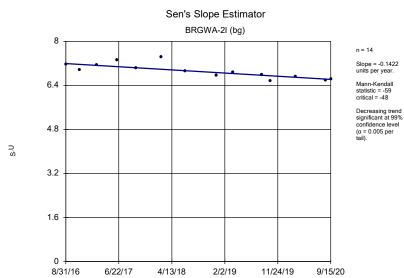


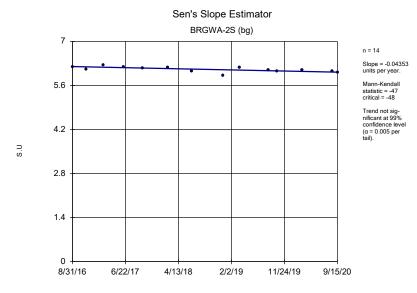
Constituent: Fluoride Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

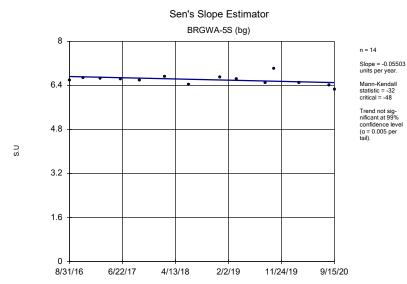

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Fluoride Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

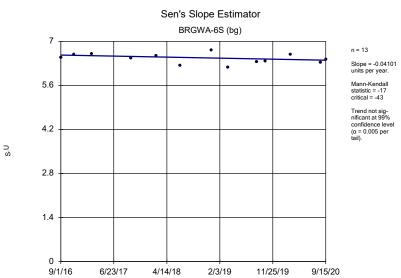

Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Constituent: Fluoride Plant Branch Client: Southern Company Data: Plant Branch AP

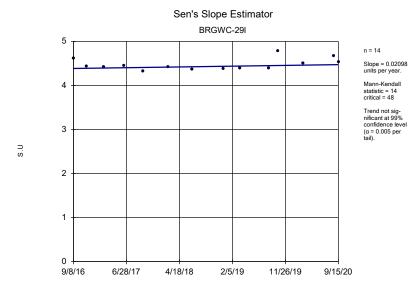

Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

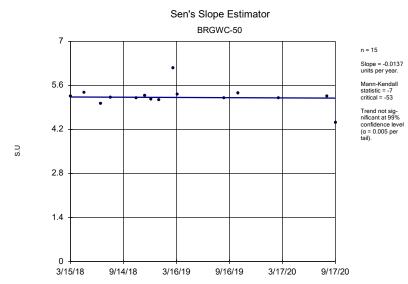

Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

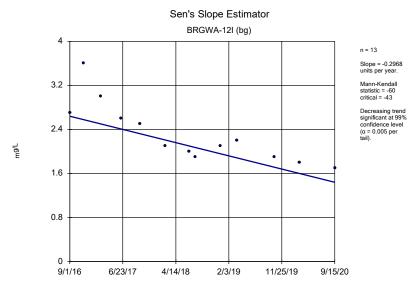

Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

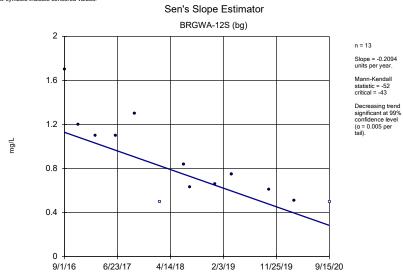

Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

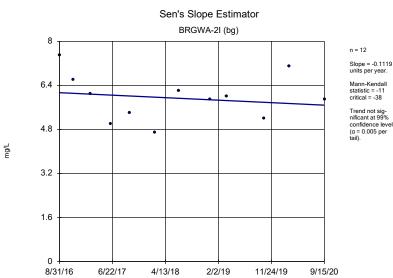
Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

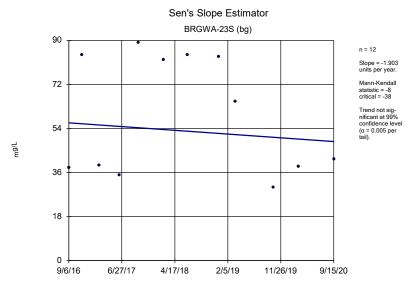
Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP



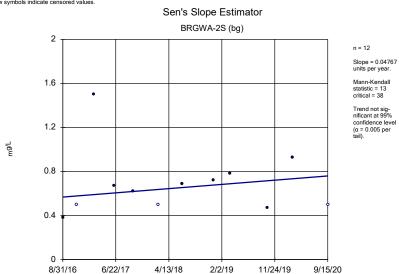
Constituent: pH, Field Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP



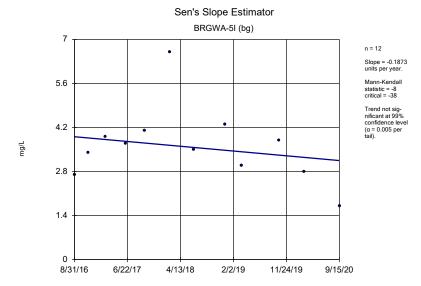
Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP



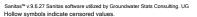
Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP



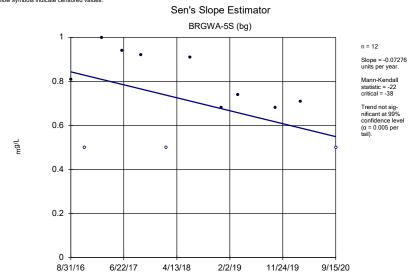
Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

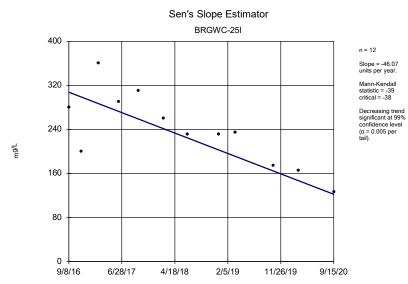


Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

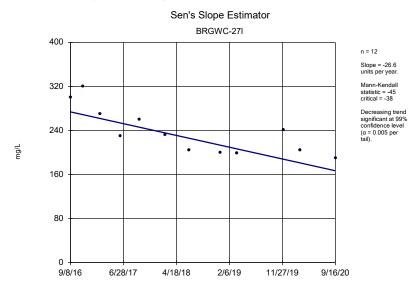

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

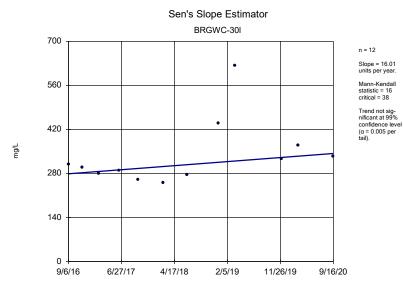
Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

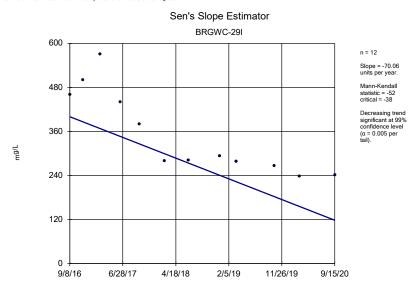

Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

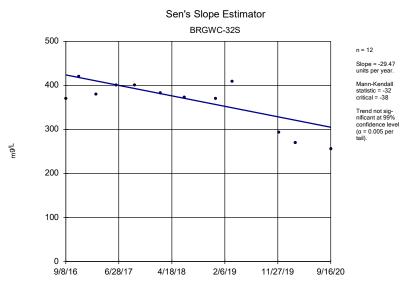

Sen's Slope Estimator BRGWA-6S (bg) 3 n = 12 Slope = -0.01104 units per year. Mann-Kendall 2.4 critical = -38 Trend not sig-nificant at 99% confidence level 1.8 (α = 0.005 per tail). mg/L 1.2 0.6 9/1/16 6/23/17 4/14/18 2/3/19 11/25/19 9/15/20

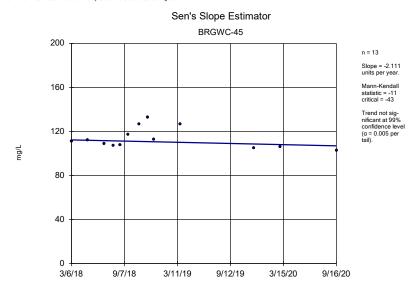
Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

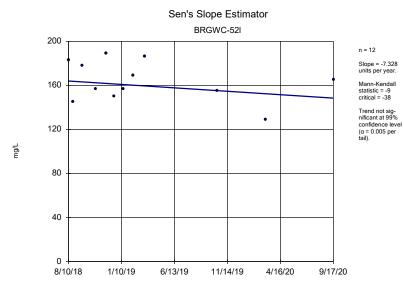

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

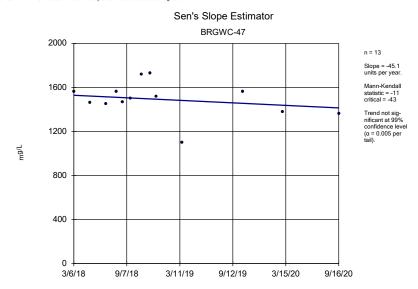

Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

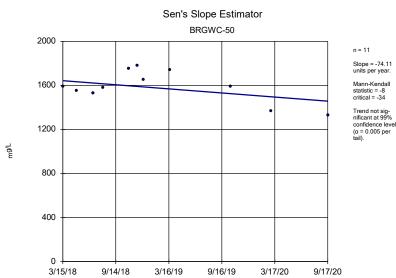

Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

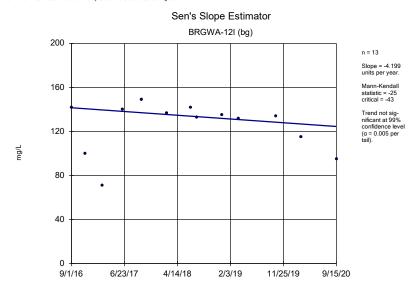

Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

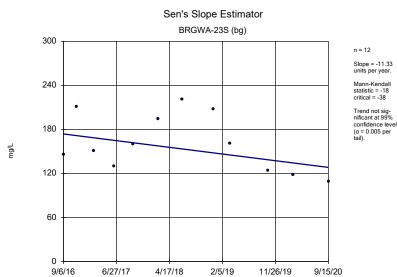

Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

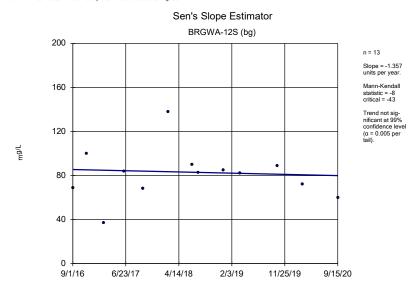

Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

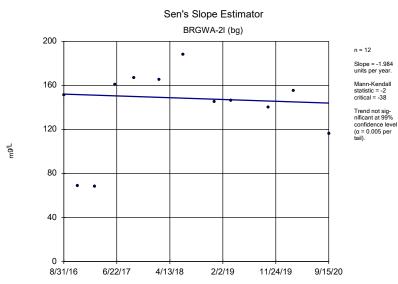

Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP



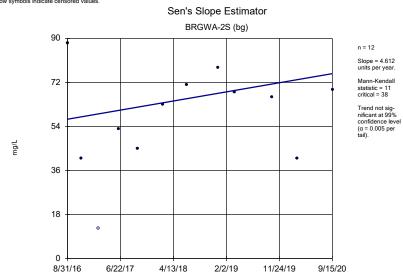
Constituent: Sulfate as SO4 Analysis Run 11/1/2020 9:34 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

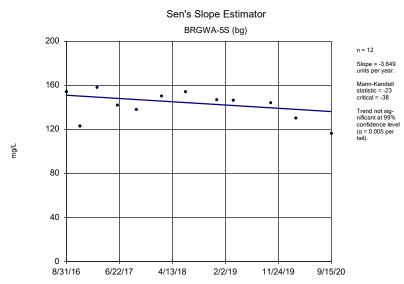


Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

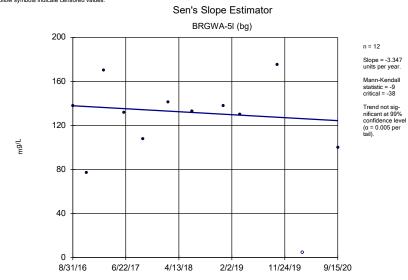

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

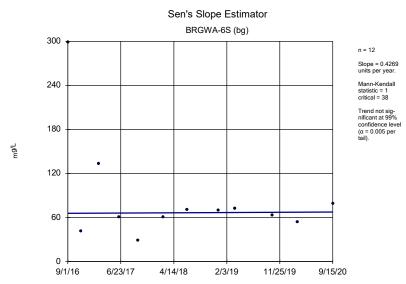
Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D


Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

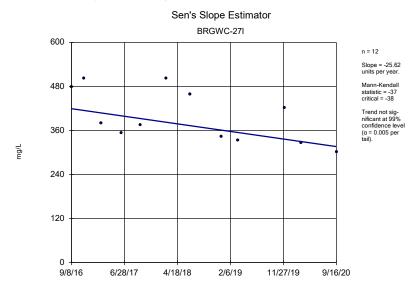
Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

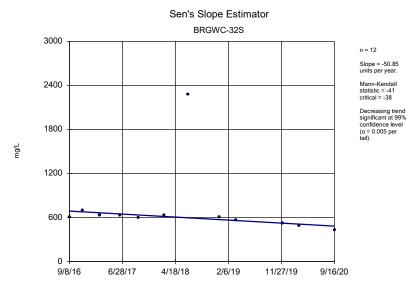

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

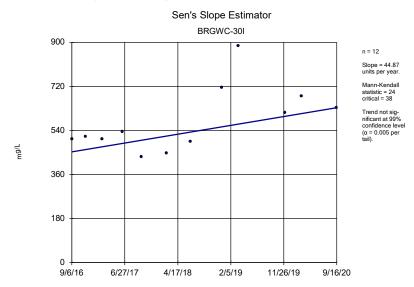
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

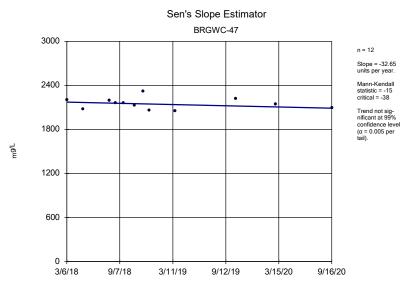


Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

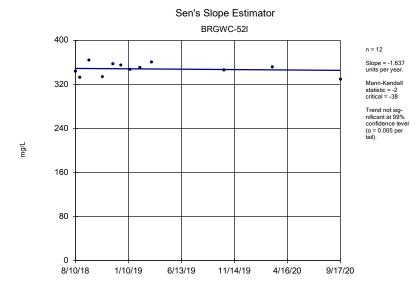


Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D

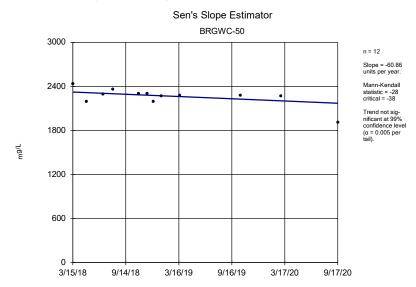

Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP



Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP



Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/1/2020 9:35 AM View: Trend Tests B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

FIGURE F.

Tolerance Limit Summary Table

		Plant Branch	Clie	nt: Southern Cor	npany Data: Pl	ant Branch AF	Printed 11/1/2	020, 10:40 AM	1	
Constituent	Well	Upper Lim.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.012	104	n/a	n/a	81.73	n/a	n/a	0.004822	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.005	104	n/a	n/a	72.12	n/a	n/a	0.004822	NP Inter(normality)
Barium (mg/L)	n/a	0.13	104	n/a	n/a	0	n/a	n/a	0.004822	NP Inter(normality)
Beryllium (mg/L)	n/a	0.003	104	n/a	n/a	100	n/a	n/a	0.004822	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.0025	106	n/a	n/a	98.11	n/a	n/a	0.004352	NP Inter(NDs)
Chromium (mg/L)	n/a	0.016	103	n/a	n/a	24.27	n/a	n/a	0.005076	NP Inter(normality)
Cobalt (mg/L)	n/a	0.0135	104	n/a	n/a	57.69	n/a	n/a	0.004822	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	n/a	1.672	104	0.8101	0.4489	0	None	No	0.05	Inter
Fluoride (mg/L)	n/a	0.42	112	n/a	n/a	54.46	n/a	n/a	0.003199	NP Inter(normality)
Lead (mg/L)	n/a	0.005	104	n/a	n/a	83.65	n/a	n/a	0.004822	NP Inter(NDs)
Lithium (mg/L)	n/a	0.089	104	n/a	n/a	44.23	n/a	n/a	0.004822	NP Inter(normality)
Mercury (mg/L)	n/a	0.0005	88	n/a	n/a	92.05	n/a	n/a	0.01096	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.01	101	n/a	n/a	79.21	n/a	n/a	0.005625	NP Inter(NDs)
Selenium (mg/L)	n/a	0.01	104	n/a	n/a	92.31	n/a	n/a	0.004822	NP Inter(NDs)
Thallium (mg/L)	n/a	0.001	104	n/a	n/a	100	n/a	n/a	0.004822	NP Inter(NDs)

FIGURE G.

PLANT BRANCH PONDS B,C,D GWPS									
		Background							
Constituent Name	MCL	Limit	GWPS						
Antimony, Total (mg/L)	0.006	0.012	0.012						
Arsenic, Total (mg/L)	0.01	0.005	0.01						
Barium, Total (mg/L)	2	0.13	2						
Beryllium, Total (mg/L)	0.004	0.003	0.004						
Cadmium, Total (mg/L)	0.005	0.0025	0.005						
Chromium, Total (mg/L)	0.1	0.016	0.1						
Cobalt, Total (mg/L)	n/a	0.014	0.014						
Combined Radium, Total (pCi/L)	5	1.67	5						
Fluoride, Total (mg/L)	4	0.42	4						
Lead, Total (mg/L)	n/a	0.005	0.005						
Lithium, Total (mg/L)	n/a	0.089	0.089						
Mercury, Total (mg/L)	0.002	0.0005	0.002						
Molybdenum, Total (mg/L)	n/a	0.01	0.01						
Selenium, Total (mg/L)	0.05	0.01	0.05						
Thallium, Total (mg/L)	0.002	0.001	0.002						

^{*}Highlighted cells indicate Background is higher than MCLs

^{*}MCL = Maximum Contaminant Level

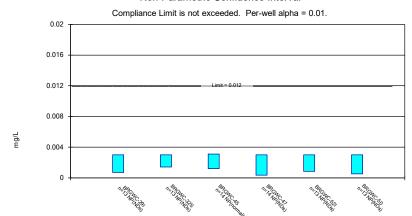
^{*}GWPS = Groundwater Protection Standard

FIGURE H.

Confidence Interval Summary - Significant Results

Plant Branch Client: Southern Company Data: Plant Branch AP Printed 11/1/2020, 10:13 AM

Constituent	Well	Upper Lim.Lower Lim.		Compliance Sig. N M		<u>Mean</u>	Std. Dev. %N		s ND Adj.	Transform	Alpha Method	
Cadmium (mg/L)	BRGWC-50	0.0482	0.01365	0.005	Yes 13	0.03269	0.02633	0	None	sqrt(x)	0.01	Param.
Cobalt (mg/L)	BRGWC-50	1.5	1.3	0.014	Yes 13	1.392	0.06405	0	None	No	0.01	NP (normality)

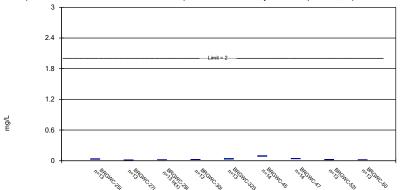

Confidence Interval Summary - All Results Plant Branch Client: Southern Company Data: Plant Branch AP Printed 11/1/2020, 10:13 AM

		Plant Branch	ranch Client: Southern Company Data: Plant E		nt Branch AP	nch AP Printed 11/1/2020, 10:13 AM						
Constituent	Well	Upper Lin	n.Lower Lim.	Compliance	Sig. N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	BRGWC-29I	0.003	0.0007	0.012	No 13	0.002823	0.0006379	92.31	None	No	0.01	NP (NDs)
Antimony (mg/L)	BRGWC-32S	0.003	0.0014	0.012	No 13	0.002877	0.0004438	92.31	None	No	0.01	NP (NDs)
Antimony (mg/L)	BRGWC-45	0.0031	0.0012	0.012	No 14	0.002403	0.0009415	57.14	None	No	0.01	NP (normality)
Antimony (mg/L)	BRGWC-47	0.003	0.00035	0.012	No 14	0.002811	0.0007082	92.86	None	No	0.01	NP (NDs)
Antimony (mg/L)	BRGWC-52I	0.003	0.00085	0.012	No 13	0.002637	0.0008904	84.62	None	No	0.01	NP (NDs)
Antimony (mg/L)	BRGWC-50	0.003	0.00052	0.012	No 13	0.00261	0.0009522	84.62	None	No	0.01	NP (NDs)
Arsenic (mg/L)	BRGWC-25I	0.005	0.0006	0.01	No 13	0.003673	0.002073	69.23	None	No	0.01	NP (normality)
Arsenic (mg/L)	BRGWC-27I	0.005	0.0009	0.01	No 13	0.003777	0.001915	69.23	None	No	0.01	NP (normality)
Arsenic (mg/L)	BRGWC-29I	0.005	0.00051	0.01	No 13	0.003477	0.002047	61.54	None	No	0.01	NP (normality)
Arsenic (mg/L)	BRGWC-30I	0.005	0.00056	0.01	No 13	0.004658	0.001231	92.31	None	No	0.01	NP (NDs)
Arsenic (mg/L)	BRGWC-32S	0.005	0.00053	0.01	No 13	0.004656	0.00124	92.31	None	No	0.01	NP (NDs)
Arsenic (mg/L)	BRGWC-45	0.005	0.00075	0.01	No 14	0.003578	0.00201	64.29	None	No	0.01	NP (normality)
Arsenic (mg/L)	BRGWC-47	0.001791	0.000854	0.01	No 14	0.002731	0.001842	35.71	Kaplan-Meie	er x^(1/3)	0.01	Param.
Arsenic (mg/L)	BRGWC-52I	0.003469	0.001603	0.01	No 13	0.003398	0.001528	30.77	Kaplan-Meie	er No	0.01	Param.
Arsenic (mg/L)	BRGWC-50	0.005	0.00074	0.01	No 13	0.004046	0.001823	76.92	Kaplan-Meie	er No	0.01	NP (NDs)
Barium (mg/L)	BRGWC-25I	0.0379	0.02755	2	No 13	0.03272	0.006963	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-27I	0.01726	0.01514	2	No 13	0.0162	0.00142	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-29I	0.01993	0.01662	2	No 13	0.01833	0.002426	7.692	None	ln(x)	0.01	Param.
Barium (mg/L)	BRGWC-30I	0.02553	0.02141	2	No 13	0.02347	0.002773	7.692	None	No	0.01	Param.
Barium (mg/L)	BRGWC-32S	0.04652	0.02982	2	No 13	0.03817	0.01123	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-45	0.09884	0.08173	2	No 14	0.09029	0.01208	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-47	0.04541	0.03458	2	No 14	0.03999	0.007644	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-52I	0.02741	0.01659	2	No 13	0.022	0.00728	0	None	No	0.01	Param.
Barium (mg/L)	BRGWC-50	0.02109	0.0186	2	No 13	0.01985	0.001676	0	None	No	0.01	Param.
Beryllium (mg/L)	BRGWC-27I	0.003	0.00011	0.004	No 14	0.0009578	0.001341	28.57	None	No	0.01	NP (normality)
Beryllium (mg/L)	BRGWC-29I	0.0014	0.00072	0.004	No 13	0.001224	0.0008178		None	No	0.01	NP (normality)
Beryllium (mg/L)	BRGWC-45	0.003	0.000079	0.004	No 15	0.002608	0.001034		None	No	0.01	NP (NDs)
Beryllium (mg/L)	BRGWC-47	0.003	0.000056	0.004	No 14	0.002368	0.001255		None	No	0.01	NP (NDs)
Beryllium (mg/L)	BRGWC-50		0.002802	0.004	No 13	0.003723	0.001168		Kaplan-Meie		0.01	Param.
Cadmium (mg/L)	BRGWC-27I	0.0025	0.001	0.005	No 14	0.002219	0.0007365		None	No	0.01	NP (NDs)
Cadmium (mg/L)	BRGWC-32S	0.0025	0.001	0.005	No 14	0.002051	0.0009155			No	0.01	NP (NDs)
Cadmium (mg/L)	BRGWC-45	0.0025	0.00014	0.005	No 15	0.002023	0.0009871	80	None	No	0.01	NP (NDs)
Cadmium (mg/L)	BRGWC-47	0.0025	0.00015	0.005	No 14	0.001006	0.001156	35.71	None	No	0.01	NP (normality)
Cadmium (mg/L)	BRGWC-50	0.0482	0.01365	0.005	Yes 13	0.03269	0.02633	0	None	sqrt(x)	0.01	Param.
Chromium (mg/L)	BRGWC-25I	0.01	0.0016	0.1	No 13	0.00866	0.003273		None	No No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-27I	0.01	0.003	0.1	No 13	0.008769	0.003032		None	No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-29I	0.02	0.01	0.1	No 13	0.01077	0.002774		None	No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-30I	0.014	0.0051	0.1	No 13	0.009931	0.001825		None	No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-32S	0.01	0.0011	0.1	No 13	0.004808	0.004293		None	No	0.01	NP (normality)
Chromium (mg/L)	BRGWC-45	0.01	0.0014	0.1	No 14	0.008066	0.003846		None	No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-47	0.01	0.00092	0.1	No 14	0.007439	0.00421		None	No	0.01	NP (normality)
Chromium (mg/L)	BRGWC-52I	0.01	0.0017	0.1	No 13	0.009362	0.002302		None	No	0.01	NP (NDs)
Chromium (mg/L)	BRGWC-50	0.01	0.00065	0.1	No 13	0.006134	0.004467		None	No	0.01	NP (normality)
Cobalt (mg/L)	BRGWC-25I		0.004311	0.014	No 13	0.006038	0.002166		Kaplan-Meie		0.01	Param.
Cobalt (mg/L)	BRGWC-27I	0.0131	0.008	0.014	No 14	0.01199	0.008318		None	No	0.01	NP (normality)
Cobalt (mg/L)	BRGWC-29I	0.01039	0.006211	0.014	No 13	0.008392	0.002939		None	sqrt(x)	0.01	Param.
Cobalt (mg/L)	BRGWC-30I	0.005	0.000211	0.014	No 14	0.001899	0.001708		None	No No	0.01	NP (normality)
Cobalt (mg/L)	BRGWC-32S	0.003	0.00070	0.014	No 14	0.005179	0.001700		None	No	0.01	NP (NDs)
Cobalt (mg/L)	BRGWC-45	0.022	0.0020	0.014	No 15	0.01639	0.01698		None	No	0.01	NP (normality)
Cobalt (mg/L)	BRGWC-47		0.0007144	0.014	No 14	0.002832	0.003474		None	x^(1/3)	0.01	Param.
Cobalt (mg/L)	BRGWC-52I	0.005	0.00063	0.014	No 13	0.003345	0.001869		None	No No	0.01	NP (normality)
Cobalt (mg/L)	BRGWC-50	1.5	1.3	0.014	Yes 13	1.392	0.06405	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BRGWC-25I	1.207	0.6677	5	No 13	0.9372	0.3624	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-27I	1.209	0.5555	5	No 13	0.882	0.4391	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-29I	1.686	1.156	5	No 13		0.3561	0	None	No	0.01	Param.
				-	0	· - ·		-				

Confidence Interval Summary - All Results

Commonico micriali Cammary 7 in recount													
	Pla	ant Branch	Client: Southern	Company I	Data:	Plant	t Branch AP	Printed 11/	/1/2020,	10:13 AM			
Constituent	Well	Upper Lin	n.Lower Lim.	Compliance	Sig.	N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	BRGWC-30I	1.205	0.6364	5	No	13	0.9209	0.3827	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-32S	1.163	0.4582	5	No	13	0.8107	0.474	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-45	0.8687	0.3896	5	No	14	0.6291	0.3382	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-47	1.536	0.897	5	No	14	1.217	0.4512	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-52I	2.148	1.297	5	No	13	1.722	0.5725	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-50	2.063	1.179	5	No	13	1.621	0.5942	0	None	No	0.01	Param.
Fluoride (mg/L)	BRGWC-25I	0.2994	0.1251	4	No	14	0.2243	0.1523	14.29	None	x^(1/3)	0.01	Param.
Fluoride (mg/L)	BRGWC-27I	0.273	0.1423	4	No	14	0.2189	0.09837	21.43	Kaplan-Meie	erNo	0.01	Param.
Fluoride (mg/L)	BRGWC-29I	0.2537	0.09087	4	No	14	0.1927	0.1342	14.29	None	In(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-30I	0.415	0.1335	4	No	14	0.2908	0.2329	14.29	None	sqrt(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-32S	0.15	0.09	4	No	14	0.1257	0.06248	64.29	None	No	0.01	NP (normality)
Fluoride (mg/L)	BRGWC-45	0.19	0.066	4	No	15	0.1972	0.2569	60	None	No	0.01	NP (normality)
Fluoride (mg/L)	BRGWC-47	0.3418	0.09906	4	No	15	0.2689	0.2802	40	Kaplan-Meie	erln(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-52I	0.2457	0.1229	4	No	13	0.1843	0.0826	7.692	None	No	0.01	Param.
Fluoride (mg/L)	BRGWC-50	0.9237	0.3135	4	No	14	0.6529	0.5001	0	None	sqrt(x)	0.01	Param.
Lead (mg/L)	BRGWC-25I	0.005	0.00011	0.005	No	13	0.004624	0.001356	92.31	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-27I	0.005	0.000063	0.005	No	13	0.00462	0.001369	92.31	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-29I	0.0006	0.00027	0.005	No	12	0.0007483	0.001343	8.333	None	No	0.01	NP (normality)
Lead (mg/L)	BRGWC-30I	0.005	0.00011	0.005	No	13	0.004624	0.001356	92.31	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-45	0.005	0.00026	0.005	No	14	0.003966	0.002055	78.57	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-47	0.005	0.00012	0.005	No	14	0.003945	0.002096	78.57	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-50	0.005	0.000067	0.005	No	13	0.002407	0.002502	46.15	None	No	0.01	NP (normality)
Lithium (mg/L)	BRGWC-27I	0.0021	0.0014	0.089	No	13	0.005192	0.008793	15.38	None	No	0.01	NP (normality)
Lithium (mg/L)	BRGWC-29I	0.0043	0.0029	0.089	No	13	0.005054	0.006009	7.692	None	No	0.01	NP (normality)
Lithium (mg/L)	BRGWC-30I	0.01703	0.01143	0.089	No	13	0.01432	0.00404	7.692	None	sqrt(x)	0.01	Param.
Lithium (mg/L)	BRGWC-32S	0.025	0.002	0.089	No	13	0.005677	0.008577	15.38	None	No	0.01	NP (normality)
Lithium (mg/L)	BRGWC-45	0.003478	0.00306	0.089	No	13	0.003269	0.000281	0	None	No	0.01	Param.
Lithium (mg/L)	BRGWC-47	0.04413	0.04021	0.089	No	14	0.04217	0.002763	0	None	No	0.01	Param.
Lithium (mg/L)	BRGWC-52I	0.008252	0.003025	0.089	No	13	0.0064	0.005987	7.692	None	ln(x)	0.01	Param.
Lithium (mg/L)	BRGWC-50	0.04393	0.03761	0.089	No	13	0.04077	0.004246	0	None	No	0.01	Param.
Mercury (mg/L)	BRGWC-25I	0.0005	0.000083	0.002	No	11	0.0004203	0.0001776	81.82	None	No	0.006	NP (NDs)
Mercury (mg/L)	BRGWC-27I	0.0005	0.00005	0.002	No	11	0.0004179	0.0001826	81.82	None	No	0.006	NP (NDs)
Mercury (mg/L)	BRGWC-29I	0.0005	0.00007	0.002	No	11	0.0003825	0.0002016	72.73	None	No	0.006	NP (normality)
Mercury (mg/L)	BRGWC-30I	0.0005	0.00007	0.002	No	11	0.0003811	0.0002039	72.73	None	No	0.006	NP (normality)
Mercury (mg/L)	BRGWC-32S	0.0005	0.00009	0.002	No	11	0.0003884	0.0001912	72.73	None	No	0.006	NP (normality)
Molybdenum (mg/L)	BRGWC-25I	0.01	0.00081	0.01	No	12	0.008467	0.003579	83.33	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-30I	0.01	0.0022	0.01	No	12	0.008582	0.003326	83.33	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-45	0.01	0.00076	0.01	No	13	0.009289	0.002563	92.31	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-52I	0.01	0.0012	0.01	No	12	0.006283	0.003695	41.67	None	No	0.01	NP (normality)
Molybdenum (mg/L)	BRGWC-50	0.01	0.0033	0.01	No	12	0.008792	0.002832	83.33	None	No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-27I		0.001989	0.05	No		0.005192	0.003458		Kaplan-Meie		0.01	Param.
Selenium (mg/L)	BRGWC-29I	0.01	0.0039	0.05	No	13	0.008069	0.002858	61.54		No	0.01	NP (normality)
Selenium (mg/L)	BRGWC-30I	0.01	0.0034	0.05	No		0.007962	0.003234	69.23		No	0.01	NP (normality)
Selenium (mg/L)	BRGWC-32S	0.1	0.0019	0.05	No		0.04472	0.04778		None	No	0.01	NP (normality)
Selenium (mg/L)	BRGWC-45	0.01	0.0029	0.05	No		0.009493	0.001898	92.86		No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-47	0.01	0.0017	0.05	No		0.007057	0.004099	64.29		No	0.01	NP (normality)
Selenium (mg/L)	BRGWC-50	0.01	0.002	0.05	No		0.006546	0.003914		None	No	0.01	NP (normality)
Thallium (mg/L)	BRGWC-29I	0.0005	0.00016	0.002	No		0.0002033	0.000014			No	0.01	NP (normality)
· 5-/						_				-			,, ,

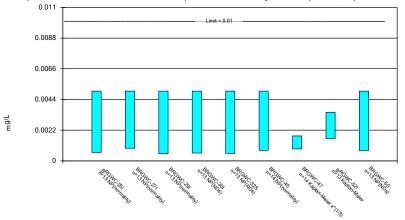
Non-Parametric Confidence Interval


Constituent: Antimony Analysis Run 11/1/2020 10:11 AM View: Confidence Intervals B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

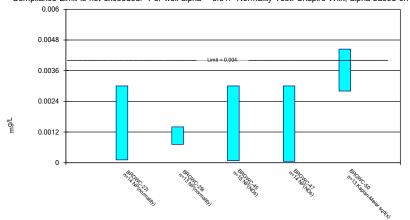
Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 11/1/2020 10:11 AM View: Confidence Intervals B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

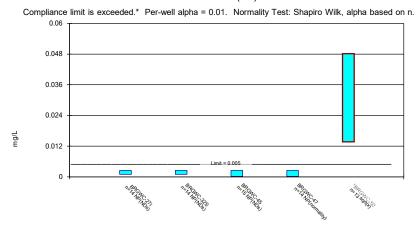
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Arsenic Analysis Run 11/1/2020 10:11 AM View: Confidence Intervals B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

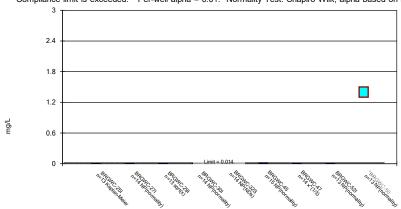
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

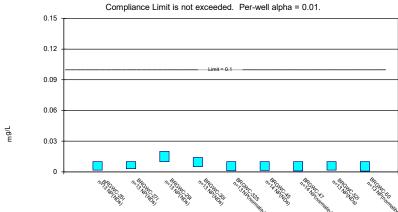
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Beryllium Analysis Run 11/1/2020 10:11 AM View: Confidence Intervals B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Parametric and Non-Parametric (NP) Confidence Interval



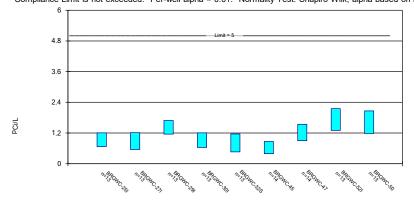
Constituent: Cadmium Analysis Run 11/1/2020 10:11 AM View: Confidence Intervals B,C,D


Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

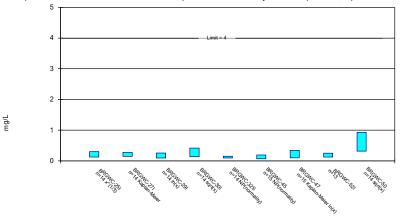
Parametric and Non-Parametric (NP) Confidence Interval Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval


Constituent: Chromium Analysis Run 11/1/2020 10:11 AM View: Confidence Intervals B,C,D

Plant Branch Client: Southern Company Data: Plant Branch AP

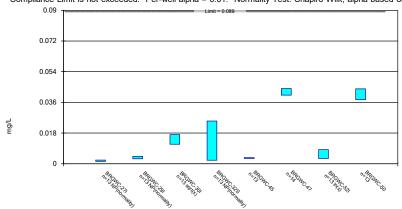
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

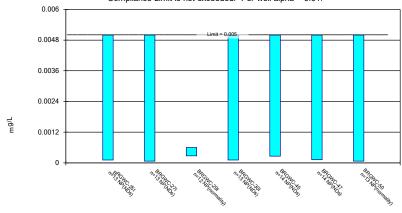
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride Analysis Run 11/1/2020 10:11 AM View: Confidence Intervals B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

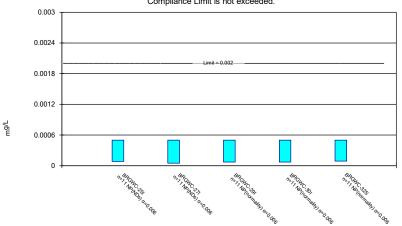
Parametric and Non-Parametric (NP) Confidence Interval

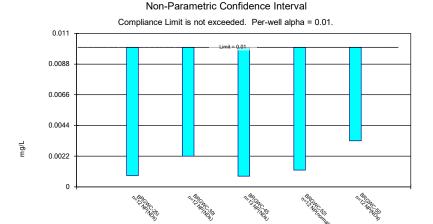

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lithium Analysis Run 11/1/2020 10:11 AM View: Confidence Intervals B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.




Constituent: Lead Analysis Run 11/1/2020 10:11 AM View: Confidence Intervals B,C,D Plant Branch Client: Southern Company Data: Plant Branch AP

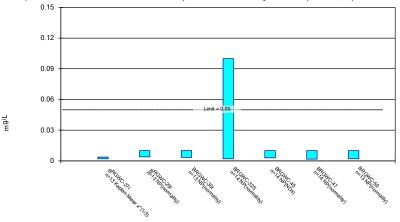
Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

Constituent: Molybdenum Analysis Run 11/1/2020 10:11 AM View: Confidence Intervals B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Thallium Analysis Run 11/1/2020 10:12 AM View: Confidence Intervals B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.9.6.27 Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium Analysis Run 11/1/2020 10:12 AM View: Confidence Intervals B,C,D
Plant Branch Client: Southern Company Data: Plant Branch AP

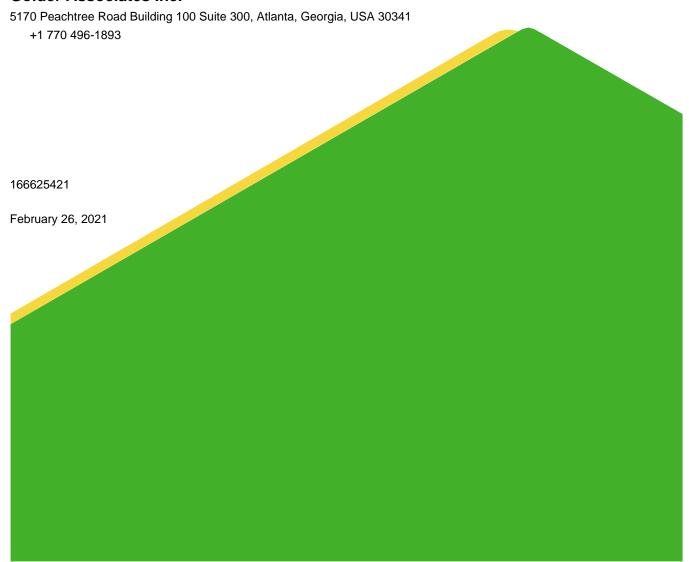
APPENDIX C

SEMI-ANNUAL REMEDY SELECTION AND DESIGN PROGRESS REPORT

REPORT

Semi-Annual Remedy Selection and Design Progress Report

Plant Branch Ash Ponds B, C, and D


Submitted to:

Georgia Power Company

241 Ralph McGill Boulevard, Atlanta, Georgia 30308

Submitted by:

Golder Associates Inc.

Table of Contents

1.0	INTR	ODUCTION	3
2.0	PONE	CLOSURE ACTIVITIES	4
3.0	SUMI	MARY OF WORK COMPLETED	4
	3.1	Nature and Extent Delineation	4
	3.2	Supplemental Data Collection	5
4.0	UPDA	ATED SITE CONCEPTUAL SITE MODEL	6
5.0	COR	RECTIVE MEASURES ALTERNATIVES	7
6.0	PLAN	INED ACTIVITIES AND ANTICIPATED SCHEDULE	8
7.0	REFE	RENCES	9

TABLES

Table 1: Evaluation of Remedial Technologies

Table 2A: Monitoring Well Network Summary

Table 2B: Piezometer Network Summary

Table 3A: Analytical Data Summary – Surface Water - October 2020
 Table 3B: Analytical Data Summary – Surface Water - February 2021

Table 4: Proposed ACM Supplementary Data Collection Tasks for 2021

FIGURES

Figure 1: Site Location Map

Figure 2: Monitoring Well, Piezometer and Surface Water Location Map

Figure 3: Potentiometric Surface Elevation Contour Map – September 2020

Figure 4: Cadmium Isoconcentration Contour Map Pond BCD – September 2020

Figure 5: Cobalt Isoconcentration Contour Map Pond BCD – September 2020

APPENDICES

Appendix A: Sequential Extraction Procedure Results, X-Ray Diffraction, Surface Water, and Porewater Laboratory Analytical Results

1

Signature

This Semi-Annual Remedy Selection and Design Progress Report, Georgia Power Company – Plant Branch Ash Pond B, C, and D (AP-BCD), has been prepared in accordance with the United States Environmental Protection Agency coal combustion residual rule, specifically 40 Code of Federal (CFR) 227.97(a) and the Georgia Environmental Protection Division Rules for Solid Waste Management 341-3-4-.10(6)(a).

Golder Associates Inc.

Brian Steele, PG

Senior Project Geologist

Steven J. Cribb, PE Georgia Licensed Professional Engineer No. 025799

Golder and the G logo are trademarks of Golder Associates Corporation

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (US EPA) coal combustion residuals (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) (CCR Rule) (EPA, 2015), Golder Associates Inc. (Golder) has prepared this Semi-Annual Remedy Selection and Design Progress Report (Semi-Annual Progress Report) for Georgia Power Company (Georgia Power) Plant Branch Ash Ponds B, C, and D (AP-BCD or Site). Specifically, this Semi-Annual Progress Report has been prepared pursuant to 40 CFR § 257.97(a) and the Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4-.10(6)(a). For ease of reference, the US EPA CCR rules are cited within this report.

Plant Branch formerly operated as a coal-fired power plant since the 1960s until its retirement in 2015. Plant Branch is no longer active and is decommissioned. A site location map is included as Figure 1. Because Plant Branch ceased producing electricity prior to April 2015, AP-BCD are not subject to the US EPA CCR Rule.

Pursuant to § 257.96, Georgia Power initiated an ACM for AP-BCD on July 9, 2020, to address the occurrence of cadmium and cobalt in groundwater at statistically significant levels (SSLs). Subsequently, Georgia Power completed an ACM report on December 4, 2020, and posted it to the CCR compliance website in January 2021 (Golder, 2020a). Georgia Power conducted a human health and ecological risk evaluation to evaluate constituents that exhibit SSLs in groundwater at AP-BCD. The results indicated concentrations of cadmium and cobalt detected in groundwater at former AP-BCD are not expected to pose a risk to human health or the environment (Geosyntec, 2020).

Pursuant to 40 CFR 257.97, Georgia Power is evaluating the potential corrective measures presented in the ACM report to identify remedy or combination of remedies as soon as possible. The following corrective measures are potentially feasible for use at AP-BCD:

- Geochemical Approaches (In-Situ Injection)
- Hydraulic Containment (Pump and Treat)
- In-Situ Solidification/Stabilization
- Monitored Natural Attenuation (MNA)
- Permeable Reactive Barrier (PRB)
- Subsurface Vertical Barrier Walls

A comparative screening of the corrective measures as presented in the ACM report is provided in Table 1. As required by the rules, this Semi-Annual Progress Report describes the progress made in selecting and designing a remedy.

Georgia Power proactively initiated adaptive site management as outlined in the ACM Report (Golder, 2020) to support the groundwater remedy selection process and address potential changes in site conditions as appropriate. The adaptive site management approach will take existing site conditions, including natural attenuation mechanisms, into account. Characterization activities to evaluate attenuation mechanisms at the site include collection of data necessary to progressively evaluate the existing and long-term effectiveness of these

processes in the aquifer and reduce uncertainty for decision making at each screening step as listed in the US EPA guidelines for MNA (US EPA, 2015) summarized below.

Tier I: Constituent concentrations & plume stability

Tier II: Constituent attenuation mechanisms

Tier III: Aquifer capacity and stability

Tier IV: Performance monitoring

2.0 POND CLOSURE ACTIVITIES

Georgia Power retired Plant Branch in 2015 and began a dewatering process that is necessary to facilitate permanent closure of the ash ponds. Plant Branch will remove ash from four ash ponds (Ponds B, C, D, and E) and consolidate the ash in a new, lined onsite landfill. The closure of the AP-BCD in the manner described above provides a source control measure that reduces the potential for migration of CCR constituents to groundwater. Corrective measures discussed in this semi-annual progress report are being evaluated to address SSLs in groundwater at the waste boundary.

3.0 SUMMARY OF WORK COMPLETED

The following section summarizes a series of field investigation activities and data collection completed to date in support of site characterization and delineation of Appendix IV SSLs, as well as evaluation of the corrective measures presented in the ACM Report. These data will be used to evaluate the feasibility, mechanisms, rates, and stability of identified remedial alternatives including MNA as a corrective action for groundwater impacts from AP-BCD. An evaluation of these data as they relate to remedy selection alternatives will be presented in the next semi-annual report.

3.1 Nature and Extent Delineation

CCR compliance groundwater monitoring-related activities have been performed for AP-BCD since September 2016 pursuant to the CCR rule. Georgia Power initiated an assessment monitoring program in November 2019 after identifying statistically significant increases (SSIs) of Appendix III parameters in groundwater. Pursuant to § 257.95, samples were collected from the compliance monitoring wells as shown on Figure 2 and analyzed for Appendix IV constituents.

The 2020 assessment monitoring groundwater data show statistically significant levels (SSLs), as presented in Table 3.1, at concentrations exceeding the state and/or federal Groundwater Protection Standards (GWPS). Details are provided in the 2020 Annual Groundwater Monitoring and Corrective Action Report (Golder, 2020b).

Table 3.1: AP-BCD Statistically Significant Level Exceedances						
AP-BCD Monitoring Well Appendix IV Parameter						
BRGWC-50	Cobalt, Cadmium					

The locations of the site monitoring wells and piezometers are shown on Figure 2. Table 2A and 2B provide a summary of construction details for each of the site wells and piezometers, respectively. Supporting details and

documents (e.g., boring logs, well construction tables) have been previously submitted within separate well installation reports (Golder, 2020c; Golder, 2020d). A potentiometric surface map illustrating the September 2020 potentiometric surface elevations is provided on Figure 3.

To characterize the nature and extent of target SSL constituents, shallow and deep piezometers were installed and sampled for analysis of Appendix III constituents, target Appendix IV constituents cadmium and cobalt, and cations/anions (bicarbonate/carbonate alkalinity, sodium, magnesium, and potassium). In addition, surface water was sampled at multiple locations for the same analysis mentioned above, to demonstrate horizontal delineation in surface water bodies where proximity to surface water and topography prevented conventional installation of additional wells. Figure 2 shows the locations of the monitoring wells and surface water sample locations. Figure 4 and Figure 5 present the horizontal delineation of each of the constituents where SSLs have been observed.

Horizontal and Vertical Delineation Well Installation

Data from horizontal delineation well PZ-51I show concentrations of cadmium and cobalt exceeding site background concentrations during the August to December 2020 reporting period (Golder, 2020b). However, statistical analysis of the Appendix IV data is pending until four sampling events are completed to construct the confidence intervals required to evaluate and confirm potential SSLs. Georgia Power will continue to monitor the delineation wells and adaptively manage the Site as new data become available.

Vertical delineation wells were installed within the weathered/fractured bedrock, adjacent to locations BRGWC-50 (PZ-50D) and PZ-51I (PZ-51D) resulting in a shallow and deep well pair at each of these locations. In November 2020, groundwater samples were collected from newly installed delineation wells PZ-50D and PZ-51D and analyzed for Appendix III and targeted Appendix IV constituents (i.e., cadmium and cobalt).

Surface Water Sampling

Due to the proximity of Lake Sinclair in the downgradient direction of the well showing SSLs of cobalt and cadmium (i.e., BRGWC-50), installation of additional conventional wells to horizontally characterize this area is infeasible. In response, Georgia Power proactively collected surface water samples from Lake Sinclair downgradient of AP-BCD on October 22, 2020, and February 4th, 2021. The October 22, 2020 data were provided with the ACM Report (Golder, 2020a). Results of these sampling events are presented in Appendix A and summarized on Tables 3A and 3B. Results indicate that horizontal delineation for cadmium and cobalt BRGWC-50 is complete.

Groundwater Sampling

Evaluation of data collected in November 2020 from wells PZ-50D, PZ-51I, and PZ-51D as it relates to evaluation of remedy selection alternatives will be presented in a future report. These data were provided with the ACM Report (Golder, 2020a).

3.2 Supplemental Data Collection

Additional field investigation activities and data analyses have been performed to evaluate possible remedial alternatives. A summary of these data is included below.

Mineralogical Analysis

The mineralogical composition of soil and rock samples from six boreholes located around AP-BCD and AP-E was assessed using quantitative XRD with Rietveld refinement. Two samples were collected within similar depth

intervals as the screened interval of BRGWC-50. Cores from background borings BRGWA-2S, BRGWA-5S, and BRGWA-6S, located around AP-E, were included to determine the general mineralogy of bedrock and soils. The purpose of the mineralogical analysis was to identify and quantify the crystalline mineral phases in each sample.

Results of these analyses are presented in Appendix A, Laboratory Analytical Results. Evaluation of these data as it relates to evaluation of remedy selection alternatives will be presented in a future report(s).

Chemical Analysis and Sequential Extraction

Chemical analysis of soils/rock for total metals and Sequential Extraction Procedure (SEP) analysis was conducted on twelve solid samples (collected from five upgradient boreholes and one downgradient borehole) surrounding AP-BCD, and AP-E. The SEP consists of a seven-step metals extraction from solids to determine their potential environmental stability. The seven-step SEP is defined by specific extraction steps based on a modified Tessier method (Tessier et al., 1979).

Results of these analyses are presented in Appendix A, Laboratory Analytical Results. Evaluation of this data as it relates to evaluation of remedy selection alternatives will be presented in a future report(s).

Aquifer Testing Activities

Aquifer tests (slug tests) were performed in February 2021 for piezometers PZ-50D, PZ-51S, PZ-51I, PZ-51D, and PB-10 by experienced Golder representatives. The purpose of the testing was to estimate the horizontal hydraulic conductivity of aquifer materials encountered at the site to aid in further evaluation of remedial alternatives. A summary of the aquifer testing data, analysis methods, and the calculated geometric mean for hydraulic conductivity will be presented in the next Semi-Annual Remedy Selection Progress Report. These new data will be used to supplement existing hydraulic conductivity data. An updated understanding of aquifer properties, including conductivity, will help refine the conceptual site model, and support assessment of certain groundwater corrective measures, such as hydraulic containment, MNA, or in-situ injections.

Porewater Sampling

Piezometers screened in CCR material was sampled for porewater from within AP-BCD and analyzed for Appendix III constituents, Appendix IV constituents, and cations and anions, from piezometers IW-D-2, IW-C-1, IW-C-2, and IW-B-2 in October 2019. These piezometers are screened in the CCR material in AP-BCD. Results of these analyses are presented in Appendix A, Laboratory Analytical Results. Porewater samples are scheduled to be collected from piezometers IW-B-1 and IW-B-2 will be sampled in March 2021 for Appendix III constituents, Appendix IV constituents, and cations and anions.

4.0 UPDATED SITE CONCEPTUAL SITE MODEL

The additional data collected since the issuance of the ACM Report (Golder, 2020a), and presented herein, together with new data evaluation tools (described above) and interpretations allow the development of a more refined conceptual site model (CSM). The following bullets summarize the current understanding of the CSM within the context of selecting an appropriate groundwater corrective measure for AP-BCD.

The September 2020 potentiometric surface for the uppermost aquifer shows groundwater flow generally eastward from the topographically high area upgradient of Pond E, as shown on Figure 3. In general, groundwater flow is to the east, south, and west from Ponds B, C, and D. The latest water level data collected in 2020 confirmed groundwater in the uppermost aquifer to be consistent with the CSM. Additional data (e.g., slug tests) will be evaluated as collected to determine consistency with the CSM.

In general, the geochemistry for the site is fairly uniform except for local mafic units within the gneiss. These differing rock types are interlayered such that they are not likely to result in significant geochemical variation in the overburden and groundwater chemistry. The boring logs from the vertical delineation wells PZ-50D and PZ-51D confirmed geology consistent with that presented in the CSM (i.e., biotite gneiss).

5.0 CORRECTIVE MEASURES ALTERNATIVES

Based on the data collected to date, four of the six potential corrective measures being evaluated for AP-BCD will be retained for further evaluation. Table 1 presents a summary of each of the remedial alternatives being presented as part of the ACM Report. Table 4 provides a summary of additional data to be collected. The progress toward additional data collection and the retention evaluation (not retained) for each potential remedial alternative is listed below and included on Table 4.

Permeable Reactive Barrier (PRB) – PRB technology typically involves the installation of a permeable subsurface wall constructed with reactive media for the removal of constituents as groundwater flow passes through the media. PRB walls are normally keyed into the bedrock. Well BRGWC-50 is located on the dike of APBCD and the depth to competent bedrock in this area is about 60 feet. Constructing a PRB wall along this dike will be difficult because of the depth to bedrock and effectively keying into competent bedrock. Also, there could be limited effectiveness of such a wall because of divergence of groundwater flow paths through the partially weathered rock above competent bedrock and the potential for biofouling and mineral precipitation, which reduce the effectiveness of media over time and can increase the amount of maintenance needed for media changeouts. Further, there is lack of available space between the AP-BCD dike and Lake Sinclair for an effective installation and functioning of a PRB wall. Because AP-BCD will be closed by removal of CCR material to a lined-landfill, the retained options are more suitable for corrective action rather than the installation of a PRB. For these reasons, PRB wall option has been removed from consideration.

Subsurface Vertical Barrier Walls – Physical barriers include vertical walls (e.g., grout injection, slurry walls, sheet piles) used to physically control groundwater flow through isolation or redirection, typically around or upgradient of a source area. The design and technique used to construct a barrier wall typically depend on the length of the barrier, the depth to a competent confining layer or bedrock, and cost considerations. Sheet piling, trenching, and vertical drilling are the most common methods for barrier construction. Sheet piling and trenching are typically limited to depths of approximately 50 feet below ground surface (ft bgs), and drilling techniques can achieve depths greater than 50 ft bgs. Construction of a vertical barrier would involve drilling to competent bedrock and injecting bentonite or grout into fractured bedrock, the transition zone, and saprolite flow zones.

Keying the vertical barrier into bedrock may be difficult to achieve consistently due to the complex Piedmont geology underlying the site. Competent bedrock depths range from 60 to 80 ft bgs at the site. Depth to competent bedrock significantly varies on a small-scale (feet to tens of feet) spatially depending on the weathering characteristics of the transition zone. Installation of an effective barrier to depths greater than 60 ft is technically feasible but would possibly encounter challenges during installation. Further, the complete removal of CCR source material and a lack of available space between AP-BCD and Lake Sinclair, limits its applicability at this Site and the retained options are better suited for corrective action. For these reasons, the vertical barrier technology was not retained for further consideration.

Given that groundwater conditions and/or statistical results are likely to be affected by closure and construction activities at AP-BCD, an adaptive site management approach will be used to address groundwater conditions as a

consequence of closure activities. Continued groundwater monitoring and updates to the statistical analyses will further refine the CSM and allow for the continued evaluation of appropriate groundwater corrective measures at the Site. This may include additional tests using the unconsolidated aquifer materials to further demonstrate the viability of MNA according to US EPA's tiered approach for the use of MNA in groundwater.

6.0 PLANNED ACTIVITIES AND ANTICIPATED SCHEDULE

The proposed closure by removal approach provides a source control measure that reduces the potential for migration of CCR constituents to groundwater. During the pond closure by excavation and consolidation of CCR, temporary changes in site conditions may occur that must be considered as part of remedy selection. Georgia Power has initiated activities as outlined in the ACM Report (Golder, 2020a) to support the groundwater remedy selection process and address potential changes in site conditions as appropriate. The adaptive site management approach toward remedy selection may be adjusted over the site's life cycle as new site information and technologies become available. To this end, Georgia Power will continue its data collection efforts as necessary in support of efforts to refine the CSM and to further evaluate the feasibility of each corrective measure proposed in the ACM Report. At this time, and as discussed in Section 4.0, four of the corrective measures outlined in the 2020 ACM Report are being retained for further evaluation. The four corrective measures which are being retained are as follows:

- Geochemical Approaches (In-Situ Injection)
- Hydraulic Containment (Pump and Treat)
- In-Situ Solidification/Stabilization (ISS)
- Monitored Natural Attenuation (MNA)

Supplementary data collection and evaluation activities proposed to be completed are presented on Table 4, with the key elements summarized below.

- Additional borings and piezometers will be evaluated to characterize the nature and extent. New delineation wells are planned for installation with conventional and non-conventional drilling techniques.
- Groundwater samples will be collected from the existing detection and assessment well network as well as additional wells in the migration pathway to evaluate geochemical characteristics of the aquifer. In addition to Appendix III/IV constituents, wells may also be analyzed for major cations/anions and other parameters for characterization of groundwater and evaluating the potential remedies.
- Groundwater flow conditions will be evaluated based on data collected from newly installed horizontal and vertical delineation wells.
- Evaluate data from previously collected and newly collected samples for attenuation mechanism and rates, aquifer capacity for attenuation, and mineralogical characterization.

Georgia Power will continue to prepare semi-annual progress reports to document AP-BCD groundwater conditions, results associated with additional data collection, and the progress in selecting and designing a groundwater remedy in accordance with § 257.97(a). Georgia Power will include future semi-annual progress

reports in routine groundwater monitoring and corrective action reports to meet the requirements of § 257.105(h)(12), § 257.106(h)(9), and § 257.107(h)(9), respectively.

7.0 REFERENCES

- Golder 2020a. Assessment of Corrective Measures Report Plant Branch AP-BCD, Golder Associates Inc., December 4, 2020.
- Golder 2020b. Annual Groundwater Monitoring and Corrective Action Report, Plant Branch, Ash Pond BCD, Golder Associates, Inc., July 2020.
- Golder 2020c. Well Installation Report Addendum, Georgia Power Company-Plant Branch, Ash Pond BCD, Golder Associates Inc., Revised September 2020
- Golder 2020d. Piezometer Installation Report for Surface Impoundment, Ash Pond BCD, Golder Associates Inc., November 20, 2020
- Geosyntec, 2020. Risk Evaluation Report Plant Branch Ash Pond BCD, Geosyntec Consultants, December 2020.
- Tessier, A., Campbell, P.G. and Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51(7), pp.844-851.
- USEPA, 2009. Statistical Analysis of Groundwater Data at RCRA Facilities. U.S. Environmental Protection Agency Office of Resource Conservation and Recovery, Program Implementation and Information Division, March 2009.
- U.S. Environmental Protection Agency. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009–0640; FRL-9919–44–OSWER]. RIN-2050–AE81, April 2015.

TABLE 1 - EVALUATION OF REMEDIAL TECHNOLOGIES

Plant Branch - Milledgeville, GA

0		REGULATORY CITATION FOR CRITERIA: 40 CFR 257.96(C)(1)	
Corrective Measure	Description	Performance	Reliability
Geochemical Approaches (in situ injection)	Use of an injection well network, or other means of introducing reagents or air into the subsurface, to provide suitable reagents for either anaerobic or aerobic attenuation of cadmium (Cd) and cobalt (Co). Under anaerobic conditions, Co would be attenuated within sparingly soluble sulfide minerals; this approach might also increase the attenuation of Cd. Under aerobic conditions, soluble iron or manganese and oxygen (either via air sparging or through a chemical oxidant) would be injected to promote the formation of iron or manganese (oxy-) hydroxides for subsequent sorption of Co and Cd onto these mineral phases. If sufficient iron is present in groundwater, the use of air sparging alone may be considered to precipitate iron (oxy-) hydroxides for sorption. In-situ chemical oxidation (ISCO) or in-situ chemical reduction (ISCR) can be used to chemically alter the redox environment in the subsurface to affect the mobility of certain inorganic compounds, including Co. However, the main attenuation mechanism for Co and Cd is sorption, which is more dependent on pH than redox.	The effective immobilization of Co has been shown under aerobic and anaerobic conditions; however, the anaerobic approach (involving the injection of an electron donor together with iron or manganese and sulfur) requires careful study and testing. While aerobic approaches are somewhat less complex, additional aquifer characterization is needed to further evaluate these options. It is currently not well understood whether cadmium can be efficiently attenuated using in-situ redox manipulations due to slow reaction kinetics. Cd attenuation under both aerobic and anaerobic conditions needs to be further evaluated but is expected to occur. Cd is more strongly sorbed to aluminum oxides than other metal oxides, and it is generally less sorptive and more mobile compared to Co.	Reliability dependent on permeability of the subsurface and the amount and distribution of secondary iron or manganese (oxy-) hydroxides (for aerobic approach), or electron donors and soluble iron or manganese and sulfur that can be consistently distributed (for anaerobic approach). Reliable technology if injected materials can be distributed throughout the impacted aquifer. Bench- and/or pilot-scale treatability testing programs are needed to understand the biogeochemical processes that would effectively reduce migration of Co and Cd in groundwater.
Hydraulic Containment (pump- and-treat)	Hydraulic containment refers to the use of groundwater extraction to induce a hydraulic gradient for hydraulic capture or control the migration of impacted groundwater. This approach uses extraction wells or trenches to capture groundwater, which may subsequently require above-ground treatment and permitted discharge to a receiving water feature, reinjection into the groundwater, or reuse [e.g., land application, coal combustion residual (CCR) conditioning, etc.]. It is applicable to a variable mix of inorganic constituents, including dissolved Co and Cd.	Pump and treat (P&T) is effective at providing hydraulic control, but it is unclear whether full groundwater remediation can be achieved without further understanding attenuation mechanisms at the Site. At AP-BCD, implementation of the corrective measure is contingent on completing additional assessment activities (i.e., high-resolution site characterization, additional pump tests, flow modeling, and capture zone analysis). This is needed to refine the constituent distribution in the subsurface to target specific zones for pumping for improved mass recovery efficiency/ effectiveness and to further evaluate the potential remedy performance.	Generally reliable for hydraulic containment, but uncertainty exists whether groundwater remediation goals can be achieved within a reasonable time frame without further understanding attenuation mechanisms
In-Situ Stabilization	In-situ stabilization is a technique that uses mixing of the CCR with additives to solidify the material in place and reduce future dissolution of CCR compounds from the stabilized material. Additives typically include Portland cement, and the solidification is completed in-situ using large diameter augers. CCR located beneath the water table would be isolated by ISS.	Medium to high, groundwater impacts would be addressed through the processes of natural attenuation. This alternative would isolate/secure the source in a bound matrix, and over time, allow the concentrations of Co and Cd in downgradient groundwater to decline to below applicable standards.	In-situ stabilization can be a reliable corrective measure for Co, and Cd in groundwater. Reliability is dependent on the permeability of the subsurface and mechanics of injection.
Monitored Natural Attenuation (MNA)	MNA relies on natural attenuation processes to achieve site-specific remediation objectives within a reasonable time frame relative to more active methods. Under certain conditions (e.g., through sorption, mineral precipitation or oxidation-reduction reactions), MNA effectively reduces the dissolved concentrations of inorganic constituents in groundwater. Attenuation mechanisms for inorganic constituents at CCR sites, including Co and Cd at AP-BCD are either physical (e.g. dilution, dispersion, flushing, and related processes) or chemical (sorption or oxidation reduction reactions). Chemical attenuation processes include precipitation, and sorption reactions such as adsorption on the surfaces of soil minerals, absorption into the matrix of soil minerals, or partitioning into organic matter. Further, oxidation-reduction (redox) reactions, via abiotic or biotic processes, can transform the valence states of some inorganic constituents to less soluble and thus less mobile forms. For Co and Cd, the main attenuation processes include sorption to iron and manganese oxides (Co and Cd), and formation of sparingly soluble sulfide minerals (Co).	Physical and chemical MNA mechanisms for cobalt and cadmium, including dilution, dispersion, sorption, and oxidation reduction reactions can be effective at achieving groundwater protection standards (GWPS) within a reasonable time frame. Attenuation processes for Co and Cd are already occurring at the site as evidenced by groundwater data from the delineation wells. Source control will improve the mass balance such that the buffer capacity of the aquifer is unlikely to be exhausted, and the attenuation processes already at work for Co and Cd at AP-BCD will further enhance ongoing MNA.	Reliable as long as the aquifer conditions that result in Co and Cd attenuation remain favorable and/or are being enhanced and sufficient attenuation capacity is present. MNA is reliable and can either be used as a stand-alone corrective measure for groundwater impacted by dissolved Co and/or Cd, or in combination with a second technology.
Permeable Reactive Barrier (PRB)	PRB technology typically involves the installation of a permeable subsurface wall constructed with reactive media for the removal of constituents as groundwater passes through. Either ZVI-Carbon matrix or solid carbon (bio-barrier) are most likely viable for the concurrent removal of Co and Cd. The carbon could be composed of peat moss, mulch or another carbon source. Exact placement of the PRB would be contingent on finalization of the nature and extent characterization. PRB walls are typically keyed into the bedrock. While the shallow groundwater in the residuum and fractured bedrock is connected to the groundwater in more competent bedrock, the higher permeability/conductivity of the PRB is not expected to impede groundwater flow. PRBs can also be constructed as "funnel and gate" systems, where a barrier wall directs groundwater to a smaller "treatment gate" filled with reactive media.	PRBs have been shown to effectively address Co and Cd in groundwater if the right mix of reactive materials (e.g., ZVI and carbon) is selected for concurrent removal/immobilization of these constituents. The approach is expected to achieve GWPS for both constituents as impacted groundwater passes through the reactive barrier. Cadmium redox kinetics may be slow and hence a thicker wall might be needed relative to solely treating for Co. Furthermore, additional testing is required to select the appropriate sorptive media mix, especially related to Cd.	Reliable groundwater corrective measure technology, but loss of reactivity over time may require re-installation depending on the duration of the remedy. Additional data collection, including conducting a bench and/or pilot study, is needed to better characterize current attenuation mechanisms and/or select the appropriate reactive media mix for a PRB wall.
Subsurface Vertical Barrier Walls	This approach involves placing a barrier to groundwater flow in the subsurface, frequently around a source area, to prevent future migration of dissolved constituents in groundwater from beneath the source to downgradient areas. In general, barrier walls are designed to provide containment; localized treatment achieved through the sorption or chemical precipitation reactions from construction of the walls are incidental to the design objective. Barrier walls can also be used in downgradient applications to limit discharge to a surface water feature or to reduce aquifer recharge from an adjacent surface water feature when groundwater extraction wells are placed near one. A variety of barrier materials can be used, including cement and/or bentonite slurries, geomembrane composite materials, or driven materials such as steel or vinyl sheet pile. Groundwater extraction from upgradient of the barrier is required to avoid groundwater mounding behind the barrier. Though highly effective, vertical barrier walls may serve as groundwater dams, so mounding of groundwater behind barrier walls, or flow of groundwater around the ends of barrier walls, should be considered in corrective action design.	Barrier walls are a proven technology for groundwater cutoff at impoundments. Slurry walls are limited by the depth of installation, which is approximately 90 feet below ground surface (bgs). However, site-specific geologic and technology-specific considerations specific to the former CCR Unit may limit this depth to shallower installations. Within the context of the former CCR Unit, a barrier wall might be used in conjunction with a "funnel and gate" system for a PRB rather than a stand-alone technology. As such, groundwater with cobalt and cadmium above GWPS could either be directed to "treatment gates" for passive treatment (in a PRB) or migration of impacted groundwater could be minimized via barrier wall installation. Additional subsurface investigations and compatibility testing with groundwater from the former CCR Unit will be needed.	Generally reliable as a barrier to groundwater flow; however, treatment of downgradient groundwater is incidental and not the primary objective.

TABLE 1 - EVALUATION OF REMEDIAL TECHNOLOGIES

Plant Branch - Milledgeville, GA

Corrective Measure	REGULATORY CITATION FOR CRITERIA: 40 CFR 257.96(C)(1)										
Corrective incasare	Ease of Implementation	Potential Impacts	Time Requirement to Begin/Complete								
Geochemical Approaches (in situ injection)	Moderate. Installation of injection well network or other injection infrastructure would be required. Alternative installation approaches may be considered, such as along the downgradient edge of impacted groundwater, which would function similar to a PRB application. Potential for clogging of aquifer matrix and/or injection well infrastructure. Chemical distribution during injections (i.e., radius of influence) needs to be evaluated.	Minimal impacts are expected if remedy works as designed, based on a thorough pre-design investigation, geochemical modeling, and bench/pilot study results. Redox-altering processes have the potential to mobilize naturally-occurring constituents as an unintended consequence if not properly evaluated and implemented. Consideration of groundwater flow to nearby sensitive environments may be needed.	Installation of the injection network can be accomplished relatively quickly (1 to 2 months). However, a thorough pre-design investigation, geochemical modeling, and/or bench- and/or pilottesting will be required to obtain design parameters prior to design and construction of the corrective measure, which may take up to 24 months. Once installed, the time required to achieve GWPS within the treatment area may be relatively quick but depends on the attenuation process kinetics of each targeted constituent. The time for complete distribution of the injected materials throughout the treatment area is also variable.								
Hydraulic Containment (pump- and-treat)	Moderate. Proven approach, and supplemental installation of extraction wells/trenches is fairly straightforward. The extracted groundwater may potentially require an above-ground treatment system. A variety of sorption and precipitation approaches exist for ex-situ treatment of Co and Cd. Operation and maintenance (O&M) requirements are expected to include upkeep of infrastructure components (pumps, pipes, tanks, instrumentation and controls, above-ground treatment system) and handling of treatment residuals	Moderate. The main potential impacts are related to the presence and operation of an on-site above-ground water treatment facility and related infrastructure to convey and treat extracted groundwater. Pumping activity may unintentionally alter the geochemistry within the hydraulic capture zone.	Installation of extraction wells and/or trenches can be accomplished relatively quickly (1 to 2 months). However, additional aquifer testing, system design and installation, and permit approval may be required, which may take up to 24 months. The initiation of the approach would be contingent on the start-up of the wastewater treatment infrastructure. Hydraulic containment can be achieved relatively quickly after startup of the extraction system, but uncertainty exists with respect to the time to achieve GWPS without additional data collection to better understand attenuation mechanisms for Co and Cd.								
In-Situ Stabilization	Easy to moderate, implementation of ISS will require a detailed design effort with bench scale testing to determine the appropriate amendment mix for a variety of overburden geologic materials. Pilot testing will also be needed to verify the ability of equipment to solidify material at depth. ISS has not been commonly used to stabilize entire ash units as part of a closure strategy.	Potential impacts of the remedy will be negligible.	In-situ stabilization around the area of exceedance is predicted to take a number of years to complete, depending on the availability of specialized contractors and equipment.								
MNA	Reasonably implementable with respect to infrastructure, but moderate to complex with respect to documentation. Proven approach, but additional data are needed to show that the existing attenuation capacity is sufficient to meet site objectives within a reasonable timeframe. A monitoring well network already exists to implement future groundwater monitoring efforts.	None. MNA relies on the natural processes active in the aquifer matrix to reduce constituent concentrations without disturbing the surface or the subsurface.	The infrastructure to initiate MNA is already in place. Demonstrating attenuation mechanisms and capacity can be time-consuming and can take up to 24 months. MNA is expected to be successful within a reasonable time frame following pond closure. Engineering measures will be implemented during closure of AP-BCD to minimize potential impacts to the subsurface during closure activities and routine groundwater monitoring will be used to verify that groundwater impacts remain stable or decrease over time.								
PRB	Moderate to difficult. Trenching would be required to install a mix of reactive materials in the subsurface. Continuous trenching may be the most feasible construction method. Site-specific geology (i.e., partially weathered bedrock layer) poses a possible constructability challenge when attempting to key PRB material into competent bedrock. Installation methods and materials are readily available. Once installed, treatment will be passive and O&M requirements are minimal if replacement of the PRB is not necessary.	Minimal impacts are expected following the construction of the remedy. However, ZVI has the potential to create anaerobic conditions downgradient of the PRB wall that may mobilize redox-sensitive naturally-occurring constituents. These conditions need to be carefully monitored. Short-term impacts during the construction of the remedy can be mitigated through appropriate planning and health and safety measures.	Installation of a PRB can be accomplished relatively quickly (6 to 12 months), depending on the final location and configuration. However, bench- and/or pilot testing would be required to obtain design parameters prior to design and construction of the remedy, which may take up to 24 months. Once installed, the time to achieve GWPS downgradient of the PRB is anticipated to be relatively quick.								
Subsurface Vertical Barrier Wells	Moderate to difficult. Trenching will be required to fill in the various slurry mixes; alternatively, sheet pile installations can be accomplished without excavation of trenches. The application of barrier walls is limited by the depth of installation, which similar to PRBs, should be keyed into a low permeability layer such as a thick clay layer or bedrock. Installation methods and materials are readily available. Once installed, above-ground infrastructure to pump and treat groundwater will be required. O&M requirements are expected to include upkeep of infrastructure components (pumps, pipes, tanks, instrumentation and controls, above-ground treatment system) and handling of treatment residuals.	Minimal impacts are expected following the construction of the remedy. Short-term impacts during remedy construction can be mitigated through appropriate planning and health and safety measures. Changes to groundwater flow patterns due to installation of the barrier wall are expected, which can affect other aspects of groundwater corrective action. Groundwater extraction may unintentionally alter the geochemistry within the wall that may result in the mobilization of other constituents that require treatment.	Installation of a barrier wall can be accomplished relatively quickly (i.e., 6 to 12 months), depending on the final location and configuration. However, some design phase and additional aquifer and compatibility testing will be required, which may take up to 24 months. Once installed, preventing migration of constituents dissolved in groundwater is anticipated to be relatively quick. Since this approach does not treat the downgradient area of impacted groundwater but prevents migration from a source area, it will likely have to be maintained long-term and coupled with other approaches.								

TABLE 1 - EVALUATION OF REMEDIAL TECHNOLOGIES

Plant Branch - Milledgeville, GA

Corrective Measure		REGULATORY CITATION	I FOR CRITERIA: 40 CFR 257.96(C)(1)	
Corrective Measure	Institutional Requirements	Other Env. Or Public Health Requirements	Relative Costs	Retention Evaluation
Geochemical Approaches (in situ injection)	Deed restrictions may be necessary until in-situ treatment has achieved GWPS. An underground injection control (UIC) permit would be required to implement this corrective measure. No other institutional requirements are expected at this time.	None expected at this point. Potential for mobilization of redox- sensitive constituents exists during implementation of an anerobic attenuation approach. Following installation, the remedy is passive.	Medium (depending on expanse of injection network required and injectate volume required per derived design parameters)	Remedial approach retained due to limited area of SSL exceedances, a targeted injection layout may result in decreased concentrations of Co and Cd in groundwater below the GWPS.
Hydraulic Containment (pump- and-treat)	Depending on the effluent management strategy, modifications to the existing National Pollutant Discharge Elimination System (NPDES) permit may be required, or obtaining a new UIC permit may be needed if groundwater reinjection is chosen. In addition, deed restrictions may be required as long as groundwater conditions are above regulatory standards for unrestricted use.	Above-ground treatment components may need to be present for an extended period of time, generating residuals requiring management and disposal.	Medium to high (depending on remedy duration, complexity of above-ground treatment system, and volume of water processed)	During ash pond closure, there will be an on-site wastewater treatment plant that may be available for treatment of extracted groundwater. Therefore, P&T is a potentially viable interim corrective measure for cobalt and cadmium in groundwater at Plant Branch and will be retained for further evaluation.
In-Situ Stabilization	Deed restrictions may be necessary until groundwater concentrations are below GWPS. No other institutional requirements that may limit application of this technology are expected at this time.	Changes to groundwater chemistry relative to the mobility of Appendix IV constituents following completion of ISS, where large volumes of amendments (typically Portland cement) are added to the subsurface, are unknown and would require pilot testing.	Medium, depending on permeability of aquifer.	A solidification technology may potentially be used on the CCR material prior to removal, as a means of moving the material to the onsite landfill; therefore, ISS will be retained for further evaluation.
MNA	MNA may require the implementation of institutional controls, such as deed restrictions, to preclude potential exposure to groundwater within the footprint of impacted groundwater until GWPS are achieved.	Little to no physical disruption to remediation areas and no adverse construction related impacts are expected on the surrounding community.	Low to medium	Under current conditions, attenuation processes for Cd and Co are already occurring as evidenced by groundwater data from delineation wells. Therefore, MNA is a potentially viable corrective measure for Co and Cd in groundwater at Plant Branch and will be retained for further evaluation.
PRB	Deed restrictions may be necessary for groundwater areas upgradient of the PRB (if not installed along the waste boundary). No other institutional requirements are expected at this time.	None expected at this point. Following installation, the remedy is passive. However, certain treatment media (such as ZVI) have the potential to mobilize naturally-occurring constituents downgradient of the PRB.	Medium to high (for installation) - minimal O&M requirements if replacement is not necessary	Because there is limited space available downgradient of wells where COCs exceed groundwater protection standards, PRB has been removed from further consideration.
Subsurface Vertical Barrier Wells	Deed restrictions may be necessary until groundwater concentrations are below GWPS. No other institutional requirements that may limit application of this technology are expected at this time.	Due to the need for groundwater extraction associated with barrier walls, above-ground treatment components may need to be present for an extended period of time, generating residuals requiring management and disposal.	Medium to high (depending on length and depth of wall, remedy duration and complexity of above-ground treatment system)	Because there is limited space available downgradient of wells where COCs exceed groundwater protection standards, Subsurface Vertical Barrier Walls have been removed from further consideration.

TABLE 2A MONITORING WELL NETWORK SUMMARY

Georgia Power - Plant Branch Milledgeville, GA

Well-ID	Hydraulic Location	Geologic Unit Screened ^[3]	NAD 83 Northing ^[1]	NAD 83 Easting ^[1]	Latitude	Longitude	Ground Surface Elevation (feet NAVD88) ^[1]	Top of Casing Elevation (feet NAVD88) ^[1]	Total Depth (feet bgs) ^[2]	Top of Screen Elevation (feet NAVD88) ^[1]	Bottom of Screen Elevation (feet NAVD88) ^[1]	Top of Seal Elevation (feet NAVD88) ⁽¹⁾	Top of Filter Pack Elevation (feet NAVD88) (1)	Bottom of Well Elevation (feet NAVD88) ^[1]	Screen Length (feet)	Date of Installation
ASH POND BCD M	ONITORING WELL NETWO	RK														
BRGWA-2S	Upgradient BCD & E	Saprolite	1167139.7	2549952.6	33.205940	-83.338294	440.4	443.20	44.6	406.2	396.2	410.4	408.4	395.8	10.0	4/2/2014
BRGWA-2I	Upgradient BCD & E	Amphibolite Gneiss	1167130.0	2549957.3	33.205913	-83.338279	440.5	443.14	64.3	386.6	376.6	391.9	389.9	376.2	10.0	3/14/2014
BRGWA-5S	Upgradient BCD & E	Saprolite	1170177.5	2549415.5	33.214300	-83.339971	440.8	443.86	40.0	411.2	401.2	415.2	412.2	400.8	10.0	4/3/2014
BRGWA-5I	Upgradient BCD & E	Amphibolite Gneiss	1170183.7	2549408.0	33.214317	-83.339996	441.1	443.79	61.2	390.3	380.3	395.1	393.1	379.9	10.0	4/3/2014
BRGWA-6S	Upgradient BCD & E	Saprolite	1170732.9	2551540.8	33.215780	-83.333008	455.8	458.96	49.7	416.5	406.5	420.8	418.6	406.1	10.0	4/1/2014
BRGWA-12S	Upgradient BCD	Residuum	1164286.6	2557142.9	33.197941	-83.314864	431.6	434.64	58.3	383.7	373.7	389.6	386.6	373.3	10.0	3/4/2014
BRGWA-12I	Upgradient BCD	Biotote Gneiss	1164301.2	2557138.9	33.197981	-83.314877	431.5	434.39	77.6	364.3	354.3	375.5	366.6	353.9	10.0	2/20/2014
BRGWA-23S	Upgradient BCD	Saprolite/TWR	1162971.7	2557868.1	33.194311	-83.312528	425.5	428.24	40.8	394.7	384.7	403.0	398.0	384.7	10.0	7/26/2016
BRGWC-25I	Downgradient B	Saprolite/TWR/Biotite Gneiss	1160583.7	2561315.1	33.187670	-83.301326	355.0	357.37	20.5	344.5	334.5	352.5	347.5	334.5	10.0	7/25/2016
BRGWC-27I	Downgradient C	Saprolite	1159695.3	2559712.2	33.185265	-83.306589	364.0	366.86	24.0	350.0	340.0	360.0	355.0	340.0	10.0	7/22/2016
BRGWC-29I	Downgradient C	TWR	1160297.6	2561050.2	33.186890	-83.302200	350.6	353.23	20.0	340.6	330.6	348.6	343.6	330.6	10.0	7/23/2016
BRGWC-30I	Downgradient D	Saprolite/TWR/Biotite Gneiss	1161607.6	2557691.8	33.190566	-83.313141	350.0	352.61	20.3	340.0	330.0	348.0	343.0	329.8	10.0	7/18/2016
BRGWC-32S	Downgradient D	Saprolite	1160677.7	2558497.9	33.187992	-83.310531	403.6	406.39	45.0	368.6	358.6	376.6	371.6	358.6	10.0	7/20/2016
BRGWC-45	Downgradient B	Saprolite/TWR/Biotite Gneiss	1162229.8	2561075.5	33.192199	-83.302065	381.6	384.58	57.0	335.0	325.0	341.6	336.6	324.6	10.0	2/3/2018
BRGWC-47	Downgradient D	TWR	1162700.7	2559456.7	33.193530	-83.307343	408.8	411.20	92.0	327.2	317.2	333.8	328.8	316.8	10.0	1/25/2018
BRGWC-50	Downgradient B	Residuum/Biotite Gneiss	1161593.3	2562372.9	33.190421	-83.297841	378.8	381.35	65.0	324.2	314.2	330.8	325.8	313.8	10.0	1/31/2018
BRGWC-52I	Downgradient B	Biotite Gneiss	1161275.0	2562145.3	33.189551	-83.298594	381.2	383.87	73.9	317.3	307.3	330.8	321.5	307.3	10.0	8/6/2018
ASH POND BCD AS	SESSMENT WELLS															
PZ-50D	Downgradient	Biotite Gneiss	1161588.9	2562381.2	33.190410	-83.297817	378.3	380.86	106.0	282.3	272.3	288.6	284.4	272.3	10.0	10/8/2020
PZ-51I	Downgradient	Saprolilte/TWR/Biotite Gneiss	1161631.1	2562439.3	33.190523	-83.297623	378.0	380.52	65.0	323.1	313.1	328.8	325.5	313.0	10.0	8/1/2018

Notes:

- 1. feet NAVD88 = feet North American Vertical Datum 1988 feet; NAD83 = North American Datum 1983
- feet bgs = feet below ground surface
 TWR = Transitionally Weathered Rock
- 4. Wells resurveyed by Metro Engineering & Surveying Co., Inc between June-July 2020

TABLE 2B PIEZOMETER NETWORK SUMMARY

Georgia Power - Plant Branch Milledgeville, GA

	Т		1			1	1			1						
Well-ID	Hydraulic Location	Geologic Unit Screened ^[3]	NAD 83 Northing ^[1]	NAD 83 Easting ^[1]	Latitude	Longitude	Ground Surface Elevation (feet NAVD88) ^[1]	Top of Casing Elevation (feet NAVD88) ^[1]	Total Depth (feet bgs) ^[2]	Top of Screen Elevation (feet NAVD88) ^[1]	Bottom of Screen Elevation (feet NAVD88) ^[1]	Top of Seal Elevation (feet NAVD88) ^[1]	Top of Filter Pack Elevation (feet NAVD88) ^[1]	Bottom of Well Elevation (feet NAVD88) ^[1]	Screen Length (feet)	Date of Installation
PZ-1D	Upgradient	Biotite Gneiss	1171999.0	2551598.1	33.219259	-83.332788	462.9	463.41	160.0	NA ^[4]	302.9	NA	NA	302.9	NA	4/4/2014
PZ-1I	Upgradient	Biotite Gneiss	1171995.8	2551577.8	33.219250	-83.332855	461.9	464.71	79.5	392.8	382.8	398.8	394.7	382.4	10.0	3/10/2014
PZ-1S	Upgradient	Saprolite	1171996.4	2551588.0	33.219251	-83.332821	462.4	465.07	65.0	407.8	397.8	431.4	424.3	397.4	10.0	3/20/2014
PZ-3D	Upgradient	Biotite Gneiss	1165474.4	2550275.1	33.201356	-83.337283	486.7	487.50	130.0	NA	358.6	NA	NA	356.7	NA	3/27/2014
PZ-3I	Upgradient	Biotite Gneiss	1165494.5	2550273.2	33.201412	-83.337289	486.5	489.49	54.6	442.3	432.3	450.5	445.7	431.9	10.0	3/11/2014
PZ-3S	Upgradient	Saprolite	1165484.5	2550274.6	33.201384	-83.337284	487.0	490.53	39.9	457.5	447.5	464.6	461.0	447.1	10.0	3/11/2014
PZ-4I	Upgradient	Biotite Gneiss	1163246.8	2551282.0	33.195212	-83.334049	479.9	482.98	46.8	443.5	433.5	451.4	446.3	433.1	10.0	3/11/2014
PZ-4S	Upgradient	Saprolite	1163247.8	2551270.1	33.195216	-83.334088	479.9	482.87	30.0	460.3	450.3	466.4	462.9	449.9	10.0	3/10/2014
PZ-7S	Downgradient	Saprolite	1169419.2	2553055.6	33.212137	-83.328090	449.0	451.57	44.5	414.9	404.9	419.0	417.0	404.5	10.0	4/1/2014
PZ-8S	Upgradient	Saprolite	1167801.1	2551188.9	33.207731	-83.334235	450.5	453.08	49.5	411.4	401.4	414.5	412.5	401.0	10.0	4/1/2014
PZ-9S	Upgradient	Saprolite	1162633.3	2553089.6	33.193487	-83.328157	466.1	469.28	48.0	428.5	418.5	435.6	431.5	418.1	10.0	3/5/2014
PZ-10S	Downgradient	Saprolite	1164021.5	2554990.5	33.197260	-83.321907	431.0	433.85	39.0	402.4	392.4	407.5	405.0	392.0	10.0	3/5/2014
PZ-11S	Downgradient	Saprolite	1162467.3	2557002.5	33.192944	-83.315371	390.9	393.99	24.5	376.8	366.8	382.9	380.9	366.4	10.0	2/20/2014
PZ-12D	Downgradient	Biotite Gneiss	1164311.9	2557136.4	33.198010	-83.314885	431.4	434.09	141.7	350.1	290.1	376.0	359.4	289.7	60.0	4/14/2014
PZ-13S	Downgradient	Saprolite	1168011.4	2555276.7	33.208218	-83.320866	406.5	409.97	34.7	382.2	372.2	386.3	384.3	371.8	10.0	3/19/2014
PZ-14I	Downgradient	Biotite Gneiss	1168398.2	2554365.6	33.209302	-83.323834	419.9	422.71	53.8	376.5	366.5	382.6	380.2	366.1	10.0	3/20/2014
PZ-14S	Downgradient	Saprolite	1168398.7	2554359.2	33.209303	-83.323855	420.2	423.31	37.6	393.0	383.0	397.1	395.1	382.6	10.0	3/20/2014
PZ-15I	Downgradient	Biotite Gneiss/Amphibolite	1167720.9	2554399.2	33.207440	-83.323742	400.2	403.06	88.7	321.9	311.9	327.2	325.2	311.5	10.0	3/25/2014
PZ-15S	Downgradient	Saprolite	1167720.3	2554394.0	33.207438	-83.323759	400.1	402.90	39.9	370.2	360.2	374.6	372.2	360.2	10.0	3/27/2014
PZ-16I	Downgradient	Amphibolite Gneiss	1166980.7	2554587.5	33.205401	-83.323146	379.5	382.45	38.6	351.3	341.3	355.1	353.1	340.9	10.0	3/14/2014
PZ-16S	Downgradient	Saprolite	1166977.8	2554581.4	33.205393	-83.323166	379.3	382.52	19.1	370.6	360.6	374.3	372.3	360.2	10.0	3/18/2014
PZ-17I	Downgradient	Amphibolite Gneiss	1166313.8	2554702.5	33.203566	-83.322788	362.3	365.33	43.5	329.2	319.2	333.5	330.2	318.8	10.0	3/17/2014

TABLE 2B PIEZOMETER NETWORK SUMMARY

Georgia Power - Plant Branch Milledgeville, GA

Well-ID	Hydraulic Location	Geologic Unit Screened ^[3]	NAD 83 Northing ⁽¹⁾	NAD 83 Easting ^[1]	Latitude	Longitude	Ground Surface Elevation (feet NAVD88) ^[1]	Top of Casing Elevation (feet NAVD88) ^[1]	Total Depth (feet bgs) ^[2]	Top of Screen Elevation (feet NAVD88) ^[1]	Bottom of Screen Elevation (feet NAVD88) ^[1]	Top of Seal Elevation (feet NAVD88) ^[1]	Top of Filter Pack Elevation (feet NAVD88) ^[1]	Bottom of Well Elevation (feet NAVD88) ^[1]	Screen Length (feet)	Date of Installation
PZ-18I	Downgradient	Biotite Gneiss	1160766.2	2557745.5	33.188252	-83.312988	359.6	362.55	38.4	331.3	321.3	339.6	333.3	321.2	10.0	2/26/2014
PZ-18S	Downgradient	Saprolite	1160757.3	2557747.4	33.188228	-83.312982	359.7	362.82	24.2	345.0	335.0	350.2	348.1	335.5	10.0	3/26/2014
PZ-19I	Downgradient	Biotite Gneiss	1159797.1	2558900.0	33.185563	-83.309241	368.9	371.74	43.7	335.6	325.6	341.3	338.3	325.2	10.0	3/4/2014
PZ-19S	Downgradient	Saprolite	1159805.4	2558894.5	33.185586	-83.309258	368.4	371.42	28.0	350.8	340.8	355.1	352.7	340.4	10.0	3/4/2014
PZ-20I	Downgradient	Biotite Gneiss	1159495.4	2560160.2	33.184705	-83.305130	362.2	365.34	29.5	343.1	333.1	348.1	345.8	332.7	10.0	3/5/2014
PZ-20S	Downgradient	Saprolite	1159490.3	2560157.0	33.184691	-83.305140	362.2	365.41	15.3	357.3	347.3	361.2	359.2	346.9	10.0	3/5/2014
PZ-21I	Downgradient	Biotite Gneiss	1160591.6	2561328.2	33.187691	-83.301283	355.8	358.92	24.4	341.8	331.8	346.0	344.0	331.4	10.0	3/10/2014
PZ-21S	Downgradient	Residuum/Saprolite	1160592.4	2561321.3	33.187694	-83.301305	355.5	358.52	9.8	351.1	346.1	355.4	353.5	345.7	5.0	3/11/2014
PZ-23I	Downgradient	Biotite Gneiss	1162975.4	2557877.7	33.194321	-83.312497	425.1	427.74	66.5	368.6	358.6	376.6	371.1	358.6	10.0	7/29/2016
PZ-24S	Downgradient	Saprolite	1162400.9	2562862.2	33.192629	-83.296220	351.4	354.10	42.0	319.9	309.9	327.9	322.9	309.4	10.0	7/27/2016
PZ-26I	Downgradient	Biotite Gneiss	1160669.0	2561626.4	33.187898	-83.300306	368.0	370.63	30.5	347.5	337.5	356.0	351.0	337.5	10.0	7/26/2016
PZ-28I	Downgradient	TWR/Biotite Gneiss	1159505.1	2560151.7	33.184732	-83.305158	362.5	364.81	24.0	348.5	338.5	356.5	351.5	338.5	10.0	7/24/2016
PZ-31S	Downgradient	TWR	1160936.9	2557971.8	33.188716	-83.312244	374.3	376.77	39.5	344.8	334.8	352.8	347.8	334.8	10.0	7/26/2016
PZ-39	Downgradient	Saprolite	1163675.4	2557460.5	33.196254	-83.313842	432.0	434.78	44.7	397.3	387.3	405.8	400.6	387.3	10.0	7/30/2016
PZ-40S	Downgradient	Residuum	1162414.9	2562807.7	33.192669	-83.296398	353.2	355.96	40.2	324.4	314.4	328.5	325.4	313.0	10.0	2/14/2017
PZ-41S	Downgradient	Saprolite Residuum	1162431.8 1162845.7	2562759.4 2562735.0	33.192716 33.193854	-83.296555 -83.296624	354.3 359.0	357.17 361.66	44.2 32.2	320.5 337.2	310.5 327.2	325.0 345.0	322.3 342.8	310.1 326.8	10.0	2/14/2017
PZ-42S PZ-43	Downgradient Downgradient	Residuum/Biotite Gneiss	1162845.7	2562735.0	33.193854	-83.296624 -83.298942	359.0	383.71	40.4	351.0	341.0	345.0 358.0	342.8 353.0	326.8	10.0	2/9/2017 2/7/2018
PZ-43	Downgradient	Saprolite/TWR/Biotite Gneiss	1161724.6	2561587.5	33.190799	-83.300405	380.5	383.04	57.0	333.9	323.9	340.5	335.5	323.5	10.0	2/2/2018
PZ-44 PZ-46	Downgradient	Saprolite/TWR/Biotite Gneiss	1161724.6	2560559.0	33.190799	-83.303739	382.1	384.64	45.6	346.5	336.5	353.1	348.1	325.5	10.0	2/5/2018
PZ-48	Downgradient	Saprolite/TWR/Amphibolite	1163046.7	2558444.6	33.193038	-83.310642	418.3	420.90	67.0	361.7	351.7	368.3	363.3	351.3	10.0	1/24/2018
PZ-49	Downgradient	Residuum/Biotite Gneiss	1163321.2	2561125.7	33.195198	-83.301871	382.2	384.99	17.0	375.6	365.6	379.7	377.2	365.2	10.0	1/30/2018
PZ-50D ^[7]	Downgradient	Biotite Gneiss	1161588.9	2562381.2	33.190410	-83.297817	378.3	380.86	106.0	282.3	272.3	288.6	284.4	272.3	10.0	10/8/2020
PZ-51S	Downgradient	Residuum	1161613.4	2562433.1	33.190474	-83.297644	377.9	380.27	45.4	337.9	332.9	344.7	342.2	332.5	5.0	8/1/2018
PZ-51I ^[7]	Downgradient	Saprolilte/TWR/Biotite Gneiss	1161631.1	2562439.3	33.190523	-83.297623	378.0	380.52	65.0	323.1	313.1	328.8	325.5	313.0	10.0	8/1/2018
PZ-51D	Downgradient	Biotite Gneiss	1161639.8	2562434.0	33.190548	-83.297643	378.1	380.75	106.0	282.1	272.1	288.6	284.5	272.1	10.0	10/9/2020
PZ-52D	Downgradient	Biotite Gneiss	1168053.9	2554051.7	33.208362	-83.324870	414.3	417.03	59.5	364.8	354.8	371.3	367.3	354.8	10.0	5/14/2020
PZ-53D	Downgradient	Saprolilte/TWR/Biotite Gneiss	1164393.8	2554984.3	33.198283	-83.321917	431.6	434.68	139.4	302.2	292.2	310.6	305.0	292.2	10.0	5/17/2020
PZ-54	Downgradient	Saprolite/TWR	1164828.7	2555458.3	33.199468	-83.320356	440.8	443.86	52.0	398.8	388.8	404.3	400.8	388.8	10.0	5/15/2020
PZ-55	Downgradient	Saprolite/TWR/Biotite Gneiss	1163208.0	2554783.6	33.195029	-83.322604	450.2	453.07	49.3	410.9	400.9	416.2	413.8	400.9	10.0	5/19/2020
PZ-56	Downgradient	Saprolilte/TWR/Biotite Gneiss	1162965.1	2554086.3	33.194377	-83.324890	416.2	418.84	29.3	396.9	386.9	402.7	399.2	386.9	10.0	5/20/2020
PB-1S	Downgradient	Saprolite/PWR	1164910.5	2556355.9	33.199673	-83.317420	400.4	403.16	38.0	372.4	362.4	377.4	374.4	362.4	10.0	1/22/2019
PB-2D	Downgradient	Gneiss	1164853.6	2556914.2	33.199504	-83.315596	414.9	416.71	57.0	367.9	357.9	374.9	370.9	357.9	10.0	12/4/2018
PB-4S	Downgradient	Saprolite/PWR	1164335.1	2556069.2	33.198098	-83.318372	409.3	411.15	48.0	371.3	361.3	378.3	372.3	361.3	10.0	1/16/2019
PB-4D	Downgradient	Gneiss	1164339.6	2556060.7	33.198110	-83.318400	409.0	412.12	114.5	304.5	294.5	311.0	306.0	294.5	10.0	1/16/2019
PB-7S	Downgradient	Saprolite/PWR	1163831.3	2556186.2	33.196710	-83.318003	399.7	402.88	33.0	376.7	366.7	381.7	378.7	366.7	10.0	1/14/2019
PB-8S	Downgradient	Saprolite/PWR	1163018.2	2556792.3	33.194463	-83.316044	398.6	401.82	35.0	373.6	363.6	378.6	375.6	363.6	10.0	1/8/2018
PB-8D	Downgradient	Gneiss	1163024.4	2556786.7	33.194480	-83.316062	398.2	401.74	106.0	304.2	294.2	307.2	305.2	292.2	10.0	1/8/2018
PB-10S	Downgradient	Saprolite	1163588.9	2558551.2	33.195992	-83.310279	397.6	400.91	33.0	374.6	364.6	379.6	376.6	364.6	10.0	1/16/2019
PB-10D	Downgradient	Gneiss	1163593.4	2558546.7	33.196004	-83.310294	397.5	400.31	85.0	322.5	312.5	328.5	324.5	312.5	10.0	1/16/2019
PB-13S	Downgradient	Saprolite	1162084.4	2556626.1	33.191900	-83.316612	370.8	373.31	50.0	330.8	320.8	335.8	332.8	320.8	10.0	12/10/2018
PB-13D	Downgradient	Gneiss	1162084.5	2556638.8	33.191900	-83.316570	371.1	373.77	97.0	284.1	274.1	295.1	291.1	274.1	10.0	12/10/2018

- Notes:

 1. feet NAVD88 = feet North American Vertical Datum 1988 feet; NAD83 = North American Datum 1983

 2. feet bgs = feet below ground surface

 3. TWR = Transitionally Weathered Rock

- 4. NA = Not applicable
- 5. Piezometers may be used to collect waters levels. They are not considered compliance monitoring locations.
 6. Wells resurveyed by Metro Engineering & Surveying Co., Inc between June-July 2020
- 7. AP-BCD Assessment Well

TABLE 3A ANALYTICAL DATA SUMMARY Surface Water - October 2020

Georgia Power - Plant Branch Milledgeville, Georgia

			SURFACE WATER S	SAMPLE LOCATION	
Analyte	Units	LR-1	LR+8	LR+9	LR+10
		10/22/2020	10/22/2020	10/22/2020	10/22/2020
Appendix III					
Boron, Total	mg/L	<0.040	<0.040	<0.040	<0.040
Calcium, Total	mg/L	3.7	4.2	4.3	4.5
Chloride, Total	mg/L	3.3	3.7	3.8	4.0
Fluoride, Total	mg/L	<0.10	<0.10	<0.10	<0.10
Sulfate, Total	mg/L	2.1	2.5	2.6	2.6
рН	S.U.	7.1	7.2	7.2	7.1
Total Dissolved Solids	mg/L	59	60	57	59
Appendix IV					
Cadmium, Total	mg/L	<0.00050	<0.00050	<0.00050	<0.00050
Cobalt, Total	mg/L	<0.0050	<0.0050	<0.0050	<0.0050
Other					
Sodium , Total	mg/L	4.4	4.9	4.9	5.1
Magnesium, Total	mg/L	2.0	2.1	2.1	2.1
Potassium, Total	mg/L	2.7	2.8	2.9	2.8
Alkalinity, Bicarbonate (CaCO ₃)	mg/L	24.2	25.6	25.8	26.5
Alkalinity, Total (CaCO ₃)	mg/L	24.2	25.6	25.8	26.5

Notes:

mg/L = milligrams per Liter; S.U. = Standard Units

< = substance was not detected above the analytical reporting limit (RL). The value displayed is the RL.</p>

TABLE 3B ANALYTICAL DATA SUMMARY Surface Water - February 2021

Georgia Power - Plant Branch Milledgeville, Georgia

			SURFAC	E WATER SAMPLE LO	CATION	
Analyte	Units	LR-1	LR+8	LR+9	LR-9A	LR-10
		2/4/2021	2/4/2021	2/4/2021	2/4/2021	2/4/2021
Appendix III						
Boron, Total	mg/L	<0.040	<0.040	<0.040	<0.040	<0.040
Calcium, Total	mg/L	4.8	4.7	4.6	4.8	4.6
Chloride, Total	mg/L	3.7	3.8	3.8	3.7	4.3
Fluoride, Total	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Sulfate, Total	mg/L	2.8	3.2	3.2	3.4	3.3
рН	S.U.	7.24	7.21	7.32	7.24	7.34
Total Dissolved Solids	mg/L	70.0	52.0	76.0	59.0	49.0
Appendix IV						
Cadmium, Total	mg/L	<0.00012	<0.00012	<0.00012	<0.00012	<0.00012
Cobalt, Total	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Cations/Anions						
Sodium , Total	mg/L	4.5	4.4	4.4	4.4	4.7
Magnesium, Total	mg/L	2.2	2.1	2.1	2.2	2.0
Potassium, Total	mg/L	2.3	2.5	2.5	2.5	2.6
Alkalinity, Bicarbonate (CaCO ₃)	mg/L	25.8	24.3	24.2	24.9	24.6
Alkalinity, Total (CaCO3)	mg/L	25.8	24.3	24.2	24.9	24.6
Field Parameters						
Temperature	F	48.7	49.0	48.9	48.2	49.6
ORP	mV	167.3	163.6	163.7	166.1	164.3
Dissolved Oxygen	mg/L	11.00	10.72	10.92	10.53	11.30
Turbidity	NTU	23.4	27.3	27.7	32.0	18.8
Specific Conductance	mS/cm	0.072	0.071	0.072	0.071	0.074

Notes:

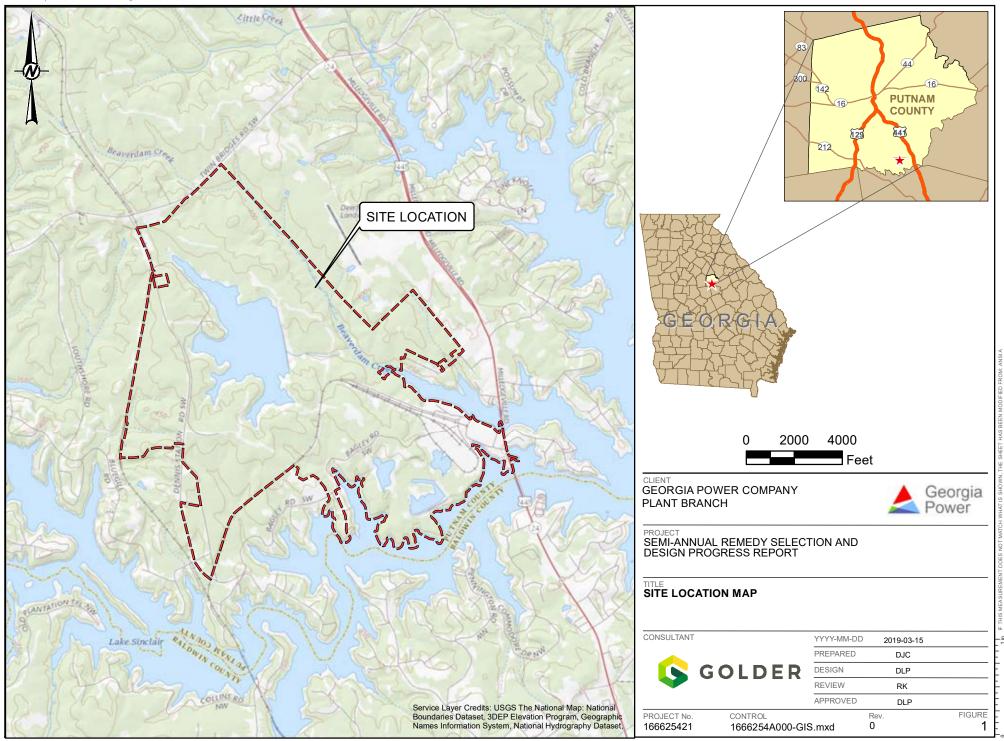
mg/L = milligrams per Liter; S.U. = Standard Units; F = Fahrenheit; mV = Millivolts; NTU = Nephelometric turbidity unit mS/cm = Millisiemens per centimeter

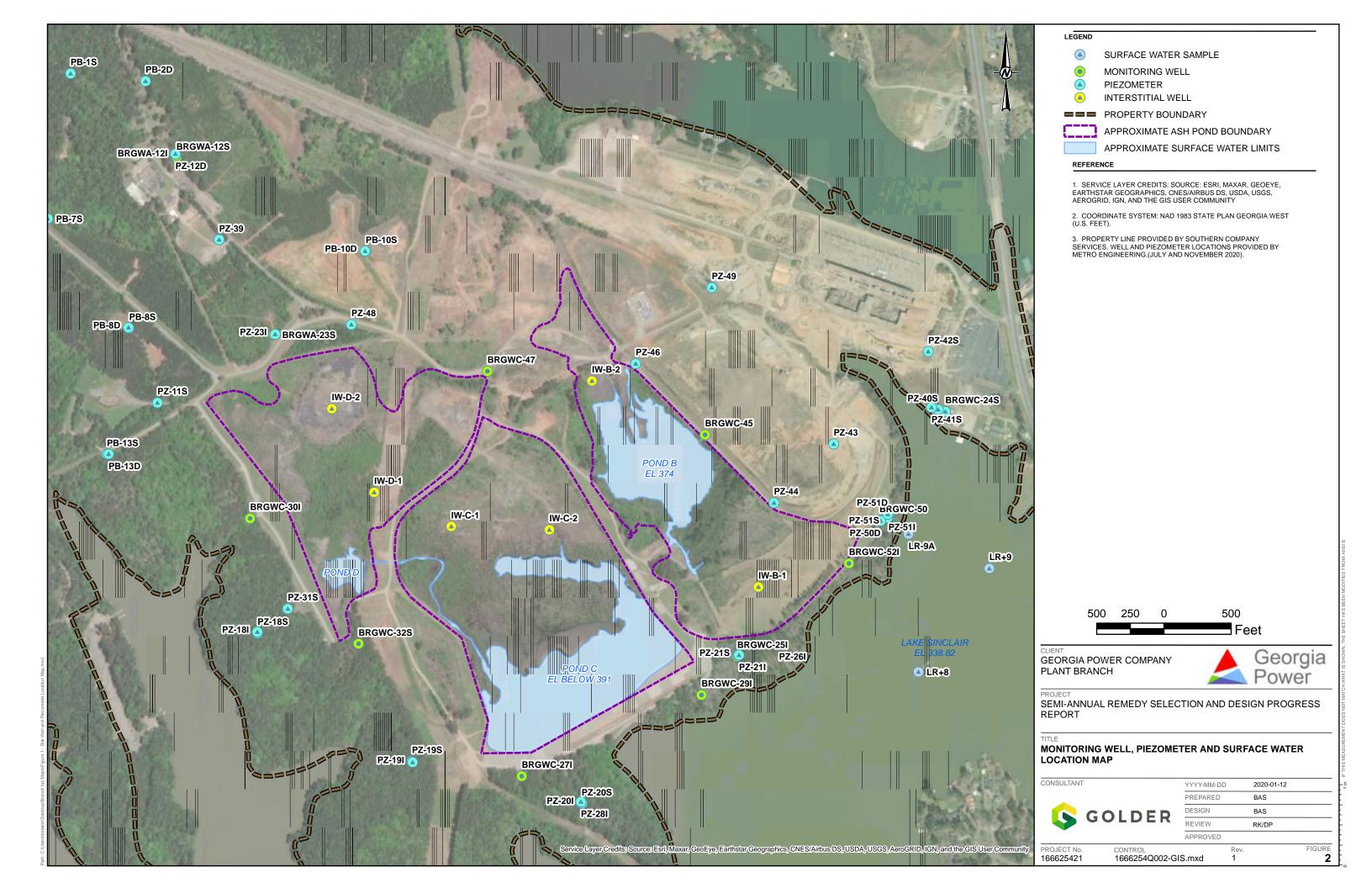
< = substance was not detected above the analytical reporting limit (RL). The value displayed is the RL.

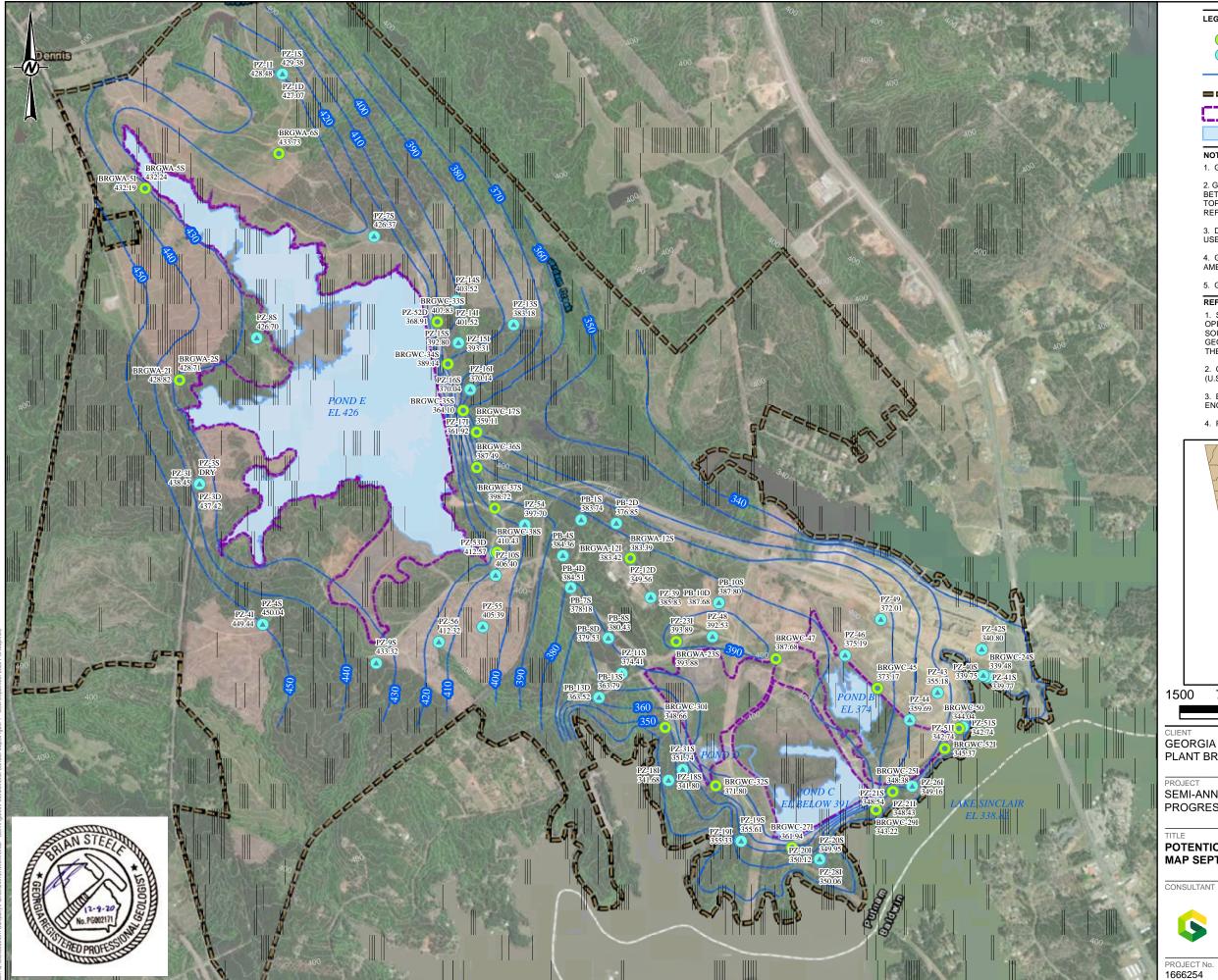
TABLE 4 PROPOSED ACM SUPPLEMENTAL DATA COLLECTION TASKS FOR 2021

Georgia Power – Plant Branch AP-BCD Milledgeville, Georgia

Data Collection Event	Applicable CMs	Applicability / Rationale	Field Component	Parameters of Interest (POI)	
Well Installation	ISI P&T ISS MNA	Evaluation of: Nature and extent of cobalt and cadmium near BRGWC-50.	Install 2 to 5 piezometers (40 – 80 feet deep) to evaluate the spatial concentrations of target constituents near BRGWC-50.	Characterize cobalt and cadmium concentrations spatially between the AP-B and well BRGWC-50.	
Groundwater Sampling	ISI P&T ISS MNA	Evaluation of: (i) attenuation mechanisms and rates and aquifer capacity for attenuation (ii) in situ conditions to establish evaluate geochemical injection options downgradient of unit.	Collect groundwater samples from existing well network currently sampled under the assessment monitoring program as well as additional site piezometers within migration pathway.	In addition to routine App III/IV parameters: total phosphorous, sulfide, iron, manganese, magnesium, sodium, potassium, total alkalinity, bicarbonate, dissolved organic carbon (DOC), nitrate/nitrite, and total hardness.	
Aquifer solids sampling (Collect/Submit archived soil/rock cores) as needed ISI P&T ISS MNA Evaluation of soils within aquifer matrix: (i) attenuation mechanisms and rates and aquifer capacity for attenuation (ii) mineralogy characterization.		matrix: (i) attenuation mechanisms and rates and aquifer capacity for attenuation	Collect samples from previously extracted soil cores from borehole PZ-51S.	Sequential extraction procedure (SEP) for analysis of cadmium (Cd) and cobalt (Co) to characterize Cd and Co in the aquifer solid matrix; total Cd, Co, aluminum, iron, manganese, silica concentrations; cation/anion exchange capacity.	
Slug tests ISI P&T ISS MNA Refine conceptual model with new subsurface data.		Conduct slug tests in select wells not previously tested. Wells include PZ-50D, PZ-51S, PZ-51I, PZ-51D, and PB-10.	Transmissivity, storage coefficient, hydraulic conductivity.		
Evaluation of the analytical results from specialized analysis of collected saturated unconsolidated aquifer matrix samples	ISI P&T ISS MNA	Evaluation of aquifer matrix for: (i) attenuation mechanisms and rates, and aquifer capacity for attenuation; and (ii) mineralogical characterization.	No Field Component: Aquifer matrix samples collected and submitted to the lab in May 2020.	Conceptually identify attenuation rates and aquifer capacity for Cd and Co. Evaluate long term stability of attenuation.	


Notes:


Applicable Corrective Measures (CM) Retained:


- ISI Geochemical Approaches (In-Situ Injection)
- P&T Hydraulic Containment (Pump and Treat)
- ISS In-situ Solidification/Stabilization
- MNA Monitored Natural Attenuation

Figures

LEGEND

MONITORING WELL PIEZOMETER

INFERRED POTENTIOMETRIC SURACE (NAVD88)

PROPERTY BOUNDARY

APPROXIMATE ASH POND BOUNDARY

APPROXIMATE SURFACE WATER LIMITS

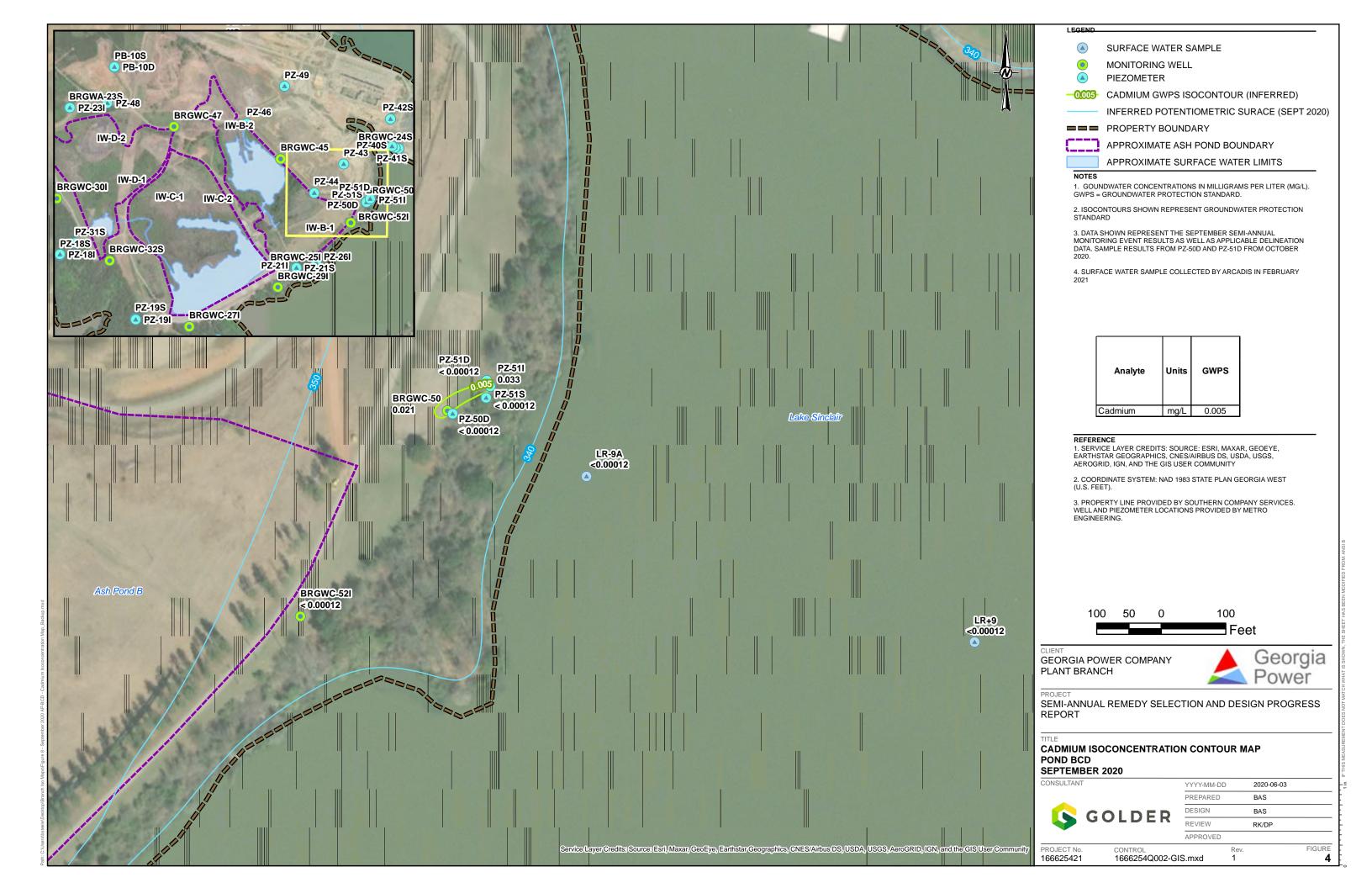
NOTES

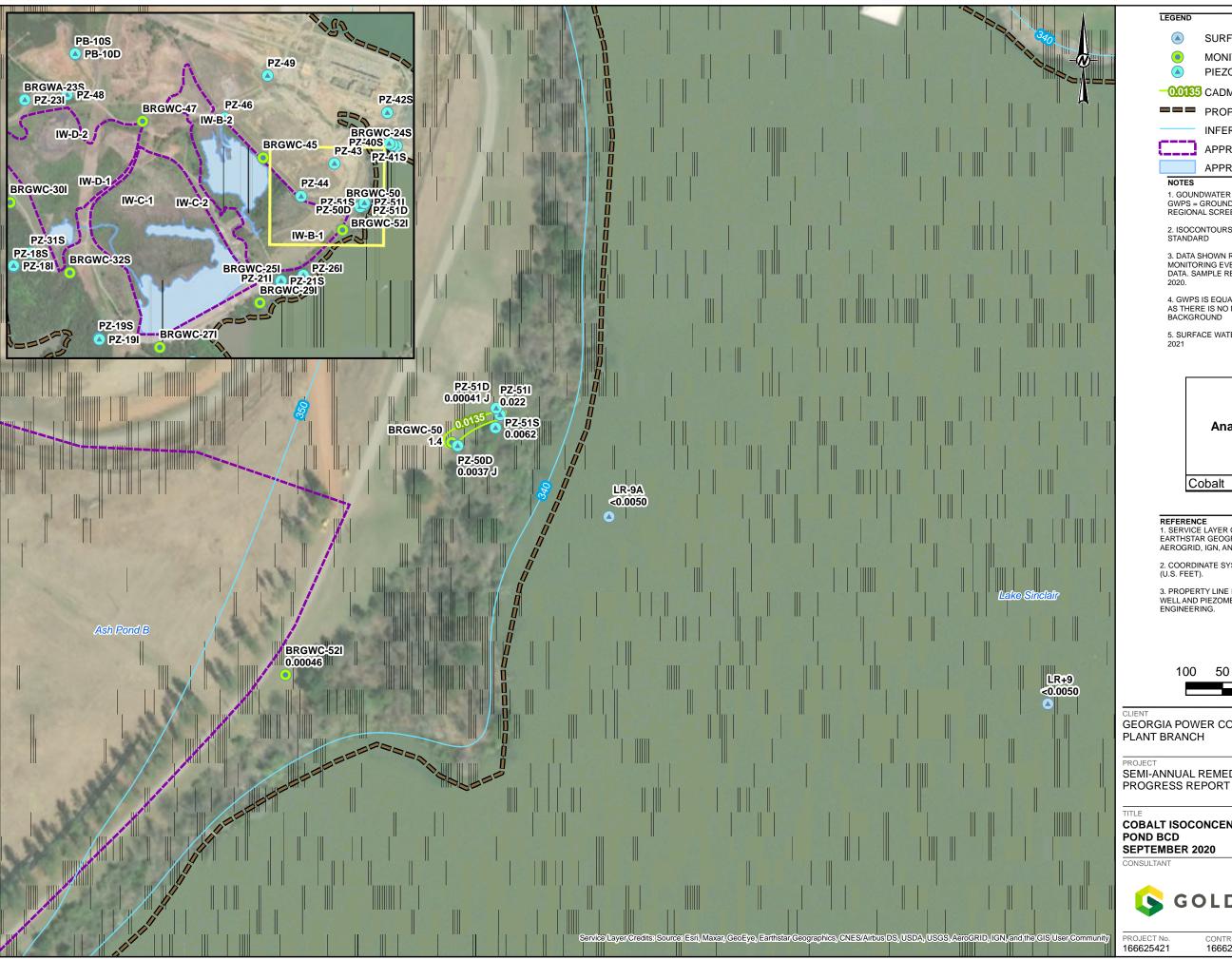
- 1. GROUNDWATER SURFACE CONTOUR INTERVAL = 10 FEET
- 2. GROUNDWATER CONTOURS BASED ON LINEAR INTERPOLATION BETWEEN AND EXTRAPOLATION FROM KNOWN DATA, AND TOPOGRAPHIC CONTOURS. THEREFORE, CONTOURS MAY NOT REFLECT ACTUAL CONDITIONS.
- 3. DEEP (D) AND INTERMEDIATE (I) WELL ELEVATIONS WERE NOT USED FOR GROUNDWATER CONTOURING.
- 4. GROUNDWATER ELEVATIONS DISPLAYED IN NAVD88=NORTH AMERICAN VERTICAL DATUM 88
- 5. GROUNDWATER ELEVATIONS RECORDED SEPTEMBER 14, 2020.

- SERVICE LAYER CREDITS: ESRI, HERE, GARMIN, (C)
 OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY
 SOURCE: ESRI, DIGITALGLOBE, GEOEYE, EARTHSTAR
 GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND
 THE GIS USER COMMUNITY
- 2. COORDINATE SYSTEM: NAD 1983 STATE PLAN GEORGIA WEST (U.S. FEET).
- 3. BORING/PIEZOMETER LOCATIONS PROVIDED BY METRO ENGINEERING & SURVEYING CO., INC. (JULY 2020).
- 4. PROPERTY LINE PROVIDED BY SOUTHERN COMPANY SERVICES.

GEORGIA POWER COMPANY PLANT BRANCH

Georgia Power


SEMI-ANNUAL REMEDY SELECTION AND DESIGN PROGRESS REPORT


POTENTIOMETRIC SURFACE CONTOUR MAP SEPTEMBER 14, 2020

YYYY-MM-DD	2020-09-25
PREPARED	SEB
DESIGN	ED
REVIEW	RK
APPROVED	DLP

1666254V001-GIS.mxd

FIGURE 3

SURFACE WATER SAMPLE

MONITORING WELL PIEZOMETER

-0.0135 CADMIUM GWPS ISOCONTOUR (INFERRED)

PROPERTY BOUNDARY

INFERRED POTENTIOMETRIC SURACE (SEPT 2020)

APPROXIMATE ASH POND BOUNDARY

APPROXIMATE SURFACE WATER LIMITS

1. GOUNDWATER CONCENTRATIONS IN MILLIGRAMS PER LITER (MG/L). GWPS = GROUNDWATER PROTECTION STANDARD. RSL = FEDERAL REGIONAL SCREENING LEVEL.

- 2. ISOCONTOURS SHOWN REPRESENT GROUNDWATER PROTECTION
- 3. DATA SHOWN REPRESENT THE SEPTEMBER SEMI-ANNUAL MONITORING EVENT RESULTS AS WELLAS APPLICABLE DELINEATION DATA. SAMPLE RESULTS FROM PZ-50D AND PZ-51D FROM OCTOBER
- 4. GWPS IS EQUAL TO SITE SPECIFIC BACKGROUND CONCENTRATION AS THERE IS NO MCL AND THE RSL IS BELOW SITE SPECIFIC BACKGROUND
- 5. SURFACE WATER SAMPLE COLLECTED BY ARCADIS IN FEBRUARY

Analyte	Units	GWPS
Cobalt	mg/L	0.0135

1. SERVICE LAYER CREDITS: SOURCE: ESRI, MAXAR, GEOEYE, EARTHSTAR GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND THE GIS USER COMMUNITY

2. COORDINATE SYSTEM: NAD 1983 STATE PLAN GEORGIA WEST

3. PROPERTY LINE PROVIDED BY SOUTHERN COMPANY SERVICES. WELL AND PIEZOMETER LOCATIONS PROVIDED BY METRO

GEORGIA POWER COMPANY

SEMI-ANNUAL REMEDY SELECTION AND DESIGN

COBALT ISOCONCENTRATION CONTOUR MAP

2020-10-08 PREPARED BAS BAS REVIEW RK/DP APPROVED

0

1666254Q002-GIS.mxd

FIGURE

APPENDIX A

Laboratory Analytical Results

ANALYTICAL REPORT

Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike Knoxville, TN 37921 Tel: (865)291-3000

Laboratory Job ID: 140-19131-1

Client Project/Site: SCS Site, Plant Branch

For:

Golder Associates Inc. 5170 Peachtree Road Building 100, Suite 300 Atlanta, Georgia 30341

Attn: Brian Steele

Authorized for release by: 6/25/2020 3:51:10 PM

Ryan Henry, Project Manager I

(865)291-3000

william.henry@testamericainc.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch Laboratory Job ID: 140-19131-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Sample Summary	7
Client Sample Results	8
Default Detection Limits	32
QC Sample Results	34
QC Association Summary	40
Lab Chronicle	49
Certification Summary	69
Method Summary	70
Chain of Custody	71

C

0

9

10

12

Definitions/Glossary

Client: Golder Associates Inc.

Job ID: 140-19131-1

Project/Site: SCS Site, Plant Branch

Qualifiers

Metals Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
*1	LCS/LCSD RPD exceeds control limits.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
L	A negative instrument reading had an absolute value greater than the reporting limit
01	

L	A negative instrument reading had an absolute value greater than the reporting limit
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

MPN MQL

ML

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

Minimum Level (Dioxin)

Most Probable Number

Method Quantitation Limit

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

6/25/2020

3

4

5

7

Q

10

12

Case Narrative

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch Job ID: 140-19131-1

Job ID: 140-19131-1

Laboratory: Eurofins TestAmerica, Knoxville

Narrative

Job Narrative 140-19131-1

Receipt

The samples were received on 5/20/2020 at 9:45am and arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.8° C.

Receipt Exceptions

The Field Sampler was not listed on the Chain of Custody.

Metals

7 Step Sequential Extraction Procedure

These soil samples were prepared and analyzed using Eurofins TestAmerica Knoxville standard operating procedure KNOX-MT-0008, "7 Step Sequential Extraction Procedure". SW-846 Method 6010B as incorporated in Eurofins TestAmerica Knoxville standard operating procedure KNOX-MT-0007 was used to perform the final instrument analyses.

An aliquot of each sample was sequentially extracted using the steps listed below:

- · Step 1 Exchangeable Fraction: A 5 gram aliquot of sample was extracted with 25 mL of 1M magnesium sulfate (MgSO4), centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- · Step 2 Carbonate Fraction: The sample residue from step 1 was extracted with 25 mL of 1M sodium acetate/acetic acid (NaOAc/HOAc) at pH 5, centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- · Step 3 Non-crystalline Materials Fraction: The sample residue from step 2 was extracted with 25 mL of 0.2M ammonium oxalate (pH 3), centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 4 Metal Hydroxide Fraction: The sample residue from step 3 was extracted with 25 mL of 1M hydroxylamine hydrochloride solution in 25% v/v acetic acid, centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- · Step 5 Organic-bound Fraction: The sample residue from step 4 was extracted three times with 25 mL of 5% sodium hypochlorite (NaClO) at pH 9.5, centrifuged and filtered. The resulting leachates were combined and 5 mL were digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- · Step 6 Acid/Sulfide Fraction: The sample residue from step 5 was extracted with 25 mL of a 3:1:2 v/v solution of HCI-HNO3-H2O, centrifuged and filtered. 5 mL of the resulting leachate was diluted to 50 mL with reagent water and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 7 Residual Fraction: A 1.0 g aliquot of the sample residue from step 6 was digested using HF, HNO3, HCl and H3BO3. The digestate was analyzed by ICP using method 6010B. Results are reported in mg/kg on a dry weight basis.

In addition, a 1.0 g aliquot of the original sample was digested using HF, HNO3, HCl and H3BO3. The digestate was analyzed by ICP using method 6010B. Total metal results are reported in mg/kg on a dry weight basis.

Results were calculated using the following equation:

Result, μ g/g or mg/Kg, dry weight = (C × V × V1 × D) / (W × S × V2)

Where:

C = Concentration from instrument readout, μg/mL

V = Final volume of digestate, mL

D = Instrument dilution factor

V1 = Total volume of leachate, mL

V2 = Volume of leachate digested, mL

W = Wet weight of sample, g

Eurofins TestAmerica, Knoxville 6/25/2020

Page 4 of 72

9

4

5

6

0

9

10

12

Case Narrative

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Job ID: 140-19131-1

Job ID: 140-19131-1 (Continued)

Laboratory: Eurofins TestAmerica, Knoxville (Continued)

S = Percent solids/100

A method blank, laboratory control sample and laboratory control sample duplicate were prepared and analyzed with each SEP step in order to provide information about both the presence of elements of interest in the extraction solutions, and the recovery of elements of interest from the extraction solutions. Results outside of laboratory QC limits do not reflect out of control performance, but rather the effect of the extraction solution upon the analyte.

A laboratory sample duplicate was prepared and analyzed with each batch of samples in order to provide information regarding the reproducibility of the procedure.

SEP Report Notes:

The final report lists the results for each step, the result for the total digestion of the sample, and a sum of the results of steps 1 through 7 by element.

The digestates for steps 1, 2 and 5 were analyzed at a dilution due to instrument problems caused by the high solids content of the digestates. The reporting limits were adjusted accordingly.

Method 6010B: The following samples were diluted due to the presence of Iron which interferes with Cadmium and Selenium: BRGWA-2S(2) 39 FT BGS (140-19131-1), BRGWA-2S(2) 43 FT BGS (140-19131-2), BRGWA-5S(2) 38 FT BGS (140-19131-3), BRGWA-5S(2) 32 FT BGS (140-19131-4), BRGWA-6S(2) 42 FT BGS (140-19131-5), BRGWA-6S(2) 48 FT BGS (140-19131-6), PZ-52D 18 FT BGS (140-19131-7), BRGWC-50(2) 63-63.5 FT BGS (140-19131-10) and PZ-53D 30 FT BGS (140-19131-11). Elevated reporting limits (RLs) are provided.

Method 6010B: The following samples were diluted due to the presence of Manganese which interferes with Selenium: BRGWA-2S(2) 39 FT BGS (140-19131-1) and PZ-52D 18 FT BGS (140-19131-7). Elevated reporting limits (RLs) are provided.

Method 6010B: The following samples were diluted due to the presence of titanium which interferes with Cobalt: BRGWA-2S(2) 39 FT BGS (140-19131-1), BRGWA-2S(2) 43 FT BGS (140-19131-2), BRGWA-5S(2) 38 FT BGS (140-19131-3), BRGWA-5S(2) 32 FT BGS (140-19131-4), BRGWA-6S(2) 42 FT BGS (140-19131-5), BRGWA-6S(2) 48 FT BGS (140-19131-6), PZ-52D 18 FT BGS (140-19131-7), PZ-52D 24-25 FT BGS (140-19131-8), BRGWC-50(2) 59 FT BGS (140-19131-9), BRGWC-50(2) 63-63.5 FT BGS (140-19131-10), PZ-53D 30 FT BGS (140-19131-11) and PZ-53D 36 FT BGS (140-19131-12). Elevated reporting limits (RLs) are provided.

Method 6010B: The following samples were diluted to bring the concentration of target analyte, aluminum, within the calibration range: BRGWA-2S(2) 39 FT BGS (140-19131-1), BRGWA-2S(2) 43 FT BGS (140-19131-2), BRGWA-5S(2) 38 FT BGS (140-19131-3), BRGWA-5S(2) 32 FT BGS (140-19131-4), BRGWA-6S(2) 42 FT BGS (140-19131-5), BRGWA-6S(2) 48 FT BGS (140-19131-6), PZ-52D 18 FT BGS (140-19131-7), PZ-52D 24-25 FT BGS (140-19131-8), BRGWC-50(2) 59 FT BGS (140-19131-9), BRGWC-50(2) 63-63.5 FT BGS (140-19131-10), PZ-53D 30 FT BGS (140-19131-11) and PZ-53D 36 FT BGS (140-19131-12). Elevated reporting limits (RLs) are provided.

Method 6010B: Due to sample matrix effect on the internal standard (ISTD), a dilution was required for the following samples: BRGWA-6S(2) 42 FT BGS (140-19131-5) and BRGWC-50(2) 63-63.5 FT BGS (140-19131-10).

Method 6010B SEP: The following sample was diluted due to the presence of silicon which interferes with Selenium: BRGWA-2S(2) 39 FT BGS (140-19131-1). Elevated reporting limits (RLs) are provided.

Method 6010B SEP: The following samples were diluted due to the nature of the sample matrix: BRGWA-2S(2) 39 FT BGS (140-19131-1), BRGWA-2S(2) 43 FT BGS (140-19131-2), BRGWA-5S(2) 38 FT BGS (140-19131-3), BRGWA-5S(2) 32 FT BGS (140-19131-4), BRGWA-6S(2) 42 FT BGS (140-19131-5), BRGWA-6S(2) 48 FT BGS (140-19131-6), PZ-52D 18 FT BGS (140-19131-7), PZ-52D 24-25 FT BGS (140-19131-8), BRGWC-50(2) 59 FT BGS (140-19131-9), BRGWC-50(2) 63-63.5 FT BGS (140-19131-10), PZ-53D 30 FT BGS (140-19131-11) and PZ-53D 36 FT BGS (140-19131-12). Elevated reporting limits (RLs) are provided for aluminum. The serial dilution analysis indicated a matrix issue with the results for aluminum increasing with dilution.

4

E

0

8

10

11

12

1,

Case Narrative

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch Job ID: 140-19131-1

Job ID: 140-19131-1 (Continued)

Laboratory: Eurofins TestAmerica, Knoxville (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

% Moisture: The samples were analyzed for percent moisture using SOP number KNOX-WC-0012 (based on Modified MCAWW 160.3 and SM2540B and on the percent moisture determinations described in methods 3540C and 3550B).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

0

9

- 10

15

Sample Summary

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch Job ID: 140-19131-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
140-19131-1	BRGWA-2S(2) 39 FT BGS	Solid	05/13/20 14:30	05/20/20 09:45	
140-19131-2	BRGWA-2S(2) 43 FT BGS	Solid	05/13/20 14:40	05/20/20 09:45	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Solid	05/14/20 07:40	05/20/20 09:45	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Solid	05/14/20 07:50	05/20/20 09:45	
140-19131-5	BRGWA-6S(2) 42 FT BGS	Solid	05/14/20 12:05	05/20/20 09:45	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Solid	05/14/20 12:15	05/20/20 09:45	
140-19131-7	PZ-52D 18 FT BGS	Solid	05/14/20 14:40	05/20/20 09:45	
140-19131-8	PZ-52D 24-25 FT BGS	Solid	05/14/20 14:50	05/20/20 09:45	
140-19131-9	BRGWC-50(2) 59 FT BGS	Solid	05/15/20 09:00	05/20/20 09:45	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Solid	05/15/20 09:20	05/20/20 09:45	
140-19131-11	PZ-53D 30 FT BGS	Solid	05/16/20 16:15	05/20/20 09:45	
140-19131-12	PZ-53D 36 FT BGS	Solid	05/16/20 16:25	05/20/20 09:45	

5

5

7

8

9

10

11

Client: Golder Associates Inc. Job ID: 140-19131-1 Project/Site: SCS Site, Plant Branch

Client Sample ID: BRGWA-2S(2) 39 FT BGS

Lab Sample ID: 140-19131-1 Date Collected: 05/13/20 14:30 **Matrix: Solid** Date Received: 05/20/20 09:45 Percent Solids: 71.0

Method: 6010B SEP - SI		-			112	_	.		D.: -
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Aluminum	ND		56		mg/Kg	<u>.</u>	06/02/20 08:00	06/16/20 12:21	4
Beryllium	ND		1.4		mg/Kg	.	06/02/20 08:00	06/16/20 12:21	4
Cadmium	ND		1.4		mg/Kg	, .	06/02/20 08:00	06/16/20 12:21	4
Cobalt	ND		14		mg/Kg	÷.	06/02/20 08:00	06/16/20 12:21	4
Iron	ND		28		mg/Kg	₽	06/02/20 08:00	06/16/20 12:21	4
Manganese	0.37	J	4.2		mg/Kg	☼	06/02/20 08:00	06/16/20 12:21	4
Selenium	ND		2.8	0.96	mg/Kg	≎	06/02/20 08:00	06/16/20 12:21	4
Method: 6010B SEP - SI		•				_			
Analyte		Qualifier	RL —	MDL		D	Prepared	Analyzed	Dil Fac
Aluminum	8.9	J *	42		mg/Kg	<u>.</u>	06/03/20 08:00	06/16/20 14:15	3
Beryllium	ND	*	1.1		mg/Kg		06/03/20 08:00	06/16/20 14:15	3
Cadmium	ND		1.1		mg/Kg		06/03/20 08:00	06/16/20 14:15	3
Cobalt	ND		11		mg/Kg	:D		06/16/20 14:15	3
Iron	ND	*	21		mg/Kg	₩.	06/03/20 08:00	06/16/20 14:15	3
Manganese	ND		3.2		mg/Kg	<u>.</u>	06/03/20 08:00	06/16/20 14:15	3
Selenium	ND		2.1	0.72	mg/Kg	₽	06/03/20 08:00	06/16/20 14:15	3
Method: 6010B SEP - SI	• • • • • • • • • • • • • • • • • • • •	•				_			5
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	270		14	3.0	mg/Kg	*	06/08/20 08:00	06/18/20 12:10	1
Beryllium	0.16		0.35	0.021	mg/Kg	₩.	06/08/20 08:00	06/18/20 12:10	1
Cadmium	0.016	JB*	0.35		mg/Kg	<u>-</u>	06/08/20 08:00	06/18/20 12:10	1
Cobalt	14		3.5		mg/Kg	.		06/18/20 12:10	1
Iron	2000		7.0	4.1	0 0	.		06/18/20 12:10	1
Manganese	320	В	1.1		mg/Kg	.	06/08/20 08:00	06/18/20 12:10	1
Selenium	0.45	J	0.70	0.24	mg/Kg	☼	06/08/20 08:00	06/18/20 12:10	1
Method: 6010B SEP - SI	• • •	•				_			5
Analyte		Qualifier	RL —	MDL		_ D	Prepared	Analyzed	Dil Fac
Aluminum	1900		14		mg/Kg	<u>*</u>	06/10/20 08:00	06/18/20 14:04	1
Beryllium	0.77		0.35	0.023	mg/Kg	₩ ₩	06/10/20 08:00	06/18/20 14:04	1
Cadmium	ND		0.35		mg/Kg		06/10/20 08:00	06/18/20 14:04	1
Cobalt	6.5		3.5		mg/Kg	*		06/18/20 14:04	1
Iron	17000		7.0		mg/Kg	∵		06/18/20 14:04	1
Manganese	240		1.1		mg/Kg		06/10/20 08:00		1
Selenium	1.5	B *	0.70	0.66	mg/Kg	☼	06/10/20 08:00	06/18/20 14:04	1
Method: 6010B SEP - SI									
Analyte		Qualifier	RL —		Unit	_ D	Prepared	Analyzed	Dil Fac
Aluminum		* *1	210		mg/Kg	<u>*</u>	06/12/20 08:00	06/19/20 11:43	5
Beryllium	ND	*	5.3		mg/Kg	₩.	06/12/20 08:00	06/19/20 11:43	5
Cadmium	ND		5.3		mg/Kg	₩		06/19/20 11:43	5
Cobalt	ND		53		mg/Kg	☼		06/19/20 11:43	5
Iron	ND	* *1	110		mg/Kg	₩	06/12/20 08:00	06/19/20 11:43	5
Manganese	3.0	J *	16		mg/Kg	₩	06/12/20 08:00	06/19/20 11:43	5
Selenium	ND		11	3.7	mg/Kg		06/12/20 08:00	06/19/20 11:43	5
Method: 6010B SEP - SI	EP Metals (ICP) - S	Step 6							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
						- 7	00/40/00 00:00	00/40/00 40:00	

14

14000

Aluminum

2.3 mg/Kg

Eurofins TestAmerica, Knoxville

□ 06/12/20 08:00 □ 06/19/20 13:38

Page 8 of 72 6/25/2020

Client Sample Results

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Manganese

Selenium

Iron

Client Sample ID: BRGWA-2S(2) 39 FT BGS Lab Sample ID: 140-19131-1

Date Collected: 05/13/20 14:30 **Matrix: Solid** Date Received: 05/20/20 09:45 Percent Solids: 71.0

Method: 6010B SEP - SEP Analyte		Step 6 (Cont Qualifier	inued) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.29	J	0.35	0.017	mg/Kg	<u></u>	06/12/20 08:00	06/19/20 13:38	1
Cadmium	ND	L	0.35	0.015	mg/Kg	☼	06/12/20 08:00	06/19/20 13:38	1
Cobalt	8.3		7.0	0.13	mg/Kg	φ.	06/12/20 08:00	06/19/20 16:54	2
Iron	24000		7.0	4.1	mg/Kg	☼	06/12/20 08:00	06/19/20 13:38	1
Manganese	71		1.1	0.35	mg/Kg	☼	06/12/20 08:00	06/19/20 13:38	1
Selenium	0.79		0.70	0.24	mg/Kg		06/12/20 08:00	06/19/20 13:38	1
Method: 6010B SEP - SEP	Metals (ICP) - S	Step 7							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	52000		140	23	mg/Kg	₩	06/15/20 08:00	06/22/20 15:00	10
Beryllium	ND		0.35	0.011	mg/Kg	₩	06/15/20 08:00	06/22/20 13:18	1
Cadmium	0.21	J	1.8	0.077	mg/Kg	₩	06/15/20 08:00	06/22/20 16:27	5
Cobalt	8.1	J	18	0.18	mg/Kg	₩	06/15/20 08:00	06/22/20 16:27	5
Iron	39000		35	29	mg/Kg	₩	06/15/20 08:00	06/22/20 16:27	5
Manganese	290		1.1	0.15	mg/Kg	₩	06/15/20 08:00	06/22/20 13:18	1
Selenium	ND		3.5	1.2	mg/Kg	≎	06/15/20 08:00	06/22/20 16:27	5
- -		Sum of Step		1.2	mg/Kg	⊅	06/15/20 08:00	06/22/20 16:27	5
Method: 6010B SEP - SEP	Metals (ICP) - S	Sum of Step Qualifier		MDL	Unit	D	06/15/20 08:00 Prepared	06/22/20 16:27 Analyzed	5 Dil Fac
Method: 6010B SEP - SEP Analyte	Metals (ICP) - S		s 1-7	MDL 1.6	Unit mg/Kg				
Method: 6010B SEP - SEP Analyte Aluminum	Metals (ICP) - S		s 1-7 RL	MDL	Unit mg/Kg			Analyzed	Dil Fac
Method: 6010B SEP - SEP Analyte Aluminum Beryllium	Metals (ICP) - S Result 69000	Qualifier	RL 10	MDL 1.6 0.0075	Unit mg/Kg			Analyzed 06/25/20 11:53	Dil Fac
Method: 6010B SEP - SEP Analyte Aluminum Beryllium Cadmium	Metals (ICP) - 9 Result 69000 1.2	Qualifier	S 1-7 RL 10 0.25	MDL 1.6 0.0075 0.011	Unit mg/Kg mg/Kg			Analyzed 06/25/20 11:53 06/25/20 11:53	Dil Fac
Method: 6010B SEP - SEP Analyte Aluminum Beryllium Cadmium Cobalt	Metals (ICP) - 9 Result 69000 1.2 0.22	Qualifier	S 1-7 RL 10 0.25 0.25	MDL 1.6 0.0075 0.011 0.023	Unit mg/Kg mg/Kg mg/Kg			Analyzed 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	Dil Fac
Method: 6010B SEP - SEP Analyte Aluminum Beryllium Cadmium Cobalt	Metals (ICP) - 3 Result 69000 1.2 0.22	Qualifier	S 1-7 RL 10 0.25 0.25 2.5	MDL 1.6 0.0075 0.011 0.023 4.1	Unit mg/Kg mg/Kg mg/Kg mg/Kg			Analyzed 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	Dil Fac 1 1 1
Method: 6010B SEP - SEP Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese Selenium	Metals (ICP) - 9 Result 69000 1.2 0.22 36 82000	Qualifier	S 1-7 RL 10 0.25 0.25 2.5 5.0	MDL 1.6 0.0075 0.011 0.023 4.1 0.052	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg			Analyzed 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	Dil Fac 1 1 1 1
Method: 6010B SEP - SEP Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese Selenium Method: 6010B - SEP Meta	Metals (ICP) - 9 Result 69000 1.2 0.22 36 82000 930 2.8 als (ICP) - Total	Qualifier J	s 1-7 RL 10 0.25 0.25 2.5 5.0 0.75 0.50	MDL 1.6 0.0075 0.011 0.023 4.1 0.052 0.17	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D		Analyzed 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	Dil Fac
Method: 6010B SEP - SEP Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese Selenium Method: 6010B - SEP Meta Analyte	Metals (ICP) - S Result 69000 1.2 0.22 36 82000 930 2.8 als (ICP) - Total Result	Qualifier	s 1-7 RL 10 0.25 0.25 2.5 5.0 0.75 0.50 RL	MDL 1.6 0.0075 0.011 0.023 4.1 0.052 0.17	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared	Analyzed 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	Dil Face 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Method: 6010B SEP - SEP Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese Selenium Method: 6010B - SEP Meta Analyte	Metals (ICP) - 9 Result 69000 1.2 0.22 36 82000 930 2.8 als (ICP) - Total Result 92000	Qualifier J	S 1-7 RL 10 0.25 0.25 2.5 5.0 0.75 0.50 RL 140	MDL 1.6 0.0075 0.011 0.023 4.1 0.052 0.17 MDL 23	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared Prepared 05/29/20 08:00	Analyzed 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	Dil Face 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Method: 6010B SEP - SEP Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese Selenium Method: 6010B - SEP Meta Analyte Aluminum	Metals (ICP) - S Result 69000 1.2 0.22 36 82000 930 2.8 als (ICP) - Total Result	Qualifier J	s 1-7 RL 10 0.25 0.25 2.5 5.0 0.75 0.50 RL	MDL 1.6 0.0075 0.011 0.023 4.1 0.052 0.17 MDL 23 0.011	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared	Analyzed 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	Dil Fac
Method: 6010B SEP - SEP Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese Selenium	Metals (ICP) - 9 Result 69000 1.2 0.22 36 82000 930 2.8 als (ICP) - Total Result 92000	Qualifier J Qualifier	S 1-7 RL 10 0.25 0.25 2.5 5.0 0.75 0.50 RL 140	MDL 1.6 0.0075 0.011 0.023 4.1 0.052 0.17 MDL 23 0.011 0.15	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared Prepared 05/29/20 08:00	Analyzed 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

70

2.1

7.0

58 mg/Kg

0.31 mg/Kg

2.4 mg/Kg

97000

1700

3.2 J

6/25/2020

© 05/29/20 08:00 06/23/20 14:27

☼ 05/29/20 08:00 06/23/20 16:04

© 05/29/20 08:00 06/23/20 14:27

10

2

10

Job ID: 140-19131-1

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Date Collected: 05/13/20 14:40

Date Received: 05/20/20 09:45

Client Sample ID: BRGWA-2S(2) 43 FT BGS

Lab Sample ID: 140-19131-2

Matrix: Solid

Percent Solids: 75.0

Job ID: 140-19131-1

Analyte	Result Qua	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	53	8.5	mg/Kg	<u> </u>	06/02/20 08:00	06/16/20 12:26	4
Beryllium	ND	1.3	0.41	mg/Kg	₩	06/02/20 08:00	06/16/20 12:26	4
Cadmium	ND	1.3	0.085	mg/Kg	☼	06/02/20 08:00	06/16/20 12:26	4
Cobalt	ND	13	0.24	mg/Kg	₩.	06/02/20 08:00	06/16/20 12:26	4
Iron	ND	27	15	mg/Kg	₩	06/02/20 08:00	06/16/20 12:26	4
Manganese	0.80 J	4.0	0.17	mg/Kg	₩	06/02/20 08:00	06/16/20 12:26	4
Selenium	ND	2.7	0.91	mg/Kg	.	06/02/20 08:00	06/16/20 12:26	4

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	7.6	J *	40	6.4	mg/Kg	<u> </u>	06/03/20 08:00	06/16/20 14:20	3
Beryllium	ND ³	*	1.0	0.064	mg/Kg	☆	06/03/20 08:00	06/16/20 14:20	3
Cadmium	ND		1.0	0.044	mg/Kg	₩	06/03/20 08:00	06/16/20 14:20	3
Cobalt	ND		10	0.25	mg/Kg	₩	06/03/20 08:00	06/16/20 14:20	3
Iron	ND 3	*	20	12	mg/Kg	₩	06/03/20 08:00	06/16/20 14:20	3
Manganese	ND		3.0	1.1	mg/Kg	₩	06/03/20 08:00	06/16/20 14:20	3
Selenium	ND		2.0	0.68	mg/Kg	₩.	06/03/20 08:00	06/16/20 14:20	3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	290		13	2.8	mg/Kg	₩	06/08/20 08:00	06/18/20 12:15	1
Beryllium	0.15	J	0.33	0.020	mg/Kg	☼	06/08/20 08:00	06/18/20 12:15	1
Cadmium	ND	*	0.33	0.015	mg/Kg	₩	06/08/20 08:00	06/18/20 12:15	1
Cobalt	14		3.3	0.060	mg/Kg	₽	06/08/20 08:00	06/18/20 12:15	1
Iron	1100		6.7	3.9	mg/Kg	☼	06/08/20 08:00	06/18/20 12:15	1
Manganese	94	В	1.0	0.036	mg/Kg	₩	06/08/20 08:00	06/18/20 12:15	1
Selenium	0.38	J	0.67	0.23	mg/Kg	₩	06/08/20 08:00	06/18/20 12:15	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2400		13	2.1	mg/Kg	<u> </u>	06/10/20 08:00	06/18/20 14:10	1
Beryllium	0.47		0.33	0.021	mg/Kg	₩	06/10/20 08:00	06/18/20 14:10	1
Cadmium	ND		0.33	0.015	mg/Kg	₩	06/10/20 08:00	06/18/20 14:10	1
Cobalt	13		3.3	0.071	mg/Kg	₩.	06/10/20 08:00	06/18/20 14:10	1
Iron	10000		6.7	3.9	mg/Kg	₩	06/10/20 08:00	06/18/20 14:10	1
Manganese	89		1.0	0.17	mg/Kg	₩	06/10/20 08:00	06/18/20 14:10	1
Selenium	1.1	B *	0.67	0.63	mg/Kg	ф.	06/10/20 08:00	06/18/20 14:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	240	* *1	200	31	mg/Kg	<u> </u>	06/12/20 08:00	06/19/20 11:48	5
Beryllium	ND	*	5.0	0.42	mg/Kg	☼	06/12/20 08:00	06/19/20 11:48	5
Cadmium	ND		5.0	0.21	mg/Kg	☼	06/12/20 08:00	06/19/20 11:48	5
Cobalt	ND	*	50	0.80	mg/Kg	φ.	06/12/20 08:00	06/19/20 11:48	5
Iron	ND	* *1	100	59	mg/Kg	☼	06/12/20 08:00	06/19/20 11:48	5
Manganese	ND	*	15	2.5	mg/Kg	₩	06/12/20 08:00	06/19/20 11:48	5
Selenium	4.2		10	3.5	mg/Kg	*	06/12/20 08:00	06/19/20 11:48	5

Method: 6010B SEP - SEP Met	als (ICP) - Step 6							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	15000	13	2.1	mg/Kg	\	06/12/20 08:00	06/19/20 13:43	1

Eurofins TestAmerica, Knoxville

Client Sample Results

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Lab Sample ID: 140-19131-2

Matrix: Solid

Percent Solids: 75.0

Job ID: 140-19131-1

Client Sample ID: BRGWA-2S(2) 43 FT BGS	Lab Sample ID
Date Collected: 05/13/20 14:40	•

Date Received: 05/20/20 09:45

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.16 J	0.33	0.016	mg/Kg	<u> </u>	06/12/20 08:00	06/19/20 13:43	1
Cadmium	ND	0.33	0.015	mg/Kg	₩	06/12/20 08:00	06/19/20 13:43	1
Cobalt	5.2	3.3	0.061	mg/Kg	₩	06/12/20 08:00	06/19/20 13:43	1
Iron	15000	6.7	3.9	mg/Kg	₩	06/12/20 08:00	06/19/20 13:43	1
Manganese	32	1.0	0.33	mg/Kg	₩	06/12/20 08:00	06/19/20 13:43	1
Selenium	0.64 J	0.67	0.23	mg/Kg	₩.	06/12/20 08:00	06/19/20 13:43	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	36000		130	21	mg/Kg	<u> </u>	06/15/20 08:00	06/22/20 15:05	10
Beryllium	ND		0.33	0.010	mg/Kg	₩	06/15/20 08:00	06/22/20 13:23	1
Cadmium	0.59	J	1.7	0.073	mg/Kg	₩	06/15/20 08:00	06/22/20 16:32	5
Cobalt	28	J	33	0.35	mg/Kg		06/15/20 08:00	06/22/20 15:05	10
Iron	71000		33	27	mg/Kg	₩	06/15/20 08:00	06/22/20 16:32	5
Manganese	840		1.0	0.15	mg/Kg	₩	06/15/20 08:00	06/22/20 13:23	1
Selenium	3.0	J	3.3	1.1	mg/Kg	₩.	06/15/20 08:00	06/22/20 16:32	5

Analyte	Result Qualifi	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	55000	10	1.6	mg/Kg			06/25/20 11:53	1
Beryllium	0.78	0.25	0.0075	mg/Kg			06/25/20 11:53	1
Cadmium	0.59	0.25	0.011	mg/Kg			06/25/20 11:53	1
Cobalt	60	2.5	0.023	mg/Kg			06/25/20 11:53	1
Iron	97000	5.0	4.1	mg/Kg			06/25/20 11:53	1
Manganese	1100	0.75	0.052	mg/Kg			06/25/20 11:53	1
Selenium	9.4	0.50	0.17	mg/Kg			06/25/20 11:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	80000		130	21	mg/Kg	<u> </u>	05/29/20 08:00	06/23/20 14:32	10
Beryllium	0.46		0.33	0.010	mg/Kg	₩	05/29/20 08:00	06/23/20 12:49	1
Cadmium	1.6	J	3.3	0.15	mg/Kg	₩	05/29/20 08:00	06/23/20 14:32	10
Cobalt	54	J	67	0.69	mg/Kg	₽	05/29/20 08:00	06/23/20 17:29	20
Iron	98000		67	55	mg/Kg	₩	05/29/20 08:00	06/23/20 14:32	10
Manganese	840		1.0	0.15	mg/Kg	₩	05/29/20 08:00	06/23/20 12:49	1
Selenium	3.9	J	6.7	2.3	mg/Kg	.	05/29/20 08:00	06/23/20 14:32	10

2

4

6

8

9

11

12

Ц

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Iron

Manganese Selenium

Client Sample ID: BRGWA-5S(2) 38 FT BGS

Date Collected: 05/14/20 07:40 Date Received: 05/20/20 09:45

ND *

ND

0.72 J

Lab Sample ID: 140-19131-3 **Matrix: Solid**

© 06/03/20 08:00 06/16/20 14:25

© 06/03/20 08:00 06/16/20 14:25

© 06/03/20 08:00 06/16/20 14:25

Percent Solids: 84.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		48	7.6	mg/Kg	<u> </u>	06/02/20 08:00	06/16/20 12:31	4
Beryllium	ND		1.2	0.37	mg/Kg	₩	06/02/20 08:00	06/16/20 12:31	4
Cadmium	ND		1.2	0.076	mg/Kg	☼	06/02/20 08:00	06/16/20 12:31	4
Cobalt	ND		12	0.21	mg/Kg	φ.	06/02/20 08:00	06/16/20 12:31	4
Iron	ND		24	14	mg/Kg	☼	06/02/20 08:00	06/16/20 12:31	4
Manganese	0.44	J	3.6	0.15	mg/Kg	☼	06/02/20 08:00	06/16/20 12:31	4
Selenium	ND		2.4	0.81	mg/Kg		06/02/20 08:00	06/16/20 12:31	4
Method: 6010B SEP -	SEP Metals (ICP) -	Step 2							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Aluminum		Qualifier	RL 36		Unit mg/Kg	— D	Prepared 06/03/20 08:00		Dil Fac
		J *		5.7		— D ☆		06/16/20 14:25	
Aluminum	6.2	J *	36	5.7 0.057	mg/Kg	— D ☆ ☆	06/03/20 08:00 06/03/20 08:00	06/16/20 14:25	3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	130		12	2.5	mg/Kg	₩	06/08/20 08:00	06/18/20 12:20	1
Beryllium	0.073	J	0.30	0.018	mg/Kg	₩	06/08/20 08:00	06/18/20 12:20	1
Cadmium	0.023	J B *	0.30	0.013	mg/Kg	₩	06/08/20 08:00	06/18/20 12:20	1
Cobalt	6.0		3.0	0.053	mg/Kg	₽	06/08/20 08:00	06/18/20 12:20	1
Iron	410		5.9	3.4	mg/Kg	₩	06/08/20 08:00	06/18/20 12:20	1
Manganese	78	В	0.89	0.032	mg/Kg	₩	06/08/20 08:00	06/18/20 12:20	1
Selenium	ND		0.59	0.20	mg/Kg	₩.	06/08/20 08:00	06/18/20 12:20	1

18

2.7

1.8

10 mg/Kg

1.0 mg/Kg

0.61 mg/Kg

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1900		12	1.9	mg/Kg	₽	06/10/20 08:00	06/18/20 14:15	1
Beryllium	0.21	J	0.30	0.019	mg/Kg	☼	06/10/20 08:00	06/18/20 14:15	1
Cadmium	ND		0.30	0.013	mg/Kg	☼	06/10/20 08:00	06/18/20 14:15	1
Cobalt	2.9	J	3.0	0.063	mg/Kg	₩	06/10/20 08:00	06/18/20 14:15	1
Iron	4500		5.9	3.4	mg/Kg	☼	06/10/20 08:00	06/18/20 14:15	1
Manganese	40		0.89	0.15	mg/Kg	☼	06/10/20 08:00	06/18/20 14:15	1
Selenium	1.0	B *	0.59	0.56	mg/Kg	.	06/10/20 08:00	06/18/20 14:15	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	77	J * *1	180	28	mg/Kg	<u> </u>	06/12/20 08:00	06/19/20 11:53	5
Beryllium	ND	*	4.5	0.37	mg/Kg	₩	06/12/20 08:00	06/19/20 11:53	5
Cadmium	ND		4.5	0.19	mg/Kg	₩	06/12/20 08:00	06/19/20 11:53	5
Cobalt	ND	*	45	0.71	mg/Kg	₩.	06/12/20 08:00	06/19/20 11:53	5
Iron	ND	* *1	89	52	mg/Kg	₩	06/12/20 08:00	06/19/20 11:53	5
Manganese	ND	*	13	2.2	mg/Kg	₩	06/12/20 08:00	06/19/20 11:53	5
Selenium	ND		8.9	3.1	mg/Kg	ф	06/12/20 08:00	06/19/20 11:53	5

Method: 6010B SEP - SEP Met	als (ICP) - Step 6							
Analyte	Result Qualifier	RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	11000	12	1.9 r	mg/Kg		06/12/20 08:00	06/19/20 13:48	1

Eurofins TestAmerica, Knoxville

3

3

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: BRGWA-5S(2) 38 FT BGS

Lab Sample ID: 140-19131-3

Date Collected: 05/14/20 07:40

Date Received: 05/20/20 09:45

Matrix: Solid
Percent Solids: 84.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.075	J	0.30	0.014	mg/Kg	<u> </u>	06/12/20 08:00	06/19/20 13:48	1
Cadmium	ND		0.30	0.013	mg/Kg	₩	06/12/20 08:00	06/19/20 13:48	1
Cobalt	5.4		3.0	0.055	mg/Kg	₩.	06/12/20 08:00	06/19/20 13:48	1
Iron	11000		5.9	3.4	mg/Kg	₩	06/12/20 08:00	06/19/20 13:48	1
Manganese	42		0.89	0.30	mg/Kg	₩	06/12/20 08:00	06/19/20 13:48	1
Selenium	0.41	J	0.59	0.20	mg/Kg	₩	06/12/20 08:00	06/19/20 13:48	1
Method: 6010B SEP - S	SEP Metals (ICP) - S	Step 7							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	34000		120	19	mg/Kg	<u> </u>	06/15/20 08:00	06/22/20 15:10	10
Beryllium	0.33		0.30	0.0089	mg/Kg	₩	06/15/20 08:00	06/22/20 13:29	•
Cadmium	ND		1.5	0.065	mg/Kg	₩	06/15/20 08:00	06/22/20 16:37	Ę
Cobalt	15		15	0.15	mg/Kg	₩.	06/15/20 08:00	06/22/20 16:37	5
Iron	45000		30	24	mg/Kg	₩	06/15/20 08:00	06/22/20 16:37	5
Manganese	580		0.89	0.13	mg/Kg	₩	06/15/20 08:00	06/22/20 13:29	•
Selenium	1.2	J	3.0	1.0	mg/Kg	ф.	06/15/20 08:00	06/22/20 16:37	5
Method: 6010B SEP - S	SEP Metals (ICP) - S	Sum of Step	s 1-7						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	47000		10	1.6	mg/Kg			06/25/20 11:53	1
Beryllium	0.69		0.25	0.0075	mg/Kg			06/25/20 11:53	1
Cadmium	0.023	J	0.25	0.011	mg/Kg			06/25/20 11:53	1
Cobalt	30		2.5	0.023	mg/Kg			06/25/20 11:53	•
Iron	60000		5.0	4.1	mg/Kg			06/25/20 11:53	1
Manganese	740		0.75	0.052	mg/Kg			06/25/20 11:53	1
Selenium	3.4		0.50		mg/Kg			06/25/20 11:53	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	86000	120	19	mg/Kg	<u> </u>	05/29/20 08:00	06/23/20 14:37	10
Beryllium	0.60	0.30	0.0089	mg/Kg	₩	05/29/20 08:00	06/23/20 12:54	1
Cadmium	2.2	0.59	0.026	mg/Kg	₩	05/29/20 08:00	06/23/20 16:15	2
Cobalt	43	30	0.31	mg/Kg	φ.	05/29/20 08:00	06/23/20 14:37	10
Iron	56000	12	9.7	mg/Kg	₩	05/29/20 08:00	06/23/20 16:15	2
Manganese	750	0.89	0.13	mg/Kg	₩	05/29/20 08:00	06/23/20 12:54	1
Selenium	ND	1.2	0.40	mg/Kg		05/29/20 08:00	06/23/20 16:15	2

6/25/2020

Job ID: 140-19131-1

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: BRGWA-5S(2) 32 FT BGS

Date Collected: 05/14/20 07:50
Date Received: 05/20/20 09:45

Lab Sample ID: 140-19131-4

Matrix: Solid Percent Solids: 82.3

Analyte	EP Metals (ICP) - S	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND	— –	49		mg/Kg	— ğ	06/02/20 08:00	06/16/20 12:36	
Beryllium	ND ND		1.2		mg/Kg	 \$	06/02/20 08:00	06/16/20 12:36	
Cadmium	ND ND		1.2		mg/Kg		06/02/20 08:00	06/16/20 12:36	
	ND.		1.2						
Cobalt					mg/Kg	₩	06/02/20 08:00	06/16/20 12:36	
Iron	ND	_	24		mg/Kg		06/02/20 08:00	06/16/20 12:36	
Manganese	0.43	J	3.6		mg/Kg	<u>.</u> .	06/02/20 08:00	06/16/20 12:36	
Selenium	ND		2.4	0.83	mg/Kg	₩	06/02/20 08:00	06/16/20 12:36	
Method: 6010B SEP - S	EP Metals (ICP) - S	Step 2							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	7.5	J *	36	5.8	mg/Kg	<u> </u>	06/03/20 08:00	06/16/20 14:31	
Beryllium	ND	*	0.91	0.058	mg/Kg	☼	06/03/20 08:00	06/16/20 14:31	
Cadmium	ND		0.91	0.040	mg/Kg	☼	06/03/20 08:00	06/16/20 14:31	
Cobalt	ND		9.1	0.23	mg/Kg	φ.	06/03/20 08:00	06/16/20 14:31	
Iron	ND	*	18	11	mg/Kg	₽	06/03/20 08:00	06/16/20 14:31	
Manganese	ND		2.7		mg/Kg	₽	06/03/20 08:00	06/16/20 14:31	
Selenium	0.73		1.8		mg/Kg	ф	06/03/20 08:00		
Scientiani	0.70		1.0	0.02	9/119		00/00/20 00:00	00/10/20 11.01	
Method: 6010B SEP - S		•				_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Aluminum	140		12		mg/Kg	₽	06/08/20 08:00	06/18/20 12:26	
Beryllium	0.089	J	0.30		mg/Kg	₽	06/08/20 08:00	06/18/20 12:26	
Cadmium	0.021	J B *	0.30	0.013	mg/Kg	☼	06/08/20 08:00	06/18/20 12:26	
Cobalt	4.9		3.0	0.055	mg/Kg	₽	06/08/20 08:00	06/18/20 12:26	
ron	590		6.1	3.5	mg/Kg	₩	06/08/20 08:00	06/18/20 12:26	
Manganese	120	В	0.91	0.033	mg/Kg	☼	06/08/20 08:00	06/18/20 12:26	
Selenium	ND		0.61	0.21	mg/Kg	≎	06/08/20 08:00	06/18/20 12:26	
Method: 6010B SEP - S	EP Metals (ICP) - 9	Step 4							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	1800		12	1.9	mg/Kg	\	06/10/20 08:00	06/18/20 14:20	
Beryllium	0.25	J	0.30	0.019	mg/Kg	₩	06/10/20 08:00	06/18/20 14:20	
Cadmium	0.018	J	0.30	0.013	mg/Kg	☼	06/10/20 08:00	06/18/20 14:20	
Cobalt	2.7	J	3.0	0.064	mg/Kg	Φ.	06/10/20 08:00	06/18/20 14:20	
ron	4700		6.1		mg/Kg	₽	06/10/20 08:00	06/18/20 14:20	
Manganese	65		0.91		mg/Kg	₽	06/10/20 08:00	06/18/20 14:20	
Selenium	0.90	B *	0.61		mg/Kg				
Mathada COACD OFD C	ED Matala (IOD)) F							
Method: 6010B SEP - S Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Aluminum		J * *1	180		mg/Kg	\	06/12/20 08:00	06/19/20 11:58	
Beryllium	ND		4.6		mg/Kg	☆	06/12/20 08:00	06/19/20 11:58	
Cadmium	ND		4.6		mg/Kg	₩		06/19/20 11:58	
Cobalt	ND	*	4.6		mg/Kg		06/12/20 08:00		
		* *1	91		mg/Kg	☆	06/12/20 08:00		
ron									
Manganese	ND		14		mg/Kg			06/19/20 11:58	
	ND		9.1	3.2	mg/Kg	æ	06/12/20 08:00	06/19/20 11:58	
Selenium	ND								
Selenium Method: 6010B SEP - S		Step 6							

Eurofins TestAmerica, Knoxville

6/25/2020

3

e S

10

12

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Manganese

Selenium

Client Sample ID: BRGWA-5S(2) 32 FT BGS Lab Sample ID: 140-19131-4

Date Collected: 05/14/20 07:50 **Matrix: Solid** Date Received: 05/20/20 09:45 Percent Solids: 82.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.082	J	0.30	0.015	mg/Kg	<u> </u>	06/12/20 08:00	06/19/20 13:53	1
Cadmium	ND		0.30	0.013	mg/Kg	₩	06/12/20 08:00	06/19/20 13:53	1
Cobalt	4.0		3.0	0.056	mg/Kg	₩.	06/12/20 08:00	06/19/20 13:53	1
Iron	9100		6.1	3.5	mg/Kg	₩	06/12/20 08:00	06/19/20 13:53	1
Manganese	32		0.91	0.30	mg/Kg	₩	06/12/20 08:00	06/19/20 13:53	1
Selenium	ND		0.61	0.21	mg/Kg		06/12/20 08:00	06/19/20 13:53	1
- Method: 6010B SEP - 9	SEP Metals (ICP) - S	Step 7							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	37000		120	19	mg/Kg	<u> </u>	06/15/20 08:00	06/22/20 15:15	10
Beryllium	0.35		0.30	0.0091	mg/Kg	₩	06/15/20 08:00	06/22/20 13:50	1
Cadmium	0.17	J	1.5	0.067	mg/Kg	₩	06/15/20 08:00	06/22/20 16:42	5
Cobalt	18		15	0.16	mg/Kg	₩.	06/15/20 08:00	06/22/20 16:42	5
Iron	53000		30	25	mg/Kg	₩	06/15/20 08:00	06/22/20 16:42	5
Manganese	690		0.91	0.13	mg/Kg	₩	06/15/20 08:00	06/22/20 13:50	1
Selenium	1.1	J	3.0	1.0	mg/Kg		06/15/20 08:00	06/22/20 16:42	5
	SEP Metals (ICP) - 9	Sum of Step	s 1-7						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	48000		10	1.6	mg/Kg			06/25/20 11:53	1
Beryllium	0.77		0.25	0.0075	mg/Kg			06/25/20 11:53	1
Cadmium	0.21	J	0.25	0.011	mg/Kg			06/25/20 11:53	1
Cobalt	29		2.5	0.023	mg/Kg			06/25/20 11:53	1
Iron	68000		5.0		mg/Kg			06/25/20 11:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	87000		120	19	mg/Kg	<u> </u>	05/29/20 08:00	06/23/20 14:41	10
Beryllium	0.67		0.30	0.0091	mg/Kg	₩	05/29/20 08:00	06/23/20 13:16	1
Cadmium	2.2		0.61	0.027	mg/Kg	₩	05/29/20 08:00	06/23/20 16:21	2
Cobalt	36		30	0.32	mg/Kg	φ.	05/29/20 08:00	06/23/20 14:41	10
Iron	58000		12	10	mg/Kg	₩	05/29/20 08:00	06/23/20 16:21	2
Manganese	770		0.91	0.13	mg/Kg	₩	05/29/20 08:00	06/23/20 13:16	1
Selenium	ND		1.2	0.41	mg/Kg	*	05/29/20 08:00	06/23/20 16:21	2

0.75

0.50

900 2.7 0.052 mg/Kg

0.17 mg/Kg

Job ID: 140-19131-1

06/25/20 11:53

06/25/20 11:53

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: BRGWA-6S(2) 42 FT BGS Lab Sample ID: 140-19131-5

Date Collected: 05/14/20 12:05 **Matrix: Solid** Date Received: 05/20/20 09:45 Percent Solids: 69.7

Method: 6010B SEP - SEP	Metals (ICP) - S	tep 1							
Analyte	· · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND		57		mg/Kg	 ₩	06/02/20 08:00	06/16/20 12:57	
Beryllium	ND		1.4		mg/Kg	₩	06/02/20 08:00	06/16/20 12:57	
Cadmium	ND		1.4		mg/Kg	₽	06/02/20 08:00	06/16/20 12:57	
Cobalt	ND		14		mg/Kg	₩	06/02/20 08:00	06/16/20 12:57	
Iron	ND		29		mg/Kg	₽		06/16/20 12:57	,
Manganese	0.25	1	4.3		mg/Kg	₩		06/16/20 12:57	,
Selenium	ND		2.9		mg/Kg		06/02/20 08:00		
Selemum	ND		2.9	0.30	mg/rtg	.,.	00/02/20 00:00	00/10/20 12.57	
Method: 6010B SEP - SEP	Metals (ICP) - S	ten 2							
Analyte	· · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	9.7		43	6.9	mg/Kg	 ₩	06/03/20 08:00	06/16/20 14:52	-
Beryllium	ND	*	1.1			₽	06/03/20 08:00	06/16/20 14:52	
Cadmium	ND		1.1		mg/Kg	₩	06/03/20 08:00	06/16/20 14:52	
Cobalt	ND		11		mg/Kg	ф	06/03/20 08:00	06/16/20 14:52	
Iron	ND	*	22		mg/Kg	₩		06/16/20 14:52	
Manganese	ND		3.2		mg/Kg	₩		06/16/20 14:52	
Selenium	ND		2.2		mg/Kg			06/16/20 14:52	
Coloniani	115			0.70	mg/rtg		00/00/20 00:00	00/10/20 11:02	
Method: 6010B SEP - SEP	Metals (ICP) - S	tep 3							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	220		14	3.0	mg/Kg	 ₩	06/08/20 08:00	06/18/20 12:46	
Beryllium	0.049	J	0.36		mg/Kg	₽	06/08/20 08:00	06/18/20 12:46	
Cadmium	0.11		0.36		mg/Kg	₽	06/08/20 08:00	06/18/20 12:46	
Cobalt	19		3.6		mg/Kg	₩.	06/08/20 08:00	06/18/20 12:46	
Iron	490		7.2		mg/Kg	₩	06/08/20 08:00	06/18/20 12:46	
Manganese	430	В	1.1		mg/Kg	₽		06/18/20 12:46	
Selenium	0.27		0.72		mg/Kg	#		06/18/20 12:46	
	0.2.								
Method: 6010B SEP - SEP	Metals (ICP) - S	tep 4							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	3100		14	2.3	mg/Kg	₩	06/10/20 08:00	06/18/20 14:40	
Beryllium	0.45		0.36	0.023	mg/Kg	₩	06/10/20 08:00	06/18/20 14:40	
Cadmium	ND		0.36	0.016	mg/Kg	₩	06/10/20 08:00	06/18/20 14:40	
Cobalt	9.9		3.6	0.076	mg/Kg	₩	06/10/20 08:00	06/18/20 14:40	
Iron	10000		7.2	4.2	mg/Kg	₩	06/10/20 08:00	06/18/20 14:40	
Manganese	270		1.1		mg/Kg	₩	06/10/20 08:00	06/18/20 14:40	
Selenium	1.4		0.72		mg/Kg		06/10/20 08:00		
					0 0				
Method: 6010B SEP - SEP	Metals (ICP) - S	tep 5							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Aluminum	140	J * *1	220	34	mg/Kg	₩	06/12/20 08:00	06/19/20 12:19	
Beryllium	ND	*	5.4	0.45	mg/Kg	₩	06/12/20 08:00	06/19/20 12:19	
Cadmium	ND		5.4	0.23	mg/Kg	₩	06/12/20 08:00	06/19/20 12:19	
Cobalt	ND	*	54	0.86	mg/Kg	₩	06/12/20 08:00	06/19/20 12:19	
Iron	ND	* *1	110	63	mg/Kg	₩	06/12/20 08:00	06/19/20 12:19	
Manganese	3.5	J *	16		mg/Kg	₩	06/12/20 08:00	06/19/20 12:19	
Selenium	4.3		11		mg/Kg	ф	06/12/20 08:00		
-					0 0				
Method: 6010B SEP - SEP	Metals (ICP) - S	tep 6							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	16000		14		mg/Kg	 ☼	06/12/20 08:00	06/19/20 16:12	

Eurofins TestAmerica, Knoxville

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Date Collected: 05/14/20 12:05

Date Received: 05/20/20 09:45

Client Sample ID: BRGWA-6S(2) 42 FT BGS

Lab Sample ID: 140-19131-5

Lab Sample ID: 140-19131-5

Matrix: Solid

Percent Solids: 69.7

Job ID: 140-19131-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.15	J	0.36	0.017	mg/Kg	<u> </u>	06/12/20 08:00	06/19/20 16:12	1
Cadmium	ND	L	0.36	0.016	mg/Kg	₩	06/12/20 08:00	06/19/20 16:12	1
Cobalt	5.2		3.6	0.066	mg/Kg	₩	06/12/20 08:00	06/19/20 16:12	1
Iron	20000		7.2	4.2	mg/Kg	₩	06/12/20 08:00	06/19/20 16:12	1
Manganese	54		1.1	0.36	mg/Kg	₩	06/12/20 08:00	06/19/20 16:12	1
Selenium	0.69	J	0.72	0.24	ma/Ka	₩.	06/12/20 08:00	06/19/20 16:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	37000		140	23	mg/Kg	<u> </u>	06/15/20 08:00	06/22/20 15:20	10
Beryllium	0.19	J	0.36	0.011	mg/Kg	₩	06/15/20 08:00	06/22/20 13:56	1
Cadmium	0.49		0.36	0.016	mg/Kg	₩	06/15/20 08:00	06/22/20 13:56	1
Cobalt	8.7	J	18	0.19	mg/Kg	₽	06/15/20 08:00	06/22/20 16:47	5
Iron	34000		7.2	5.9	mg/Kg	☼	06/15/20 08:00	06/22/20 13:56	1
Manganese	260		1.1	0.16	mg/Kg	₩	06/15/20 08:00	06/22/20 13:56	1
Selenium	0.90		0.72	0.24	mg/Kg	₩.	06/15/20 08:00	06/22/20 13:56	1

Method: 6010B SEP -	SEP Metals (ICP) - Sum of Step	s 1-7						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	57000	10	1.6	mg/Kg			06/25/20 11:53	1
Beryllium	0.84	0.25	0.0075	mg/Kg			06/25/20 11:53	1
Cadmium	0.60	0.25	0.011	mg/Kg			06/25/20 11:53	1
Cobalt	43	2.5	0.023	mg/Kg			06/25/20 11:53	1
Iron	65000	5.0	4.1	mg/Kg			06/25/20 11:53	1
Manganese	1000	0.75	0.052	mg/Kg			06/25/20 11:53	1
Selenium	7.5	0.50	0.17	mg/Kg			06/25/20 11:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	110000		140	23	mg/Kg	<u> </u>	05/29/20 08:00	06/23/20 14:46	10
Beryllium	0.66	J	0.72	0.022	mg/Kg	₩	05/29/20 08:00	06/23/20 16:26	2
Cadmium	1.7		0.72	0.032	mg/Kg	₩	05/29/20 08:00	06/23/20 16:26	2
Cobalt	58		36	0.37	mg/Kg	φ.	05/29/20 08:00	06/23/20 14:46	10
Iron	61000		14	12	mg/Kg	₩	05/29/20 08:00	06/23/20 16:26	2
Manganese	1100		2.2	0.32	mg/Kg	₩	05/29/20 08:00	06/23/20 16:26	2
Selenium	0.94	J	1.4	0.49	mg/Kg		05/29/20 08:00	06/23/20 16:26	2

2

<u>ی</u>

0

8

9

11

12

Ц

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: BRGWA-6S(2) 48 FT BGS

Lab Sample ID: 140-19131-6

Date Collected: 05/14/20 12:15

Date Received: 05/20/20 09:45

Matrix: Solid
Percent Solids: 69.9

Method: 6010B SEP - SEP	Metals (ICP) - S	Step 1							
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND		57	9.1	mg/Kg	₩	06/02/20 08:00	06/16/20 13:02	
Beryllium	ND		1.4	0.44	mg/Kg	₩	06/02/20 08:00	06/16/20 13:02	4
Cadmium	ND		1.4	0.091	mg/Kg	₽	06/02/20 08:00	06/16/20 13:02	
Cobalt	ND		14	0.26	mg/Kg	₩	06/02/20 08:00	06/16/20 13:02	
Iron	ND		29	17	mg/Kg	₩	06/02/20 08:00	06/16/20 13:02	4
Manganese	0.67	J	4.3	0.18	mg/Kg	₩	06/02/20 08:00	06/16/20 13:02	
Selenium	ND		2.9		mg/Kg	₽	06/02/20 08:00	06/16/20 13:02	
Method: 6010B SEP - SEP	Metals (ICP) - S	Step 2							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	8.2	J *	43	6.9	mg/Kg	₩	06/03/20 08:00	06/16/20 14:57	;
Beryllium	ND	*	1.1	0.069	mg/Kg	₩	06/03/20 08:00	06/16/20 14:57	;
Cadmium	ND		1.1		mg/Kg	₩	06/03/20 08:00	06/16/20 14:57	;
Cobalt	ND		11		mg/Kg	\	06/03/20 08:00	06/16/20 14:57	;
Iron	ND	*	21		mg/Kg	₩	06/03/20 08:00		;
Manganese	ND		3.2		mg/Kg	₩	06/03/20 08:00		;
Selenium	ND		2.1		mg/Kg	₽		06/16/20 14:57	;
Method: 6010B SEP - SEP	Metals (ICP) - S	Step 3							
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	230		14	3.0	mg/Kg	 ₩	06/08/20 08:00	06/18/20 12:51	-
Beryllium	0.066	J	0.36	0.021	mg/Kg	₩	06/08/20 08:00	06/18/20 12:51	
Cadmium	0.094	JB*	0.36	0.016	mg/Kg	₩	06/08/20 08:00	06/18/20 12:51	
Cobalt	21		3.6		mg/Kg	₩.	06/08/20 08:00	06/18/20 12:51	
Iron	480		7.1		mg/Kg	₩	06/08/20 08:00	06/18/20 12:51	
Manganese	460	В	1.1		mg/Kg	₩		06/18/20 12:51	
Selenium	0.29		0.71		mg/Kg	₩		06/18/20 12:51	
Method: 6010B SEP - SEP	Metals (ICP) - S	Step 4							
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	2600		14	2.3	mg/Kg	 ₩	06/10/20 08:00	06/18/20 14:45	
Beryllium	0.20	J	0.36		mg/Kg	₩	06/10/20 08:00	06/18/20 14:45	
Cadmium	0.022		0.36		mg/Kg	₩	06/10/20 08:00	06/18/20 14:45	
Cobalt	9.9		3.6		mg/Kg	₩.		06/18/20 14:45	
Iron	5500		7.1		mg/Kg	₩		06/18/20 14:45	
Manganese	210		1.1		mg/Kg	₩			
Selenium	1.6	B *	0.71		mg/Kg		06/10/20 08:00		
Method: 6010B SEP - SEP	Motals (ICP) - 9	Ston 5							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum		J * *1	210		mg/Kg	₩	06/12/20 08:00	06/19/20 12:25	
Beryllium	ND		5.4		mg/Kg	₩	06/12/20 08:00	06/19/20 12:25	
Cadmium	ND		5.4		mg/Kg	₩	06/12/20 08:00	06/19/20 12:25	
Cobalt	ND	*	54		mg/Kg			06/19/20 12:25	
Iron	ND		110		mg/Kg	₩		06/19/20 12:25	
Manganese	3.8		16		mg/Kg	₩		06/19/20 12:25	
Selenium	3.0 ND	•	11		mg/Kg		06/12/20 08:00		
			11	5.7	ing/itg		33/12/20 00:00	00/10/20 12.20	,
Method: 6010B SEP - SEP Analyte		Step 6 Qualifier	RL	MDL	l Ini+	D	Prepared	Analyzed	Dil Fa
Allaly le	resuit	«uaiiiiti	NL.	MDL	Jint	ט	Fiehalen	Allalyzeu	וום רום

Eurofins TestAmerica, Knoxville

6/25/2020

Page 18 of 72

2

3

5

4.0

11

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Lab Sample ID: 140-19131-6

Client Sample ID: BRGWA-6S(2) 48 FT BGS Date Collected: 05/14/20 12:15 **Matrix: Solid** Percent Solids: 69.9 Date Received: 05/20/20 09:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.11	J	0.36	0.017	mg/Kg	<u> </u>	06/12/20 08:00	06/19/20 16:17	1
Cadmium	ND		0.36	0.016	mg/Kg	₩	06/12/20 08:00	06/19/20 16:17	1
Cobalt	5.6		3.6	0.066	mg/Kg	₩	06/12/20 08:00	06/19/20 16:17	1
Iron	20000		7.1	4.1	mg/Kg	☼	06/12/20 08:00	06/19/20 16:17	1
Manganese	40		1.1	0.36	mg/Kg	₩	06/12/20 08:00	06/19/20 16:17	1
Selenium	0.59	J	0.71	0.24	mg/Kg	‡	06/12/20 08:00	06/19/20 16:17	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	29000	140	23	mg/Kg	<u> </u>	06/15/20 08:00	06/22/20 15:25	10
Beryllium	ND	0.36	0.011	mg/Kg	₩	06/15/20 08:00	06/22/20 14:01	1
Cadmium	0.28 J	1.8	0.079	mg/Kg	₩	06/15/20 08:00	06/22/20 16:52	5
Cobalt	16 J	18	0.19	mg/Kg	₩.	06/15/20 08:00	06/22/20 16:52	5
Iron	54000	36	29	mg/Kg	₩	06/15/20 08:00	06/22/20 16:52	5
Manganese	500	1.1	0.16	mg/Kg	₩	06/15/20 08:00	06/22/20 14:01	1
Selenium	ND	3.6	1.2	mg/Kg		06/15/20 08:00	06/22/20 16:52	5

Method: 6010B SEP - 3	Result Qual		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	46000	10	1.6	mg/Kg			06/25/20 11:53	1
Beryllium	0.38	0.25	0.0075	mg/Kg			06/25/20 11:53	1
Cadmium	0.39	0.25	0.011	mg/Kg			06/25/20 11:53	1
Cobalt	53	2.5	0.023	mg/Kg			06/25/20 11:53	1
Iron	80000	5.0	4.1	mg/Kg			06/25/20 11:53	1
Manganese	1200	0.75	0.052	mg/Kg			06/25/20 11:53	1
Selenium	2.4	0.50	0.17	mg/Kg			06/25/20 11:53	1

Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	98000	140	23	mg/Kg	<u> </u>	05/29/20 08:00	06/23/20 14:51	10
Beryllium	0.31 J	0.36	0.011	mg/Kg	☼	05/29/20 08:00	06/23/20 13:27	1
Cadmium	0.66 J	3.6	0.16	mg/Kg	☼	05/29/20 08:00	06/23/20 14:51	10
Cobalt	64	36	0.37	mg/Kg	₽	05/29/20 08:00	06/23/20 14:51	10
Iron	91000	71	59	mg/Kg	☼	05/29/20 08:00	06/23/20 14:51	10
Manganese	1000	1.1	0.16	mg/Kg	☼	05/29/20 08:00	06/23/20 13:27	1
Selenium	2.5 J	7.1	2.4	mg/Kg	φ.	05/29/20 08:00	06/23/20 14:51	10

Job ID: 140-19131-1

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: PZ-52D 18 FT BGS

Lab Sample ID: 140-19131-7 Date Collected: 05/14/20 14:40 **Matrix: Solid**

Date Received: 05/20/20 09:45 Percent Solids: 67.3

Analyte	P Metals (ICP) - 3 Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		59	9.5	mg/Kg	<u>₩</u>	06/02/20 08:00	06/16/20 13:07	4
Beryllium	ND		1.5		mg/Kg	₩	06/02/20 08:00	06/16/20 13:07	4
Cadmium	ND		1.5		mg/Kg	₽	06/02/20 08:00	06/16/20 13:07	4
Cobalt	0.47		15	0.27	mg/Kg	 \$	06/02/20 08:00	06/16/20 13:07	4
Iron	ND		30		mg/Kg	₩	06/02/20 08:00	06/16/20 13:07	4
Manganese	11		4.5		mg/Kg	₽	06/02/20 08:00	06/16/20 13:07	4
Selenium	ND		3.0		mg/Kg	.		06/16/20 13:07	4
Method: 6010B SEP - SE	P Metals (ICP) - :	Sten 2							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum		J *	45		mg/Kg	<u></u>	06/03/20 08:00	06/16/20 15:02	
Beryllium	ND	*	1.1	0.071	mg/Kg	₽	06/03/20 08:00	06/16/20 15:02	3
Cadmium	ND		1.1		mg/Kg	₩	06/03/20 08:00	06/16/20 15:02	3
Cobalt	ND		11		mg/Kg	 \$	06/03/20 08:00	06/16/20 15:02	3
Iron	ND	*	22		mg/Kg	₩	06/03/20 08:00	06/16/20 15:02	3
Manganese	2.7		3.3		mg/Kg	₩	06/03/20 08:00	06/16/20 15:02	3
Selenium	ND		2.2		mg/Kg	ф.		06/16/20 15:02	
: Method: 6010B SEP - SE	P Metals (ICP) - :	Step 3							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	370		15	3.1	mg/Kg	-	06/08/20 08:00	06/18/20 12:57	
Beryllium	0.35	J	0.37	0.022	mg/Kg	₽	06/08/20 08:00	06/18/20 12:57	1
Cadmium	0.029	JB*	0.37		mg/Kg	₽	06/08/20 08:00	06/18/20 12:57	1
Cobalt	17		3.7		mg/Kg	- -	06/08/20 08:00	06/18/20 12:57	1
Iron	1100		7.4		mg/Kg	₩			1
Manganese	680	В	1.1		mg/Kg	₽		06/18/20 12:57	1
Selenium	0.39		0.74		mg/Kg			06/18/20 12:57	1
Method: 6010B SEP - SE	P Metals (ICP) - :	Step 4							
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2300		15	2.4	mg/Kg	₩	06/10/20 08:00	06/18/20 14:50	1
Beryllium	1.6		0.37	0.024	mg/Kg	₩	06/10/20 08:00	06/18/20 14:50	1
Cadmium	ND		0.37	0.016	mg/Kg	₩	06/10/20 08:00	06/18/20 14:50	1
Cobalt							06/40/20 00:00	06/18/20 14:50	
	4.7		3.7	0.079	mg/Kg	≎	06/10/20 06.00	00/10/20 11:00	1
	4.7 17000		3.7 7.4		mg/Kg mg/Kg	☆			-
Iron				4.3			06/10/20 08:00		1
	17000 400	B *	7.4	4.3 0.19	mg/Kg	₩	06/10/20 08:00	06/18/20 14:50 06/18/20 14:50	1 1 1
Iron Manganese Selenium	17000 400 1.9		7.4 1.1	4.3 0.19	mg/Kg mg/Kg	₩	06/10/20 08:00 06/10/20 08:00	06/18/20 14:50 06/18/20 14:50	1
Iron Manganese Selenium Method: 6010B SEP - SE	17000 400 1.9 P Metals (ICP) - 8 Result	Step 5 Qualifier	7.4 1.1	4.3 0.19 0.70 MDL	mg/Kg mg/Kg mg/Kg	₩	06/10/20 08:00 06/10/20 08:00	06/18/20 14:50 06/18/20 14:50	1 1 1
Iron Manganese Selenium Method: 6010B SEP - SE Analyte	17000 400 1.9 P Metals (ICP) - 8 Result	Step 5	7.4 1.1 0.74	4.3 0.19 0.70 MDL	mg/Kg mg/Kg mg/Kg	\$ \$	06/10/20 08:00 06/10/20 08:00 06/10/20 08:00	06/18/20 14:50 06/18/20 14:50 06/18/20 14:50	1 1 1 Dil Fac
Iron Manganese Selenium Method: 6010B SEP - SE Analyte Aluminum	17000 400 1.9 P Metals (ICP) - 8 Result	Step 5 Qualifier **1	7.4 1.1 0.74	4.3 0.19 0.70 MDL 35	mg/Kg mg/Kg mg/Kg	\$ \$ \$ D	06/10/20 08:00 06/10/20 08:00 06/10/20 08:00 Prepared	06/18/20 14:50 06/18/20 14:50 06/18/20 14:50 Analyzed	1
Iron Manganese Selenium Method: 6010B SEP - SE Analyte Aluminum	17000 400 1.9 P Metals (ICP) - Result 640	Step 5 Qualifier **1	7.4 1.1 0.74 RL 220	4.3 0.19 0.70 MDL 35 0.47	mg/Kg mg/Kg mg/Kg	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	06/10/20 08:00 06/10/20 08:00 06/10/20 08:00 Prepared 06/12/20 08:00	06/18/20 14:50 06/18/20 14:50 06/18/20 14:50 Analyzed 06/19/20 12:30	Dil Fac
Iron Manganese Selenium Method: 6010B SEP - SE Analyte Aluminum Beryllium	17000 400 1.9 P Metals (ICP) - Result 640 ND	Step 5 Qualifier **1	7.4 1.1 0.74 RL 220 5.6	4.3 0.19 0.70 MDL 35 0.47 0.24	mg/Kg mg/Kg mg/Kg Unit mg/Kg mg/Kg	# # # # # # # # # # # # # # # # # # #	06/10/20 08:00 06/10/20 08:00 06/10/20 08:00 Prepared 06/12/20 08:00 06/12/20 08:00	06/18/20 14:50 06/18/20 14:50 06/18/20 14:50 Analyzed 06/19/20 12:30 06/19/20 12:30	Dil Fac
Iron Manganese Selenium Method: 6010B SEP - SE Analyte Aluminum Beryllium Cadmium Cobalt	17000 400 1.9 P Metals (ICP) - Result 640 ND ND	Step 5 Qualifier **1	7.4 1.1 0.74 RL 220 5.6 5.6	4.3 0.19 0.70 MDL 35 0.47 0.24 0.89	mg/Kg mg/Kg mg/Kg Unit mg/Kg mg/Kg mg/Kg	# # # # # # # # # # # # # # # # # # #	06/10/20 08:00 06/10/20 08:00 06/10/20 08:00 Prepared 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00	06/18/20 14:50 06/18/20 14:50 06/18/20 14:50 Analyzed 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30	Dil Fac
Iron Manganese Selenium Method: 6010B SEP - SE Analyte Aluminum Beryllium Cadmium Cobalt Iron	17000 400 1.9 P Metals (ICP) - Result 640 ND ND ND	Step 5 Qualifier **1	7.4 1.1 0.74 RL 220 5.6 5.6 5.6	4.3 0.19 0.70 MDL 35 0.47 0.24 0.89 65	mg/Kg mg/Kg mg/Kg Unit mg/Kg mg/Kg mg/Kg	— D — D	06/10/20 08:00 06/10/20 08:00 06/10/20 08:00 Prepared 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00	06/18/20 14:50 06/18/20 14:50 06/18/20 14:50 Analyzed 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30	Dil Fac
Iron Manganese Selenium Method: 6010B SEP - SElenium Aluminum Beryllium Cadmium	17000 400 1.9 P Metals (ICP) - Result 640 ND ND ND	Step 5 Qualifier **1 * **1 J*	7.4 1.1 0.74 RL 220 5.6 5.6 5.6 110	4.3 0.19 0.70 MDL 35 0.47 0.24 0.89 65 2.7	mg/Kg mg/Kg mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg	D	06/10/20 08:00 06/10/20 08:00 06/10/20 08:00 Prepared 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00	06/18/20 14:50 06/18/20 14:50 06/18/20 14:50 Analyzed 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30	Dil Face 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Iron Manganese Selenium Method: 6010B SEP - SE Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese	17000 400 1.9 P Metals (ICP) - Result 640 ND ND ND ND ND 9.8 4.4 P Metals (ICP) - Result	Step 5 Qualifier **1 * **1 J* J	7.4 1.1 0.74 RL 220 5.6 5.6 5.6 110	4.3 0.19 0.70 MDL 35 0.47 0.24 0.89 65 2.7	mg/Kg mg/Kg mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	— D	06/10/20 08:00 06/10/20 08:00 06/10/20 08:00 Prepared 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00 06/12/20 08:00	06/18/20 14:50 06/18/20 14:50 06/18/20 14:50 Analyzed 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30 06/19/20 12:30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Eurofins TestAmerica, Knoxville

6/25/2020

Page 20 of 72

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Cobalt

Manganese

Selenium

Lab Sample ID: 140-19131-7

Client Sample ID: PZ-52D 18 FT BGS Date Collected: 05/14/20 14:40 **Matrix: Solid** Date Received: 05/20/20 09:45

Percent Solids: 67.3

Job ID: 140-19131-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	1.0		0.37	0.018	mg/Kg	₩	06/12/20 08:00	06/19/20 16:22	1
Cadmium	ND	L	0.37	0.016	mg/Kg	₩	06/12/20 08:00	06/19/20 16:22	1
Cobalt	4.4	J	7.4	0.14	mg/Kg	₩	06/12/20 08:00	06/19/20 17:10	2
Iron	27000		7.4	4.3	mg/Kg	₩	06/12/20 08:00	06/19/20 16:22	1
Manganese	190		1.1	0.37	mg/Kg	₩	06/12/20 08:00	06/19/20 16:22	1
Selenium	0.66	J	0.74	0.25	mg/Kg		06/12/20 08:00	06/19/20 16:22	1
Method: 6010B SEP - SE	EP Metals (ICP) - 3	Step 7							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	37000		150	24	mg/Kg	<u> </u>	06/15/20 08:00	06/22/20 15:30	10
Beryllium	0.96		0.37	0.011	mg/Kg	₩	06/15/20 08:00	06/22/20 14:07	1
Cadmium	0.91		0.37	0.016	mg/Kg	₩	06/15/20 08:00	06/22/20 14:07	1
Cobalt	7.5	J	37	0.39	mg/Kg	₩.	06/15/20 08:00	06/22/20 15:30	10
Iron	36000		7.4	6.1	mg/Kg	₩	06/15/20 08:00	06/22/20 14:07	1
Manganese	280		1.1	0.16	mg/Kg	₩	06/15/20 08:00	06/22/20 14:07	1
Selenium	1.0		0.74	0.25	mg/Kg	₽	06/15/20 08:00	06/22/20 14:07	1

Method: 6010B SEP - SE	EP Metals (ICP) - S	Sum of Step							
Method: 6010B SEP - SE Analyte		Sum of Step Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
			s 1-7		Unit mg/Kg	D	Prepared	Analyzed 06/25/20 11:53	Dil Fac
Analyte	Result		s 1-7		mg/Kg	<u>D</u>	Prepared	•	
Analyte <mark>Aluminum</mark>	Result 53000		s 1-7 RL 10	1.6 0.0075	mg/Kg	<u>D</u>	Prepared	06/25/20 11:53	1
Analyte Aluminum Beryllium	Result 53000 4.0		s 1-7 RL 10 0.25	1.6 0.0075 0.011	mg/Kg mg/Kg	<u>D</u>	Prepared	06/25/20 11:53 06/25/20 11:53	1
Analyte Aluminum Beryllium Cadmium	Result 53000 4.0 0.94		s 1-7 RL 10 0.25 0.25	1.6 0.0075 0.011 0.023	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared	06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	1 1 1
Analyte Aluminum Beryllium Cadmium Cobalt	Result 53000 4.0 0.94 34		s 1-7 RL 10 0.25 0.25 2.5	1.6 0.0075 0.011 0.023 4.1	mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared	06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	1 1 1 1
Analyte Aluminum Beryllium Cadmium Cobalt	Result 53000 4.0 0.94 34 80000		S 1-7 RL 10 0.25 0.25 2.5 5.0	1.6 0.0075 0.011 0.023 4.1 0.052	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared	06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	1 1 1 1 1
Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese	Result 53000 4.0 0.94 34 80000 1600		s 1-7 RL 10 0.25 0.25 2.5 5.0 0.75	1.6 0.0075 0.011 0.023 4.1 0.052	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared	06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	1 1 1 1 1 1
Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese Selenium	Result 53000 4.0 0.94 34 80000 1600 8.3 etals (ICP) - Total		s 1-7 RL 10 0.25 0.25 2.5 5.0 0.75	1.6 0.0075 0.011 0.023 4.1 0.052	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared	06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	1 1 1 1 1 1
Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese Selenium Method: 6010B - SEP Me	Result 53000 4.0 0.94 34 80000 1600 8.3 etals (ICP) - Total	Qualifier	S 1-7 RL 10 0.25 0.25 2.5 5.0 0.75 0.50	1.6 0.0075 0.011 0.023 4.1 0.052 0.17	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg			06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	1 1 1 1 1 1
Analyte Aluminum Beryllium Cadmium Cobalt Iron Manganese Selenium Method: 6010B - SEP Me	Result 53000 4.0 0.94 34 80000 1600 8.3 etals (ICP) - Total Result	Qualifier	s 1-7 RL 10 0.25 0.25 2.5 5.0 0.75 0.50 RL	1.6 0.0075 0.011 0.023 4.1 0.052 0.17	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 05/29/20 08:00	06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53 06/25/20 11:53	1 1 1 1 1 1 1 Dil Fac

37

15

2.2

1.5

0.39 mg/Kg

0.33 mg/Kg

0.51 mg/Kg

12 mg/Kg

46

1.4 J

71000

1700

© 05/29/20 08:00 06/23/20 14:56

☼ 05/29/20 08:00 06/23/20 16:37

© 05/29/20 08:00 06/23/20 16:37

© 05/29/20 08:00 06/23/20 16:37

10

2

2

2

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Lab Sample ID: 140-19131-8

Client Sample ID: PZ-52D 24-25 FT BGS Date Collected: 05/14/20 14:50

Matrix: Solid

Job ID: 140-19131-1

Percent Solids: 76.8

Date Received: 05/20/20 09:45

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND ND	52	8.3	mg/Kg	₽	06/02/20 08:00	06/16/20 13:12	4
Beryllium	ND	1.3	0.40	mg/Kg	₽	06/02/20 08:00	06/16/20 13:12	4
Cadmium	ND	1.3	0.083	mg/Kg	☼	06/02/20 08:00	06/16/20 13:12	4
Cobalt	ND	13	0.23	mg/Kg	\$	06/02/20 08:00	06/16/20 13:12	4
Iron	ND	26	15	mg/Kg	☼	06/02/20 08:00	06/16/20 13:12	4
Manganese	7.1	3.9	0.16	mg/Kg	₽	06/02/20 08:00	06/16/20 13:12	4
Selenium	ND	2.6	0.89	mg/Kg		06/02/20 08:00	06/16/20 13:12	4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	17	J *	39	6.3	mg/Kg	<u> </u>	06/03/20 08:00	06/16/20 15:08	3
Beryllium	ND	*	0.98	0.063	mg/Kg	☼	06/03/20 08:00	06/16/20 15:08	3
Cadmium	ND		0.98	0.043	mg/Kg	☼	06/03/20 08:00	06/16/20 15:08	3
Cobalt	ND		9.8	0.25	mg/Kg	φ.	06/03/20 08:00	06/16/20 15:08	3
Iron	ND	*	20	11	mg/Kg	☼	06/03/20 08:00	06/16/20 15:08	3
Manganese	1.7	J	2.9	1.1	mg/Kg	☼	06/03/20 08:00	06/16/20 15:08	3
Selenium	ND		2.0	0.66	mg/Kg	.	06/03/20 08:00	06/16/20 15:08	3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	260		13	2.7	mg/Kg	<u> </u>	06/08/20 08:00	06/18/20 13:02	1
Beryllium	0.21	J	0.33	0.020	mg/Kg	₩	06/08/20 08:00	06/18/20 13:02	1
Cadmium	0.025	J B *	0.33	0.014	mg/Kg	₩	06/08/20 08:00	06/18/20 13:02	1
Cobalt	3.3		3.3	0.059	mg/Kg	₽	06/08/20 08:00	06/18/20 13:02	1
Iron	460		6.5	3.8	mg/Kg	₩	06/08/20 08:00	06/18/20 13:02	1
Manganese	170	В	0.98	0.035	mg/Kg	₩	06/08/20 08:00	06/18/20 13:02	1
Selenium	0.30	J	0.65	0.22	mg/Kg	₽	06/08/20 08:00	06/18/20 13:02	1

Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2200	13	2.1	mg/Kg	₩	06/10/20 08:00	06/18/20 14:55	1
Beryllium	1.1	0.33	0.021	mg/Kg	☼	06/10/20 08:00	06/18/20 14:55	1
Cadmium	ND	0.33	0.014	mg/Kg	₽	06/10/20 08:00	06/18/20 14:55	1
Cobalt	2.6 J	3.3	0.069	mg/Kg	₽	06/10/20 08:00	06/18/20 14:55	1
Iron	7100	6.5	3.8	mg/Kg	₽	06/10/20 08:00	06/18/20 14:55	1
Manganese	120	0.98	0.17	mg/Kg	₩	06/10/20 08:00	06/18/20 14:55	1
Selenium	1.3 B*	0.65	0.61	mg/Kg		06/10/20 08:00	06/18/20 14:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	530	* *1	200	31	mg/Kg	<u> </u>	06/12/20 08:00	06/19/20 12:35	5
Beryllium	ND	*	4.9	0.41	mg/Kg	☼	06/12/20 08:00	06/19/20 12:35	5
Cadmium	ND		4.9	0.21	mg/Kg	☼	06/12/20 08:00	06/19/20 12:35	5
Cobalt	ND	*	49	0.78	mg/Kg	φ.	06/12/20 08:00	06/19/20 12:35	5
Iron	ND	* *1	98	57	mg/Kg	☼	06/12/20 08:00	06/19/20 12:35	5
Manganese	ND	*	15	2.4	mg/Kg	☼	06/12/20 08:00	06/19/20 12:35	5
Selenium	ND		9.8	3.4	mg/Kg		06/12/20 08:00	06/19/20 12:35	5

Method: 6010B SEP - SEP Met	tals (ICP) - Step 6							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14000	13	2.1	mg/Kg		06/12/20 08:00	06/19/20 16:27	1

Eurofins TestAmerica, Knoxville

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: PZ-52D 24-25 FT BGS

Lab Sample ID: 140-19131-8

Date Collected: 05/14/20 14:50

Date Received: 05/20/20 09:45

Matrix: Solid

Percent Solids: 76.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.53		0.33	0.016	mg/Kg	₩	06/12/20 08:00	06/19/20 16:27	1
Cadmium	ND		0.33	0.014	mg/Kg	≎	06/12/20 08:00	06/19/20 16:27	1
Cobalt	3.0	J	3.3	0.060	mg/Kg	\$	06/12/20 08:00	06/19/20 16:27	1
Iron	9400		6.5	3.8	mg/Kg	☼	06/12/20 08:00	06/19/20 16:27	1
Manganese	95		0.98	0.33	mg/Kg	☼	06/12/20 08:00	06/19/20 16:27	1
Selenium	ND		0.65	0.22	mg/Kg	₩	06/12/20 08:00	06/19/20 16:27	1
Method: 6010B SEP - S	EP Metals (ICP) -	Step 7							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	47000		130	21	mg/Kg	₩	06/15/20 08:00	06/22/20 15:50	10
Beryllium	1.4		0.33	0.0098	mg/Kg	☼	06/15/20 08:00	06/22/20 14:12	1
Cadmium	0.14	J	0.33	0.014	mg/Kg	☼	06/15/20 08:00	06/22/20 14:12	1
Cobalt	3.5		3.3	0.034	mg/Kg	₽	06/15/20 08:00	06/22/20 14:12	1
Iron	14000		6.5	5.3	mg/Kg	₩	06/15/20 08:00	06/22/20 14:12	1
Manganese	310		0.98	0.14	mg/Kg	≎	06/15/20 08:00	06/22/20 14:12	1
Selenium	ND		0.65	0.22	mg/Kg	₩	06/15/20 08:00	06/22/20 14:12	1
Method: 6010B SEP - S		•							
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
Aluminum	64000		10		mg/Kg			06/25/20 11:53	1
Beryllium	3.2		0.25	0.0075				06/25/20 11:53	1
Cadmium	0.17	J	0.25		mg/Kg			06/25/20 11:53	1
Cobalt	12		2.5		mg/Kg			06/25/20 11:53	1
Iron	31000		5.0		mg/Kg			06/25/20 11:53	1
Manganese	710		0.75	0.052	mg/Kg			06/25/20 11:53	1
Selenium	1.6		0.50	0.17	mg/Kg			06/25/20 11:53	1
Method: 6010B - SEP N	letals (ICP) - Total								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 6010B - SEP Metal	ls (ICP) - Total							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	86000	130	21	mg/Kg	<u>₩</u>	05/29/20 08:00	06/23/20 15:17	10
Beryllium	2.7	0.33	0.0098	mg/Kg	☼	05/29/20 08:00	06/23/20 13:38	1
Cadmium	0.55	0.33	0.014	mg/Kg	₩	05/29/20 08:00	06/23/20 13:38	1
Cobalt	12	6.5	0.068	mg/Kg		05/29/20 08:00	06/23/20 16:58	2
Iron	24000	6.5	5.3	mg/Kg	☼	05/29/20 08:00	06/23/20 13:38	1
Manganese	580	0.98	0.14	mg/Kg	☼	05/29/20 08:00	06/23/20 13:38	1
Selenium	ND	0.65	0.22	mg/Kg	₩.	05/29/20 08:00	06/23/20 13:38	1

Job ID: 140-19131-1

3

5

7

9

10

12

13

oa, ranoxvine

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Lab Sample ID: 140-19131-9

Client Sample ID: BRGWC-50(2) 59 FT BGS Date Collected: 05/15/20 09:00 **Matrix: Solid**

Mothod: CO4CD CCD	CED Motole (ICD)	Stop 4							
Method: 6010B SEP Analyte		Step 1 Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil F
Alluminum	ND Result	<u> </u>	46			— ~		06/16/20 13:18	חוו ר
Beryllium	ND ND		1.1		mg/Kg	~ ☆		06/16/20 13:18	
Cadmium	0.11	1	1.1		mg/Kg	₽		06/16/20 13:18	
						· · · · · ·		06/16/20 13:18	
Cobalt	1.6	J			mg/Kg	~ ☆			
ron	ND		23		mg/Kg			06/16/20 13:18	
Manganese	160		3.4		mg/Kg			06/16/20 13:18	
Selenium	ND		2.3	0.78	mg/Kg	☼	06/02/20 08:00	06/16/20 13:18	
Method: 6010B SEP	- SEP Metals (ICP) - S	Sten 2							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Numinum	29	J *	34	5.5	mg/Kg	<u> </u>	06/03/20 08:00		
Beryllium	ND		0.86		mg/Kg	☼		06/16/20 15:13	
Cadmium	0.084		0.86		mg/Kg	☼		06/16/20 15:13	
Cobalt	1.1		8.6		mg/Kg			06/16/20 15:13	
ron	27		17		mg/Kg	₽		06/16/20 15:13	
	36		2.6		mg/Kg	₩		06/16/20 15:13	
Manganese Selenium	ND		1.7			· · · · · · · · · · · · · · · · · · ·		06/16/20 15:13	
belerilarii	ND		1.7	0.36	mg/Kg	*	00/03/20 06.00	00/10/20 15.15	
Method: 6010B SEP	- SEP Metals (ICP) - S	Step 3							
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil
luminum	260		11	2.4	mg/Kg	<u> </u>	06/08/20 08:00	06/18/20 13:07	
eryllium	0.20	J	0.29	0.017	mg/Kg	☼	06/08/20 08:00	06/18/20 13:07	
admium	0.10	J B *	0.29	0.013	mg/Kg	☼	06/08/20 08:00	06/18/20 13:07	
obalt	2.6	J	2.9	0.052	mg/Kg	φ.	06/08/20 08:00	06/18/20 13:07	
on	1500		5.7		mg/Kg	₽	06/08/20 08:00	06/18/20 13:07	
Manganese	67	В	0.86		mg/Kg	₽		06/18/20 13:07	
Selenium	0.23	. 	0.57		mg/Kg			06/18/20 13:07	
					0 0				
Method: 6010B SEP	- SEP Metals (ICP) - S	Step 4							
nalyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil
luminum	1300		11	1.8	mg/Kg	₩	06/10/20 08:00	06/18/20 15:00	
Beryllium	0.32		0.29	0.018	mg/Kg	₩	06/10/20 08:00	06/18/20 15:00	
admium	0.36		0.29	0.013	mg/Kg	₩	06/10/20 08:00	06/18/20 15:00	
obalt	1.5	J	2.9	0.061	mg/Kg	₽	06/10/20 08:00	06/18/20 15:00	
on	5300		5.7	3.3	mg/Kg	₩	06/10/20 08:00	06/18/20 15:00	
langanese	52		0.86	0.15	mg/Kg	☼	06/10/20 08:00	06/18/20 15:00	
Gelenium	1.1	B *	0.57		mg/Kg	ф.	06/10/20 08:00	06/18/20 15:00	
	- SEP Metals (ICP) - 3					_	_		
Analyte		Qualifier	RL -		Unit	D	Prepared	Analyzed	Dil I
Aluminum		* *1	170		mg/Kg	₩		06/19/20 12:41	
Beryllium	ND	*	4.3		mg/Kg	₽		06/19/20 12:41	
admium	ND		4.3		mg/Kg	₩		06/19/20 12:41	
Cobalt	ND	*	43	0.69	mg/Kg	₽	06/12/20 08:00	06/19/20 12:41	
ron	ND	* *1	86	50	mg/Kg	☼	06/12/20 08:00	06/19/20 12:41	
Manganese	ND	*	13	2.1	mg/Kg	☼	06/12/20 08:00	06/19/20 12:41	
Selenium	ND		8.6	3.0	mg/Kg		06/12/20 08:00	06/19/20 12:41	
	- SEP Metals (ICP) - S					_	_		
nalyte		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil
Aluminum	12000		11	1.8	mg/Kg	₩	06/12/20 08:00	06/19/20 16:32	

Eurofins TestAmerica, Knoxville

6/25/2020

Page 24 of 72

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Date Collected: 05/15/20 09:00

Date Received: 05/20/20 09:45

Client Sample ID: BRGWC-50(2) 59 FT BGS

Lab Sample ID: 140-19131-9

Matrix: Solid

Percent Solids: 87.3

Job ID: 140-19131-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.23	J	0.29	0.014	mg/Kg	<u> </u>	06/12/20 08:00	06/19/20 16:32	1
Cadmium	ND		0.29	0.013	mg/Kg	☼	06/12/20 08:00	06/19/20 16:32	1
Cobalt	4.5	J	14	0.26	mg/Kg	₽	06/12/20 08:00	06/19/20 17:15	5
Iron	16000		5.7	3.3	mg/Kg	☼	06/12/20 08:00	06/19/20 16:32	1
Manganese	370		0.86	0.29	mg/Kg	☼	06/12/20 08:00	06/19/20 16:32	1
Selenium	0.52	J	0.57	0.19	mg/Kg	ф	06/12/20 08:00	06/19/20 16:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	48000		110	18	mg/Kg	<u> </u>	06/15/20 08:00	06/22/20 15:55	10
Beryllium	1.6		0.29	0.0086	mg/Kg	☆	06/15/20 08:00	06/22/20 14:18	1
Cadmium	0.047	J	0.29	0.013	mg/Kg	₩	06/15/20 08:00	06/22/20 14:18	1
Cobalt	0.31	J	2.9	0.030	mg/Kg	₩	06/15/20 08:00	06/22/20 14:18	1
Iron	2700		5.7	4.7	mg/Kg	☆	06/15/20 08:00	06/22/20 14:18	1
Manganese	63		0.86	0.13	mg/Kg	☆	06/15/20 08:00	06/22/20 14:18	1
Selenium	ND		0.57	0.19	mg/Kg		06/15/20 08:00	06/22/20 14:18	1

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	62000	10	1.6	mg/Kg			06/25/20 11:53	1
Beryllium	2.3	0.25	0.0075	mg/Kg			06/25/20 11:53	1
Cadmium	0.70	0.25	0.011	mg/Kg			06/25/20 11:53	1
Cobalt	12	2.5	0.023	mg/Kg			06/25/20 11:53	1
Iron	25000	5.0	4.1	mg/Kg			06/25/20 11:53	1
Manganese	750	0.75	0.052	mg/Kg			06/25/20 11:53	1
Selenium	1.8	0.50	0.17	mg/Kg			06/25/20 11:53	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	78000	110	18	mg/Kg	<u>₩</u>	05/29/20 08:00	06/23/20 15:22	10
Beryllium	1.9	0.29	0.0086	mg/Kg	☼	05/29/20 08:00	06/23/20 13:44	1
Cadmium	0.72	0.29	0.013	mg/Kg	₩	05/29/20 08:00	06/23/20 13:44	1
Cobalt	11 J	14	0.15	mg/Kg		05/29/20 08:00	06/23/20 17:03	5
Iron	18000	5.7	4.7	mg/Kg	☼	05/29/20 08:00	06/23/20 13:44	1
Manganese	540	0.86	0.13	mg/Kg	☼	05/29/20 08:00	06/23/20 13:44	1
Selenium	ND	0.57	0.19	mg/Kg	\$	05/29/20 08:00	06/23/20 13:44	1

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Date Collected: 05/15/20 09:20

Matrix: Solid

Date Received: 05/20/20 09:45

Percent Solids: 99.8

Analyta	P Metals (ICP) - S	•	DI	MIDI	l lmit	_	Dropered	Analyzad	Dil E-
Analyte		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND		40		mg/Kg	<u>.</u>	06/02/20 08:00	06/16/20 13:23	
Beryllium	ND		1.0		mg/Kg	**	06/02/20 08:00	06/16/20 13:23	
Cadmium	ND		1.0		mg/Kg		06/02/20 08:00	06/16/20 13:23	
Cobalt	ND		10		mg/Kg	☼	06/02/20 08:00	06/16/20 13:23	
Iron	ND		20	12	mg/Kg	₽	06/02/20 08:00	06/16/20 13:23	
Manganese	0.70	J	3.0	0.12	mg/Kg	☼	06/02/20 08:00	06/16/20 13:23	
Selenium	ND		2.0	0.68	mg/Kg	₽	06/02/20 08:00	06/16/20 13:23	
Method: 6010B SEP - SE	• •	•							
Analyte		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	14	J *	30	4.8	mg/Kg	₩	06/03/20 08:00	06/16/20 15:18	
Beryllium	ND	*	0.75	0.048	mg/Kg	☼	06/03/20 08:00	06/16/20 15:18	
Cadmium	ND		0.75	0.033	mg/Kg	₩	06/03/20 08:00	06/16/20 15:18	
Cobalt	ND		7.5	0.19	mg/Kg	ф.	06/03/20 08:00	06/16/20 15:18	
Iron	58	*	15	8.7	mg/Kg	₩	06/03/20 08:00	06/16/20 15:18	
Manganese	5.0		2.3		mg/Kg	☆	06/03/20 08:00	06/16/20 15:18	
Selenium	ND		1.5		mg/Kg		06/03/20 08:00	06/16/20 15:18	
Method: 6010B SEP - SE	P Metals (ICP) - S	Step 3							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	110		10	2.1	mg/Kg		06/08/20 08:00	06/18/20 13:12	
Beryllium	ND		0.25	0.015	mg/Kg	☼	06/08/20 08:00	06/18/20 13:12	
Cadmium	0.028	JB*	0.25		mg/Kg	☆	06/08/20 08:00	06/18/20 13:12	
Cobalt	ND	. 	2.5		mg/Kg	 \$		06/18/20 13:12	
Iron	300		5.0		mg/Kg	₩		06/18/20 13:12	
Manganese	8.1	D	0.75		mg/Kg	₩		06/18/20 13:12	
Selenium	0.18		0.50		mg/Kg	₽		06/18/20 13:12	
Method: 6010B SEP - SE	P Metals (ICP) - 9	Sten 4							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	900		10		mg/Kg	_	06/10/20 08:00	06/18/20 15:05	
Beryllium	ND		0.25		mg/Kg	☼	06/10/20 08:00	06/18/20 15:05	
Cadmium	ND		0.25		mg/Kg	☆	06/10/20 08:00	06/18/20 15:05	
Cobalt	0.30	<mark>.</mark>	2.5		mg/Kg		06/10/20 08:00	06/18/20 15:05	
		J	5.0		mg/Kg	☆	06/10/20 08:00	06/18/20 15:05	
ron	2100					≎			
Manganese Selenium	60 0.70	B *	0.75 0.50		mg/Kg mg/Kg		06/10/20 08:00	06/18/20 15:05 06/18/20 15:05	
Method: 6010B SEP - SE Analyte	· ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Aluminum	64	J * *1	150	24	mg/Kg	<u></u>	06/12/20 08:00	06/19/20 12:46	
Beryllium	ND	*	3.8		mg/Kg	₩	06/12/20 08:00	06/19/20 12:46	
Cadmium	ND		3.8		mg/Kg	₩	06/12/20 08:00	06/19/20 12:46	
Cobalt	ND	*	38		mg/Kg	 ☆		06/19/20 12:46	
Iron		* *1	75		mg/Kg	₩		06/19/20 12:46	
Manganese		J *	11		mg/Kg	≎	06/12/20 08:00	06/19/20 12:46	
Manganese Selenium			7.5					06/19/20 12:46	
Selenium	ND		7.5	2.6	mg/Kg	**	00/12/20 08:00	00/19/20 12:46	
Method: 6010B SEP - SE	P Metals (ICP) - S	Step 6							Dil Fa

Eurofins TestAmerica, Knoxville

6/25/2020

_

6

8

10

12

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Date Collected: 05/15/20 09:20

Matrix: Solid

Date Received: 05/20/20 09:45

Percent Solids: 99.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	ND		0.25	0.012	mg/Kg	<u> </u>	06/12/20 08:00	06/19/20 16:38	1
Cadmium	ND		1.3	0.055	mg/Kg	₩	06/12/20 08:00	06/19/20 17:21	5
Cobalt	8.9	J	13	0.23	mg/Kg	₩.	06/12/20 08:00	06/19/20 17:21	5
Iron	39000		25	15	mg/Kg	₩	06/12/20 08:00	06/19/20 17:21	5
Manganese	930		0.75	0.25	mg/Kg	₩	06/12/20 08:00	06/19/20 16:38	1
Selenium	1.3	J	2.5	0.85	mg/Kg	\$	06/12/20 08:00	06/19/20 17:21	5
Method: 6010B SEP - S	SEP Metals (ICP) -	Step 7							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	32000		100	16	mg/Kg	₩	06/15/20 08:00	06/22/20 16:00	10
Beryllium	0.94		0.25	0.0075	mg/Kg	₩	06/15/20 08:00	06/22/20 14:23	1
Cadmium	0.12	J	0.25	0.011	mg/Kg	☼	06/15/20 08:00	06/22/20 14:23	1
Cobalt	1.2	J	13	0.13	mg/Kg	₽	06/15/20 08:00	06/22/20 16:57	5
Iron	6900		5.0	4.1	mg/Kg	₩	06/15/20 08:00	06/22/20 14:23	1
Manganese	220		0.75	0.11	mg/Kg	₩	06/15/20 08:00	06/22/20 14:23	1
Selenium	ND		0.50	0.17	mg/Kg	₽	06/15/20 08:00	06/22/20 14:23	1
Method: 6010B SEP - S	SEP Metals (ICP) -	Sum of Step	s 1-7						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	52000		10		mg/Kg			06/25/20 11:53	1
Beryllium	0.94		0.25	0.0075	mg/Kg			06/25/20 11:53	1
Cadmium	0.15	J	0.25	0.011	mg/Kg			06/25/20 11:53	1
Cobalt	10		2.5	0.023	mg/Kg			06/25/20 11:53	1
Iron	49000		5.0	4.1	mg/Kg			06/25/20 11:53	1
Manganese	1200		0.75	0.052	mg/Kg			06/25/20 11:53	1
Selenium	2.2		0.50	0.17	mg/Kg			06/25/20 11:53	1
Method: 6010B - SEP N	Metals (ICP) - Total								
Amaluta	· · ·	Ouglifier	DI.	MDI		_	Duamanad		

Method: 6010B - SEP I Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	70000		100	16	mg/Kg	<u>₩</u>	05/29/20 08:00	06/23/20 15:27	10
Beryllium	0.73		0.50	0.015	mg/Kg	☼	05/29/20 08:00	06/23/20 17:08	2
Cadmium	1.4		0.50	0.022	mg/Kg	₩	05/29/20 08:00	06/23/20 17:08	2
Cobalt	12	J	25	0.26	mg/Kg	₩.	05/29/20 08:00	06/23/20 15:27	10
Iron	43000		10	8.2	mg/Kg	₩	05/29/20 08:00	06/23/20 17:08	2
Manganese	1300		1.5	0.22	mg/Kg	₩	05/29/20 08:00	06/23/20 17:08	2
Selenium	0.50	J	1.0	0.34	mg/Kg		05/29/20 08:00	06/23/20 17:08	2

2

Job ID: 140-19131-1

3

5

<u>'</u>

9

11

12

ı,

Client: Golder Associates Inc.

Project/Site: SCS Site, Plant Branch

Client Sample ID: PZ-53D 30 FT BGS Lab Sample ID: 140-19131-11

Date Collected: 05/16/20 16:15
Date Received: 05/20/20 09:45 **Matrix: Solid**

Date Received: 05/20/20 09 -	71-10						<u>'</u>	Percent Solid	10. 70.0
Method: 6010B SEP - SEI Analyte	• •	Step 1 Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	31	J	54	8.7	mg/Kg	— \	06/02/20 08:00	06/16/20 13:28	4
Beryllium	ND		1.4	0.42	mg/Kg	₩	06/02/20 08:00	06/16/20 13:28	4
Cadmium	ND		1.4	0.087	mg/Kg	☼	06/02/20 08:00	06/16/20 13:28	4
Cobalt	0.43	J	14		mg/Kg		06/02/20 08:00	06/16/20 13:28	4
Iron	ND		27		mg/Kg	☼	06/02/20 08:00	06/16/20 13:28	4
Manganese	5.5		4.1		mg/Kg	₩	06/02/20 08:00	06/16/20 13:28	4
Selenium	ND		2.7		mg/Kg		06/02/20 08:00	06/16/20 13:28	4
_ Method: 6010B SEP - SEI	P Metals (ICP) - S	Step 2							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	17	J *	41	6.5	mg/Kg	<u>∓</u>	06/03/20 08:00	06/16/20 15:24	3
Beryllium	ND	*	1.0	0.065	mg/Kg	☼	06/03/20 08:00	06/16/20 15:24	3
Cadmium	ND		1.0	0.045	mg/Kg	☼	06/03/20 08:00	06/16/20 15:24	3
Cobalt	ND		10	0.26	mg/Kg		06/03/20 08:00	06/16/20 15:24	3
Iron	ND	*	20		mg/Kg	₩	06/03/20 08:00	06/16/20 15:24	3
Manganese	ND		3.1	1.1	mg/Kg	₩	06/03/20 08:00	06/16/20 15:24	3
Selenium	ND		2.0	0.69	mg/Kg		06/03/20 08:00	06/16/20 15:24	3
- Method: 6010B SEP - SEI	P Metals (ICP) - S	Step 3							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Aluminum	190		14	2.9	mg/Kg	₩	06/08/20 08:00	06/18/20 13:18	1
Beryllium	0.13	J	0.34	0.020	mg/Kg	₩	06/08/20 08:00	06/18/20 13:18	1
Cadmium	0.041	J B *	0.34	0.015	mg/Kg	₩	06/08/20 08:00	06/18/20 13:18	1
Cobalt	17		3.4	0.061	mg/Kg	₽	06/08/20 08:00	06/18/20 13:18	1
Iron	640		6.8	3.9	mg/Kg	₩	06/08/20 08:00	06/18/20 13:18	1
Manganese	480	В	1.0	0.037	mg/Kg	₩	06/08/20 08:00	06/18/20 13:18	1
Selenium	0.30	J	0.68	0.23	mg/Kg	≎	06/08/20 08:00	06/18/20 13:18	1
Method: 6010B SEP - SEI	• •	•							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Aluminum	2100		14		mg/Kg	*	06/10/20 08:00	06/18/20 15:10	1
Beryllium	0.57		0.34		mg/Kg		06/10/20 08:00	06/18/20 15:10	1
Cadmium	ND		0.34		mg/Kg		06/10/20 08:00	06/18/20 15:10	1
Cobalt	3.5		3.4		mg/Kg	.	06/10/20 08:00	06/18/20 15:10	1
Iron	6200		6.8		mg/Kg	*		06/18/20 15:10	1
Manganese	200		1.0		mg/Kg		06/10/20 08:00		1
Selenium	1.4	B *	0.68	0.64	mg/Kg	₽	06/10/20 08:00	06/18/20 15:10	1
Method: 6010B SEP - SEI			D.	MPI	l lni4	_	Dramarad	Analyza	D:: F
Analyte	360	Qualifier	RL	MDL		— D <u>₩</u>	Prepared	Analyzed	Dil Fac
Aluminum Pandlium	360 ND	*	200		mg/Kg		06/12/20 08:00	06/19/20 12:51	5
Beryllium			5.1		mg/Kg	₩ ₩	06/12/20 08:00	06/19/20 12:51	5
Cadmium	ND	*	5.1		mg/Kg		06/12/20 08:00	06/19/20 12:51	
Cobalt	ND	* *4	51		mg/Kg	☆	06/12/20 08:00	06/19/20 12:51	5
Iron	ND	- ^1	100		mg/Kg	₩	06/12/20 08:00	06/19/20 12:51	5
Manganese	ND	• · · · · · · · · · · · · · · · · · · ·	15		mg/Kg	J.	06/12/20 08:00		5
Selenium 	ND		10	3.5	mg/Kg	₩	06/12/20 08:00	06/19/20 12:51	5
Method: 6010B SEP - SEI		Step 6 Qualifier	RL	MDL	Unit	D	Droparod	Analyzad	Dil Fac
Analyte		- uaiiiiei				— \	Prepared 06/12/20 08:00	Analyzed	1 Dil Fac
Aluminum	13000		14	2.2	mg/Kg	740	00/12/20 08:00	06/19/20 16:43	1

Eurofins TestAmerica, Knoxville

6/25/2020

Page 28 of 72

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: PZ-53D 30 FT BGS Lab Sample ID: 140-19131-11

Date Collected: 05/16/20 16:15 **Matrix: Solid** Percent Solids: 73.6 Date Received: 05/20/20 09:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.39		0.34	0.016	mg/Kg	₩	06/12/20 08:00	06/19/20 16:43	1
Cadmium	ND		0.34	0.015	mg/Kg	₩	06/12/20 08:00	06/19/20 16:43	1
Cobalt	5.1		3.4	0.063	mg/Kg	₽	06/12/20 08:00	06/19/20 16:43	1
Iron	14000		6.8	3.9	mg/Kg	₩	06/12/20 08:00	06/19/20 16:43	1
Manganese	210		1.0	0.34	mg/Kg	☼	06/12/20 08:00	06/19/20 16:43	1
Selenium	0.39	J	0.68	0.23	mg/Kg	₽	06/12/20 08:00	06/19/20 16:43	1
Method: 6010B SEP - \$	SEP Metals (ICP) -	Step 7							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	43000		140	22	mg/Kg	<u> </u>	06/15/20 08:00	06/22/20 16:06	10
Beryllium	0.51		0.34	0.010	mg/Kg	₩	06/15/20 08:00	06/22/20 14:29	1
Cadmium	0.12	J	0.34	0.015	mg/Kg	₩	06/15/20 08:00	06/22/20 14:29	1
Cobalt	0.91	J	3.4	0.035	mg/Kg	₩	06/15/20 08:00	06/22/20 14:29	1
Iron	8500		6.8	5.6	mg/Kg	₩	06/15/20 08:00	06/22/20 14:29	1
Manganese	48		1.0	0.15	mg/Kg	₩	06/15/20 08:00	06/22/20 14:29	1
Selenium	ND		0.68	0.23	mg/Kg	₽	06/15/20 08:00	06/22/20 14:29	1
Method: 6010B SEP - S	SEP Metals (ICP) -	Sum of Step	s 1-7						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	58000		10		mg/Kg			06/25/20 11:53	1
Beryllium	1.6		0.25	0.0075				06/25/20 11:53	1
Cadmium	0.16	J	0.25	0.011	mg/Kg			06/25/20 11:53	1
Cobalt	26		2.5	0.023	mg/Kg			06/25/20 11:53	1
Iron	29000		5.0	4.1	mg/Kg			06/25/20 11:53	1
Manganese	940		0.75	0.052	mg/Kg			06/25/20 11:53	1
Selenium	2.1		0.50	0.17	mg/Kg			06/25/20 11:53	1
: Method: 6010B - SEP I	Motals (ICD) - Total								
metriou. 00 10D - SEF 1	victais (ioi) - Totai					_			

Method: 6010B - SEP Me	tals (ICP) - Total							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100000	140	22	mg/Kg	<u> </u>	05/29/20 08:00	06/23/20 15:32	10
Beryllium	2.0	0.34	0.010	mg/Kg	☼	05/29/20 08:00	06/23/20 13:55	1
Cadmium	0.44 J	0.68	0.030	mg/Kg	☼	05/29/20 08:00	06/23/20 17:14	2
Cobalt	41	34	0.35	mg/Kg	₽	05/29/20 08:00	06/23/20 15:32	10
Iron	36000	14	11	mg/Kg	☼	05/29/20 08:00	06/23/20 17:14	2
Manganese	1200	1.0	0.15	mg/Kg	☼	05/29/20 08:00	06/23/20 13:55	1
Selenium	0.62 J	1.4	0.46	mg/Kg	₽	05/29/20 08:00	06/23/20 17:14	2

Job ID: 140-19131-1

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: PZ-53D 36 FT BGS

Lab Sample ID: 140-19131-12

Date Collected: 05/16/20 16:25

Date Received: 05/20/20 09:45

Percent Solids: 82 0

0 (09 oate Received: 05/20/20	:45							Percent Solid	IS: 82.
Method: 6010B SEP - SEF	Motals (ICP) -	Stan 1							
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND		49		mg/Kg	— -	06/02/20 08:00	06/16/20 13:33	
Beryllium	ND		1.2		mg/Kg	₽	06/02/20 08:00	06/16/20 13:33	
Cadmium	ND.		1.2		mg/Kg	₽	06/02/20 08:00		
Cobalt	ND		12		mg/Kg		06/02/20 08:00		
Iron	ND.		24		mg/Kg	₽		06/16/20 13:33	
	0.89		3.7		mg/Kg	₽	06/02/20 08:00		
Manganese Selenium	ND		2.4		mg/Kg			06/16/20 13:33	
Selemum	ND		2.4	0.03	mg/rkg	7	00/02/20 08.00	00/10/20 13.33	
Method: 6010B SEP - SEF	Metals (ICP) -	Step 2							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Aluminum	6.8	J *	37	5.9	mg/Kg	<u>₩</u>	06/03/20 08:00	06/16/20 15:29	
Beryllium	0.14	J *	0.91	0.059	mg/Kg	₽	06/03/20 08:00	06/16/20 15:29	
Cadmium	ND		0.91	0.040	mg/Kg	₩	06/03/20 08:00	06/16/20 15:29	
Cobalt	ND		9.1	0.23	mg/Kg		06/03/20 08:00	06/16/20 15:29	
Iron	ND	*	18		mg/Kg	₽	06/03/20 08:00	06/16/20 15:29	
Manganese	ND		2.7		mg/Kg	≎		06/16/20 15:29	
Selenium	0.70		1.8		mg/Kg			06/16/20 15:29	
					0 0				
Method: 6010B SEP - SEF									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Aluminum	140		12		mg/Kg	₩.	06/08/20 08:00	06/18/20 13:23	
Beryllium	0.23	J	0.30		mg/Kg	₩	06/08/20 08:00	06/18/20 13:23	
Cadmium	0.060	JB*	0.30		mg/Kg	₩	06/08/20 08:00	06/18/20 13:23	
Cobalt	1.0	J	3.0	0.055	mg/Kg	₩	06/08/20 08:00	06/18/20 13:23	
Iron	70		6.1	3.5	mg/Kg	₽	06/08/20 08:00	06/18/20 13:23	
Manganese	74	В	0.91	0.033	mg/Kg	₽	06/08/20 08:00	06/18/20 13:23	
Selenium	0.25	J	0.61	0.21	mg/Kg	≎	06/08/20 08:00	06/18/20 13:23	
Method: 6010B SEP - SEF	Motale (ICD)	Stop 4							
Method, 60106 SEP - SEP Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	2000	- Qualifier	12		mg/Kg	— ~	06/10/20 08:00	06/18/20 15:15	
	0.42		0.30		mg/Kg	₽	06/10/20 08:00	06/18/20 15:15	
Beryllium Codmium			0.30				06/10/20 08:00		
Cadmium	0.035				mg/Kg	· · · · · · ›*.			
Cobalt	0.63	J	3.0		mg/Kg	*	06/10/20 08:00		
ron	1800		6.1		mg/Kg	φ.		06/18/20 15:15	
Manganese	56	. <u></u>	0.91		mg/Kg			06/18/20 15:15	
Selenium	0.91	B *	0.61	0.57	mg/Kg	1,1	06/10/20 08:00	06/18/20 15:15	
Method: 6010B SEP - SEF	Metals (ICP) -	Step 5							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Aluminum		* *1	180	29	mg/Kg	<u></u>	06/12/20 08:00		
Beryllium	ND		4.6		mg/Kg	☼		06/19/20 12:57	
Cadmium	ND		4.6		mg/Kg	₽		06/19/20 12:57	
Cobalt	ND	*	46		mg/Kg			06/19/20 12:57	
Iron		* *1	91		mg/Kg	₽		06/19/20 12:57	
Manganese	ND		14		mg/Kg	₽		06/19/20 12:57	
Selenium	ND		9.1		mg/Kg			06/19/20 12:57	
OCICIIIUIII	IND		J. I	3.2	ilig/Ng	~	00/12/20 00:00	00/18/20 12:0/	
Method: 6010B SEP - SEF	Metals (ICP) -	Step 6							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	17000		12		mg/Kg	— Ţ	06/12/20 08:00	-	

Eurofins TestAmerica, Knoxville

6/25/2020

Page 30 of 72

2

3

9

11

12

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Lab Sample ID: 140-19131-12

Client Sample ID: PZ-53D 36 FT BGS Date Collected: 05/16/20 16:25 **Matrix: Solid** Date Received: 05/20/20 09:45

Percent Solids: 82.0

Job ID: 140-19131-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.70		0.30	0.015	mg/Kg	<u></u>	06/12/20 08:00	06/19/20 16:49	1
Cadmium	ND		0.30	0.013	mg/Kg	☼	06/12/20 08:00	06/19/20 16:49	1
Cobalt	6.9		6.1	0.11	mg/Kg	₩	06/12/20 08:00	06/19/20 17:26	2
Iron	20000		6.1	3.5	mg/Kg	☼	06/12/20 08:00	06/19/20 16:49	1
Manganese	290		0.91	0.30	mg/Kg	₩	06/12/20 08:00	06/19/20 16:49	1
Selenium	0.48	J	0.61	0.21	mg/Kg	\$	06/12/20 08:00	06/19/20 16:49	1
- Method: 6010B SEP - 9	SEP Metals (ICP) - 3	Step 7							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	48000		120	20	mg/Kg	<u> </u>	06/15/20 08:00	06/22/20 16:11	10
Beryllium	0.42		0.30	0.0091	mg/Kg	₩	06/15/20 08:00	06/22/20 14:34	1
Cadmium	0.23	J	0.30	0.013	mg/Kg	₩	06/15/20 08:00	06/22/20 14:34	1
Cobalt	0.27	J	15	0.16	mg/Kg	₩	06/15/20 08:00	06/22/20 17:02	5
Iron	5000		6.1	5.0	mg/Kg	₩	06/15/20 08:00	06/22/20 14:34	1
Manganese	55		0.91	0.13	mg/Kg	☼	06/15/20 08:00	06/22/20 14:34	1
Selenium	ND		0.61	0.21	mg/Kg		06/15/20 08:00	06/22/20 14:34	1
_ Method: 6010B SEP - 9	SEP Metals (ICP) - 3	Sum of Step	s 1-7						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	68000		10	1.6	mg/Kg			06/25/20 11:53	1
Beryllium	1.9		0.25	0.0075	mg/Kg			06/25/20 11:53	1
Cadmium	0.33		0.25	0.011	mg/Kg			06/25/20 11:53	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	68000	10	1.6	mg/Kg			06/25/20 11:53	1
Beryllium	1.9	0.25	0.0075	mg/Kg			06/25/20 11:53	1
Cadmium	0.33	0.25	0.011	mg/Kg			06/25/20 11:53	1
Cobalt	8.8	2.5	0.023	mg/Kg			06/25/20 11:53	1
Iron	27000	5.0	4.1	mg/Kg			06/25/20 11:53	1
Manganese	480	0.75	0.052	mg/Kg			06/25/20 11:53	1
Selenium	2.4	0.50	0.17	mg/Kg			06/25/20 11:53	1

Method: 6010B - SEP M	letals (ICP) - Total							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	80000	120	20	mg/Kg	<u></u>	05/29/20 08:00	06/23/20 15:37	10
Beryllium	1.7	0.30	0.0091	mg/Kg	☼	05/29/20 08:00	06/23/20 14:01	1
Cadmium	0.67	0.30	0.013	mg/Kg	₽	05/29/20 08:00	06/23/20 14:01	1
Cobalt	9.6 J	15	0.16	mg/Kg	φ.	05/29/20 08:00	06/23/20 17:19	5
Iron	24000	6.1	5.0	mg/Kg	☼	05/29/20 08:00	06/23/20 14:01	1
Manganese	460	0.91	0.13	mg/Kg	☼	05/29/20 08:00	06/23/20 14:01	1
Selenium	ND	0.61	0.21	mg/Kg	₽	05/29/20 08:00	06/23/20 14:01	1

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Method: 6010B SEP - SEP Metals (ICP) - Step 1

Prep: 3010A

SEP: Exchangeable

Analyte	RL	MDL	Units
Aluminum		1.6	mg/Kg
Beryllium	0.25	0.077	mg/Kg
Cadmium	0.25	0.016	mg/Kg
Cobalt	2.5	0.045	mg/Kg
Iron	5.0	2.9	mg/Kg
Manganese	0.75	0.031	mg/Kg
Selenium	0.50	0.17	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 2

Prep: 3010A SEP: Carbonate

Analyte	RL	MDL	Units
Aluminum	10	1.6	mg/Kg
Beryllium	0.25	0.016	mg/Kg
Cadmium	0.25	0.011	mg/Kg
Cobalt	2.5	0.063	mg/Kg
Iron	5.0	2.9	mg/Kg
Manganese	0.75	0.28	mg/Kg
Selenium	0.50	0.17	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 3

Prep: 3010A

SEP: Non-Crystalline

Analyte	RL	MDL	Units
Aluminum	10	2.1	mg/Kg
Beryllium	0.25	0.015	mg/Kg
Cadmium	0.25	0.011	mg/Kg
Cobalt	2.5	0.045	mg/Kg
Iron	5.0	2.9	mg/Kg
Manganese	0.75	0.027	mg/Kg
Selenium	0.50	0.17	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 4

Prep: 3010A

SEP: Metal Hydroxide

Analyte	RL	MDL	Units
Aluminum		1.6	mg/Kg
Beryllium	0.25	0.016	mg/Kg
Cadmium	0.25	0.011	mg/Kg
Cobalt	2.5	0.053	mg/Kg
Iron	5.0	2.9	mg/Kg
Manganese	0.75	0.13	mg/Kg
Selenium	0.50	0.47	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 5

Prep: 3010A

SEP: Organic-Bound

Analyte	RL	MDL	Units	
Aluminum	30	4.7	mg/Kg	
Beryllium	0.75	0.063	mg/Kg	

Eurofins TestAmerica, Knoxville

Page 32 of 72

9

3

6

0

10

12

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Method: 6010B SEP - SEP Metals (ICP) - Step 5 (Continued)

Prep: 3010A

SEP: Organic-Bound

Analyte	RL	MDL	Units
Cadmium	0.75	0.032	mg/Kg
Cobalt	7.5	0.12	mg/Kg
Iron	15	8.8	mg/Kg
Manganese	2.3	0.37	mg/Kg
Selenium	1.5	0.52	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 6

SEP: Acid/Sulfide

Analyte	RL	MDL	Units	
Aluminum	10	1.6	mg/Kg	
Beryllium	0.25	0.012	mg/Kg	
Cadmium	0.25	0.011	mg/Kg	
Cobalt	2.5	0.046	mg/Kg	
Iron	5.0	2.9	mg/Kg	
Manganese	0.75	0.25	mg/Kg	
Selenium	0.50	0.17	mg/Kg	

Method: 6010B SEP - SEP Metals (ICP) - Step 7

Prep: Residual

Analyte	RL	MDL	Units
Aluminum		1.6	mg/Kg
Beryllium	0.25	0.0075	mg/Kg
Cadmium	0.25	0.011	mg/Kg
Cobalt	2.5	0.026	mg/Kg
Iron	5.0	4.1	mg/Kg
Manganese	0.75	0.11	mg/Kg
Selenium	0.50	0.17	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Sum of Steps 1-7

Analyte	RL	MDL	Units
Aluminum	10	1.6	mg/Kg
Beryllium	0.25	0.0075	mg/Kg
Cadmium	0.25	0.011	mg/Kg
Cobalt	2.5	0.023	mg/Kg
Iron	5.0	4.1	mg/Kg
Manganese	0.75	0.052	mg/Kg
Selenium	0.50	0.17	mg/Kg

Method: 6010B - SEP Metals (ICP) - Total

Prep: Total

Analyte	RL	MDL	Units
Aluminum	10	1.6	mg/Kg
Beryllium	0.25	0.0075	mg/Kg
Cadmium	0.25	0.011	mg/Kg
Cobalt	2.5	0.026	mg/Kg
Iron	5.0	4.1	mg/Kg
Manganese	0.75	0.11	mg/Kg
Selenium	0.50	0.17	mg/Kg

Eurofins TestAmerica, Knoxville

3

F

6

9

11

12

L

Client: Golder Associates Inc. Job ID: 140-19131-1

Project/Site: SCS Site, Plant Branch

Method: 6010B - SEP Metals (ICP) - Total

Lab Sample ID: MB 140-39918/15-A **Matrix: Solid**

Analysis Batch: 40512

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 39918

	IVID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10	1.6	mg/Kg		05/29/20 08:00	06/23/20 12:12	1
Beryllium	ND		0.25	0.0075	mg/Kg		05/29/20 08:00	06/23/20 12:12	1
Cadmium	ND		0.25	0.011	mg/Kg		05/29/20 08:00	06/23/20 12:12	1
Cobalt	ND		2.5	0.026	mg/Kg		05/29/20 08:00	06/23/20 12:12	1
Iron	ND		5.0	4.1	mg/Kg		05/29/20 08:00	06/23/20 12:12	1
Manganese	ND		0.75	0.11	mg/Kg		05/29/20 08:00	06/23/20 12:12	1
Selenium	ND		0.50	0.17	mg/Kg		05/29/20 08:00	06/23/20 12:12	1

MR MR

Lab Sample ID: LCS 140-39918/16-A

Matrix: Solid

Analysis Batch: 40512

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 39918

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	103		mg/Kg		103	75 - 125	
Beryllium	2.50	2.51		mg/Kg		100	75 - 125	
Cadmium	2.50	2.63		mg/Kg		105	75 - 125	
Cobalt	5.00	5.37		mg/Kg		107	75 - 125	
Iron	50.0	52.3		mg/Kg		105	75 - 125	
Manganese	5.00	5.34		mg/Kg		107	75 - 125	
Selenium	7.50	7.60		mg/Kg		101	75 - 125	

Lab Sample ID: LCSD 140-39918/17-A

Matrix: Solid

Analysis Batch: 40512

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 39918

Allalysis Datcii. 40012							I ICP L	outon. c	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	102		mg/Kg		102	75 - 125	1	30
Beryllium	2.50	2.48		mg/Kg		99	75 - 125	1	30
Cadmium	2.50	2.62		mg/Kg		105	75 - 125	1	30
Cobalt	5.00	5.33		mg/Kg		107	75 - 125	1	30
Iron	50.0	51.3		mg/Kg		103	75 - 125	2	30
Manganese	5.00	5.29		mg/Kg		106	75 - 125	1	30
Selenium	7.50	7.53		mg/Kg		100	75 - 125	1	30

Method: 6010B SEP - SEP Metals (ICP)

Lab Sample ID: MB 140-40011/15-B ^4

Matrix: Solid

Analysis Batch: 40383

Client S	Sample	ID:	Method	Blank
----------	--------	-----	--------	-------

Prep Type: Step 1

Prep Batch: 40023

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		40	6.4	mg/Kg		06/02/20 08:00	06/16/20 11:55	4
Beryllium	ND		1.0	0.31	mg/Kg		06/02/20 08:00	06/16/20 11:55	4
Cadmium	ND		1.0	0.064	mg/Kg		06/02/20 08:00	06/16/20 11:55	4
Cobalt	ND		10	0.18	mg/Kg		06/02/20 08:00	06/16/20 11:55	4
Iron	ND		20	12	mg/Kg		06/02/20 08:00	06/16/20 11:55	4
Manganese	ND		3.0	0.12	mg/Kg		06/02/20 08:00	06/16/20 11:55	4
Selenium	ND		2.0	0.68	mg/Kg		06/02/20 08:00	06/16/20 11:55	4

Eurofins TestAmerica, Knoxville

Page 34 of 72

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCS 140-40011/16-B ^5 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Step 1 **Analysis Batch: 40383** Prep Batch: 40023

ı		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Aluminum	100	100		mg/Kg		100	75 - 125	
	Beryllium	2.50	2.49		mg/Kg		100	75 - 125	
	Cadmium	2.50	2.42		mg/Kg		97	75 - 125	
	Cobalt	5.00	4.76	J	mg/Kg		95	75 - 125	
	Iron	50.0	49.3		mg/Kg		99	75 - 125	
	Manganese	5.00	4.92		mg/Kg		98	75 - 125	
	Selenium	7.50	7.25		mg/Kg		97	75 - 125	

Lab Sample ID: LCSD 140-40011/17-B ^5 Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Step 1

Prep Batch: 40023 **Analysis Batch: 40383**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	102		mg/Kg		102	75 - 125	2	30
Beryllium	2.50	2.63		mg/Kg		105	75 - 125	6	30
Cadmium	2.50	2.55		mg/Kg		102	75 - 125	5	30
Cobalt	5.00	5.03	J	mg/Kg		101	75 - 125	5	30
Iron	50.0	51.3		mg/Kg		103	75 - 125	4	30
Manganese	5.00	5.18		mg/Kg		104	75 - 125	5	30
Selenium	7.50	7.87		mg/Kg		105	75 - 125	8	30

Lab Sample ID: MB 140-40024/15-B ^3 **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Step 2 **Analysis Batch: 40383** Prep Batch: 40062

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Aluminum $\overline{\mathsf{ND}}$ 30 4.8 mg/Kg 06/03/20 08:00 06/16/20 13:48 3 Beryllium ND 0.75 0.048 mg/Kg 06/03/20 08:00 06/16/20 13:48 3 Cadmium ND 0.75 0.033 mg/Kg 06/03/20 08:00 06/16/20 13:48 3 Cobalt ND 7.5 0.19 mg/Kg 06/03/20 08:00 06/16/20 13:48 3 ND 06/03/20 08:00 06/16/20 13:48 3 Iron 15 8.7 mg/Kg Manganese ND 06/03/20 08:00 06/16/20 13:48 3 2.3 0.84 mg/Kg Selenium ND 0.51 mg/Kg 06/03/20 08:00 06/16/20 13:48

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-40024/16-B ^5 **Matrix: Solid** Prep Type: Step 2 Analysis Batch: 40383 Prep Batch: 40062

1.5

Analysis Batch. 40303	Spike	LCS	LCS				%Rec.	_
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	ND	*	mg/Kg		-1	75 - 125	_
Beryllium	2.50	1.28	J *	mg/Kg		51	75 - 125	
Cadmium	2.50	2.35		mg/Kg		94	75 - 125	
Cobalt	5.00	4.53	J	mg/Kg		91	75 - 125	
Iron	50.0	ND	*	mg/Kg		5	75 - 125	
Manganese	5.00	4.69		mg/Kg		94	75 - 125	
Selenium	7.50	6.68		mg/Kg		89	75 ₋ 125	

Eurofins TestAmerica, Knoxville

Spike

Added

100

2.50

2.50

5.00

50.0

5.00

7.50

Client: Golder Associates Inc. Job ID: 140-19131-1

LCSD LCSD

ND

1.33 *

4.67 J

ND

4.85

6.51

2.43

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Project/Site: SCS Site, Plant Branch

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCSD 140-40024/17-B ^5

Matrix: Solid

Analyte

Aluminum

Beryllium

Cadmium

Manganese

Selenium

Cobalt

Iron

Analysis Batch: 40383

Client Sample ID: Lab Control Sample Dup

Prep Type: Step 2

Prep Batch: 40062 %Rec. **RPD** D %Rec Limits RPD Limit 75 - 125 30 -1 19 53 75 - 125 4 30 97 75 - 125 3 30

 93
 75 - 125
 3
 30

 7
 75 - 125
 25
 30

 97
 75 - 125
 3
 30

 87
 75 - 125
 3
 30

Lab Sample ID: MB 140-40065/15-B

Matrix: Solid

Analysis Batch: 40441

Client Sample ID: Method Blank Prep Type: Step 3

Prep Batch: 40096

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10	2.1	mg/Kg		06/08/20 08:00	06/18/20 11:44	1
Beryllium	ND		0.25	0.015	mg/Kg		06/08/20 08:00	06/18/20 11:44	1
Cadmium	0.0820	J	0.25	0.011	mg/Kg		06/08/20 08:00	06/18/20 11:44	1
Cobalt	ND		2.5	0.045	mg/Kg		06/08/20 08:00	06/18/20 11:44	1
Iron	ND		5.0	2.9	mg/Kg		06/08/20 08:00	06/18/20 11:44	1
Manganese	0.0490	J	0.75	0.027	mg/Kg		06/08/20 08:00	06/18/20 11:44	1
Selenium	ND		0.50	0.17	mg/Kg		06/08/20 08:00	06/18/20 11:44	1
_									

Lab Sample ID: LCS 140-40065/16-B

Matrix: Solid

Analysis Batch: 40441

Client Sample ID: Lab Control Sample

Prep Type: Step 3
Prep Batch: 40096

Analysis Daten. 40441	Spike	LCS	LCS				%Rec.	. 40030
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	91.6		mg/Kg		92	75 - 125	
Beryllium	2.50	2.52		mg/Kg		101	75 - 125	
Cadmium	2.50	1.31	*	mg/Kg		52	75 - 125	
Cobalt	5.00	4.55		mg/Kg		91	75 - 125	
Iron	50.0	49.4		mg/Kg		99	75 - 125	
Manganese	5.00	4.74		mg/Kg		95	75 - 125	
Selenium	7.50	7.72		mg/Kg		103	75 - 125	

Lab Sample ID: LCSD 140-40065/17-B

Matrix: Solid

Analysis Batch: 40441

Client Sample ID: Lat	Control	Sample	Dup
	Dron	Typo: C	ton 2

Prep Type: Step 3
Prep Batch: 40096

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	95.6		mg/Kg		96	75 - 125	4	30
Beryllium	2.50	2.60		mg/Kg		104	75 - 125	3	30
Cadmium	2.50	1.37	*	mg/Kg		55	75 - 125	4	30
Cobalt	5.00	4.74		mg/Kg		95	75 - 125	4	30
Iron	50.0	51.1		mg/Kg		102	75 - 125	3	30
Manganese	5.00	4.91		mg/Kg		98	75 - 125	3	30
Selenium	7.50	8.04		mg/Kg		107	75 - 125	4	30

2

3

4

0

0

10

12

L

•

Client: Golder Associates Inc.

MR MR

Project/Site: SCS Site, Plant Branch

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: MB 140-40100/15-B

Matrix: Solid

Analysis Batch: 40441

Client Sample ID: Method Blank

Prep Type: Step 4

Prep Batch: 40214

Job ID: 140-19131-1

		110							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND ND		10	1.6	mg/Kg		06/10/20 08:00	06/18/20 13:39	1
Beryllium	ND		0.25	0.016	mg/Kg		06/10/20 08:00	06/18/20 13:39	1
Cadmium	ND		0.25	0.011	mg/Kg		06/10/20 08:00	06/18/20 13:39	1
Cobalt	ND		2.5	0.053	mg/Kg		06/10/20 08:00	06/18/20 13:39	1
Iron	ND		5.0	2.9	mg/Kg		06/10/20 08:00	06/18/20 13:39	1
Manganese	ND		0.75	0.13	mg/Kg		06/10/20 08:00	06/18/20 13:39	1
Selenium	0.953		0.50	0.47	mg/Kg		06/10/20 08:00	06/18/20 13:39	1

Lab Sample ID: LCS 140-40100/16-B

Matrix: Solid

Analysis Batch: 40441

Client Sample ID: Lab Control Sample

Prep Type: Step 4

Prep Batch: 40214

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Aluminum 100 99.1 mg/Kg 99 75 - 125 Beryllium 2.50 2.62 mg/Kg 105 75 - 125 Cadmium 2.50 2.70 mg/Kg 108 75 - 125 Cobalt 5.00 5.26 mg/Kg 105 75 - 125 50.0 50.9 102 Iron mg/Kg 75 - 125 5.00 5.14 mg/Kg 103 75 - 125 Manganese Selenium 7.50 0.825 mg/Kg 11 75 - 125

Lab Sample ID: LCSD 140-40100/17-B

Matrix: Solid

Analysis Batch: 40441

Client Sample ID: Lab Control Sample Dup

Prep Type: Step 4

Prep Batch: 40214

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	99.2		mg/Kg		99	75 - 125	0	30
Beryllium	2.50	2.63		mg/Kg		105	75 - 125	1	30
Cadmium	2.50	2.72		mg/Kg		109	75 - 125	1	30
Cobalt	5.00	5.26		mg/Kg		105	75 - 125	0	30
Iron	50.0	50.8		mg/Kg		102	75 - 125	0	30
Manganese	5.00	5.20		mg/Kg		104	75 - 125	1	30
Selenium	7.50	0.620	*	mg/Kg		8	75 - 125	28	30

Lab Sample ID: MB 140-40215/15-B ^5

Matrix: Solid

Analysis Batch: 40453

Client Sample ID: Method Blank

Prep Type: Step 5

Prep Batch: 40276

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		150	24	mg/Kg		06/12/20 08:00	06/19/20 11:16	5
Beryllium	ND		3.8	0.32	mg/Kg		06/12/20 08:00	06/19/20 11:16	5
Cadmium	ND		3.8	0.16	mg/Kg		06/12/20 08:00	06/19/20 11:16	5
Cobalt	ND		38	0.60	mg/Kg		06/12/20 08:00	06/19/20 11:16	5
Iron	ND		75	44	mg/Kg		06/12/20 08:00	06/19/20 11:16	5
Manganese	ND		11	1.9	mg/Kg		06/12/20 08:00	06/19/20 11:16	5
Selenium	ND		7.5	2.6	mg/Kg		06/12/20 08:00	06/19/20 11:16	5

Eurofins TestAmerica, Knoxville

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCS 140-40215/16-B ^5 **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Step 5 Analysis Batch: 40453** Prep Batch: 40276

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Aluminum 300 ND 75 - 125 mg/Kg 6 Beryllium 7.50 3.83 * mg/Kg 51 75 - 125 mg/Kg Cadmium 7.50 7.94 106 75 - 125 15.0 Cobalt 1.41 J* mg/Kg 9 75 - 1253 Iron 150 ND * mg/Kg 75 - 125 Manganese 15.0 3.49 J* mg/Kg 23 75 - 125 22.5 Selenium 23.4 mg/Kg 104 75 - 125

Lab Sample ID: LCSD 140-40215/17-B ^5 Client Sample ID: Lab Control Sample Dup **Prep Type: Step 5**

22.5

Matrix: Solid

Analysis Batch: 40453 Prep Batch: 40276 Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit ND * *1 Aluminum 300 4 75 - 125 32 30 mg/Kg Beryllium 7.50 3.99 * mg/Kg 53 75 - 125 4 30 Cadmium 7.50 8.24 mg/Kg 110 75 - 125 4 30 Cobalt 15.0 1.58 J* 30 mg/Kg 11 75 - 125 12 ND * *1 Iron 150 mg/Kg 4 75 - 125 34 30 15.0 4.36 J* mg/Kg 29 75 - 125 22 Manganese 30

Lab Sample ID: MB 140-40277/15-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Step 6**

24.8

Analysis Batch: 40453

Selenium

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10	1.6	mg/Kg		06/12/20 08:00	06/19/20 13:12	1
Beryllium	ND		0.25	0.012	mg/Kg		06/12/20 08:00	06/19/20 13:12	1
Cadmium	ND		0.25	0.011	mg/Kg		06/12/20 08:00	06/19/20 13:12	1
Cobalt	ND		2.5	0.046	mg/Kg		06/12/20 08:00	06/19/20 13:12	1
Iron	ND		5.0	2.9	mg/Kg		06/12/20 08:00	06/19/20 13:12	1
Manganese	ND		0.75	0.25	mg/Kg		06/12/20 08:00	06/19/20 13:12	1
Selenium	ND		0.50	0.17	mg/Kg		06/12/20 08:00	06/19/20 13:12	1

Lab Sample ID: LCS 140-40277/16-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Step 6 Analysis Batch: 40453** Prep Batch: 40277

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	101		mg/Kg		101	75 - 125	
Beryllium	2.50	2.63		mg/Kg		105	75 - 125	
Cadmium	2.50	2.71		mg/Kg		108	75 - 125	
Cobalt	5.00	5.22		mg/Kg		104	75 - 125	
Iron	50.0	50.8		mg/Kg		102	75 - 125	
Manganese	5.00	5.20		mg/Kg		104	75 - 125	
Selenium	7.50	7.90		mg/Kg		105	75 - 125	

Eurofins TestAmerica, Knoxville

6/25/2020

110

mg/Kg

75 - 125

Prep Batch: 40277

Client: Golder Associates Inc. Job ID: 140-19131-1

Project/Site: SCS Site, Plant Branch

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCSD 140-40277/17-A

Matrix: Solid

Analysis Batch: 40453

Client Sample ID: Lab Control Sample Dup Prep Type: Step 6

Prep Batch: 40277

						LIEPL	aton.	1. 40211	
Spike	LCSD	LCSD				%Rec.		RPD	
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
100	100		mg/Kg	_	100	75 - 125	1	30	
2.50	2.61		mg/Kg		105	75 - 125	1	30	
2.50	2.70		mg/Kg		108	75 - 125	0	30	
5.00	5.20		mg/Kg		104	75 - 125	0	30	
50.0	50.5		mg/Kg		101	75 - 125	1	30	
5.00	5.16		mg/Kg		103	75 - 125	1	30	
7.50	7.92		mg/Kg		106	75 - 125	0	30	
	Added 100 2.50 2.50 5.00 50.0 5.00	Added Result 100 100 2.50 2.61 2.50 2.70 5.00 5.20 50.0 50.5 5.00 5.16	Added Result Qualifier 100 100 2.50 2.61 2.50 2.70 5.00 5.20 50.0 50.5 5.00 5.16	Added Result Qualifier Unit 100 100 mg/Kg 2.50 2.61 mg/Kg 2.50 2.70 mg/Kg 5.00 5.20 mg/Kg 50.0 50.5 mg/Kg 5.00 5.16 mg/Kg	Added Result Qualifier Unit D 100 100 mg/Kg mg/Kg 2.50 2.61 mg/Kg 5.00 5.20 mg/Kg 50.0 50.5 mg/Kg 5.00 5.16 mg/Kg	Added Result Qualifier Unit D %Rec 100 100 mg/Kg 100 2.50 2.61 mg/Kg 105 2.50 2.70 mg/Kg 108 5.00 5.20 mg/Kg 104 50.0 50.5 mg/Kg 101 5.00 5.16 mg/Kg 103	Spike LCSD LCSD WRec. Added Result Qualifier Unit D %Rec. Limits 100 100 mg/Kg 100 75 - 125 2.50 2.61 mg/Kg 105 75 - 125 2.50 2.70 mg/Kg 108 75 - 125 5.00 5.20 mg/Kg 104 75 - 125 50.0 50.5 mg/Kg 101 75 - 125 5.00 5.16 mg/Kg 103 75 - 125	Added Result Qualifier Unit D %Rec Limits RPD 100 100 mg/Kg 100 75 - 125 1 2.50 2.61 mg/Kg 105 75 - 125 1 2.50 2.70 mg/Kg 108 75 - 125 0 5.00 5.20 mg/Kg 104 75 - 125 0 50.0 50.5 mg/Kg 101 75 - 125 1 5.00 5.16 mg/Kg 103 75 - 125 1	

Lab Sample ID: MB 140-40294/15-A

Matrix: Solid

Analysis Batch: 40487

Client Sample ID: Method Blank Prep Type: Step 7

Prep Batch: 40294

	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10	1.6	mg/Kg		06/15/20 08:00	06/22/20 12:47	1
Beryllium	ND		0.25	0.0075	mg/Kg		06/15/20 08:00	06/22/20 12:47	1
Cadmium	ND		0.25	0.011	mg/Kg		06/15/20 08:00	06/22/20 12:47	1
Cobalt	ND		2.5	0.026	mg/Kg		06/15/20 08:00	06/22/20 12:47	1
Iron	ND		5.0	4.1	mg/Kg		06/15/20 08:00	06/22/20 12:47	1
Manganese	ND		0.75	0.11	mg/Kg		06/15/20 08:00	06/22/20 12:47	1
Selenium	ND		0.50	0.17	mg/Kg		06/15/20 08:00	06/22/20 12:47	1

Lab Sample ID: LCS 140-40294/16-A

Matrix: Solid

Analysis Batch: 40487

Client Sample ID: Lab Control Sample Prep Type: Step 7

Prep Batch: 40294

Analysis Batch: 40487	Spike	LCS	LCS				%Rec.	: 40294
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	103		mg/Kg		103	75 - 125	
Beryllium	2.50	2.47		mg/Kg		99	75 - 125	
Cadmium	2.50	2.46		mg/Kg		98	75 - 125	
Cobalt	5.00	5.06		mg/Kg		101	75 - 125	
Iron	50.0	53.3		mg/Kg		107	75 - 125	
Manganese	5.00	5.35		mg/Kg		107	75 - 125	
Selenium	7.50	6.95		ma/Ka		93	75 - 125	

Lab Sample ID: LCSD 140-40294/17-A

Matrix: Solid

Analysis Batch: 40487

Client Sample ID: Lab Control Sample Dup

Prep Type: Step 7 Prep Batch: 40294

Spike LCSD LCSD **RPD** %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Aluminum 100 103 mg/Kg 103 75 - 125 0 30 Beryllium 2.50 2.47 mg/Kg 99 75 - 125 0 30 Cadmium 2.50 2.45 mg/Kg 98 75 - 125 0 30 Cobalt 5.00 5.03 mg/Kg 101 75 - 125 30 50.0 30 Iron 53.3 mg/Kg 107 75 - 125 Manganese 5.00 mg/Kg 107 75 - 125 30 5.35 0 Selenium 7.50 6.96 mg/Kg 75 - 125 30

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch Job ID: 140-19131-1

Metals

Prep Batch: 39918

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Total/NA	Solid	Total	
140-19131-2	BRGWA-2S(2) 43 FT BGS	Total/NA	Solid	Total	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Total/NA	Solid	Total	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Total/NA	Solid	Total	
140-19131-5	BRGWA-6S(2) 42 FT BGS	Total/NA	Solid	Total	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Total/NA	Solid	Total	
140-19131-7	PZ-52D 18 FT BGS	Total/NA	Solid	Total	
140-19131-8	PZ-52D 24-25 FT BGS	Total/NA	Solid	Total	
140-19131-9	BRGWC-50(2) 59 FT BGS	Total/NA	Solid	Total	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Total/NA	Solid	Total	
140-19131-11	PZ-53D 30 FT BGS	Total/NA	Solid	Total	
140-19131-12	PZ-53D 36 FT BGS	Total/NA	Solid	Total	
MB 140-39918/15-A	Method Blank	Total/NA	Solid	Total	
LCS 140-39918/16-A	Lab Control Sample	Total/NA	Solid	Total	
LCSD 140-39918/17-A	Lab Control Sample Dup	Total/NA	Solid	Total	

SEP Batch: 40011

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 1	Solid	Exchangeable	
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 1	Solid	Exchangeable	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 1	Solid	Exchangeable	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 1	Solid	Exchangeable	
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 1	Solid	Exchangeable	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 1	Solid	Exchangeable	
140-19131-7	PZ-52D 18 FT BGS	Step 1	Solid	Exchangeable	
140-19131-8	PZ-52D 24-25 FT BGS	Step 1	Solid	Exchangeable	
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 1	Solid	Exchangeable	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 1	Solid	Exchangeable	
140-19131-11	PZ-53D 30 FT BGS	Step 1	Solid	Exchangeable	
140-19131-12	PZ-53D 36 FT BGS	Step 1	Solid	Exchangeable	
MB 140-40011/15-B ^4	Method Blank	Step 1	Solid	Exchangeable	
LCS 140-40011/16-B ^5	Lab Control Sample	Step 1	Solid	Exchangeable	
LCSD 140-40011/17-B ^5	Lab Control Sample Dup	Step 1	Solid	Exchangeable	

Prep Batch: 40023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 1	Solid	3010A	40011
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 1	Solid	3010A	40011
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 1	Solid	3010A	40011
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 1	Solid	3010A	40011
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 1	Solid	3010A	40011
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 1	Solid	3010A	40011
140-19131-7	PZ-52D 18 FT BGS	Step 1	Solid	3010A	40011
140-19131-8	PZ-52D 24-25 FT BGS	Step 1	Solid	3010A	40011
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 1	Solid	3010A	40011
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 1	Solid	3010A	40011
140-19131-11	PZ-53D 30 FT BGS	Step 1	Solid	3010A	40011
140-19131-12	PZ-53D 36 FT BGS	Step 1	Solid	3010A	40011
MB 140-40011/15-B ^4	Method Blank	Step 1	Solid	3010A	40011
LCS 140-40011/16-B ^5	Lab Control Sample	Step 1	Solid	3010A	40011
LCSD 140-40011/17-B ^5	Lab Control Sample Dup	Step 1	Solid	3010A	40011

Eurofins TestAmerica, Knoxville

Client: Golder Associates Inc. Job ID: 140-19131-1 Project/Site: SCS Site, Plant Branch

Metals

SEP Batch: 40024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 2	Solid	Carbonate	
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 2	Solid	Carbonate	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 2	Solid	Carbonate	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 2	Solid	Carbonate	
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 2	Solid	Carbonate	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 2	Solid	Carbonate	
140-19131-7	PZ-52D 18 FT BGS	Step 2	Solid	Carbonate	
140-19131-8	PZ-52D 24-25 FT BGS	Step 2	Solid	Carbonate	
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 2	Solid	Carbonate	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 2	Solid	Carbonate	
140-19131-11	PZ-53D 30 FT BGS	Step 2	Solid	Carbonate	
140-19131-12	PZ-53D 36 FT BGS	Step 2	Solid	Carbonate	
MB 140-40024/15-B ^3	Method Blank	Step 2	Solid	Carbonate	
LCS 140-40024/16-B ^5	Lab Control Sample	Step 2	Solid	Carbonate	
LCSD 140-40024/17-B ^5	Lab Control Sample Dup	Step 2	Solid	Carbonate	

Prep Batch: 40062

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 2	Solid	3010A	40024
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 2	Solid	3010A	40024
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 2	Solid	3010A	40024
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 2	Solid	3010A	40024
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 2	Solid	3010A	40024
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 2	Solid	3010A	40024
140-19131-7	PZ-52D 18 FT BGS	Step 2	Solid	3010A	40024
140-19131-8	PZ-52D 24-25 FT BGS	Step 2	Solid	3010A	40024
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 2	Solid	3010A	40024
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 2	Solid	3010A	40024
140-19131-11	PZ-53D 30 FT BGS	Step 2	Solid	3010A	40024
140-19131-12	PZ-53D 36 FT BGS	Step 2	Solid	3010A	40024
MB 140-40024/15-B ^3	Method Blank	Step 2	Solid	3010A	40024
LCS 140-40024/16-B ^5	Lab Control Sample	Step 2	Solid	3010A	40024
LCSD 140-40024/17-B ^5	Lab Control Sample Dup	Step 2	Solid	3010A	40024

SEP Batch: 40065

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-7	PZ-52D 18 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-8	PZ-52D 24-25 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-11	PZ-53D 30 FT BGS	Step 3	Solid	Non-Crystalline	
140-19131-12	PZ-53D 36 FT BGS	Step 3	Solid	Non-Crystalline	
MB 140-40065/15-B	Method Blank	Step 3	Solid	Non-Crystalline	
LCS 140-40065/16-B	Lab Control Sample	Step 3	Solid	Non-Crystalline	
LCSD 140-40065/17-B	Lab Control Sample Dup	Step 3	Solid	Non-Crystalline	

Eurofins TestAmerica, Knoxville

Client: Golder Associates Inc.
Project/Site: SCS Site, Plant Branch

Job ID: 140-19131-1

Metals

Prep Batch: 40096

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 3	Solid	3010A	40065
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 3	Solid	3010A	40065
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 3	Solid	3010A	40065
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 3	Solid	3010A	40065
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 3	Solid	3010A	40065
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 3	Solid	3010A	40065
140-19131-7	PZ-52D 18 FT BGS	Step 3	Solid	3010A	40065
140-19131-8	PZ-52D 24-25 FT BGS	Step 3	Solid	3010A	40065
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 3	Solid	3010A	40065
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 3	Solid	3010A	40065
140-19131-11	PZ-53D 30 FT BGS	Step 3	Solid	3010A	40065
140-19131-12	PZ-53D 36 FT BGS	Step 3	Solid	3010A	40065
MB 140-40065/15-B	Method Blank	Step 3	Solid	3010A	40065
LCS 140-40065/16-B	Lab Control Sample	Step 3	Solid	3010A	40065
LCSD 140-40065/17-B	Lab Control Sample Dup	Step 3	Solid	3010A	40065

SEP Batch: 40100

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-7	PZ-52D 18 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-8	PZ-52D 24-25 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-11	PZ-53D 30 FT BGS	Step 4	Solid	Metal Hydroxide	
140-19131-12	PZ-53D 36 FT BGS	Step 4	Solid	Metal Hydroxide	
MB 140-40100/15-B	Method Blank	Step 4	Solid	Metal Hydroxide	
LCS 140-40100/16-B	Lab Control Sample	Step 4	Solid	Metal Hydroxide	
LCSD 140-40100/17-B	Lab Control Sample Dup	Step 4	Solid	Metal Hydroxide	

Prep Batch: 40214

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 4	Solid	3010A	40100
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 4	Solid	3010A	40100
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 4	Solid	3010A	40100
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 4	Solid	3010A	40100
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 4	Solid	3010A	40100
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 4	Solid	3010A	40100
140-19131-7	PZ-52D 18 FT BGS	Step 4	Solid	3010A	40100
140-19131-8	PZ-52D 24-25 FT BGS	Step 4	Solid	3010A	40100
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 4	Solid	3010A	40100
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 4	Solid	3010A	40100
140-19131-11	PZ-53D 30 FT BGS	Step 4	Solid	3010A	40100
140-19131-12	PZ-53D 36 FT BGS	Step 4	Solid	3010A	40100
MB 140-40100/15-B	Method Blank	Step 4	Solid	3010A	40100
LCS 140-40100/16-B	Lab Control Sample	Step 4	Solid	3010A	40100
LCSD 140-40100/17-B	Lab Control Sample Dup	Step 4	Solid	3010A	40100

Eurofins TestAmerica, Knoxville

6/25/2020

Page 42 of 72

6

5

7

Q

10

Client: Golder Associates Inc.

Project/Site: SCS Site, Plant Branch

Job ID: 140-19131-1

Metals

SEP Batch: 40215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-7	PZ-52D 18 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-8	PZ-52D 24-25 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-11	PZ-53D 30 FT BGS	Step 5	Solid	Organic-Bound	
140-19131-12	PZ-53D 36 FT BGS	Step 5	Solid	Organic-Bound	
MB 140-40215/15-B ^5	Method Blank	Step 5	Solid	Organic-Bound	
LCS 140-40215/16-B ^5	Lab Control Sample	Step 5	Solid	Organic-Bound	
LCSD 140-40215/17-B ^5	Lab Control Sample Dup	Step 5	Solid	Organic-Bound	

Prep Batch: 40276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 5	Solid	3010A	40215
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 5	Solid	3010A	40215
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 5	Solid	3010A	40215
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 5	Solid	3010A	40215
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 5	Solid	3010A	40215
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 5	Solid	3010A	40215
140-19131-7	PZ-52D 18 FT BGS	Step 5	Solid	3010A	40215
140-19131-8	PZ-52D 24-25 FT BGS	Step 5	Solid	3010A	40215
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 5	Solid	3010A	40215
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 5	Solid	3010A	40215
140-19131-11	PZ-53D 30 FT BGS	Step 5	Solid	3010A	40215
140-19131-12	PZ-53D 36 FT BGS	Step 5	Solid	3010A	40215
MB 140-40215/15-B ^5	Method Blank	Step 5	Solid	3010A	40215
LCS 140-40215/16-B ^5	Lab Control Sample	Step 5	Solid	3010A	40215
LCSD 140-40215/17-B ^5	Lab Control Sample Dup	Step 5	Solid	3010A	40215

SEP Batch: 40277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 6	Solid	Acid/Sulfide	-
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 6	Solid	Acid/Sulfide	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 6	Solid	Acid/Sulfide	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 6	Solid	Acid/Sulfide	
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 6	Solid	Acid/Sulfide	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 6	Solid	Acid/Sulfide	
140-19131-7	PZ-52D 18 FT BGS	Step 6	Solid	Acid/Sulfide	
140-19131-8	PZ-52D 24-25 FT BGS	Step 6	Solid	Acid/Sulfide	
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 6	Solid	Acid/Sulfide	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 6	Solid	Acid/Sulfide	
140-19131-11	PZ-53D 30 FT BGS	Step 6	Solid	Acid/Sulfide	
140-19131-12	PZ-53D 36 FT BGS	Step 6	Solid	Acid/Sulfide	
MB 140-40277/15-A	Method Blank	Step 6	Solid	Acid/Sulfide	
LCS 140-40277/16-A	Lab Control Sample	Step 6	Solid	Acid/Sulfide	
LCSD 140-40277/17-A	Lab Control Sample Dup	Step 6	Solid	Acid/Sulfide	

Page 43 of 72

Eurofins TestAmerica, Knoxville

6/25/2020

_

5

5

7

9

10

12

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch Job ID: 140-19131-1

Metals

Prep Batch: 40294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 7	Solid	Residual	_
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 7	Solid	Residual	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 7	Solid	Residual	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 7	Solid	Residual	
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 7	Solid	Residual	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 7	Solid	Residual	
140-19131-7	PZ-52D 18 FT BGS	Step 7	Solid	Residual	
140-19131-8	PZ-52D 24-25 FT BGS	Step 7	Solid	Residual	
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 7	Solid	Residual	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 7	Solid	Residual	
140-19131-11	PZ-53D 30 FT BGS	Step 7	Solid	Residual	
140-19131-12	PZ-53D 36 FT BGS	Step 7	Solid	Residual	
MB 140-40294/15-A	Method Blank	Step 7	Solid	Residual	
LCS 140-40294/16-A	Lab Control Sample	Step 7	Solid	Residual	
LCSD 140-40294/17-A	Lab Control Sample Dup	Step 7	Solid	Residual	

Analysis Batch: 40383

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-7	PZ-52D 18 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-7	PZ-52D 18 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-8	PZ-52D 24-25 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-8	PZ-52D 24-25 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-11	PZ-53D 30 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-11	PZ-53D 30 FT BGS	Step 2	Solid	6010B SEP	40062
140-19131-12	PZ-53D 36 FT BGS	Step 1	Solid	6010B SEP	40023
140-19131-12	PZ-53D 36 FT BGS	Step 2	Solid	6010B SEP	40062
MB 140-40011/15-B ^4	Method Blank	Step 1	Solid	6010B SEP	40023
MB 140-40024/15-B ^3	Method Blank	Step 2	Solid	6010B SEP	40062
LCS 140-40011/16-B ^5	Lab Control Sample	Step 1	Solid	6010B SEP	40023
LCS 140-40024/16-B ^5	Lab Control Sample	Step 2	Solid	6010B SEP	40062
LCSD 140-40011/17-B ^5	Lab Control Sample Dup	Step 1	Solid	6010B SEP	40023
LCSD 140-40024/17-B ^5	Lab Control Sample Dup	Step 2	Solid	6010B SEP	40062

Eurofins TestAmerica, Knoxville

6/25/2020

Page 44 of 72

2

2

4

6

8

9

11

12

Ц

Client: Golder Associates Inc.

Project/Site: SCS Site, Plant Branch

Job ID: 140-19131-1

Metals

Analysis Batch: 40441

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-7	PZ-52D 18 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-7	PZ-52D 18 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-8	PZ-52D 24-25 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-8	PZ-52D 24-25 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-11	PZ-53D 30 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-11	PZ-53D 30 FT BGS	Step 4	Solid	6010B SEP	40214
140-19131-12	PZ-53D 36 FT BGS	Step 3	Solid	6010B SEP	40096
140-19131-12	PZ-53D 36 FT BGS	Step 4	Solid	6010B SEP	40214
MB 140-40065/15-B	Method Blank	Step 3	Solid	6010B SEP	40096
MB 140-40100/15-B	Method Blank	Step 4	Solid	6010B SEP	40214
LCS 140-40065/16-B	Lab Control Sample	Step 3	Solid	6010B SEP	40096
LCS 140-40100/16-B	Lab Control Sample	Step 4	Solid	6010B SEP	40214
LCSD 140-40065/17-B	Lab Control Sample Dup	Step 3	Solid	6010B SEP	40096
LCSD 140-40100/17-B	Lab Control Sample Dup	Step 4	Solid	6010B SEP	40214

Analysis Batch: 40453

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-7	PZ-52D 18 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-7	PZ-52D 18 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-7	PZ-52D 18 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-8	PZ-52D 24-25 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-8	PZ-52D 24-25 FT BGS	Step 6	Solid	6010B SEP	40277

Eurofins TestAmerica, Knoxville

Page 45 of 72

3

5

9

10

10

Client: Golder Associates Inc.

Project/Site: SCS Site, Plant Branch

Job ID: 140-19131-1

Metals (Continued)

Analysis Batch: 40453 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-11	PZ-53D 30 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-11	PZ-53D 30 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-12	PZ-53D 36 FT BGS	Step 5	Solid	6010B SEP	40276
140-19131-12	PZ-53D 36 FT BGS	Step 6	Solid	6010B SEP	40277
140-19131-12	PZ-53D 36 FT BGS	Step 6	Solid	6010B SEP	40277
MB 140-40215/15-B ^5	Method Blank	Step 5	Solid	6010B SEP	40276
MB 140-40277/15-A	Method Blank	Step 6	Solid	6010B SEP	40277
LCS 140-40215/16-B ^5	Lab Control Sample	Step 5	Solid	6010B SEP	40276
LCS 140-40277/16-A	Lab Control Sample	Step 6	Solid	6010B SEP	40277
LCSD 140-40215/17-B ^5	Lab Control Sample Dup	Step 5	Solid	6010B SEP	40276
LCSD 140-40277/17-A	Lab Control Sample Dup	Step 6	Solid	6010B SEP	40277

Analysis Batch: 40487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-1	BRGWA-2S(2) 39 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-2	BRGWA-2S(2) 43 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-3	BRGWA-5S(2) 38 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-4	BRGWA-5S(2) 32 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-5	BRGWA-6S(2) 42 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-6	BRGWA-6S(2) 48 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-7	PZ-52D 18 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-7	PZ-52D 18 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-8	PZ-52D 24-25 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-8	PZ-52D 24-25 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-9	BRGWC-50(2) 59 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-11	PZ-53D 30 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-11	PZ-53D 30 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-12	PZ-53D 36 FT BGS	Step 7	Solid	6010B SEP	40294
140-19131-12	PZ-53D 36 FT BGS	Step 7	Solid	6010B SEP	40294

Eurofins TestAmerica, Knoxville

-

3

4

6

8

10

11

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch Job ID: 140-19131-1

Metals (Continued)

Analysis Batch: 40487 (Continued)

Lab Samp	le ID Client Sample ID	Prep T	ype Matrix	Method	Prep Batch
140-19131	-12 PZ-53D 36 FT BGS	Step 7	Solid	6010B SEP	40294
MB 140-40	294/15-A Method Blank	Step 7	Solid	6010B SEP	40294
LCS 140-4	0294/16-A Lab Control Sample	Step 7	Solid	6010B SEP	40294
LCSD 140	-40294/17-A Lab Control Sample [Oup Step 7	Solid	6010B SEP	40294

Analysis Batch: 40512

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
140-19131-1	BRGWA-2S(2) 39 FT BGS	Total/NA	Solid	6010B	3991
140-19131-1	BRGWA-2S(2) 39 FT BGS	Total/NA	Solid	6010B	3991
140-19131-1	BRGWA-2S(2) 39 FT BGS	Total/NA	Solid	6010B	3991
140-19131-1	BRGWA-2S(2) 39 FT BGS	Total/NA	Solid	6010B	3991
140-19131-2	BRGWA-2S(2) 43 FT BGS	Total/NA	Solid	6010B	3991
140-19131-2	BRGWA-2S(2) 43 FT BGS	Total/NA	Solid	6010B	3991
140-19131-2	BRGWA-2S(2) 43 FT BGS	Total/NA	Solid	6010B	3991
140-19131-3	BRGWA-5S(2) 38 FT BGS	Total/NA	Solid	6010B	3991
140-19131-3	BRGWA-5S(2) 38 FT BGS	Total/NA	Solid	6010B	3991
140-19131-3	BRGWA-5S(2) 38 FT BGS	Total/NA	Solid	6010B	3991
140-19131-4	BRGWA-5S(2) 32 FT BGS	Total/NA	Solid	6010B	3991
140-19131-4	BRGWA-5S(2) 32 FT BGS	Total/NA	Solid	6010B	3991
140-19131-4	BRGWA-5S(2) 32 FT BGS	Total/NA	Solid	6010B	3991
140-19131-5	BRGWA-6S(2) 42 FT BGS	Total/NA	Solid	6010B	3991
140-19131-5	BRGWA-6S(2) 42 FT BGS	Total/NA	Solid	6010B	3991
140-19131-6	BRGWA-6S(2) 48 FT BGS	Total/NA	Solid	6010B	3991
140-19131-6	BRGWA-6S(2) 48 FT BGS	Total/NA	Solid	6010B	3991
140-19131-7	PZ-52D 18 FT BGS	Total/NA	Solid	6010B	3991
140-19131-7	PZ-52D 18 FT BGS	Total/NA	Solid	6010B	3991
140-19131-7	PZ-52D 18 FT BGS	Total/NA	Solid	6010B	3991
140-19131-8	PZ-52D 24-25 FT BGS	Total/NA	Solid	6010B	3991
140-19131-8	PZ-52D 24-25 FT BGS	Total/NA	Solid	6010B	3991
140-19131-8	PZ-52D 24-25 FT BGS	Total/NA	Solid	6010B	3991
140-19131-9	BRGWC-50(2) 59 FT BGS	Total/NA	Solid	6010B	3991
140-19131-9	BRGWC-50(2) 59 FT BGS	Total/NA	Solid	6010B	3991
140-19131-9	BRGWC-50(2) 59 FT BGS	Total/NA	Solid	6010B	3991
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Total/NA	Solid	6010B	3991
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Total/NA	Solid	6010B	3991
140-19131-11	PZ-53D 30 FT BGS	Total/NA	Solid	6010B	3991
140-19131-11	PZ-53D 30 FT BGS	Total/NA	Solid	6010B	3991
140-19131-11	PZ-53D 30 FT BGS	Total/NA	Solid	6010B	3991
140-19131-12	PZ-53D 36 FT BGS	Total/NA	Solid	6010B	3991
140-19131-12	PZ-53D 36 FT BGS	Total/NA	Solid	6010B	3991
140-19131-12	PZ-53D 36 FT BGS	Total/NA	Solid	6010B	3991
MB 140-39918/15-A	Method Blank	Total/NA	Solid	6010B	3991
LCS 140-39918/16-A	Lab Control Sample	Total/NA	Solid	6010B	3991
LCSD 140-39918/17-A	Lab Control Sample Dup	Total/NA	Solid	6010B	3991

Analysis Batch: 40572

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	
140-19131-2	BRGWA-2S(2) 43 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	

Eurofins TestAmerica, Knoxville

6/25/2020

Page 47 of 72

2

5

6

O

10

19

QC Association Summary

Client: Golder Associates Inc.
Project/Site: SCS Site, Plant Branch

Job ID: 140-19131-1

Metals (Continued)

Analysis Batch: 40572 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-5	BRGWA-6S(2) 42 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	
140-19131-7	PZ-52D 18 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	
140-19131-8	PZ-52D 24-25 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	
140-19131-9	BRGWC-50(2) 59 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	
140-19131-11	PZ-53D 30 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	
140-19131-12	PZ-53D 36 FT BGS	Sum of Steps 1-7	Solid	6010B SEP	

General Chemistry

Analysis Batch: 40042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19131-1	BRGWA-2S(2) 39 FT BGS	Total/NA	Solid	Moisture	_
140-19131-2	BRGWA-2S(2) 43 FT BGS	Total/NA	Solid	Moisture	
140-19131-3	BRGWA-5S(2) 38 FT BGS	Total/NA	Solid	Moisture	
140-19131-4	BRGWA-5S(2) 32 FT BGS	Total/NA	Solid	Moisture	
140-19131-5	BRGWA-6S(2) 42 FT BGS	Total/NA	Solid	Moisture	
140-19131-6	BRGWA-6S(2) 48 FT BGS	Total/NA	Solid	Moisture	
140-19131-7	PZ-52D 18 FT BGS	Total/NA	Solid	Moisture	
140-19131-8	PZ-52D 24-25 FT BGS	Total/NA	Solid	Moisture	
140-19131-9	BRGWC-50(2) 59 FT BGS	Total/NA	Solid	Moisture	
140-19131-10	BRGWC-50(2) 63-63.5 FT BGS	Total/NA	Solid	Moisture	
140-19131-11	PZ-53D 30 FT BGS	Total/NA	Solid	Moisture	
140-19131-12	PZ-53D 36 FT BGS	Total/NA	Solid	Moisture	
140-19131-1 DU	BRGWA-2S(2) 39 FT BGS	Total/NA	Solid	Moisture	

4

6

R

9

A C

11

12

11:

Lab Chronicle

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: BRGWA-2S(2) 39 FT BGS Lab Sample ID: 140-19131-1

Date Collected: 05/13/20 14:30 **Matrix: Solid**

Date Received: 05/20/20 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Sum of Steps 1-7	Analysis Instrumen	6010B SEP at ID: NOEQUIP		1			40572	06/25/20 11:53	DKW	TAL KNX
Total/NA	Analysis Instrumen	Moisture		1			40042	06/02/20 08:02	BKD	TAL KNX

Client Sample ID: BRGWA-2S(2) 39 FT BGS

Lab Sample ID: 140-19131-1 Date Collected: 05/13/20 14:30 **Matrix: Solid** Date Received: 05/20/20 09:45 Percent Solids: 71.0

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		1			40512	06/23/20 12:43	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		10			40512	06/23/20 14:27	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		2			40512	06/23/20 16:04	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		20			40512	06/23/20 17:24	KNC	TAL KNX
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis Instrumer	6010B SEP nt ID: DUO		4			40383	06/16/20 12:21	KNC	TAL KNX
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis Instrumer	6010B SEP nt ID: DUO		3			40383	06/16/20 14:15	KNC	TAL KNX
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis Instrumer	6010B SEP nt ID: DUO		1			40441	06/18/20 12:10	KNC	TAL KNX
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis Instrumer	6010B SEP nt ID: DUO		1			40441	06/18/20 14:04	KNC	TAL KNX
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis Instrumer	6010B SEP nt ID: DUO		5			40453	06/19/20 11:43	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumer	6010B SEP		1	-		40453	06/19/20 13:38	KNC	TAL KNX

Eurofins TestAmerica, Knoxville

Page 49 of 72

Job ID: 140-19131-1

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Date Received: 05/20/20 09:45

Client Sample ID: BRGWA-2S(2) 39 FT BGS

Date Collected: 05/13/20 14:30

Matrix: Solid

Percent Solids: 71.0

Lab Sample ID: 140-19131-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumer	6010B SEP at ID: DUO		2			40453	06/19/20 16:54	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP at ID: DUO		1			40487	06/22/20 13:18	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP at ID: DUO		10			40487	06/22/20 15:00	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP at ID: DUO		5			40487	06/22/20 16:27	KNC	TAL KNX

Client Sample ID: BRGWA-2S(2) 43 FT BGS

Date Collected: 05/13/20 14:40

Lab Sample ID: 140-19131-2

Lab Sample ID: 140-19131-2

Matrix: Solid

Matrix: Solid

Percent Solids: 75.0

Date Received: 05/20/20 09:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Sum of Steps 1-7	Analysis Instrumer	6010B SEP at ID: NOEQUIP		1			40572	06/25/20 11:53	DKW	TAL KNX
Total/NA	Analysis Instrumer	Moisture		1			40042	06/02/20 08:02	BKD	TAL KNX

Client Sample ID: BRGWA-2S(2) 43 FT BGS

Date Collected: 05/13/20 14:40

Date Received: 05/20/20 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			40512	06/23/20 12:49	KNC	TAL KNX
	Instrumer	nt ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		10			40512	06/23/20 14:32	KNC	TAL KNX
	Instrumer	nt ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		20			40512	06/23/20 17:29	KNC	TAL KNX
	Instrumer	nt ID: DUO								
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis	6010B SEP		4			40383	06/16/20 12:26	KNC	TAL KNX
	Instrumer	nt ID: DUO								
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis	6010B SEP		3			40383	06/16/20 14:20	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Eurofins TestAmerica, Knoxville

Page 50 of 72

6/25/2020

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: BRGWA-2S(2) 43 FT BGS

Lab Sample ID: 140-19131-2 Date Collected: 05/13/20 14:40 **Matrix: Solid** Date Received: 05/20/20 09:45 Percent Solids: 75.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis Instrumer	6010B SEP nt ID: DUO		1			40441	06/18/20 12:15	KNC	TAL KNX
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis Instrumer	6010B SEP at ID: DUO		1			40441	06/18/20 14:10	KNC	TAL KNX
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis Instrumer	6010B SEP nt ID: DUO		5			40453	06/19/20 11:48	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumer	6010B SEP nt ID: DUO		1			40453	06/19/20 13:43	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP nt ID: DUO		1			40487	06/22/20 13:23	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP nt ID: DUO		10			40487	06/22/20 15:05	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP nt ID: DUO		5	-		40487	06/22/20 16:32	KNC	TAL KNX

Client Sample ID: BRGWA-5S(2) 38 FT BGS

Lab Sample ID: 140-19131-3 Date Collected: 05/14/20 07:40 **Matrix: Solid** Date Received: 05/20/20 09:45

Prep Type Sum of Steps 1-7	Batch Type Analysis Instrumen	Batch Method 6010B SEP t ID: NOEQUIP	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 40572	Prepared or Analyzed 06/25/20 11:53	Analyst DKW	Lab TAL KNX
Total/NA	Analysis Instrumen	Moisture t ID: NOEQUIP		1			40042	06/02/20 08:02	BKD	TAL KNX

Client Sample ID: BRGWA-5S(2) 38 FT BGS

Lab Sample ID: 140-19131-3 Date Collected: 05/14/20 07:40 **Matrix: Solid** Date Received: 05/20/20 09:45 Percent Solids: 84.1

	Batch	Batch		Dil Run Factor	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run		Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumen	6010B it ID: DUO		1			40512	06/23/20 12:54	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		10			40512	06/23/20 14:37	KNC	TAL KNX
	Instrumen	t ID: DUO								

Eurofins TestAmerica, Knoxville

Page 51 of 72

6/25/2020

Client Sample ID: BRGWA-5S(2) 38 FT BGS

Date Collected: 05/14/20 07:40 Date Received: 05/20/20 09:45

Lab Sample ID: 140-19131-3

Matrix: Solid

Percent Solids: 84.1

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA Total/NA	Prep Analysis Instrumen	Total 6010B nt ID: DUO		2	1.000 g	50 mL	39918 40512	05/29/20 08:00 06/23/20 16:15	KNC KNC	TAL KNX TAL KNX
Step 1 Step 1 Step 1	SEP Prep Analysis Instrumen	Exchangeable 3010A 6010B SEP at ID: DUO		4	5.000 g 5 mL	25 mL 50 mL	40011 40023 40383	06/01/20 08:01 06/02/20 08:00 06/16/20 12:31	KNC	TAL KNX TAL KNX TAL KNX
Step 2 Step 2 Step 2	SEP Prep Analysis Instrumen	Carbonate 3010A 6010B SEP at ID: DUO		3	5.000 g 5 mL	25 mL 50 mL	40024 40062 40383	06/02/20 08:00 06/03/20 08:00 06/16/20 14:25	KNC	TAL KNX TAL KNX TAL KNX
Step 3 Step 3 Step 3	SEP Prep Analysis Instrumen	Non-Crystalline 3010A 6010B SEP at ID: DUO		1	5.000 g 5 mL	25 mL 50 mL	40065 40096 40441	06/03/20 08:00 06/08/20 08:00 06/18/20 12:20	KNC	TAL KNX TAL KNX TAL KNX
Step 4 Step 4 Step 4	SEP Prep Analysis Instrumen	Metal Hydroxide 3010A 6010B SEP at ID: DUO		1	5.000 g 5 mL	25 mL 50 mL	40100 40214 40441	06/08/20 08:00 06/10/20 08:00 06/18/20 14:15	KNC	TAL KNX TAL KNX TAL KNX
Step 5 Step 5 Step 5	SEP Prep Analysis Instrumen	Organic-Bound 3010A 6010B SEP at ID: DUO		5	5.000 g 5 mL	75 mL 50 mL	40215 40276 40453	06/10/20 08:00 06/12/20 08:00 06/19/20 11:53	KNC	TAL KNX TAL KNX TAL KNX
Step 6 Step 6	SEP Analysis Instrumen	Acid/Sulfide 6010B SEP at ID: DUO		1	5.000 g	250 mL	40277 40453	06/12/20 08:00 06/19/20 13:48		TAL KNX TAL KNX
Step 7 Step 7	Prep Analysis Instrumen	Residual 6010B SEP at ID: DUO		1	1.000 g	50 mL	40294 40487	06/15/20 08:00 06/22/20 13:29		TAL KNX TAL KNX
Step 7 Step 7	Prep Analysis Instrumen	Residual 6010B SEP at ID: DUO		10	1.000 g	50 mL	40294 40487	06/15/20 08:00 06/22/20 15:10		TAL KNX TAL KNX
Step 7 Step 7	Prep Analysis Instrumen	Residual 6010B SEP nt ID: DUO		5	1.000 g	50 mL	40294 40487	06/15/20 08:00 06/22/20 16:37		TAL KNX TAL KNX

Client Sample ID: BRGWA-5S(2) 32 FT BGS

Date Collected: 05/14/20 07:50 Date Received: 05/20/20 09:45

Lab Sample ID: 140-19131-4 **Matrix: Solid**

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Туре Method Run **Factor Amount Amount** Number or Analyzed Analyst Lab Sum of Steps 1-7 6010B SEP 40572 06/25/20 11:53 DKW TAL KNX Analysis Instrument ID: NOEQUIP Total/NA Analysis 40042 06/02/20 08:02 BKD Moisture TAL KNX Instrument ID: NOEQUIP

Eurofins TestAmerica, Knoxville

Lab Chronicle

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Lab Sample ID: 140-19131-4

Matrix: Solid

Percent Solids: 82.3

Job ID: 140-19131-1

Client Sample ID: BRGWA-5S(2) 32 FT BGS

Date Collected: 05/14/20 07:50 Date Received: 05/20/20 09:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumen	6010B t ID: DUO		1			40512	06/23/20 13:16	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumen	6010B t ID: DUO		10			40512	06/23/20 14:41	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumen	6010B t ID: DUO		2			40512	06/23/20 16:21	KNC	TAL KNX
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis Instrumen	6010B SEP t ID: DUO		4			40383	06/16/20 12:36	KNC	TAL KNX
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis	6010B SEP t ID: DUO		3			40383	06/16/20 14:31	KNC	TAL KNX
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis Instrumen	6010B SEP t ID: DUO		1			40441	06/18/20 12:26	KNC	TAL KNX
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis Instrumen	6010B SEP t ID: DUO		1			40441	06/18/20 14:20	KNC	TAL KNX
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis Instrumen	6010B SEP t ID: DUO		5			40453	06/19/20 11:58	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumen	6010B SEP t ID: DUO		1	-		40453	06/19/20 13:53	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP t ID: DUO		1	, and the second		40487	06/22/20 13:50		TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP t ID: DUO		10	-		40487	06/22/20 15:15		TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP t ID: DUO		5	, and the second		40487	06/22/20 16:42		TAL KNX

6

8

9

11

Lab Chronicle

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Lab Sample ID: 140-19131-5

Matrix: Solid

Job ID: 140-19131-1

Client Sample ID: BRGWA-6S(2) 42 FT BGS

Date Collected: 05/14/20 12:05 Date Received: 05/20/20 09:45

Prep Type Sum of Steps 1-7	Batch Type Analysis Instrumen	Batch Method 6010B SEP t ID: NOEQUIP	Run	Pactor 1	Initial Amount	Final Amount	Batch Number 40572	Prepared or Analyzed 06/25/20 11:53	Analyst DKW	Lab TAL KNX
Total/NA	Analysis Instrumen	Moisture t ID: NOEQUIP		1			40042	06/02/20 08:02	BKD	TAL KNX

Client Sample ID: BRGWA-6S(2) 42 FT BGS

Date Collected: 05/14/20 12:05

Date Received: 05/20/20 09:45

Lab Sample ID: 140-19131-

Matrix: Solid Percent Solids: 69.7

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	-	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		10	-		40512	06/23/20 14:46	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		2			40512	06/23/20 16:26	KNC	TAL KNX
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis Instrumer	6010B SEP nt ID: DUO		4			40383	06/16/20 12:57	KNC	TAL KNX
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis Instrumer	6010B SEP nt ID: DUO		3			40383	06/16/20 14:52	KNC	TAL KNX
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis Instrumer	6010B SEP nt ID: DUO		1			40441	06/18/20 12:46	KNC	TAL KNX
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis Instrumer	6010B SEP nt ID: DUO		1			40441	06/18/20 14:40	KNC	TAL KNX
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis Instrumer	6010B SEP nt ID: DUO		5			40453	06/19/20 12:19	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumer	6010B SEP nt ID: DUO		1	· ·		40453	06/19/20 16:12	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP nt ID: DUO		1	-		40487	06/22/20 13:56	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP nt ID: DUO		10	-		40487	06/22/20 15:20	KNC	TAL KNX

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: BRGWA-6S(2) 42 FT BGS

Date Collected: 05/14/20 12:05 Date Received: 05/20/20 09:45

Lab Sample ID: 140-19131-5 Matrix: Solid

Percent Solids: 69.7

Batch Batch Dil Initial Final Batch **Prepared** Factor Method Number **Prep Type** Type Run **Amount Amount** or Analyzed Analyst Lab 40294 Step 7 Prep Residual 1.000 g 50 mL 06/15/20 08:00 **KNC** TAL KNX Step 7 Analysis 6010B SEP 5 40487 06/22/20 16:47 TAL KNX Instrument ID: DUO

Client Sample ID: BRGWA-6S(2) 48 FT BGS

Lab Sample ID: 140-19131-6

Matrix: Solid

Date Collected: 05/14/20 12:15 Date Received: 05/20/20 09:45

Batch Ratch Dil Initial Final Batch **Prepared Prep Type** Type Method Amount Amount Number or Analyzed **Analyst** Run **Factor** Lab Sum of Steps 1-7 6010B SEP 40572 06/25/20 11:53 DKW TAL KNX Analysis Instrument ID: NOEQUIP 06/02/20 08:02 BKD Total/NA Analysis 40042 TAL KNX Moisture Instrument ID: NOEQUIP

Client Sample ID: BRGWA-6S(2) 48 FT BGS Date Collected: 05/14/20 12:15

Lab Sample ID: 140-19131-6

Matrix: Solid

Percent Solids: 69.9

Date Received: 05/20/20 09:45 Dil Batch Ratch Initial Final Batch **Prepared Prep Type** Method Amount Amount Number or Analyzed Type Run **Factor Analyst** Lab Total/NA Total 39918 05/29/20 08:00 TAL KNX Prep 1.000 g 50 mL KNC Total/NA Analysis 6010B 1 40512 06/23/20 13:27 KNC TAL KNX Instrument ID: DUO Total/NA 1.000 g 39918 05/29/20 08:00 KNC TAL KNX Prep Total 50 mL Total/NA 6010B TAL KNX Analysis 10 40512 06/23/20 14:51 KNC Instrument ID: DUO Step 1 SEP Exchangeable 5.000 q 25 mL 40011 06/01/20 08:01 KNC TAL KNX Step 1 Prep 3010A 5 mL 50 mL 40023 06/02/20 08:00 KNC TAL KNX Step 1 Analysis 6010B SEP 4 40383 06/16/20 13:02 KNC TAL KNX Instrument ID: DUO Step 2 SEP Carbonate 5.000 q 25 mL 40024 06/02/20 08:00 KNC TAL KNX 50 mL Step 2 Prep 3010A 5 mL 40062 06/03/20 08:00 KNC TAL KNX 6010B SEP 3 40383 Step 2 Analysis 06/16/20 14:57 KNC TAL KNX Instrument ID: DUO Step 3 SEP Non-Crystalline 5.000 g 25 mL 40065 06/03/20 08:00 KNC TAL KNX 3010A 5 mL 40096 06/08/20 08:00 KNC TAL KNX Step 3 Prep 50 mL Step 3 Analysis 6010B SEP 1 40441 06/18/20 12:51 KNC TAL KNX Instrument ID: DUO Step 4 SEP Metal Hydroxide 5.000 g 25 mL 40100 06/08/20 08:00 KNC TAL KNX 40214 Step 4 Prep 3010A 5 mL 50 mL 06/10/20 08:00 KNC TAL KNX Step 4 Analysis 6010B SEP 40441 06/18/20 14:45 KNC TAL KNX Instrument ID: DUO 06/10/20 08:00 KNC Step 5 SEP Organic-Bound 5.000 q 75 mL 40215 TAL KNX 5 mL 50 mL 40276 Step 5 Prep 3010A 06/12/20 08:00 KNC TAL KNX Step 5 Analysis 6010B SEP 5 40453 06/19/20 12:25 KNC TAL KNX Instrument ID: DUO

Eurofins TestAmerica, Knoxville

6/25/2020

Page 55 of 72

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: BRGWA-6S(2) 48 FT BGS

Date Collected: 05/14/20 12:15 Date Received: 05/20/20 09:45 Lab Sample ID: 140-19131-6

Matrix: Solid

Percent Solids: 69.9

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumen	6010B SEP t ID: DUO		1			40453	06/19/20 16:17	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumen	6010B SEP t ID: DUO		1			40487	06/22/20 14:01	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumen	6010B SEP t ID: DUO		10			40487	06/22/20 15:25	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumen	6010B SEP t ID: DUO		5			40487	06/22/20 16:52	KNC	TAL KNX

Client Sample ID: PZ-52D 18 FT BGS

Date Collected: 05/14/20 14:40

Date Received: 05/20/20 09:45

Lab Sample ID: 140-19131-7

Lab Sample ID: 140-19131-7

Matrix: Solid

Matrix: Solid

Percent Solids: 67.3

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Sum of Steps 1-7	Analysis Instrumer	6010B SEP at ID: NOEQUIP		1			40572	06/25/20 11:53	DKW	TAL KNX
Total/NA	Analysis Instrumer	Moisture at ID: NOEQUIP		1			40042	06/02/20 08:02	BKD	TAL KNX

Client Sample ID: PZ-52D 18 FT BGS

Date Collected: 05/14/20 14:40

Date Received: 05/20/20 09:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			40512	06/23/20 13:33	KNC	TAL KNX
	Instrumer	t ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		10			40512	06/23/20 14:56	KNC	TAL KNX
	Instrumer	it ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		2			40512	06/23/20 16:37	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis	6010B SEP		4			40383	06/16/20 13:07	KNC	TAL KNX
	Instrumer	t ID: DUO								
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis	6010B SEP		3			40383	06/16/20 15:02	KNC	TAL KNX
	Instrumer	t ID: DUO								

Page 56 of 72

6/25/2020

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: PZ-52D 18 FT BGS

Date Collected: 05/14/20 14:40 Date Received: 05/20/20 09:45 Lab Sample ID: 140-19131-7

Matrix: Solid

Percent Solids: 67.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis	6010B SEP		1			40441	06/18/20 12:57	KNC	TAL KNX
	Instrumer	nt ID: DUO								
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis	6010B SEP		1			40441	06/18/20 14:50	KNC	TAL KNX
	Instrumer	nt ID: DUO								
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis	6010B SEP		5			40453	06/19/20 12:30	KNC	TAL KNX
	Instrumer	nt ID: DUO								
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis	6010B SEP		1			40453	06/19/20 16:22	KNC	TAL KNX
	Instrumer	nt ID: DUO								
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis	6010B SEP		2			40453	06/19/20 17:10	KNC	TAL KNX
	Instrumer	nt ID: DUO								
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP		1			40487	06/22/20 14:07	KNC	TAL KNX
	Instrumer	nt ID: DUO								
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP		10	_		40487	06/22/20 15:30	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: PZ-52D 24-25 FT BGS

Date Collected: 05/14/20 14:50 Date Received: 05/20/20 09:45 Lab Sample ID: 140-19131-8

Matrix: Solid

Prep Type Sum of Steps 1-7	Batch Type Analysis Instrumen	Batch Method 6010B SEP t ID: NOEQUIP	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 40572	Prepared or Analyzed 06/25/20 11:53	Analyst DKW	Lab TAL KNX
Total/NA	Analysis Instrumen	Moisture t ID: NOEQUIP		1			40042	06/02/20 08:02	BKD	TAL KNX

Client Sample ID: PZ-52D 24-25 FT BGS

Date Collected: 05/14/20 14:50

Date Received: 05/20/20 09:45

S FT BGS

Lab Sample ID: 140-19131-8

Matrix: Solid
Percent Solids: 76.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B at ID: DUO		1			40512	06/23/20 13:38	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B at ID: DUO		10			40512	06/23/20 15:17	KNC	TAL KNX

Eurofins TestAmerica, Knoxville

Page 57 of 72

2

3

5

7

9

10

2

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: PZ-52D 24-25 FT BGS

Date Collected: 05/14/20 14:50 Date Received: 05/20/20 09:45 Lab Sample ID: 140-19131-8

Matrix: Solid

Percent Solids: 76.8

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total	- Kuii		1.000 g	50 mL	39918	05/29/20 08:00		TAL KNX
Total/NA	Analysis	6010B nt ID: DUO		2	1.000 g	30 IIIL	40512	06/23/20 16:58		TAL KNX
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis Instrumer	6010B SEP nt ID: DUO		4			40383	06/16/20 13:12	KNC	TAL KNX
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis Instrumer	6010B SEP nt ID: DUO		3			40383	06/16/20 15:08	KNC	TAL KNX
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis Instrumer	6010B SEP nt ID: DUO		1			40441	06/18/20 13:02	KNC	TAL KNX
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis Instrumer	6010B SEP nt ID: DUO		1			40441	06/18/20 14:55	KNC	TAL KNX
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis Instrumer	6010B SEP nt ID: DUO		5			40453	06/19/20 12:35	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumer	6010B SEP nt ID: DUO		1	-		40453	06/19/20 16:27	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP nt ID: DUO		1	-		40487	06/22/20 14:12	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP nt ID: DUO		10	ŭ		40487	06/22/20 15:50	KNC	TAL KNX

Client Sample ID: BRGWC-50(2) 59 FT BGS

Date Collected: 05/15/20 09:00

Date Received: 05/20/20 09:45

Prep Type Sum of Steps 1-7	Batch Type Analysis Instrument	Batch Method 6010B SEP ID: NOEQUIP	Run	Pactor 1	Initial Amount	Final Amount	Batch Number 40572	Prepared or Analyzed 06/25/20 11:53	Analyst DKW	Lab TAL KNX
Total/NA	Analysis Instrument	Moisture ID: NOEQUIP		1			40042	06/02/20 08:02	BKD	TAL KNX

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-19131-9

Matrix: Solid

5

6

8

10

11

Lab Chronicle

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Lab Sample ID: 140-19131-9

Matrix: Solid

Percent Solids: 87.3

Job ID: 140-19131-1

Client Sample ID: BRGWC-50(2) 59 FT BGS

Date Collected: 05/15/20 09:00 Date Received: 05/20/20 09:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumen	6010B t ID: DUO		1			40512	06/23/20 13:44	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumen	6010B t ID: DUO		10			40512	06/23/20 15:22	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumen	6010B t ID: DUO		5	_		40512	06/23/20 17:03	KNC	TAL KNX
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis Instrumen	6010B SEP t ID: DUO		4			40383	06/16/20 13:18	KNC	TAL KNX
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis	6010B SEP t ID: DUO		3			40383	06/16/20 15:13	KNC	TAL KNX
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis Instrumen	6010B SEP t ID: DUO		1			40441	06/18/20 13:07	KNC	TAL KNX
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis Instrumen	6010B SEP t ID: DUO		1			40441	06/18/20 15:00	KNC	TAL KNX
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis Instrumen	6010B SEP t ID: DUO		5			40453	06/19/20 12:41	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumen	6010B SEP t ID: DUO		1	-		40453	06/19/20 16:32	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumen	6010B SEP t ID: DUO		5	-		40453	06/19/20 17:15		TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP t ID: DUO		1	-		40487	06/22/20 14:18		TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP t ID: DUO		10	-		40487	06/22/20 15:55		TAL KNX

Lab Chronicle

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: BRGWC-50(2) 63-63.5 FT BGS Lab Sample ID: 140-19131-10

Date Collected: 05/15/20 09:20 **Matrix: Solid** Date Received: 05/20/20 09:45

Batch **Batch** Dil Initial Final **Batch** Prepared Method Factor **Prep Type** Type Run Amount **Amount** Number or Analyzed Analyst Lab 40572 Sum of Steps 1-7 Analysis 6010B SEP 06/25/20 11:53 DKW TAL KNX Instrument ID: NOEQUIP

> Analysis Moisture 40042 06/02/20 08:02 BKD Instrument ID: NOEQUIP

Client Sample ID: BRGWC-50(2) 63-63.5 FT BGS

Total/NA

Lab Sample ID: 140-19131-10 Date Collected: 05/15/20 09:20 **Matrix: Solid** 8

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	-	TAL KNX
Total/NA	Analysis	6010B nt ID: DUO		10	Ç		40512	06/23/20 15:27	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		2			40512	06/23/20 17:08	KNC	TAL KNX
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis Instrumer	6010B SEP nt ID: DUO		4			40383	06/16/20 13:23	KNC	TAL KNX
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis Instrumer	6010B SEP nt ID: DUO		3			40383	06/16/20 15:18	KNC	TAL KNX
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis Instrumer	6010B SEP nt ID: DUO		1			40441	06/18/20 13:12	KNC	TAL KNX
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis Instrumer	6010B SEP nt ID: DUO		1			40441	06/18/20 15:05	KNC	TAL KNX
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis Instrumer	6010B SEP nt ID: DUO		5			40453	06/19/20 12:46	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumer	6010B SEP nt ID: DUO		1	-		40453	06/19/20 16:38	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis	6010B SEP nt ID: DUO		5	· ·		40453	06/19/20 17:21		TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP		1	ŭ		40487	06/22/20 14:23	KNC	TAL KNX

Eurofins TestAmerica, Knoxville

6/25/2020

Job ID: 140-19131-1

TAL KNX

Lab Sample ID: 140-19131-10

Matrix: Solid

Percent Solids: 99.8

Job ID: 140-19131-1

Client Sample ID: BRGWC-50(2) 63-63.5 FT BGS

Batch

Date Collected: 05/15/20 09:20 Date Received: 05/20/20 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP		10			40487	06/22/20 16:00	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP		5			40487	06/22/20 16:57	KNC	TAL KNX
	Instrumer	it ID: DUO								

Client Sample ID: PZ-53D 30 FT BGS

Batch

Date Collected: 05/16/20 16:15 Date Received: 05/20/20 09:45

Lab Sample ID: 140-19131-11 **Matrix: Solid**

Batch Prepared Number or Analyzed Analyst Lab 06/25/20 11:53 DKW TAL KNX

Method **Prep Type** Amount **Amount** Type Run **Factor** Sum of Steps 1-7 Analysis 6010B SEP 40572 Instrument ID: NOEQUIP Total/NA Analysis Moisture 40042 06/02/20 08:02 BKD TAL KNX Instrument ID: NOEQUIP

Initial

Final

Dil

Client Sample ID: PZ-53D 30 FT BGS

Lab Sample ID: 140-19131-11 Date Collected: 05/16/20 16:15 **Matrix: Solid** Date Received: 05/20/20 09:45 Percent Solids: 73.6

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		1			40512	06/23/20 13:55	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		10			40512	06/23/20 15:32	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		2			40512	06/23/20 17:14	KNC	TAL KNX
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis Instrumer	6010B SEP nt ID: DUO		4			40383	06/16/20 13:28	KNC	TAL KNX
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis Instrumer	6010B SEP nt ID: DUO		3			40383	06/16/20 15:24	KNC	TAL KNX
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis Instrumer	6010B SEP nt ID: DUO		1			40441	06/18/20 13:18	KNC	TAL KNX

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: PZ-53D 30 FT BGS

Date Collected: 05/16/20 16:15 Date Received: 05/20/20 09:45 Lab Sample ID: 140-19131-11

Matrix: Solid

Percent Solids: 73.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis	6010B SEP		1			40441	06/18/20 15:10	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis	6010B SEP		5			40453	06/19/20 12:51	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis	6010B SEP		1			40453	06/19/20 16:43	KNC	TAL KNX
	Instrumer	t ID: DUO								
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP		1			40487	06/22/20 14:29	KNC	TAL KNX
	Instrumer	t ID: DUO								
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP		10			40487	06/22/20 16:06	KNC	TAL KNX
	Instrumer	it ID: DUO								

Client Sample ID: PZ-53D 36 FT BGS

Date Collected: 05/16/20 16:25 Date Received: 05/20/20 09:45

Lab Sample ID: 140-19131-12

Matrix: Solid

Prep Type Sum of Steps 1-7	Batch Type Analysis Instrumen	Batch Method 6010B SEP t ID: NOEQUIP	Run	Factor 1	Initial Amount	Final Amount	Batch Number 40572	Prepared or Analyzed 06/25/20 11:53	Analyst DKW	Lab TAL KNX
Total/NA	Analysis Instrumen	Moisture t ID: NOEQUIP		1			40042	06/02/20 08:02	BKD	TAL KNX

Client Sample ID: PZ-53D 36 FT BGS

Date Collected: 05/16/20 16:25 Date Received: 05/20/20 09:45

Lab Sample ID: 140-19131-12 **Matrix: Solid**

Percent Solids: 82.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			40512	06/23/20 14:01	KNC	TAL KNX
	Instrumen	it ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		10			40512	06/23/20 15:37	KNC	TAL KNX
	Instrumen	it ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		5			40512	06/23/20 17:19	KNC	TAL KNX
	Instrumen	it ID: DUO								
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis	6010B SEP		4			40383	06/16/20 13:33	KNC	TAL KNX
	Instrumen	it ID: DUO								

Eurofins TestAmerica, Knoxville

Page 62 of 72

Client Sample ID: PZ-53D 36 FT BGS

Date Collected: 05/16/20 16:25 Date Received: 05/20/20 09:45 Lab Sample ID: 140-19131-12

Matrix: Solid

Percent Solids: 82.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis Instrumen	6010B SEP t ID: DUO		3			40383	06/16/20 15:29	KNC	TAL KNX
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis Instrumen	6010B SEP t ID: DUO		1			40441	06/18/20 13:23	KNC	TAL KNX
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis Instrumen	6010B SEP t ID: DUO		1			40441	06/18/20 15:15	KNC	TAL KNX
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis Instrumen	6010B SEP t ID: DUO		5			40453	06/19/20 12:57	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumen	6010B SEP t ID: DUO		1			40453	06/19/20 16:49	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis Instrumen	6010B SEP t ID: DUO		2			40453	06/19/20 17:26	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumen	6010B SEP t ID: DUO		1			40487	06/22/20 14:34	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumen	6010B SEP t ID: DUO		10			40487	06/22/20 16:11	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis Instrumen	6010B SEP t ID: DUO		5	-		40487	06/22/20 17:02	KNC	TAL KNX

Client Sample ID: Method Blank

Date Collected: N/A

Lab Sample ID: MB 140-39918/15-A **Matrix: Solid** Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			40512	06/23/20 12:12	KNC	TAL KNX
	Instrumer	t ID: DUO								

Lab Sample ID: MB 140-40011/15-B ^4

Client Sample ID: Method Blank Date Collected: N/A

Client Sample ID: Method Blank

Date Received: N/A

Matrix: Solid

Job ID: 140-19131-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 1	SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Step 1	Analysis	6010B SEP		4			40383	06/16/20 11:55	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Lab Sample ID: MB 140-40024/15-B ^3

Date Collected: N/A Date Received: N/A

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis	6010B SEP		3			40383	06/16/20 13:48	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Method Blank Lab Sample ID: MB 140-40065/15-B

Date Collected: N/A

Matrix: Solid

Date Received: N/A

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis	6010B SEP		1			40441	06/18/20 11:44	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Method Blank Lab Sample ID: MB 140-40100/15-B

Date Collected: N/A

Matrix: Solid

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis	6010B SEP		1			40441	06/18/20 13:39	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Method Blank Lab Sample ID: MB 140-40215/15-B ^5

Date Collected: N/A Date Received: N/A

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis	6010B SEP		5			40453	06/19/20 11:16	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Lab Sample ID: MB 140-40277/15-A

Matrix: Solid

Job ID: 140-19131-1

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis	6010B SEP		1			40453	06/19/20 13:12	KNC	TAL KNX
	Instrumen	t ID: DUO								

Lab Sample ID: MB 140-40294/15-A

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Date Collected: N/A Date Received: N/A

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP		1			40487	06/22/20 12:47	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-39918/16-A

Date Collected: N/A

Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			40512	06/23/20 12:17	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-40011/16-B ^5

Date Collected: N/A

Date Received: N/A

Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
SEP	Exchangeable			5.000 g	25 mL	40011	06/01/20 08:01	KNC	TAL KNX
Prep	3010A			5 mL	50 mL	40023	06/02/20 08:00	KNC	TAL KNX
Analysis	6010B SEP		5			40383	06/16/20 12:00	KNC	TAL KNX
_	Type SEP Prep	Type Method SEP Exchangeable Prep 3010A	Type Method Run SEP Exchangeable Prep 3010A	Type Method Run Factor SEP Exchangeable Prep 3010A	Type Method Run Factor Amount SEP Exchangeable 5.000 g Prep 3010A 5 mL	Type Method Run Factor Amount Amount SEP Exchangeable 5.000 g 25 mL Prep 3010A 5 mL 50 mL	Type Method Run Factor Amount Amount Number SEP Exchangeable 5.000 g 25 mL 40011 Prep 3010A 5 mL 50 mL 40023	Type Method Run Factor Amount Amount Number or Analyzed SEP Exchangeable 5.000 g 25 mL 40011 06/01/20 08:01 Prep 3010A 5 mL 50 mL 40023 06/02/20 08:00	Type Method Run Factor Amount Amount Number or Analyzed Analyst SEP Exchangeable 5.000 g 25 mL 40011 06/01/20 08:01 KNC Prep 3010A 5 mL 50 mL 40023 06/02/20 08:00 KNC

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-40024/16-B ^5 Date Collected: N/A **Matrix: Solid**

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis	6010B SEP		5			40383	06/16/20 13:54	KNC	TAL KNX

Client Sample ID: Lab Control Sample Date Collected: N/A

Lab Sample ID: LCS 140-40065/16-B

Matrix: Solid

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis	6010B SEP		1			40441	06/18/20 11:49	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-40100/16-B

Matrix: Solid

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis	6010B SEP		1			40441	06/18/20 13:44	KNC	TAL KNX
	Instrumer	it ID: DUO								

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-40215/16-B ^5

Matrix: Solid

Date Collected: N/A

Date Received: N/A

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.000 g	75 mL	40215	06/10/20 08:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	40276	06/12/20 08:00	KNC	TAL KNX
Step 5	Analysis	6010B SEP		5			40453	06/19/20 11:21	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-40277/16-A

Matrix: Solid

Date Collected: N/A

Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	40277	06/12/20 08:00	KNC	TAL KNX
Step 6	Analysis	6010B SEP		1			40453	06/19/20 13:17	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-40294/16-A

Matrix: Solid

Date Collected: N/A Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.000 g	50 mL	40294	06/15/20 08:00	KNC	TAL KNX
Step 7	Analysis	6010B SEP		1			40487	06/22/20 12:52	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Job ID: 140-19131-1

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-39918/17-A

Matrix: Solid

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	39918	05/29/20 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			40512	06/23/20 12:22	KNC	TAL KNX
	Instrument	ID: DUO								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-40011/17-B ^5

Matrix: Solid

Date Collected: N/A Date Received: N/A

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Step 1 SEP Exchangeable 5.000 g 40011 25 mL 06/01/20 08:01 KNC TAL KNX 5 mL Step 1 Prep 3010A 50 mL 40023 TAL KNX 06/02/20 08:00 KNC 6010B SEP Step 1 Analysis 5 40383 06/16/20 12:05 KNC TAL KNX Instrument ID: DUO

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-40024/17-B ^5

Matrix: Solid

Date Collected: N/A

Date Received: N/A

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.000 g	25 mL	40024	06/02/20 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	40062	06/03/20 08:00	KNC	TAL KNX
Step 2	Analysis	6010B SEP		5			40383	06/16/20 13:59	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-40065/17-B

Date Collected: N/A

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	40065	06/03/20 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	40096	06/08/20 08:00	KNC	TAL KNX
Step 3	Analysis	6010B SEP		1			40441	06/18/20 11:54	KNC	TAL KNX
-	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-40100/17-B

Matrix: Solid

Matrix: Solid

Date Collected: N/A

Date Received: N/A

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	40100	06/08/20 08:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	40214	06/10/20 08:00	KNC	TAL KNX
Step 4	Analysis	6010B SEP		1			40441	06/18/20 13:49	KNC	TAL KNX
	Instrumer	it ID: DUO								

10

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-40215/17-B ^5

Date Collected: N/A Date Received: N/A

Matrix: Solid

Batch Batch Dil Initial Final **Batch Prepared** Method Number Analyst **Prep Type** Type Run **Factor** Amount Amount or Analyzed Lab Step 5 SEP Organic-Bound 5.000 g 75 mL 40215 06/10/20 08:00 KNC TAL KNX Step 5 Prep 3010A 5 mL 50 mL 40276 06/12/20 08:00 KNC TAL KNX Step 5 Analysis 6010B SEP 5 40453 06/19/20 11:27 KNC TAL KNX Instrument ID: DUO

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-40277/17-A

Matrix: Solid

Date Collected: N/A Date Received: N/A

Batch Batch Dil Initial Final **Batch Prepared** Method or Analyzed **Prep Type** Type **Factor Amount** Number Run Amount Analyst Lab Step 6 SEP 40277 06/12/20 08:00 KNC TAL KNX Acid/Sulfide 5.000 g 250 mL Step 6 Analysis 6010B SEP 40453 06/19/20 13:22 KNC TAL KNX Instrument ID: DUO

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-40294/17-A

Date Collected: N/A

Date Received: N/A

Matrix: Solid

Batch Dil Initial Final **Batch** Batch Prepared **Prep Type** Type Method Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Residual 50 mL 40294 Step 7 Prep 1.000 g 06/15/20 08:00 KNC TAL KNX Step 7 Analysis 6010B SEP 40487 06/22/20 12:57 KNC TAL KNX Instrument ID: DUO

Client Sample ID: BRGWA-2S(2) 39 FT BGS

Lab Sample ID: 140-19131-1 DU Matrix: Solid

Date Collected: 05/13/20 14:30

Date Received: 05/20/20 09:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			40042	06/02/20 08:02	BKD	TAL KNX
	Instrumer	nt ID: NOEQUIP								

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Accreditation/Certification Summary

Client: Golder Associates Inc.

Job ID: 140-19131-1

Project/Site: SCS Site, Plant Branch

Moisture

Laboratory: Eurofins TestAmerica, Knoxville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Oregon	NE	ELAP	TNI0189	01-02-21
The following analyte the agency does not o	·	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
6010B	Total	Solid	Aluminum	
6010B	Total	Solid	Beryllium	
6010B	Total	Solid	Cadmium	
6010B	Total	Solid	Cobalt	
6010B	Total	Solid	Iron	
6010B	Total	Solid	Manganese	
6010B	Total	Solid	Selenium	
6010B SEP		Solid	Aluminum	
6010B SEP		Solid	Beryllium	
6010B SEP		Solid	Cadmium	
6010B SEP		Solid	Cobalt	
6010B SEP		Solid	Iron	
6010B SEP		Solid	Manganese	
6010B SEP		Solid	Selenium	
6010B SEP	3010A	Solid	Aluminum	
6010B SEP	3010A	Solid	Beryllium	
6010B SEP	3010A	Solid	Cadmium	
6010B SEP	3010A	Solid	Cobalt	
6010B SEP	3010A	Solid	Iron	
6010B SEP	3010A	Solid	Manganese	
6010B SEP	3010A	Solid	Selenium	
6010B SEP	Acid/Sulfide	Solid	Aluminum	
6010B SEP	Acid/Sulfide	Solid	Beryllium	
6010B SEP	Acid/Sulfide	Solid	Cadmium	
6010B SEP	Acid/Sulfide	Solid	Cobalt	
6010B SEP	Acid/Sulfide	Solid	Iron	
6010B SEP	Acid/Sulfide	Solid	Manganese	
6010B SEP	Acid/Sulfide	Solid	Selenium	
6010B SEP	Residual	Solid	Aluminum	
6010B SEP	Residual	Solid	Beryllium	
6010B SEP	Residual	Solid	Cadmium	
6010B SEP	Residual	Solid	Cobalt	
6010B SEP	Residual	Solid	Iron	
6010B SEP	Residual	Solid	Manganese	
6010B SEP	Residual	Solid	Selenium	

Eurofins TestAmerica, Knoxville

6/25/2020

Page 69 of 72

Percent Moisture

Solid

-

3

4

Q

46

11

12

L

Method Summary

Client: Golder Associates Inc. Project/Site: SCS Site, Plant Branch

Method **Method Description** Protocol Laboratory TAL KNX 6010B SEP Metals (ICP) - Total SW846 6010B SEP SEP Metals (ICP) SW846 TAL KNX TAL KNX Moisture Percent Moisture **EPA** 3010A Preparation, Total Metals SW846 TAL KNX Acid/Sulfide Sequential Extraction Procedure, Acid/Sulfide Fraction TAL-KNOX TAL KNX Carbonate Sequential Extraction Procedure, Carbonate Fraction TAL-KNOX TAL KNX Exchangeable Sequential Extraction Procedure, Exchangeable Fraction TAL-KNOX TAL KNX Sequential Extraction Procedure, Metal Hydroxide Fraction Metal Hydroxide TAL-KNOX TAL KNX Non-Crystalline Sequential Extraction Procedure, Non-crystalline Materials TAL-KNOX TAL KNX Organic-Bound Sequential Extraction Procedure, Organic Bound Fraction TAL-KNOX TAL KNX Residual Sequential Extraction Procedure, Residual Fraction TAL-KNOX TAL KNX Total Preparation, Total Material TAL-KNOX TAL KNX

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-KNOX = TestAmerica Laboratories, Knoxville, Facility Standard Operating Procedure.

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Job ID: 140-19131-1

3

4

O

7

0

16

11

12

Eurofins TestAmerica, Knoxville

5815 Middlebrook Pike Knoxville, TN 37921-5947 phone 865.291.3000 fax 865.584.4315

Chain of Custod

🔅 eurofins

Environment Testing Testámença

140-19131 Chain of Custody

	Project Ma	nager: Br	ian Steele									_								COC No: 140-803	5-2549.1
Client Contact	Email: bste	ele@golder	.com			Site	Cor	itact:	Shan	non (Geor	ge	Dat	:e:	Page 1 of 1						
Golder Associates Inc.	Tel/Fax: 4	70-512-392	23			Lab	Cor	itact:	Ryan	Heni	ry		Cai	rier:	FedE	x				TALS Project #:	
5170 Peachtree Road, Building 100, Suite 300		Analysis	Turnarour	nd Time		П	Т	\prod												Sampler:	
Atlanta, GA 30341	□ CALENDA	IR DAYS	□ WORK	ING DAY	5] [1							1 1	1					For Lab Use Only:	
770-496-1893	_ 1	AT if different	t from Below		_		Źĺ₽						-		1					Walk-in Client:	
		□ 2 weeks			Z	Metals												İ	Lab Sampling:		
Project Name: PLANT BRANCH			re ek			Sample (Y/N						İ									
Site: 5C5	_ E		ays			읦	≅ ‴		ŀ				1							Job / SDG No.:	
PO# 166625418/14005864	В	1 d	ay Sample		# of Cont.	12	£ ₩														
			Туре			8	ا ا				1									•	
	Sample	Sample	(C=Comp,		# -505	151	톍													01-0	-16- N1-4
Sample Identification	Date	Time	G=Grab)	Matrix	# of Cont.	耳	¥ĕ	₩		1	\vdash	_	-	\vdash					-	Sample Spe	cific Notes:
BRGWA-2S(2) 39 ft bgs	5/13/2020	14:30	G	s	1 x 4 oz ja	₩	-	+		ļ					\perp				_	CUSTON'S SEAL	THIACT
BRGWA-2S(2) 43 ft bgs	5/13/2020	14:40	G	s	1 x 4 oz ja	ďΝ	N X	<u>. []</u>			\square	\perp			\perp		Ш	\perp		RECENSOR AT NO	0.8/10.80
→ BRGWA-5S(2) 38 ft bgs	5/14/2020	07:40	G	s	1 x 4 oz ja	ďΝ	NΙΧ			1.		\perp	_					\perp		PRESS BY	0
BRGWA-5\$(2) 32 ft bgs	5/14/2020	07:50	G	s.	1 x 4 oz ja	ďΝ	NX			<u> </u>		\perp								Fax 1829 942	D8200 PB
BRGWA-6S(2) 42 ft bgs	5/14/2020	12:05	G	s	1 x 4 oz ja	τN	NХ														
BRGWA-6S(2) 48 ft bgs	5/14/2020	12:15	G	s	1 x 4 oz ja	N	NХ	:					\bot	Ш	\perp	<u> </u>		<u>.</u>			
PZ-52D 18 ft bgs	5/14/2020	14:40	G	s	1 x 4 oz ja	r N	N X														
PZ-52D 24-25 ft bgs	5/14/2020	14:50	G	s	1 x 4 oz ja	ďМ	NΧ	:													
BRGWC-50(2) 59 ft bgs	5/15/2020	09:00	G	s	1 x 4 oz ja	υN	N X	:									L.				
⊗ BRGWC-50(2) 63-63.5 ft bgs	5/15/2020	09:20	G	s	1 x 4 oz ja	ır N	N X	:								L	L				
PZ-53D 30 ft bgs	5/16/2020	16:15	G	s	1 x 4 oz ja	ır N	ИХ	:			Ш			Ц							
PZ-53D 36 ft bgs	5/16/2020	<u> </u>	G	s	1 x 4 oz ja	ır N	ΝХ									<u> </u>					
Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNC	3; 5=NaOH;	6= Other		1935	<i>各等物</i> 。		\perp								Ç. 5 23	á light	1.4				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pi Comments Section if the lab is to dispose of the sample.	ease List any	EPA Was	te Codes fo	or the sa	imple in the		Sam	ple D	ispos	al (A	A fee	mąy	be as	sess	ed if	samp	oles	are re	taine	ed longer than 1 mo	onth)
☑ Non-Hazard ☐ Flammable ☐ Skin Irritant	🗆 Poison I	В	□ Unkno	Wn				Return	to Clien	nt		O I	Disposa	l by La	b		□ A	rchive fo	OF	Months	
Special Instructions/QC Requirements & Comments:																					
	1-								10			90\ 1	3 L			~-	1.1.			The ID No.	
Custody Seals Intact:	Custody S			Dot- 5	Fi	-	D		Coole			141			~	_Cor				Therm ID No.:	
Relinquished by: Shannon George	Company		5/18	ZO a	Time: 20 1/80	0			by: Ju	oe W	rague	spac	K . •		Comp	•					e/20 1800
Relinquished by: Waguespack	Company	Golder	g	Date/	Γime: ∂ S/i ,9/'n	-0		eived	. 7	<u> </u>		Ex		٠ <u>.</u>	Comp	pany:	క్ర	٤٠		Date/Time: 05/19/2c	0925
Relinquished by:	Company			Date/			Rece	ived,	n Lab	orato	ory by	:			Comp	any;	11			Date/Time:	29:45
<u> </u>							سب	~~~		_	_					,		11.		-C-WI-002 Rev 4.3	

Log In Number:

Loc: 140 19131

Review Items	Yes	No	NA	NA If No, what was the problem? Comments/Actions Taken			
1. Are the shipping containers intact?				☐ Containers, Broken	10		
2. Were ambient air containers received intact?				☐ Checked in lab			
3. The coolers/containers custody seal if present, is it				□ Yes			
intact?	/			□ NA			
4. Is the cooler temperature within limits? (> freezing				☐ Cooler Out of Temp, Client	<u> </u>		
temp. of water to 6°C, VOST: 10°C)				Contacted, Proceed/Cancel	-		
Thermometer ID:				☐ Cooler Out of Temp, Same Day			
Correction factor: 0.0				Receipt			
5. Were all of the sample containers received intact?	//			☐ Containers, Broken			
6. Were samples received in appropriate containers?				☐ Containers, Improper; Client			
	1			Contacted; Proceed/Cancel			
7. Do sample container labels match COC?				☐ COC & Samples Do Not Match	-		
(IDs, Dates, Times)	1			☐ COC Incorrect/Incomplete	-		
				☐ COC Not Received			
8. Were all of the samples listed on the COC received?	//			☐ Sample Received, Not on COC	· ·		
				☐ Sample on COC, Not Received			
9. Is the date/time of sample collection noted?		,		☐ COC; No Date/Time; Client			
				Contacted	Labeling Verified by:	Date:	
10. Was the sampler identified on the COC?				Sampler Not Listed on COC			
11. Is the client and project name/# identified?	1/			☐ COC Incorrect/Incomplete	pH test strip lot number:		
12. Are tests/parameters listed for each sample?	//			☐ COC No tests on COC	<u></u>		
13. Is the matrix of the samples noted?	//			☐ COC Incorrect/Incomplete			
14. Was COC relinquished? (Signed/Dated/Timed)				☐ COC Incorrect/Incomplete	Box 16A: pH		
	/				Preservation	Chlorine	
15. Were samples received within holding time?	/_			☐ Holding Time - Receipt	Preservative:		
16. Were samples received with correct chemical			,	□ pH Adjusted, pH Included	Lot Number:		
preservative (excluding Encore)?			/	(See box 16A)	Exp Date:Analyst:		
				☐ Incorrect Preservative	Date:		
17. Were VOA samples received without headspace?	ļ	<u> </u>	/	☐ Headspace (VOA only)	Time:		
18. Did you check for residual chlorine, if necessary?				☐ Residual Chlorine			
(e.g. 1613B, 1668)							
Chlorine test strip lot number: 19. For 1613B water samples is pH<9?	-			☐ If no, notify lab to adjust	-		
20. For rad samples was sample activity info. Provided?			-/	☐ Project missing info	-		
	1		L	D 110lest missing into	-		
Project #: 1400364 PM Instructions:	_						
<u> </u>					- 		
Sample Receiving Associate:			Date:	5.20.20	QA026	R32.doc, 062719	

EUROFINS/TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for: SGS Canada Inc

Project Number/ LIMS No. 17999-01/MI4501-JUN20

Sample Receipt: June 2, 2020

Sample Analysis: June 3, 2020

Reporting Date: June 5, 2020

Instrument: BRUKER AXS D8 Advance Diffractometer

Test Conditions: Co radiation, 35 kV, 40 mA

Regular Scanning: Step: 0.02°, Step time: 1s, 2θ range: 3-80°

Interpretations: PDF2/PDF4 powder diffraction databases issued by the International Center

for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.

Detection Limit: 0.5-2%. Strongly dependent on crystallinity.

Contents: 1) Method Summary

2) Quantitative XRD Results

3) XRD Pattern(s)

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Minerals Services Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada - Minerals Services - Lakefield: http://palcan.scc.ca/SpecsSearch/GLSearchForm.do.

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Minerals Services is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

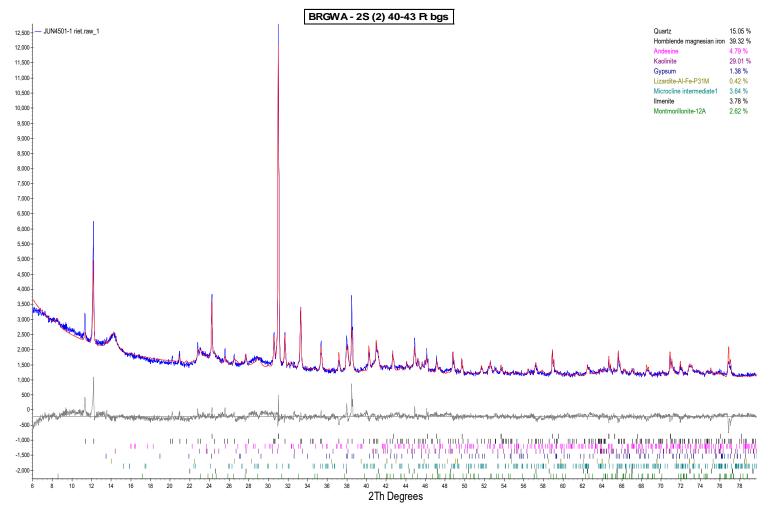
Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

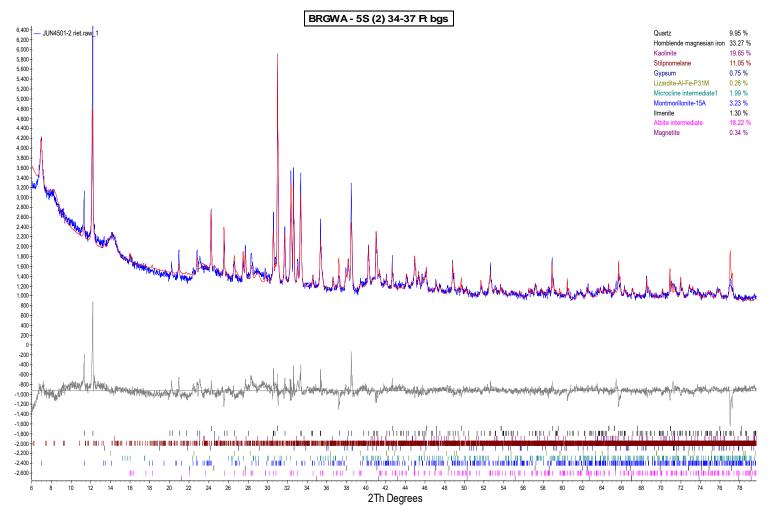
WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

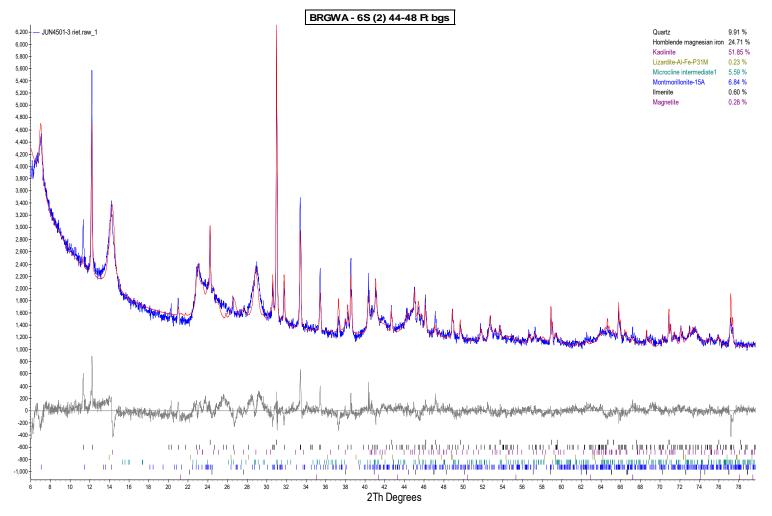
Mineral/Compound	BRGWA - 2S (2) 40-43 Ft bgs JUN4501-01	2) 40-43 Ft (2) 34-37 Ft bgs bgs		BRGWC - 50 (2) 59 Ft bgs JUN4501-04	BRGWC - 50 (2) 63-63.5 Ft bgs JUN4501-05		PZ-53D 32-35 Ft bgs JUN4501-07	
	(wt %)	(wt %)	JUN4501-03 (wt %)	(wt %)	(wt %)	(wt %)	(wt %)	
Quartz	15.1	9.9	9.9	27.3	24.6	34.9	30.8	
Hornblende	39.3	33.3	24.7	-	-	2.2	-	
Andesine	4.8	-	-	-	-	-	-	
Kaolinite	29.0	19.7	51.9	-	-	37.7	25.3	
Gypsum	1.4	0.7	-	-	-	-	-	
Lizardite	0.4	0.3	0.2	-	-	0.0	0.4	
Microcline	3.6	2.0	5.6	3.0	9.3	10.8	17.1	
Ilmenite	3.8	1.3	0.6	-	-	-	-	
Montmorillonite	2.6	3.2	6.8	0.8	-	-	-	
Stilpnomelane	-	11.1	-	-	-	-	-	
Albite	-	18.2	-	49.9	50.1	4.0	5.7	
Magnetite	-	0.3	0.3	0.3	0.5	0.5	0.1	
Muscovite	-	-	-	4.2	2.6	3.8	3.5	
Biotite	-	-	-	10.3	10.8	6.1	5.8	
Illite-Montmorillonite	-	-	-	4.2	-	-	11.3	
Chlorite	-	-	-	-	2.1	-	-	
TOTAL	100	100	100	100	100	100	100	

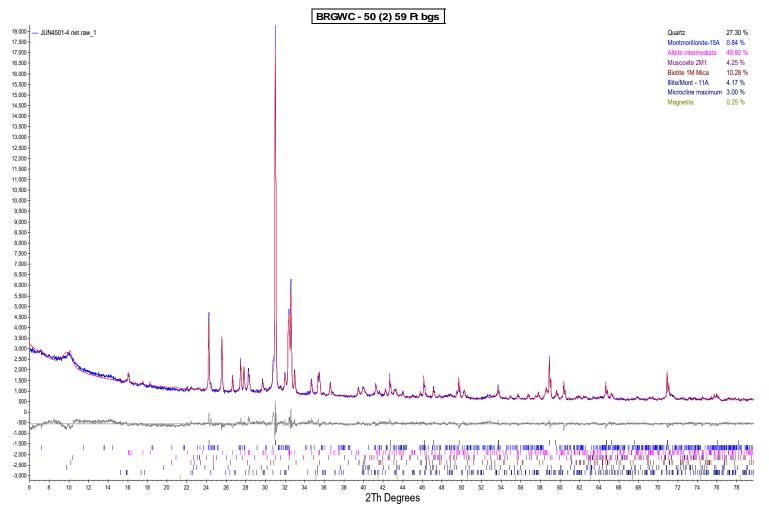

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

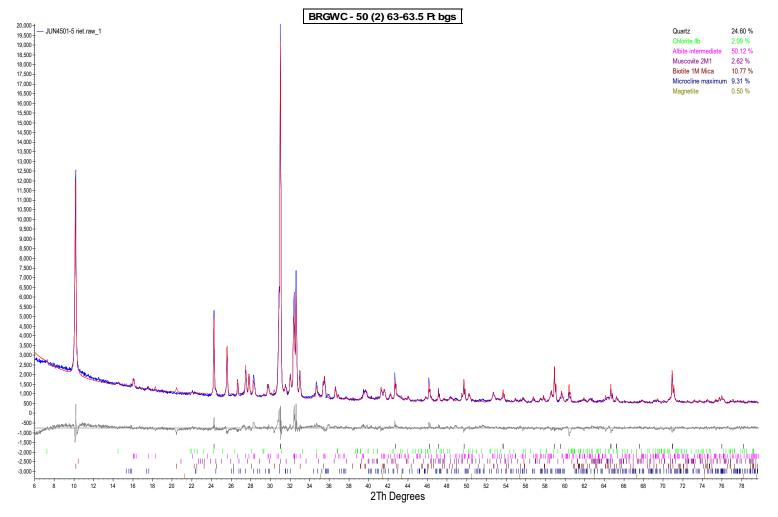
Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

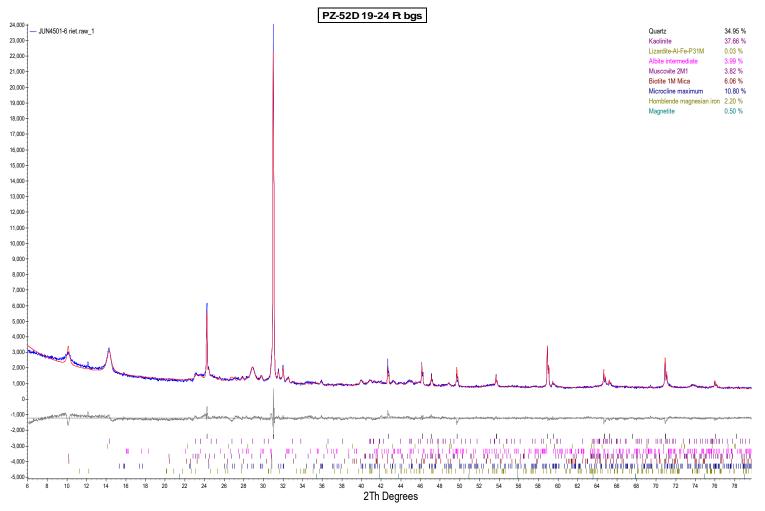

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

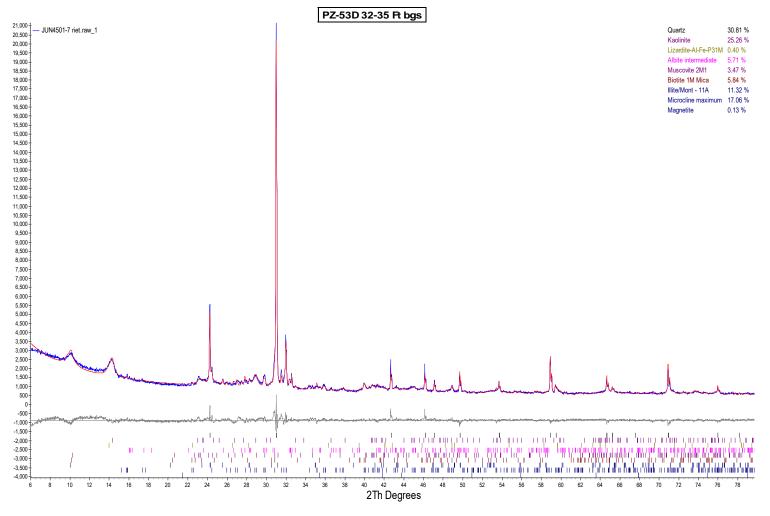
Mineral/Compound	Formula
Quartz	SiO ₂
Hornblende	(Ca,Na) ₂₋₃ (Mg,Fe,Al) ₅ Si ₆ (Si,Al) ₂ O ₂₂ (OH) ₂
Andesine	Na _{0.6} Ca _{0.4} Al _{1.4} Si _{2.6} O ₈
Kaolinite	$Al_2Si_2O_5(OH)_4$
Gypsum	CaSO ₄ ·2H ₂ O
Lizardite	$Mg_3Si_2O_5(OH)_4$
Microcline	KAISi ₃ O ₈
Ilmenite	FeTiO ₃
Montmorillonite	(Na,Ca) _{0.3} (Al,Mg) ₂ Si ₂ O ₁₀ (OH) ₂ ·10H ₂ O
Stilpnomelane	$K(Fe^{2+},Mg,Fe^{3+})_8(Si,Al)_{12}(O,OH)_{27}\cdot n(H_2O)$
Albite	NaAlSi ₃ O ₈
Magnetite	Fe ₃ O ₄
Muscovite	$KAl_2(AlSi_3O_{10})(OH)_2$
Biotite	$K(Mg,Fe)_3(AlSi_3O_{10})(OH)_2$
Illite-Montmorillonite	$KAI_4(Si,AI)_8O_{10}(OH)_4\cdot 4H_2O$
Chlorite	$(Fe,(Mg,Mn)_5,Al)(Si_3Al)O_{10}(OH)_8$











December 17, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Branch

Pace Project No.: 2624659

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on October 23, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring for Betsy McDaniel betsy.mcdaniel@pacelabs.com (770)734-4200

Project Manager

Kain Lung

Enclosures

 cc: Julie Lehrman, Golder Associates Inc.
 Dawn Prell, Golder Associates Inc.
 Eric Rolle, Georgia Power - Coal Combustion Residuals Rebecca Thornton, Pace Analytical Atlanta

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project: Plant Branch
Pace Project No.: 2624659

Pace Analytical Services Atlanta

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812

North Carolina Certification #: 381 South Carolina Certification #: 98011001 Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Plant Branch
Pace Project No.: 2624659

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
2624659001	PZ-15S	Water	10/21/19 14:01	10/23/19 00:00	
2624659002	PZ-15I	Water	10/21/19 15:11	10/23/19 00:00	
2624659003	IW-C-1	Water	10/21/19 16:41	10/23/19 00:00	

SAMPLE ANALYTE COUNT

Project: Plant Branch
Pace Project No.: 2624659

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2624659001	PZ-15S	EPA 6010D	KLH	6
		EPA 6010D	KLH	6
		EPA 6020B	CSW	14
		EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		EPA 7470A	DRB	1
		SM 2320B	S1A	2
		SM 2540C	MZP	1
		SM 4500-P	JAD	1
		EPA 300.0	MWB	1
		EPA 300.0	MWB	3
2624659002	PZ-15I	EPA 6010D	KLH	6
		EPA 6010D	KLH	6
		EPA 6020B	CSW	14
		EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		EPA 7470A	DRB	1
		SM 2320B	S1A	2
		SM 2540C	MZP	1
		SM 4500-P	JAD	1
		EPA 300.0	MWB	1
		EPA 300.0	MWB	3
2624659003	IW-C-1	EPA 6010D	KLH	6
		EPA 6010D	KLH	6
		EPA 6020B	CSW	14
		EPA 6020B	CSW	14
		EPA 7470A	DRB	1
		EPA 7470A	DRB	1
		SM 2320B	S1A	2
		SM 2540C	MZP	1
		SM 4500-P	JAD	1
		EPA 300.0	MWB	1
		EPA 300.0	MWB	3

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

Sample: PZ-15S	Lab ID: 2	2624659001	Collecte	ed: 10/21/19	14:01	Received: 10/	23/19 00:00 N	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D MET ICP	Analytical M	lethod: EPA	6010D Pre	paration Met	hod: EF	A 3010A			
Aluminum	0.054J	mg/L	0.10	0.032	1	10/31/19 16:05	11/01/19 01:51	7429-90-5	
ron	0.10	mg/L	0.040	0.015	1	10/31/19 16:05	11/01/19 01:51	7439-89-6	
Magnesium	11.2	mg/L	0.050	0.011	1		11/01/19 01:51		
Manganese	1.9	mg/L	0.040	0.0061	1	10/31/19 16:05	11/01/19 01:51	7439-96-5	
Potassium	6.6	mg/L	0.20	0.026	1	10/31/19 16:05	11/01/19 01:51	7440-09-7	
Sodium	22.6	mg/L	1.0	0.19	1	10/31/19 16:05	11/01/19 01:51	7440-23-5	
6010D MET ICP, Lab Filtered	Analytical M	flethod: EPA	6010D Pre	paration Met	hod: EF	A 3010A			
Aluminum, Dissolved	ND	mg/L	0.10	0.032	1	11/01/19 18:00	11/03/19 12:05	7429-90-5	
ron, Dissolved	ND	mg/L	0.040	0.015	1	11/01/19 18:00	11/03/19 12:05	7439-89-6	
Magnesium, Dissolved	11.3	mg/L	0.050	0.011	1	11/01/19 18:00	11/03/19 12:05		
Manganese, Dissolved	1.4	mg/L	0.040	0.0061	1	11/01/19 18:00	11/03/19 12:05	7439-96-5	
Potassium, Dissolved	6.5	mg/L	0.20	0.026	1	11/01/19 18:00	11/03/19 12:05	7440-09-7	
Sodium, Dissolved	22.3	mg/L	1.0	0.19	1	11/01/19 18:00	11/03/19 12:05	7440-23-5	
6020B MET ICPMS	Analytical M	flethod: EPA	6020B Prep	paration Met	hod: EP	A 3005A			
Antimony	ND	mg/L	0.0030	0.00027	1	10/28/19 20:04	10/29/19 20:59	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00035	1	10/28/19 20:04	10/29/19 20:59	7440-38-2	
Barium	0.021	mg/L	0.010	0.00049	1	10/28/19 20:04	10/29/19 20:59	7440-39-3	
Beryllium	0.00019J	mg/L	0.0030	0.000074	1	10/28/19 20:04	10/29/19 20:59	7440-41-7	
Boron	1.3	mg/L	0.040	0.0049	1	10/28/19 20:04	10/29/19 20:59	7440-42-8	
Cadmium	0.00022J	mg/L	0.0025	0.00011	1	10/28/19 20:04	10/29/19 20:59	7440-43-9	
Calcium	55.6	mg/L	5.0	0.55	50	10/28/19 20:04	10/29/19 21:05	7440-70-2	
Chromium	0.00080J	mg/L	0.010	0.00039	1	10/28/19 20:04	10/29/19 20:59	7440-47-3	
Cobalt	0.0022J	mg/L	0.0050	0.00030	1	10/28/19 20:04	10/29/19 20:59	7440-48-4	
₋ead	0.00021J	mg/L	0.0050	0.000046	1	10/28/19 20:04	10/29/19 20:59	7439-92-1	
_ithium	0.0059J	mg/L	0.030	0.00078	1	10/28/19 20:04	10/29/19 20:59	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00095	1	10/28/19 20:04	10/29/19 20:59	7439-98-7	
Selenium	ND	mg/L	0.010	0.0013	1	10/28/19 20:04	10/29/19 20:59	7782-49-2	
Thallium	ND	mg/L	0.0010	0.000052	1	10/28/19 20:04	10/29/19 20:59	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical M	flethod: EPA	6020B Prep	paration Met	hod: EF	A 3005A			
Antimony, Dissolved	ND	mg/L	0.0030	0.00027	1	11/03/19 15:41	11/04/19 20:11		
Arsenic, Dissolved	ND	mg/L	0.0050	0.00035	1	11/03/19 15:41	11/04/19 20:11		
Barium, Dissolved	0.025	mg/L	0.010	0.00049	1	11/03/19 15:41	11/04/19 20:11		
Beryllium, Dissolved	ND	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/04/19 20:11		
Boron, Dissolved	1.3	mg/L	0.040	0.0049	1	11/03/19 15:41	11/04/19 20:11		
Cadmium, Dissolved	ND	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 20:11	7440-43-9	
Calcium, Dissolved	51.6	mg/L	5.0	0.55	50	11/03/19 15:41	11/04/19 20:16		
Chromium, Dissolved	ND	mg/L	0.010	0.00039	1	11/03/19 15:41	11/04/19 20:11		
Cobalt, Dissolved	ND	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 20:11	7440-48-4	
_ead, Dissolved	ND	mg/L	0.0050	0.000046	1	11/03/19 15:41	11/04/19 20:11	7439-92-1	
Lithium, Dissolved	0.012J	mg/L	0.030	0.00078	1	11/03/19 15:41	11/04/19 20:11	7439-93-2	
Molybdenum, Dissolved	ND	mg/L	0.010	0.00095	1	11/03/19 15:41	11/04/19 20:11	7439-98-7	
Selenium, Dissolved	ND	mg/L	0.010	0.0013	1	11/03/19 15:41	11/04/19 20:11	7782-49-2	
Thallium, Dissolved	ND	mg/L	0.0010	0.000052	1	11/03/19 15:41	11/04/19 20:11	7440-28-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

Sample: PZ-15S	Lab ID:	2624659001	Collecte	d: 10/21/1	9 14:01	Received: 10/	23/19 00:00 Ma	atrix: Water	
			Report					0.0	
Parameters	Results	Units	Limit -	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7470 Mercury	Analytical	Method: EPA	7470A Prep	aration Met	thod: EF	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	10/29/19 08:27	10/29/19 14:16	7439-97-6	
7470 Mercury, Dissolved	Analytical	Method: EPA	7470A Prep	aration Met	thod: EF	PA 7470A			
Mercury, Dissolved	ND	mg/L	0.00020	0.00014	1	11/03/19 15:41	11/04/19 10:39	7439-97-6	
2320B Alkalinity Low Level	Analytical	Method: SM 2	320B						
Alkalinity, Bicarbonate (CaCO3)	12.0	mg/L	1.0	1.0	1		10/29/19 12:03		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	1.0	1.0	1		10/29/19 12:03		
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	356	mg/L	10.0	10.0	1		10/25/19 14:58		
4500PE Ortho Phosphorus	Analytical	Method: SM 4	500-P						
Orthophosphate as P	ND	mg/L	0.020	0.020	1		10/23/19 19:13		H1
300.0 IC Anions	Analytical	Method: EPA	300.0						
Nitrate as N	ND	mg/L	0.050	0.0050	1		10/24/19 06:40	14797-55-8	H1
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	6.4	mg/L	1.0	0.024	1		10/30/19 23:10	16887-00-6	
Fluoride	0.068J	mg/L	0.30	0.029	1		10/30/19 23:10	16984-48-8	
Sulfate	235	mg/L	50.0	0.85	50		10/31/19 08:00	14808-79-8	

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

Sample: PZ-15I	Lab ID: 2	624659002	Collecte	ed: 10/21/19	15:11	Received: 10/	23/19 00:00 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
010D MET ICP	Analytical M	ethod: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
Aluminum	ND	mg/L	0.10	0.032	1	10/31/19 16:05	11/01/19 01:56	7429-90-5	
ron	0.051	mg/L	0.040	0.015	1	10/31/19 16:05	11/01/19 01:56	7439-89-6	
Magnesium	23.1	mg/L	0.050	0.011	1	10/31/19 16:05	11/01/19 01:56	7439-95-4	
Manganese	0.17	mg/L	0.040	0.0061	1	10/31/19 16:05	11/01/19 01:56	7439-96-5	
Potassium	7.7	mg/L	0.20	0.026	1	10/31/19 16:05	11/01/19 01:56	7440-09-7	
Sodium	26.5	mg/L	1.0	0.19	1	10/31/19 16:05	11/01/19 01:56	7440-23-5	
6010D MET ICP, Lab Filtered	Analytical M	ethod: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
Aluminum, Dissolved	ND	mg/L	0.10	0.032	1	11/01/19 18:00	11/03/19 12:10	7429-90-5	
ron, Dissolved	ND	mg/L	0.040	0.015	1	11/01/19 18:00	11/03/19 12:10	7439-89-6	
Magnesium, Dissolved	22.8	mg/L	0.050	0.011	1	11/01/19 18:00	11/03/19 12:10	7439-95-4	
Manganese, Dissolved	0.16	mg/L	0.040	0.0061	1	11/01/19 18:00	11/03/19 12:10	7439-96-5	
Potassium, Dissolved	7.7	mg/L	0.20	0.026	1	11/01/19 18:00	11/03/19 12:10	7440-09-7	
Sodium, Dissolved	26.3	mg/L	1.0	0.19	1	11/01/19 18:00	11/03/19 12:10	7440-23-5	
6020B MET ICPMS	Analytical M	ethod: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
antimony	ND	mg/L	0.0030	0.00027	1	10/28/19 20:04	10/29/19 21:11	7440-36-0	
rsenic	ND	mg/L	0.0050	0.00035	1	10/28/19 20:04	10/29/19 21:11	7440-38-2	
Barium	0.029	mg/L	0.010	0.00049	1	10/28/19 20:04	10/29/19 21:11	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	10/28/19 20:04	10/29/19 21:11	7440-41-7	
Boron	1.5	mg/L	0.040	0.0049	1	10/28/19 20:04	10/29/19 21:11	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00011	1	10/28/19 20:04	10/29/19 21:11	7440-43-9	
Calcium	51.0	mg/L	5.0	0.55	50	10/28/19 20:04	10/29/19 21:16	7440-70-2	
Chromium	ND	mg/L	0.010	0.00039	1	10/28/19 20:04	10/29/19 21:11	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00030	1	10/28/19 20:04	10/29/19 21:11	7440-48-4	
.ead	ND	mg/L	0.0050	0.000046	1	10/28/19 20:04	10/29/19 21:11	7439-92-1	
ithium	0.013J	mg/L	0.030	0.00078	1	10/28/19 20:04	10/29/19 21:11	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00095	1	10/28/19 20:04	10/29/19 21:11		
Selenium	ND	mg/L	0.010	0.0013	1	10/28/19 20:04	10/29/19 21:11		
Thallium	ND	mg/L	0.0010	0.000052	1	10/28/19 20:04	10/29/19 21:11		
6020B MET ICPMS, Dissolved	Analytical M	ethod: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
Antimony, Dissolved	ND	mg/L	0.0030	0.00027	1	11/03/19 15:41	11/04/19 20:34	7440-36-0	
Arsenic, Dissolved	ND	mg/L	0.0050	0.00035	1	11/03/19 15:41	11/04/19 20:34	7440-38-2	
Barium, Dissolved	0.016	mg/L	0.010	0.00049	1	11/03/19 15:41	11/04/19 20:34	7440-39-3	
Beryllium, Dissolved	0.00016J	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/05/19 13:12		
Boron, Dissolved	1.2	mg/L	0.040	0.0049	1	11/03/19 15:41	11/05/19 13:12		
Cadmium, Dissolved	0.00017J	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 20:34		
Calcium, Dissolved	50.0	mg/L	5.0	0.55	50	11/03/19 15:41	11/04/19 20:39		
Chromium, Dissolved	ND	mg/L	0.010	0.00039	1	11/03/19 15:41	11/04/19 20:34		
Cobalt, Dissolved	ND	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 20:34		
Lead, Dissolved	ND	mg/L	0.0050	0.000046	1	11/03/19 15:41	11/04/19 20:34		
Lithium, Dissolved	0.0056J	mg/L	0.030	0.00078	1	11/03/19 15:41	11/05/19 13:12		
Molybdenum, Dissolved	0.00303 ND	mg/L	0.030	0.00076	1	11/03/19 15:41	11/04/19 20:34		
Selenium, Dissolved	ND ND	mg/L	0.010	0.00093	1	11/03/19 15:41	11/04/19 20:34		
	IND	1110/ -	0.010	0.0010		11/00/10 10.41	11/07/13 40.34	・・・ ひと サンニム	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

Sample: PZ-15I	Lab ID:	2624659002	Collecte	d: 10/21/1	9 15:11	Received: 10/	23/19 00:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
7470 Mercury	Analytical I	Method: EPA	7470A Prep	aration Met	thod: Ef	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	10/29/19 08:27	10/29/19 14:19	7439-97-6	
7470 Mercury, Dissolved	Analytical I	Method: EPA	7470A Prep	aration Met	thod: EF	PA 7470A			
Mercury, Dissolved	ND	mg/L	0.00020	0.00014	1	11/03/19 15:41	11/04/19 10:41	7439-97-6	
2320B Alkalinity	Analytical I	Method: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	24.0 ND	mg/L mg/L	20.0 20.0	20.0 20.0	1 1		10/28/19 14:50 10/28/19 14:50		
2540C Total Dissolved Solids	Analytical I	Method: SM 2	540C						
Total Dissolved Solids	430	mg/L	10.0	10.0	1		10/25/19 14:58		
4500PE Ortho Phosphorus	Analytical I	Method: SM 4	500-P						
Orthophosphate as P	ND	mg/L	0.020	0.020	1		10/23/19 19:14		H1
300.0 IC Anions	Analytical I	Method: EPA	300.0						
Nitrate as N	ND	mg/L	0.050	0.0050	1		10/24/19 07:02	14797-55-8	H1
300.0 IC Anions 28 Days	Analytical I	Method: EPA	300.0						
Chloride Fluoride Sulfate	6.6 0.15J 266	mg/L mg/L mg/L	1.0 0.30 20.0	0.024 0.029 0.34	1 1 20		10/30/19 23:32 10/30/19 23:32 10/31/19 08:22	16984-48-8	

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

Sample: IW-C-1	Lab ID:	2624659003	Collecte	ed: 10/21/19	16:41	Received: 10/	23/19 00:00 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL_	DF	Prepared	Analyzed	CAS No.	Qua
6010D MET ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
Aluminum	ND	mg/L	0.10	0.032	1	10/31/19 16:05	11/01/19 02:01	7429-90-5	
Iron	25.6	mg/L	0.040	0.015	1	10/31/19 16:05	11/01/19 02:01	7439-89-6	
Magnesium	40.2	mg/L	0.050	0.011	1	10/31/19 16:05	11/01/19 02:01	7439-95-4	
Manganese	4.3	mg/L	0.040	0.0061	1	10/31/19 16:05	11/01/19 02:01	7439-96-5	
Potassium	9.8	mg/L	0.20	0.026	1	10/31/19 16:05	11/01/19 02:01	7440-09-7	
Sodium	42.5	mg/L	10.0	1.9	10	10/31/19 16:05	11/03/19 02:17	7440-23-5	
6010D MET ICP, Lab Filtered	Analytical	Method: EPA 6	6010D Pre	paration Met	hod: EF	PA 3010A			
Aluminum, Dissolved	0.20	mg/L	0.10	0.032	1	11/01/19 18:00	11/03/19 12:15	7429-90-5	
Iron, Dissolved	0.11	mg/L	0.040	0.015	1	11/01/19 18:00	11/03/19 12:15	7439-89-6	
Magnesium, Dissolved	41.0	mg/L	0.050	0.011	1	11/01/19 18:00	11/03/19 12:15		
Manganese, Dissolved	4.3	mg/L	0.040	0.0061	1	11/01/19 18:00	11/03/19 12:15	7439-96-5	
Potassium, Dissolved	10.1	mg/L	0.20	0.026	1	11/01/19 18:00	11/03/19 12:15		
Sodium, Dissolved	32.7	mg/L	10.0	1.9	10	11/01/19 18:00	11/04/19 15:20	7440-23-5	
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	paration Met	hod: EF	A 3005A			
Antimony	0.00034J	mg/L	0.0030	0.00027	1	10/28/19 20:04	10/29/19 21:34		В
Arsenic	1.9	mg/L	0.0050	0.00035	1	10/28/19 20:04	10/29/19 21:34	7440-38-2	
Barium	0.13	mg/L	0.010	0.00049	1	10/28/19 20:04	10/29/19 21:34	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	10/28/19 20:04	10/29/19 21:34	7440-41-7	
Boron	2.1	mg/L	0.040	0.0049	1	10/28/19 20:04	10/29/19 21:34	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00011	1	10/28/19 20:04	10/29/19 21:34	7440-43-9	
Calcium	151	mg/L	5.0	0.55	50	10/28/19 20:04	10/29/19 21:39	7440-70-2	
Chromium	ND	mg/L	0.010	0.00039	1	10/28/19 20:04	10/29/19 21:34	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00030	1	10/28/19 20:04	10/29/19 21:34	7440-48-4	
Lead	ND	mg/L	0.0050	0.000046	1	10/28/19 20:04	10/29/19 21:34	7439-92-1	
Lithium	0.13	mg/L	0.030	0.00078	1	10/28/19 20:04	10/29/19 21:34	7439-93-2	
Molybdenum	0.050	mg/L	0.010	0.00095	1	10/28/19 20:04	10/29/19 21:34	7439-98-7	
Selenium	ND	mg/L	0.010	0.0013	1	10/28/19 20:04	10/29/19 21:34	7782-49-2	
Thallium	ND	mg/L	0.0010	0.000052	1	10/28/19 20:04	10/29/19 21:34	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical	Method: EPA 6	6020B Prep	paration Met	hod: EF	A 3005A			
Antimony, Dissolved	ND	mg/L	0.0030	0.00027	1	11/03/19 15:41	11/04/19 20:45		
Arsenic, Dissolved	0.24	mg/L	0.0050	0.00035	1	11/03/19 15:41	11/04/19 20:45		
Barium, Dissolved	0.078	mg/L	0.010	0.00049	1	11/03/19 15:41	11/04/19 20:45	7440-39-3	
Beryllium, Dissolved	ND	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/05/19 13:17	7440-41-7	
Boron, Dissolved	2.4	mg/L	0.040	0.0049	1	11/03/19 15:41	11/05/19 13:17	7440-42-8	
Cadmium, Dissolved	ND	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 20:45		
Calcium, Dissolved	150	mg/L	5.0	0.55	50	11/03/19 15:41	11/04/19 20:51		
Chromium, Dissolved	ND	mg/L	0.010	0.00039	1	11/03/19 15:41	11/04/19 20:45	7440-47-3	
Cobalt, Dissolved	ND	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 20:45	7440-48-4	
Lead, Dissolved	ND	mg/L	0.0050	0.000046	1	11/03/19 15:41	11/04/19 20:45	7439-92-1	
Lithium, Dissolved	0.15	mg/L	0.030	0.00078	1	11/03/19 15:41	11/05/19 13:17	7439-93-2	
Molybdenum, Dissolved	0.046	mg/L	0.010	0.00095	1	11/03/19 15:41	11/04/19 20:45	7439-98-7	
Selenium, Dissolved	ND	mg/L	0.010	0.0013	1	11/03/19 15:41	11/04/19 20:45	7782-49-2	
Thallium, Dissolved	ND	mg/L	0.0010	0.000052	1	11/03/19 15:41	11/04/19 20:45	7440 29 0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

Sample: IW-C-1	Lab ID:	2624659003	Collecte	d: 10/21/1	9 16:41	Received: 10/	23/19 00:00 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
7470 Mercury	Analytical	Method: EPA	7470A Prep	aration Me	thod: Ef	PA 7470A			
Mercury	ND	mg/L	0.00050	0.00014	1	10/29/19 08:27	10/29/19 16:33	7439-97-6	
7470 Mercury, Dissolved	Analytical I	Method: EPA	7470A Prep	aration Me	thod: EF	PA 7470A			
Mercury, Dissolved	ND	mg/L	0.00020	0.00014	1	11/03/19 15:41	11/04/19 10:49	7439-97-6	
2320B Alkalinity	Analytical I	Method: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3) Alkalinity,Carbonate (CaCO3)	184 ND	mg/L mg/L	20.0 20.0	20.0 20.0	1 1		10/28/19 14:56 10/28/19 14:56		
2540C Total Dissolved Solids	Analytical I	Method: SM 2	540C						
Total Dissolved Solids	858	mg/L	10.0	10.0	1		10/25/19 14:58		
4500PE Ortho Phosphorus	Analytical I	Method: SM 4	500-P						
Orthophosphate as P	ND	mg/L	0.020	0.020	1		10/23/19 19:20		H1
300.0 IC Anions	Analytical I	Method: EPA	300.0						
Nitrate as N	ND	mg/L	0.050	0.0050	1		10/24/19 07:24	14797-55-8	H1
300.0 IC Anions 28 Days	Analytical I	Method: EPA	300.0						
Chloride Fluoride Sulfate	8.8 0.97 473	mg/L mg/L mg/L	1.0 0.30 100	0.024 0.029 1.7	1 1 100		10/30/19 23:54 10/30/19 23:54 10/31/19 15:06	16984-48-8	

Project: Plant Branch
Pace Project No.: 2624659

QC Batch: 37641 Analysis Method: EPA 7470A
QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Associated Lab Samples: 2624659001, 2624659002, 2624659003

METHOD BLANK: 170922 Matrix: Water

Associated Lab Samples: 2624659001, 2624659002, 2624659003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00050 0.00014 10/29/19 13:44

LABORATORY CONTROL SAMPLE: 170923

Date: 12/17/2019 05:01 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury mg/L 0.0025 0.0025 100 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 170924 170925

MSD MS MSD 2624794001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 0.0025 0.0025 0.0026 103 75-125 2 20 Mercury mg/L 0.0025 101

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch
Pace Project No.: 2624659

QC Batch: 38080 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury Dissolved

Associated Lab Samples: 2624659001, 2624659002, 2624659003

METHOD BLANK: 173090 Matrix: Water

Associated Lab Samples: 2624659001, 2624659002, 2624659003

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury, Dissolved mg/L ND 0.00020 0.00014 11/04/19 10:34

LABORATORY CONTROL SAMPLE: 173091

Date: 12/17/2019 05:01 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury, Dissolved mg/L 0.0025 0.0025 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 173092 173093

MSD MS MSD 2624686012 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Mercury, Dissolved ND 0.0025 0.0025 0.0026 105 75-125 6 20 mg/L 0.0025 99

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

QC Batch: 37765 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D MET

Associated Lab Samples: 2624659001, 2624659002, 2624659003

METHOD BLANK: 171372 Matrix: Water

Associated Lab Samples: 2624659001, 2624659002, 2624659003

ъ.	11.5	Blank	Reporting	ME		0 17
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Aluminum	mg/L	ND	0.10	0.032	11/01/19 00:53	
Iron	mg/L	ND	0.040	0.015	11/01/19 00:53	
Magnesium	mg/L	ND	0.050	0.011	11/01/19 00:53	
Manganese	mg/L	ND	0.040	0.0061	11/01/19 00:53	
Potassium	mg/L	ND	0.20	0.026	11/01/19 00:53	
Sodium	mg/L	ND	1.0	0.19	11/01/19 00:53	

LABORATORY CONTROL SAMPLE:	171373	0 "			0/ 5	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Aluminum	mg/L		1.0	101	80-120	
Iron	mg/L	1	1.0	103	80-120	
Magnesium	mg/L	1	1.0	104	80-120	
Manganese	mg/L	1	1.0	104	80-120	
Potassium	mg/L	1	0.99	99	80-120	
Sodium	mg/L	1	1.0	103	80-120	

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 1713	74		171375							
			MS	MSD								
		2623705001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Aluminum	mg/L	ND	1	1	1.0	1.0	102	100	75-125	2	20	
Iron	mg/L	0.17	1	1	1.2	1.2	104	102	75-125	2	20	
Magnesium	mg/L	35.4	1	1	36.7	36.1	130	75	75-125	2	20	M1
Manganese	mg/L	9.0	1	1	10.3	10.1	126	110	75-125	2	20	M1
Potassium	mg/L	2.1	1	1	3.3	3.3	119	119	75-125	0	20	
Sodium	mg/L	13.1	1	1	14.3	14.1	125	100	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

QC Batch: 38053 Analysis Method: EPA 6010D

QC Batch Method: EPA 3010A Analysis Description: 6010D MET Dissolved

Associated Lab Samples: 2624659001, 2624659002, 2624659003

METHOD BLANK: 172832 Matrix: Water

Associated Lab Samples: 2624659001, 2624659002, 2624659003

_		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Aluminum, Dissolved	mg/L	ND	0.10	0.032	11/03/19 10:57	
Iron, Dissolved	mg/L	ND	0.040	0.015	11/03/19 10:57	
Magnesium, Dissolved	mg/L	ND	0.050	0.011	11/03/19 10:57	
Manganese, Dissolved	mg/L	ND	0.040	0.0061	11/03/19 10:57	
Potassium, Dissolved	mg/L	ND	0.20	0.026	11/03/19 10:57	
Sodium, Dissolved	mg/L	ND	1.0	0.19	11/03/19 10:57	

LABORATORY CONTROL SAMPLE:	172833					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Aluminum, Dissolved	mg/L		1.0	102	80-120	
Iron, Dissolved	mg/L	1	1.1	106	80-120	
Magnesium, Dissolved	mg/L	1	1.0	103	80-120	
Manganese, Dissolved	mg/L	1	1.1	105	80-120	
Potassium, Dissolved	mg/L	1	0.97	97	80-120	
Sodium, Dissolved	mg/L	1	0.96J	96	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	ICATE: 1730	35		173036							
Parameter	Units	2624678005 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Aluminum, Dissolved	mg/L	ND	1	1	1.1	1.0	106	100	75-125	6	20	
Iron, Dissolved	mg/L	ND	1	1	1.1	1.0	110	104	75-125	6	20	
Magnesium, Dissolved	mg/L	38.6	1	1	42.6	40.0	402	138	75-125	6	20	M1
Manganese, Dissolved	mg/L	ND	1	1	1.1	1.0	108	104	75-125	4	20	
Potassium, Dissolved	mg/L	1.7	1	1	3.0	2.7	125	100	75-125	9	20	
Sodium, Dissolved	mg/L	28.1	1	1	30.8	28.7	270	57	75-125	7	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch
Pace Project No.: 2624659

Parameter

Date: 12/17/2019 05:01 PM

Antimony

Units

mg/L

Result

ND

Conc.

0.1

QC Batch: 37696 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2624659001, 2624659002, 2624659003

METHOD BLANK: 171182 Matrix: Water

Associated Lab Samples: 2624659001, 2624659002, 2624659003

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	0.00029J	0.0030	0.00027	10/29/19 19:20	
Arsenic	mg/L	ND	0.0050	0.00035	10/29/19 19:20	
Barium	mg/L	ND	0.010	0.00049	10/29/19 19:20	
Beryllium	mg/L	ND	0.0030	0.000074	10/29/19 19:20	
Boron	mg/L	ND	0.040	0.0049	10/29/19 19:20	
Cadmium	mg/L	ND	0.0025	0.00011	10/29/19 19:20	
Calcium	mg/L	ND	0.10	0.011	10/29/19 19:20	
Chromium	mg/L	ND	0.010	0.00039	10/29/19 19:20	
Cobalt	mg/L	ND	0.0050	0.00030	10/29/19 19:20	
Lead	mg/L	ND	0.0050	0.000046	10/29/19 19:20	
Lithium	mg/L	ND	0.030	0.00078	10/29/19 19:20	
Molybdenum	mg/L	ND	0.010	0.00095	10/29/19 19:20	
Selenium	mg/L	ND	0.010	0.0013	10/29/19 19:20	
Thallium	mg/L	ND	0.0010	0.000052	10/29/19 19:20	

LABORATORY CONTROL SAMPI		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Antimony	mg/L	0.1	0.11	113	80-120		
Arsenic	mg/L	0.1	0.10	100	80-120		
Barium	mg/L	0.1	0.10	104	80-120		
Beryllium	mg/L	0.1	0.10	103	80-120		
Boron	mg/L	1	0.99	99	80-120		
Cadmium	mg/L	0.1	0.10	102	80-120		
Calcium	mg/L	1	1.0	101	80-120		
Chromium	mg/L	0.1	0.11	107	80-120		
Cobalt	mg/L	0.1	0.11	106	80-120		
Lead	mg/L	0.1	0.11	106	80-120		
Lithium	mg/L	0.1	0.11	106	80-120		
Molybdenum	mg/L	0.1	0.10	104	80-120		
Selenium	mg/L	0.1	0.10	102	80-120		
Thallium	mg/L	0.1	0.11	105	80-120		
MATRIX SPIKE & MATRIX SPIKE	DUPLICATE: 17118		171185 MSD	5			
	2624794002		Spike MS	MSD	MS MSD	% Rec	Max

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

0.1

Result

0.11

Result

0.11

Conc.

% Rec

111

% Rec

112

Limits

75-125

RPD RPD

0 20

REPORT OF LABORATORY ANALYSIS

Qual

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 1711	84		171185							
		000 170 1000	MS	MSD		1400		1405	0/ 5			
_		2624794002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.0046J	0.1	0.1	0.097	0.098	93	93	75-125	0	20	
Barium	mg/L	0.35	0.1	0.1	0.46	0.46	108	109	75-125	0	20	
Beryllium	mg/L	0.000078J	0.1	0.1	0.090	0.091	90	91	75-125	1	20	
Boron	mg/L	1.1	1	1	1.9	1.9	78	81	75-125	1	20	
Cadmium	mg/L		0.1	0.1	0.086	0.085	86	85	75-125	1	20	
Calcium	mg/L	260	1	1	269	272	841	1200	75-125	1	20	
Chromium	mg/L	0.0019J	0.1	0.1	0.11	0.11	104	103	75-125	1	20	
Cobalt	mg/L	ND	0.1	0.1	0.095	0.094	95	94	75-125	1	20	
Lead	mg/L	ND	0.1	0.1	0.095	0.096	95	96	75-125	1	20	
Lithium	mg/L	0.096	0.1	0.1	0.20	0.20	101	102	75-125	0	20	
Molybdenum	mg/L	ND	0.1	0.1	0.11	0.11	109	110	75-125	0	20	
Selenium	mg/L	0.0049J	0.1	0.1	0.051	0.048	46	43	75-125	5	20	M1
Thallium	mg/L	ND	0.1	0.1	0.099	0.098	99	98	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch
Pace Project No.: 2624659

Antimony, Dissolved

Date: 12/17/2019 05:01 PM

QC Batch: 38026 Analysis Method: EPA 6020B

QC Batch Method: EPA 3005A Analysis Description: 6020B MET Dissolved

Associated Lab Samples: 2624659001, 2624659002, 2624659003

METHOD BLANK: 172898 Matrix: Water

Associated Lab Samples: 2624659001, 2624659002, 2624659003

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony, Dissolved	mg/L		0.0030	0.00027	11/04/19 17:03	
Arsenic, Dissolved	mg/L	0.00093J	0.0050	0.00035	11/04/19 17:03	
Barium, Dissolved	mg/L	ND	0.010	0.00049	11/04/19 17:03	
Beryllium, Dissolved	mg/L	ND	0.0030	0.000074	11/04/19 17:03	
Boron, Dissolved	mg/L	ND	0.040	0.0049	11/04/19 17:03	
Cadmium, Dissolved	mg/L	ND	0.0025	0.00011	11/04/19 17:03	
Calcium, Dissolved	mg/L	ND	0.10	0.011	11/04/19 17:03	
Chromium, Dissolved	mg/L	ND	0.010	0.00039	11/04/19 17:03	
Cobalt, Dissolved	mg/L	ND	0.0050	0.00030	11/04/19 17:03	
Lead, Dissolved	mg/L	ND	0.0050	0.000046	11/04/19 17:03	
Lithium, Dissolved	mg/L	ND	0.030	0.00078	11/04/19 17:03	
Molybdenum, Dissolved	mg/L	ND	0.010	0.00095	11/04/19 17:03	
Selenium, Dissolved	mg/L	ND	0.010	0.0013	11/04/19 17:03	
Thallium, Dissolved	mg/L	ND	0.0010	0.000052	11/04/19 17:03	

LABORATORY CONTROL SAMPLE:	172899								
		Spike	LCS	LCS	% Rec				
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers			
Antimony, Dissolved	mg/L	0.1	0.10	101	80-120		_		
Arsenic, Dissolved	mg/L	0.1	0.10	100	80-120				
Barium, Dissolved	mg/L	0.1	0.097	97	80-120				
Beryllium, Dissolved	mg/L	0.1	0.10	104	80-120				
Boron, Dissolved	mg/L	1	1.0	101	80-120				
Cadmium, Dissolved	mg/L	0.1	0.10	100	80-120				
Calcium, Dissolved	mg/L	1	0.98	98	80-120				
Chromium, Dissolved	mg/L	0.1	0.10	103	80-120				
Cobalt, Dissolved	mg/L	0.1	0.10	100	80-120				
Lead, Dissolved	mg/L	0.1	0.091	91	80-120				
Lithium, Dissolved	mg/L	0.1	0.10	104	80-120				
Molybdenum, Dissolved	mg/L	0.1	0.099	99	80-120				
Selenium, Dissolved	mg/L	0.1	0.10	101	80-120				
Thallium, Dissolved	mg/L	0.1	0.093	93	80-120				
MATRIX SPIKE & MATRIX SPIKE DU	PLICATE: 1729	00	17290	 1					
		MS	MSD	•					
	2624635001		Spike MS	MSD	MS MSD	% Rec		Max	
Parameter Unit	s Result	Conc.	Conc. Result	Result 9	% Rec % Rec	Limits	RPD	RPD	Qu

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

0.10

0.10

104

100

75-125

0.1

ND

mg/L

0.1

REPORT OF LABORATORY ANALYSIS

20

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 1729	00		172901							
Parameter	Units	2624635001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
												- Quui
Arsenic, Dissolved	mg/L	0.0017J	0.1	0.1	0.10	0.11	101	106	75-125	5	_	
Barium, Dissolved	mg/L	0.035	0.1	0.1	0.14	0.13	101	93	75-125	6	20	
Beryllium, Dissolved	mg/L	0.00089J	0.1	0.1	0.098	0.094	97	93	75-125	4	20	
Boron, Dissolved	mg/L	0.93	1	1	1.9	1.8	99	84	75-125	8	20	
Cadmium, Dissolved	mg/L	0.00022J	0.1	0.1	0.10	0.10	102	100	75-125	3	20	
Calcium, Dissolved	mg/L	59.9	1	1	59.1	61.4	-76	154	75-125	4	20	M6
Chromium, Dissolved	mg/L	0.010	0.1	0.1	0.11	0.11	101	101	75-125	0	20	
Cobalt, Dissolved	mg/L	ND	0.1	0.1	0.098	0.10	98	100	75-125	2	20	
Lead, Dissolved	mg/L	ND	0.1	0.1	0.093	0.087	93	87	75-125	6	20	
Lithium, Dissolved	mg/L	0.0055J	0.1	0.1	0.10	0.098	97	92	75-125	4	20	
Molybdenum, Dissolved	mg/L	ND	0.1	0.1	0.10	0.10	101	100	75-125	1	20	
Selenium, Dissolved	mg/L	0.032	0.1	0.1	0.13	0.14	101	105	75-125	3	20	
Thallium, Dissolved	mg/L	0.000057J	0.1	0.1	0.093	0.089	93	89	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch
Pace Project No.: 2624659

QC Batch: 37558 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 2624659001, 2624659002, 2624659003

LABORATORY CONTROL SAMPLE: 170357

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 400 399 100 84-108

SAMPLE DUPLICATE: 170358

2624635002 Dup Max RPD RPD Parameter Units Qualifiers Result Result **Total Dissolved Solids** 1550 1650 6 10 mg/L

SAMPLE DUPLICATE: 170359

Date: 12/17/2019 05:01 PM

2624682011 Dup Max Result RPD RPD Qualifiers Parameter Units Result 1120 **Total Dissolved Solids** mg/L 1090 2 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch
Pace Project No.: 2624659

QC Batch: 37448 Analysis Method: SM 4500-P

QC Batch Method: SM 4500-P Analysis Description: 4500PE Ortho Phosphorus

Associated Lab Samples: 2624659001, 2624659002, 2624659003

METHOD BLANK: 169586 Matrix: Water

Associated Lab Samples: 2624659001, 2624659002, 2624659003

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Orthophosphate as P mg/L ND 0.020 0.020 10/23/19 19:12

LABORATORY CONTROL SAMPLE: 169587

Date: 12/17/2019 05:01 PM

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Orthophosphate as P mg/L 0.5 0.54 109 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 169588 169589

MS MSD MSD MS 2624659002 Spike Spike MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Orthophosphate as P ND 0.54 0.54 108 80-120 10 H1 mg/L 0.5 0.5 108

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch Pace Project No.: 2624659

QC Batch: 37451 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

2624659001, 2624659002, 2624659003 Associated Lab Samples:

METHOD BLANK: 169595 Matrix: Water

Associated Lab Samples: 2624659001, 2624659002, 2624659003

> Reporting Limit MDL Qualifiers Parameter Units Result Analyzed

Nitrate as N ND 0.050 0.0050 10/24/19 01:53 mg/L

LABORATORY CONTROL SAMPLE: 169596

Nitrate as N

Date: 12/17/2019 05:01 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrate as N mg/L 5 5.1 101 90-110

Blank

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 169821 169822

mg/L

MS MSD 2624678003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Nitrate as N ND 98 15 H1 mg/L 10 10 9.8 9.8 98 90-110 0

MATRIX SPIKE SAMPLE: 169823 MS 2624663002 Spike MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers

2.3

10

11.1

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

90-110 M1

88

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

QC Batch: 37858 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 2624659001, 2624659002, 2624659003

METHOD BLANK: 171795 Matrix: Water

Associated Lab Samples: 2624659001, 2624659002, 2624659003

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.032J	1.0	0.024	10/30/19 20:37	
Fluoride	mg/L	ND	0.30	0.029	10/30/19 20:37	
Sulfate	mg/L	0.36J	1.0	0.017	10/30/19 20:37	

LABORATORY CONTROL SAMPLE:	171796					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		10.7	107	90-110	
Fluoride	mg/L	10	10.9	109	90-110	
Sulfate	mg/L	10	10.9	109	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 171797					171798							
			MS	MSD								
		2624403001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	123	100	100	328	328	205	205	90-110	0	15	M6
Fluoride	mg/L	1.0	100	100	107	106	106	105	90-110	0	15	

MATRIX SPIKE SAMPLE:	171799						
		2624685004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	18.0	10	26.2	82	90-110	M1
Fluoride	mg/L	0.20J	10	10.9	107	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Branch
Pace Project No.: 2624659

DEFINITIONS

- DF Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.
- ND Not Detected at or above adjusted reporting limit.
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- MDL Adjusted Method Detection Limit.
- PQL Practical Quantitation Limit.
- RL Reporting Limit The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.
- S Surrogate
- 1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/17/2019 05:01 PM

- B Analyte was detected in the associated method blank.
- H1 Analysis conducted outside the EPA method holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Branch
Pace Project No.: 2624659

Date: 12/17/2019 05:01 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2624659001	PZ-15S	EPA 3010A	37765	EPA 6010D	37960
2624659002	PZ-15I	EPA 3010A	37765	EPA 6010D	37960
2624659003	IW-C-1	EPA 3010A	37765	EPA 6010D	37960
2624659001	PZ-15S	EPA 3010A	38053	EPA 6010D	38066
2624659002	PZ-15I	EPA 3010A	38053	EPA 6010D	38066
2624659003	IW-C-1	EPA 3010A	38053	EPA 6010D	38066
624659001	PZ-15S	EPA 3005A	37696	EPA 6020B	37751
624659002	PZ-15I	EPA 3005A	37696	EPA 6020B	37751
624659003	IW-C-1	EPA 3005A	37696	EPA 6020B	37751
2624659001	PZ-15S	EPA 3005A	38026	EPA 6020B	38086
624659002	PZ-15I	EPA 3005A	38026	EPA 6020B	38086
624659003	IW-C-1	EPA 3005A	38026	EPA 6020B	38086
624659001	PZ-15S	EPA 7470A	37641	EPA 7470A	37746
624659002	PZ-15I	EPA 7470A	37641	EPA 7470A	37746
624659003	IW-C-1	EPA 7470A	37641	EPA 7470A	37746
624659001	PZ-15S	EPA 7470A	38080	EPA 7470A	38085
624659002	PZ-15I	EPA 7470A	38080	EPA 7470A	38085
624659003	IW-C-1	EPA 7470A	38080	EPA 7470A	38085
624659002	PZ-15I	SM 2320B	37659		
624659003	IW-C-1	SM 2320B	37659		
2624659001	PZ-15S	SM 2320B	37728		
624659001	PZ-15S	SM 2540C	37558		
624659002	PZ-15I	SM 2540C	37558		
624659003	IW-C-1	SM 2540C	37558		
624659001	PZ-15S	SM 4500-P	37448		
624659002	PZ-15I	SM 4500-P	37448		
624659003	IW-C-1	SM 4500-P	37448		
624659001	PZ-15S	EPA 300.0	37451		
624659002	PZ-15I	EPA 300.0	37451		
624659003	IW-C-1	EPA 300.0	37451		
624659001	PZ-15S	EPA 300.0	37858		
624659002	PZ-15I	EPA 300.0	37858		
624659003	IW-C-1	EPA 300.0	37858		

Pace Analytical			e-CUSTODY Ar	-	ev =				Section 18	ĨΨ	B USE ON	LY- Affix W	iorker	2	524	659		
Company: Georgia Power - Coal Combu			Billing Information:						1		1	ALL SHA	DEC		W	J †	- Z0Z400U	
Address: 2480 Maner Road			1						-		1 1 1 1 1 1	Preservat						
Atlanta, GA 30339								_	60	1		100			ш	Ш		
eport To: Joju Abraham			Email To: scsinvoice	s@southe	ernco.com					reservative Typ					Ш	Ш		
Copy To: Golder							(6) methanol, (7) sodium bisulfate, (B) sodium thi (C) ammonium hydrox de, (D) YSP, (U) Unpreserv						262	456	0			
hone: (404) 506-7239 mail: jabraham southernco.com			State: Georgia City	7	eville Time Zo		:		100			Analyses	П			,		
hone: (404) 506-7239	Project Name: P	lant Branc	h Project		Pace Profile#				100		100	190	186		WE.	1	Custody Seals Present/Intact Y N NA	
mail: jabraham@southernco.com	166625418.022	A							133			1 7	2		126	ř	Custody Signature Present Y N-NA Collector Signature Present Y N NA	
ollected By (print): Travis Martinez	Purchase Order	#:			Pace Project N	Manager:			100	ا ما	<u>6</u>	Siterandi	2		100		Bottles Intact Y N NA	
	Quote #:				betsy.mcdania			_	100	i i	≓	1 4	100	1 3	35		Correct Bottles Y N NA	
ollected By (step ture):	Turnaround Dat	e Required	1:		Immediately F	Packed on Ici	2:			흥	9	<u>a</u>	9		100	SQL	Sufficient Volume Y N NA Samples Received on Ice Y N NA	
	[] 2 Day [[] Next Day] 4 Day [] 5 Day		Field Filtered):		1	& total metals-see	Dissolved Metals by 200.7 (Lab Filter)	day	Cations / Anions (phosphate lab	hospnate			Sulfate, T	VOA - Headspace Acceptable YN NA USDA Regulated Soils YN NA Samples in Holding Time YN NA Residual Chlorine Present YN NA CI Strips:
Matrix Codes (Insert in Matrix box bel Product (P), Soil/Solid (SL), Oil (OL), Wi		issue (TS),	Bioassay (B), Water (WT), Othe		ite End	Res	# of		App III/IV metals comments	olved Met	oio / Anio		um 226.228	18	Chloride, Fluoride	Suffide Present Y N NA Lead Acetate Strips: LAB USE ONLY:	
ustomer Sample ID	Matrix *	Grab	Start Date	Time	Date	Time	cı	Ctns	1	g E	Jisse			Radium	500	皇	Lab Sample # / Comments:	
Z-15S	GW	G	10/21/2019	14:01	-	-	_	6		1	1	1	_	2	0	1		
Z-15I	GW	G	10/21/2019	_	-	1	-	_		1	_	_	_	-		-		
V-C-1		G		_			-	6	1500	_	1	1	_	2	-	1		
V-C-1	GW	d	10/21/2019	16:41				6		1	1	1		2		1		
				V				F	35			1000						
								1	100			180	85					
v. The same of the		-		_			\vdash	+-	55	1 18			200	\vdash	13	-		
otal / Dissolved Metals): Al, B, Be, Cd ations/Anions): Bicarbonate/Carbona	te Alkalinity, Nitrate		Type of Ice Used:	Wet	Blue D	ry None			300	SHORT HO	13000	ENT (<72 l	ours):	Y	N N	/A	LAB Sample Temperature Info: Temp Blank Received: Y N NA	
Phosphate, Sodium, Magnesium, Potassium. (App III Metals): 8, Ca, (App IV Metals): Sb, As, Ba, Be, Cd, Cr, Co, Pb, Li, Mo, Se, Tl NOTE: Total Boron only required for single analysis (listed for both		Packing Material Used:				Lab Tracking #:							Therm ID#:COoler 1 Temp Upon Receipt:oCCOoler 1 Therm Corr. Factor:oC					
tal/Dissolved and App III Analysis)		A 00(II	Radchem sample(s)	screened	(<500 cpm):	Y N N	IA			Samples n	UPS	ia: Client	Courier	Pace	Courie	er Er	Cooler 1 Corrected Temp:oC Comments:	
Relinquished by/Company: (Signature)			e/Time: -22-19 /0800 Received by/Company: (Senature)				Date/Time: MTJL LAB U			LAB US	SE ONLY							
elinquished by/Company: (Signature)		Date	/Time:		Received by/Company: (Signature)				Date/Time Acctnum: Template: Prelogin:		e:				Trip Blank Received: Y N NA HCL MeOH TSP Other			
Relinquished by/Company: (Signature) Date		e/Time: Received by/Company: (Signature)					Dai	Date/Time: PM: Non Confe				Non Conformance(s): Page 1 YES / NO of: 2						

WO#: 2624659

-23	San	nple C	ondi	ition	Upon Receipt	MOT	2024033	
Pace Analytical	Client Name	: <u>C</u> 70	ಉ	;; C	Cover		Due Date: 10/ APower-CCR	30/
Courier:		nt 🗆 Co		rcial Seals	Pace Other	PM: BM	2624660 Due Date: 11	/20
Packing Material: 덕Bubbl		Bans [one [Other			
Thermometer Used	(287	Type of			Blue None	Samples on ice	e, cooling process has begun	
Cooler Temperature Temp should be above freezing t	10,60				s Frozen: Yes No Comments:	Date and li	nitials of person examining]
Chain of Custody Present:		□ Yes I	□No	□n/a	1.	-		
Chain of Custody Filled Out:		1 Yes	□No	□n/a	2.			
Chain of Custody Relinquishe	ed:	☐ es	□No	□N/A	3.			
Sampler Name & Signature o	n COC:	□Yes	446	□n/a	4.]
Samples Arrived within Hold	Time:	D Yes □	□No	□n/a	5.			
Short Hold Time Analysis (<72hr):	□Yes	JN6	□n/a	6.			
Rush Turn Around Time Re	quested:	□Yes	ÐN₀	□N/A	7.			
Sufficient Volume:	,	⊒ Yes	□No	□N/A	8.			12
Correct Containers Used:		Hves	□No	□N/A	9.			
-Pace Containers Used:		☑ Yes	□No	□N/A				╛
Containers Intact:		⊡Ves	□No	□n/a	10.			
Filtered volume received for I	Dissolved tests	□Yes	□No	₽N/A	11.			
Sample Labels match COC:		Wyes	□No	□n/a	12.			
-Includes date/time/ID/Ana	alysis Matrix:	WT						
All containers needing preservation	n have been checked.	□Yes	□No	□N/A	13.			
All containers needing preservat compliance with EPA recommen		W Yes	□No			_		
exceptions: VOA, coliform, TOC, O&	.G, WI-DRO (water)	□Yes	Ľħ√o	-	Initial when completed	Lot # of added preservative		
Samples checked for dechlor	ination:	□Yes	□No	ĽªN/A	14.	•		٦
Headspace in VOA Vials (>6	Smm):	□Yes	□No	⊡ N/A	15.			7
Trip Blank Present:		□Yes	□No	₽N/A	16.			7
Trip Blank Custody Seals Pre	esent	□Yes	□No	₽N/A				
Pace Trip Blank Lot # (if pure	chased):	_						
Client Notification/ Resolut	ion:		•			Field Data Red	quired? Y / N	_
Person Contacted:				Date/	Time:			
Comments/ Resolution:								_
				-	30	00 W28		_
			_					-
								_

Project Manager Review:

19

/19

Date:

November 25, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant Branch Rads

Pace Project No.: 2624660

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on October 23, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Julie Lehrman, Golder Associates Inc.
 Dawn Prell, Golder Associates Inc.
 Eric Rolle, Georgia Power - Coal Combustion Residuals
 Rebecca Thornton, Pace Analytical Atlanta

CERTIFICATIONS

Project: Plant Branch Rads

Pace Project No.: 2624660

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: Plant Branch Rads

Pace Project No.: 2624660

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
2624660001	PZ-15S	Water	10/21/19 14:01	10/23/19 00:00	
2624660002	PZ-15I	Water	10/21/19 15:11	10/23/19 00:00	
2624660003	IW-C-1	Water	10/21/19 16:41	10/23/19 00:00	

SAMPLE ANALYTE COUNT

Project: Plant Branch Rads

Pace Project No.: 2624660

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
2624660001	PZ-15S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624660002	PZ-15I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624660003	IW-C-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Branch Rads

Pace Project No.: 2624660

Sample: PZ-15S Lab ID: 2624660001 Collected: 10/21/19 14:01 Received: 10/23/19 00:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.486 ± 0.292 (0.444) Radium-226 pCi/L 11/15/19 07:34 13982-63-3 C:96% T:NA EPA 9320 0.274 ± 0.346 (0.733) Radium-228 pCi/L 11/12/19 15:57 15262-20-1 C:81% T:81% Total Radium **Total Radium** 0.760 ± 0.638 (1.18) pCi/L 11/18/19 15:16 7440-14-4 Calculation

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Branch Rads

Pace Project No.: 2624660

Sample: PZ-15I Lab ID: 2624660002 Collected: 10/21/19 15:11 Received: 10/23/19 00:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $1.00 \pm 0.410 \quad (0.503)$ Radium-226 pCi/L 11/15/19 07:34 13982-63-3 C:95% T:NA EPA 9320 $3.61 \pm 0.898 \quad (0.796)$ Radium-228 pCi/L 11/12/19 15:56 15262-20-1 C:78% T:79% Total Radium **Total Radium** 4.61 ± 1.31 (1.30) pCi/L 11/18/19 15:16 7440-14-4 Calculation

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Plant Branch Rads

Pace Project No.: 2624660

Sample: IW-C-1 Lab ID: 2624660003 Collected: 10/21/19 16:41 Received: 10/23/19 00:00 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.461 ± 0.288 (0.442) Radium-226 pCi/L 11/15/19 07:34 13982-63-3 C:93% T:NA EPA 9320 $0.0873 \pm 0.386 \quad (0.879)$ Radium-228 pCi/L 11/12/19 15:56 15262-20-1 C:71% T:82% Total Radium **Total Radium** 0.548 ± 0.674 (1.32) pCi/L 11/18/19 15:16 7440-14-4 Calculation

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Branch Rads

Pace Project No.: 2624660

QC Batch: 369310 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 2624660001, 2624660002, 2624660003

METHOD BLANK: 1791698 Matrix: Water

Associated Lab Samples: 2624660001, 2624660002, 2624660003

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 $0.590 \pm 0.307 \quad (0.405) \text{ C:93\% T:NA}$ pCi/L $11/15/19 \quad 07:34$

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: Plant Branch Rads

Pace Project No.: 2624660

QC Batch: 369311 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 2624660001, 2624660002, 2624660003

METHOD BLANK: 1791699 Matrix: Water

Associated Lab Samples: 2624660001, 2624660002, 2624660003

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.174 \pm 0.362 (0.799) C:80% T:87% pCi/L 11/12/19 15:54

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Branch Rads

Pace Project No.: 2624660

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 11/25/2019 04:38 PM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Branch Rads

Pace Project No.: 2624660

Date: 11/25/2019 04:38 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2624660001	PZ-15S	EPA 9315	369310		
2624660002	PZ-15I	EPA 9315	369310		
2624660003	IW-C-1	EPA 9315	369310		
2624660001	PZ-15S	EPA 9320	369311		
2624660002	PZ-15I	EPA 9320	369311		
2624660003	IW-C-1	EPA 9320	369311		
2624660001	PZ-15S	Total Radium Calculation	371529		
2624660002	PZ-15I	Total Radium Calculation	371529		
2624660003	IW-C-1	Total Radium Calculation	371529		

Pace Analytical			F-CUSTODY Ar	-	ew =					ĹΛΙ	B USE OF	VLY- A	ffix Worker	2	524	659		
Company: Georgia Power - Coal Combu			Billing Information:						1			ALI .	SHADEC		W	7	- Z0Z4bbU	
Address: 2480 Maner Road Atlanta, GA 30339									-	1 1			ervative Typ		77			
Report To: Joju Abraham	EWENT		Email To: scsinvoice	s@southe	ernco.com					reservative Typ					Ш	Ш		
Copy To: Golder			Site Collection Info/	Address	Plant Branch				[6] methanol, (7) sodium bisulfate, (8) sodium the (C) ammonium hydrox de, (D) YSP, (U) Unprese Analyses						262	456	0	
phone: (404) 506-7239 Email: Jabraham Southernco.com			State: Georgia City		eville Time Zone Collected:			100			Ana	lyses			7	Custody Seals Present/Intact Y N NA		
Phone: (404) 506-7239	Project Name:		h Project	#	Pace Profile#				100		100	1		1	SE	1	Custody Self-Control Present Y NAIA	
Email: jabraham@southernco.com	166625418.022								133	8 18	E .	100	filtered)		100	ì	Collector Signature Present Y N NA	
Collected By (print): Travis Martinez	Purchase Order	r#:			Pace Project N	W. C. C. C. C. C.			1	a l	e le	3	<u>ā</u>		100		Bottles Intact Y N NA	
	Quote #:				betsy.mcdania				68	8	Ħ≓	100	 	1 3	300		Correct Bottles Y N NA	
Collected By (slens ture):	Turnaround Da	te Required					2:			흥	مِ	120	1 de	1	1000	S	Sufficient Volume Y N NA Samples Received on Ice Y N NA	
	[] Z Day [] 3 Day [Field Filtered ([] Next Day [] Yes {			Field Filtered (if applicable):] Next Day			X Yes No Field Filtered (if applicable):		total met. y 200.7 (Lá		App III/IV metals & total metals-see comments Dissolved Metals by 200.7 (Lab Filter) Cations / Anions (phosphate lab filter				Sulfate, TI	VOA - Headspace Acceptable YN NA USDA Regulated Solls YN NA Samples in Holding Time YN NA Residual Chlorine Present YN NA Cl Strips:
Product (P), Soil/Solid (SL), Oil (OL), W	ipe (WP), Air (AR), 1	Comp /	Bioassay (B), Water (Collected (or Cor		r (OT) Compos	ite End	Res	# of Ctns		App III/IV metals comments	olved Me		ions / Ani	Radium 226.228		Chloride, Fluoride,	Sulfide Present Y N NA Lead Acetate Strips: LAB USE ONLY: Lab Sample # / Comments:	
Customer Sample ID	Matrix *	0.00	Date	Time	Date	Time	1	"	1	호히	is is		18	l B	500	害		
PZ-15S	GW	G	10/21/2019	14:01	1926	HIPDIESO		6		1	1		1	2	011	1	ENVERTER DE	
PZ-15I	GW	G	10/21/2019	15:11		2500		6	100	1	1	9.00	1	2		1		
W-C-1	GW	G	10/21/2019			15.76		6	100	1	1	500	1	2	200	1		
									200			100		-	100 100 100 100 100 100 100 100 100 100			
	-	-					-	+-	180	9		100	185					
					Maria S	CONTR			96	18		100	201		100			
Total / Dissolved Metals): Al, B, Be, Co Cations/Anions): Bicarbonate/Carbona	ite Alkalinity, Nitrat		Type of Ice Used:	Wet	Blue D	ry None				T 102-100	1300	SENT ((<72 hours) :	Y	N N	Ά.	LAB Sample Temperature Info: Temp Blank Received: Y N NA	
hosphate, Sodium, Magnesium, Potass App IV Metals}: Sb, As, Ba, Be, Cd, Cr, C	Co, Pb, Li, Mo, Se, Ti	1	Packing Material Us	ed:					Lab Tracking #: Samples received via:						Therm ID#:COoler 1 Temp Upon Receipt:CC Cooler 1 Therm Corr. Factor:CC			
IOTE: Total Boron only required for sing otal/Dissolved and App III Analysis)			Radchem sample(s)		(<500 cpm):	Y N N	IA			Samples n	UPS		ent Courier	rier Pace Courler			Cooler 1 Corrected Temp:oC Comments:	
Relinquished by/Company: (Senature)	10^	Date.	7Time: 19 /08	00	Received by/Compagy: (Signature)			Date/Time: MTJL LAB				MTJL LAB US #:	IB USE ONLY					
Relinquished by/Company: (Signature) Date/Time				Received by/Co	ompany: (Sig	nature)		Date/Time: Acctnum: Trip			Trip Blank Received: Y N NA HCL MeOH TSP Other							
Relinquished by/Company: (Signature) Date/1		/Time:		Received by/Co	mpany: (Sig	nature)			Da	te/Time:	PM PB:							

WO#: 2624659

-23	San	nple Co	ondi	tion	Upon Receipt	MOT	2024003	400
Pace Analytical	Client Name	<u> (7</u> e	org	11 CA_	Cover		Due Date: 10.	/30/
Courier:		nt Co		rcial Seals i	Pace Other	PM: BM	Due Date: 11 GAPower-CCR	1/20
Packing Material: 덕Bubbl		Bags F	□ No	ne [Other			
Thermometer Used	(287	Type of			Blue None	Samples on ice	e, cooling process has begun	
Cooler Temperature Temp should be above freezing t	10,6			issue i	s Frozen: Yes No Comments:	Date and I	nitials of person examining	
Chain of Custody Present:		□Yes □	□No	□n/a	1.	-		
Chain of Custody Filled Out:		D Yes D	□No	□n/a	2.			
Chain of Custody Relinquishe	ed:	Des [⊃No	□N/A	3.			
Sampler Name & Signature o	n COC:	□Yes	946	□n/a	4.			
Samples Arrived within Hold	Time:	D√es [JNo	□n/a	5.			
Short Hold Time Analysis (<72hr):	□Yes□	JNo	□n/a	6.			
Rush Turn Around Time Re	quested:	□Yes [BNo.	□n/a	7.			
Sufficient Volume:		⊒Yes [∃No	□n/a	8.			
Correct Containers Used:		Gyes C	□No	□n/a	9.			
-Pace Containers Used:		ØYes (□No	□N/A				╝
Containers Intact:		∃ves [□No	□n/a	10.			
Filtered volume received for I	Dissolved tests	□Yes [⊒No	₽N/A	11.			
Sample Labels match COC:		☑Yes [□No	□N/A	12.			
-Includes date/time/ID/Ana	alysis Matrix:	WT				Ž.		
All containers needing preservation	have been checked.	□xes [⊃No	□N/A	13.			
All containers needing preservat compliance with EPA recommen		Des [□No	4.00		_		
exceptions: VOA, coliform, TOC, О&	G, WI-DRO (water)	□Yes [:HNo		Initial when completed	Lot # of added preservative	l	
Samples checked for dechlor	ination:	□Yes 〔	ΊNο	Ľ9N/A	14.	•		
Headspace in VOA Vials (>6	Smm):	□Yes 〔	□No	⊡ N/A	15.			٦
Trip Blank Present:		□Yes [□No	DN/A	16.			7
Trip Blank Custody Seals Pre	esent	□Yes [□No	PN/A				
Pace Trip Blank Lot # (if pure	hased):							
Client Notification/ Resolut	ion:					Field Data Re	quired? Y / N	_
Person Contacted:				Date/	Гime:			
Comments/ Resolution:				•				
					30	00 W28		
			_			7 7 7		_

Project Manager Review:

19

/19

Date:

November 20, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: PLANT BRANCH Pace Project No.: 2624770

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on October 23, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Julie Lehrman, Golder Associates Inc.
 Dawn Prell, Golder Associates Inc.
 Eric Rolle, Georgia Power - Coal Combustion Residuals
 Rebecca Thornton, Pace Analytical Atlanta

(770)734-4200

CERTIFICATIONS

Project: PLANT BRANCH

Pace Project No.: 2624770

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: PLANT BRANCH

Pace Project No.: 2624770

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2624770001	PZ-13S	Water	10/22/19 09:45	10/23/19 08:05
2624770002	PZ-14I	Water	10/22/19 11:20	10/23/19 08:05
2624770003	PZ-14S	Water	10/22/19 12:50	10/23/19 08:05
2624770004	IW-C-2	Water	10/22/19 09:51	10/23/19 08:05
2624770005	IW-D-2	Water	10/22/19 11:43	10/23/19 08:05
2624770006	IW-E-1	Water	10/22/19 13:55	10/23/19 08:05
2624770007	IW-B-2	Water	10/22/19 15:50	10/23/19 08:05
2624770008	PB-4D	Water	10/22/19 15:20	10/23/19 08:05
2624770009	EB-4	Water	10/22/19 16:40	10/23/19 08:05
2624770010	FB-4	Water	10/22/19 16:30	10/23/19 08:05
2624770011	DUP-4	Water	10/22/19 00:00	10/23/19 08:05

Project: PLANT BRANCH

Pace Project No.: 2624770

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
2624770001	PZ-13S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624770002	PZ-14I	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624770003	PZ-14S	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624770004	IW-C-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624770005	IW-D-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624770006	IW-E-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624770007	IW-B-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624770008	PB-4D	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624770009	EB-4	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624770010	FB-4	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624770011	DUP-4	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: PZ-13S Lab ID: 2624770001 Collected: 10/22/19 09:45 Received: 10/23/19 08:05 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.549 \pm 0.326 \quad (0.515)$ Radium-226 pCi/L 11/15/19 10:17 13982-63-3 C:87% T:NA EPA 9320 $0.0815 \pm 0.381 \quad (0.863)$ 11/12/19 15:51 15262-20-1 Radium-228 pCi/L C:87% T:76% Total Radium **Total Radium** 0.631 ± 0.707 (1.38) pCi/L 11/18/19 14:56 7440-14-4 Calculation

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: PZ-14I PWS:	Lab ID : 26247700 Site ID:	Collected: 10/22/19 11:20 Sample Type:	Received:	10/23/19 08:05	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.925 ± 0.395 (0.446) C:82% T:NA	pCi/L	11/15/19 10:17	7 13982-63-3	
Radium-228		0.915 ± 0.498 (0.898) C:79% T:79%	pCi/L	11/12/19 15:5	1 15262-20-1	
Total Radium	Total Radium Calculation	1.84 ± 0.893 (1.34)	pCi/L	11/18/19 14:56	7440-14-4	

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: PZ-14S Lab ID: 2624770003 Collected: 10/22/19 12:50 Received: 10/23/19 08:05 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.469 \pm 0.268 \quad (0.359)$ Radium-226 pCi/L 11/15/19 10:17 13982-63-3 C:92% T:NA EPA 9320 -0.0580 ± 0.332 (0.784) 11/12/19 15:51 15262-20-1 Radium-228 pCi/L C:86% T:82% Total Radium **Total Radium** $0.469 \pm 0.600 \quad (1.14)$ pCi/L 11/18/19 14:56 7440-14-4 Calculation

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: IW-C-2 Lab ID: 2624770004 Collected: 10/22/19 09:51 Received: 10/23/19 08:05 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.250 ± 0.263 (0.528) Radium-226 pCi/L 11/15/19 07:33 13982-63-3 C:93% T:NA EPA 9320 0.717 ± 0.505 (0.997) Radium-228 pCi/L 11/12/19 15:51 15262-20-1 C:84% T:81% Total Radium **Total Radium** 0.967 ± 0.768 (1.53) pCi/L 11/18/19 15:16 7440-14-4 Calculation

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: IW-D-2 PWS:	Lab ID: 26247700 Site ID:	O5 Collected: 10/22/19 11:43 Sample Type:	Received:	10/23/19 08:05	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.572 ± 0.338 (0.534) C:90% T:NA	pCi/L	11/15/19 07:33	3 13982-63-3	
Radium-228	EPA 9320	0.289 ± 0.363 (0.769) C:78% T:89%	pCi/L	11/12/19 15:5	1 15262-20-1	
Total Radium	Total Radium Calculation	0.861 ± 0.701 (1.30)	pCi/L	11/18/19 15:10	6 7440-14-4	

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: IW-E-1 Lab ID: 2624770006 Collected: 10/22/19 13:55 Received: 10/23/19 08:05 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 0.575 ± 0.325 (0.479) Radium-226 pCi/L 11/15/19 07:33 13982-63-3 C:94% T:NA EPA 9320 -0.0566 ± 0.377 (0.887) Radium-228 pCi/L 11/12/19 15:51 15262-20-1 C:82% T:77% Total Radium **Total Radium** 0.575 ± 0.702 (1.37) pCi/L 11/18/19 15:16 7440-14-4 Calculation

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: IW-B-2 PWS:	Lab ID: 26247700 Site ID:	Collected: 10/22/19 15:50 Sample Type:	Received:	10/23/19 08:05	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.718 ± 0.374 (0.565) C:93% T:NA	pCi/L	11/15/19 07:33	13982-63-3	
Radium-228	EPA 9320	0.515 ± 0.360 (0.694) C:85% T:83%	pCi/L	11/12/19 15:52	2 15262-20-1	
Total Radium	Total Radium Calculation	1.23 ± 0.734 (1.26)	pCi/L	11/18/19 15:16	7440-14-4	

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: PB-4D PWS:	Lab ID: 26247700 Site ID:	O08 Collected: 10/22/19 15:20 Sample Type:	Received:	10/23/19 08:05	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.476 ± 0.304 (0.483) C:89% T:NA	pCi/L	11/15/19 07:33	13982-63-3	
Radium-228		0.0938 ± 0.312 (0.705) C:83% T:86%	pCi/L	11/12/19 15:52	2 15262-20-1	
Total Radium	Total Radium Calculation	0.570 ± 0.616 (1.19)	pCi/L	11/18/19 15:10	6 7440-14-4	

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: EB-4 PWS:	Lab ID: 26247700 Site ID:	O9 Collected: 10/22/19 16:40 Sample Type:	Received:	10/23/19 08:05	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.278 ± 0.232 (0.404) C:87% T:NA	pCi/L	11/15/19 10:17	7 13982-63-3	
Radium-228		-0.177 ± 0.369 (0.885) C:80% T:86%	pCi/L	11/12/19 15:52	2 15262-20-1	
Total Radium	Total Radium Calculation	0.278 ± 0.601 (1.29)	pCi/L	11/18/19 15:16	7440-14-4	

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: FB-4 Lab ID: 2624770010 Collected: 10/22/19 16:30 Received: 10/23/19 08:05 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 0.493 ± 0.211 (0.194) Radium-226 pCi/L 11/18/19 10:54 13982-63-3 C:90% T:NA EPA 9320 $0.200 \pm 0.379 \quad (0.831)$ Radium-228 pCi/L 11/12/19 15:50 15262-20-1 C:82% T:86% Total Radium **Total Radium** $0.693 \pm 0.590 \quad (1.03)$ pCi/L 11/18/19 15:16 7440-14-4 Calculation

Project: PLANT BRANCH

Pace Project No.: 2624770

Sample: DUP-4 PWS:	Lab ID: 26247700 Site ID:	Collected: 10/22/19 00:00 Sample Type:	Received:	10/23/19 08:05	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.466 ± 0.280 (0.387) C:93% T:NA	pCi/L	11/15/19 07:33	13982-63-3	
Radium-228		0.803 ± 0.445 (0.813) C:82% T:82%	pCi/L	11/12/19 15:50	15262-20-1	
Total Radium	Total Radium Calculation	1.27 ± 0.725 (1.20)	pCi/L	11/18/19 15:10	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: PLANT BRANCH

Pace Project No.: 2624770

QC Batch: 369306 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 2624770001, 2624770002, 2624770003, 2624770004, 2624770005, 2624770006, 2624770007, 2624770008,

Associated Lab Samples: 2624770001, 2624770002, 2624770003 2624770009, 2624770010, 2624770011

METHOD BLANK: 1791694 Matrix: Water

Associated Lab Samples: 2624770001, 2624770002, 2624770003, 2624770004, 2624770005, 2624770006, 2624770007, 2624770008,

2624770009, 2624770010, 2624770011

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.317 ± 0.325 (0.673) C:79% T:91%
 pCi/L
 11/12/19 12:14

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: PLANT BRANCH

Pace Project No.: 2624770

QC Batch: 369307 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 2624770001, 2624770002, 2624770003, 2624770004, 2624770005, 2624770006, 2624770007, 2624770008,

2624770009, 2624770010, 2624770011

METHOD BLANK: 1791695 Matrix: Water

Associated Lab Samples: 2624770001, 2624770002, 2624770003, 2624770004, 2624770005, 2624770006, 2624770007, 2624770008,

2624770009, 2624770010, 2624770011

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.330 ± 0.234 (0.359) C:92% T:NA
 pCi/L
 11/15/19 08:32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: PLANT BRANCH

Pace Project No.: 2624770

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 11/20/2019 04:00 PM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PLANT BRANCH

Pace Project No.: 2624770

Date: 11/20/2019 04:00 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2624770001	PZ-13S	EPA 9315	369307		•
2624770002	PZ-14I	EPA 9315	369307		
2624770003	PZ-14S	EPA 9315	369307		
2624770004	IW-C-2	EPA 9315	369307		
2624770005	IW-D-2	EPA 9315	369307		
2624770006	IW-E-1	EPA 9315	369307		
2624770007	IW-B-2	EPA 9315	369307		
2624770008	PB-4D	EPA 9315	369307		
2624770009	EB-4	EPA 9315	369307		
2624770010	FB-4	EPA 9315	369307		
2624770011	DUP-4	EPA 9315	369307		
2624770001	PZ-13S	EPA 9320	369306		
2624770002	PZ-14I	EPA 9320	369306		
2624770003	PZ-14S	EPA 9320	369306		
2624770004	IW-C-2	EPA 9320	369306		
2624770005	IW-D-2	EPA 9320	369306		
2624770006	IW-E-1	EPA 9320	369306		
2624770007	IW-B-2	EPA 9320	369306		
2624770008	PB-4D	EPA 9320	369306		
2624770009	EB-4	EPA 9320	369306		
2624770010	FB-4	EPA 9320	369306		
2624770011	DUP-4	EPA 9320	369306		
2624770001	PZ-13S	Total Radium Calculation	371524		
2624770002	PZ-14I	Total Radium Calculation	371524		
2624770003	PZ-14S	Total Radium Calculation	371524		
2624770004	IW-C-2	Total Radium Calculation	371529		
2624770005	IW-D-2	Total Radium Calculation	371529		
2624770006	IW-E-1	Total Radium Calculation	371529		
2624770007	IW-B-2	Total Radium Calculation	371529		
2624770008	PB-4D	Total Radium Calculation	371529		
2624770009	EB-4	Total Radium Calculation	371529		
2624770010	FB-4	Total Radium Calculation	371529		
2624770011	DUP-4	Total Radium Calculation	371529		

CHAIN-OF-CUSTODY Analytical Request Document									LAB	USE ONLY	Affix Worl	order/Lo MTJL		26	24770	
Company: Georgia Power - Coal Combus		Chain-of-C	ustody is a LEGAL DO	CUMENT -	Complete all re	levent fields					AL	L SHAD	ED AR	EAS	are fo	or LAB USE ONLY
Address: 2480 Maner Road	-		1						The state of the s					Lab Project Manager:		
Atlanta, GA 30339									0.79	1			1		3	
Report To: Joju Abraham			Email To: scsinvoice						** Pres	ervative Type	es: (1) nitric :	ecid, (2) sulfu e, (8) sodium	ric acid, (3) thiosulfat	hydro , (9) h	hloric ac kane, (A	id, (4) sodium hydroxide, (5) zinc acetate,) ascorbic acid, (B) ammonium sulfate,
opy To: Golder			Site Collection Info/	Address: F	lant Branch				(C) amr	nonium hydr	oxide, (D) TS	P, (U) Unpres	erved, (O)	Other		Lab Profile/Line:
hone: (404) 506-7239			State: Georgia City		ville Time Zon				-33	8	TÍ		15	6		Lab Sample Receipt Checklist: Custody Seals Present/Intact Y N NA
mail: jabraham@southemco.com Phone: (404) 506-7239	Project Name: I	Plant Branc	h Project		Pace Profile#				1550	18			198	15		Custody Signatures Present Y N NA
mail: jabraham@southernco.com	166625418.022	Α							- 200	20		je je	155	150		Collector Signature Present Y N NA Bottles Intect Y N NA
ollected By (print) Travis Martinez	Purchase Order	# ;			Pace Project M	-				9	Filter)	filtered)	197	198	ă.	Correct Bottles Y N NA
evin Thomas	Quote #:				betsy.mcdanie Immediately P				233	\$ 5		ا و	201	差	١,,	Sufficient Volume Y N NA
ollected By (signature):	Turnaround Da	te Required				No No			題		유	de l	5407	58	ΙË	Samples Received on Ice Y N NA VOA - Headspace Acceptable - Y N NA
200	Rush:				Field Filtered (i):			E E	200.7 (Lab	at l			a a	USDA Regulated Soils Y N NA
		Same Day	[Next Day		[]Yes [] No				<u> </u>	g	티티	23	18	a te	Samples in Holding Time YNNA
] 4 Day [] 5 Day						100	& total metals-see	%	Š	100	12	Sulfat	Residual Chlorine Present Y N NA Cl Strips:
	u u	Expedite Cha	rges Applyl		Analysis:					o8	6	프			1 03	Sample pH Acceptable Y N NA
22 - 22	-									App III/IV metals comments	Dissolved Metals by	Cations / Anions (phosphate	326 328		norid	pH Strips:
Matrix Codes (Insert in Matrix box be	low). Drinking Wate	er (DW), Gr	ound Water (GW), Wa	astewater	(ww),				100	iet	l e	일	10	3	3	Sulfide Present Y N NA
Product (P), Soil/Solid (SL), Oil (OL), W	ipe (WP), Air (AR), 1	lissue (TS),	Bioassay (B), Water (WT), Othe	r (O1)				33	T ts		< <	3	1	ᄪ	Lead Acetate Strips:
			1		Т		Res	# of		를 글) Š	St.			Chloride	LAB USE ONLY:
		Comp /	Collected (or Con Start)	nposice	Composi	te End	CI	Ctns	98	드	징	<u> </u>	33 £		<u> </u>	Lab Sample # / Comments:
		Grab	Date	Time	Date	Time	1 "		Zi.	App III/IV I		ं । उ	an ipro		<u>ි</u> ද	
Customer Sample ID	Matrix *			9:45			 	6	100	1	1	1	898	_	1	The Walter Adversary to Market
PZ-13S	GW	G	10/22/2019			100	-	6		1	1	1		_	1	
PZ-14I	GW	G	10/22/2019	11:20			-	6		1	1	1	- 2	_	1	CONTRACTOR OF STREET
PZ-14S	GW	G	10/22/2019	12:50	-	-	1	+	100	1	1	1	1582	_	1	
IW-C-2	GW	G	10/22/2019	9:51	12 (2)		-	6		1	-	- COSE - L	-	250	0	DRY WELL - NOT SAMPLED
IW-D-1	GW	G			257		-	1_	- 3			(CA)	4	297	1	RAD-4
IW-D-Z	GW	G	10/22/2019	11:43		1895		8	391	1	1	1		_		10,0-1
IW-E-1	GW	G	10/22/2019	13:55		N. B.		6	5.50	1	1	1		_	1	
IW-B-2	GW	G	10/22/2019	15:50	34350	STATE OF	L	6	98	1	1	1	450	_	1	
PB-4D	GW	G	10/22/2019	15:20	YHE WHE	E-120		6		1	1	1		_	1	
EB-4	W	G	10/22/2019	11.40	1000000	10010		6	226	1	1	28 1	200	2 188	1	
FB-4	w	G	10/22/2019		SCHOOL ST	1882		6_	25.70	1	1	1		_	1	
DUP-4	GW	G	10/22/2019		CULTAGE	12122		6	250	1	1	1	1000		1	ELECTION OF THE SECRETARY SECTION
Total / Dissolved Metals): Al, B, Be, C		1	THE GREEN WINES	600 M	District Hills	ry None	286	77.7	166	SHORT IN	OLDS PRESE	NT (<72 ho	urs): Y	N	N/A	LAB Sample Temperature Info:
Cations/Anions): Bicarbonate/Carbon		te.	Type of Ice Used:	Wet	Blue D	ry None		200	200	SHOWIN	, , , , , , , , , , , , , , , , , , ,			2279	0-213	Temp Blank Received: Y N NA Therm ID#:
Phosphate, Sodium, Magnesium, Potas	slum. (App III Met	als): B, Ca,	Packing Material U	sed:		A Committee				Lab Track	ing#:					Cooler 1 Temp Upon Receipt:
App IV Metals): Sb, As, Ba, Be, Cd, Cr,	Co, Pb, Li, Mo, Se, 1	n	工作社会 社会社会	12.5			200		-	Camalan	eceived via		COLUMN TO		141-	Cooler 1 Therm Corr. Factor:oC
NOTE: Total Boron only required fo ingle analysis (listed for both Total/Dissolved and App III Analysis)		equired for	Radchem sample(s) screened (<500 cpm): Y N NA						FEDEX		Client Co	ourier Pa	ice Coi	urier	Cooler 1 Corrected Temp:oC Comments:	
Relinquished by/Company: (Signature) Date/T		23-44 / 08	105	Received by/C	ompany: (Si	natura)	AC	F		te/Time:	MIJL L	AB USE O	NLY	1		
				Referved by/Cr	ompany: (Sir	nature				te/Time:	Acctnum:	940,162	45	SATING.	Trip Blank Received: Y N NA	
Relinquished by/Company: (Signature)	1	Pate	y conse				,					Template: Prelogin:				HCL MeOH TSP Other
Relinquished by/Company: (Signature)	Date	/Time:		Received by/Co	ompany: (Si	gnature)			Da	te/Time:	PM: PB:				Non Conformance(s): Page: 1 YES / NO of: 1

	Sam	ple Condition U	pon Receip	WO#: 26247	70
Pace Analytical	Client Name:				Date: 11/20/19
	,			CLIENT: GAPower-CCR	32,20,20
courier: 🔲 Fed Ex 🗍 UF	es 🔲 USPS 🗋 Client	Commercial	Pace Other		
racking #:	<u> </u>		_	Proj. Name:	
Custody Seal on Cooler/Bo	x Present: yes	no Seels int	tact: yes	no	The Charles Street House at
Packing Material: 🔲 Bubb	ole Wrap Bubble	Bags ☐ None ☐	Other		
Thermometer Used		Type of Ice: Wet	Blue None	Samples on ice, cooling pro	
Cooler Temperature	34 .	Biologicai Tissue is	Frozen: Yes No	Date and initials of pe	
emp should be above freezing	to 6°C	C	omments:		
Chain of Custody Present:		ØYes, □No □N/A 1			
Chain of Custody Filled Out:	<u> </u>	Dres □No □N/A 2			
Chain of Custody Relinquish	ned:	□Yes □No □N/A 3	S		
Sampler Name & Signature	on COC:	DAYes ONO ON/A 4	l		
Samples Arrived within Hold		☑Yes □No □N/A	5		
Short Hold Time Analysis	(<72hr):	TYes ONO ON/A	δ		
Rush Turn Around Time F		□Yes, □No MEN/A	7.		
Sufficient Volume:	"	PYesy ONO ON/A	8	· ·	
Correct Containers Used:		∰Yes/ □No □N/A	9.		
-Pace Containers Used:		Elyes/ DNo DN/A	5		
Containers Intact:	V	☑Yes ØNo □N/A	<u>40.</u>		
Filtered volume received for	or Dissolved tests	ØYes □No ₽N			
Sample Labels match COC		☐Yes □No □N/A	12.		
-Includes date/time/ID//		601 M			
All containers needing preserva		™Yes ☑No □N/A	13.		
All containers needing preser	vation are found to be in	MYes □No □N/A	-		
compliance with EPA recomm	nendation.		Initial when	Lot # of added	. <u>.</u>
exceptions: VOA, caliform, TOC,	O&G, WI-DRO (water)	□Yes □ No	completed	preservative	-
Samples checked for dech		MYes ONO ON/A	14.		
Headspace in VOA Vials (□Yes □No □N/A	15.	· .	
Trip Blank Present:		□Yes □No ØN/A	16.	_	
Trip Blank Custody Seals	Present	□Yes □No □N/A		· 16	
Pace Trip Blank Lot # (if p				·	
				Field Data Required?	Y / N
Client Notification/ Reso		D-4-	/Timo:	Fleid Data Required:	. , .,
			/Time:		
Comments/ Resolution:					
9			·····	e: "	
				3000 W28	
	· · · · · · · · · · · · · · · · · · ·				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

Date:

December 17, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: PLANT BRANCH Pace Project No.: 2624772

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on October 23, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring for Betsy McDaniel betsy.mcdaniel@pacelabs.com (770)734-4200 Project Manager

Kain Lung

Enclosures

cc: Julie Lehrman, Golder Associates Inc.
 Dawn Prell, Golder Associates Inc.
 Eric Rolle, Georgia Power - Coal Combustion Residuals
 Rebecca Thornton, Pace Analytical Atlanta

CERTIFICATIONS

Project: PLANT BRANCH

Pace Project No.: 2624772

Pace Analytical Services Atlanta

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

Georgia DW Microbiology Certification #: 812

North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: PLANT BRANCH

Pace Project No.: 2624772

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2624772001	PZ-13S	Water	10/22/19 09:45	10/23/19 08:05
2624772002	PZ-14I	Water	10/22/19 11:20	10/23/19 08:05
2624772003	PZ-14S	Water	10/22/19 12:50	10/23/19 08:05
2624772004	IW-C-2	Water	10/22/19 09:51	10/23/19 08:05
2624772005	IW-D-2	Water	10/22/19 11:43	10/23/19 08:05
2624772006	IW-E-1	Water	10/22/19 13:55	10/23/19 08:05
2624772007	IW-B-2	Water	10/22/19 15:50	10/23/19 08:05
2624772008	PB-4D	Water	10/22/19 15:20	10/23/19 08:05
2624772009	EB-4	Water	10/22/19 16:40	10/23/19 08:05
2624772010	FB-4	Water	10/22/19 16:30	10/23/19 08:05
2624772011	DUP-4	Water	10/22/19 00:00	10/23/19 08:05

Project: PLANT BRANCH

Pace Project No.: 2624772

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2624772001	PZ-13S	EPA 6020B	CSW	20
		EPA 6020B	CSW	7
		SM 2320B	S1A	3
		SM 2540C	MZP	1
		SM 4500-P	JAD	1
		EPA 300.0	MWB	1
		EPA 300.0	MWB	3
2624772002	PZ-14I	EPA 6020B	CSW	20
		EPA 6020B	CSW	7
		SM 2320B	S1A	3
		SM 2540C	MZP	1
		SM 4500-P	JAD	1
		EPA 300.0	MWB	1
		EPA 300.0	MWB	3
2624772003	PZ-14S	EPA 6020B	CSW	20
		EPA 6020B	CSW	7
		SM 2320B	S1A	3
		SM 2540C	MZP	1
		SM 4500-P	JAD	1
		EPA 300.0	MWB	1
		EPA 300.0	MWB	3
2624772004	IW-C-2	EPA 6020B	CSW	20
		EPA 6020B	CSW	7
		SM 2320B	S1A	3
		SM 2540C	MZP	1
		SM 4500-P	JAD	1
		EPA 300.0	MWB	1
		EPA 300.0	MWB	3
2624772005	IW-D-2	EPA 6020B	CSW	20
		EPA 6020B	CSW	7
		SM 2320B	S1A	3
		SM 2540C	MZP	1
		SM 4500-P	JAD	1
		EPA 300.0	MWB	1
		EPA 300.0	MWB	3
2624772006	IW-E-1	EPA 6020B	CSW	20
		EPA 6020B	CSW	7

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: PLANT BRANCH

Pace Project No.: 2624772

SM 2320B	Lab ID	Sample ID	Method	Analysts	Analytes Reported
SM 4500-P			SM 2320B	S1A	3
PA 300.0 MWB 3 1 1 1 1 1 1 1 1 1			SM 2540C	MZP	1
PA 300.0 MWB 3 3 2 2 2 2 2 2 2 2			SM 4500-P	JAD	1
2624772007 IW-B-2 EPA 6020B CSW 7 EPA 6020B CSW 7 SM 2320B S1A 3 SM 2340C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 3 2624772008 PB-4D EPA 6020B CSW 20 SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 1 EPA 6020B CSW 20 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2540C MZP 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 EPA 300.0 MWB 3 EPA 6020B CSW 20 EPA 6020B CSW 7			EPA 300.0	MWB	1
Part Part			EPA 300.0	MWB	3
SM 2320B	2624772007	IW-B-2	EPA 6020B	CSW	20
SM 2540C MZP 1 1 1 1 1 1 1 1 1			EPA 6020B	CSW	7
SM 4500-P			SM 2320B	S1A	3
Page Page			SM 2540C	MZP	1
PB-4D PB-4			SM 4500-P	JAD	1
2624772008 PB-4D EPA 6020B CSW 7 EPA 6020B CSW 7 SM 2320B S1A 3 SM 2540C MZP 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 2624772009 EB-4 EPA 6020B CSW 20 EPA 6020B CSW 7 3 SM 2320B S1A 3 3 SM 2540C MZP 1 1 EPA 300.0 MWB 3 1 EPA 300.0 MWB 3 3 2624772010 FB-4 EPA 6020B CSW 20 EPA 6020B CSW 7 3 SM 2320B S1A 3 3 SM 2540C MZP 1 4 EPA 6020B CSW 20 EPA 6020B CSW 20 EPA 6020B CSW 3 EPA 6020B CSW 20 EPA 6020B CSW 20 EPA 6020B CSW 20 <td></td> <td></td> <td>EPA 300.0</td> <td>MWB</td> <td>1</td>			EPA 300.0	MWB	1
PR 6020B CSW 7			EPA 300.0	MWB	3
SM 2320B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 SM 4500-P JAD 1 SM 4500-P JAD 1 SPA 300.0 MWB 1 SPA 300.0 MWB 3 SPA 500.0 SM 2540C SW 20 SM 2540C SW 20 SM 2540C MZP 1 SM 2520B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 SPA 300.0 MWB 3 SM 2540C MZP 1 SPA 300.0 MWB 3 SM 2540C MZP 1 SPA 300.0 MWB 3 SM 2540C SW 20 SM 2540C SW 20 SM 2540C SM 25	2624772008	PB-4D	EPA 6020B	CSW	20
SM 2540C MZP 1 1 1 1 1 1 1 1 1			EPA 6020B	CSW	7
SM 4500-P			SM 2320B	S1A	3
PA 300.0 MWB 1 PA 300.0 MWB 3 PA 300.0 MWB 3 PA 300.0 MWB 3 PA 300.0 MWB 3 PA 300.0 MWB 3 PA 300.0 PA 3			SM 2540C	MZP	1
BPA 300.0 MWB 3 2624772009 BB-4 EPA 6020B CSW 20 EPA 6020B CSW 7 EPA 6020B CSW 7 EPA 6020B CSW 7 EPA 6020B CSW 7 EPA 6020B CSW 7 EPA 500.0 MZP 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 EPA 5020B CSW 20 EPA 6020B CSW 7 EPA 6020B CSW 7 EPA 6020B CSW 7 EPA 500.0 MZP 1 EPA 500.0 MZP 1 EPA 500.0 MZP 1 EPA 500.0 MZP 1 EPA 500.0 MZP 1 EPA 500.0 MZP 1 EPA 500.0 MWB 1 EPA 500.0 MWB 3 EPA 500.0 MWB 3 EPA 500.0 MWB 3 EPA 500.0 EPA 500.0 MWB 3 EPA 500.0 EPA 500.0 MWB 3 EPA 500.0			SM 4500-P	JAD	1
2624772009 EB-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 3 2624772010 FB-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3 SM 2540C MZP 1 SM 2540C MZP 1 SM 2540C MZP 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 2624772011 DUP-4 EPA 6020B CSW 20 EPA 6020B CSW 20 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			EPA 300.0	MWB	1
FB-4 FB-4			EPA 300.0	MWB	3
SM 2320B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3 SM 2320B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 EPA 300.0 MWB 3 EPA 300.0 MWB 3 EPA 300.0 MWB 3 EPA 6020B CSW 20 EPA 6020B CSW 20 EPA 6020B CSW 20 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3	2624772009	EB-4	EPA 6020B	CSW	20
SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MZP 1 EPA 300.0 MZP 1 EPA 300.0 MZP 1 EPA 300.0 MWB 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 EPA 300.0 MWB 3 EPA 300.0 MWB 3 EPA 300.0 MWB 3 EPA 300.0 MWB 3 EPA 300.0 MWB 3 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			EPA 6020B	CSW	7
SM 4500-P			SM 2320B	S1A	3
EPA 300.0 MWB 1 EPA 300.0 MWB 3 2624772010 FB-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 2624772011 DUP-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			SM 2540C	MZP	1
EPA 300.0 MWB 3 2624772010 FB-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 2624772011 DUP-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			SM 4500-P	JAD	1
2624772010 FB-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 2624772011 DUP-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			EPA 300.0	MWB	1
EPA 6020B CSW 7 SM 2320B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 EPA 300.0 MWB 3 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			EPA 300.0	MWB	3
SM 2320B S1A 3 SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3	2624772010	FB-4	EPA 6020B	CSW	20
SM 2540C MZP 1 SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			EPA 6020B	CSW	7
SM 4500-P JAD 1 EPA 300.0 MWB 1 EPA 300.0 MWB 3 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			SM 2320B	S1A	3
EPA 300.0 MWB 1 EPA 300.0 MWB 3 2624772011 DUP-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			SM 2540C	MZP	1
EPA 300.0 MWB 3 2624772011 DUP-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			SM 4500-P	JAD	1
2624772011 DUP-4 EPA 6020B CSW 20 EPA 6020B CSW 7 SM 2320B S1A 3			EPA 300.0	MWB	1
EPA 6020B CSW 7 SM 2320B S1A 3			EPA 300.0	MWB	3
SM 2320B S1A 3	2624772011	DUP-4	EPA 6020B	CSW	20
			EPA 6020B	CSW	7
SM 2540C MZP 1			SM 2320B	S1A	3
			SM 2540C	MZP	1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: PLANT BRANCH

Pace Project No.: 2624772

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		SM 4500-P	JAD	1
		EPA 300.0	MWB	1
		EPA 300.0	MWB	3

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: PZ-13S	Lab ID: 26	24772001	Collecte	ed: 10/22/19	09:45	Received: 10/	23/19 08:05 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical Me	ethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum	0.24	mg/L	0.10	0.0089	1	10/30/19 18:10	10/31/19 21:27	7429-90-5	
Antimony	ND	mg/L	0.0030	0.00027	1	10/30/19 18:10	10/31/19 21:27	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00035	1	10/30/19 18:10	10/31/19 21:27	7440-38-2	
Barium	0.077	mg/L	0.010	0.00049	1	10/30/19 18:10	10/31/19 21:27	7440-39-3	
Beryllium	0.00040J	mg/L	0.0030	0.000074	1	10/30/19 18:10	11/01/19 17:05	7440-41-7	
Boron	0.0098J	mg/L	0.040	0.0049	1	10/30/19 18:10	11/01/19 17:05	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00011	1	10/30/19 18:10	10/31/19 21:27	7440-43-9	
Calcium	14.8	mg/L	5.0	0.55	50	10/30/19 18:10	10/31/19 21:33	7440-70-2	
Chromium	0.020	mg/L	0.010	0.00039	1	10/30/19 18:10	10/31/19 21:27	7440-47-3	
Cobalt	0.00037J	mg/L	0.0050	0.00030	1	10/30/19 18:10	10/31/19 21:27	7440-48-4	
ron	0.30	mg/L	0.040	0.0097	1	10/30/19 18:10	10/31/19 21:27	7439-89-6	
Lead	0.00035J	mg/L	0.0050	0.000046	1	10/30/19 18:10	10/31/19 21:27	7439-92-1	
Lithium	0.0010J	mg/L	0.030	0.00078	1	10/30/19 18:10	10/31/19 21:27	7439-93-2	
Magnesium	8.0	mg/L	0.050	0.0030	1	10/30/19 18:10	10/31/19 21:27	7439-95-4	
Manganese	0.039	mg/L	0.010	0.00057	1	10/30/19 18:10	10/31/19 21:27	7439-96-5	
Molybdenum	ND	mg/L	0.010	0.00095	1	10/30/19 18:10	10/31/19 21:27	7439-98-7	
Potassium	4.4	mg/L	0.10	0.026	1	10/30/19 18:10	10/31/19 21:27	7440-09-7	
Selenium	0.0033J	mg/L	0.010	0.0013	1	10/30/19 18:10	10/31/19 21:27	7782-49-2	
Sodium	18.9	mg/L	0.10	0.015	1	10/30/19 18:10	11/01/19 17:05	7440-23-5	
Γhallium	ND	mg/L	0.0010	0.000052	1	10/30/19 18:10	10/31/19 21:27	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical Me	ethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum, Dissolved	ND	mg/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 20:57	7429-90-5	
Beryllium, Dissolved	0.00030J	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/05/19 13:23	7440-41-7	
Boron, Dissolved	0.0081J	mg/L	0.040	0.0049	1	11/03/19 15:41	11/05/19 13:23	7440-42-8	
Cadmium, Dissolved	ND	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 20:57	7440-43-9	
Cobalt, Dissolved	ND	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 20:57	7440-48-4	
ron, Dissolved	ND	mg/L	0.040	0.0097	1	11/03/19 15:41	11/04/19 20:57	7439-89-6	
Manganese, Dissolved	0.027	mg/L	0.010	0.00057	1	11/03/19 15:41	11/04/19 20:57	7439-96-5	
2320B Alkalinity Low Level	Analytical Me	ethod: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3)	16.0	mg/L	1.0	1.0	1		11/01/19 12:08		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	1.0	1.0	1		11/01/19 12:08		
Alkalinity, Total as CaCO3	16.0	mg/L	1.0	1.0	1		11/01/19 12:08		
2540C Total Dissolved Solids	Analytical Me	ethod: SM 2	540C						
Total Dissolved Solids	203	mg/L	10.0	10.0	1		10/29/19 13:01		
1500PE Ortho Phosphorus	Analytical Me	ethod: SM 4	500-P						
Orthophosphate as P	0.061	mg/L	0.020	0.020	1		10/30/19 20:51		H1
300.0 IC Anions	Analytical Me	ethod: EPA	300.0						
Nitrate as N	0.016J	mg/L	0.050	0.0050	1		10/29/19 05:23	14797-55-8	H1

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: PZ-13S	Lab ID:	2624772001	Collecte	d: 10/22/19	09:45	Received: 10	/23/19 08:05 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	2.1	mg/L	1.0	0.024	1		10/30/19 13:48	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		10/30/19 13:48	16984-48-8	
Sulfate	93.2	mg/L	10.0	0.17	10		10/30/19 20:49	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: PZ-14I	Lab ID: 2	624772002	Collecte	ed: 10/22/19	11:20	Received: 10/	23/19 08:05 Ma	3/19 08:05 Matrix: Water			
_	_		Report								
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua		
6020B MET ICPMS	Analytical M	lethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A					
Aluminum	0.062J	mg/L	0.10	0.0089	1	10/30/19 18:10	10/31/19 21:39	7429-90-5			
Antimony	0.028	mg/L	0.0030	0.00027	1	10/30/19 18:10	10/31/19 21:39	7440-36-0			
Arsenic	ND	mg/L	0.0050	0.00035	1	10/30/19 18:10	10/31/19 21:39	7440-38-2			
Barium	0.040	mg/L	0.010	0.00049	1	10/30/19 18:10	10/31/19 21:39	7440-39-3			
Beryllium	ND	mg/L	0.0030	0.000074	1	10/30/19 18:10	11/01/19 17:11	7440-41-7			
Boron	0.20	mg/L	0.040	0.0049	1	10/30/19 18:10	11/01/19 17:11	7440-42-8			
Cadmium	ND	mg/L	0.0025	0.00011	1	10/30/19 18:10	10/31/19 21:39	7440-43-9			
Calcium	39.2	mg/L	5.0	0.55	50	10/30/19 18:10	10/31/19 21:45	7440-70-2			
Chromium	0.0018J	mg/L	0.010	0.00039	1	10/30/19 18:10	10/31/19 21:39	7440-47-3			
Cobalt	0.00030J	mg/L	0.0050	0.00030	1	10/30/19 18:10	10/31/19 21:39	7440-48-4			
ron	0.28	mg/L	0.040	0.0097	1	10/30/19 18:10	10/31/19 21:39	7439-89-6			
Lead	0.00015J	mg/L	0.0050	0.000046	1	10/30/19 18:10	10/31/19 21:39	7439-92-1			
Lithium	0.023J	mg/L	0.030	0.00078	1	10/30/19 18:10	10/31/19 21:39	7439-93-2			
Magnesium	5.8	mg/L	0.050	0.0030	1	10/30/19 18:10	10/31/19 21:39	7439-95-4			
Manganese	0.37	mg/L	0.010	0.00057	1	10/30/19 18:10	10/31/19 21:39	7439-96-5			
Molybdenum	0.091	mg/L	0.010	0.00095	1	10/30/19 18:10	10/31/19 21:39	7439-98-7			
Potassium	35.3	mg/L	5.0	1.3	50	10/30/19 18:10	10/31/19 21:45	7440-09-7			
Selenium	ND	mg/L	0.010	0.0013	1	10/30/19 18:10	10/31/19 21:39	7782-49-2			
Sodium	110	mg/L	5.0	0.75	50	10/30/19 18:10	10/31/19 21:45	7440-23-5			
Γhallium	ND	mg/L	0.0010	0.000052	1	10/30/19 18:10	10/31/19 21:39	7440-28-0			
6020B MET ICPMS, Dissolved	Analytical M	lethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A					
Aluminum, Dissolved	ND	mg/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 21:02	7429-90-5			
Beryllium, Dissolved	ND	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/05/19 13:29	7440-41-7			
Boron, Dissolved	0.18	mg/L	0.040	0.0049	1	11/03/19 15:41	11/05/19 13:29	7440-42-8			
Cadmium, Dissolved	ND	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 21:02	7440-43-9			
Cobalt, Dissolved	ND	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 21:02	7440-48-4			
ron, Dissolved	ND	mg/L	0.040	0.0097	1	11/03/19 15:41	11/04/19 21:02	7439-89-6			
Manganese, Dissolved	0.0038J	mg/L	0.010	0.00057	1	11/03/19 15:41	11/04/19 21:02	7439-96-5			
2320B Alkalinity	Analytical M	lethod: SM 2	320B								
Alkalinity,Bicarbonate (CaCO3)	190	mg/L	20.0	20.0	1		10/29/19 18:04				
Alkalinity,Carbonate (CaCO3)	ND	mg/L	20.0	20.0	1		10/29/19 18:04				
Alkalinity, Total as CaCO3	190	mg/L	20.0	20.0	1		10/29/19 18:04				
2540C Total Dissolved Solids	Analytical M	lethod: SM 2	540C								
Total Dissolved Solids	486	mg/L	10.0	10.0	1		10/29/19 13:01				
1500PE Ortho Phosphorus	Analytical M	lethod: SM 4	500-P								
Orthophosphate as P	ND	mg/L	0.020	0.020	1		10/30/19 20:53		H1		
300.0 IC Anions	Analytical M	1ethod: EPA 3	300.0								
Nitrate as N	0.046J	mg/L	0.050	0.0050	1		10/29/19 06:04	14797-55-8	H1		

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: PZ-14I	Lab ID:	2624772002	Collecte	d: 10/22/19	11:20	Received: 10	/23/19 08:05 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	12.2	mg/L	1.0	0.024	1		10/30/19 14:54	16887-00-6	
Fluoride	1.3	mg/L	0.30	0.029	1		10/30/19 14:54	16984-48-8	
Sulfate	133	mg/L	20.0	0.34	20		10/31/19 22:03	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: PZ-14S	Lab ID: 2	2624772003	Collecte	ed: 10/22/19	12:50	Received: 10/23/19 08:05 Matrix: Water				
_			Report						_	
Parameters	Results —	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua	
6020B MET ICPMS	Analytical M	/lethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A				
Aluminum	ND	mg/L	0.10	0.0089	1	10/30/19 18:10	10/31/19 21:50	7429-90-5		
Antimony	ND	mg/L	0.0030	0.00027	1	10/30/19 18:10	10/31/19 21:50	7440-36-0		
Arsenic	ND	mg/L	0.0050	0.00035	1	10/30/19 18:10	10/31/19 21:50	7440-38-2		
Barium	0.026	mg/L	0.010	0.00049	1	10/30/19 18:10	10/31/19 21:50	7440-39-3		
Beryllium	0.00062J	mg/L	0.0030	0.000074	1	10/30/19 18:10	11/01/19 17:16	7440-41-7		
Boron	1.5	mg/L	0.040	0.0049	1	10/30/19 18:10	11/01/19 17:16	7440-42-8		
Cadmium	0.0011J	mg/L	0.0025	0.00011	1	10/30/19 18:10	10/31/19 21:50	7440-43-9		
Calcium	58.3	mg/L	5.0	0.55	50	10/30/19 18:10	10/31/19 21:56	7440-70-2		
Chromium	0.0012J	mg/L	0.010	0.00039	1	10/30/19 18:10	10/31/19 21:50	7440-47-3		
Cobalt	ND	mg/L	0.0050	0.00030	1	10/30/19 18:10	10/31/19 21:50	7440-48-4		
Iron	ND	mg/L	0.040	0.0097	1	10/30/19 18:10	10/31/19 21:50	7439-89-6		
Lead	0.000099J	mg/L	0.0050	0.000046	1	10/30/19 18:10	10/31/19 21:50	7439-92-1		
Lithium	0.0037J	mg/L	0.030	0.00078	1	10/30/19 18:10	10/31/19 21:50	7439-93-2		
Magnesium	4.6	mg/L	0.050	0.0030	1	10/30/19 18:10	10/31/19 21:50	7439-95-4		
Manganese	0.46	mg/L	0.010	0.00057	1	10/30/19 18:10	10/31/19 21:50	7439-96-5		
Molybdenum	ND	mg/L	0.010	0.00095	1	10/30/19 18:10	10/31/19 21:50	7439-98-7		
Potassium	7.3	mg/L	0.10	0.026	1	10/30/19 18:10	10/31/19 21:50	7440-09-7		
Selenium	ND	mg/L	0.010	0.0013	1	10/30/19 18:10	10/31/19 21:50	7782-49-2		
Sodium	14.8	mg/L	0.10	0.015	1	10/30/19 18:10	11/01/19 17:16	7440-23-5		
Γhallium	ND	mg/L	0.0010	0.000052	1	10/30/19 18:10	10/31/19 21:50	7440-28-0		
6020B MET ICPMS, Dissolved	Analytical M	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A				
Aluminum, Dissolved	ND	mg/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 21:08	7429-90-5		
Beryllium, Dissolved	0.00060J	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/05/19 13:35	7440-41-7		
Boron, Dissolved	1.4	mg/L	0.040	0.0049	1	11/03/19 15:41	11/05/19 13:35	7440-42-8		
Cadmium, Dissolved	0.00095J	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 21:08	7440-43-9		
Cobalt, Dissolved	ND	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 21:08	7440-48-4		
ron, Dissolved	ND	mg/L	0.040	0.0097	1	11/03/19 15:41	11/04/19 21:08	7439-89-6		
Manganese, Dissolved	0.41	mg/L	0.010	0.00057	1	11/03/19 15:41	11/04/19 21:08	7439-96-5		
2320B Alkalinity Low Level	Analytical M	Method: SM 2	320B							
Alkalinity,Bicarbonate (CaCO3)	7.0	mg/L	1.0	1.0	1		11/01/19 12:14			
Alkalinity,Carbonate (CaCO3)	ND	mg/L	1.0	1.0	1		11/01/19 12:14			
Alkalinity, Total as CaCO3	7.0	mg/L	1.0	1.0	1		11/01/19 12:14			
2540C Total Dissolved Solids	Analytical M	/lethod: SM 2	540C							
Total Dissolved Solids	307	mg/L	10.0	10.0	1		10/29/19 13:01			
4500PE Ortho Phosphorus	Analytical M	/lethod: SM 4	500-P							
Orthophosphate as P	ND	mg/L	0.020	0.020	1		10/30/19 20:54		H1	
300.0 IC Anions	Analytical M	/lethod: EPA	300.0							
Nitrate as N	0.0080J	mg/L	0.050	0.0050	1		10/29/19 07:06	14797-55-8	H1	

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: PZ-14S	Lab ID:	2624772003	Collecte	d: 10/22/19	12:50	Received: 10	/23/19 08:05 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	5.7	mg/L	1.0	0.024	1		10/30/19 15:16	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		10/30/19 15:16	16984-48-8	
Sulfate	170	mg/L	20.0	0.34	20		10/31/19 22:26	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: IW-C-2	Lab ID: 26	524772004	Collecte	ed: 10/22/19	9 09:51	Received: 10/	23/19 08:05 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical Me	ethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum	0.014J	mg/L	0.10	0.0089	1	10/30/19 18:10	10/31/19 22:13	7429-90-5	
Antimony	0.0037	mg/L	0.0030	0.00027	1	10/30/19 18:10	10/31/19 22:13	7440-36-0	
Arsenic	0.059	mg/L	0.0050	0.00035	1	10/30/19 18:10	10/31/19 22:13	7440-38-2	
Barium	0.10	mg/L	0.010	0.00049	1	10/30/19 18:10	10/31/19 22:13	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	10/30/19 18:10	10/31/19 22:13	7440-41-7	
Boron	1.0	mg/L	0.040	0.0049	1	10/30/19 18:10	11/01/19 17:34	7440-42-8	
Cadmium	0.00016J	mg/L	0.0025	0.00011	1	10/30/19 18:10	10/31/19 22:13	7440-43-9	
Calcium	71.4	mg/L	5.0	0.55	50	10/30/19 18:10	10/31/19 22:19	7440-70-2	
Chromium	ND	mg/L	0.010	0.00039	1	10/30/19 18:10	10/31/19 22:13	7440-47-3	
Cobalt	0.0038J	mg/L	0.0050	0.00030	1	10/30/19 18:10	10/31/19 22:13	7440-48-4	
ron	1.8	mg/L	0.040	0.0097	1	10/30/19 18:10	10/31/19 22:13	7439-89-6	
Lead	ND	mg/L	0.0050	0.000046	1	10/30/19 18:10	10/31/19 22:13	7439-92-1	
Lithium	0.16	mg/L	0.030	0.00078	1	10/30/19 18:10	10/31/19 22:13	7439-93-2	
Magnesium	6.8	mg/L	0.050	0.0030	1	10/30/19 18:10	10/31/19 22:13	7439-95-4	
Manganese	0.34	mg/L	0.010	0.00057	1	10/30/19 18:10	10/31/19 22:13	7439-96-5	
Molybdenum	0.045	mg/L	0.010	0.00095	1	10/30/19 18:10	10/31/19 22:13	7439-98-7	
Potassium	11.7	mg/L	0.10	0.026	1	10/30/19 18:10	11/01/19 17:34	7440-09-7	
Selenium	0.035	mg/L	0.010	0.0013	1	10/30/19 18:10	10/31/19 22:13	7782-49-2	
Sodium	12.0	mg/L	0.10	0.015	1	10/30/19 18:10	11/01/19 17:34	7440-23-5	
Thallium	0.0021	mg/L	0.0010	0.000052	1	10/30/19 18:10	10/31/19 22:13	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical Me	ethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum, Dissolved	ND	mg/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 21:14	7429-90-5	
Beryllium, Dissolved	ND	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/05/19 13:40	7440-41-7	
Boron, Dissolved	1.0	mg/L	0.040	0.0049	1	11/03/19 15:41	11/05/19 13:40	7440-42-8	
Cadmium, Dissolved	0.00011J	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 21:14	7440-43-9	
Cobalt, Dissolved	0.0033J	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 21:14	7440-48-4	
ron, Dissolved	ND	mg/L	0.040	0.0097	1	11/03/19 15:41	11/04/19 21:14	7439-89-6	
Manganese, Dissolved	0.32	mg/L	0.010	0.00057	1	11/03/19 15:41	11/04/19 21:14	7439-96-5	
2320B Alkalinity	Analytical Me	ethod: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3)	88.0	mg/L	20.0	20.0	1		10/29/19 18:13		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	20.0	20.0	1		10/29/19 18:13		
Alkalinity, Total as CaCO3	88.0	mg/L	20.0	20.0	1		10/29/19 18:13		
2540C Total Dissolved Solids	Analytical Me	ethod: SM 2	540C						
Total Dissolved Solids	361	mg/L	10.0	10.0	1		10/29/19 13:01		
4500PE Ortho Phosphorus	Analytical Me	ethod: SM 4	500-P						
Orthophosphate as P	0.094	mg/L	0.020	0.020	1		10/30/19 20:55		H1
300.0 IC Anions	Analytical Me	ethod: EPA 3	300.0						
Nitrate as N	ND	mg/L	0.050	0.0050	1		10/29/19 05:43	14797-55-8	H1

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: IW-C-2	Lab ID:	2624772004	Collecte	Collected: 10/22/19 09:51			Received: 10/23/19 08:05 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	4.1	mg/L	1.0	0.024	1		10/30/19 15:39	16887-00-6	
Fluoride	0.24J	mg/L	0.30	0.029	1		10/30/19 15:39	16984-48-8	
Sulfate	133	mg/L	20.0	0.34	20		10/31/19 22:48	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: IW-D-2	Lab ID: 2	2624772005	Collecte	ed: 10/22/19	9 11:43	Received: 10/	23/19 08:05 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical N	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum	0.12	mg/L	0.10	0.0089	1	10/30/19 18:10	10/31/19 22:25	7429-90-5	
Antimony	0.00037J	mg/L	0.0030	0.00027	1	10/30/19 18:10	10/31/19 22:25	7440-36-0	
Arsenic	1.4	mg/L	0.025	0.0018	5	10/30/19 18:10	11/01/19 17:39	7440-38-2	
Barium	0.037	mg/L	0.010	0.00049	1	10/30/19 18:10	10/31/19 22:25	7440-39-3	
Beryllium	0.00020J	mg/L	0.0030	0.000074	1	10/30/19 18:10	10/31/19 22:25	7440-41-7	
Boron	3.0	mg/L	0.20	0.025	5	10/30/19 18:10	11/01/19 17:39	7440-42-8	
Cadmium	0.030	mg/L	0.0025	0.00011	1	10/30/19 18:10	10/31/19 22:25	7440-43-9	
Calcium	487	mg/L	5.0	0.55	50	10/30/19 18:10	10/31/19 22:30	7440-70-2	
Chromium	ND	mg/L	0.010	0.00039	1	10/30/19 18:10	10/31/19 22:25	7440-47-3	
Cobalt	0.0060	mg/L	0.0050	0.00030	1	10/30/19 18:10	10/31/19 22:25		
Iron	305	mg/L	2.0	0.49	50	10/30/19 18:10	10/31/19 22:30		
Lead	ND	mg/L	0.0050	0.000046	1	10/30/19 18:10	10/31/19 22:25		
Lithium	1.7	mg/L	0.15	0.0039	5	10/30/19 18:10	11/01/19 17:39	7439-93-2	
Magnesium	112	mg/L	2.5	0.15	50	10/30/19 18:10	10/31/19 22:30	7439-95-4	
Manganese	14.8	mg/L	0.050	0.0029	5	10/30/19 18:10	11/01/19 17:39	7439-96-5	
Molybdenum	0.039	mg/L	0.010	0.00095	1	10/30/19 18:10	10/31/19 22:25	7439-98-7	
Potassium	76.6	mg/L	0.50	0.13	5	10/30/19 18:10	11/01/19 17:39	7440-09-7	
Selenium	ND	mg/L	0.050	0.0063	5	10/30/19 18:10	11/01/19 17:39	7782-49-2	D3
Sodium	26.3	mg/L	0.50	0.075	5	10/30/19 18:10	11/01/19 17:39	7440-23-5	
Thallium	0.00052J	mg/L	0.0010	0.000052	1	10/30/19 18:10	10/31/19 22:25	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical N	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum, Dissolved	0.035J	mg/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 21:19	7429-90-5	
Beryllium, Dissolved	0.00017J	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/05/19 13:46	7440-41-7	
Boron, Dissolved	2.7	mg/L	0.040	0.0049	1	11/03/19 15:41	11/05/19 13:46	7440-42-8	
Cadmium, Dissolved	ND	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 21:19	7440-43-9	
Cobalt, Dissolved	0.0059	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 21:19	7440-48-4	
Iron, Dissolved	250	mg/L	10.0	2.4	250	11/03/19 15:41	11/05/19 14:44	7439-89-6	
Manganese, Dissolved	14.3	mg/L	0.50	0.029	50	11/03/19 15:41	11/05/19 13:52	7439-96-5	
2320B Alkalinity	Analytical N	Method: SM 2	320B						
Alkalinity, Bicarbonate (CaCO3)	21.0	mg/L	20.0	20.0	1		10/29/19 18:18		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	20.0	20.0	1		10/29/19 18:18		
Alkalinity, Total as CaCO3	21.0	mg/L	20.0	20.0	1		10/29/19 18:18		
2540C Total Dissolved Solids	Analytical N	Method: SM 2	540C						
Total Dissolved Solids	3700	mg/L	10.0	10.0	1		10/29/19 13:01		
4500PE Ortho Phosphorus	Analytical N	Method: SM 4	500-P						
Orthophosphate as P	ND	mg/L	0.020	0.020	1		10/30/19 21:01		F6,H1
300.0 IC Anions	Analytical N	Method: EPA 3	300.0						
Nitrate as N	ND	mg/L	0.050	0.0050	1		10/29/19 06:25	14797-55-8	H1

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: IW-D-2	Lab ID:	2624772005	Collecte	d: 10/22/19	11:43	Received: 10	Received: 10/23/19 08:05 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	2.6	mg/L	1.0	0.024	1		10/30/19 16:01	16887-00-6	
Fluoride	0.38	mg/L	0.30	0.029	1		10/30/19 16:01	16984-48-8	
Sulfate	1880	mg/L	50.0	0.85	50		10/30/19 21:12	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: IW-E-1	Lab ID: 262	24772006	Collecte	ed: 10/22/19	13:55	Received: 10/	23/19 08:05 Ma	atrix: Water	
			Report						
Parameters	Results I	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical Met	thod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum	0.027J	mg/L	0.10	0.0089	1	10/30/19 18:10	10/31/19 22:36	7429-90-5	
Antimony	ND i	mg/L	0.0030	0.00027	1	10/30/19 18:10	10/31/19 22:36	7440-36-0	
Arsenic	0.024	mg/L	0.0050	0.00035	1	10/30/19 18:10	10/31/19 22:36	7440-38-2	
Barium	0.064	mg/L	0.010	0.00049	1	10/30/19 18:10	10/31/19 22:36	7440-39-3	
Beryllium	ND i	mg/L	0.0030	0.000074	1	10/30/19 18:10	10/31/19 22:36	7440-41-7	
Boron	0.46	mg/L	0.040	0.0049	1	10/30/19 18:10	11/01/19 17:45	7440-42-8	
Cadmium	ND i	mg/L	0.0025	0.00011	1	10/30/19 18:10	10/31/19 22:36	7440-43-9	
Calcium	26.9 1	mg/L	5.0	0.55	50	10/30/19 18:10	10/31/19 22:42	7440-70-2	
Chromium	ND i	mg/L	0.010	0.00039	1	10/30/19 18:10	10/31/19 22:36	7440-47-3	
Cobalt	0.0030J	mg/L	0.0050	0.00030	1	10/30/19 18:10	10/31/19 22:36	7440-48-4	
Iron		mg/L	2.0	0.49	50	10/30/19 18:10	10/31/19 22:42	7439-89-6	
Lead		mg/L	0.0050	0.000046	1	10/30/19 18:10	10/31/19 22:36	7439-92-1	
Lithium	0.24 1	mg/L	0.030	0.00078	1	10/30/19 18:10	10/31/19 22:36	7439-93-2	
Magnesium	5.3 1	mg/L	0.050	0.0030	1	10/30/19 18:10	10/31/19 22:36	7439-95-4	
Manganese		mg/L	0.010	0.00057	1	10/30/19 18:10	10/31/19 22:36	7439-96-5	
Molybdenum	0.0046J	mg/L	0.010	0.00095	1	10/30/19 18:10	10/31/19 22:36	7439-98-7	
Potassium	12.4 1	mg/L	5.0	1.3	50	10/30/19 18:10	10/31/19 22:42	7440-09-7	
Selenium		mg/L	0.010	0.0013	1	10/30/19 18:10	10/31/19 22:36	7782-49-2	
Sodium		mg/L	0.10	0.015	1	10/30/19 18:10	10/31/19 22:36	7440-23-5	
Thallium	ND i	mg/L	0.0010	0.000052	1	10/30/19 18:10	10/31/19 22:36	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical Met	thod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum, Dissolved	ND i	mg/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 21:25	7429-90-5	
Beryllium, Dissolved	ND i	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/05/19 13:57	7440-41-7	
Boron, Dissolved	0.49 i	mg/L	0.040	0.0049	1	11/03/19 15:41	11/05/19 13:57	7440-42-8	
Cadmium, Dissolved	ND i	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 21:25	7440-43-9	
Cobalt, Dissolved	0.0031J	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 21:25	7440-48-4	
ron, Dissolved	29.3 ı	mg/L	2.0	0.49	50	11/03/19 15:41	11/05/19 14:03	7439-89-6	
Manganese, Dissolved	0.77 ı	mg/L	0.010	0.00057	1	11/03/19 15:41	11/04/19 21:25	7439-96-5	
2320B Alkalinity	Analytical Met	thod: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3)	35.0	mg/L	20.0	20.0	1		10/29/19 18:22		
Alkalinity, Carbonate (CaCO3)		mg/L	20.0	20.0	1		10/29/19 18:22		
Alkalinity, Total as CaCO3	35.0	mg/L	20.0	20.0	1		10/29/19 18:22		
2540C Total Dissolved Solids	Analytical Met	thod: SM 2	540C						
Total Dissolved Solids	334	mg/L	10.0	10.0	1		10/29/19 13:02		
4500PE Ortho Phosphorus	Analytical Met	thod: SM 4	500-P						
Orthophosphate as P	ND i	mg/L	0.020	0.020	1		10/30/19 21:02		H1
300.0 IC Anions	Analytical Met	thod: EPA 3	300.0						
Nitrate as N	ND i	mg/L	0.050	0.0050	1		10/29/19 07:27	14797-55-8	H1

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: IW-E-1	Lab ID:	Lab ID: 2624772006			13:55	Received: 10	Received: 10/23/19 08:05 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0							
Chloride	2.1	mg/L	1.0	0.024	1		10/30/19 16:23	16887-00-6		
Fluoride	ND	mg/L	0.30	0.029	1		10/30/19 16:23	16984-48-8		
Sulfate	138	mg/L	20.0	0.34	20		10/31/19 23:10	14808-79-8		

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: IW-B-2	Lab ID: 2	624772007	Collecte	ed: 10/22/19	15:50	Received: 10/	/23/19 08:05 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical M	lethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum	0.023J	mg/L	0.10	0.0089	1	11/01/19 16:00	11/04/19 01:24	7429-90-5	
Antimony	ND	mg/L	0.0030	0.00027	1	11/01/19 16:00	11/04/19 01:24	7440-36-0	
Arsenic	2.5	mg/L	0.25	0.018	50	11/01/19 16:00	11/04/19 01:29	7440-38-2	M6
Barium	0.22	mg/L	0.010	0.00049	1	11/01/19 16:00	11/04/19 01:24	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	11/01/19 16:00	11/04/19 01:24	7440-41-7	
Boron	4.3	mg/L	2.0	0.25	50	11/01/19 16:00	11/04/19 01:29	7440-42-8	
Cadmium	0.00012J	mg/L	0.0025	0.00011	1	11/01/19 16:00	11/04/19 01:24	7440-43-9	
Calcium	177	mg/L	5.0	0.55	50	11/01/19 16:00	11/04/19 01:29	7440-70-2	M6
Chromium	ND	mg/L	0.010	0.00039	1	11/01/19 16:00	11/04/19 01:24	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00030	1	11/01/19 16:00	11/04/19 01:24	7440-48-4	
Iron	18.4	mg/L	2.0	0.49	50	11/01/19 16:00	11/04/19 01:29	7439-89-6	M6
Lead	ND	mg/L	0.0050	0.000046	1	11/01/19 16:00	11/04/19 01:24	7439-92-1	
Lithium	0.29	mg/L	0.030	0.00078	1	11/01/19 16:00	11/04/19 01:24	7439-93-2	M1
Magnesium	57.2	mg/L	2.5	0.15	50	11/01/19 16:00	11/04/19 01:29	7439-95-4	M6
Manganese	2.3	mg/L	0.50	0.029	50	11/01/19 16:00	11/04/19 01:29	7439-96-5	M6
Molybdenum	0.49	mg/L	0.010	0.00095	1	11/01/19 16:00	11/04/19 01:24	7439-98-7	
Potassium	13.9	mg/L	5.0	1.3	50	11/01/19 16:00	11/04/19 01:29	7440-09-7	M6
Selenium	ND	mg/L	0.010	0.0013	1	11/01/19 16:00	11/04/19 01:24	7782-49-2	
Sodium	13.5	mg/L	5.0	0.75	50	11/01/19 16:00	11/04/19 01:29	7440-23-5	M6
Thallium	ND	mg/L	0.0010	0.000052	1	11/01/19 16:00	11/04/19 01:24	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical M	lethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum, Dissolved	ND	mg/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 21:42	7429-90-5	
Beryllium, Dissolved	ND	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/05/19 14:32	7440-41-7	
Boron, Dissolved	3.8	mg/L	0.040	0.0049	1	11/03/19 15:41	11/05/19 14:32	7440-42-8	
Cadmium, Dissolved	ND	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 21:42	7440-43-9	
Cobalt, Dissolved	ND	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 21:42	7440-48-4	
Iron, Dissolved	0.011J	mg/L	0.040	0.0097	1	11/03/19 15:41	11/04/19 21:42	7439-89-6	
Manganese, Dissolved	1.9	mg/L	0.050	0.0029	5	11/03/19 15:41	11/05/19 14:38	7439-96-5	
2320B Alkalinity	Analytical M	lethod: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3)	282	mg/L	20.0	20.0	1		10/29/19 18:25		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	20.0	20.0	1		10/29/19 18:25		
Alkalinity, Total as CaCO3	282	mg/L	20.0	20.0	1		10/29/19 18:25		
2540C Total Dissolved Solids	Analytical M	lethod: SM 2	540C						
Total Dissolved Solids	950	mg/L	10.0	10.0	1		10/29/19 13:02		
4500PE Ortho Phosphorus	Analytical M	lethod: SM 4	500-P						
Orthophosphate as P	0.032	mg/L	0.020	0.020	1		10/30/19 21:03		F6,H1
300.0 IC Anions	Analytical M	lethod: EPA 3	300.0						
Nitrate as N	ND	mg/L	0.050	0.0050	1		10/29/19 10:14	14797-55-8	H1

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: IW-B-2	Lab ID:	2624772007	Collecte	Collected: 10/22/19 15:50 F			Received: 10/23/19 08:05 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0							
Chloride	6.3	mg/L	1.0	0.024	1		10/30/19 18:36	16887-00-6		
Fluoride	1.4	mg/L	0.30	0.029	1		10/30/19 18:36	16984-48-8		
Sulfate	ND	mg/L	1.0	0.017	1		10/30/19 18:36	14808-79-8		

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: PB-4D	Lab ID:	2624772008	Collecte	ed: 10/22/19	15:20	Received: 10/	/23/19 08:05 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical I	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum	0.33	mg/L	0.10	0.0089	1	11/01/19 16:00	11/04/19 02:15	7429-90-5	
Antimony	0.00048J	mg/L	0.0030	0.00027	1	11/01/19 16:00	11/04/19 02:15	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00035	1	11/01/19 16:00	11/04/19 02:15	7440-38-2	
3arium	0.0086J	mg/L	0.010	0.00049	1	11/01/19 16:00	11/04/19 02:15	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	11/01/19 16:00	11/04/19 13:14	7440-41-7	
Boron	0.016J	mg/L	0.040	0.0049	1	11/01/19 16:00	11/04/19 02:15	7440-42-8	В
Cadmium	ND	mg/L	0.0025	0.00011	1	11/01/19 16:00	11/04/19 02:15	7440-43-9	
Calcium	20.9	mg/L	0.10	0.011	1	11/01/19 16:00	11/04/19 02:15	7440-70-2	
Calcium	23.2	mg/L	5.0	0.55	50	11/01/19 16:00	11/04/19 02:21	7440-70-2	
Chromium	0.0015J	mg/L	0.010	0.00039	1	11/01/19 16:00	11/04/19 02:15	7440-47-3	
Cobalt	0.00083J	mg/L	0.0050	0.00030	1	11/01/19 16:00	11/04/19 02:15	7440-48-4	
ron	0.82	mg/L	0.040	0.0097	1	11/01/19 16:00	11/04/19 02:15	7439-89-6	
_ead	0.00016J	mg/L	0.0050	0.000046	1	11/01/19 16:00	11/04/19 02:15	7439-92-1	
_ithium	0.013J	mg/L	0.030	0.00078	1	11/01/19 16:00	11/04/19 13:14	7439-93-2	
Magnesium	4.8	mg/L	0.050	0.0030	1	11/01/19 16:00	11/04/19 02:15	7439-95-4	
Manganese	0.58	mg/L	0.010	0.00057	1	11/01/19 16:00	11/04/19 02:15	7439-96-5	
Molybdenum	0.019	mg/L	0.010	0.00095	1	11/01/19 16:00	11/04/19 02:15	7439-98-7	
Potassium	16.1	mg/L	5.0	1.3	50	11/01/19 16:00	11/04/19 02:21	7440-09-7	
Selenium	ND	mg/L	0.010	0.0013	1	11/01/19 16:00	11/04/19 02:15	7782-49-2	
Sodium	16.7	mg/L	5.0	0.75	50	11/01/19 16:00	11/04/19 02:21	7440-23-5	
-hallium	ND	mg/L	0.0010	0.000052	1	11/01/19 16:00	11/04/19 02:15	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical I	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum, Dissolved	ND	mg/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 18:07	7429-90-5	
Beryllium, Dissolved	0.00032J	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/04/19 18:07	7440-41-7	
Boron, Dissolved	ND	mg/L	0.040	0.0049	1	11/03/19 15:41	11/04/19 18:07	7440-42-8	
Cadmium, Dissolved	ND	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 18:07	7440-43-9	
Cobalt, Dissolved	ND	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 18:07	7440-48-4	
ron, Dissolved	0.013J	mg/L	0.040	0.0097	1	11/03/19 15:41	11/04/19 18:07	7439-89-6	В
Manganese, Dissolved	0.025	mg/L	0.010	0.00057	1	11/03/19 15:41	11/04/19 18:07	7439-96-5	
2320B Alkalinity	Analytical I	Method: SM 2	320B						
Alkalinity, Bicarbonate (CaCO3)	118	mg/L	20.0	20.0	1		10/30/19 20:03	3	
Alkalinity,Carbonate (CaCO3)	ND	mg/L	20.0	20.0	1		10/30/19 20:03		
Alkalinity, Total as CaCO3	118	mg/L	20.0	20.0	1		10/30/19 20:03	3	
2540C Total Dissolved Solids	Analytical I	Method: SM 2	540C						
Total Dissolved Solids	197	mg/L	10.0	10.0	1		10/29/19 13:02	2	
500PE Ortho Phosphorus	Analytical I	Method: SM 4	500-P						
Orthophosphate as P	ND	mg/L	0.020	0.020	1		10/30/19 21:03	3	H1
00.0 IC Anions	Analytical I	Method: EPA	300.0						
Nitrate as N	ND	mg/L	0.050	0.0050	1		10/29/19 09:53	3 14797-55-8	H1

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: PB-4D	Lab ID:	2624772008	Collecte	d: 10/22/19	15:20	Received: 10	/23/19 08:05 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	3.1	mg/L	1.0	0.024	1		10/30/19 18:59	16887-00-6	
Fluoride	0.089J	mg/L	0.30	0.029	1		10/30/19 18:59	16984-48-8	
Sulfate	1.2	mg/L	1.0	0.017	1		10/30/19 18:59	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: EB-4	Lab ID: 262	4772009	Collecte	ed: 10/22/19	16:40	Received: 10/	/23/19 08:05 Ma	atrix: Water	
			Report						
Parameters	Results L	Jnits	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical Met	hod: EPA 6	6020B Pre	paration Met	hod: EF	A 3005A			
Aluminum	ND r	ng/L	0.10	0.0089	1	11/02/19 15:05	11/04/19 11:02	7429-90-5	
Antimony	ND r	ng/L	0.0030	0.00027	1	11/02/19 15:05	11/04/19 11:02	7440-36-0	
Arsenic	0.00077J r	ng/L	0.0050	0.00035	1	11/02/19 15:05	11/04/19 11:02	7440-38-2	В
Barium	0.0018J r	ng/L	0.010	0.00049	1	11/02/19 15:05	11/04/19 11:02	7440-39-3	
Beryllium	ND r	ng/L	0.0030	0.000074	1	11/02/19 15:05	11/04/19 11:02	7440-41-7	
Boron	ND r	ng/L	0.040	0.0049	1	11/02/19 15:05	11/04/19 11:02	7440-42-8	
Cadmium	ND r	ng/L	0.0025	0.00011	1	11/02/19 15:05	11/04/19 11:02	7440-43-9	
Calcium	ND r	ng/L	0.10	0.011	1	11/02/19 15:05	11/04/19 11:02	7440-70-2	
Chromium	ND r	ng/L	0.010	0.00039	1	11/02/19 15:05	11/04/19 11:02	7440-47-3	
Cobalt	ND r	mg/L	0.0050	0.00030	1	11/02/19 15:05	11/04/19 11:02	7440-48-4	
ron	ND r	ng/L	0.040	0.0097	1	11/02/19 15:05	11/04/19 11:02	7439-89-6	
Lead		mg/L	0.0050	0.000046	1	11/02/19 15:05	11/04/19 11:02		
Lithium	ND r	ng/L	0.030	0.00078	1	11/02/19 15:05	11/04/19 11:02	7439-93-2	
Magnesium	ND r	ng/L	0.050	0.0030	1	11/02/19 15:05	11/04/19 11:02	7439-95-4	
Manganese	ND r	ng/L	0.010	0.00057	1	11/02/19 15:05	11/04/19 11:02	7439-96-5	
Molybdenum	ND r	ng/L	0.010	0.00095	1	11/02/19 15:05	11/04/19 11:02	7439-98-7	
Potassium	ND r	ng/L	0.10	0.026	1	11/02/19 15:05	11/04/19 11:02	7440-09-7	
Selenium	ND r	ng/L	0.010	0.0013	1	11/02/19 15:05	11/04/19 11:02	7782-49-2	
Sodium		ng/L	0.10	0.015	1	11/02/19 15:05	11/04/19 11:02	7440-23-5	
Thallium	ND r	mg/L	0.0010	0.000052	1	11/02/19 15:05	11/04/19 11:02	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical Met	hod: EPA 6	6020B Pre	paration Met	hod: EF	A 3005A			
Aluminum, Dissolved	ND r	ng/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 18:13	7429-90-5	
Beryllium, Dissolved	ND r	ng/L	0.0030	0.000074	1	11/03/19 15:41	11/04/19 18:13	7440-41-7	
Boron, Dissolved	0.16 r	ng/L	0.040	0.0049	1	11/03/19 15:41	11/04/19 18:13	7440-42-8	
Cadmium, Dissolved	ND r	ng/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 18:13	7440-43-9	
Cobalt, Dissolved	ND r	ng/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 18:13	7440-48-4	
ron, Dissolved	ND r	ng/L	0.040	0.0097	1	11/03/19 15:41	11/04/19 18:13	7439-89-6	
Manganese, Dissolved	0.0050J r	mg/L	0.010	0.00057	1	11/03/19 15:41	11/04/19 18:13	7439-96-5	
2320B Alkalinity Low Level	Analytical Met	hod: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3)	ND r	mg/L	1.0	1.0	1		11/01/19 12:21		
Alkalinity,Carbonate (CaCO3)	ND r	ng/L	1.0	1.0	1		11/01/19 12:21		
Alkalinity, Total as CaCO3	ND r	mg/L	1.0	1.0	1		11/01/19 12:21		
2540C Total Dissolved Solids	Analytical Met	hod: SM 2	540C						
Total Dissolved Solids	10.0 r	mg/L	10.0	10.0	1		10/29/19 13:02		
4500PE Ortho Phosphorus	Analytical Met	hod: SM 4	500-P						
Orthophosphate as P	ND r	mg/L	0.020	0.020	1		10/30/19 21:04		H1
300.0 IC Anions	Analytical Met	hod: EPA 3	300.0						
Nitrate as N	ND r	mg/L	0.050	0.0050	1		10/29/19 11:16	14797-55-8	H1

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: EB-4	Lab ID:	Lab ID: 2624772009			16:40	Received: 10/23/19 08:05 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	ND	mg/L	1.0	0.024	1		10/30/19 19:21	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		10/30/19 19:21	16984-48-8	
Sulfate	ND	mg/L	1.0	0.017	1		10/30/19 19:21	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: FB-4	Lab ID: 2624	1772010	Collecte	ed: 10/22/19	16:30	Received: 10/	23/19 08:05 Ma	atrix: Water	
			Report						
Parameters	Results U	nits	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical Meth	od: EPA 60	020B Pre	paration Met	nod: EP	A 3005A			
Aluminum	ND m	ıg/L	0.10	0.0089	1	11/02/19 15:05	11/04/19 11:08	7429-90-5	
Antimony	ND m	ıg/L	0.0030	0.00027	1	11/02/19 15:05	11/04/19 11:08	7440-36-0	
Arsenic	0.00049J m	ıg/L	0.0050	0.00035	1	11/02/19 15:05	11/04/19 11:08	7440-38-2	В
Barium	0.0019J m	ıg/L	0.010	0.00049	1	11/02/19 15:05	11/04/19 11:08	7440-39-3	
Beryllium	ND m	ıg/L	0.0030	0.000074	1	11/02/19 15:05	11/04/19 11:08	7440-41-7	
Boron	ND m	ıg/L	0.040	0.0049	1	11/02/19 15:05	11/04/19 11:08	7440-42-8	
Cadmium	ND m	ıg/L	0.0025	0.00011	1	11/02/19 15:05	11/04/19 11:08	7440-43-9	
Calcium	ND m	ıg/L	0.10	0.011	1	11/02/19 15:05	11/04/19 11:08	7440-70-2	
Chromium	0.00079J m	ıg/L	0.010	0.00039	1	11/02/19 15:05	11/04/19 11:08	7440-47-3	В
Cobalt	ND m	ıg/L	0.0050	0.00030	1	11/02/19 15:05	11/04/19 11:08	7440-48-4	
ron	ND m	ıg/L	0.040	0.0097	1	11/02/19 15:05	11/04/19 11:08	7439-89-6	
_ead	ND m	ıg/L	0.0050	0.000046	1	11/02/19 15:05	11/04/19 11:08	7439-92-1	
Lithium	ND m	ıg/L	0.030	0.00078	1	11/02/19 15:05	11/04/19 11:08	7439-93-2	
Magnesium	ND m	ig/L	0.050	0.0030	1	11/02/19 15:05	11/04/19 11:08	7439-95-4	
Manganese		ig/L	0.010	0.00057	1	11/02/19 15:05	11/04/19 11:08	7439-96-5	
Molybdenum		ig/L	0.010	0.00095	1	11/02/19 15:05	11/04/19 11:08	7439-98-7	
Potassium	ND m	ıg/L	0.10	0.026	1	11/02/19 15:05	11/04/19 11:08	7440-09-7	
Selenium		ig/L	0.010	0.0013	1	11/02/19 15:05	11/04/19 11:08	7782-49-2	
Sodium		ıg/L	0.10	0.015	1	11/02/19 15:05	11/04/19 11:08	7440-23-5	
Γhallium		ig/L	0.0010	0.000052	1	11/02/19 15:05	11/04/19 11:08	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical Meth	od: EPA 60	020B Pre	paration Met	nod: EP	A 3005A			
Aluminum, Dissolved	ND m	ıg/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 18:19	7429-90-5	
Beryllium, Dissolved	ND m	ig/L	0.0030	0.000074	1	11/03/19 15:41	11/04/19 18:19	7440-41-7	
Boron, Dissolved		ig/L	0.040	0.0049	1	11/03/19 15:41	11/04/19 18:19	7440-42-8	
Cadmium, Dissolved		ig/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 18:19	7440-43-9	
Cobalt, Dissolved		ig/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 18:19	7440-48-4	
ron, Dissolved		ig/L	0.040	0.0097	1	11/03/19 15:41	11/04/19 18:19	7439-89-6	
Manganese, Dissolved		ig/L	0.010	0.00057	1	11/03/19 15:41	11/04/19 18:19	7439-96-5	
2320B Alkalinity Low Level	Analytical Meth	od: SM 23	20B						
Alkalinity,Bicarbonate (CaCO3)	ND m	ıg/L	1.0	1.0	1		11/01/19 12:27		
Alkalinity, Carbonate (CaCO3)		ig/L	1.0	1.0	1		11/01/19 12:27		
Alkalinity, Total as CaCO3	ND m	ıg/L	1.0	1.0	1		11/01/19 12:27		
2540C Total Dissolved Solids	Analytical Meth	od: SM 25	40C						
Total Dissolved Solids	ND m	ıg/L	10.0	10.0	1		10/29/19 13:02		
4500PE Ortho Phosphorus	Analytical Meth	od: SM 45	00-P						
Orthophosphate as P	ND m	ıg/L	0.020	0.020	1		10/30/19 21:05		H1
300.0 IC Anions	Analytical Meth	od: EPA 30	0.00						
Nitrate as N	ND m	ıg/L	0.050	0.0050	1		10/29/19 10:55	14797-55-8	H1

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: FB-4	Lab ID:	2624772010	Collecte	Collected: 10/22/19 16:30			/23/19 08:05 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	ND	mg/L	1.0	0.024	1		10/30/19 19:43	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		10/30/19 19:43	16984-48-8	
Sulfate	ND	mg/L	1.0	0.017	1		10/30/19 19:43	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: DUP-4	Lab ID: 2	624772011	Collecte	ed: 10/22/19	00:00	Received: 10/	23/19 08:05 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical M	lethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum	0.023J	mg/L	0.10	0.0089	1	11/02/19 15:05	11/04/19 11:14	7429-90-5	
Antimony	ND	mg/L	0.0030	0.00027	1	11/02/19 15:05	11/04/19 11:14	7440-36-0	
Arsenic	0.021	mg/L	0.0050	0.00035	1	11/02/19 15:05	11/04/19 11:14	7440-38-2	
Barium	0.062	mg/L	0.010	0.00049	1	11/02/19 15:05	11/04/19 11:14	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000074	1	11/02/19 15:05	11/04/19 11:14	7440-41-7	
Boron	0.46	mg/L	0.040	0.0049	1	11/02/19 15:05	11/04/19 11:14	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.00011	1	11/02/19 15:05	11/04/19 11:14	7440-43-9	
Calcium	26.6	mg/L	5.0	0.55	50	11/02/19 15:05	11/04/19 11:19	7440-70-2	
Chromium	ND	mg/L	0.010	0.00039	1	11/02/19 15:05	11/04/19 11:14	7440-47-3	
Cobalt	0.0030J	mg/L	0.0050	0.00030	1	11/02/19 15:05	11/04/19 11:14		
Iron	33.2	mg/L	2.0	0.49	50	11/02/19 15:05			M6
Lead	ND	mg/L	0.0050	0.000046	1	11/02/19 15:05	11/04/19 11:14		
Lithium	0.26	mg/L	0.030	0.00078	1	11/02/19 15:05	11/04/19 11:14		
Magnesium	6.0	mg/L	0.050	0.0030	1	11/02/19 15:05	11/04/19 11:14	7439-95-4	
Manganese	0.78	mg/L	0.010	0.00057	1	11/02/19 15:05	11/04/19 11:14		
Molybdenum	0.0044J	mg/L	0.010	0.00095	1	11/02/19 15:05	11/04/19 11:14	7439-98-7	
Potassium	12.9	mg/L	0.10	0.026	1	11/02/19 15:05	11/04/19 11:14	7440-09-7	
Selenium	ND	mg/L	0.010	0.0013	1	11/02/19 15:05	11/04/19 11:14	7782-49-2	
Sodium	4.7	mg/L	0.10	0.015	1	11/02/19 15:05	11/04/19 11:14	7440-23-5	
Thallium	ND	mg/L	0.0010	0.000052	1	11/02/19 15:05	11/04/19 11:14	7440-28-0	
6020B MET ICPMS, Dissolved	Analytical M	lethod: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
Aluminum, Dissolved	ND	mg/L	0.10	0.0089	1	11/03/19 15:41	11/04/19 18:25	7429-90-5	
Beryllium, Dissolved	ND	mg/L	0.0030	0.000074	1	11/03/19 15:41	11/04/19 18:25	7440-41-7	
Boron, Dissolved	0.44	mg/L	0.040	0.0049	1	11/03/19 15:41	11/04/19 18:25	7440-42-8	
Cadmium, Dissolved	ND	mg/L	0.0025	0.00011	1	11/03/19 15:41	11/04/19 18:25	7440-43-9	
Cobalt, Dissolved	0.0030J	mg/L	0.0050	0.00030	1	11/03/19 15:41	11/04/19 18:25	7440-48-4	
Iron, Dissolved	26.5	mg/L	2.0	0.49	50	11/03/19 15:41	11/05/19 14:50	7439-89-6	
Manganese, Dissolved	0.72	mg/L	0.010	0.00057	1	11/03/19 15:41	11/04/19 18:25	7439-96-5	
2320B Alkalinity	Analytical M	lethod: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3)	22.0	mg/L	20.0	20.0	1		11/04/19 14:11		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	20.0	20.0	1		11/04/19 14:11		
Alkalinity, Total as CaCO3	22.0	mg/L	20.0	20.0	1		11/04/19 14:11		
2540C Total Dissolved Solids	Analytical M	lethod: SM 2	540C						
Total Dissolved Solids	321	mg/L	10.0	10.0	1		10/29/19 13:02		
4500PE Ortho Phosphorus	Analytical M	lethod: SM 4	500-P						
Orthophosphate as P	ND	mg/L	0.020	0.020	1		10/30/19 21:06		H1
300.0 IC Anions	Analytical M	lethod: EPA	300.0						
Nitrate as N	ND	mg/L	0.050	0.0050	1		10/29/19 04:21	14797-55-8	H1

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Sample: DUP-4	Lab ID:	2624772011	Collecte	Collected: 10/22/19 00:00			23/19 08:05 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Chloride	2.0	mg/L	1.0	0.024	1		10/30/19 20:27	16887-00-6	
Fluoride	ND	mg/L	0.30	0.029	1		10/30/19 20:27	16984-48-8	
Sulfate	136	mg/L	20.0	0.34	20		10/31/19 23:33	14808-79-8	

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

QC Batch: 37868 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006

METHOD BLANK: 171883 Matrix: Water

Associated Lab Samples: 2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Aluminum	mg/L	ND	0.10	0.0089	10/31/19 17:44	
Antimony	mg/L	ND	0.0030	0.00027	10/31/19 17:44	
Arsenic	mg/L	ND	0.0050	0.00035	10/31/19 17:44	
Barium	mg/L	ND	0.010	0.00049	10/31/19 17:44	
Beryllium	mg/L	ND	0.0030	0.000074	10/31/19 17:44	
Boron	mg/L	ND	0.040	0.0049	10/31/19 17:44	
Cadmium	mg/L	ND	0.0025	0.00011	10/31/19 17:44	
Calcium	mg/L	ND	0.10	0.011	10/31/19 17:44	
Chromium	mg/L	ND	0.010	0.00039	10/31/19 17:44	
Cobalt	mg/L	ND	0.0050	0.00030	10/31/19 17:44	
Iron	mg/L	ND	0.040	0.0097	10/31/19 17:44	
Lead	mg/L	ND	0.0050	0.000046	10/31/19 17:44	
Lithium	mg/L	ND	0.030	0.00078	10/31/19 17:44	
Magnesium	mg/L	ND	0.050	0.0030	10/31/19 17:44	
Manganese	mg/L	ND	0.010	0.00057	10/31/19 17:44	
Molybdenum	mg/L	ND	0.010	0.00095	10/31/19 17:44	
Potassium	mg/L	ND	0.10	0.026	10/31/19 17:44	
Selenium	mg/L	ND	0.010	0.0013	10/31/19 17:44	
Sodium	mg/L	ND	0.10	0.015	10/31/19 17:44	
Thallium	mg/L	ND	0.0010	0.000052	10/31/19 17:44	

LABORATORY CONTROL SAMPLE:	171884					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	mg/L	1	1.1	109	80-120	
Antimony	mg/L	0.1	0.11	110	80-120	
Arsenic	mg/L	0.1	0.10	102	80-120	
Barium	mg/L	0.1	0.10	104	80-120	
Beryllium	mg/L	0.1	0.11	105	80-120	
Boron	mg/L	1	1.1	105	80-120	
Cadmium	mg/L	0.1	0.11	106	80-120	
Calcium	mg/L	1	1.0	103	80-120	
Chromium	mg/L	0.1	0.11	106	80-120	
Cobalt	mg/L	0.1	0.11	105	80-120	
Iron	mg/L	1	1.1	106	80-120	
Lead	mg/L	0.1	0.11	107	80-120	
Lithium	mg/L	0.1	0.11	107	80-120	
Magnesium	mg/L	1	1.0	103	80-120	
Manganese	mg/L	0.1	0.11	106	80-120	
Molybdenum	mg/L	0.1	0.11	106	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

LABORATORY CONTROL SAMPLE: 171884

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Potassium	mg/L		1.0	103	80-120	
Selenium	mg/L	0.1	0.10	101	80-120	
Sodium	mg/L	1	1.0	103	80-120	
Thallium	mg/L	0.1	0.11	106	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLI	CATE: 1719	31		171932							
			MS	MSD								
		2624685003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD Q)ual
Aluminum	mg/L	0.22	1	1	1.2	1.2	96	95	75-125	1	20	
Antimony	mg/L	ND	0.1	0.1	0.11	0.11	112	109	75-125	2	20	
Arsenic	mg/L	ND	0.1	0.1	0.10	0.11	103	106	75-125	2	20	
Barium	mg/L	0.014	0.1	0.1	0.12	0.12	103	103	75-125	1	20	
Beryllium	mg/L	0.00088	0.1	0.1	0.091	0.094	90	93	75-125	3	20	
Boron	mg/L	0.59	1	1	1.5	1.5	91	91	75-125	0	20	
Cadmium	mg/L	0.00045J	0.1	0.1	0.11	0.11	105	107	75-125	2	20	
Calcium	mg/L	52.6	1	1	52.7	51.5	10	-112	75-125	2	20 M6	
Chromium	mg/L	ND	0.1	0.1	0.10	0.10	100	101	75-125	1	20	
Cobalt	mg/L	0.073	0.1	0.1	0.17	0.17	97	97	75-125	0	20	
Iron	mg/L	2.3	1	1	2.9	2.9	61	59	75-125	1	20 M1	
Lead	mg/L	0.00013J	0.1	0.1	0.10	0.10	100	100	75-125	0	20	
Lithium	mg/L	0.0015J	0.1	0.1	0.097	0.10	95	98	75-125	3	20	
Magnesium	mg/L	14.5	1	1	15.6	15.0	105	42	75-125	4	20 M6	
Manganese	mg/L	9.4	0.1	0.1	9.3	9.1	-153	-325	75-125	2	20 M6	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.10	104	104	75-125	0	20	
Potassium	mg/L	7.0	1	1	7.8	7.7	79	72	75-125	1	20 M1	
Selenium	mg/L	0.0022J	0.1	0.1	0.11	0.11	104	104	75-125	0	20	
Sodium	mg/L	22.2	1	1	22.8	22.0	62	-21	75-125	4	20 M6	
Thallium	mg/L	0.00037J	0.1	0.1	0.10	0.10	101	101	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

QC Batch: 38024 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2624772007, 2624772008

METHOD BLANK: 172889 Matrix: Water

Associated Lab Samples: 2624772007, 2624772008

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Aluminum	mg/L	ND ND	0.10	0.0089	11/04/19 01:12	
Antimony	mg/L	ND	0.0030	0.00027	11/04/19 01:12	
Arsenic	mg/L	ND	0.0050	0.00035	11/04/19 01:12	
Barium	mg/L	ND	0.010	0.00049	11/04/19 01:12	
Beryllium	mg/L	ND	0.0030	0.000074	11/04/19 01:12	
Boron	mg/L	0.0059J	0.040	0.0049	11/04/19 01:12	
Cadmium	mg/L	ND	0.0025	0.00011	11/04/19 01:12	
Calcium	mg/L	ND	0.10	0.011	11/04/19 01:12	
Chromium	mg/L	ND	0.010	0.00039	11/04/19 01:12	
Cobalt	mg/L	ND	0.0050	0.00030	11/04/19 01:12	
Iron	mg/L	ND	0.040	0.0097	11/04/19 01:12	
Lead	mg/L	ND	0.0050	0.000046	11/04/19 01:12	
Lithium	mg/L	ND	0.030	0.00078	11/04/19 01:12	
Magnesium	mg/L	ND	0.050	0.0030	11/04/19 01:12	
Manganese	mg/L	ND	0.010	0.00057	11/04/19 01:12	
Molybdenum	mg/L	ND	0.010	0.00095	11/04/19 01:12	
Potassium	mg/L	ND	0.10	0.026	11/04/19 01:12	
Selenium	mg/L	ND	0.010	0.0013	11/04/19 01:12	
Sodium	mg/L	ND	0.10	0.015	11/04/19 01:12	
Thallium	mg/L	ND	0.0010	0.000052	11/04/19 01:12	

LABORATORY CONTROL SAMPLE	: 172890					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	mg/L		1.1	114	80-120	
Antimony	mg/L	0.1	0.11	107	80-120	
Arsenic	mg/L	0.1	0.10	100	80-120	
Barium	mg/L	0.1	0.10	103	80-120	
Beryllium	mg/L	0.1	0.11	114	80-120	
Boron	mg/L	1	1.2	116	80-120	
Cadmium	mg/L	0.1	0.11	106	80-120	
Calcium	mg/L	1	1.1	106	80-120	
Chromium	mg/L	0.1	0.10	105	80-120	
Cobalt	mg/L	0.1	0.10	104	80-120	
Iron	mg/L	1	1.0	104	80-120	
Lead	mg/L	0.1	0.10	102	80-120	
Lithium	mg/L	0.1	0.11	112	80-120	
Magnesium	mg/L	1	1.1	107	80-120	
Manganese	mg/L	0.1	0.11	106	80-120	
Molybdenum	mg/L	0.1	0.10	103	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

LABORATORY CONTROL SAMPLE: 172890

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Potassium	mg/L	1	1.0	105	80-120	
Selenium	mg/L	0.1	0.10	101	80-120	
Sodium	mg/L	1	1.1	108	80-120	
Thallium	mg/L	0.1	0.10	103	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 1728	91		172892							
			MS	MSD								
		2624772007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Aluminum	mg/L	ND ND	1	1	1.0	0.94	98	91	75-125	7	20	
Antimony	mg/L	ND	0.1	0.1	0.11	0.10	106	104	75-125	2	20	
Arsenic	mg/L	2.5	0.1	0.1	2.6	2.6	43	106	75-125	2	20	M6
Barium	mg/L	0.22	0.1	0.1	0.32	0.31	99	98	75-125	0	20	
Beryllium	mg/L	ND	0.1	0.1	0.090	0.086	90	86	75-125	5	20	
Boron	mg/L	3.8	1	1	5.1	5.2	85	95	75-125	2	20	
Cadmium	mg/L	ND	0.1	0.1	0.11	0.10	107	103	75-125	4	20	
Calcium	mg/L	177	1	1	170	179	-693	243	75-125	5	20	M6
Chromium	mg/L	ND	0.1	0.1	0.099	0.097	99	97	75-125	2	20	
Cobalt	mg/L	ND	0.1	0.1	0.097	0.096	97	96	75-125	0	20	
Iron	mg/L	18.4	1	1	18.9	19.7	50	130	75-125	4	20	M6
Lead	mg/L	ND	0.1	0.1	0.092	0.090	92	90	75-125	2	20	
Lithium	mg/L	0.29	0.1	0.1	0.36	0.36	73	75	75-125	1	20	M1
Magnesium	mg/L	57.2	1	1	53.7	56.5	-353	-68	75-125	5	20	M6
Manganese	mg/L	1.9	0.1	0.1	2.4	2.5	73	163	75-125	4	20	M6
Molybdenum	mg/L	0.49	0.1	0.1	0.58	0.60	89	105	75-125	3	20	
Potassium	mg/L	13.9	1	1	13.5	14.5	-48	56	75-125	7	20	M6
Selenium	mg/L	ND	0.1	0.1	0.10	0.10	100	100	75-125	0	20	
Sodium	mg/L	13.5	1	1	13.4	13.8	-13	25	75-125	3	20	M6
Thallium	mg/L	ND	0.1	0.1	0.093	0.092	93	92	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

QC Batch: 38068 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2624772009, 2624772010, 2624772011

METHOD BLANK: 173068 Matrix: Water

Associated Lab Samples: 2624772009, 2624772010, 2624772011

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Aluminum	mg/L	ND	0.10	0.0089	11/04/19 10:51	
Antimony	mg/L	ND	0.0030	0.00027	11/04/19 10:51	
Arsenic	mg/L	0.00064J	0.0050	0.00035	11/04/19 10:51	
Barium	mg/L	ND	0.010	0.00049	11/04/19 10:51	
Beryllium	mg/L	ND	0.0030	0.000074	11/04/19 10:51	
Boron	mg/L	ND	0.040	0.0049	11/04/19 10:51	
Cadmium	mg/L	ND	0.0025	0.00011	11/04/19 10:51	
Calcium	mg/L	ND	0.10	0.011	11/04/19 10:51	
Chromium	mg/L	0.00058J	0.010	0.00039	11/04/19 10:51	
Cobalt	mg/L	ND	0.0050	0.00030	11/04/19 10:51	
Iron	mg/L	ND	0.040	0.0097	11/04/19 10:51	
Lead	mg/L	ND	0.0050	0.000046	11/04/19 10:51	
Lithium	mg/L	ND	0.030	0.00078	11/04/19 10:51	
Magnesium	mg/L	ND	0.050	0.0030	11/04/19 10:51	
Manganese	mg/L	ND	0.010	0.00057	11/04/19 10:51	
Molybdenum	mg/L	ND	0.010	0.00095	11/04/19 10:51	
Potassium	mg/L	ND	0.10	0.026	11/04/19 10:51	
Selenium	mg/L	ND	0.010	0.0013	11/04/19 10:51	
Sodium	mg/L	ND	0.10	0.015	11/04/19 10:51	
Thallium	mg/L	ND	0.0010	0.000052	11/04/19 10:51	

LABORATORY CONTROL SAMPLE:	173069					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	mg/L	1	1.1	107	80-120	
Antimony	mg/L	0.1	0.10	104	80-120	
Arsenic	mg/L	0.1	0.098	98	80-120	
Barium	mg/L	0.1	0.097	97	80-120	
Beryllium	mg/L	0.1	0.096	96	80-120	
Boron	mg/L	1	0.93	93	80-120	
Cadmium	mg/L	0.1	0.10	102	80-120	
Calcium	mg/L	1	0.97	97	80-120	
Chromium	mg/L	0.1	0.098	98	80-120	
Cobalt	mg/L	0.1	0.099	99	80-120	
Iron	mg/L	1	0.98	98	80-120	
Lead	mg/L	0.1	0.093	93	80-120	
Lithium	mg/L	0.1	0.099	99	80-120	
Magnesium	mg/L	1	0.97	97	80-120	
Manganese	mg/L	0.1	0.10	101	80-120	
Molybdenum	mg/L	0.1	0.10	100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

LABORATORY CONTROL SAMPLE: 173069

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Potassium	mg/L		0.98	98	80-120	
Selenium	mg/L	0.1	0.10	100	80-120	
Sodium	mg/L	1	0.97	97	80-120	
Thallium	mg/L	0.1	0.094	94	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 1730	72		173073							
			MS	MSD								
		2624772011	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Aluminum	mg/L	ND	1	1	1.1	1.1	106	110	75-125	4	20	
Antimony	mg/L	ND	0.1	0.1	0.10	0.10	103	102	75-125	1	20	
Arsenic	mg/L	0.021	0.1	0.1	0.12	0.12	99	98	75-125	1	20	
Barium	mg/L	0.062	0.1	0.1	0.16	0.15	97	93	75-125	3	20	
Beryllium	mg/L	ND	0.1	0.1	0.095	0.094	95	94	75-125	1	20	
Boron	mg/L	0.44	1	1	1.4	1.4	92	89	75-125	2	20	
Cadmium	mg/L	ND	0.1	0.1	0.10	0.11	103	105	75-125	2	20	
Calcium	mg/L	26.6	1	1	27.7	27.6	108	93	75-125	1	20	
Chromium	mg/L	ND	0.1	0.1	0.099	0.10	99	103	75-125	4	20	
Cobalt	mg/L	0.0030J	0.1	0.1	0.099	0.10	96	100	75-125	4	20	
Iron	mg/L	26.5	1	1	33.6	32.8	43	-33	75-125	2	20	M6
Lead	mg/L	ND	0.1	0.1	0.094	0.092	94	92	75-125	3	20	
Lithium	mg/L	0.26	0.1	0.1	0.37	0.35	108	94	75-125	4	20	
Magnesium	mg/L	6.0	1	1	7.0	6.8	99	81	75-125	3	20	
Manganese	mg/L	0.72	0.1	0.1	0.88	0.90	95	121	75-125	3	20	
Molybdenum	mg/L	0.0044J	0.1	0.1	0.10	0.10	100	100	75-125	0	20	
Potassium	mg/L	12.9	1	1	14.1	13.7	122	80	75-125	3	20	
Selenium	mg/L	ND	0.1	0.1	0.10	0.099	100	99	75-125	2	20	
Sodium	mg/L	4.7	1	1	5.5	5.5	84	75	75-125	2	20	
Thallium	mg/L	ND	0.1	0.1	0.094	0.094	94	94	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

QC Batch: 38026 Analysis Method: EPA 6020B

QC Batch Method: EPA 3005A Analysis Description: 6020B MET Dissolved

Associated Lab Samples: 2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006, 2624772007

METHOD BLANK: 172898 Matrix: Water

Associated Lab Samples: 2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006, 2624772007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Aluminum, Dissolved	mg/L	ND	0.10	0.0089	11/04/19 17:03	
Beryllium, Dissolved	mg/L	ND	0.0030	0.000074	11/04/19 17:03	
Boron, Dissolved	mg/L	ND	0.040	0.0049	11/04/19 17:03	
Cadmium, Dissolved	mg/L	ND	0.0025	0.00011	11/04/19 17:03	
Cobalt, Dissolved	mg/L	ND	0.0050	0.00030	11/04/19 17:03	
Iron, Dissolved	mg/L	ND	0.040	0.0097	11/04/19 17:03	
Manganese, Dissolved	mg/L	ND	0.010	0.00057	11/04/19 17:03	

LABORATORY CONTROL SAMPLE:	172899					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum, Dissolved	mg/L		1.1	112	80-120	
Beryllium, Dissolved	mg/L	0.1	0.10	104	80-120	
Boron, Dissolved	mg/L	1	1.0	101	80-120	
Cadmium, Dissolved	mg/L	0.1	0.10	100	80-120	
Cobalt, Dissolved	mg/L	0.1	0.10	100	80-120	
ron, Dissolved	mg/L	1	1.0	102	80-120	
Manganese, Dissolved	mg/L	0.1	0.11	106	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	ICATE: 1729	00		172901							
Parameter	Units	2624635001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
		— ND			1.1		105	108	75-125	3	20	
Aluminum, Dissolved	mg/L		0.4	0.4		1.1				_	_	
Beryllium, Dissolved	mg/L	0.00089J	0.1	0.1	0.098	0.094	97	93	75-125	4		
Boron, Dissolved	mg/L	0.93	1	1	1.9	1.8	99	84	75-125	8	20	
Cadmium, Dissolved	mg/L	0.00022J	0.1	0.1	0.10	0.10	102	100	75-125	3	20	
Cobalt, Dissolved	mg/L	ND	0.1	0.1	0.098	0.10	98	100	75-125	2	20	
Iron, Dissolved	mg/L	ND	1	1	0.99	0.99	99	99	75-125	0	20	
Manganese, Dissolved	mg/L	0.0045J	0.1	0.1	0.11	0.11	104	104	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

QC Batch: 38081 Analysis Method: EPA 6020B

QC Batch Method: EPA 3005A Analysis Description: 6020B MET Dissolved

Associated Lab Samples: 2624772008, 2624772009, 2624772010, 2624772011

METHOD BLANK: 173094 Matrix: Water
Associated Lab Samples: 2624772008, 2624772009, 2624772010, 2624772011

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Aluminum, Dissolved	mg/L	ND	0.10	0.0089	11/04/19 17:56	
Beryllium, Dissolved	mg/L	ND	0.0030	0.000074	11/04/19 17:56	
Boron, Dissolved	mg/L	ND	0.040	0.0049	11/04/19 17:56	
Cadmium, Dissolved	mg/L	ND	0.0025	0.00011	11/04/19 17:56	
Cobalt, Dissolved	mg/L	ND	0.0050	0.00030	11/04/19 17:56	
Iron, Dissolved	mg/L	0.013J	0.040	0.0097	11/04/19 17:56	
Manganese, Dissolved	mg/L	ND	0.010	0.00057	11/04/19 17:56	

LABORATORY CONTROL SAMPLE:	173095					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum, Dissolved	mg/L		1.0	101	80-120	
seryllium, Dissolved	mg/L	0.1	0.096	96	80-120	
oron, Dissolved	mg/L	1	0.98	98	80-120	
admium, Dissolved	mg/L	0.1	0.10	102	80-120	
balt, Dissolved	mg/L	0.1	0.10	101	80-120	
n, Dissolved	mg/L	1	1.1	105	80-120	
anganese, Dissolved	mg/L	0.1	0.10	102	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 1730	96		173097							
Parameter	Units	2624780001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Aluminum, Dissolved	mg/L	0.046J	1	1	1.0	0.98	97	94	75-125	3	20	
Beryllium, Dissolved	mg/L	ND	0.1	0.1	0.095	0.091	95	91	75-125	4	20	
Boron, Dissolved	mg/L	1.8	1	1	2.7	2.6	89	79	75-125	4	20	
Cadmium, Dissolved	mg/L	ND	0.1	0.1	0.10	0.095	100	95	75-125	6	20	
Cobalt, Dissolved	mg/L	0.00030J	0.1	0.1	0.10	0.096	101	96	75-125	5	20	
Iron, Dissolved	mg/L	ND	1	1	0.98	0.94	97	93	75-125	4	20	
Manganese, Dissolved	mg/L	0.027	0.1	0.1	0.12	0.12	96	96	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

QC Batch: 37769 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 2624772002, 2624772004, 2624772005, 2624772006, 2624772007

METHOD BLANK: 171447 Matrix: Water

Associated Lab Samples: 2624772002, 2624772004, 2624772005, 2624772006, 2624772007

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L ND 20.0 20.0 10/29/19 17:56

LABORATORY CONTROL SAMPLE: 171448

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 85-115 Alkalinity, Total as CaCO3 mg/L 100 99.0 99

SAMPLE DUPLICATE: 171489

Date: 12/17/2019 05:03 PM

2624772002 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 190 190 0 10 Alkalinity, Total as CaCO3 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

QC Batch: QC Batch Method: SM 2320B

37830

Associated Lab Samples:

Alkalinity, Total as CaCO3

2624772008

Analysis Method:

SM 2320B

Analysis Description:

2320B Alkalinity

Matrix: Water

METHOD BLANK: 171694

Associated Lab Samples: 2624772008

Blank

Reporting

Parameter

Units mg/L

Result ND Limit

20.0

MDL

20.0

Analyzed 10/30/19 19:32 Qualifiers

LABORATORY CONTROL SAMPLE:

Parameter

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Alkalinity, Total as CaCO3

Units mg/L

100

101

101

85-115

SAMPLE DUPLICATE: 172043

Date: 12/17/2019 05:03 PM

Parameter Alkalinity, Total as CaCO3 Units mg/L 2624772008 Result 118

Dup Result

117

RPD

1

Max **RPD**

10

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

QC Batch: 38111 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 2624772011

METHOD BLANK: 173233 Matrix: Water

Associated Lab Samples: 2624772011

Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L ND 20.0 20.0 11/04/19 12:04

LABORATORY CONTROL SAMPLE: 173234

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 97 85-115 mg/L 100 97.0

SAMPLE DUPLICATE: 173252

Date: 12/17/2019 05:03 PM

2624818005 Dup Max **RPD RPD** Qualifiers Parameter Units Result Result 655 660 10 Alkalinity, Total as CaCO3 1 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

Alkalinity, Total as CaCO3

QC Batch: 37989 Analysis Method: SM 2320B

mg/L

QC Batch Method: SM 2320B Alkalinity, Low Level

Associated Lab Samples: 2624772001, 2624772003, 2624772009, 2624772010

METHOD BLANK: 172677 Matrix: Water

Associated Lab Samples: 2624772001, 2624772003, 2624772009, 2624772010

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

ND

1.0

1.0

11/01/19 11:59

LABORATORY CONTROL SAMPLE: 172678

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 85-115 Alkalinity, Total as CaCO3 mg/L 50 50.0 100

SAMPLE DUPLICATE: 172829

Date: 12/17/2019 05:03 PM

Parameter Units Result RPD Max Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L ND ND 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

QC Batch: 37734 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006, 2624772007, 2624772008,

2624772009, 2624772010, 2624772011

LABORATORY CONTROL SAMPLE: 171260 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 84-108 **Total Dissolved Solids** mg/L 400 395 99 SAMPLE DUPLICATE: 171261 2624674001 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** 269 270 0 10 mg/L

SAMPLE DUPLICATE: 171262 2624786001 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers 693 **Total Dissolved Solids** 2 10 mg/L 709

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

PLANT BRANCH Project:

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

QC Batch: 37857 Analysis Method: SM 4500-P

QC Batch Method: SM 4500-P Analysis Description: 4500PE Ortho Phosphorus

2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006, 2624772007, 2624772008, Associated Lab Samples:

2624772009, 2624772010, 2624772011

METHOD BLANK: 171773 Matrix: Water

2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006, 2624772007, 2624772008, Associated Lab Samples:

2624772009, 2624772010, 2624772011

Blank Reporting Units MDL Qualifiers Parameter Result Limit Analyzed Orthophosphate as P mg/L ND 0.020 0.020 10/30/19 20:43

LABORATORY CONTROL SAMPLE:

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Orthophosphate as P 0.52 104 80-120 mg/L 0.5

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 171775 171776

171774

MS MSD MS MSD MS 2624949001 Spike Spike MSD % Rec Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Orthophosphate as P ND 0.5 0.5 0.53 0.52 105 105 80-120 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

QC Batch: 37577 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006, 2624772007, 2624772008,

2624772009, 2624772010, 2624772011

METHOD BLANK: 170482 Matrix: Water

Associated Lab Samples: 2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006, 2624772007, 2624772008,

2624772009, 2624772010, 2624772011

 Parameter
 Units
 Blank Reporting Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Nitrate as N
 mg/L
 ND
 0.050
 0.0050
 10/26/19 03:48

LABORATORY CONTROL SAMPLE: 170483

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 10.3 103 90-110 Nitrate as N mg/L 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 170484 170485

MS MSD MSD 2624772011 Spike Spike MS MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Result Limits Qual Nitrate as N ND 10 10 9.7 9.9 97 90-110 15 H1 mg/L

MATRIX SPIKE SAMPLE: 170486

Date: 12/17/2019 05:03 PM

2624772001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrate as N mg/L 0.016J 10 10.0 100 90-110 H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

QC Batch: 37829 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006, 2624772007, 2624772008,

2624772009, 2624772010, 2624772011

METHOD BLANK: 171687 Matrix: Water

Associated Lab Samples: 2624772001, 2624772002, 2624772003, 2624772004, 2624772005, 2624772006, 2624772007, 2624772008,

2624772009, 2624772010, 2624772011

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.024	10/30/19 13:03	
Fluoride	mg/L	ND	0.30	0.029	10/30/19 13:03	
Sulfate	mg/L	ND	1.0	0.017	10/30/19 13:03	

LABORATORY CONTROL SAMPLE:	171688					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		10.0	100	90-110	
Fluoride	mg/L	10	10.2	102	90-110	
Sulfate	ma/L	10	9.6	96	90-110	

MATRIX SPIKE & MATRIX SF	PIKE DUPLI	CATE: 1716		171690								
			MS	MSD								
		2624772001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.1	10	10	12.2	12.2	101	101	90-110	1	15	
Fluoride	mg/L	ND	10	10	10.4	10.4	104	104	90-110	0	15	

MATRIX SPIKE SAMPLE:	171691						
		2624772010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	ND	10	9.9	99	90-110	
Fluoride	mg/L	ND	10	10.1	101	90-110	
Sulfate	mg/L	ND	10	9.8	98	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: PLANT BRANCH

Pace Project No.: 2624772

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/17/2019 05:03 PM

B Analyte was detected in the associated metho	d blank.
--	----------

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- F6 Sample was not filtered within 15 minutes of collection and does not meet sampling and/or regulatory requirements.
- H1 Analysis conducted outside the EPA method holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

ab ID Sample ID		QC Batch Method	QC Batch	Analytical Method	Analytical Batch		
2624772001	PZ-13S	EPA 3005A	37868	EPA 6020B	37912		
2624772002	PZ-14I	EPA 3005A	37868	EPA 6020B	37912		
2624772003	PZ-14S	EPA 3005A	37868	EPA 6020B	37912		
624772004	IW-C-2	EPA 3005A	37868	EPA 6020B	37912		
624772005	IW-D-2	EPA 3005A	37868	EPA 6020B	37912		
624772006	IW-E-1	EPA 3005A	37868	EPA 6020B	37912		
624772007	IW-B-2	EPA 3005A	38024	EPA 6020B	38049		
624772008	PB-4D	EPA 3005A	38024	EPA 6020B	38049		
624772009	EB-4	EPA 3005A	38068	EPA 6020B	38073		
624772010	FB-4	EPA 3005A	38068	EPA 6020B	38073		
624772011	DUP-4	EPA 3005A	38068	EPA 6020B	38073		
624772001	PZ-13S	EPA 3005A	38026	EPA 6020B	38086		
2624772002	PZ-14I	EPA 3005A	38026	EPA 6020B	38086		
624772003	PZ-14S	EPA 3005A	38026	EPA 6020B	38086		
624772004	IW-C-2	EPA 3005A	38026	EPA 6020B	38086		
624772005	IW-D-2	EPA 3005A	38026	EPA 6020B	38086		
624772006	IW-E-1	EPA 3005A	38026	EPA 6020B	38086		
624772007	IW-B-2	EPA 3005A	38026	EPA 6020B	38086		
624772008	PB-4D	EPA 3005A	38081	EPA 6020B	38089		
624772009	EB-4	EPA 3005A	38081	EPA 6020B	38089		
624772010	FB-4	EPA 3005A	38081	EPA 6020B	38089		
624772011	DUP-4	EPA 3005A	38081	EPA 6020B	38089		
624772002	PZ-14I	SM 2320B	37769				
624772004	IW-C-2	SM 2320B	37769				
624772005	IW-D-2	SM 2320B	37769				
624772006	IW-E-1	SM 2320B	37769				
624772007	IW-B-2	SM 2320B	37769				
2624772008	PB-4D	SM 2320B	37830				
2624772011	DUP-4	SM 2320B	38111				
624772001	PZ-13S	SM 2320B	37989				
624772003	PZ-14S	SM 2320B	37989				
624772009	EB-4	SM 2320B	37989				
624772010	FB-4	SM 2320B	37989				
624772001	PZ-13S	SM 2540C	37734				
624772002	PZ-14I	SM 2540C	37734				
624772003	PZ-14S	SM 2540C	37734				
624772004	IW-C-2	SM 2540C	37734				
624772005	IW-D-2	SM 2540C	37734				
624772006	IW-E-1	SM 2540C	37734				
624772007	IW-B-2	SM 2540C	37734				
624772008	PB-4D	SM 2540C	37734				
624772009	EB-4	SM 2540C	37734				
624772009 624772010	FB-4	SM 2540C	37734				
624772010	DUP-4	SM 2540C SM 2540C	37734				

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PLANT BRANCH

Pace Project No.: 2624772

Date: 12/17/2019 05:03 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2624772001	PZ-13S	SM 4500-P	37857		
2624772002	PZ-14I	SM 4500-P	37857		
2624772003	PZ-14S	SM 4500-P	37857		
2624772004	IW-C-2	SM 4500-P	37857		
2624772005	IW-D-2	SM 4500-P	37857		
2624772006	IW-E-1	SM 4500-P	37857		
2624772007	IW-B-2	SM 4500-P	37857		
2624772008	PB-4D	SM 4500-P	37857		
2624772009	EB-4	SM 4500-P	37857		
2624772010	FB-4	SM 4500-P	37857		
2624772011	DUP-4	SM 4500-P	37857		
2624772001	PZ-13S	EPA 300.0	37577		
2624772002	PZ-14I	EPA 300.0	37577		
2624772003	PZ-14S	EPA 300.0	37577		
2624772004	IW-C-2	EPA 300.0	37577		
2624772005	IW-D-2	EPA 300.0	37577		
2624772006	IW-E-1	EPA 300.0	37577		
2624772007	IW-B-2	EPA 300.0	37577		
2624772008	PB-4D	EPA 300.0	37577		
2624772009	EB-4	EPA 300.0	37577		
2624772010	FB-4	EPA 300.0	37577		
2624772011	DUP-4	EPA 300.0	37577		
2624772001	PZ-13S	EPA 300.0	37829		
2624772002	PZ-14I	EPA 300.0	37829		
2624772003	PZ-14S	EPA 300.0	37829		
2624772004	IW-C-2	EPA 300.0	37829		
2624772005	IW-D-2	EPA 300.0	37829		
2624772006	IW-E-1	EPA 300.0	37829		
2624772007	IW-B-2	EPA 300.0	37829		
2624772008	PB-4D	EPA 300.0	37829		
2624772009	EB-4	EPA 300.0	37829		
2624772010	FB-4	EPA 300.0	37829		
2624772011	DUP-4	EPA 300.0	37829		

Pace Analytical"	С		F-CUSTODY Ar	·							LAB U:	SE ON	LY- Aff	ix Wor		r/Logi ITJL Lo			2624772
Company: Georgia Power - Coal Combusti	on Residuals	unain-of-C	ustody is a LEGAL DO Billing Information:	COMENT	- complete at re	nevent neld	3					1	LII C	ΗΔΓ	ED.	ΔRF	ΔC =	re f	or LAB USE ONLY
Address: 2480 Maner Road	***************************************		1						9881888	34800/3/034	nnescas	STREET, TO	CE properties	vative	/11000////00	MARKET A	w a		Lab Project Manager:
Atlanta, GA 30339			1		-856-				77.02	1	T	Carte	i i	VBLIVE		1		1	Cap () Ofect warrage :
Report To: Joju Abraham			Email To: scsinvolces@southernco.com			** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxidda, (5) zinc aca													
Copy To: Golder			Site Collection Info/	Site Collection Info/Address: Plant Branch				withanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (8) ammonium hydroxide, (D) TSP, (U) Unpreserved, (D) Other											
phone: (404) 506-7239		•	State: Georgia City: Milledgeville Time Zone Collected:			. Analyses								Lab Profile/Line: Lab Sample Receipt Checklist:					
Email: jabraham@southernco.com Phone: (404) 506-7239	Project Name:	Plant Branc	h Project		Pace Profile#	. 12.				***				_					Custody Seals Present/Intact Y N NA Custody Signatures Present Y N NA
Email: jabraham@southernco.com	166625418.02												l	ed G					Collector Signature Present Y N NA
Collected By (print): Travis Martinez	Purchase Orde	r#:			Pace Project M					á		Ę		filtered)					Bottles Intact Y N NA Correct Bottles Y N NA
Devin Thomas	Quote #:	e Beerl	1.		betsy.mcdanie					3-SE		ıΞ		9				0.00	Sufficient Volume Y N NA
Collected By (signature):	Tumeround Da	ite Kequirer	J.		Immediately Pi	No				metals-see		200.7 (Lab Filter)		alab				S	Samples Received on Ice YNNA VOA - Headspace Acceptable YNNA
Ki a sa sa sa sa sa sa sa sa sa sa sa sa s	Rush:				Fleid Fittered (i	f applicable	:):			ω		7		at				้ข้	USDA Regulated Solls Y N NA
A Section 1985			[] Next Day		[_]Yes[] No				E		8		Anions (phosphate				fat	Samples in Holding Time Y N NA
**	1] 4 Day [] 5 Day							total				ĕ				Sef	Residual Chlorine Present Y N NA Cl Strips:
	1	Expedite Cha	irges Apply)	40 <u>0</u>	Analysis:			147.		oð .		5		₽				a)	Sample pH Acceptable Y N NA
was a standard and a standard base balance		(DUA C-	numi Massa (CM) Mi		DADAD .			1		als		Ē	1	SE		228		lorid	pH Strips:
* Matrix Codes (Insert in Matrix box belov Product (P), Soil/Solid (SL), Oil (OL), Wipe										nel		불	1	ĕ	HU7	6.2		. ⊇.	Sulfide Present Y N NA Lead Acetate Strips:
Product (P), 3010 30111 (312), ON (012), 111 (11)	s (ees), can (can),		Dioanaly (D), trace: ((-7)				1000000	Vr]	ē				226.		e, Fl	reau Acetate Surps.
<u> </u>		Comp /	Collected (or Con	nposite	Composi	te End	Res	# of		App III/IV metals		Dissolved Metals by		Cations		Radium		oride	LAB USE ONLY: Lab Sample # / Comments:
		Grab	Start) Date	Time	Date	Time	│	Ctris		dd		SS		ati		8		ਣੋ	and a substitution of the substitution
Customer Sample ID	Matrix *	 		9:45		1	+	6		1	2/2/08/	1		1		2		1	
PZ-13S	GW	G	10/22/2019			440.755	-		1000 (17) (20)	1	2000000	1		1	2000000	2		1	
PZ-14I	GW	G.	10/22/2019	11:20		15000	8	6	2687076	1	2000	+	 	1		2		-	*
PZ-14S	GW	G	10/22/2019	12:50				6	2000AYAW		3000	1	0.000	_	253000			1	
IW-C-2	GW	G	10/22/2019	9:51			//	6	(S)(A/(Q)	1	\$9205	1		1		2	20.750	1	DOVINGE NOT CHESTS
IW-D-1	GW	G		· · · —			8							227 127					DRY WELL - NOT SAMPLED
IW-D-2	GW	G	10/22/2019	11:43		1000		8		1		1		1	\$300	4		1	RAD-4
IW-E-1	GW	G	10/22/2019	13:55	S10078-1800-1800-0			6		1		1		1		2		1	
IW-B-2	GW	G	10/22/2019	15:50				6		1		1		1		2		1	TO HER SEALORS OF THE SEA WEST AND SEASONS THE SEASONS
PB-4D	GW	G	10/22/2019	15:20			8	6		1	199/2001U	1		1		2		1	
EB-4	W	G	10/22/2019	640	160.000.000	The con-		6		1	600,000	1		1		2		1	
FB-4	W	G	10/22/2019	-	41.00		8	6	987/88	1	(3),7(3)	1		1		2		1	
DUP-4	GW	G	10/22/2019		9 10 10 10 10 10			6	AN AN	1	800	1		1		2		1	A STATE OF THE STA
(Total / Dissolved Metals): Al, B, Be, Cd,				Wet	Blue Di	v None			(6)	SHOP	THOLD	C DBE	SENT/	-72 ha		γ s	, N	/ A	LAB Sample Temperature Info:
(Cations/Anions): Bicarbonate/Carbonate		ite,	Type of Ice Used:	vvet	orue Di	y NOA	67.1988.788		160.10			osius jo	electris)	-, e_ 110		000(90%)	10		Temp Stank Received: Y N NA
Phosphate, Sodium, Magnesium, Potassiu			Packing Material Us	ed:					(4//100)	Lab Ti	racking	#:							Therm ID#: Cooler 1 Temp Upon Receipt:
(App IV Metals): Sb, As, Ba, Be, Cd, Cr, Co							saladili (18 Estesil (190	100		Same	les rece	siyari s							Coaler 1 Therm Corr. Factor: OC
NOTE: To single analysis (listed for both Total/Disso	xtal Soron only r lved and Ano III		Radchem sample(s)	screened	(<500 cpm);	Y N 1	NA			FEC		UPS		nt Co	ourier	Pace	Couri	er	Coaler 1 Corrected Temp:oC Comments:
er i jih	· · · · · · · · · · · · · · · · · · ·				B 41. 75			0100000000		On Asia	Value / Sil	(Glass)		(6/4(0)		8)/S			Consideration (Consideration Consideration C
Relinquished by/Company: (Signature)	~	Date	13-44 /08	85	Received by/Co	mpany: (5)		AC	E		101	Time:	20	мтігт Б #:	AB U\$	CONE			
Relinquished by/Company: (Signature)		Date	:/Time:	:	Referred by/Co	mpany: (Si	gnature)				Date/	Time:	\$9935307	tnum:					Trip Blank Received: Y N NA
													170093333	ipiate:					HCL MeOH TSP Other
Relinquished by/Company: (Signature) Date/Time: Received by/Company: (Signature)					Dete/	Timer	Pre	ogin:					Non Conformance(s): Page: 1						
Relinquished by/Company: (Signature) Date		<i>⊈</i> ।।11⊈.		Received by/Company: (Signature)						Date/Time: PM: PB:					YES / NO of:1				

Jal. (1386–49 ol	The Condition of	WUH · ZOZ411Z
Pace Analytical Client Name		PM: BM Due Date: 10/30/1 CLIENT: GAPower-CCR
Courier: Fed Ex UPS USPS Cler	nt Commercial C	Pace Other Proj. Due Date: Proj. Name:
Custody Seal on Cooler/Box Present: yes	☐ no Seeds int	
Packing Material: Bubble Wrap Bubble	Bags 🗌 Non 🖺	Other
Cooler Temperature 3.4	Biological Tissue is	Blue None Samples on ice, cooling process has begun Frozen: Yes No Contents: Omments:
Chain of Custody Present:	ØYes, □No □N/A 1	
Chain of Custody Filled Out:	Dreg □No □N/A 2	
Chain of Custody Relinquished:	Drey □No □N/A 3	
Sampler Name & Signature on COC:	IZYes □no □n/A 4	
Samples Arrived within Hold Time:	☐Yes ☐No ☐N/A 5	
Short Hold Time Analysis (<72hr):	□Yes □No □N/A 6	
Rush Turn Around Time Requested:	□Yes □No M2N/A 7	
Sufficient Volume:	ØYesy □No □N/A 8	
Correct Containers Used:	MYes/□No □N/A 9	
-Pace Containers Used:	MYes/ □No □N/A	
Containers Intact:	Yes Zino IN/A	(0.
Filtered volume received for Dissolved tests	MYes □No ■N	
Sample Labels match COC:	☑Yes ☐No ☐N/A 1	12.
-Includes date/time/ID/Analysis Matrix:	GW/W	
All containers needing preservation have been checked.	Pres ⊠No □N/A	13.
All containers needing preservation are found to be in compliance with EPA recommendation.	☐Yes ☐No ☐N/A	
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□vos □klo	Initial when Lot # of added completed preservative
Samples checked for dechlorination:	MZYes □No □N/A	14.
Headspace in VOA Vials (>6mm):	□Yes □No DAVA	15.
Trip Blank Present:	□Yes □No ☑N/A	16.
Trip Blank Custody Seals Present	□Yes □No □N/A	
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution: Person Contacted:	Date/T	Field Data Required? Y / N
Comments/ Resolution:		
		3000 W28

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

Date:

November 21, 2019

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: PLANT BRANCH RAD

Pace Project No.: 2624779

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on October 25, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Betsy McDaniel

Beton M Damil

betsy.mcdaniel@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Julie Lehrman, Golder Associates Inc.
 Dawn Prell, Golder Associates Inc.
 Eric Rolle, Georgia Power - Coal Combustion Residuals
 Rebecca Thornton, Pace Analytical Atlanta

(770)734-4200

CERTIFICATIONS

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Texas/TNI Certification #: T104704188-17-3

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
2624779001	IW-B-1	Water	10/24/19 10:10	10/25/19 11:00	
2624779002	SW-B-1	Water	10/24/19 13:52	10/25/19 11:00	
2624779003	SW-E-1	Water	10/24/19 12:45	10/25/19 11:00	
2624779004	EB-5	Water	10/24/19 10:51	10/25/19 11:00	

SAMPLE ANALYTE COUNT

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
2624779001	IW-B-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624779002	SW-B-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624779003	SW-E-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2624779004	EB-5	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

Sample: IW-B-1 PWS:	Lab ID : 26247790 Site ID:	O1 Collected: 10/24/19 10:10 Sample Type:	Received:	10/25/19 11:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.644 ± 0.309 (0.329) C:90% T:NA	pCi/L	11/20/19 08:32	13982-63-3	
Radium-228		0.800 ± 0.403 (0.706) C:81% T:93%	pCi/L	11/19/19 16:31	15262-20-1	
Total Radium	Total Radium Calculation	1.44 ± 0.712 (1.04)	pCi/L	11/20/19 14:12	2 7440-14-4	

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

Sample: SW-B-1 Lab ID: 2624779002 Collected: 10/24/19 13:52 Received: 10/25/19 11:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual EPA 9315 $0.362 \pm 0.294 \quad (0.500)$ Radium-226 pCi/L 11/20/19 08:32 13982-63-3 C:66% T:NA EPA 9320 $0.274 \pm 0.391 \quad (0.841)$ Radium-228 pCi/L 11/19/19 16:31 15262-20-1 C:81% T:83% Total Radium Total Radium $0.636 \pm 0.685 \quad (1.34)$ pCi/L 11/20/19 14:12 7440-14-4 Calculation

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

Sample: SW-E-1 Lab ID: 2624779003 Collected: 10/24/19 12:45 Received: 10/25/19 11:00 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 9315 $0.593 \pm 0.324 \quad (0.420)$ Radium-226 pCi/L 11/20/19 08:08 13982-63-3 C:87% T:NA EPA 9320 0.323 ± 0.466 (1.00) Radium-228 pCi/L 11/19/19 17:41 15262-20-1 C:81% T:87% Total Radium Total Radium $0.916 \pm 0.790 \quad (1.42)$ pCi/L 11/20/19 14:12 7440-14-4 Calculation

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

Sample: EB-5 PWS:	Lab ID: 2624779 (Site ID:	O04 Collected: 10/24/19 10:51 Sample Type:	Received:	10/25/19 11:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 9315	0.316 ± 0.228 (0.362) C:94% T:NA	pCi/L	11/20/19 08:08	13982-63-3	
Radium-228	EPA 9320	0.610 ± 0.425 (0.821) C:81% T:92%	pCi/L	11/19/19 17:41	15262-20-1	
Total Radium	Total Radium Calculation	0.926 ± 0.653 (1.18)	pCi/L	11/20/19 14:12	2 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

QC Batch: 369884 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Associated Lab Samples: 2624779001, 2624779002, 2624779003, 2624779004

METHOD BLANK: 1794407 Matrix: Water

Associated Lab Samples: 2624779001, 2624779002, 2624779003, 2624779004

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.823 \pm 0.392 (0.668) C:78% T:93% pCi/L 11/19/19 12:53

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

QC Batch: 369883 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Associated Lab Samples: 2624779001, 2624779002, 2624779003, 2624779004

METHOD BLANK: 1794406 Matrix: Water

Associated Lab Samples: 2624779001, 2624779002, 2624779003, 2624779004

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.162 \pm 0.185 (0.360) C:94% T:NA pCi/L 11/20/19 08:32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 11/21/2019 05:22 PM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PLANT BRANCH RAD

Pace Project No.: 2624779

Date: 11/21/2019 05:22 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2624779001	IW-B-1	EPA 9315	369883		
2624779002	SW-B-1	EPA 9315	369883		
2624779003	SW-E-1	EPA 9315	369883		
2624779004	EB-5	EPA 9315	369883		
2624779001	IW-B-1	EPA 9320	369884		
2624779002	SW-B-1	EPA 9320	369884		
2624779003	SW-E-1	EPA 9320	369884		
2624779004	EB-5	EPA 9320	369884		
2624779001	IW-B-1	Total Radium Calculation	371956		
2624779002	SW-B-1	Total Radium Calculation	371956		
2624779003	SW-E-1	Total Radium Calculation	371956		
2624779004	EB-5	Total Radium Calculation	371956		

WO#:2624779

Pace Analytical	CI		-CUSTODY Ar	-			÷				LAB U	SE ONL	Y-1	26	24 24	 779			
Company: Georgia Power - Coal Combustion	on Residuals	Granitors	Billing Information:	CONTENT	COMPLETE WITTE		-					A	LL SI	HAD	ED.	ARE	4S a	re fo	or LAB USE ONLY
Address: 2480 Maner Road			1						100,000	100000000000000000000000000000000000000	Соп		Preserv	000000000000000000000000000000000000000			548951213	32101798810	Lab Project Manager:
Atlanta, GA 30339								.550.	7.00	. 1						1			
Report To: Joju Abraham			Email To: scsinvoice	s@southe	mco.com		· ·		** Pro	eservativa ethanol /	Types:	(1) nktri n hisulf	c acid, (2	2) sulfu sodlum	ric ack	i, (3) h	drochi 9) hex	oric aci	id, (4) sodium hydroxide, (5) zinc acetate, ascorbic acid, (8) ammonium sulfate,
Copy To: Golder			Site Collection Info/	Address: I	Plant Branch		100	70	(C) an	nmonlum	hydroxi	±e, (D) 1	rsP, (U) Analys	Unprei	erved,	(O) Oi	her		Lab Profile/Line:
phone: (404) 506-7239		••	State: Georgia City		ville Time Zon		:	100		T			-ulbiys						Lab Sample Receipt Checklist: Custody Seals Present/Intact Y N.NA
Email: jabraham@southernco.com Phone: (404) 506-7239	Project Name:	Plant Branc	Project		Pace Profile#	12.	•							_			76521		Custody Signatures Present Y N NA
Email: jabraham@southernco.com	166625418.02		•									_		filtered					Collector Signature Present Y N NA
Collected By (print): Devin Thomas Travis	Purchase Orde	r#:			Pace Project M	anager:				ن ا		Filter)		ē					Bottles Intact Y N NA Correct Bottles Y N NA
Martinez	Quote #:				betsy.mcdanlei					metals-see		Ε							Sufficient Volume PATNA
Collected By (signature):	Turnaround Da	ite Required	:		Immediately Pa		: :			÷		Ö		g				S	Samples Received on Ice Y N NA
dobrir Vol	ļ] No	۸.		1	<u> </u>	MANUAL PROPERTY.	(Lab		ę.				F	VOA - Headspace Acceptable Y N NA
	Rush:				Field Filtered (r		j:			E		7.		흔				ā,	USDA Regulated Soils Y N NA Samples in Holding Time Y N NA
			[] Next Day		[] Yes [] No				& total		200.7		(phosphate				Ŧ.	Samples in Holding Time YNNA Residual Chlorine Present YNNA
		[3 Day] Expedite Cha-] 4 Day [] 5 Day		Analysis:					5		by 2						Sc	Cl Strips:
	· · · · · ·	ефиона спа	Rez visbuk)		74161¥343.					98				5		_		e,	Sample pH Acceptable Y N NA
Matrix Codes (insert in Matrix box below Product (P), Soil/Soild (SL), Oil (OL), Wipe	/): Drinking Wat (WP), Air (AR),	Tissue (TS),	Bioassay (B), Water (WT), Othe	(WW), r (OT)		1 .	غديد ا		App III/IV metals		Dissolved Metals		s / Anions		m 226.228		de, Fluoride,	pH Strips: Sufficie Present Y N NA Lead Acetate Strips: LAB USE ONLY:
		Comp / Grab	Collected (or Cor Start)	nposite	Composit	te End	Res	# of Ctns		= E		los		Cations ,		Radium		Chloride	Lab Sample # / Comments:
Customer Sample ID	Matrix *	0.20	Date	Time	Date	Time				A o		ă		Ü		Ra Ba		5	7 "
IW-8-1	GW	G	10/24/2019	10:10				8		1		1		1		4		1	RAD-5
	SW	G	10/24/2019		·		†···-	6		1		1		1		2		1	100000000000000000000000000000000000000
SW-B-1		G		12:45			 	6		1		1		1		2		1	100
SW-E-1	SW		10/24/2019				+	6	2016	1	20000	1	- 1	1		2	0.00	1	
EB-5	W	G	10/24/2019	10:51			-	10	13 VISCO		0.0000	-	A 09749	-		-			100
		<u> </u>				860004-0	 	1	(A) (A)		1		25343	-			1000		-
							1	<u> </u>	200000 200000		(Value		25.00				Western Control	<u> </u>	The state of the s
			<u> </u>							4							100		
							7	i							(i) (i)	. 18km			
		<u> </u>																	
	· · · · · ·		 					1					No.						
	-	 		,				+		1	7								
(Total / Dissolved Metals): Al, B, Be, Cd, C	o. Fe. Mn					100,000,000	1		l de la constant	1	THOLD	e pocc	EMT /	72 ho	ice) .	V A	. N	Δ	LAB Sample Temperature Info:
(Cations/Anions): Bicarbonate/Carbonate	Alkalinity, Nitra	ite,	Type of Ice Used:	Wet	Blue Dr	y None	1				acking			<u> </u>					Temp Blank Received: Y N NA Therm ID#:
Phosphate, Sodium, Magnesium, Potassiu	m. (App III Met	ands): B, Ca,	Packing Material U	ed:						Cao ii	acking		<u>c</u>						Cooler 1 Temp Upon Receipt: _oC
(App IV Metals): Sb, As, Ba, Be, Cd, Cr, Co,			5 (5) (5) (5)		3-1980-98-106					Samp	es rece	and the same of the		90.500			7000	01//(5)	Cooler 1 Therm Corr. Factor:oC Cooler 1 Corrected Temp:oC
NOTE: Total Boron only required for single Total/Dissolved and App III Arrafysis)	винума (пассо		Radchem sample(s	screened	(<500 cpm):	Y N O	NA.			FED		UP5		t Co	urier	Pace	Courie	er	Comments:
Relinquished by/Company: (Signature)		Date	/Time: \$\frac{1}{4}\ 105	ঠ	Received by/80	arpany: (Sig	gnature)	<u> </u>	100,600,000	A Principle	Date/		N }}abis		B USI	ONU			
Relinguished by/Company: (Signature)	·		/Time:		Received by/Co	mpan y: (Si	(nature)	W			Date/		Accti Tem	num: plate:					Trip Blank Received: Y N NA HCL MeOH TSP Other
Relinquished by/Company: (Signature)	<u></u>	Date	/Time:		Received by/Co	mpany: (Siş	gnature)		•		Date/	Time:	Prelo PM:	ogin:					Non Conformance(s): Page: 1
1			the state of the s										PB:						YES / NO af: 1

Page 13 of 13

October 29, 2020

Kelley Sharpe ARCADIS - Atlanta 2839 Paces Ferry Rd STE 900 Atlanta, GA 30339

RE: Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Dear Kelley Sharpe:

Enclosed are the analytical results for sample(s) received by the laboratory on October 22, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maiya Parks maiya.parks@pacelabs.com (770)734-4200

Project Manager

Enclosures

cc: Ben Hodges, Georgia Power Warren Johnson, ARCADIS - Atlanta

CERTIFICATIONS

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804
Florida/NELAP Certification #: E87648
Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001 Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
92501802001	LR-1	Water	10/22/20 12:10	10/22/20 15:14	
92501802002	LR+8	Water	10/22/20 12:25	10/22/20 15:14	
92501802003	LR+9	Water	10/22/20 12:30	10/22/20 15:14	
92501802004	LR+10	Water	10/22/20 12:38	10/22/20 15:14	

SAMPLE ANALYTE COUNT

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92501802001	LR-1	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	KH	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		EPA 9040C	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92501802002	LR+8	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	KH	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		EPA 9040C	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92501802003	LR+9	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	KH	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		EPA 9040C	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92501802004	LR+10	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	KH	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		EPA 9040C	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A

PASI-A = Pace Analytical Services - Asheville

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

Sample: LR-1	Lab ID: 9250	01802001	Collected: 10/22/2	20 12:10	Received: 10)/22/20 15:14	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	010D Preparation Me	ethod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Sodium	4.4	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:13	3 7440-23-5	
Calcium	3.7	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:13	3 7440-70-2	
Magnesium	2.0	mg/L	0.050	1	10/23/20 14:00	10/24/20 00:13	7439-95-4	
Potassium	2.7	mg/L	0.20	1	10/23/20 14:00	10/27/20 13:38	3 7440-09-7	M1
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	ethod: El	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	10/23/20 14:04	10/26/20 13:50	7440-42-8	
Cadmium	ND	mg/L	0.00050	1	10/23/20 14:04	10/26/20 13:50	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	10/23/20 14:04	10/26/20 13:50	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 24	50C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	59.0	mg/L	10.0	1		10/23/20 16:53	3	
9040 pH	Analytical Meth	od: EPA 90)40C					
	Pace Analytical	Services -	Peachtree Corners,	GA				
pH at 25 Degrees C	7.1	Std. Units	0.10	1		10/23/20 14:57	7	H3,H6
2320B Alkalinity	Analytical Meth	od: SM 23	20B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity, Bicarbonate (CaCO3)	24.2	mg/L	5.0	1		10/28/20 13:19)	
Alkalinity, Total as CaCO3	24.2	mg/L	5.0	1		10/28/20 13:19)	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	00.0 Rev 2.1 1993					
	Pace Analytical	Services -	Asheville					
Chloride	3.3	mg/L	1.0	1		10/25/20 22:08	3 16887-00-6	
Fluoride	ND	mg/L	0.10	1		10/25/20 22:08	3 16984-48-8	
Sulfate	2.1	mg/L	1.0	1		10/25/20 22:08	3 14808-79-8	

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

Sample: LR+8	Lab ID: 925	01802002	Collected: 10/22/	20 12:25	Received: 10	0/22/20 15:14	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	nod: EPA 60	010D Preparation M	ethod: E	PA 3010A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Sodium	4.9	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:3	7440-23-5	
Calcium	4.2	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:3	7440-70-2	
Magnesium	2.1	mg/L	0.050	1	10/23/20 14:00	10/24/20 00:31	7439-95-4	
Potassium	2.8	mg/L	0.20	1	10/23/20 14:00	10/27/20 13:43	3 7440-09-7	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20B Preparation M	ethod: E	PA 3005A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	10/23/20 14:04	10/26/20 14:12	7440-42-8	
Cadmium	ND	mg/L	0.00050	1	10/23/20 14:04	10/26/20 14:12	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	10/23/20 14:04	10/26/20 14:12	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 24	50C-2011					
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Total Dissolved Solids	60.0	mg/L	10.0	1		10/23/20 16:53	3	
9040 pH	Analytical Meth	nod: EPA 90)40C					
	Pace Analytica	l Services -	Peachtree Corners,	GA				
pH at 25 Degrees C	7.2	Std. Units	0.10	1		10/23/20 15:14	1	H3,H6
2320B Alkalinity	Analytical Meth	nod: SM 232	20B-2011					
	Pace Analytica	l Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	25.6	mg/L	5.0	1		10/28/20 13:25	5	
Alkalinity, Total as CaCO3	25.6	mg/L	5.0	1		10/28/20 13:25	5	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0 Rev 2.1 1993					
	Pace Analytica	l Services -	Asheville					
Chloride	3.7	mg/L	1.0	1		10/25/20 22:54	16887-00-6	
Fluoride	ND	mg/L	0.10	1		10/25/20 22:54	16984-48-8	
Sulfate	2.5	mg/L	1.0	1		10/25/20 22:54	14808-79-8	

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

Sample: LR+9	Lab ID: 925	01802003	Collected: 10	22/20 12	2:30	Received:	10/22/20 15:14	Matrix: Water	
Parameters	Results	Units	Report Lin	nit DF	=	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	nod: EPA 60	10D Preparatio	n Method	l: EP/	A 3010A			
	Pace Analytica	l Services -	Peachtree Corn	ers, GA					
Sodium	4.9	mg/L		1.0 1	1	10/23/20 14:0	0 10/24/20 00:3	5 7440-23-5	
Calcium	4.3	mg/L		1.0 1	1	10/23/20 14:0	0 10/24/20 00:3	5 7440-70-2	
Magnesium	2.1	mg/L	0.0	50 1	1	10/23/20 14:0	0 10/24/20 00:3	5 7439-95-4	
Potassium	2.9	mg/L	0	20 1	1	10/23/20 14:0	00 10/27/20 13:4	8 7440-09-7	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20B Preparation	Method	l: EP/	A 3005A			
	Pace Analytica	l Services -	Peachtree Corn	ers, GA					
Boron	ND	mg/L	0.0	40 1	1	10/23/20 14:0	04 10/26/20 14:1	8 7440-42-8	
Cadmium	ND	mg/L	0.000	50 1	1	10/23/20 14:0	04 10/26/20 14:1	8 7440-43-9	
Cobalt	ND	mg/L	0.00	50 1	1	10/23/20 14:0	04 10/26/20 14:1	8 7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 245	50C-2011						
	Pace Analytica	l Services -	Peachtree Corn	ers, GA					
Total Dissolved Solids	57.0	mg/L	1	0.0 1			10/23/20 16:5	i3	
9040 pH	Analytical Meth	nod: EPA 90	40C						
	Pace Analytica	l Services -	Peachtree Corn	ers, GA					
pH at 25 Degrees C	7.2	Std. Units	0	10 1			10/23/20 15:1	8	H3,H6
2320B Alkalinity	Analytical Meth	nod: SM 232	20B-2011						
	Pace Analytica	l Services -	Asheville						
Alkalinity,Bicarbonate (CaCO3)	25.8	mg/L		5.0 1			10/28/20 13:3	31	
Alkalinity, Total as CaCO3	25.8	mg/L		5.0 1			10/28/20 13:3	31	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0 Rev 2.1 199	3					
-	Pace Analytica	l Services -	Asheville						
Chloride	3.8	mg/L		1.0 1			10/25/20 23:1	0 16887-00-6	
Fluoride	ND	mg/L		10 1				0 16984-48-8	
Sulfate	2.6	mg/L		1.0 1			10/25/20 23:1	0 14808-79-8	

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

Sample: LR+10	Lab ID: 9250	1802004	Collected: 10/22/2	20 12:38	Received: 10	0/22/20 15:14	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation M	ethod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Potassium	2.8	mg/L	0.20	1	10/23/20 14:00	10/27/20 13:54	1 7440-09-7	
Sodium	5.1	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:49	7440-23-5	
Calcium	4.5	mg/L	1.0	1	10/23/20 14:00	10/24/20 00:49	7440-70-2	
Magnesium	2.1	mg/L	0.050	1	10/23/20 14:00	10/24/20 00:49	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	ethod: El	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	10/23/20 14:04	10/26/20 14:24	1 7440-42-8	
Cadmium	ND	mg/L	0.00050	1	10/23/20 14:04	10/26/20 14:24	1 7440-43-9	
Cobalt	ND	mg/L	0.0050	1	10/23/20 14:04	10/26/20 14:24	1 7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	50C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	59.0	mg/L	10.0	1		10/23/20 16:53	3	
9040 pH	Analytical Meth	od: EPA 90	40C					
•	Pace Analytical	Services -	Peachtree Corners,	GA				
pH at 25 Degrees C	7.1	Std. Units	0.10	1		10/23/20 15:20)	H3,H6
2320B Alkalinity	Analytical Meth	od: SM 232	20B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	26.5	mg/L	5.0	1		10/28/20 13:37	7	
Alkalinity, Total as CaCO3	26.5	mg/L	5.0	1		10/28/20 13:37	7	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
- -	Pace Analytical	Services -	Asheville					
Chloride	4.0	mg/L	1.0	1		10/25/20 23:25	16887-00-6	
Fluoride	ND	mg/L	0.10	1		10/25/20 23:25	16984-48-8	
Sulfate	2.6	mg/L	1.0	1		10/25/20 23:25	14808-79-8	

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

QC Batch: 575392 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

METHOD BLANK: 3045814 Matrix: Water
Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Calcium	mg/L	ND ND	1.0	10/24/20 00:04	
Magnesium	mg/L	ND	0.050	10/24/20 00:04	
Potassium	mg/L	ND	0.20	10/27/20 13:27	
Sodium	ma/L	ND	1.0	10/24/20 00:04	

Parameter Units Spike Conc. LCS Result LCS % Rec Limits % Rec Limits Qualifiers Calcium mg/L 1 .98J 98 80-120 Magnesium mg/L 1 1.0 101 80-120 Potassium mg/L 1 1.0 101 80-120 Sodium mg/L 1 1.0 103 80-120	LABORATORY CONTROL SAMPLE:	3045815					
Calcium mg/L 1 .98J 98 80-120 Magnesium mg/L 1 1.0 101 80-120 Potassium mg/L 1 1.0 101 80-120	Doromotor	lloito	•				Ouglifians
Magnesium mg/L 1 1.0 101 80-120 Potassium mg/L 1 1.0 101 80-120	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Potassium mg/L 1 1.0 101 80-120	Calcium	mg/L	1	.98J	98	80-120	
· · · · · · · · · · · · · · · · · · ·	Magnesium	mg/L	1	1.0	101	80-120	
Sodium mg/L 1 1.0 103 80-120	Potassium	mg/L	1	1.0	101	80-120	
	Sodium	mg/L	1	1.0	103	80-120	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 3045	816		3045817							
			MS	MSD								
	9	2501802001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	3.7	1	1	4.5	4.9	85	124	75-125	8	20	
Magnesium	mg/L	2.0	1	1	2.9	3.1	92	115	75-125	8	20	
Potassium	mg/L	2.7	1	1	3.8	4.1	116	137	75-125	6	20	M1
Sodium	mg/L	4.4	1	1	5.3	5.6	83	119	75-125	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Cobalt

Date: 10/29/2020 03:11 PM

QC Batch: 575391 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

mg/L

Laboratory: Pace Analytical Services - Peachtree Corners, GA

10/26/20 13:38

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

METHOD BLANK: 3045807 Matrix: Water
Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Boron mg/L ND 0.040 10/26/20 13:38 Cadmium mg/L ND 0.00050 10/26/20 13:38

LABORATORY CONTROL SAMPLE: 3045808

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	mg/L	1	0.98	98	80-120	_
Cadmium	mg/L	0.1	0.099	99	80-120	
Cobalt	mg/L	0.1	0.097	97	80-120	

ND

0.0050

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 3045	809		3045810							
			MS	MSD								
	9	92501802001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	mg/L	ND	1	1	0.95	1.0	94	99	75-125	5	20	
Cadmium	mg/L	ND	0.1	0.1	0.094	0.095	94	95	75-125	1	20	
Cobalt	mg/L	ND	0.1	0.1	0.092	0.095	92	94	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

QC Batch: 575357 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

METHOD BLANK: 3045601 Matrix: Water

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 10/23/20 16:52

LABORATORY CONTROL SAMPLE: 3045602

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 400 404 101 84-108

SAMPLE DUPLICATE: 3045603

Date: 10/29/2020 03:11 PM

Parameter Units Parameter Units Parameter Units Dup Max Result Result RPD Qualifiers Total Dissolved Solids mg/L 375 390 4 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

QC Batch: 575360 Analysis Method: EPA 9040C QC Batch Method: EPA 9040C Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

SAMPLE DUPLICATE: 3045620

Date: 10/29/2020 03:11 PM

92501802001 Dup Max Parameter Units Result RPD RPD Qualifiers Result 7.1 pH at 25 Degrees C 7.1 9 H3,H6 Std. Units 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

QC Batch: 576297 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

METHOD BLANK: 3049850 Matrix: Water

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 ND
 5.0
 10/28/20 12:39

 Alkalinity, Bicarbonate (CaCO3)
 mg/L
 ND
 5.0
 10/28/20 12:39

LABORATORY CONTROL SAMPLE: 3049851

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 52.4 105 80-120 mg/L 50

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3049852 3049853

MS MSD

92500569012 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 mg/L ND 50 50 51.8 51.6 104 103 80-120 0 25

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3049854 3049855

MS MSD

92501837008 MS MSD MS MSD Spike Spike % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 146 50 50 195 197 99 104 80-120 25 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

LABORATORY CONTROL SAMPLE:

Date: 10/29/2020 03:11 PM

QC Batch: 575544 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

METHOD BLANK: 3046842 Matrix: Water

Associated Lab Samples: 92501802001, 92501802002, 92501802003, 92501802004

3046843

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	10/25/20 21:37	
Fluoride	mg/L	ND	0.10	10/25/20 21:37	
Sulfate	mg/L	ND	1.0	10/25/20 21:37	

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 50 52.4 105 90-110 mg/L

 Chloride
 mg/L
 50
 52.4
 105
 90-110

 Fluoride
 mg/L
 2.5
 2.7
 108
 90-110

 Sulfate
 mg/L
 50
 52.4
 105
 90-110

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3046	844		3046845							
			MS	MSD								
		92501802001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.3	50	50	56.6	57.1	107	108	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.7	2.7	106	106	90-110	0	10	
Sulfate	mg/L	2.1	50	50	55.3	55.5	106	107	90-110	0	10	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3046846 3046847 MS MSD 92501621017 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Chloride mg/L 6.0 50 50 59.5 60.3 107 109 90-110 10 Fluoride mg/L 0.096J 2.5 2.5 2.7 2.8 105 108 90-110 2 10 Sulfate mg/L 224 50 50 270 271 92 93 90-110 0 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/29/2020 03:11 PM

H3 Sample was received or analysis requested beyond the recognized method holding time.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92501802

Date: 10/29/2020 03:11 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92501802001	 LR-1	EPA 3010A	<u>575392</u>	EPA 6010D	<u>575424</u>
92501802002	LR+8	EPA 3010A	575392	EPA 6010D	575424
92501802003	LR+9	EPA 3010A	575392	EPA 6010D	575424
92501802004	LR+10	EPA 3010A	575392	EPA 6010D	575424
92501802001	LR-1	EPA 3005A	575391	EPA 6020B	575422
92501802002	LR+8	EPA 3005A	575391	EPA 6020B	575422
92501802003	LR+9	EPA 3005A	575391	EPA 6020B	575422
92501802004	LR+10	EPA 3005A	575391	EPA 6020B	575422
92501802001	LR-1	SM 2450C-2011	575357		
92501802002	LR+8	SM 2450C-2011	575357		
92501802003	LR+9	SM 2450C-2011	575357		
92501802004	LR+10	SM 2450C-2011	575357		
92501802001	LR-1	EPA 9040C	575360		
92501802002	LR+8	EPA 9040C	575360		
92501802003	LR+9	EPA 9040C	575360		
92501802004	LR+10	EPA 9040C	575360		
92501802001	LR-1	SM 2320B-2011	576297		
92501802002	LR+8	SM 2320B-2011	576297		
92501802003	LR+9	SM 2320B-2011	576297		
92501802004	LR+10	SM 2320B-2011	576297		
92501802001	LR-1	EPA 300.0 Rev 2.1 1993	575544		
92501802002	LR+8	EPA 300.0 Rev 2.1 1993	575544		
92501802003	LR+9	EPA 300.0 Rev 2.1 1993	575544		
92501802004	LR+10	EPA 300.0 Rev 2.1 1993	575544		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section	1) A	Section B							5	Section	on C																Γ		- 10		01	
Require	ed Client Information:	Required Pro	ject l	Infon	mation:						_	formet													,		L	Pag	<u> </u>	1	Of	
Compar	ny: Georgia Power Company	Report To:	Ben I	Hodg	e s					Attent			counts	·							_		_		4							
Address	3:	Сору То:										Name:	Geo	rgia F	owe.	r Com	pany						_				1000	ć1 S.	la audet	ami Amaria	10000000	Yes and
										Addre															200		- 110		red (tig)	ory Agency		
Email:	7411144444	Purchase Ord			SCS103827					ace					!-		elec de	·		ho c							111000	None	State	Location	1178,00 74	17-1-12
Phone:		Project Name	2	Branc	ch Surface	Water Sa	mpling					oct Mai	nager		mary	/a.pa	rks(a	pa	: e ia	OS.C	om,						111920			GA		
Reques	ted Due Date: Standard TAT	Project #:			_					Pace	Pron	10 H.			_		The state of		1111	Rec	u wast	ed An	u lva	e Filt	ered -	(Y/N)	-	JU01		MILES CO		FREE WELL
			o tent	C=COMP)		0011	ECTED			Ī		D,	eser	votiv			N.	Γ	T	Ī			Ĭ	Ī								
	MATRIX Drinking We Water Water Water	WI	(see valid codes to left)	8		COLL	CIED		LECTION	t	T	T			Ī	Т	90	ž	Ţ	- Lotto	3	Ť	T	T				Ţ	Ê			
	SAMPLE ID Sowsoid	P Su. OL	(see val	(O=GRAB	STA	RT	ENI		ATCOL	SE		Ì					Test	etals (co	≨ 2 2 3 3 3	(90	Tonate	ŀ	S			<u> </u>			orine (Y			
ITEM#	One Character per box. Woe (A-Z, 0-9 f, -) Ar Sample Ids must be unique Tissue	WP AR OT TS	MATRIX CODE	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Deveseved	HNO3	오	HOWN	Na2S203	Methanol	Analyse	Appendix IV m	and cadmium	SO4, F, pH, TDS)	alkalinity, Bica								Residual Chi			
1410	LR-1		Ϋ́	G	10 22:10	סגע	10/22/2020	-			Т						Т		×	х	х						Ш		╛╽	_		
2	LR+8		더		10420		10/22/2020	_		┪	T		Г	П		Т	1		χŢ	x	х								▋┃			
3	LR+9			ヿ		i.e	10/22/2020		П	┪	Ť		Γ			Т	Τ	1	,	х	x	Ì	Т	T	П							
4	·	_	F		10.22.20			-	T	7	1	T	Τ	П		T	1	Ι,	T	x	x			Τ]		£ 5	
Early	LR+10		Ħ	~	1012.0	16:20	10222020		T	7	-	1	T	П	T	寸	1	Г	\top	╗		┪	Т	T	Τ	Г	П	Т	1			
5			H	Ħ					7	┪	十	十	✝	П	┪	\top	1	T	+	7	╗	1	1	T	T	Γ	П	1	1			
6	,,,	_	H	H					Ħ	7	寸	┪	T	Н	┪	\dashv	1	r	1	7		1	1	T	1		П	1	1			
7			H	H					H	1	寸	╅	t	H		\dashv	1	r	†	7		1	T	Ť	T	T	П	1	1			
8			Н	H		-			Н	┪	+	+	╁╌	H	\dashv	+	1	r	+	┪	┪	+	+	┪	T	T	H	\top	7			
9		·	Н	${oldsymbol{ec{H}}}$					H	\dashv	\dagger	十	t	H	\dashv	\forall	1	r	\dagger	_	\neg	十	op	十	十	T	口	7	1		_	
10			H	$\vdash \vdash$		-		\vdash	╟╢	\dashv	十	+	十	10.	H	\dashv	1	r	十	\dashv	┪	7	\dagger	十	T	Τ	\sqcap	Ť	1	,		
11	 		H	H					H	\dashv	\dashv	+	+	Н	H	\forall	1	H	\dagger	\dashv	7	\dagger	+	\dagger	+	╁	\sqcap	十	1			
12	ADDITIONAL COMMENTS	ON BUILD	REI		JISHED BY /	AFFELIATI	ON	DATE	701	556	IME	9 6	(17F)	1216	ACC	CEPTE	D BY	AFI	LIAT	TION	EL P.S	500	31 3	DA	TE	10	TIME	1		SAMPLE	ONDITIONS	F150
Con-11-0	PADEL CALIFORNIA	1		, ,	kiia sa		Mark Street			111	T: #4	, -	1	7	1/	DI	111			12	m	9	7	10/2	Z ka	17	51	7	0.8	N	N	Y
		1/1/00	-70	X (/)	und to	W/NC	ממיז	10.22.7	ω	7.3	+	\			- 4	11	D	<i>.</i>	7		4		4	7	7	Ť	1	7	<u> </u>			
 		+-					· · · ·	90	ᅦ			┪											1			Τ		╛				111
-						_																										
	104 - 00504 000		m	V.		SAMPL	ER NAME AI	ND SIGNA	TUR	E		A PER	100		XB		193	107	VBI	40 1	950	THE S		544		leas-			U	8		
	JO#:92501802					PF	Name o	f SAMPL	ER:		1.	17	_	./:									_						.⊑ 0		इ.स.	8
						SI	GNATURE O	SAMPLI		and Sal		ou	سا	المائلة د فر د	g: Lo	50VL	-	Τ		DATE	Sign	ed:	10.	22	21	2		1	TEMP in C	Received Ice (Y/N)	Custody Sealed Cooler (YAN)	Sami intact

Sample Condition Upon Receipt

Face Analytical Client Name:	GA PO	WEN	WO#:92501802
: courier: 🗌 Fed Ex 🔲 UPS 🗎 USPS 💋 Clier	I nt □ Commercial	Pace Other	PM: MP Due Date: 10/29/20 CLIENT: GA-ArcadAtl
racking #:	× -		
custody Seal on Cooler/Box Present: yes	no Seals	_	
acking Material: Bubble Wrap Bubble	Bags	Other Z	1Ploc
hermometer Used THE 214	Type of Ice:	Blue None	Samples on ice, cooling process has begun Date and Initials of person examining
Cooler Temperature 10.8	Biological Tissue	is Frozen: Yes Comments:	contents: LOW 10 22 20
Chain of Custody Present:	ØYes □No □N/A	1	
Chain of Custody Filled Out:	Ø¥es □No □N/A	2.	+
Chain of Custody Relinquished:	dres □No □N/A	3	
Sampler Name & Signature on COC:	ATes ONO ON/A	4.	
Samples Arrived within Hold Time:	ØYES □No □N/A	5.	
Short Hold Time Analysis (<72hr):	□Yes ØNe □N/A	6.	
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.Stando	ard.
Sufficient Volume:	Ares □No □N/A	8.	
Correct Containers Used:	s □No □N/A	9.	
-Pace Containers Used:	Oves □No □N/A		
Containers Intact:	ÆYes □No □N/A	10.	
Filtered volume received for Dissolved tests	□Yes □No € N#	11,	
Sample Labels match COC:	Ores □No □N/	A 12.	
-Includes date/time/ID/Analysis Matrix:	WT_		8
All containers needing preservation have been checked.	Gres □No □N//	A 13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	ØYES □NO □N/		Lot # of added
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No	Initial when completed	preservative
Samples checked for dechlorination:	□Yes □No ØM	× 14.	
Headspace in VOA Vials (>6mm):	□Yes □No 🕮	A 15.	
Trip Blank Present:	□Yes □No €N	/A 16.	
Trip Blank Custody Seals Present	□Yes □No €N	ÍA	
Pace Trip Blank Lot # (if purchased):		<u> </u>	
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Dat	te/Time:	
Comments/ Resolution:		7	
£2			
(8)			
		<u> </u>	
8			Date:
Project Manager Review:			

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

February 11, 2021

Kelley Sharpe ARCADIS - Atlanta 2839 Paces Ferry Rd STE 900 Atlanta, GA 30339

RE: Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Dear Kelley Sharpe:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maiya Parks maiya.parks@pacelabs.com

(770)734-4200 Project Manager

Enclosures

cc: Joju Abraham, Georgia Power-CCR Ben Hodges, Georgia Power Warren Johnson, ARCADIS - Atlanta

CERTIFICATIONS

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001

SAMPLE SUMMARY

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92520473001	LR-1	Water	02/04/21 12:30	02/04/21 15:40
92520473002	LR+8	Water	02/04/21 12:20	02/04/21 15:40
92520473003	LR+9	Water	02/04/21 12:05	02/04/21 15:40
92520473004	LR-9A	Water	02/04/21 12:15	02/04/21 15:40
92520473005	LR-10	Water	02/04/21 11:55	02/04/21 15:40

SAMPLE ANALYTE COUNT

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92520473001	LR-1	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92520473002	LR+8	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92520473003	LR+9	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92520473004	LR-9A	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92520473005	LR-10	EPA 6010D	DRB	4	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2450C-2011	AW1	1	PASI-GA
		SM 2320B-2011	ECH	2	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A

PASI-A = Pace Analytical Services - Asheville

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Sample: LR-1	Lab ID: 92520473001 Collected: 02/04/21 12:30 Received: 02/04/21 15:40 Matrix: Water							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	thod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Potassium	2.3	mg/L	0.20	1	02/05/21 11:58	02/08/21 18:14	7440-09-7	
Sodium	4.5	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:14	7440-23-5	
Calcium	4.8	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:14	7440-70-2	
Magnesium	2.2	mg/L	0.050	1	02/05/21 11:58	02/08/21 18:14	7439-95-4	
6020 MET ICPMS	Analytical Method: EPA 6020B Preparation Method: EPA 3005A							
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	02/10/21 10:04	02/10/21 13:54	7440-42-8	
Cadmium	ND	mg/L	0.00012	1	02/10/21 10:04	02/10/21 13:54	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	02/10/21 10:04	02/10/21 13:54	7440-48-4	
2540C Total Dissolved Solids	Analytical Method: SM 2450C-2011							
	Pace Analytical Services - Peachtree Corners, GA							
Total Dissolved Solids	70.0	mg/L	10.0	1		02/09/21 15:03		
2320B Alkalinity	Analytical Method: SM 2320B-2011							
	Pace Analytical Services - Asheville							
Alkalinity,Bicarbonate (CaCO3)	25.8	mg/L	5.0	1		02/10/21 14:12		
Alkalinity, Total as CaCO3	25.8	mg/L	5.0	1		02/10/21 14:12		
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993							
-	Pace Analytical	Services -	Asheville					
Chloride	3.7	mg/L	1.0	1		02/06/21 03:56	16887-00-6	
Fluoride	ND	mg/L	0.10	1		02/06/21 03:56	16984-48-8	
Sulfate	2.8	mg/L	1.0	1		02/06/21 03:56		

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Sample: LR+8	Lab ID: 9252	20473002	Collected: 02/04/2	21 12:20	Received: 02	2/04/21 15:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	ethod: E	PA 3010A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Potassium	2.5	mg/L	0.20	1	02/05/21 11:58	02/08/21 18:44	7440-09-7	
Sodium	4.4	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:44	7440-23-5	
Calcium	4.7	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:44	7440-70-2	
Magnesium	2.1	mg/L	0.050	1	02/05/21 11:58	02/08/21 18:44	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	02/10/21 10:04	02/10/21 14:17	7440-42-8	
Cadmium	ND	mg/L	0.00012	1	02/10/21 10:04	02/10/21 14:17	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	02/10/21 10:04	02/10/21 14:17	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	50C-2011					
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Total Dissolved Solids	52.0	mg/L	10.0	1		02/09/21 15:04		
2320B Alkalinity	Analytical Meth	od: SM 232	20B-2011					
·	Pace Analytica	l Services -	Asheville					
Alkalinity, Bicarbonate (CaCO3)	24.3	mg/L	5.0	1		02/10/21 14:19		
Alkalinity, Total as CaCO3	24.3	mg/L	5.0	1		02/10/21 14:19		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
•	Pace Analytica	l Services -	Asheville					
Chloride	3.8	mg/L	1.0	1		02/06/21 04:11	16887-00-6	
Fluoride	ND	mg/L	0.10	1		02/06/21 04:11		
Sulfate	3.2	mg/L	1.0	1		02/06/21 04:11		

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Sample: LR+9	Lab ID: 9252	20473003	Collected: 02/04/2	1 12:05	Received: 02	/04/21 15:40 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	thod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Potassium	2.5	mg/L	0.20	1	02/05/21 11:58	02/08/21 18:49	7440-09-7	
Sodium	4.4	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:49	7440-23-5	
Calcium	4.6	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:49	7440-70-2	
Magnesium	2.1	mg/L	0.050	1	02/05/21 11:58	02/08/21 18:49	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	02/10/21 10:04	02/10/21 14:23	7440-42-8	
Cadmium	ND	mg/L	0.00012	1	02/10/21 10:04	02/10/21 14:23	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	02/10/21 10:04	02/10/21 14:23	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	0C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	76.0	mg/L	10.0	1		02/09/21 15:04		
2320B Alkalinity	Analytical Meth	od: SM 232	0B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	24.2	mg/L	5.0	1		02/10/21 14:26		
Alkalinity, Total as CaCO3	24.2	mg/L	5.0	1		02/10/21 14:26		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
-	Pace Analytical	Services -	Asheville					
Chloride	3.8	mg/L	1.0	1		02/06/21 04:25	16887-00-6	
Fluoride	ND	mg/L	0.10	1		02/06/21 04:25	16984-48-8	
Sulfate	3.2	mg/L	1.0	1		02/06/21 04:25		

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Sample: LR-9A	Lab ID: 9252	20473004	Collected: 02/04/2	1 12:15	Received: 02	2/04/21 15:40 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	thod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Potassium	2.5	mg/L	0.20	1	02/05/21 11:58	02/08/21 18:53	7440-09-7	
Sodium	4.4	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:53	7440-23-5	
Calcium	4.8	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:53	7440-70-2	
Magnesium	2.2	mg/L	0.050	1	02/05/21 11:58	02/08/21 18:53	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	02/10/21 10:04	02/10/21 14:29	7440-42-8	
Cadmium	ND	mg/L	0.00012	1	02/10/21 10:04	02/10/21 14:29	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	02/10/21 10:04	02/10/21 14:29	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	0C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	59.0	mg/L	10.0	1		02/09/21 15:05		
2320B Alkalinity	Analytical Meth	od: SM 232	0B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	24.9	mg/L	5.0	1		02/10/21 14:33		
Alkalinity, Total as CaCO3	24.9	mg/L	5.0	1		02/10/21 14:33		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
•	Pace Analytical	Services -	Asheville					
Chloride	3.7	mg/L	1.0	1		02/06/21 04:40	16887-00-6	
Fluoride	ND	mg/L	0.10	1		02/06/21 04:40	16984-48-8	
Sulfate	3.4	mg/L	1.0	1		02/06/21 04:40		

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Sample: LR-10	Lab ID: 9252	20473005	Collected: 02/04/2	1 11:55	Received: 02	/04/21 15:40 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	thod: E	PA 3010A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Potassium	2.6	mg/L	0.20	1	02/05/21 11:58	02/08/21 18:58	7440-09-7	
Sodium	4.7	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:58	7440-23-5	
Calcium	4.6	mg/L	1.0	1	02/05/21 11:58	02/08/21 18:58	7440-70-2	
Magnesium	2.0	mg/L	0.050	1	02/05/21 11:58	02/08/21 18:58	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytical	Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	02/10/21 10:04	02/10/21 14:34	7440-42-8	
Cadmium	ND	mg/L	0.00012	1	02/10/21 10:04	02/10/21 14:34	7440-43-9	
Cobalt	ND	mg/L	0.0050	1	02/10/21 10:04	02/10/21 14:34	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	od: SM 245	0C-2011					
	Pace Analytical	Services -	Peachtree Corners,	GA				
Total Dissolved Solids	49.0	mg/L	10.0	1		02/09/21 15:05		
2320B Alkalinity	Analytical Meth	od: SM 232	0B-2011					
•	Pace Analytical	Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	24.6	mg/L	5.0	1		02/10/21 14:53		
Alkalinity, Total as CaCO3	24.6	mg/L	5.0	1		02/10/21 14:53		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0 Rev 2.1 1993					
-	Pace Analytical	Services -	Asheville					
Chloride	4.3	mg/L	1.0	1		02/06/21 04:54	16887-00-6	
Fluoride	ND	mg/L	0.10	1		02/06/21 04:54	16984-48-8	
Sulfate	3.3	mg/L	1.0	1		02/06/21 04:54		

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

QC Batch: 598003 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

METHOD BLANK: 3153305 Matrix: Water

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Calcium	mg/L	ND	1.0	02/08/21 17:59	
Magnesium	mg/L	ND	0.050	02/08/21 17:59	
Potassium	mg/L	ND	0.20	02/08/21 17:59	
Sodium	mg/L	ND	1.0	02/08/21 17:59	

LABORATORY CONTROL SAMPLE:	3153306	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Calcium	mg/L		.99J	99	80-120	
Magnesium	mg/L	1	1.0	100	80-120	
Potassium	mg/L	1	0.94	94	80-120	
Sodium	mg/L	1	1.0	101	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	CATE: 3153	307		3153308							
			MS	MSD								
	9	2520473001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	4.8	1	1	6.0	5.9	116	104	75-125	2	20	
Magnesium	mg/L	2.2	1	1	3.3	3.2	110	103	75-125	2	20	
Potassium	mg/L	2.3	1	1	3.4	3.3	109	102	75-125	2	20	
Sodium	mg/L	4.5	1	1	5.7	5.6	121	109	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

QC Batch: 598953 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

METHOD BLANK: 3157542 Matrix: Water

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Boron	mg/L	ND	0.040	02/10/21 13:43	
Cadmium	mg/L	ND	0.00012	02/10/21 13:43	
Cobalt	ma/L	ND	0.0050	02/10/21 13:43	

LABORATORY CONTROL SAMPLE: 3157543

Date: 02/11/2021 03:50 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	mg/L		1.1	105	80-120	
Cadmium	mg/L	0.1	0.10	100	80-120	
Cobalt	mg/L	0.1	0.096	96	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3157544					3157545							
			MS	MSD								
		92520473001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	mg/L	ND	1	1	0.99	0.97	97	95	75-125	2	20	_
Cadmium	mg/L	ND	0.1	0.1	0.097	0.099	97	99	75-125	2	20	
Cobalt	mg/L	ND	0.1	0.1	0.094	0.096	94	95	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

QC Batch: 598669 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

METHOD BLANK: 3156226 Matrix: Water

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 02/09/21 15:02

LABORATORY CONTROL SAMPLE: 3156227

Spike LCS LCS % Rec Result Conc. % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 400 401 100 84-108 mg/L

SAMPLE DUPLICATE: 3156760

92520473001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 70.0 **Total Dissolved Solids** 7 mg/L 65.0 10

SAMPLE DUPLICATE: 3156765

Date: 02/11/2021 03:50 PM

92520915002 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 145 mg/L 151 4 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

QC Batch: 599004 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

METHOD BLANK: 3157872 Matrix: Water

Associated Lab Samples: 92520473001, 92520473002, 92520473003, 92520473004, 92520473005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Alkalinity, Total as CaCO3 mg/L ND 5.0 02/10/21 13:15 Alkalinity, Bicarbonate (CaCO3) mg/L ND 5.0 02/10/21 13:15

LABORATORY CONTROL SAMPLE: 3157873

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 51.6 103 80-120 mg/L 50

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3157876 3157877

MS MSD 92519331003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 mg/L ND 50 50 56.7 56.4 106 105 80-120 25

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3157975 3157976

MS MSD 92520337004 MS MSD MS MSD Spike Spike % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 ND 50 50 50.1 50.1 100 100 80-120 0 25 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

QC Batch: 597982 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

> Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: $92520473001,\,92520473002,\,92520473003,\,92520473004,\,92520473005$

METHOD BLANK: 3153152 Matrix: Water

Associated Lab Samples: $92520473001,\,92520473002,\,92520473003,\,92520473004,\,92520473005$

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	02/06/21 01:47	
Fluoride	mg/L	ND	0.10	02/06/21 01:47	
Sulfate	mg/L	ND	1.0	02/06/21 01:47	

LADORATORT CONTINUE CAMILLE.	0100100	
		Sniko

LABORATORY CONTROL SAMPLE: 3153153

Date: 02/11/2021 03:50 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	50	52.2	104	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	50	54.8	110	90-110	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3153	154		3153155							
Parameter	Units	92520465002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	ND	50	50	52.4	53.0	104	106	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.5	2.6	100	102	90-110	2	10	
Sulfate	ma/l	ND	50	50	52.2	53.0	103	105	90-110	2	10	

MATRIX SPIKE & MATRIX S	SPIKE DUPLI	ICATE: 3153	156		3153157							
Parameter	Units	92519913001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	7.2	50	50	59.8	60.5	105	106	90-110	1	10	
Fluoride	mg/L	0.58	2.5	2.5	3.2	3.1	103	102	90-110	1	10	
Sulfate	mg/L	23.0	50	50	73.7	74.0	101	102	90-110	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 02/11/2021 03:50 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Branch CCR-Ash Pond

Pace Project No.: 92520473

Date: 02/11/2021 03:50 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch			
92520473001	LR-1	EPA 3010A	598003	EPA 6010D	 598100			
92520473002	LR+8	EPA 3010A	598003	EPA 6010D	598100			
92520473003	LR+9	EPA 3010A	598003	EPA 6010D	598100			
92520473004	LR-9A	EPA 3010A	598003	EPA 6010D	598100			
92520473005	LR-10	EPA 3010A	598003	EPA 6010D	598100			
92520473001	LR-1	EPA 3005A	598953	EPA 6020B	599040			
92520473002	LR+8	EPA 3005A	598953	EPA 6020B	599040			
92520473003	LR+9	EPA 3005A	598953	EPA 6020B	599040			
92520473004	LR-9A	EPA 3005A	598953	EPA 6020B	599040			
92520473005	LR-10	EPA 3005A	598953	EPA 6020B	599040			
92520473001	LR-1	SM 2450C-2011	598669					
92520473002	LR+8	SM 2450C-2011	598669					
92520473003	LR+9	SM 2450C-2011	598669					
92520473004	LR-9A	SM 2450C-2011	598669					
92520473005	LR-10	SM 2450C-2011	598669					
92520473001	LR-1	SM 2320B-2011	599004					
92520473002	LR+8	SM 2320B-2011	599004					
92520473003	LR+9	SM 2320B-2011	599004					
92520473004	LR-9A	SM 2320B-2011	599004					
92520473005	LR-10	SM 2320B-2011	599004					
92520473001	LR-1	EPA 300.0 Rev 2.1 1993	597982					
92520473002	LR+8	EPA 300.0 Rev 2.1 1993	597982					
92520473003	LR+9	EPA 300.0 Rev 2.1 1993	597982					
92520473004	LR-9A	EPA 300.0 Rev 2.1 1993	597982					
92520473005	LR-10	EPA 300.0 Rev 2.1 1993	597982					

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

:tlor quin	n A red Client Information:	Section B Required Pr	roject in:	formation:						tion C		ation:													Γ,	Page :		1	Of	1
mpa	iny: ARCADIS - Atlanta	Report To:	Warrer	n Johnson					Atte	ntion:																				
tres	ss: 2839 Paces Ferry Rd SE	Сору То:							Com	трапу	Name	: :																		
	, GA 30339	5.55.11							Addı																	Regu	latory	Agency		
all:		Purchase Or							_	e Quo																0.5				
e:		Project Nam	e: p	lant Branch	/CCR-Ash	Pond Clo	sure		_	e Proje				maly	a.park	s@p	celal	03.00	m,				100	180	100	Staf		cation	STATE OF	(30)
ques	sted Due Date:	Project #:	_					_	Pace	e Prof	le #:	12	769		_	-	_	_		_	_					_	GA			
	WaterO	Vater DW D WT 0	(see valid codes to left)		COLLI	ECTED		ECTION	1875		f	Prese	rvati	ves	Т	N/A	-	Ļ		ested /					1	Total Control				
TEM #	SAMPLE ID One Character per box. (A-Z, 0-9 /, - Other) Sample ids must be unique	PD	MATRIX CODE (see vafit		ART	DATE	TIME	SAMPLE TEMP AT COLLE	# OF CONTAINERS	Unpreserved	H2SO4	HCI	NaOH	Na2S203	Methanoi	Analyses Test	ig g	App. III Metals + Mg, Na, K	108							Deeldust Chlodes (VM)	Residual Calibring (170)			
100			1			-	_	\vdash		Н	$^{+}$	+	1	П	+	Ť	Т	1	†	Н	+	1	П	\top	+		+			\neg
1	LR-1		WT	2.4.4	1230	-	_	\vdash	Н	Н	+	+	+	H	+	4	×	X	X	Н	+	+-		4	+	Н	-			
2	LR+8		WT	2421	1220			_	Ц	Н	4	+	1	Н	1	4	x	x	x	Н	+	1		1	-	Н	┡			
3	LR+9		WT	2.4.21	1205	_		L	Ц	Ц	4	1	1	Ц	4	1	<u> </u> x	x	x		1	\perp		Ш	1	Ц	L			
4	LR-9A		WT	2424	1215				Ц	Ц	1	1	\perp	Ц	4	1	<u> x</u>	x	x	Ц	1	┸			\perp	Ц	L			
5	LR-10		WT	2.424	1155			-	H	Н	+	+	+	Н	+	┨	×	×	×	H	+	+		+	+	Н	H			
7			П							П	1		I	П	1	1	F	-	L	H	1	L			1	П	F			
8			H				-	-	Н	Н	+	+	t	Н	+	1	H	+	+	H	+	+		\forall	+	Н	H			
10		-33.1	П							П	1	1				1	L	I		П	1	I			T	П				
11			H	-			-		H						-	1	H	1		H	+	+			+	\mathbb{H}	H			
12	ADDITIONAL COMMENTS		RELINGU	JISHED BY /	AFFILIATIO	ON	DATI	EBB	100	TIME				ACCE	PTED	BYII	FFILI	ATIO	N	-	8	DATE		TI	ME	100	SA.	MPLE CO	ONDITIONS	The wall
_		De	aly	calie	9 14	_	24.2	-1	15	. 40	1	K.	n	ll	y	Ho	1	R	16-	e	9	14/2	1	15	40	11.7	1	У	N	У
																							3				T			
_	WO#: 925204	73		_																							1			
					STATE OF THE PARTY.	R NAME	THE RESERVE	200	200				98	-				2		Spull	14.		-	E.	72	٥	ē			
						NATURE			(ha	di	lor	di	ug	ser		Į.	DA	TE SI	gned:		· /.	. 13.4			TEMP in C	eceived	(N)	ealed cooler (N)	Samples Intact[(Y/N)
	92520473			1			1	_/4	20	4	101	ull	ny	2.1	#	-	1	_				4	12	4		_ <u>_</u> _	100	0 C P	, g 0 2	w ⊆ C

Pace Analytical*

Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020

Page 1 of 2 Issuing Authority: Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden Greenwood	Huntersville Ral	aleigh Mechanicsville Atlanta Kernersville
Sample Condition Client Name:		Project #: WO#: 92520473
Courier: Fed Ex UPS Commercial Pace	Other:	PM: MP Due Date: 02/11/21 CLIENT: GA-ArcadAti
Custody Seal Present? Yes ANO Seals	i Intact? Yes	No Date/Initials Person Examining Contents: 2/4/2/ KIEW
Packing Material: Bubble Wrap Bu Thermometer: HR Gun ID: HBB 144 Correction Factor Add/Subtract (**	Type of Ice:	Other Biological Tissue Frozen? ☐Yes ☐N/A ☐N/A Temp should be above freezing to 6°C
Cooler Temp Corrected (°C): //. USDA Regulated Soil (\square N/A, water sample)		☐Samples out of temp criteria. Samples on ice, cooling process has begun
Did samples originate in a quarantine zone within the Unit	ted States: CA, NY, or SC (check	including Hawaii and Puerto Rico)? Yes No
		Comments/Discrepancy:
Chain of Custody Present?	Yes □No □N/A	/A 1.
Samples Arrived within Hold Time?	Zeres □no □n/A	/A 2.
Short Hold Time Analysis (<72 hr.)?	☐Yes ☐Ho ☐N/A	/A 3.
Rush Turn Around Time Requested?	☐Yes ☐Mo ☐N/A	/A 4.
Sufficient Volume?	ÆYes □No □N/A	/A 5.
Correct Containers Used? -Pace Containers Used?	Ares □No □N/A □Yes □No □N/A	
Containers Intact?	✓□¥es □No □N/A	/A 7.
Dissolved analysis: Samples Field Filtered?	□Yes □No ŒN/A	
Sample Labels Match COC?	₽Yes □No □N/A	
-Includes Date/Time/ID/Analysis Matrix:	WT	
Headspace in VOA Vials (>5-6mm)?	□Yes □No 🔄 N/A	
Trip Blank Present?	□Yes □No ☑N/A	/A 11.
Trip Blank Custody Seals Present?	Yes □No ☐N/A	
COMMENTS/SAMPLE DISCREPANCY		Field Data Required? ☐Yes ☐No
CUENT NOTIFICATION (PESOLUTION		Lot ID of split containers:
CLIENT NOTIFICATION/RESOLUTION		
Person contacted:	Date	te/Time:
Project Manager SCURF Review:		Date:
Project Manager SRF Review:		Date:

golder.com