Prepared for

Georgia Power Company 241 Ralph McGill Blvd NE Atlanta, Georgia 30308

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

PLANT HAMMOND HUFFAKER ROAD LANDFILL

Prepared by

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GW6581B

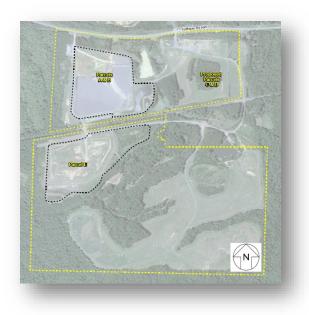
January 2022

CERTIFICATION STATEMENT

This 2021 Annual Groundwater Monitoring and Corrective Action Report, Plant Hammond Huffaker Road Landfill has been prepared in accordance with the United States Environmental Protection Agency Coal Combustion Residual Rule [40 Code of Federal Regulations 257 Subpart D], specifically § 257.90(e), and the Georgia Environmental Protection Division Rules for Solid Waste Management, Rule 391-3-4-.10 Coal Combustion Residuals and Rule 391-3-4-.14 Groundwater Monitoring and Corrective Action by a qualified groundwater scientist or engineer with Geosyntec Consultants.

January 31, 2022

Date


Whitney Law Georgia Professional Engineer No. 36641

SUMMARY

This summary of the 2021 Annual Groundwater Monitoring and Corrective Action Report provides the status of groundwater monitoring and corrective action program for the reporting period of January through December 2021 (referred to herein as the 2021 reporting period) at Georgia Power Company's (Georgia Power's) Plant Hammond Huffaker Road Landfill (the landfill or the site). This summary was prepared by Geosyntec Consultants, Inc. (Geosyntec) on behalf of Georgia Power to meet the requirements listed in Part A, Section 6¹ of the United States Environmental Protection Agency (USEPA) Coal Combustion Residual Rule (federal CCR Rule) (40 Code of Federal Regulations [CFR] 257 Subpart D).

Plant Hammond Huffaker Road Landfill is located 2181 Huffaker Road. approximately five miles northeast of Plant Hammond in Floyd County, Georgia. The landfill is comprised of constructed Parcels A, B, and E, with Parcels C and D proposed for future expansion. CCR material resulting from power generation have historically been transferred and stored at the site. Currently, Parcels A and B are active, and Parcel E is temporarily inactive and covered with an intermediate closure system. The landfill is located on the western portion of Georgia Power's property.

Plant Hammond Huffaker Road Landfill

The groundwater monitoring program for the landfill is managed in accordance with the landfill's Solid Waste permit number 057-022D (LI), as issued by the Georgia Environmental Protection Division (GA EPD), and in accordance with Georgia Solid Waste Management Rules for Groundwater Monitoring and Corrective Action of a municipal solid waste landfill, Rule 391-3-4.14. The landfill is also subject to the federal CCR Rule and the GA EPD Rules for Solid Waste Management 391-3-4-.10. Groundwater at the site is monitored using a comprehensive monitoring system of wells installed to meet federal and state monitoring requirements. Groundwater monitoring in accordance with the permit-issued Design and Operations (D&O) Plan began in 2007,

¹ 80 FR 21468, Apr. 17, 2015, as amended at 81 FR 51807, Aug. 5, 2016; 83 FR 36452, July 30, 2018; 85 FR 53561, Aug. 28, 2020

prior to disposal activities, and continues to date. Routine sampling and reporting in accordance with the federal CCR Rule began after the background groundwater conditions were established between March 2016 to March 2017. Based on groundwater conditions at the landfill, a detection monitoring program has been established since October 2017. During the 2021 reporting period, the site remained in detection monitoring.

During the 2021 reporting period, Geosyntec conducted two groundwater sampling events in March and August 2021. Groundwater samples were submitted to Pace Analytical Services, LLC, for analysis. Per the federal CCR Rule, groundwater results for March and August 2021 data were evaluated in accordance with the certified statistical methods. That evaluation showed no statistically significant values of Appendix III² constituents.

Based on review of the Appendix III statistical results completed for the groundwater monitoring and corrective action program for the 2021 reporting period, the site will continue in detection monitoring. Georgia Power will continue routine groundwater monitoring and reporting at the landfill. Reports will be posted to the website and provided to GA EPD semiannually.

² Boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)

TABLE OF CONTENTS

SUM	MAR'	Y		ii
1.0	INT	RODUC	CTION	1
1.0	1.1		escription and Background	
	1.2		nal Geology and Hydrogeologic Setting	
	1.3		dwater Monitoring Well Network	
	1.4		ill Underdrain Monitoring Point	
2.0	GRO	OUNDW	VATER MONITORING ACTIVITIES	5
	2.1	Monito	oring Well Installation and Maintenance	5
	2.2	Detect	ion Monitoring	5
3.0	SAN	MPLE M	METHODOLOGY AND ANALYSIS	6
	3.1		dwater Level Measurement	
	3.2	Groun	dwater Gradient and Flow Velocity	6
	3.3	Groun	dwater Sampling Procedures	7
	3.4	Labora	atory Analyses	8
	3.5	Quality	y Assurance and Quality Control	9
4.0	STA	TISTIC	CAL ANALYSES	10
	4.1	Statist	ical Methods	10
		4.1.1	Statistical Methods – Appendix III Constituents	11
		4.1.2	Statistical Methods – Appendix I D&O Constituents	11
	4.2	Statist	ical Analysis Results	12
		4.2.1	March 2021 Semiannual Event	12
		4.2.2	August 2021 Semiannual Event	12
5.0	Alte	rnate So	ource Demonstrations	13
6.0	МО	NITORI	ING PROGRAM STATUS	14
7.0	COI	NCLUSI	IONS AND FUTURE ACTIONS	15
8.0	REF	FERENC	FS	16

LIST OF TABLES

Table 1	Monitoring Well Network Summary
Table 2	Groundwater Sampling Event Summary
Table 3	Summary of Groundwater Elevations
Table 4	Horizontal Groundwater Gradient and Flow Velocity Calculations
Table 5	Summary of Groundwater Analytical Data

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Monitoring Well Network Map
Figure 3	Potentiometric Surface Contour Map – March 2021
Figure 4	Potentiometric Surface Contour Map – August 2021

LIST OF APPENDICES

Appendix A	Well Maintenance and Repair Documentation Memorandum
Appendix B	Analytical Laboratory Results and Field Sampling Forms
Appendix C	Statistical Analysis Reports

LIST OF ACRONYMS

ASD Alternate Source Demonstration

CCR coal combustion residuals
CFR Code of Federal Regulations

cm/sec centimeters per second
D&O Design and Operations
DO dissolved oxygen

ft feet

ft/ft feet per foot ft/day feet per day

GA EPD Georgia Environmental Protection Division

Georgia Power Georgia Power Company
Geosyntec Geosyntec Consultants, Inc.
GSC Groundwater Stats Consulting

mg/L milligram per liter

NELAP National Environmental Laboratory Accreditation Program

NTU nephelometric turbidity unit ORP oxidation reduction potential Pace Analytical Pace Analytical Services, LLC.

PE professional engineer
PL prediction limit

QA/QC Quality Assurance/Quality Control

SAR Site Acceptability Report SCS Southern Company Services SSI statistically significant increase

s.u. standard unit

TDS total dissolved solids

Unified Guidance Statistical Analysis of Groundwater Data at RCRA Facilities Unified

Guidance

USEPA United States Environmental Protection Agency

1.0 INTRODUCTION

Groundwater monitoring is currently conducted at the Georgia Power Company (Georgia Power) Plant Hammond, Huffaker Road Landfill (the landfill or the site) to comply with the landfill's Solid Waste permit number 057-022D (LI), as issued by the Georgia Environmental Protection Division (GA EPD), and in accordance with Georgia Solid Waste Management Rules for Groundwater Monitoring and Corrective Action of a municipal solid waste landfill, Rule 391-3-4.14. The landfill is also subject to the United States Environmental Protection Agency (USEPA) Coal Combustion Residual Rule (federal CCR Rule) [40 Code of Federal Regulations (CFR) 257 Subpart D] and the GA EPD Rules for Solid Waste Management 391-3-4-.10. Geosyntec Consultants, Inc. (Geosyntec) has prepared this 2021 Annual Groundwater Monitoring and Corrective Action Report to document groundwater monitoring activities at Georgia Power Plant Hammond Huffaker Road Landfill. This report documents groundwater monitoring activities completed for the landfill from January through December 2021 (referred to herein as the 2021 reporting period). A semiannual groundwater report documenting activities from January through July 2021 was prepared and submitted to GA EPD in August 2021 (Geosyntec, 2021a). This report satisfies the reporting requirements of applicable federal and state CCR Rule [§ 257.90(e), 391-3-4-.10] and GA EPD Solid Waste Management Rules (391-3-4-.14). For ease of reference when discussing aspects of the CCR Rule, only the federal CCR Rule is cited within this report.

1.1 Site Description and Background

The Huffaker Road Landfill is a Georgia Power-owned property located in Floyd County approximately five miles northeast of Plant Hammond (**Figure 1**). The physical address of the site is 2181 Huffaker Road, Rome, Georgia, 30165. The landfill was built between 2005 and 2007 over a closed surface clay mine, previously owned by Boral Bricks, Inc. The landfill is comprised of constructed Parcels A, B, and E, with Parcels C and D proposed for future expansion. The three existing parcels were permitted and constructed with a minimum 24-inch compacted clay liner with a maximum hydraulic conductivity of 1 x 10⁻⁶ centimeters per second (cm/sec) underlain with a compacted soil barrier designed to provide a minimum five-foot thick barrier between the bottom of the clay liner and seasonal high groundwater levels. GA EPD approved Solid Waste Permit No. 057-022D (LI) in a letter dated May 26, 2006, and disposal operations commenced on May 5, 2008. No CCR materials were stored in the landfill prior to May 2008 (ERM, 2018). In 2016, Parcels A and B were retrofitted with a leachate collection system and a 60-millimeter high-density polyethylene geomembrane overlaying the 24-inch clay liner,

which was recompacted to obtain a maximum hydraulic conductivity of 1×10^{-7} cm/sec (Georgia Power, 2016).

Parcels A and B have historically received coal ash whereas Parcel E has typically received gypsum. Currently, Parcels A and B are active, and Parcel E is temporarily inactive and covered with an intermediate closure system of 18-inches of soil compacted to obtain a maximum hydraulic conductivity of 1 x 10⁻⁶ cm/sec.

A groundwater monitoring plan was developed as part of the landfill's pre-construction Design and Operations (D&O) Plan and approved in September 2004 with subsequent modifications submitted to GA EPD in September 2005, April 2009, and May 2013. Groundwater monitoring in accordance with the D&O Plan began in 2007, prior to disposal activities, and continues to date.

Groundwater monitoring and reporting activities in accordance with § 257.90 through § 257.94 of the federal CCR Rule were initiated in 2016. Pursuant to § 257.94(b), the eight baseline sampling events were conducted between March 2016 and March 2017, with the initial detection monitoring event occurring October 2017.

Groundwater samples from wells in the detection monitoring system are collected from each monitoring well and analyzed for:

- Appendix III constituents according to § 257.94(a); and
- A state-modified Appendix I list of detection constituents according to GA EPD Rules for Solid Waste Management 391-3-4-.14 and the approved D&O plan. The state-modified analyte list includes antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, vanadium, and zinc. Field parameters that are to be recorded include: pH, temperature, turbidity, dissolved oxygen, specific conductance, and oxidation-reduction potential.

1.2 Regional Geology and Hydrogeologic Setting

The regional geology was summarized in the Southern Company Services (SCS) prepared Site Acceptability Report (SAR) (SCS, 2002) based on the work of Cressler (1970). The landfill is located in the Floyd Shale member of the Judy Mountain Syncline. The Floyd Shale is Mississippian in age and ranges from 200 to 1,200 feet thick in Floyd County. The unit is composed of clay and shale, transitioning to limestone at its base.

Boring logs presented in the SAR indicate sandy clayey silt and silty clay with rock fragments described as shale extending to depths of up to approximately 30 feet below ground surface. Underlying this material is a medium gray to dark gray and dark olive gray, heavily to moderately weathered shale. Rock cores collected at the site are described as slightly weathered to unweathered, thinly bedded shale. Descriptions provided in the boring logs are representative of recorded observations on the Floyd Shale.

The landfill is underlain by a regional unconfined groundwater aquifer that occurs within the overburden. Groundwater recharge at the landfill is from infiltration of precipitation. Prior site investigations indicate groundwater within the unconfined aquifer flows predominantly through the heavily to moderately weathered shale layer (SCS, 2002). Groundwater occurring in bedrock below the site is controlled by the degree of enhanced secondary permeability. In general, groundwater occurring in the bedrock is a result of water infiltrating through areas in the overburden where enhanced permeability exists. Review of the available boring logs does not identify a confined aquifer beneath the landfill.

1.3 Groundwater Monitoring Well Network

The existing groundwater monitoring system meets the requirements listed in § 257.91 and 391-3-4.14; a groundwater monitoring system was installed at the landfill that consists of a sufficient number of wells installed at appropriate locations and depths to yield groundwater samples from the uppermost aquifer to represent the groundwater quality both upgradient of the unit (i.e., background conditions) and passing the waste boundary of the unit. The number, spacing, and depths of the groundwater monitoring wells were selected based on the characterization of site-specific hydrogeologic conditions. Pursuant to the § 257.91, the well network was certified by a professional engineer (PE) on October 17, 2017; the certification is maintained in the site's operating records. The locations of the compliance wells are presented on **Figure 2**; well construction details are listed in **Table 1**.

1.4 Landfill Underdrain Monitoring Point

In addition to the groundwater monitoring well network, the D&O Plan requires collecting a water sample from the landfill underdrain monitoring point, SWC-1, during each semiannual monitoring event. The water sample is analyzed for the same constituents monitored in groundwater. The monitoring point is located west of Parcels A and B, as shown on **Figure 2**. Historically, there has been no liquid discharge from

Geosyntec consultants

this underdrain monitoring point to collect a sample, as was the case for the 2021 reporting period. The discharge status of the monitoring point is confirmed during each sampling event.

2.0 GROUNDWATER MONITORING ACTIVITIES

In accordance with § 257.90(e), the following describes monitoring-related activities performed during the 2021 reporting period and discusses any change in status of the monitoring program. Groundwater sampling was performed in accordance with § 257.93 and the D&O Plan.

2.1 Monitoring Well Installation and Maintenance

Monitoring wells are inspected semiannually to determine if any repairs or corrective actions are necessary to meet the requirements of the Georgia Water Well Standards Act (O.C.G.A. § 12-5-134(5)(d)(vii)). In March and August 2021, monitoring wells were inspected, necessary corrective actions were identified and subsequently completed, as documented in **Appendix A**. This documentation will serve as the required five year well inspection and was performed under the direction of a professional geologist or engineer registered in the State of Georgia.

2.2 Detection Monitoring

Georgia Power currently monitors groundwater associated with the landfill under the detection groundwater monitoring program in accordance with federal CCR Rule § 257.94 and Solid Waste Management Rule 391-3-4-.14(22). The semiannual detection monitoring events occurred in March and in August 2021; a verification monitoring event occurred in September 2021 (**Table 2**). Groundwater samples were collected from each compliance monitoring well shown on **Figure 2** and analyzed for the state-modified list of Appendix I constituents and Appendix III constituents stipulated by the August 2017 permit modification (GA EPD, 2017) (list of constituents presented in Section 1.1 of this report). The analytical and statistical results of the events conducted during the 2021 reporting period are discussed in Sections 3 and 4, respectively.

3.0 SAMPLE METHODOLOGY AND ANALYSIS

The following section presents a summary of the field sampling procedures that were implemented and the groundwater sampling results that were obtained in connection with the detection monitoring program conducted at the landfill during the 2021 reporting period.

3.1 Groundwater Level Measurement

Prior to a sitewide sampling event, a synoptic round of depth to groundwater level measurements are recorded from the monitoring well network and used to calculate the corresponding groundwater elevations, which are presented in **Table 3**. Elevations reported in March and August 2021 are generally representative of the groundwater elevations reported for prior monitoring events.

The groundwater elevation data were used to prepare potentiometric surface maps for the March and August 2021 s D&O ampling events, which are presented on **Figures 3** and **4**, respectively. Interpretation of the potentiometric surface contours indicate that groundwater flow beneath the landfill is generally to the southeast in vicinity of Parcels A and B, and then south-southwest beneath Parcel E. These observed flow directions are consistent with previous observations.

3.2 Groundwater Gradient and Flow Velocity

The groundwater hydraulic gradient beneath the landfill was calculated using the groundwater elevation data from the March and August 2021 events, and between two pairs of data points located approximately along interpreted groundwater flow paths to account for changing flow directions across the site, as discussed in Section 3.1. For Parcels A and B, the hydraulic gradient was calculated between wells GWA-1 and GWC-7; for Parcel E, wells GWC-9 and GWC-19 were used for the gradient calculation in March 2021, while GWC-9 and GWC-20 were used for the August 2021 event. The gradient calculations are presented in **Table 4.** The general trajectories of the flow paths used in the calculations are shown on **Figures 3** and **4**.

As presented in **Table 4**, the average hydraulic gradient underneath Parcels A and B applying the 2021 data, was calculated to be 0.022 feet per foot (ft/ft), whereas the average hydraulic gradient underneath Parcel E equaled 0.018 ft/ft.

The horizontal groundwater flow velocity was calculated using Darcy's Law, as follows:

$$V = \frac{K_h * i}{n_e}$$

where:

V = Groundwater flow velocity $\left(\frac{feet}{day}\right)$ $K_h =$ Horizontal Hydraulic Conductivity $\left(\frac{feet}{day}\right)$ i = Horizontal hydraulic gradient $\left(\frac{feet}{foot}\right) = \frac{h_1 - h_2}{L}$ h_1 and $h_2 =$ Groundwater elevation at location 1 and 2 L = distance between location 1 and 2 $n_e =$ Effective porosity

Prior site investigations indicate groundwater within the unconfined aquifer flows predominantly through the heavily to moderately weathered shale layer (SCS, 2002). The average hydraulic conductivity for this zone [0.248 feet per day (ft/day)] was computed from slug test data derived from five locations across the site (SCS, 2002). An estimated effective porosity of 0.20 is used for the flow rate calculation, based on interpreted values for weathered shale (Freeze/Cherry, 1979). With these variables determined, and accounting for the hydraulic gradients discussed above, the average groundwater flow velocity underneath Parcels A and B was calculated to be 0.027 ft/day. Similarly, the average flow velocity underneath Parcel E was calculated to be 0.022 ft/day. The flow velocity calculations are provided in **Table 4**.

3.3 **Groundwater Sampling Procedures**

Groundwater samples were collected from the compliance monitoring well network in accordance with § 257.93(a) and the D&O Plan using low-flow purging techniques performed with a peristaltic pump with disposable polyethylene tubing. The intake point of the tubing was lowered to the midpoint of the well screen. Each well was sampled with a new segment of tubing; all tubing was disposed of following the sampling event.

All non-disposable equipment was decontaminated before use and between well locations.

An in-situ water quality field meter (SmarTroll, Aqua TROLL, or similar) was used to monitor and record field water quality parameters [i.e., pH, conductivity, dissolved oxygen (DO), temperature, and oxidation reduction potential (ORP)] during well purging to verify stabilization prior to sampling. Turbidity was monitored using a LaMotte 2020we (or similar) portable turbidity meter. Groundwater samples were collected once the following stabilization criteria were met:

- pH \pm 0.1 standard units (s.u.)
- Conductivity ± 5%
- \pm 0.2 milligrams per liter (mg/L) or \pm 10% (whichever is greater) for DO > 0.5 mg/L. No criterion applies if DO < 0.5 mg/L, record only.
- Turbidity measured less than 5 nephelometric turbidity units (NTU) or measured between 5 and 10 NTU following three hours of purging.

Following purging, and once stabilization was achieved, unfiltered samples were collected into appropriately preserved laboratory-supplied sample containers. Sample bottles were placed in ice-packed coolers and submitted to Pace Analytical Services, LLC. (Pace Analytical) in Norcross, Georgia following chain-of-custody protocol. The field sampling and equipment calibration forms generated during the 2021 reporting period are provided in **Appendix B**.

3.4 <u>Laboratory Analyses</u>

Laboratory analyses were performed by Pace Analytical, which is accredited by the National Environmental Laboratory Accreditation Program (NELAP). Pace Analytical maintains a NELAP certification for the permit specified constituents analyzed for this project. Analytical methods used for groundwater sample analysis are listed in the analytical laboratory reports included in **Appendix B**.

The groundwater results from the 2021 detection monitoring events and the supplementary verification event conducted in September 2021 are summarized in **Table** 5. The Pace Analytical laboratory reports associated with these results are provided in **Appendix B**.

3.5 Quality Assurance and Quality Control

Quality assurance/quality control (QA/QC) samples were collected during the detection monitoring events at the minimum rate of one QA/QC sample per 10 groundwater samples and included the following: field duplicates, equipment blanks, and field blank samples. QA/QC samples were collected in appropriately preserved laboratory-supplied sample containers and submitted under the same chain of custody as the primary samples for analysis of the same constituents by Pace Analytical.

In addition to collecting QA/QC samples, the data were validated based on the pertinent methods referenced in the laboratory reports, professional and technical judgment, and applicable federal guidance documents (USEPA, 2011; USEPA, 2017). Where necessary, the data were qualified with supporting documentation and justifications. The data are considered usable for meeting project objectives, and the results are considered valid. The associated data validation reports are provided in **Appendix B** with the laboratory reports.

4.0 STATISTICAL ANALYSES

The following section summarizes the statistical approach applied to assess the 2021 groundwater data for potential SSIs of permit stipulated constituents reported in downgradient compliance wells relative to the available historical dataset. Because the landfill is currently independently managed under both Georgia's Solid Waste Management Rule 391-3-4.14 and Georgia's CCR Rule 391-3-4.10, which references the federal CCR Rule, two datasets are statistically evaluated per monitoring event. One dataset contains Appendix III constituents, which is applicable to both of the beforementioned rule sets. The other dataset contains the D&O-specified state-modified list of Appendix I constituents, applicable to Rule 391-3-4.14. The 2021 data were analyzed by Groundwater Stats Consulting (GSC).

4.1 Statistical Methods

Statistical analysis of the 2021 groundwater data for Appendix III constituents was performed pursuant to § 257.93 and in accordance with the PE-certified statistical method. Statistical analysis of the 2021 groundwater data for the D&O Appendix I constituents was performed pursuant to Rule 391-3-4-.14 and in accordance with the *Background Data Screening & Recommended Statistical Methods* report prepared by GSC (GSC, 2019) and the USEPA document *Statistical Analysis of Groundwater Data at RCRA Facilities Unified Guidance* (Unified Guidance) (USEPA, 2009). Georgia Power submitted a minor permit modification request to GA EPD to change the statistical methods from the initial D&O plan interwell statistical methods to include other methods (i.e., intrawell statistical methods) allowed by Rule 391-3-4-.10(6)(a) that may be more appropriate to the data set; the minor modification request was approved by GA EPD in a letter dated August 20, 2019 (GA EPD, 2019).

On February 26, 2021, Georgia Power submitted an additional minor modification to implement a two-step statistical approach for the detection monitoring program to address initial SSIs over background for constituents currently using intrawell statistical approach. This approach was approved by GA EPD in a letter dated April 19, 2021. The two-step analysis is similar in concept to the procedure used in compliance monitoring programs where an interwell statistical limit is used to determine "background" (Unified Guidance, Chapter 7, Section 7.5).

The Sanitas groundwater statistical software was used to perform the statistical analyses. Sanitas is a decision-support software package that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations and guidance as

recommended in the Unified Guidance. Detailed statistical methods used for Appendix III and D&O Appendix I constituents are discussed in statistical analysis reports provided in **Appendix C** and summarized in Sections 4.1.1 and 4.1.2.

4.1.1 Statistical Methods – Appendix III Constituents

The PE-certified statistical approach used to evaluate groundwater data for the landfill for Appendix III constituents is the intrawell prediction limit (PL) method combined with a 1-of-2 resample plan. The intrawell PLs utilize historical data from within a given well to establish a statistical limit for comparison of compliance data at the same well. In this case, the data from the monitoring events conducted between March 2016 and November 2019 were used to establish background conditions. An "initial exceedance" occurs when any data from the well exceeds the PL. Intrawell statistical methods are a conservative first step that may be overly sensitive to natural variation, particularly for nonparametric limits with small background sample sizes. Therefore, for instances where an apparent exceedance over the PL is identified by intrawell statistical methods, interwell statistical methods may be used as a reasonable second step to determine if the initial exceedance is below sitewide background based on pooled upgradient well data.

The 1-of-2 resample plan allows for collection of an independent resample. Once again, the most recent sample from each downgradient well (in this case, the resample) is compared to the PL to evaluate exceedances over background. A confirmed exceedance is noted only when the resample confirms the initial exceedance by also exceeding the statistical limit. If the resample falls within its respective prediction limit, no exceedance is declared.

4.1.2 Statistical Methods – Appendix I D&O Constituents

The intrawell PL statistical approach was also used to evaluate groundwater data for the landfill for Appendix I D&O constituents with a 1-of-2 resample plan (GSC, 2019). A 1-of-2 resample plan is sufficient because the dataset used to derive the PLs for the Appendix I constituents is larger since they have been monitored since 2007, and the data encompass sampling events from March 2007 to December 2018. As with the Appendix III methodology, instances where an intrawell statistical exceedance is identified, interwell statistical methods may be used to determine sitewide background for comparison prior to SSI identification.

4.2 Statistical Analysis Results

The 2021 groundwater data were analyzed by GSC, with the results from these analyses presented in the statistical analysis reports included in **Appendix C**. Summaries of the statistical analyses are presented below for the March and August 2021 detection monitoring events. Data from the September 2021 verification event are considered relative to the August 2021 event.

4.2.1 March 2021 Semiannual Event

No confirmed SSI was observed for either Appendix III or Appendix I D&O constituents during the March 2021 sampling event.

4.2.2 August 2021 Semiannual Event

No confirmed SSI was observed for Appendix III constituents during the August 2021 sampling event.

Intrawell and interwell statistical analyses of the of the Appendix I D&O constituents identified exceedances of barium and nickel in well GWC-8. A verification groundwater sample was collected on September 28, 2021, in accordance with the 1-of-2 resampling plan. The results of the verification sample did not confirm the initial PL exceedances of barium and nickel at GWC-8. Consequently, no confirmed SSIs were observed for Appendix I D&O constituents during the August 2021 sampling event.

5.0 ALTERNATE SOURCE DEMONSTRATIONS

Alternate source demonstrations (ASDs) were previously submitted to GA EPD under separate report covers to address SSIs of Appendix I D&O and Appendix III constituents. Based on GA EPD guidance, ASDs no longer require concurrence if an SSI has not been detected for two consecutive events, which indicates natural variability. No confirmed SSI was observed for either Appendix I D&O and Appendix III constituents during the reporting period.

6.0 MONITORING PROGRAM STATUS

Groundwater monitoring at the landfill is currently being conducted under a detection monitoring program pursuant to the federal CCR Rule § 257.94 and Georgia's Solid Waste Management Rule 391-3-4.14(21).

7.0 CONCLUSIONS AND FUTURE ACTIONS

This 2021 Annual Groundwater Monitoring and Corrective Action Report for Georgia Power's Plant Hammond Huffaker Road Landfill was prepared to fulfill the requirements of both the federal CCR Rule (§ 257.90(e)) and Georgia's Solid Waste Management Rules (391-3-4-.14). No SSIs were verified during the 2021 groundwater monitoring events. Groundwater monitoring at the landfill will continue under a detection monitoring program pursuant to the federal CCR Rule § 257.94 and Georgia's Solid Waste Management Rule 391-3-4.14(21-23).

8.0 REFERENCES

- Cressler, C.W., 1970. *Geology and Ground-water Resources of Floyd and Polk Counties, Georgia*. Atlanta: Geological Survey of Georgia. 1970.
- ERM, 2018. 2017 Annual Groundwater Monitoring and Corrective Action Report, Plant Hammond Huffaker Road Landfill, Permit No. 057-022D (L1). January, 2018.
- Freeze, R. Allan and Cherry, John A. 1979. *Groundwater*. Englewood Cliffs, Prentice-Hall, Inc. Print.
- GA EPD, 2017. CCR Rule Compliance: Minor Modification Request to Add Appendix III & IV Sample Parameters To The Groundwater Monitoring Plan (GWMP), Floyd County Georgia Power, Huffaker Road, Permit No. 057-022D(LI). Issued 9 August 2017 to Timothy Earl, Georgia Power Company.
- GA EPD, 2019. Minor Modification Groundwater Monitoring Plan Update Approval, Georgia Power Company – Multiple Private Industry Soil Waste Disposal Facilities. Issued 20 August 2019 to Jalpa Patel, Georgia Power Company
- Georgia Power, 2016. Plant Hammond Huffaker Road Coal Combustion By-Products Disposal Facility, Design and Operations Plan Minor Modification 9/16/2016, Georgia Power Company. September 2016.
- Geosyntec, 2021a. 2021 Semiannual Groundwater Monitoring and Corrective Action Report, Plant Hammond Huffaker Road Landfill. August 2021.
- GSC, 2019. Plant Hammond Huffaker Road Landfill Background Data Screening & Recommended Statistical Methods. August 2019.
- Sanitas: Groundwater Statistical Software, v. 9.6.26 (2020). Sanitas Technologies[©], Boulder, CO.
- SCS, 2002. Plant Hammond Proposed Huffaker Road Coal Combustion By-Products Storage Facility Site Acceptability Report. Birmingham, Alabama: Earth Science and Environmental Engineering. December 2002.
- USEPA, 2009. Statistical Analysis of Groundwater Data at RCRA Facilities Unified Guidance. Office of Solid Waste Management Division, EPA. Washington, D.C. March 2009.

- USEPA, 2011. *Region IV Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Region IV. Athens, GA. September 2011.
- USEPA, 2017. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January 2017.

TABLES

Table 1
Monitoring Well Network Summary
Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia

Well ID	Hydraulic Location	Installation Date	Northing (1)	Easting (1)	Top of Casing Elevation (2) (ft)	Top of Screen Elevation ⁽²⁾ (ft)	Bottom of Screen Elevation (2) (ft)	Well Depth (3) (ft BTOC)	Screen Interval Length (ft)
GWA-1	Upgradient	9/11/2001	1565643.81	1952067.94	701.96	672.96	662.96	39.30	10
GWA-2	Upgradient	2/5/2007	1565590.06	1952640.89	681.59	666.08	656.08	25.81	10
GWA-3	Upgradient	2/6/2007	1565520.24	1953199.93	659.24	648.45	638.45	21.09	10
GWA-4	Upgradient	2/6/2007	1565519.87	1953687.10	656.93	845.84	635.84	21.39	10
GWA-11	Upgradient	7/21/2006	1564946.55	1952008.03	682.36	656.76	646.76	35.90	10
GWC-5	Downgradient	2/7/2007	1565159.15	1953566.67	649.42	638.31	628.31	21.41	10
GWC-6	Downgradient	7/20/2006	1564397.56	1953919.86	656.35	624.07	614.07	42.58	10
GWC-7	Downgradient	7/19/2006	1564079.14	1953595.85	657.20	635.59	625.59	31.91	10
GWC-8	Downgradient	7/18/2006	1564000.62	1953095.72	656.64	639.81	629.81	27.13	10
GWC-9	Downgradient	7/18/2006	1563876.81	1952392.97	659.46	617.85	607.85	51.91	10
GWC-10	Downgradient	7/20/2006	1564308.39	1951975.66	667.58	643.90	633.90	33.98	10
GWC-18	Downgradient	7/12/2006	1563320.44	1953391.49	641.31	594.59	584.59	57.02	10
GWC-19	Downgradient	7/11/2006	1562843.12	1952979.72	642.89	595.91	585.91	57.51	10
GWC-20	Downgradient	7/17/2006	1562472.78	1952332.31	625.76	601.88	591.88	34.18	10
GWC-21	Downgradient	7/12/2006	1562099.56	1951612.93	618.33	610.65	600.65	18.23	10
GWC-22	Downgradient	7/13/2006	1562778.89	1951618.67	625.00	593.39	583.39	41.91	10
GWC-23	Downgradient	7/19/2006	1563558.66	1951604.97	654.84	615.41	605.41	49.73	10

ft = feet

ft BTOC = feet below top of casing

- (1) Coordinates in North American Datum (NAD) 1983, State Plane, Georgia-West, feet. Survey completed by GEL Solutions obtained June 26, 2020.
- (2) Elevations referenced to the North American Vertical Datum of 1988 (NAVD88). Survey completed by GEL Solutions obtained June 26, 2020.
- (3) Total well depth accounts for sump if data provided on well construction logs.

Table 2
Groundwater Sampling Event Summary
Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia

Well ID	Hydraulic Location	March 8-10, 2021	August 9-10, 2021	September 28, 2021	Status of Monitoring Well	
	ampling Event:	Detection	Detection	Verification	D:	
GWA-1	Upgradient	X	X		Detection	
GWA-2	Upgradient	X	X		Detection	
GWA-3	Upgradient	X	X		Detection	
GWA-4	Upgradient	X	X		Detection	
GWA-11	Upgradient	X	X		Detection	
GWC-5	Downgradient	X	X		Detection	
GWC-6	Downgradient	X	X		Detection	
GWC-7	Downgradient	X	X		Detection	
GWC-8	Downgradient	X	X	X	Detection	
GWC-9	Downgradient	X	X		Detection	
GWC-10	Downgradient	X	X		Detection	
GWC-18	Downgradient	X	X		Detection	
GWC-19	Downgradient	X	X		Detection	
GWC-20	Downgradient	X	X		Detection	
GWC-21	Downgradient	X	X		Detection	
GWC-22	Downgradient	X	X		Detection	
GWC-23	Downgradient	X	X		Detection	

Table 3
Summary of Groundwater Elevations
Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia

		March	8, 2021	August	9, 2021
Well ID	Top of Casing Elevation (1) (ft)	Elevation (1) Depth to Water		Depth to Water (ft BTOC)	Groundwater Elevation (1) (ft)
GWA-1	701.96	10.93	691.03	14.10	687.86
GWA-2	681.59	5.98	675.61	6.36	675.23
GWA-3	659.24	4.92	654.32	5.15	654.09
GWA-4	656.93	9.16	647.77	11.61	645.32
GWA-11	682.36	15.85	666.51	17.50	664.86
GWC-5	649.42	4.72	644.70	5.57	643.85
GWC-6	656.35	15.35	641.00	16.18	640.17
GWC-7	657.20	14.17	643.03	15.64	641.56
GWC-8	656.64	9.68	646.96	12.26	644.38
GWC-9	659.46	13.41	646.05	15.33	644.13
GWC-10	667.58	13.04	654.54	15.23	652.35
GWC-18	641.31	12.86	628.45	14.41	626.90
GWC-19	642.89	18.75	624.14	19.73	623.16 ⁽²⁾
GWC-20	625.76	3.37	622.39	5.06	620.70
GWC-21	618.33	4.85	613.48	7.79	610.54
GWC-22	625.00	2.01	622.99	4.20	620.80
GWC-23	654.84	8.13	646.71	11.96	642.88

ft BTOC = feet below top of casing

⁽¹⁾ Survey data obtained June 26, 2020, Elevations referenced to the North American Vertical Datum of 1988 (NAVD88).

⁽²⁾ Water elevation at GWC-19 from August 9, 2021, was not used in the development of contours due to error in gauging. Reported water elevation was calculated from the measurement recorded prior to purging on August 10, 2021.

Table 4
Horizontal Groundwater Gradient and Flow Velocity Calculations
Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia

	Hydrau	lic Gradient	- March 8, 2	021 Data	Hydrauli	<u> </u>			
Landfill Parcels	h ₁ (ft)	h ₂ (ft)	L (ft)	i (ft/ft)	h ₁ (ft)	h ₂ (ft)	L (ft)	i (ft/ft)	Average i (ft/ft)
A & B (GWA-1 to GWC-7)	691.03	643.03	2,210	0.022	687.86	641.56	2,260	0.021	0.022
E ⁽²⁾ (GWC-9 to GWC-19/ GWC-20)	646.05	624.14	1,120	0.020	644.13	620.70	1,445	0.016	0.018

Landfill Parcels	K _h (ft/day)	n _e	Average i (ft/ft)	V (ft/day) ⁽¹⁾						
A & B	0.248	0.20	0.022	0.027						
E	0.248	0.20	0.018	0.022						

ft = feet

ft/day = feet per day

ft/ft = feet per foot

 h_1 and h_2 = groundwater elevation at location 1 and 2

 $i = h_1 \text{-} h_2 / L = \text{horizontal hydraulic gradient}$

 K_h = horizontal hydraulic conductivity

L = distance between location 1 and 2 along the flow path

 n_e = effective porosity

V = groundwater flow velocity

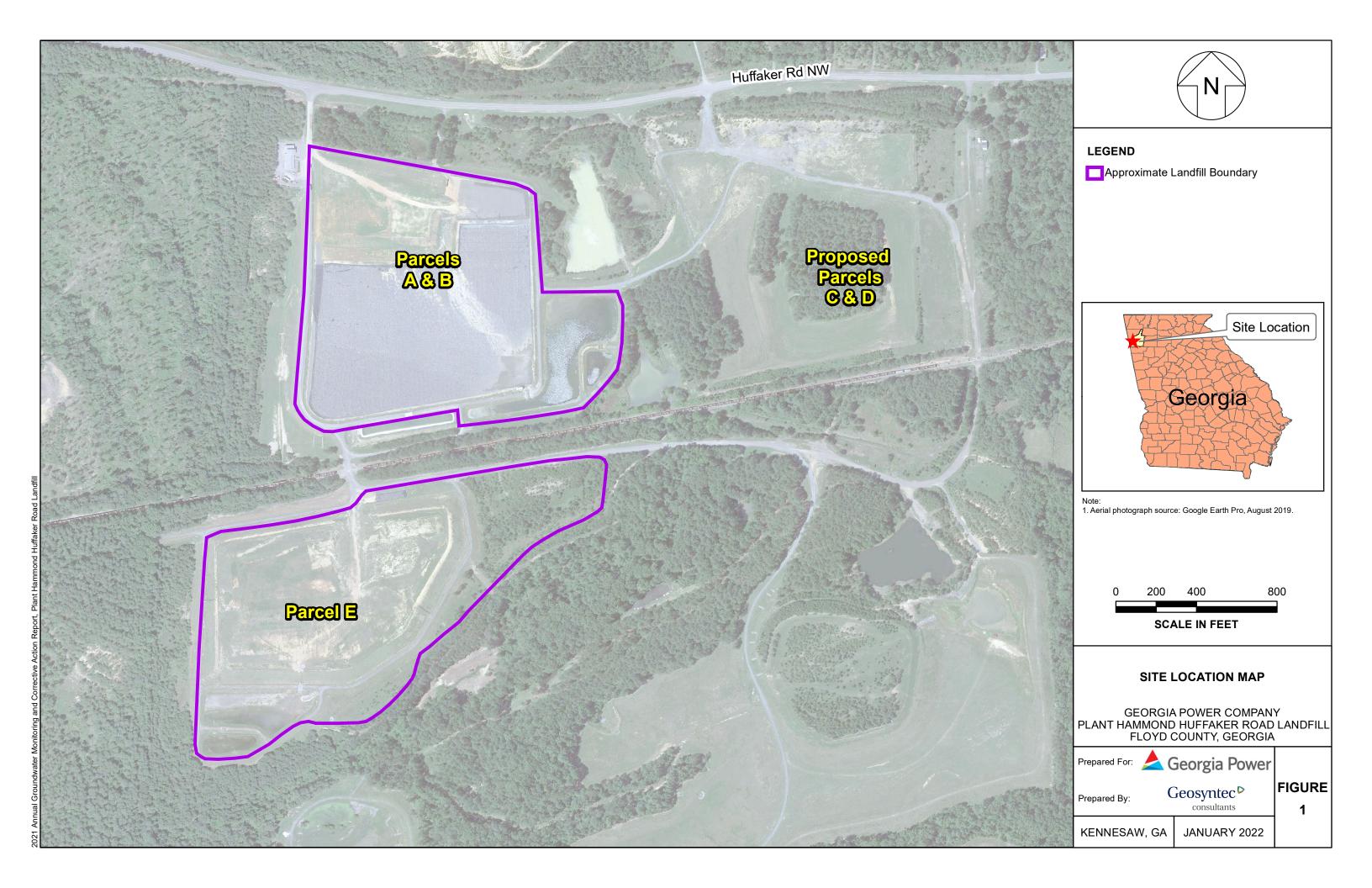
(1) Groundwater flow velocity equation: $V = [K_h * i] / n_e$

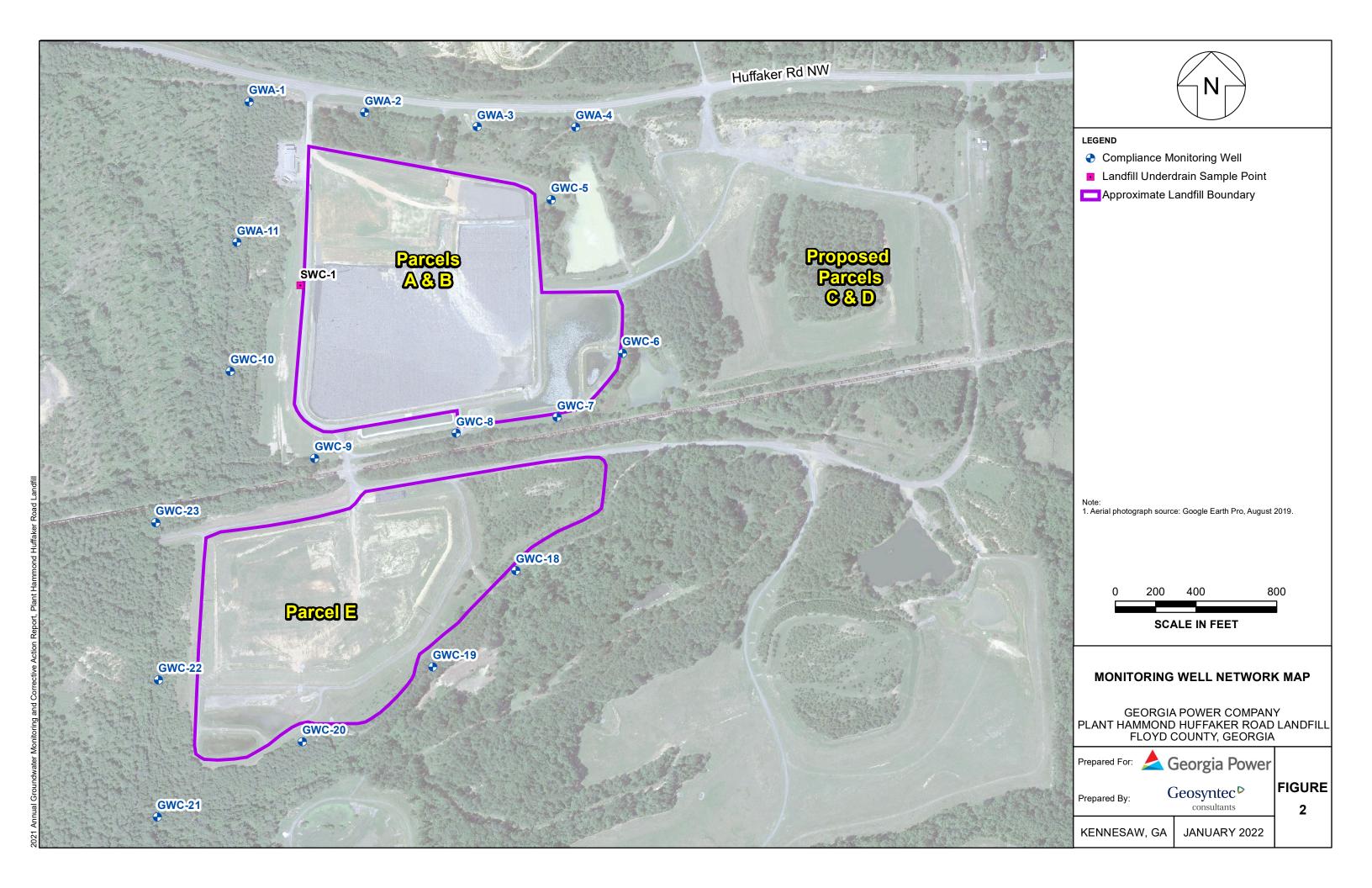
(2) Velocity was calculated between GWC-9 and GWC-19 in March 2021, and between GWC-9 and GWC-20 in August 2021.

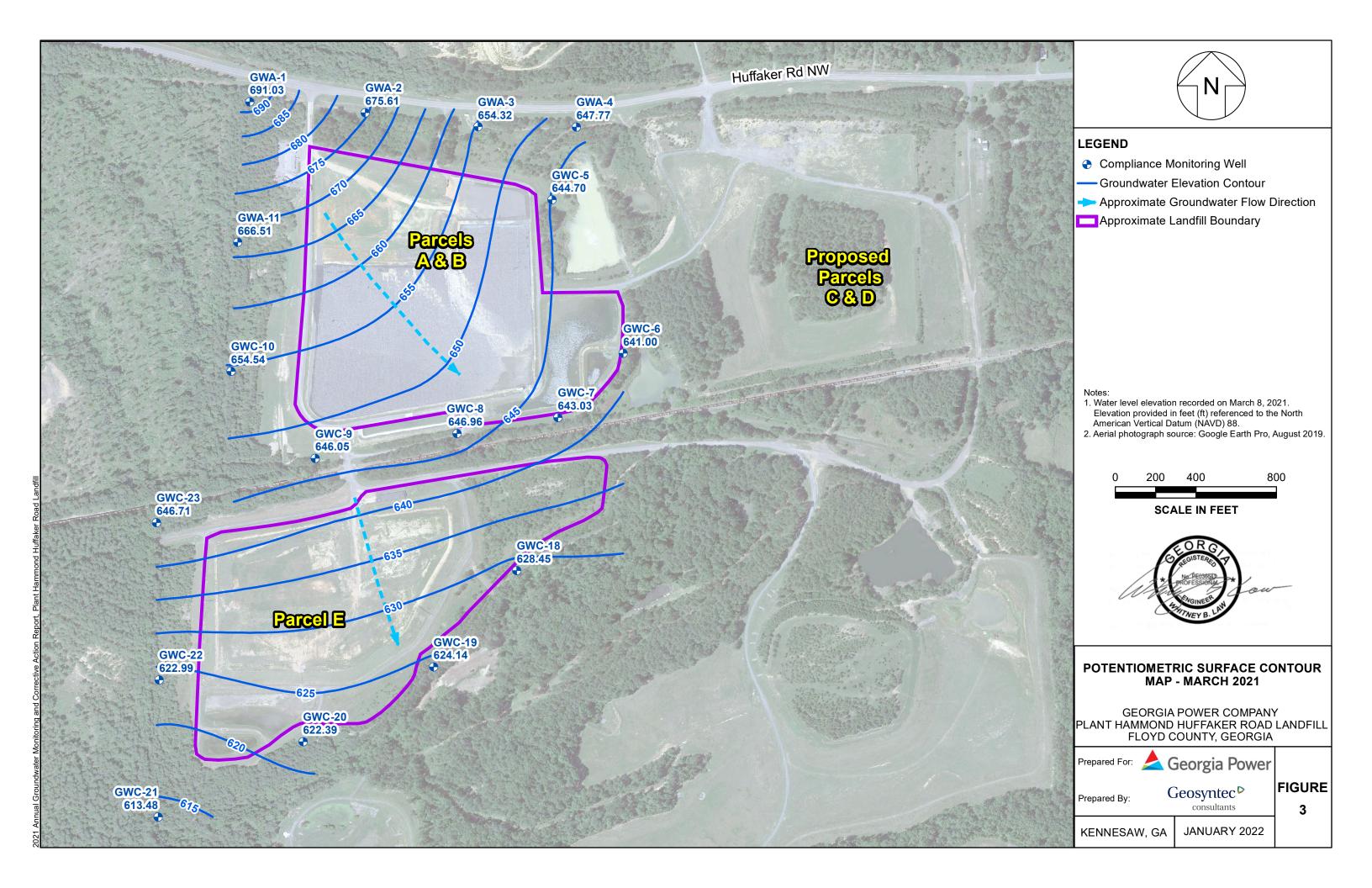
Table 5Summary of Groundwater Analytical Data
Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia

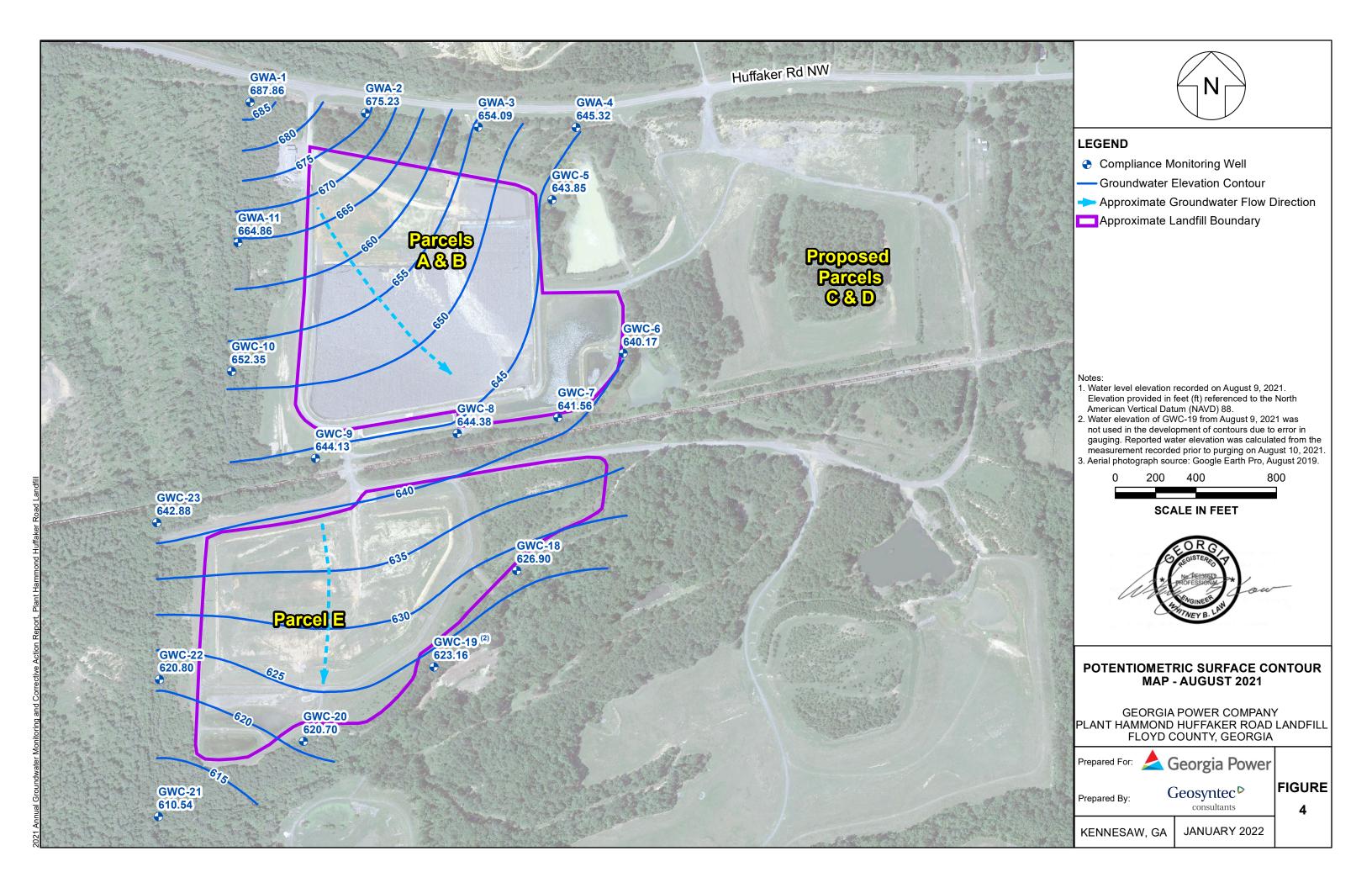
	Well ID:	GWA-1	GWA-1	GWA-2	GWA-2	GWA-3	GWA-3	GWA-4	GWA-4	GWA-11	GWA-11	GWC-5	GWC-5
	Sample Date:	3/8/2021	8/9/2021	3/9/2021	8/9/2021	3/8/2021	8/9/2021	3/8/2021	8/9/2021	3/8/2021	8/10/2021	3/9/2021	8/10/2021
	Parameter (1,2)												
	Antimony	< 0.00028	< 0.00078	< 0.00028	0.0023 J	< 0.00028	< 0.00078	0.0016 J	< 0.00078	0.00050 J	< 0.00078	< 0.00028	< 0.00078
	Arsenic	< 0.00078	< 0.0011	< 0.00078	< 0.0011	< 0.00078	< 0.0011	< 0.00078	< 0.0011	< 0.00078	< 0.0011	< 0.00078	< 0.0011
	Barium	0.035	0.046	0.17	0.19	0.12	0.12	0.052	0.034	0.031	0.030	0.063	0.077
	Beryllium	< 0.000046	< 0.000054	< 0.000046	< 0.000054	< 0.000046	< 0.000054	< 0.000046	< 0.000054	< 0.000046	< 0.000054	< 0.000046	< 0.000054
	Cadmium	< 0.00012	< 0.00011	< 0.00012	< 0.00011	< 0.00012	< 0.00011	< 0.00012	< 0.00011	< 0.00012	< 0.00011	< 0.00012	< 0.00011
7	Chromium	< 0.00055	< 0.0011	< 0.00055	< 0.0011	< 0.00055	< 0.0011	< 0.00055	< 0.0011	< 0.00055	< 0.0011	< 0.00055	< 0.0011
LAN	Cobalt	0.00050 J	< 0.00039	< 0.00038	< 0.00039	< 0.00038	0.00042 J	0.00061 J	< 0.00039	0.00049 J	0.00047 J	0.00043 J	0.00098 J
0 P]	Copper	< 0.0017	< 0.00050	< 0.0017	< 0.00050	< 0.0017	< 0.00050	< 0.0017	0.00051 J	< 0.0017	< 0.00050	< 0.0017	< 0.00050
)&(Lead	< 0.000036	< 0.00089	< 0.000036	< 0.00089	0.000040 J	< 0.00089	< 0.000036	< 0.00089	< 0.000036	< 0.00089	< 0.000036	< 0.00089
Ω	Nickel	< 0.00069	< 0.00071	< 0.00069	< 0.00071	< 0.00069	< 0.00071	< 0.00069	0.0010 J	0.0010 J	0.0017 J	< 0.00069	0.00085 J
	Selenium	< 0.0016	< 0.0014	< 0.0016	< 0.0014	< 0.0016	< 0.0014	< 0.0016	< 0.0014	< 0.0016	< 0.0014	< 0.0016	< 0.0014
	Silver	< 0.00036	< 0.00044	< 0.00036	< 0.00044	< 0.00036	< 0.00044	< 0.00036	< 0.00044	< 0.00036	< 0.00044	< 0.00036	< 0.00044
	Thallium	< 0.00014	< 0.00018	< 0.00014	< 0.00018	< 0.00014	< 0.00018	< 0.00014	< 0.00018	< 0.00014	< 0.00018	< 0.00014	< 0.00018
	Vanadium	< 0.0022	0.0019 J	< 0.0022	< 0.0019	< 0.0022	< 0.0019	< 0.0022	< 0.0019	< 0.0022	< 0.0019	< 0.0022	< 0.0019
	Zinc	< 0.0022	< 0.0070	< 0.0022	< 0.0070	< 0.0022	< 0.0070	0.0034 J	< 0.0070	< 0.0022	< 0.0070	< 0.0022	< 0.0070
	Boron	0.021 J	0.021 J	0.081	0.085	0.13	0.14	0.089	0.073	0.042	0.034 J	0.046	0.056
Ш	Calcium	16.2	20.2	48.7	49.9	73.5	73.2	87.2	69.7	22.0	20.8	85.4	78.3
XI	Chloride	1.1	1.1	2.1	2.4	2.8	2.1	5.6	3.0	1.3	1.2	2.0	2.3
QN.	Fluoride	0.094 J	0.083 J	0.099 J	0.081 J	0.13	0.10	0.10	0.12	0.11	0.068 J	0.050 J	0.057 J
APPE	pH ⁽³⁾	6.86	7.23	6.93	6.90	6.95	6.89	6.84	6.76	6.78	6.84	6.93	6.87
AI	Sulfate	4.6	4.7	16.8	23.2	99.5	93.3	152	106	11.5	11.2	86.9	76.1
	TDS	96	96.0	227	245	415	416	460	371	107	107	364	363

- J = Indicates the parameter was estimated and detected between the method detection limit (MDL) and the reporting limit (RL)
- < = Indicates the parameter was not detected above the analytical MDL
- TDS = total dissolved solids
- (1) Parameters are reported in units of milligrams per liter (mg/L), except for pH reported as s.u. (standard units).
- (2) Metals were analyzed by EPA Method 6010D and 6020B, anions were analyzed by EPA Method 300.0, TDS was analyzed by SM2540C.
- (3) The pH value presented was recorded at the time of sample collection in the field.


Table 5
Summary of Groundwater Analytical Data
Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia


	Well ID:	GWC-6	GWC-6	GWC-7	GWC-7	GWC-8	GWC-8	GWC-8	GWC-9	GWC-9	GWC-10	GWC-10
	Sample Date:	3/9/2021	8/10/2021	3/9/2021	8/10/2021	3/9/2021	8/10/2021	9/28/2021	3/9/2021	8/10/2021	3/10/2021	8/10/2021
Parameter (1,2)												
	Antimony	< 0.00028	< 0.00078	< 0.00028	< 0.00078	< 0.00028	< 0.00078		< 0.00028	< 0.00078	< 0.00028	< 0.00078
	Arsenic	< 0.00078	< 0.0011	0.0052	0.0072	0.0018 J	0.0050		< 0.00078	< 0.0011	< 0.00078	< 0.0011
	Barium	0.17	0.18	0.31	0.14	0.14	0.23	0.20	0.059	0.067	0.15	0.14
	Beryllium	< 0.000046	< 0.000054	< 0.000046	0.000061 J	< 0.000046	< 0.000054		< 0.000046	< 0.000054	< 0.000046	< 0.000054
	Cadmium	< 0.00012	< 0.00011	< 0.00012	< 0.00011	< 0.00012	< 0.00011		< 0.00012	< 0.00011	< 0.00012	< 0.00011
7	Chromium	< 0.00055	< 0.0011	< 0.00055	< 0.0011	< 0.00055	< 0.0011		< 0.00055	< 0.0011	< 0.00055	< 0.0011
D&O PLAN	Cobalt	< 0.00038	< 0.00039	0.0093	0.013	0.0013 J	0.0040 J		0.00042 J	< 0.00039	< 0.00038	< 0.00039
J P	Copper	< 0.0017	< 0.00050	< 0.0017	< 0.00050	< 0.0017	< 0.00050		< 0.0017	0.0018 J	< 0.0017	< 0.00050
)&(Lead	< 0.000036	< 0.00089	0.000085 J	< 0.00089	< 0.000036	< 0.00089		< 0.000036	< 0.00089	< 0.000036	< 0.00089
	Nickel	< 0.00069	< 0.00071	0.035	0.057	< 0.00069	0.0073	0.00090 J	0.0014 J	0.0019 J	< 0.00069	< 0.00071
	Selenium	< 0.0016	< 0.0014	< 0.0016	< 0.0014	< 0.0016	< 0.0014		< 0.0016	< 0.0014	< 0.0016	< 0.0014
	Silver	< 0.00036	< 0.00044	< 0.00036	< 0.00044	< 0.00036	< 0.00044		< 0.00036	< 0.00044	< 0.00036	< 0.00044
	Thallium	< 0.00014	< 0.00018	< 0.00014	< 0.00018	< 0.00014	< 0.00018		< 0.00014	< 0.00018	< 0.00014	< 0.00018
	Vanadium	< 0.0022	< 0.0019	< 0.0022	< 0.0019	< 0.0022	< 0.0019		< 0.0022	< 0.0019	< 0.0022	< 0.0019
	Zinc	< 0.0022	< 0.0070	0.057	0.093	< 0.0022	< 0.0070		< 0.0022	< 0.0070	< 0.0022	< 0.0070
	Boron	0.038 J	0.037 J	0.041	0.037 J	0.050	0.088		0.041 J	0.012 J	0.037 J	0.033 J
H	Calcium	70.8	67.7	64.3	40.5	83.2	111		36.8	38.1	48.7	45.5
XI	Chloride	1.5	1.6	1.5	1.6	2.2	2.7		0.74 J	0.85 J	1.1	1.2
<u> </u>	Fluoride	0.060 J	0.057 J	0.17	0.19	0.12	0.13		0.080 J	0.076 J	0.078 J	0.078 J
APPENDIX	pH ⁽³⁾	7.09	7.06	6.59	6.29	7.06	6.65	6.77	6.92	6.91	7.43	7.45
AF	Sulfate	105	95.9	87.4	101	33.1	31.6		65.1	76.3	14.2	14.9
	TDS	298	318	299	210	308	425		209	208	201	185


Table 5
Summary of Groundwater Analytical Data
Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia


	Well ID:	GWC-18	GWC-18	GWC-19	GWC-19	GWC-20	GWC-20	GWC-21	GWC-21	GWC-22	GWC-22	GWC-23	GWC-23
	Sample Date:	3/9/2021	8/10/2021	3/10/2021	8/10/2021	3/10/2021	8/10/2021	3/9/2021	8/10/2021	3/9/2021	8/10/2021	3/9/2021	8/10/2021
Parameter (1,2)													
	Antimony	< 0.00028	< 0.00078	< 0.00028	< 0.00078	< 0.00028	< 0.00078	< 0.00028	< 0.00078	< 0.00028	< 0.00078	< 0.00028	< 0.00078
	Arsenic	< 0.00078	< 0.0011	< 0.00078	< 0.0011	< 0.00078	< 0.0011	< 0.00078	< 0.0011	< 0.00078	< 0.0011	< 0.00078	< 0.0011
	Barium	0.077	0.093	0.15	0.14	0.13	0.14	0.12	0.057	0.089	0.091	0.085	0.085
	Beryllium	< 0.000046	< 0.000054	< 0.000046	< 0.000054	< 0.000046	< 0.000054	< 0.000046	< 0.000054	< 0.000046	< 0.000054	< 0.000046	< 0.000054
	Cadmium	< 0.00012	< 0.00011	< 0.00012	< 0.00011	< 0.00012	< 0.00011	< 0.00012	< 0.00011	< 0.00012	< 0.00011	< 0.00012	< 0.00011
7	Chromium	< 0.00055	< 0.0011	< 0.00055	< 0.0011	< 0.00055	< 0.0011	< 0.00055	< 0.0011	< 0.00055	< 0.0011	< 0.00055	< 0.0011
LAN	Cobalt	< 0.00038	< 0.00039	< 0.00038	< 0.00039	< 0.00038	< 0.00039	0.00049 J	0.0041 J	< 0.00038	< 0.00039	< 0.00038	< 0.00039
0 P	Copper	< 0.0017	< 0.00050	< 0.0017	< 0.00050	< 0.0017	< 0.00050	< 0.0017	< 0.00050	< 0.0017	< 0.00050	< 0.0017	0.00078 J
D&C	Lead	< 0.000036	< 0.00089	< 0.000036	< 0.00089	< 0.000036	< 0.00089	0.00013 J	< 0.00089	0.000038 J	< 0.00089	0.00011 J	< 0.00089
	Nickel	< 0.00069	< 0.00071	< 0.00069	< 0.00071	< 0.00069	< 0.00071	0.0013 J	0.0076	< 0.00069	< 0.00071	< 0.00069	0.00080 J
	Selenium	< 0.0016	< 0.0014	< 0.0016	< 0.0014	< 0.0016	< 0.0014	< 0.0016	< 0.0014	< 0.0016	< 0.0014	< 0.0016	< 0.0014
	Silver	< 0.00036	< 0.00044	< 0.00036	< 0.00044	< 0.00036	< 0.00044	< 0.00036	< 0.00044	< 0.00036	< 0.00044	< 0.00036	< 0.00044
	Thallium	< 0.00014	< 0.00018	< 0.00014	< 0.00018	< 0.00014	< 0.00018	< 0.00014	< 0.00018	< 0.00014	< 0.00018	< 0.00014	< 0.00018
	Vanadium	< 0.0022	< 0.0019	< 0.0022	< 0.0019	< 0.0022	< 0.0019	< 0.0022	< 0.0019	< 0.0022	< 0.0019	< 0.0022	< 0.0019
	Zinc	< 0.0022	< 0.0070	< 0.0022	< 0.0070	< 0.0022	< 0.0070	0.0033 J	< 0.0070	< 0.0022	< 0.0070	< 0.0022	< 0.0070
	Boron	0.13	0.14	0.16	0.14	0.018 J	0.013 J	0.030 J	0.026 J	0.065	0.057	0.044	0.027 J
Ħ	Calcium	44.9	48.2	47.4	44.9	64.9	62.0	67.8	29.7	48.7	48.1	54.3	48.2
X	Chloride	0.97 J	0.93 J	1.3	1.2	1.2	1.2	1.8	2.0	1.0	1.1	0.85 J	1.0
END	Fluoride	0.11	0.11	0.11	0.11	0.068 J	0.066 J	0.058 J	< 0.050	0.067 J	0.071 J	0.069 J	0.087 J
PPE	pH ⁽³⁾	7.66	7.40	7.49	7.49	7.41	7.31	7.04	6.05	7.52	7.75	6.81	6.96
ΑF	Sulfate	7.9	10.3	18.7	17.8	64.7	66.4	41.6	23.8	6.4	6.2	10.2	8.0
	TDS	192	224	223	209	241	270	243	121	178	206	216	178

FIGURES

APPENDIX A

Well Maintenance and Repair Documentation Memorandum

MEMORANDUM

DATE: October 24, 2021

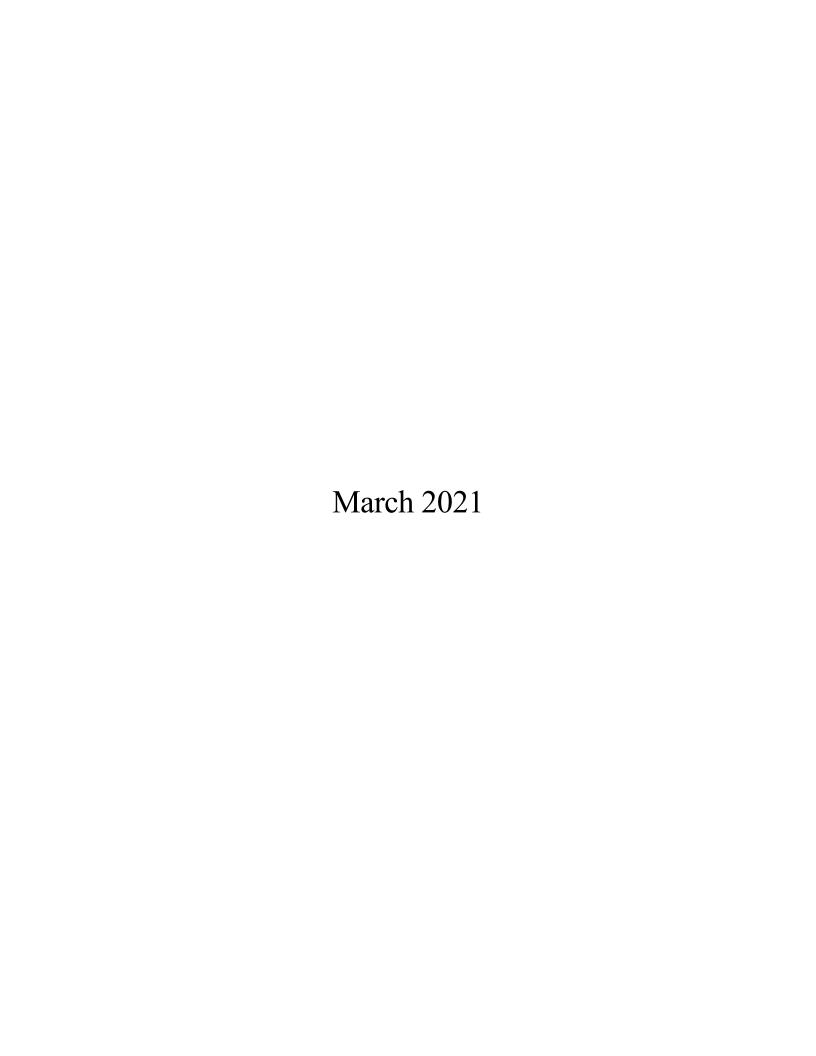
TO: Kristen Jurinko, P.G., Southern Company Services, Inc.

CC: Matthew Bierkamp, Georgia Power Company

Ben Hodges, Georgia Power Company

FROM: Geosyntec Consultants

SUBJECT: Plant Hammond Huffaker Road Landfill - Well Maintenance and Repair


Documentation, Georgia Power Company

Geosyntec Consultants has prepared this memorandum to provide documentation of groundwater monitoring well maintenance and/or repair performed at Plant Hammond Huffaker Road Landfill during the 2021 annual reporting period. All repairs and maintenance were completed in accordance with the Georgia Environmental Protection Division (GA EPD) guidance on routine visual inspections of groundwater monitoring wells. Documentation of the well inspections are provided as an attachment to this memorandum.

Georgia Power Site/Unit	Date Performed	Well ID	Maintenance/ Repair Performed
Hammond/Huffaker	1/19/2021	GWC-23	Added concrete under well pad to promote stability.
Hammond/Huffaker	8/4/2021	All Wells	Checked and cleared weepholes of debris.
Hammond/Huffaker	8/4/2021	GWC-23	Added surrounding soil/material under well pad to promote stability.
Hammond/Huffaker	9/28/2021	GWA-4, GWC-23	Inspected well pads for instability, no issue noted, no action taken.

ATTACHMENT

Well Inspection Forms

Site Name Permit Number	HAMMUND/HUFFAKER	-			
Well ID	EWA-1	_			
Date, field conditions	SUMMY, 69°F 2021-03-08	-			
		yes	no	n/a	
1 Location/I					
а	Is the well visible and accessible?	<u> </u>			
b	Is the well properly identified with the correct well ID?	$\overline{}$			
С	Is the well in a high traffic area and does the well require		./		
	protection from traffic?		<u>v</u>		
d	Is the drainage around the well acceptable? (no standing water,	./			
	nor is well located in obvious drainage flow path)	<u>v_</u>	S ()		
2 Protective	Casing				
a	Is the protective casing free from apparent damage and able to be				
	secured?	V			
b	Is the casing free of degradation or deterioration?	<u></u>			
С	Does the casing have a functioning weep hole?	$\overline{\mathcal{L}}$			
d	Is the annular space between casings clear of debris and water,	1	·	.=====	
	or filled with pea gravel/sand?	V			
е	Is the well locked and is the lock in good condition?				
3 Surface pa	ad	,			
a	Is the well pad in good condition (not cracked or broken)?	V.			
b	Is the well pad sloped away from the protective casing?	<u></u>			
c	Is the well pad in complete contact with the protective casing?				
d	Is the well pad in complete contact with the ground surface and				
	stable? (not undermined by erosion, animal burrows, and does no	t			
	move when stepped on)				
е	Is the pad surface clean (not covered with sediment or debris)?				CONFERED WITH
4 Internal ca	sina				Lighted
a	Does the cap prevent entry of foreign material into the well?	V			2
b	Is the casing free of kinks or bends, or any obstructions from				
J	foreign objects (such as bailers)?				
С	Is the well properly vented for equilibration of air pressure?	7			
d	Is the survey point clearly marked on the inner casing?	`		=	
e	Is the depth of the well consistent with the original well log?	7		-	
f	Is the casing stable? (or does the pvc move easily when touched	- 2	S	5	
	or can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)	ν			
5 Sampling	Groundwater Wells Only:				
a	Does well recharge adequately when purged?		•		
b	If dedicated sampling equipment installed, is it in good condition				
-	and specified in the approved groundwater plan for the facility?	\checkmark			
С	Does the well require redevelopment (low flow, turbid)?		$\overline{\mathcal{L}}$		
6 Daged on	your professional judgement, is the well construction / location		•		
o based on	appropriate to 1) achieve the objectives of the Groundwater				
	Monitoring Program and 2) comply with the applicable regulatory	1			
	requirements?	V			
_	•				
7 Corrective	e actions as needed, by date:				

Site Name	Huffaker	_		
Permit Number		_		
Well ID	GWA-Z	_		
Date, field conditions	3/8/4 SUNAY 70°F	=		
4.1		yes	no	n/a
	(Identification	/		
≝ a	Is the well visible and accessible?	<u>/</u>		
b	Is the well properly identified with the correct well ID?			<u> </u>
С	Is the well in a high traffic area and does the well require			1
	protection from traffic?			_
đ	Is the drainage around the well acceptable? (no standing water,	,		
	nor is well located in obvious drainage flow path)	\leftarrow		
2 Protectiv	e Casing			
a	Is the protective casing free from apparent damage and able to be			
-	secured?	/		
b	Is the casing free of degradation or deterioration?	7		
C	Does the casing have a functioning weep hole?	1		
d	Is the annular space between casings clear of debris and water,	- 2		
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	$\overline{}$		-
S (60) (20)	9			*
3 Surface p		/		
a	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	_		17:
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and	L		
	stable? (not undermined by erosion, animal burrows, and does no		,	
	move when stepped on)	/		
е	Is the pad surface clean (not covered with sediment or debris)?	<u> </u>	-	
4 Internal of	casing	1		
a	Does the cap prevent entry of foreign material into the well?	/		
b	Is the casing free of kinks or bends, or any obstructions from		-	
	foreign objects (such as bailers)?	1		
С	Is the well properly vented for equilibration of air pressure?	7		
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?	$\overline{}$		-CR
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	1		
	couplings in construction)			
5 Sampline	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition	_		
D	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			7
· ·	(,,,,,,,,,,,,,,,,,			
6 Based or	n your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	1		
	requirements?	_		
7 Camaati	o estima as readed, by date:			
/ Correctiv	e actions as needed, by date:			

Site Name	Huffaner	-91		
Permit Number		-0		
Well ID	GWA-3	-2		
Date, field conditions	3/8/2021 SURMY 65'F	-11		
4.1 4 4	a de de	yes	no	n/a
1 Location/I		/		
а	Is the well visible and accessible?	1		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
J.	protection from traffic?			_
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	1		
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be	2		
~	secured?	//		
b	Is the casing free of degradation or deterioration?	\rightarrow		-
C	Does the casing have a functioning weep hole?	4		
d	Is the annular space between casings clear of debris and water,	1		
ŭ	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	_		
Č	To the Well leaked and to the leak in good condition.	/		
3 Surface pa				
а	Is the well pad in good condition (not cracked or broken)?	1		2
b	Is the well pad sloped away from the protective casing?	\mathcal{I}		
С	Is the well pad in complete contact with the protective casing?	丆		
d	Is the well pad in complete contact with the ground surface and			:
	stable? (not undermined by erosion, animal burrows, and does no	t j		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	\overline{z}		
A Internal se	ratum			
4 Internal ca	Does the cap prevent entry of foreign material into the well?	/		
a	· · ·		·	
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?	/		
_	Is the well properly vented for equilibration of air pressure?		: :	
C		<u> </u>		
d	Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log?	/		
e	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	V		
f	or can it be taken apart by hand due to lack of grout or use of slip	/		
	couplings in construction)			
			·——·	
5 Sampling:	Groundwater Wells Only:	/		
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			~
С	Does the well require redevelopment (low flow, turbid)?			
6 Decedes	very week-actional independent to the well construction / location			
o based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	• • • • • • • • • • • • • • • • • • • •	_		
	Monitoring Program and 2) comply with the applicable regulatory requirements?	/		
	requirements :		·	
7 Corrective	actions as needed, by date:			
	· · · · · · · · · · · · · · · · · · ·			

	Groundwater Monitoring Well Integrity Form			
Site Name	Hustaker	_		
Permit Number Well ID		-		
Date, field conditions	3/10/20 JUNDY 65°F	-		
Date, field conditions	3/8/2021 JUNDY 65°F	yes	no	n/a
1 Location/I	dentification	yes	110	II/a
a	Is the well visible and accessible?	1		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			•
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	<u>V</u>		
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be	1		
	secured?	/		
b	Is the casing free of degradation or deterioration?	7		
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	_		
3 Surface pa	a <u>d</u>			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	7		
С	Is the well pad in complete contact with the protective casing?	$\overline{}$		
d	Is the well pad in complete contact with the ground surface and			ÿ
	stable? (not undermined by erosion, animal burrows, and does no			
	move when stepped on)	_		
е	Is the pad surface clean (not covered with sediment or debris)?	-		
4 Internal ca	sing	362		
а	Does the cap prevent entry of foreign material into the well?	<u> </u>		
b	Is the casing free of kinks or bends, or any obstructions from	1		
	foreign objects (such as bailers)?	1		
C	Is the well properly vented for equilibration of air pressure?	_		
d	Is the survey point clearly marked on the inner casing?	4		
e	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	1		
f	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	/		
_ a _ a				
5 Sampling:	Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
•	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			
С	boes the well require redevelopment (low llow, turbia)?			
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	/		
	requirements?	<u>/</u>		
7 Corrective	actions as needed, by date:			

Site Name Permit Well ID

		•	_	•		
Hammond	Huffaker	(NM)	11/	17/	21)	

Site Name	10100 000 11000 000 000 11111200			
Permit Number				
Well ID	GNA-II	•		
Date, field conditions		•		
	,	yes	no	n/a
1 Location/I	<u>dentification</u>	- Car		
а	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?	/		
С	Is the well in a high traffic area and does the well require			1100
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	/		
			-	-
2 Protective				
а	Is the protective casing free from apparent damage and able to be	/		
	secured?	4		
b	Is the casing free of degradation or deterioration?		:	
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,	/		
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface p	ad			
a <u>Surface p</u>	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	/		-
	Is the well pad in complete contact with the protective casing?	_	:	-
c d	Is the well pad in complete contact with the ground surface and	_		
u	stable? (not undermined by erosion, animal burrows, and does not			
		_		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	<u> </u>		
4 Internal ca	asing			
a	Does the cap prevent entry of foreign material into the well?	/		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	_		
e	Is the depth of the well consistent with the original well log?	7		-(CS)
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	/		
	couplings in construction)			
F 0	OttWell- O-b			
Carried Halling Co.	Groundwater Wells Only:	/		
a .	Does well recharge adequately when purged?	_		
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			_
С	Does the well require redevelopment (low flow, turbid)?			— .
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	/		
	·			
7 Corrective	e actions as needed by date:			

	Groundwater Monitoring Well Integrity Form			
	Hammond Huffaker (NM 11/17/21)			
Site Name	Nammona Hallored (HM HTT1121)	-		
Permit Number		4		
Well ID	GU-5	-		
Date, field conditions	2/BILOZI SONTY 700F	- Vec	no	n/a
1 Location/I	dentification	yes	no	TI/a
a	Is the well visible and accessible?	1		
b	Is the well properly identified with the correct well ID?	_		
C	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 5	•			-
2 Protective				
а	Is the protective casing free from apparent damage and able to be secured?	/		
h	Is the casing free of degradation or deterioration?	_		
b	Does the casing have a functioning weep hole?	_	· · · · · ·	-
c d	Is the annular space between casings clear of debris and water,	<u>_</u>	·	
u	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	/		
e	is the well locked and is the lock in good condition:			-
3 Surface p	<u>ad</u>	/		
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	1		
С	Is the well pad in complete contact with the protective casing?	\angle		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)	4		
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal c	asing	,		
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	_		
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			F(CW)
f	Is the casing stable? (or does the pvc move easily when touched			_
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_		:
5 Sampling	: Groundwater Wells Only:			
a	Does well recharge adequately when purged?	/		
b	If dedicated sampling equipment installed, is it in good condition	_		
	and specified in the approved groundwater plan for the facility?	-		
С	Does the well require redevelopment (low flow, turbid)?			
6 D				-
o Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	/		
	requirements:			.0
7 Corrective	e actions as needed, by date:			

Site Name Permit Number	Husfelser	·		G
Well ID	GWC-6			
Date, field conditions				
		yes	no	n/a
1 Location/I		_	2	
а	Is the well visible and accessible?	-		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			_
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Cooling			
2 Protective	Is the protective casing free from apparent damage and able to be			
а	secured?			
b	Is the casing free of degradation or deterioration?			
	Does the casing have a functioning weep hole?			
c d	Is the annular space between casings clear of debris and water,	_		
u	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	_		
C	To the well leaked and leak in good continue.			
3 Surface p	<u>ad</u>			
а	Is the well pad in good condition (not cracked or broken)?	_		
b	Is the well pad sloped away from the protective casing?	_		
С	Is the well pad in complete contact with the protective casing?	_		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	_		1
е	Is the pad surface clean (not covered with sediment or debris)?			<u>. </u>
A Internal or	2012			
4 Internal ca	Does the cap prevent entry of foreign material into the well?			
a b	Is the casing free of kinks or bends, or any obstructions from			
U	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			S >
d	Is the survey point clearly marked on the inner casing?	$\overline{}$		
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
•	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_/_		
□ 150 100				
5 Sampling	: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
_E b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based on	your professional judgement, is the well construction / location			
- 50000 011	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	•			
7 Corrective	e actions as needed, by date:			
2				

Site Name	Hammond Huffaker (NM 11/17/21.	_		
Permit Number				
Well ID	GVC-7	_		
Date, field conditions	3/8/L) FUNNY 70°F	-		
	<u>C</u>	yes	no	n/a
1 Location/Id		1		
а	Is the well visible and accessible?	4		-
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			_
	protection from traffic?			_
d	Is the drainage around the well acceptable? (no standing water,	1		
	nor is well located in obvious drainage flow path)			
2 Protective	Cooling			
	Is the protective casing free from apparent damage and able to be	1		
а	secured?	/		
h	Is the casing free of degradation or deterioration?			
b	Does the casing have a functioning weep hole?			
C	Is the annular space between casings clear of debris and water,			
d	•			
_	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface pa	ad			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?		-	
c	Is the well pad in complete contact with the protective casing?		-	
ď	Is the well pad in complete contact with the ground surface and			*
ū	stable? (not undermined by erosion, animal burrows, and does no			
	move when stepped on)	1		
е	Is the pad surface clean (not covered with sediment or debris)?			-
4 Internal ca		/		
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from	/		
	foreign objects (such as bailers)?	_		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	_		
е	Is the depth of the well consistent with the original well log?			< (a)
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	/		
	couplings in construction)			-
5 Sampling	Groundwater Wells Only:			
a <u>Sampling.</u>	Does well recharge adequately when purged?	1		
b	If dedicated sampling equipment installed, is it in good condition			
U	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		$\overline{}$	
C	boos the well require redevelopment (low now, tarble):			
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	~		
	requirements?			
	· ·			
7 Corrective	actions as needed, by date:			

Name	Hullen			
nit Number				
ID	GNUC-8			
, field conditions	3/8/21 summy, 70	yes	no	n/a
1 Location/le	dentification	,		
а	Is the well visible and accessible?	_		
b	Is the well properly identified with the correct well ID?	_		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?		-	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be			
-	secured?			
b	Is the casing free of degradation or deterioration?	$\overline{}$		
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
-	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	_		
3 Surface pa	ad			
a <u>Surface pa</u>	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			-
C	Is the well pad in complete contact with the protective casing?	_		
ď	Is the well pad in complete contact with the ground surface and			
ū	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	-		
е	Is the pad surface clean (not covered with sediment or debris)?	_		
4 Internal ca	seina			
a	Does the cap prevent entry of foreign material into the well?	-		
b	Is the casing free of kinks or bends, or any obstructions from) :	
-	foreign objects (such as bailers)?	_		
С	Is the well properly vented for equilibration of air pressure?			-
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?	_		
f	Is the casing stable? (or does the pvc move easily when touched			
·	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_		:
5 Sampling	Groundwater Wells Only:			
a	Does well recharge adequately when purged?	•		
b	If dedicated sampling equipment installed, is it in good condition			
-	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		_	
6 Rased on	your professional judgement, is the well construction / location			
- 54504 011	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	_		
_	·			
7 Corrective	e actions as needed, by date:			
. 331133114				

Site Name	- Ammonio HUAFACER	_		
Permit Number		-		
Well ID	GWC-9	_		
Date, field conditions	Sunling, GOF 3/8/21 (NM 11/17/21)	yes	no	n/a
1 Location/I	dentification	, , ,		
а	Is the well visible and accessible?	ے/د		UI
b	Is the well properly identified with the correct well ID?	7		
С	Is the well in a high traffic area and does the well require	•	7	-
	protection from traffic?		V	
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	<u>/</u>		
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?	7/		371 -
C	Does the casing have a functioning weep hole?	\		-
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	ν,		
е	Is the well locked and is the lock in good condition?	$\overline{\checkmark}$		
3 Surface p	ad	,		
a	Is the well pad in good condition (not cracked or broken)?	1/.		
b	Is the well pad sloped away from the protective casing?	1/		
С	Is the well pad in complete contact with the protective casing?	7		
d	Is the well pad in complete contact with the ground surface and			 -
	stable? (not undermined by erosion, animal burrows, and does no	t /		
	move when stepped on)	<u>~</u>		
е	Is the pad surface clean (not covered with sediment or debris)?	√		
4 Internal ca	asing			
а	Does the cap prevent entry of foreign material into the well?	1/		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	1/		
С	Is the well properly vented for equilibration of air pressure?			7
d	Is the survey point clearly marked on the inner casing?	1/		
е	Is the depth of the well consistent with the original well log?	./	77	
f	Is the casing stable? (or does the pvc move easily when touched	V _		
	or can it be taken apart by hand due to lack of grout or use of slip	./		
	couplings in construction)	<u></u>		-
5 Sampling	: Groundwater Wells Only:	/	,	
а	Does well recharge adequately when purged?	4		
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?		,	,
С	Does the well require redevelopment (low flow, turbid)?		-/	
b Based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	χ (NM 1	11/17/21
7.0	·			
/ Corrective	e actions as needed, by date:			

Site Name Pe We

Hammond Huffaker (NM 11/17/21)

Permit Number				
Well ID	GWC-10			
Date, field conditions	3/8/21 SUNNY 7:00F			
	* 5	yes	no	n/a
1 Location/I		,		
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			_
d	Is the drainage around the well acceptable? (no standing water,	1		
	nor is well located in obvious drainage flow path)		-	
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be			
· •	secured?	1		
b	Is the casing free of degradation or deterioration?	/	-	
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
u	or filled with pea gravel/sand?	/		
е	Is the well locked and is the lock in good condition?	_		
G	is the well locked and is the lock in good condition.			
3 Surface p	<u>ad</u>			
а	Is the well pad in good condition (not cracked or broken)?	_6_		
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
A Internal of	noing.			
4 Internal ca	Does the cap prevent entry of foreign material into the well?	/		
a b	Is the casing free of kinks or bends, or any obstructions from) `	
U	foreign objects (such as bailers)?			
	Is the well properly vented for equilibration of air pressure?			
c d	Is the survey point clearly marked on the inner casing?			
	Is the depth of the well consistent with the original well log?	_	$\overline{}$	Ifa
e f	Is the casing stable? (or does the pvc move easily when touched			7-69
Ţ	or can it be taken apart by hand due to lack of grout or use of slip	_		
	couplings in construction)			
			S	-
5 Sampling	: Groundwater Wells Only:	/		
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		_	
6 Doord on	were prefereigned independent in the well construction / location			
o based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	requirements:		0	13
7 Corrective	e actions as needed, by date:			
				

Name	Hulfelew			
it Number	a said des as	•		
ID	GWC-18	-		
field conditions	31812(Sunny 70)	-		
		yes	no	n/a
1 Location/lo				
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			(63)
	protection from traffic?			$\stackrel{\frown}{-}$
d	Is the drainage around the well acceptable? (no standing water,	_		
	nor is well located in obvious drainage flow path)			
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be			
	secured?	_		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	\leq		-
3 Surface pa	ad			
a	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			-
c	Is the well pad in complete contact with the protective casing?			
ď	Is the well pad in complete contact with the ground surface and		:	
	stable? (not undermined by erosion, animal burrows, and does not		-	
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	=	_	_
4 Internal ca	nnia			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
_	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	$\overline{}$		
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			2 2
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_		
5 Sampling:	Groundwater Wells Only:			
a	Does well recharge adequately when purged?	_		
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		_	
6 Racad on	your professional judgement, is the well construction / location			
o based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	/		

lame	Hammon Huffaker (NM 11/17/2	-1)		
t Number	0 1 10			
D	GWC-19			
field conditions	318121 Sunny			
41	L. Merchanis	yes	no	n/a
1 Location/Id				
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Casing			
	Is the protective casing free from apparent damage and able to be			
а	secured?			
_	Is the casing free of degradation or deterioration?			
b	-			
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
_	or filled with pea gravel/sand?	_		
е	Is the well locked and is the lock in good condition?		_	
3 Surface pa	ad			
a	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	$\overline{}$		
C	Is the well pad in complete contact with the protective casing?	_	; /	-
ď	Is the well pad in complete contact with the ground surface and			
ď	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	_) ()	
4 Internal ca	ngia			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
	Is the well properly vented for equilibration of air pressure?			
c d	Is the survey point clearly marked on the inner casing?	<u> </u>		
	Is the depth of the well consistent with the original well log?			
e	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	_		
ı	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Basad an	your professional judgement, is the well construction / leastion			
o based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	Control of the contro			
7 Corrective	actions as needed, by date:			

lame	Hulleder	60		
t Number		ec.		
D	GWC-20			
field conditions	3/8/21 Sunny			
		yes	no	n/a
1 Location/le				
а	Is the well visible and accessible?	_		
b	Is the well properly identified with the correct well ID?	-		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Cacina			
	Is the protective casing free from apparent damage and able to be			
а	secured?			
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			-
ď	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			-
				-
3 Surface pa				
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			-
4 Internal ca	esina			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
·-	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	_		
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?	$\overline{}$		
f	Is the casing stable? (or does the pvc move easily when touched		\———(
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling	Groundwater Wells Only:			
a <u>Sampling.</u>	Does well recharge adequately when purged?	/		
b	If dedicated sampling equipment installed, is it in good condition	$\overline{}$)
b	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			-
-		—		
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	actions as needed, by date:			
7 (

Name	Hullelen			
nit Number		60		
ID	G166-21	• (/		
, field conditions	318/71 Sunny	··		-/-
1 Location/lo	dentification	yes	no	n/a
<u></u>	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	=		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?	29		
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	_		
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?			·
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface pa	a <u>d</u>			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not	_		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca				
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	_		
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_		
	couplings in construction)	$\overline{}$		
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?	_	,	
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			<u> </u>
С	Does the well require redevelopment (low flow, turbid)?		_	-
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	/		
	requirements?	_		
	actions as needed, by date:			
7 Corrective	actions as beened by date:			

Site Name	Hullere			
Permit Number		•		
Well ID	C1W(-77	-:		
Date, field conditions	318/21 sunny			n la
1 Location/Id	dentification	yes	no	n/a
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	-		
С	Is the well in a high traffic area and does the well require		=	
	protection from traffic?	-		
d	Is the drainage around the well acceptable? (no standing water,			.===0
	nor is well located in obvious drainage flow path)	_		
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?			· ·
С	Does the casing have a functioning weep hole?			· · · · · · · · · · · · · · · · · · ·
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	-	-	
е	Is the well locked and is the lock in good condition?	\equiv		
3 Surface pa	ad			
a	Is the well pad in good condition (not cracked or broken)?	_		
b	Is the well pad sloped away from the protective casing?	_		2
С	Is the well pad in complete contact with the protective casing?		s>	
d	Is the well pad in complete contact with the ground surface and			5
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?		·——	
4 Internal ca	sina			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?	_		
f	Is the casing stable? (or does the pvc move easily when touched		· ==:	23
	or can it be taken apart by hand due to lack of grout or use of slip	-		
	couplings in construction)	<u> </u>		
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			(
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			<u> </u>
С	Does the well require redevelopment (low flow, turbid)?	-	_	
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	/		
	requirements?	_		
7 Corrective	actions as needed, by date:			
-				

Site Name	While len			
Permit Number	1 10 - 60	-		
Well ID	64W(-ZZ	-		
Date, field conditions	3/8/21 SUNNY, 70°F (NM 11/17/21)			
		yes	no	n/a
1 Location/le				
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?			-
С	Does the casing have a functioning weep hole?	_		
d	Is the annular space between casings clear of debris and water,			•
	or filled with pea gravel/sand?	-		
е	Is the well locked and is the lock in good condition?	_		-
2 0	a		:=====0	
3 Surface pa				
a	Is the well pad in good condition (not cracked or broken)?		i i	
b	Is the well pad sloped away from the protective casing? Is the well pad in complete contact with the protective casing?			
C				
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does no			
	move when stepped on)			
_	Is the pad surface clean (not covered with sediment or debris)?	_		
е	is the pad surface dear (not covered with sediment of debris):			
4 Internal ca	asing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	-		
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?	-		
f	Is the casing stable? (or does the pvc move easily when touched	,		
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling:	Groundwater Wells Only:			
a	Does well recharge adequately when purged?	Paradament		
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Dd	very professional judgement in the well assets of the estion			-
o Based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	requirements:	_		-
7 Corrective	e actions as needed, by date:			

Name	Plant Hammond-Hullaker	<u>.</u> .		
mit Number	2001 X	-		
I ID	GWA-1			
e, field conditions	8/a121 sunny 1910			n/a
1 Location/l	dentification	yes	no	n/a
a	Is the well visible and accessible?	X		
b	Is the well properly identified with the correct well ID?	~	$\overline{}$	(
c	Is the well in a high traffic area and does the well require	\sim		0,=====================================
C	protection from traffic?		×	
d	Is the drainage around the well acceptable? (no standing water,			·
ū.	nor is well located in obvious drainage flow path)	V		
2 Protective	Casing			
0	s casing Is the protective casing free from apparent damage and able to be			
а	secured?	X		
b	Is the casing free of degradation or deterioration?	V		
C	Does the casing have a functioning weep hole?	V		
d	Is the annular space between casings clear of debris and water,			
ď	or filled with pea gravel/sand?	V.		
е	Is the well locked and is the lock in good condition?	X		
3 Surface p	-			å&
,	Is the well pad in good condition (not cracked or broken)?	V.		
a b	Is the well pad sloped away from the protective casing?	\	0)———	
	Is the well pad in complete contact with the protective casing?	\	·	10
c d	Is the well pad in complete contact with the ground surface and		·	10+
u	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	X		
е	Is the pad surface clean (not covered with sediment or debris)?	X		S
4 <u>Internal ca</u>	asing Does the cap prevent entry of foreign material into the well?	V		
a	Is the casing free of kinks or bends, or any obstructions from			
b	foreign objects (such as bailers)?	Y		
С	Is the well properly vented for equilibration of air pressure?	7		 /
d	Is the survey point clearly marked on the inner casing?	V		
e	Is the depth of the well consistent with the original well log?	V		
f	Is the casing stable? (or does the pvc move easily when touched			
•	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	X		
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?	X		
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			X
С	Does the well require redevelopment (low flow, turbid)?		X	
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	X		
7 Corrective	actions as needed, by date:			
NON				

Site Name	Plant Hammond - Huffaker	_		
Permit Number				
Well ID	GWA-Z			
Date, field condition	s 8/9/21, sunny/91°f	_ ,,,,,	20	n/o
1 Location	/Identification	yes	no	n/a
a	Is the well visible and accessible?	X		
b	Is the well properly identified with the correct well ID?	$\overline{\mathbf{x}}$	-	
С	Is the well in a high traffic area and does the well require		-	
	protection from traffic?		X	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	- X		
2 Protectiv	re Casing			
а	Is the protective casing free from apparent damage and able to be	9		
	secured?	X		
b	Is the casing free of degradation or deterioration?	X		
С	Does the casing have a functioning weep hole?	X		
d	Is the annular space between casings clear of debris and water,		-	S
	or filled with pea gravel/sand?	\times		
е	Is the well locked and is the lock in good condition?	X	_	
3 Surface	<u>pad</u>			
a	Is the well pad in good condition (not cracked or broken)?	~		
b	Is the well pad sloped away from the protective casing?	\overline{x}		
С	Is the well pad in complete contact with the protective casing?	X		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)	\sim		
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal of				
а	Does the cap prevent entry of foreign material into the well?	_×_		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	\sim		
С	Is the well properly vented for equilibration of air pressure?	X		
d	Is the survey point clearly marked on the inner casing?	×	0	
е	Is the depth of the well consistent with the original well log?	X		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	V		
	2 0 12 12 14		S	
5 Sampling	g: Groundwater Wells Only:			
а	Does well recharge adequately when purged?	\boldsymbol{X}		
b	If dedicated sampling equipment installed, is it in good condition			205
	and specified in the approved groundwater plan for the facility?			_X_
С	Does the well require redevelopment (low flow, turbid)?		_X_	
6 Based or	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	per de		
	requirements?	X		
7 Correctiv	e actions as needed, by date:			
NONE	a delicite de freedom, of dete.			

Groundwater Monitoring Well Integrity Form Huffaker (NM 11/17/21) Site Name Permit Number Well ID Date, field conditions Sulle (NM/11/17/21 yes no n/a 1 Location/Identification а Is the well visible and accessible? b Is the well properly identified with the correct well ID? С Is the well in a high traffic area and does the well require protection from traffic? Is the drainage around the well acceptable? (no standing water, d nor is well located in obvious drainage flow path) 2 Protective Casing Is the protective casing free from apparent damage and able to be а secured? b Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole? С Is the annular space between casings clear of debris and water, d or filled with pea gravel/sand? Is the well locked and is the lock in good condition? е 3 Surface pad Is the well pad in good condition (not cracked or broken)? а Is the well pad sloped away from the protective casing? b Is the well pad in complete contact with the protective casing? С ď Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) Is the pad surface clean (not covered with sediment or debris)? е 4 Internal casing Does the cap prevent entry of foreign material into the well? а b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? С d Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? е Is the casing stable? (or does the pvc move easily when touched f or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: Does well recharge adequately when purged? а If dedicated sampling equipment installed, is it in good condition b and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)? С 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements? 7 Corrective actions as needed, by date:

)	GWA-4	-		
field condition	15 8/1/21 - Suma 87	5.		
		yes	no	n/a
1 Location	n/Identification	N.		
a	Is the well visible and accessible?	<u></u>		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?		٨٥	
d			<u>%</u>	
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	10		
	nor is well located in obvious drainage now path)			
2 Protectiv	ve Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?	<u> </u>		
b	Is the casing free of degradation or deterioration?	_\		
C	Does the casing have a functioning weep hole?	<u>\\ \</u>		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand? Is the well locked and is the lock in good condition?		-	
е	is the well locked and is the lock in good condition?			
3 Surface	<u>pad</u>			
а	Is the well pad in good condition (not cracked or broken)?	×		
b	Is the well pad sloped away from the protective casing?	%		
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on) Is the pad surface clean (not covered with sediment or debris)?		<u>×</u>	
е	is the pad surface clean (not covered with sediment or debits)?			
4 Internal	casing			
а	Does the cap prevent entry of foreign material into the well?	<u> </u>		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	\wp		
C .	Is the well properly vented for equilibration of air pressure?	<u>\</u>		
d	Is the survey point clearly marked on the inner casing?	<u> </u>		
e f	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	<u>~</u>		
ı	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	N 2		
F 6 "		_~_		
	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition	\mathcal{D}		
b	and specified in the approved groundwater plan for the facility?			10
С	Does the well require redevelopment (low flow, turbid)?	-	- XO	
3	= 111 me nem regame redevolephilom (low mow, turbid):		~	
6 Based or	n your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	\mathcal{V}		

ame	Plant Hammond Implesen	_		
Number				
) 	Glest-11	_		
field conditions	Sigliceze surry hot	_		
1 Location/l	dentification	yes	no	n/a
a	Is the well visible and accessible?	1/	50	
b	Is the well properly identified with the correct well ID?	_	_	
c	Is the well in a high traffic area and does the well require			
Ū	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,		<u> </u>	
ū	nor is well located in obvious drainage flow path)	-		
2 Protective				
2 Protective				
а	Is the protective casing free from apparent damage and able to be secured?	•		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	_		
d	Is the annular space between casings clear of debris and water,		3	
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface pa	ad			
a	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?	_	$\overline{}$	$\overline{}$
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	sina			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	/	6	73/
	couplings in construction)		PAR	<u>//</u>
5 Sampling:	Groundwater Wells Only:			
	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			-
С	Does the well require redevelopment (low flow, turbid)?		/	
6 Based on v	our professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	actions as needed, by date:			

Name iit Number	Plant Hammand-Huttaker	-		
ID	C 1/ C. C	- s		
	CWC-5	-8		
neia conditions	8/10/21 8/10/21	-x		
1 Location/	Identification	yes	no	n/a
a	Is the well visible and accessible?	V		
b	Is the well properly identified with the correct well ID?	~		
C	Is the well in a high traffic area and does the well require	_X_		
C	protection from traffic?		~	
d	Is the drainage around the well acceptable? (no standing water,			
u	nor is well located in obvious drainage flow path)	11		
	nor is well located in obvious drainage flow path)	_X_		
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?	X		
b	Is the casing free of degradation or deterioration?	X		
С	Does the casing have a functioning weep hole?	V		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	X		
е	Is the well locked and is the lock in good condition?	X		
2.0.1				
3 <u>Surface p</u>				
a	Is the well pad in good condition (not cracked or broken)?	X		
b	Is the well pad sloped away from the protective casing?	X		
C	Is the well pad in complete contact with the protective casing?	X		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not	X		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	X		
4 Internal ca	asing			
a	Does the cap prevent entry of foreign material into the well?	X		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	X		
С	Is the well properly vented for equilibration of air pressure?	X		
d	Is the survey point clearly marked on the inner casing?	V		
е	Is the depth of the well consistent with the original well log?	X		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	X		
5 Sampling:	Groundwater Wells Only:			
a	Does well recharge adequately when purged?	V		
b	If dedicated sampling equipment installed, is it in good condition	_		
J	and specified in the approved groundwater plan for the facility?			X
С	Does the well require redevelopment (low flow, turbid)?		Y	
			<u> </u>	
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	X		
7 Corrective	actions as needed, by date:			======
NOIN	actions as needed, by date.			
V WV C	<u> </u>			

Site Name	Plant Hammand Huffaker (NM 11/1	7/2	1)	
Permit Number	21:12:2			
Well ID	GWC-6			
Date, field conditions	8/W/z sunny 75°F	_		
1 Legation/	Identification	yes	no no	n/a
	Is the well visible and accessible?	-		
a		V	·	
b	Is the well properly identified with the correct well ID?	V		
С	Is the well in a high traffic area and does the well require		,	
_	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	V		
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be	2		
~	secured?	/		
b	Is the casing free of degradation or deterioration?	-		
č	Does the casing have a functioning weep hole?	-	-	*****
d	Is the annular space between casings clear of debris and water,			
u	or filled with pea gravel/sand?			
•	Is the well locked and is the lock in good condition?			
е	is the well locked and is the lock in good condition?		-	·
3 Surface p	ad			
a	Is the well pad in good condition (not cracked or broken)?	,1		
b	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?	-		
d	Is the well pad in complete contact with the ground surface and			
_	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)	/		
е	Is the pad surface clean (not covered with sediment or debris)?	-		
4 <u>Internal ca</u>	asing			
а	Does the cap prevent entry of foreign material into the well?	V		
b	Is the casing free of kinks or bends, or any obstructions from		/	
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	V		
d	Is the survey point clearly marked on the inner casing?	V		
е	Is the depth of the well consistent with the original well log?	1		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	1		
	couplings in construction)	/		
5 Compline	Groundwater Wells Only:			
	Does well recharge adequately when purged?	1		
а	If dedicated sampling equipment installed, is it in good condition	<u></u>		
b	and specified in the approved groundwater plan for the facility?			
	Does the well require redevelopment (low flow, turbid)?		_	
С	boes the well require redevelopment (low flow, turblu)?			
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	/		
	·			
7 Corrective	actions as needed, by date:			

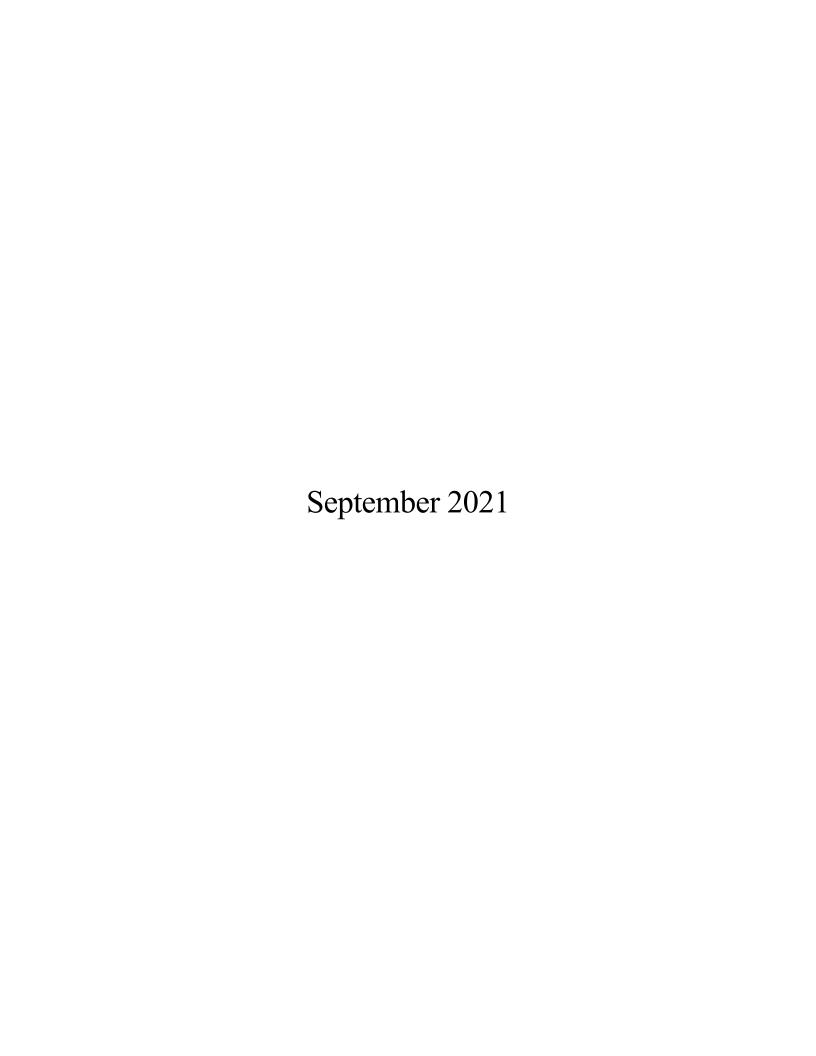
Site Name Permit Number	Plant Hammond-Hullaker	_		
Well ID	CUICAT	-		
	810/01	ole i		
Date, lielu conditions	8/9/21, Sunny 191 8/1	0/21		1-
1 Location/L	dontification	yes	no	n/a
1 Location/I	Is the well visible and accessible?			
a		X		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?		XI	
d	Is the drainage around the well acceptable? (no standing water,	-		
ū	nor is well located in obvious drainage flow path)	V		
	The New York Took to a Carriago New Patri)	_/~		77—————————————————————————————————————
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?	X		
b	Is the casing free of degradation or deterioration?	~		
C	Does the casing have a functioning weep hole?	\rightarrow		
d	Is the annular space between casings clear of debris and water,		-	
<u> </u>	or filled with pea gravel/sand?	~		
е	Is the well locked and is the lock in good condition?	-		
C	To the well locked and is the lock in good condition?			
3 Surface pa	ad			
a a	Is the well pad in good condition (not cracked or broken)?	Y		
b	Is the well pad sloped away from the protective casing?	▽		(
·-	Is the well pad in complete contact with the protective casing?	~		· · · · · · · · ·
	Is the well pad in complete contact with the ground surface and			
ū	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	X		
	Is the pad surface clean (not covered with sediment or debris)?	\		-
C	is the pad carried dicarr (not devoted with occument of debits):	Δ	·	
4 Internal ça	sing			
а	Does the cap prevent entry of foreign material into the well?	X		
	Is the casing free of kinks or bends, or any obstructions from			-
	foreign objects (such as bailers)?	X		
	Is the well properly vented for equilibration of air pressure?	V		
	Is the survey point clearly marked on the inner casing?	X		
	Is the depth of the well consistent with the original well log?	V	 :	
	Is the casing stable? (or does the pvc move easily when touched		-	
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	V		
	,	$\overline{}$		
	Groundwater Wells Only:			
	Does well recharge adequately when purged?	X		
	If dedicated sampling equipment installed, is it in good condition			M
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		X	
0.5			-	=======================================
	our professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	50.5		
	requirements?	X	-	
7 Corrective	actions as needed, by date:			
Corrective	actions as needed, by date:			
TOVEC				

ame t Number	Plant Hammand Huffaker (NM 11/	17/2	21)	
D	GWC-8	_		
field conditions	411.11	_		
	9/10/21 sonny 85 F	– yes	no	n/a
1 Location/	Identification	yes	110	IIIa
a	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?	-		
c	Is the well in a high traffic area and does the well require			
	protection from traffic?		/	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	./		
and the second second second second				
2 Protective				
а	Is the protective casing free from apparent damage and able to be	9		
	secured?	~		
b	Is the casing free of degradation or deterioration?	_		
C	Does the casing have a functioning weep hole?	_		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	V		
3 Surface p	ad			
a	Is the well pad in good condition (not cracked or broken)?	. /		
b	Is the well pad sloped away from the protective casing?	-		—
C	Is the well pad in complete contact with the protective casing?	1		
ď	Is the well pad in complete contact with the ground surface and	-		
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)	./		
е	Is the pad surface clean (not covered with sediment or debris)?	~		_
4 Intornal a				
4 Internal c				
a b	Does the cap prevent entry of foreign material into the well? Is the casing free of kinks or bends, or any obstructions from	-		
b	foreign objects (such as bailers)?	1		
С	Is the well properly vented for equilibration of air pressure?	_		
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
•	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	1/		
	Groundwater Wells Only:			
а	Does well recharge adequately when purged?	/		
b	If dedicated sampling equipment installed, is it in good condition			
_	and specified in the approved groundwater plan for the facility?			~
С	Does the well require redevelopment (low flow, turbid)?		V	
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	1/		
	·			-
7.0	actions as needed, by date:			

Site Name Permit Number	Plant Hammond-Huttaker	_			
Well ID	GWC-9	-			
	tions 8/9/21, 91 8/10/21	-			
	81-1121, 91	yes	no	n/a	
1 Locat	tion/Identification	,00	110	11/4	
a	Is the well visible and accessible?	X			
b	Is the well properly identified with the correct well ID?	X		-	
С	Is the well in a high traffic area and does the well require			*	
	protection from traffic?		X		
d	Is the drainage around the well acceptable? (no standing water,				
	nor is well located in obvious drainage flow path)	_X_			
2 Deate	ative Cooling				
	ctive Casing				
а	Is the protective casing free from apparent damage and able to be secured?				
b	Is the casing free of degradation or deterioration?	X			
C	Does the casing have a functioning weep hole?	X			
d	Is the annular space between casings clear of debris and water,	_X_			
ď	or filled with pea gravel/sand?	Y			
е	Is the well locked and is the lock in good condition?	-	-	<u> </u>	
· ·	To the train points and to the took in good containent.				
3 <u>Surfa</u>					
а	Is the well pad in good condition (not cracked or broken)?	X			
b	Is the well pad sloped away from the protective casing?	X			
C	Is the well pad in complete contact with the protective casing?	\mathbf{X}		: :	
d	Is the well pad in complete contact with the ground surface and				
	stable? (not undermined by erosion, animal burrows, and does no	t			
	move when stepped on)			-	
е	Is the pad surface clean (not covered with sediment or debris)?	_X_			
4 Intern	al casing				
a	Does the cap prevent entry of foreign material into the well?	X			
b	Is the casing free of kinks or bends, or any obstructions from				
	foreign objects (such as bailers)?	X			
С	Is the well properly vented for equilibration of air pressure?	\overline{X}			
d	Is the survey point clearly marked on the inner casing?	X			
е	Is the depth of the well consistent with the original well log?	X			
f	Is the casing stable? (or does the pvc move easily when touched				
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	V			
	couplings in construction)		.—		
5 Samp	ling: Groundwater Wells Only:				
а	Does well recharge adequately when purged?	X			
b	If dedicated sampling equipment installed, is it in good condition			-	
	and specified in the approved groundwater plan for the facility?			X	
С	Does the well require redevelopment (low flow, turbid)?		X		
6 Pages	d on your professional judgement, is the well construction / location				
O Dased	appropriate to 1) achieve the objectives of the Groundwater				
	Monitoring Program and 2) comply with the applicable regulatory	·			\
	requirements?	X (1	1M 1	1/17/:	21)
	ctive actions as needed, by date:				
	ONE				

ite Name	7/ 11 11 1/h Pl			
ermit Number	Ment Hemmen / Miffelio	=8		
ell ID	Cont. UC - 1C)			
ate, field conditions		- 02		
	8/9/7021 Sunn, hos	yes	no	n/a
1 Location/I	dentification	you		11/4
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			-
	protection from traffic?		_	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	2		
	rest = mer =		· ·	-
2 Protective				
а	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			-
d	Is the annular space between casings clear of debris and water,			
-	or filled with pea gravel/sand?	_		
е	Is the well locked and is the lock in good condition?			
3 Surface pa				
a	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not	i.		
_	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	sing			
a	Does the cap prevent entry of foreign material into the well?	_		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	_		
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling	Groundwater Wells Only:			
	Does well recharge adequately when purged?	1		
	If dedicated sampling equipment installed, is it in good condition	_		
	and specified in the approved groundwater plan for the facility?			· promo
	Does the well require redevelopment (low flow, turbid)?			
· ·	2 coo in a war radama rada valapiniani (law naw, tarbia):			
	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	- 2		
	requirements?			
7 Corrective	actions as pooded by detail			
Corrective	actions as needed, by date:			
•				

Plant Hammond-Huffaker			
C111C-1S	=		
	-		
- OPTIES STORES	Ves	no	n/a
dentification	yco	110	11/4
Is the well visible and accessible?	×		
Is the well properly identified with the correct well ID?	X		
protection from traffic?		X	
Is the drainage around the well acceptable? (no standing water,			
nor is well located in obvious drainage flow path)	X		
A			
	V		
	X		
		-	:;
	V		
	X		
is the well locked and is the lock in good condition?	+	-	
<u>ad</u>			
Is the well pad in good condition (not cracked or broken)?	X		
Is the well pad sloped away from the protective casing?	X		
	X		
	A Comment		
	X		·
Is the pad surface clean (not covered with sediment or debris)?	×		
sina	1		
	×		
		$\overline{}$	
	· V		
· · · · · · · · · · · · · · · · · ·			
	★		-
	X		
Is the casing stable? (or does the pvc move easily when touched			
or can it be taken apart by hand due to lack of grout or use of slip	V		
couplings in construction)	<u> </u>		
Groundwater Wells Only			
	X		
			×
		N	/ ~
•		1	
appropriate to 1) achieve the objectives of the Groundwater			
	N		
requirements?	X		
actions as needed, by date:			
	dentification Is the well visible and accessible? Is the well properly identified with the correct well ID? Is the well in a high traffic area and does the well require protection from traffic? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) **Casing* Is the protective casing free from apparent damage and able to be secured? Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole? Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? Is the well locked and is the lock in good condition? **ad* Is the well pad in good condition (not cracked or broken)? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) Is the pad surface clean (not covered with sediment or debris)? **Ising* Does the cap prevent entry of foreign material into the well? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the bethe of the well consistent with the original well log? Is the eaph of the well consistent with the original well log? Is the depth of the well consistent with the original well log? Is the depth of the well consistent with the original well log? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) **Groundwater Wells Only:** Does well recharge adequately when purged?** If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)? **your professional judgement, is the well construction / location appropriate to	dentification Is the well visible and accessible? Is the well properly identified with the correct well ID? Is the well in a high traffic area and does the well require protection from traffic? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) Casing Is the protective casing free from apparent damage and able to be secured? Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole? Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? Is the well pad in good condition (not cracked or broken)? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) Is the pad surface clean (not covered with sediment or debris)? Is the easing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? Is the easing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)? your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory	dentification Is the well visible and accessible? Is the well properly identified with the correct well ID? Is the well in a high traffic area and does the well require protection from traffic? Is the well in a high traffic area and does the well require protection from traffic? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) Casing Is the protective casing free from apparent damage and able to be secured? Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole? Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? Is the well pad in good condition (not cracked or broken)? Is the well pad in good condition (not cracked or broken)? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) Is the pad surface clean (not covered with sediment or debris)? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as baliers)? Is the eapth of the well consistent with the original well log? Is the apth of the well consistent with the original well log? Is the apth of the well consistent with the original well log? Is the casing stable? (or does the pur move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)? your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory


Site Name Permit Number	Plant - Hammond - Huttaker	_			
Well ID	010				
	GWC-19	_			
Date, field conditions	8/9/14 8/10/21	_			
1 Location/	Identification	yes	no	n/a	
a	Is the well visible and accessible?	10			
b	Is the well properly identified with the correct well ID?	×_			
C	Is the well in a high traffic area and does the well require				Bollards in
C	protection from traffic?	N/	1		
d	Is the drainage around the well acceptable? (no standing water,	X	-X		place
u	nor is well located in obvious drainage flow path)	V			(NM 9/3/21
	nor is well located in obvious drainage flow path)		-		
2 Protective	Casing				
a	Is the protective casing free from apparent damage and able to b	e			
	secured?	Y			
b	Is the casing free of degradation or deterioration?	-			
С	Does the casing have a functioning weep hole?	\			
d	Is the annular space between casings clear of debris and water,				
	or filled with pea gravel/sand?	V			
е	Is the well locked and is the lock in good condition?	→			
3 <u>Surface pa</u>					
а	Is the well pad in good condition (not cracked or broken)?	X			
b	Is the well pad sloped away from the protective casing?	X			
С	Is the well pad in complete contact with the protective casing?	X			
d	Is the well pad in complete contact with the ground surface and			·	
	stable? (not undermined by erosion, animal burrows, and does no	it 🌉			
	move when stepped on)	X			
е	Is the pad surface clean (not covered with sediment or debris)?	X			
4 Internal ca	prina				
a	Does the cap prevent entry of foreign material into the well?	×			
	Is the casing free of kinks or bends, or any obstructions from				
	foreign objects (such as bailers)?	X			
	Is the well properly vented for equilibration of air pressure?	-			
d	Is the survey point clearly marked on the inner casing?	\			
e	Is the depth of the well consistent with the original well log?	~			
f	Is the casing stable? (or does the pvc move easily when touched				
	or can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)	X			
- 244-107-101-95-114-1	CONTRACTOR AND				
5 Sampling:	Groundwater Wells Only:				
а	Does well recharge adequately when purged?	<u>X</u> _			
	If dedicated sampling equipment installed, is it in good condition		_	2 12	
	and specified in the approved groundwater plan for the facility?			X_	
С	Does the well require redevelopment (low flow, turbid)?		X		
6 Based on v	our professional judgement, is the well construction / location		100		
o based on y	appropriate to 1) achieve the objectives of the Groundwater				
	Monitoring Program and 2) comply with the applicable regulatory				
	requirements?	X			
!	· equilibrium (to):	<u></u>			
7 Corrective	actions as needed, by date:				
NOVU.	•				

lame it Number	Plant Hammand Huffaker (NM 11/1	7/2	1)	
D	GW6-20	_ :		
field conditions	8/10/21 Sumy 87°F	- 2		
	billetel soming & F.	– yes	no	n/a
1 Location/I	dentification	,00	110	11/4
а	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?	/		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?		/	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	V		
2 Protective	Cooling	·		
2 Protective				
а	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,		-	
ď	or filled with pea gravel/sand?	-		
е	Is the well locked and is the lock in good condition?		-	
3 <u>Surface pa</u>				
	Is the well pad in good condition (not cracked or broken)?	V		
	Is the well pad sloped away from the protective casing?	v		
	Is the well pad in complete contact with the protective casing?	V		
	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no			
	move when stepped on)	V		
е	Is the pad surface clean (not covered with sediment or debris)?	V		
4 Internal ca	sing			
а	Does the cap prevent entry of foreign material into the well?	1		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	V		
	s the well properly vented for equilibration of air pressure?	V		
	Is the survey point clearly marked on the inner casing?	V		
е	s the depth of the well consistent with the original well log?	V		
	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
ı	couplings in construction)			
5 Sampling:	Groundwater Wells Only:			
	Does well recharge adequately when purged?	1		
b	f dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
c l	Does the well require redevelopment (low flow, turbid)?		V	
6 Pagad are	our professional independent in the could be a first or or			
	our professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	1		
ľ	equirements!	V		

Number	01.6 = 2	- 3		
	G16-21	-3		
eld conditions	8/912021	-,		
1 Location/	Identification	yes	no	n/a
a	Is the well visible and accessible?			
a b	Is the well properly identified with the correct well ID?	$\overline{}$		
C	Is the well in a high traffic area and does the well require			
Ü	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
-	nor is well located in obvious drainage flow path)			
_	- ,			_
2 Protective				
а	Is the protective casing free from apparent damage and able to be			
	secured?			
b -	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?		-	
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	<u> </u>		
C	to the well looked and is the look in good condition:			
3 Surface p	<u>ad</u>			
а	Is the well pad in good condition (not cracked or broken)?	_		
b	Is the well pad sloped away from the protective casing?	_		
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
•	move when stepped on) Is the pad surface clean (not covered with sediment or debris)?			
е	is the pad surface clean (not covered with sediment or dephis)?			
4 Internal ca	asing			
а	Does the cap prevent entry of foreign material into the well?	_	20	
b	Is the casing free of kinks or bends, or any obstructions from	-	2	
	foreign objects (such as bailers)?	/		
C	Is the well properly vented for equilibration of air pressure?	_		
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	_		
f	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
<u> </u>	,			
	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			_
С	boes the well require redevelopment (low now, turbid)?		<u> </u>	
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	actions as needed, by date:			

Site Name	Mant hammon / bluffele	= /ī		
Permit Number	W. I.	_		
Well ID	GWC-72	_		
Date, field conditions	8/9/2071 Sunny hos	_		
1 Location/	Identification	yes	no	n/a
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require		-	
C	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,		-	
u	nor is well located in obvious drainage flow path)	/		
	The new results and obvious aramage new path)			
2 Protective				
а	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?		-	
C	Does the casing have a functioning weep hole?	$\overline{}$	-	
d	Is the annular space between casings clear of debris and water,	-		*
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	/		
3 Surface p	ad			
a <u>Surface p</u>	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
ď	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
Ü	the past carried discar (not service than seament or debits).		$\overline{}$	
4 Internal ca				
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			0
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	_		
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)			
	couplings in construction)			-
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		_	-
6.5				
o Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory requirements?			
	requirements:			
7 Corrective	actions as needed, by date:			
·				
	-11			

Name it Number	Plant Hammand Huffaker (NM 11/1	7/2	1)	
ID	6W6-23	-		
field conditions	8/10/21 Sunny Bof	-		
	STOTAL TOTAL TO P	yes	no	n/a
1 Location/I	dentification	yes	110	IIIa
a	Is the well visible and accessible?	X		
b	Is the well properly identified with the correct well ID?	- W	-	-
С	Is the well in a high traffic area and does the well require			
	protection from traffic?		./	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	1		
0 5	-			
2 Protective				
а	Is the protective casing free from apparent damage and able to be	9		
L	secured?	1		
b	Is the casing free of degradation or deterioration?	V		
c d	Does the casing have a functioning weep hole?	V		
a	Is the annular space between casings clear of debris and water,	1		
0	or filled with pea gravel/sand? Is the well locked and is the lock in good condition?	V		
е	is the well locked and is the lock in good condition?			
3 Surface pa	ı <u>d</u>			
a	Is the well pad in good condition (not cracked or broken)?	/		
b	Is the well pad sloped away from the protective casing?	1		
С	Is the well pad in complete contact with the protective casing?	1		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)		V	
е	Is the pad surface clean (not covered with sediment or debris)?	V		
4 Internal ca	eina			
	Does the cap prevent entry of foreign material into the well?	./		
	Is the casing free of kinks or bends, or any obstructions from		—	
	foreign objects (such as bailers)?			
	Is the well properly vented for equilibration of air pressure?			
	Is the survey point clearly marked on the inner casing?	1		
е	Is the depth of the well consistent with the original well log?	1		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling	Groundwater Wells Only:	· · · · · · · · · · · · · · · · · · ·		-
a <u>Sampling.</u>	Does well recharge adequately when purged?	./		
	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			/
	Does the well require redevelopment (low flow, turbid)?		1	
6 Based on y	our professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	1		
I	requirements?	V		
7 Corrective	actions as needed, by date:			

Site Name	Huffaker				
Permit Number	GWA-4				
Well ID		_			
Date, field conditions	9/28/21	yes	no	n/a	
1 Location/	Identification				
a	Is the well visible and accessible?	V			
b	Is the well properly identified with the correct well ID?	~			
С	Is the well in a high traffic area and does the well require				
İ	protection from traffic?		V		
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	V			
2 Protective	e Casing				
а	Is the protective casing free from apparent damage and able to be				
-	secured?				
b	Is the casing free of degradation or deterioration?	_	=		
С	Does the casing have a functioning weep hole?	1			
d	Is the annular space between casings clear of debris and water,				
	or filled with pea gravel/sand?	1/			
е	Is the well locked and is the lock in good condition?	V	_		
3 Surface p	ad				
a <u>eanade p</u>	Is the well pad in good condition (not cracked or broken)?	./			
b	Is the well pad sloped away from the protective casing?	1			
C	Is the well pad in complete contact with the protective casing?	1			
d	Is the well pad in complete contact with the ground surface and				
	stable? (not undermined by erosion, animal burrows, and does not				
	move when stepped on)	-1/			
е	Is the pad surface clean (not covered with sediment or debris)?				
4 Internal c	asing				
а	Does the cap prevent entry of foreign material into the well?	1/			
b	Is the casing free of kinks or bends, or any obstructions from				
	foreign objects (such as bailers)?	1/			
С	Is the well properly vented for equilibration of air pressure?	1	-		
d	Is the survey point clearly marked on the inner casing?	V	-		
е	Is the depth of the well consistent with the original well log?	1	-		
f	Is the casing stable? (or does the pvc move easily when touched				
	or can it be taken apart by hand due to lack of grout or use of slip	1			
	couplings in construction)				
5 Sampling	Groundwater Wells Only:				
а	Does well recharge adequately when purged?				No sample taken,
b	If dedicated sampling equipment installed, is it in good condition				·
	and specified in the approved groundwater plan for the facility?				well inspection
С	Does the well require redevelopment (low flow, turbid)?			V	only (NM
6 Based on	your professional judgement, is the well construction / location				11/17/21)
o basca on	appropriate to 1) achieve the objectives of the Groundwater				11/11/21)
	Monitoring Program and 2) comply with the applicable regulatory	2			
	requirements?				
7 Corrective	e actions as needed, by date:				
. 5011558176					
15 -2					
-					
Signature and Seal o	f PE/PG responsible for inspection				

Site Name Permit Number	Pkut Hemmon U Huffaker (NM 11	/17/	21)		
Well ID	GWC-8				
Date, field condition		-			
	(NM 11/7/21) on/Identification	yes	no	n/a	
a	Is the well visible and accessible?				
b	Is the well properly identified with the correct well ID?				
C	Is the well in a high traffic area and does the well require				Bollards in place
C	protection from traffic?				•
d	Is the drainage around the well acceptable? (no standing water,		$\overline{}$		(NM 11/17/21)
u	nor is well located in obvious drainage flow path)				
	nor is well located in obvious drainage now path)				
2 Protect	ive Casing				
а	Is the protective casing free from apparent damage and able to be secured?				
b	Is the casing free of degradation or deterioration?	_		AT THE	
С	Does the casing have a functioning weep hole?			-	
d	Is the annular space between casings clear of debris and water,				
	or filled with pea gravel/sand?	_			
е	Is the well locked and is the lock in good condition?				
3 Surface	nad .				
a	Is the well pad in good condition (not cracked or broken)?				
b	Is the well pad sloped away from the protective casing?	(0.000.000)			
C	Is the well pad in complete contact with the protective casing?				
ď	Is the well pad in complete contact with the ground surface and	_			
· ·	stable? (not undermined by erosion, animal burrows, and does not				
	move when stepped on)	•			
е	Is the pad surface clean (not covered with sediment or debris)?				
1 (-1	rocoroa				
4 Interna					
a	Does the cap prevent entry of foreign material into the well?				
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?				
C	Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing?	_			
d	Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log?				
e f	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched				
ı	or can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)				
5 O - F		-			
	ng: Groundwater Wells Only:		-		
а	Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition				
b	and specified in the approved groundwater plan for the facility?				
С	Does the well require redevelopment (low flow, turbid)?				
C	boos the well require redevelopment (low now, turble):		-	_	
6 Based	on your professional judgement, is the well construction / location				
	appropriate to 1) achieve the objectives of the Groundwater				
	Monitoring Program and 2) comply with the applicable regulatory				
	requirements?				
7 Correct	ive actions as needed, by date:				
7 3011000	tro actions do froctou, by duto.				
-					

yes no n/a
ect well ID?
the well require
e? (no standing water,
w path)
it damage and able to be
t damage and distriction
oration?
hole?
ar of debris and water,
ar or destric arid valer,
condition?
ked or broken)?
ective casing?
e protective casing?
e ground surface and
al burrows, and does not
sediment or debris)?
erial into the well?
y obstructions from
n of air pressure?
nner casing?
original well log?
ve easily when touched
ck of grout or use of slip
ged? No sample taken, , is it in good condition
Is it in good condition well inspection
r plan for the facility? flow, turbid)? well inspection only (NM
flow, turbid)?
enstruction / location 11/17/21)
the Groundwater
e applicable regulatory

APPENDIX B

Analytical Laboratory Results and Field Sampling Forms

APPENDIX B1

Analytical Laboratory Data Packages and Data Validation Reports

Laboratory Reports

March 31, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory between March 09, 2021 and March 11, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Kein Len

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Christine Hug, Geosyntec Consultants, Inc.

Kristen Jurinko

Thomas Kessler, Geosyntec Whitney Law, Geosyntec Consultants Noelia Muskus, Geosyntec Consultants Ms. Lauren Petty, Southern Company

Nardos Tilahun, GeoSyntec

Dawit Yifru, Geosyntec Consultants, Inc.

CERTIFICATIONS

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

Notifi Carolina Dilliking Water Certification #. 377 12

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001

SAMPLE SUMMARY

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92526337001	GWA-1	Water	03/08/21 16:55	03/09/21 10:15
92526337002	GWA-3	Water	03/08/21 15:43	03/09/21 10:15
92526337003	GWA-4	Water	03/08/21 14:27	03/09/21 10:15
92526337004	GWA-11	Water	03/08/21 15:53	03/09/21 10:15
92526337005	GWA-2	Water	03/09/21 09:22	03/10/21 12:25
92526337006	GWC-5	Water	03/09/21 12:10	03/10/21 12:25
92526337007	GWC-6	Water	03/09/21 14:15	03/10/21 12:25
92526337008	GWC-7	Water	03/09/21 16:05	03/10/21 12:25
92526337009	GWC-8	Water	03/09/21 11:52	03/10/21 12:25
92526337010	GWC-9	Water	03/09/21 09:47	03/10/21 12:25
92526337011	GWC-10	Water	03/09/21 12:23	03/10/21 12:25
92526337012	GWC-18	Water	03/09/21 13:32	03/10/21 12:25
92526337013	GWC-21	Water	03/09/21 15:07	03/10/21 12:25
92526337014	GWC-22	Water	03/09/21 13:54	03/10/21 12:25
92526337015	GWC-23	Water	03/09/21 16:03	03/10/21 12:25
92526337016	DUP-5	Water	03/09/21 00:00	03/10/21 12:25
92526337017	EB-4	Water	03/09/21 16:00	03/10/21 12:25
92526337018	FB-5	Water	03/09/21 16:10	03/10/21 12:25
92527273001	GWC-19	Water	03/10/21 14:03	03/11/21 15:55
92527273002	GWC-20	Water	03/10/21 16:06	03/11/21 15:55

SAMPLE ANALYTE COUNT

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

92526337001 GWA-1 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW EPA 300.0 Rev 2.1 1993 JLH 92526337002 GWA-3 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1 E	Lab ID	Sample ID	Method	Analysts	Analytes Reported
SM 2450C-2011 ALW	92526337001	GWA-1	EPA 6010D	DRB	1
P2526337002 P364-3 P364-			EPA 6020B	CW1, KH	16
92526337002 GWA-3 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW 92526337003 GWA-4 EPA 300.0 Rev 2.1 1993 JLH 92526337004 GWA-4 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW 92526337004 GWA-11 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW 92526337004 GWA-11 EPA 6020B CW1, KH SM 2450C-2011 ALW ALW P2526337005 GWA-2 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 P2526337006 GWC-5 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 P2526337007 GWC-6 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 P2526337007 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1			SM 2450C-2011	ALW	1
PAG 020B CW1, KH SM 2450C-2011 ALW PAG 300.0 Rev 2.1 1993 JLH PAG 6010D DRB PAG 6020B CW1, KH SM 2450C-2011 ALW PAG 6020B CW1, KH SM 2450C-2011 ALW SM 2450C-2011 ALW PAG 6020B CW1, KH SM 2450C-2011 ALW PAG 6020B CW1, KH SM 2450C-2011 ALW PAG 6020B CW1, KH SM 2450C-2011 ALW PAG 300.0 Rev 2.1 1993 JLH PAG 300.0 Rev 2.1 1993 JLH PAG 6020B CW1, KH SM 2450C-2011 AW1 PAG 300.0 Rev 2.1 1993 JLH PAG 6020B CW1, KH SM 2450C-2011 AW1 PAG 300.0 Rev 2.1 1993 JLH PAG 300.0 Rev 2.1 199			EPA 300.0 Rev 2.1 1993	JLH	3
SM 2450C-2011 ALW	92526337002	GWA-3	EPA 6010D	DRB	1
PA 300.0 Rev 2.1 1993 JLH			EPA 6020B	CW1, KH	16
92526337003 GWA-4 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW EPA 300.0 Rev 2.1 1993 JLH 92526337004 GWA-11 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW EPA 300.0 Rev 2.1 1993 JLH 92526337005 GWA-2 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337006 GWC-5 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337007 GWC-6 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337007 GWC-6 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH			SM 2450C-2011	ALW	1
PA 6020B CW1, KH SM 2450C-2011 ALW EPA 300.0 Rev 2.1 1993 JLH 92526337004 GWA-11 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW EPA 300.0 Rev 2.1 1993 JLH P2526337005 GWA-2 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH P2526337007 GWC-6 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH P2526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW2, KH SM 2450C-2011 AW1 EPA 6020B CW2, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW2, KH SM 2450C-2011 AW1 SM 2450C-2011 AW1 SM 2450C-2011 AW1 SM 2450C-2011			EPA 300.0 Rev 2.1 1993	JLH	3
SM 2450C-2011 ALW	92526337003	GWA-4	EPA 6010D	DRB	1
PA 300.0 Rev 2.1 1993 JLH P3 2526337004 GWA-11 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 ALW EPA 300.0 Rev 2.1 1993 JLH P3 2526337005 GWA-2 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH P3 2526337006 GWC-5 EPA 6010D DRB EPA 6010D DRB EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH P3 2526337007 GWC-6 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH P3 2526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH P3 2526337009 GWC-8 EPA 6010D DRB EPA 300.0 Rev 2.1 1993 JLH P3 2526337009 GWC-8 EPA 6010D DRB EPA 300.0 Rev 2.1 1993 JLH P3 2526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH P3 2526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH P3 2526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH P3 2526337009 GWC-8 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH P3 2526337009 GWC-8 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH EPA 300.0 Rev 2.1 1993 JLH P3 2526337009 GWC-8 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH EPA 300.0 Rev 2.			EPA 6020B	CW1, KH	16
92526337004			SM 2450C-2011	ALW	1
BEPA 6020B CW1, KH SM 2450C-2011 ALW EPA 300.0 Rev 2.1 1993 JLH 92526337005 GWA-2 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337006 GWC-5 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337007 GWC-6 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH EPA 6020B CW1			EPA 300.0 Rev 2.1 1993	JLH	3
SM 2450C-2011 ALW	92526337004	GWA-11	EPA 6010D	DRB	1
PA 300.0 Rev 2.1 1993 JLH P2526337005 GWA-2			EPA 6020B	CW1, KH	16
92526337005 GWA-2 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337006 GWC-5 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337007 GWC-6 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 <td></td> <td></td> <td>SM 2450C-2011</td> <td>ALW</td> <td>1</td>			SM 2450C-2011	ALW	1
### PAGO20B CW1, KH SM 2450C-2011 AW1 ### PAGO20B CW1, KH SM 2450C-2011 AW1 ### PAGO20B JLH ### PAGO20B CW1, KH ### PAGO20B CW1, KH ### SM 2450C-2011 AW1 ### PAGO20B CW1, KH ### SM 2450C-2011 AW1 ### PAGO20B CW1, KH ### SM 2450C-2011 AW1 ### PAGO20B CW1, KH ### PAGO20B CW1, KH ### PAGO20B CW1, KH ### SM 2450C-2011 AW1 ### PAGO20B CW1, KH ### SM 2450C-2011 AW1 ### PAGO20B CW1, KH ### PAGO20B CW1, KH ### PAGO20B CW1, KH ### SM 2450C-2011 AW1 ### PAGO20B CW1, KH ### SM 2450C-2011 ##			EPA 300.0 Rev 2.1 1993	JLH	3
SM 2450C-2011 AW1	92526337005	GWA-2	EPA 6010D	DRB	1
92526337006			EPA 6020B	CW1, KH	16
92526337006 GWC-5 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337007 GWC-6 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH			SM 2450C-2011	AW1	1
EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337007 GWC-6 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH			EPA 300.0 Rev 2.1 1993	JLH	3
SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337007 GWC-6 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B JLH	92526337006	GWC-5	EPA 6010D	DRB	1
## SM 2450C-2011 AW1 ## SM 2450C-2011 AW1 ## P2526337009 GWC-8 ## GWC-8 ## FPA 6010D DRB ## EPA 6020B CW1, KH ## SM 2450C-2011 AW1 ## EPA 300.0 Rev 2.1 1993 JLH ## EPA 6020B CW1, KH ## EPA 6020B CW1, KH ## SM 2450C-2011 AW1 ## EPA 300.0 Rev 2.1 1993 JLH ## EPA 300.0 Rev 2.1 1993 JLH ## EPA 6020B CW1, KH ## SM 2450C-2011 DRB ## EPA 6020B CW1, KH ## EPA 6020B CW1, KH ## SM 2450C-2011 AW1 ## EPA 6020B CW1, KH ## SM 2450C-2011 AW1 ## EPA 6020B CW1, KH ## SM 2450C-2011 AW1 ## EPA 300.0 Rev 2.1 1993 JLH			EPA 6020B	CW1, KH	16
92526337007			SM 2450C-2011	AW1	1
EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6010D DRB EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH			EPA 300.0 Rev 2.1 1993	JLH	3
SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH	92526337007	GWC-6	EPA 6010D	DRB	1
92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH			EPA 6020B	CW1, KH	16
92526337008 GWC-7 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH			SM 2450C-2011	AW1	1
EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH			EPA 300.0 Rev 2.1 1993	JLH	3
SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH 92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH	92526337008	GWC-7	EPA 6010D	DRB	1
P2526337009 GWC-8 EPA 300.0 Rev 2.1 1993 JLH EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH			EPA 6020B	CW1, KH	16
92526337009 GWC-8 EPA 6010D DRB EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH			SM 2450C-2011	AW1	1
EPA 6020B CW1, KH SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH			EPA 300.0 Rev 2.1 1993	JLH	3
SM 2450C-2011 AW1 EPA 300.0 Rev 2.1 1993 JLH	92526337009	GWC-8	EPA 6010D	DRB	1
EPA 300.0 Rev 2.1 1993 JLH			EPA 6020B	CW1, KH	16
			SM 2450C-2011	AW1	1
92526337010 GWC-9 FPA 6010D DRR			EPA 300.0 Rev 2.1 1993	JLH	3
EL 700 10D	92526337010	GWC-9	EPA 6010D	DRB	1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 6020B	 CW1, KH	16
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	JLH	3
92526337011	GWC-10	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	16
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	JLH	3
92526337012	GWC-18	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	16
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	JLH	3
92526337013	GWC-21	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	16
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	JLH	3
92526337014	GWC-22	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	16
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	JLH	3
92526337015	GWC-23	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	16
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	JLH	3
92526337016	DUP-5	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	16
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	JLH	3
92526337017	EB-4	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	16
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	JLH	3
92526337018	FB-5	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	16
		SM 2450C-2011	AW1	1
		EPA 300.0 Rev 2.1 1993	JLH	3
92527273001	GWC-19	EPA 6010D	KH	1
		EPA 6020B	CW1	16

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		SM 2450C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92527273002	GWC-20	EPA 6010D	KH	1
		EPA 6020B	CW1	16
		SM 2450C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
2526337001	GWA-1					
	Performed by	CUSTOME R			03/22/21 11:50	
	рН	6.86	Std. Units		03/22/21 11:50	
EPA 6010D	Calcium	16.2	mg/L	1.0	03/19/21 00:59	M1
EPA 6020B	Barium	0.035	mg/L	0.0050		
EPA 6020B	Boron	0.021J	mg/L	0.040		
EPA 6020B	Cobalt	0.00050J	mg/L	0.0050		
SM 2450C-2011	Total Dissolved Solids	96.0	mg/L	10.0		
PA 300.0 Rev 2.1 1993	Chloride	1.1	mg/L	1.0		
PA 300.0 Rev 2.1 1993	Fluoride	0.094J	mg/L		03/16/21 10:36	
PA 300.0 Rev 2.1 1993	Sulfate	4.6	mg/L	1.0	03/16/21 10:36	
2526337002	GWA-3					
	Performed by	CUSTOME R			03/22/21 11:50	
	рН	6.95	Std. Units		03/22/21 11:50	
PA 6010D	Calcium	73.5	mg/L	1.0	03/19/21 01:19	
PA 6020B	Barium	0.12	mg/L	0.0050	03/17/21 22:56	
PA 6020B	Boron	0.13	mg/L	0.040	03/17/21 22:56	
PA 6020B	Lead	0.000040J	mg/L	0.0010	03/17/21 22:56	
SM 2450C-2011	Total Dissolved Solids	415	mg/L	10.0	03/10/21 17:22	
PA 300.0 Rev 2.1 1993	Chloride	2.8	mg/L	1.0		
EPA 300.0 Rev 2.1 1993	Fluoride	0.13	mg/L	0.10		
EPA 300.0 Rev 2.1 1993	Sulfate	99.5	mg/L	1.0	03/16/21 10:50	
2526337003	GWA-4					
	Performed by	CUSTOME R			03/22/21 11:50	
	рН	6.84	Std. Units		03/22/21 11:50	
PA 6010D	Calcium	87.2	mg/L	1.0	03/19/21 01:24	
PA 6020B	Antimony	0.0016J	mg/L	0.0030	03/17/21 23:19	
PA 6020B	Barium	0.052	mg/L	0.0050	03/17/21 23:19	
PA 6020B	Boron	0.089	mg/L	0.040	03/17/21 23:19	
PA 6020B	Cobalt	0.00061J	mg/L	0.0050		
PA 6020B	Zinc	0.0034J	mg/L	0.010	03/17/21 23:19	
M 2450C-2011	Total Dissolved Solids	460	mg/L	10.0		
PA 300.0 Rev 2.1 1993	Chloride	5.6	mg/L	1.0	03/16/21 11:03	
PA 300.0 Rev 2.1 1993	Fluoride	0.10	mg/L		03/16/21 11:03	
PA 300.0 Rev 2.1 1993	Sulfate	152	mg/L	3.0	03/16/21 17:04	
2526337004	GWA-11	0				
	Performed by	CUSTOME R			03/22/21 11:50	
	рН	6.78	Std. Units		03/22/21 11:50	
PA 6010D	Calcium	22.0	mg/L	1.0	03/19/21 01:29	
PA 6020B	Antimony	0.00050J	mg/L	0.0030	03/17/21 23:25	
PA 6020B	Barium	0.031	mg/L	0.0050	03/17/21 23:25	
PA 6020B	Boron	0.042	mg/L	0.040		
PA 6020B	Cobalt	0.00049J	mg/L	0.0050		
PA 6020B	Nickel	0.0010J	mg/L	0.0050	03/17/21 23:25	

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
			Offics	- Teport Limit	- Analyzeu	Qualifiers
92526337004	GWA-11			40.0		
SM 2450C-2011	Total Dissolved Solids	107	mg/L		03/10/21 17:22	
EPA 300.0 Rev 2.1 1993	Chloride	1.3	mg/L	1.0	03/16/21 11:17	
EPA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	03/16/21 11:17	
EPA 300.0 Rev 2.1 1993	Sulfate	11.5	mg/L	1.0	03/16/21 11:17	
2526337005	GWA-2	0.1070145				
	Performed by	CUSTOME R			03/22/21 11:50	
	рН	6.93	Std. Units		03/22/21 11:50	
EPA 6010D	Calcium	48.7	mg/L	1.0		
PA 6020B	Barium	0.17	mg/L	0.0050	03/17/21 23:30	
PA 6020B	Boron	0.081	mg/L	0.040	03/17/21 23:30	
M 2450C-2011	Total Dissolved Solids	227	mg/L	10.0	03/13/21 15:45	D6
EPA 300.0 Rev 2.1 1993	Chloride	2.1	mg/L	1.0	03/16/21 23:16	
EPA 300.0 Rev 2.1 1993	Fluoride	0.099J	mg/L	0.10	03/16/21 23:16	
EPA 300.0 Rev 2.1 1993	Sulfate	16.8	mg/L	1.0	03/16/21 23:16	
2526337006	GWC-5					
	Performed by	CUSTOME R			03/22/21 11:50	
	рН	6.93	Std. Units		03/22/21 11:50	
EPA 6010D	Calcium	85.4	mg/L	1.0	03/19/21 01:38	
PA 6020B	Barium	0.063	mg/L	0.0050	03/17/21 23:47	
PA 6020B	Boron	0.046	mg/L	0.040	03/17/21 23:47	
EPA 6020B	Cobalt	0.00043J	mg/L	0.0050	03/17/21 23:47	
SM 2450C-2011	Total Dissolved Solids	364	mg/L	10.0	03/13/21 15:45	
EPA 300.0 Rev 2.1 1993	Chloride	2.0	mg/L	1.0	03/17/21 00:01	
EPA 300.0 Rev 2.1 1993	Fluoride	0.050J	mg/L	0.10	03/17/21 00:01	
EPA 300.0 Rev 2.1 1993	Sulfate	86.9	mg/L	1.0	03/17/21 00:01	
2526337007	GWC-6					
	Performed by	CUSTOME R			03/22/21 11:50	
	рН	7.09	Std. Units		03/22/21 11:50	
EPA 6010D	Calcium	70.8	mg/L	1.0	03/19/21 01:43	
PA 6020B	Barium	0.17	mg/L	0.0050	03/17/21 23:53	
PA 6020B	Boron	0.038J	mg/L	0.040	03/17/21 23:53	
SM 2450C-2011	Total Dissolved Solids	298	mg/L	10.0	03/13/21 15:46	
PA 300.0 Rev 2.1 1993	Chloride	1.5	mg/L	1.0	03/17/21 00:16	
EPA 300.0 Rev 2.1 1993	Fluoride	0.060J	mg/L	0.10	03/17/21 00:16	
PA 300.0 Rev 2.1 1993	Sulfate	105	mg/L	2.0	03/17/21 10:29	
2526337008	GWC-7					
	Performed by	CUSTOME R			03/22/21 11:50	
	рН	6.59	Std. Units		03/22/21 11:50	
PA 6010D	Calcium	64.3	mg/L	1.0	03/19/21 01:57	
PA 6020B	Arsenic	0.0052	mg/L	0.0050	03/17/21 23:59	
EPA 6020B	Barium	0.31	mg/L	0.0050	03/17/21 23:59	
EPA 6020B	Boron	0.041	mg/L	0.040	03/17/21 23:59	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Lab Sample ID	Client Sample ID	Desult	11.54.	Damant Linait	A a l a d	O lifi
Method	Parameters —	Result _	Units	Report Limit	Analyzed	Qualifiers
2526337008	GWC-7					
EPA 6020B	Cobalt	0.0093	mg/L	0.0050	03/17/21 23:59	
EPA 6020B	Lead	0.000085J	mg/L	0.0010	03/17/21 23:59	
EPA 6020B	Nickel	0.035	mg/L	0.0050	03/17/21 23:59	
EPA 6020B	Zinc	0.057	mg/L	0.010	03/17/21 23:59	
SM 2450C-2011	Total Dissolved Solids	299	mg/L	10.0	03/13/21 15:46	
PA 300.0 Rev 2.1 1993	Chloride	1.5	mg/L	1.0	03/17/21 00:31	
PA 300.0 Rev 2.1 1993	Fluoride	0.17	mg/L	0.10	03/17/21 00:31	
PA 300.0 Rev 2.1 1993	Sulfate	87.4	mg/L	1.0	03/17/21 00:31	
2526337009	GWC-8					
	Performed by	CUSTOME			03/22/21 11:50	
	рН	R 7.06	Std. Units		03/22/21 11:50	
PA 6010D	Calcium	83.2	mg/L	1 0	03/19/21 02:02	
PA 6020B	Arsenic	0.0018J	mg/L	0.0050	03/18/21 00:05	
PA 6020B	Barium	0.00103	mg/L	0.0050	03/18/21 00:05	
PA 6020B	Boron	0.050	mg/L	0.040		
PA 6020B	Cobalt	0.0013J	mg/L	0.0050	03/18/21 00:05	
M 2450C-2011	Total Dissolved Solids	308	mg/L	10.0		
PA 300.0 Rev 2.1 1993	Chloride	2.2	mg/L	1.0	03/17/21 00:46	
PA 300.0 Rev 2.1 1993 PA 300.0 Rev 2.1 1993	Fluoride	0.12	mg/L	0.10	03/17/21 00:46	
PA 300.0 Rev 2.1 1993 PA 300.0 Rev 2.1 1993	Sulfate	33.1	mg/L	1.0	03/17/21 00:46	
2526337010	GWC-9	00	9/=		00,,	
	Performed by	CUSTOME			03/22/21 11:50	
	r enemied by	R			00/22/21 11:00	
	pН	6.92	Std. Units		03/22/21 11:50	
PA 6010D	Calcium	36.8	mg/L	1.0	03/19/21 02:07	
PA 6020B	Barium	0.059	mg/L	0.0050		
PA 6020B	Boron	0.014J	mg/L	0.040	03/18/21 00:10	
PA 6020B	Cobalt	0.00042J	mg/L	0.0050		
PA 6020B	Nickel	0.0014J	mg/L	0.0050	03/18/21 00:10	
M 2450C-2011	Total Dissolved Solids	209	mg/L	10.0	03/13/21 15:46	
PA 300.0 Rev 2.1 1993	Chloride	0.74J	mg/L	1.0	03/17/21 02:01	
PA 300.0 Rev 2.1 1993	Fluoride	0.080J	mg/L	0.10	03/17/21 02:01	
PA 300.0 Rev 2.1 1993	Sulfate	65.1	mg/L	1.0	03/17/21 02:01	M1
2526337011	GWC-10					
	Performed by	CUSTOME R			03/22/21 11:50	
	рН	7.43	Std. Units		03/22/21 11:50	
PA 6010D	Calcium	48.7	mg/L	1.0	03/19/21 02:12	
PA 6020B	Barium	0.15	mg/L	0.0050	03/18/21 00:16	
PA 6020B	Boron	0.037J	mg/L	0.040	03/18/21 00:16	
M 2450C-2011	Total Dissolved Solids	201	mg/L	10.0	03/13/21 15:47	
PA 300.0 Rev 2.1 1993	Chloride	1.1	mg/L	1.0	03/17/21 03:15	
PA 300.0 Rev 2.1 1993	Fluoride	0.078J	mg/L	0.10	03/17/21 03:15	
PA 300.0 Rev 2.1 1993	Sulfate	14.2	mg/L	1.0	03/17/21 03:15	

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

_ab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
			Office			Quamore
2526337012	GWC-18					
	Performed by	CUSTOME			03/22/21 11:50	
	рН	R 7.66	Std. Units		03/22/21 11:50	
EPA 6010D	Calcium	44.9	mg/L	1.0	03/19/21 02:17	
EPA 6020B	Barium	0.077	mg/L	0.0050	03/18/21 00:22	
EPA 6020B	Boron	0.13	mg/L	0.040	03/18/21 00:22	
SM 2450C-2011	Total Dissolved Solids	192	mg/L	10.0	03/13/21 15:47	
PA 300.0 Rev 2.1 1993	Chloride	0.97J	mg/L	1.0	03/17/21 03:30	
PA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L		03/17/21 03:30	
PA 300.0 Rev 2.1 1993	Sulfate	7.9	mg/L	1.0	03/17/21 03:30	
2526337013	GWC-21		J			
.02007070	Performed by	CUSTOME			03/22/21 11:50	
	. Shormed by	R			33/22/21 11.00	
	рН	7.04	Std. Units		03/22/21 11:50	
PA 6010D	Calcium	67.8	mg/L	1.0	03/19/21 02:22	
PA 6020B	Barium	0.12	mg/L	0.0050	03/18/21 00:28	
PA 6020B	Boron	0.030J	mg/L	0.040	03/18/21 00:28	
PA 6020B	Cobalt	0.00049J	mg/L	0.0050	03/18/21 00:28	
PA 6020B	Lead	0.00013J	mg/L	0.0010	03/18/21 00:28	
PA 6020B	Nickel	0.0013J	mg/L	0.0050	03/18/21 00:28	
PA 6020B	Zinc	0.0033J	mg/L	0.010	03/18/21 00:28	
M 2450C-2011	Total Dissolved Solids	243	mg/L	10.0	03/13/21 15:47	
PA 300.0 Rev 2.1 1993	Chloride	1.8	mg/L	1.0	03/17/21 03:45	
PA 300.0 Rev 2.1 1993	Fluoride	0.058J	mg/L	0.10	03/17/21 03:45	
PA 300.0 Rev 2.1 1993	Sulfate	41.6	mg/L	1.0	03/17/21 03:45	
2526337014	GWC-22					
	Performed by	CUSTOME			03/22/21 11:50	
	рН	R 7.52	Std. Units		03/22/21 11:50	
PA 6010D	Calcium	48.7	mg/L	1.0	03/19/21 02:26	
PA 6020B	Barium	0.089	mg/L	0.0050	03/18/21 02:20	
PA 6020B	Boron	0.065	mg/L	0.040	03/18/21 00:33	
PA 6020B	Lead	0.00038J	mg/L	0.0010		
M 2450C-2011	Total Dissolved Solids	178	mg/L	10.0	03/13/21 15:47	
PA 300.0 Rev 2.1 1993	Chloride	1.0	mg/L		03/17/21 04:00	
PA 300.0 Rev 2.1 1993	Fluoride	0.067J	mg/L		03/17/21 04:00	
PA 300.0 Rev 2.1 1993	Sulfate	6.4	mg/L		03/17/21 04:00	
2526337015	GWC-23	5. .	9/=		00,, 000	
2320337013	Performed by	CUSTOME			03/22/21 11:50	
	renormed by	R			03/22/21 11.50	
	рН	6.81	Std. Units		03/22/21 11:50	
PA 6010D	Calcium	54.3	mg/L	1.0	03/19/21 02:31	
PA 6020B	Barium	0.085	mg/L	0.0050	03/18/21 00:39	
PA 6020B	Boron	0.044	mg/L	0.040	03/18/21 00:39	
PA 6020B	Lead	0.00011J	mg/L	0.0010	03/18/21 00:39	
M 2450C-2011	Total Dissolved Solids	216	mg/L	10.0	03/13/21 15:57	
PA 300.0 Rev 2.1 1993	Chloride	0.85J	mg/L	1.0	03/17/21 04:15	

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92526337015	GWC-23					
EPA 300.0 Rev 2.1 1993	Fluoride	0.069J	mg/L	0.10	03/17/21 04:15	
EPA 300.0 Rev 2.1 1993	Sulfate	10.2	mg/L	1.0	03/17/21 04:15	
92526337016	DUP-5					
EPA 6010D	Calcium	67.5	mg/L	1.0	03/19/21 02:41	
EPA 6020B	Barium	0.16	mg/L	0.0050	03/18/21 01:02	
EPA 6020B	Boron	0.037J	mg/L	0.040	03/18/21 01:02	
SM 2450C-2011	Total Dissolved Solids	329	mg/L	10.0	03/13/21 15:57	
EPA 300.0 Rev 2.1 1993	Chloride	1.5	mg/L	1.0	03/17/21 04:30	
EPA 300.0 Rev 2.1 1993	Fluoride	0.059J	mg/L	0.10	03/17/21 04:30	
EPA 300.0 Rev 2.1 1993	Sulfate	106	mg/L	2.0	03/17/21 11:14	
2527273001	GWC-19					
	Performed by	CUSTOME R			03/22/21 11:51	
	рН	7.49	Std. Units		03/22/21 11:51	
EPA 6010D	Calcium	47.4	mg/L	1.0	03/20/21 01:57	
EPA 6020B	Barium	0.15	mg/L	0.0050	03/18/21 20:36	
EPA 6020B	Boron	0.16	mg/L	0.040	03/18/21 20:36	
SM 2450C-2011	Total Dissolved Solids	223	mg/L	10.0	03/15/21 13:15	D6
EPA 300.0 Rev 2.1 1993	Chloride	1.3	mg/L	1.0	03/17/21 22:42	
EPA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	03/17/21 22:42	
EPA 300.0 Rev 2.1 1993	Sulfate	18.7	mg/L	1.0	03/17/21 22:42	
2527273002	GWC-20					
	Performed by	CUSTOME R			03/22/21 11:51	
	рН	7.41	Std. Units		03/22/21 11:51	
EPA 6010D	Calcium	64.9	mg/L	1.0	03/20/21 02:11	
EPA 6020B	Barium	0.13	mg/L	0.0050	03/18/21 20:42	
EPA 6020B	Boron	0.018J	mg/L	0.040	03/18/21 20:42	
SM 2450C-2011	Total Dissolved Solids	241	mg/L	10.0	03/15/21 13:16	
EPA 300.0 Rev 2.1 1993	Chloride	1.2	mg/L	1.0	03/17/21 23:24	
EPA 300.0 Rev 2.1 1993	Fluoride	0.068J	mg/L	0.10	03/17/21 23:24	
EPA 300.0 Rev 2.1 1993	Sulfate	64.7	mg/L	1.0	03/17/21 23:24	

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWA-1	Lab ID:	92526337001	Collecte	ed: 03/08/2	1 16:55	Received: 03/	09/21 10:15 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:				•	-	_	
rieiu Data	•	llytical Services	- Charlotte						
Performed by	CUSTOME				1		03/22/21 11:50		
Н	R 6.86	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	thod: EF	PA 3010A			
	Pace Ana	llytical Services	- Peachtre	e Corners, (3A				
Calcium	16.2	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 00:59	7440-70-2	M1
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Me	hod: EF	A 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/17/21 22:50	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/17/21 22:50		
Barium	0.035	mg/L	0.0050	0.00071	1		03/17/21 22:50		
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/17/21 22:50		
Boron	0.021J	mg/L	0.040	0.0052	1	03/17/21 13:06	03/17/21 22:50		
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 18:26		
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/17/21 22:50		
Cobalt	0.00050J	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/17/21 22:50	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1		03/17/21 22:50		
-ead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/17/21 22:50		
Nickel	ND	mg/L	0.0050	0.00069	1		03/17/21 22:50		
Selenium	ND	mg/L	0.0050	0.0016	1		03/17/21 22:50		
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/17/21 22:50		
Γhallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/17/21 22:50	7440-28-0	
√anadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 22:50		
Zinc	ND	mg/L	0.010	0.0022	1		03/17/21 22:50		
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	llytical Services	- Peachtre	e Corners, (βA				
Total Dissolved Solids	96.0	mg/L	10.0	10.0	1		03/10/21 17:22		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.1	mg/L	1.0	0.60	1		03/16/21 10:36	16887-00-6	
Fluoride	0.094J	mg/L	0.10	0.050	1		03/16/21 10:36		
Sulfate	4.6	mg/L	1.0	0.50	1		03/16/21 10:36		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWA-3	Lab ID:	92526337002	Collecte	ed: 03/08/2°	15:43	Received: 03/	09/21 10:15 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte)					
Performed by	CUSTOME R				1		03/22/21 11:50		
рН	6.95	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Calcium	73.5	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 01:19	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/17/21 22:56	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/17/21 22:56		
Barium	0.12	mg/L	0.0050	0.00071	1		03/17/21 22:56		
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/17/21 22:56		
Boron	0.13	mg/L	0.040	0.0052	1	03/17/21 13:06	03/17/21 22:56		
Cadmium	ND	mg/L	0.00050	0.00012	1		03/18/21 18:32		
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/17/21 22:56		
Cobalt	ND	mg/L	0.0050	0.00038	1		03/17/21 22:56		
Copper	ND	mg/L	0.0050	0.0017	1		03/17/21 22:56		
Lead	0.000040J	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/17/21 22:56		
Nickel	ND	mg/L	0.0050	0.00069	1		03/17/21 22:56		
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/17/21 22:56	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/17/21 22:56	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/17/21 22:56	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 22:56	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1		03/17/21 22:56		
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	415	mg/L	10.0	10.0	1		03/10/21 17:22		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	2.8	mg/L	1.0	0.60	1		03/16/21 10:50	16887-00-6	
Fluoride	0.13	mg/L	0.10	0.050	1		03/16/21 10:50		
Sulfate	99.5	mg/L	1.0	0.50	1		03/16/21 10:50		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWA-4	Lab ID:	92526337003	Collecte	ed: 03/08/2	1 14:27	Received: 03/	09/21 10:15 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	•					
Performed by	CUSTOME				1		03/22/21 11:50		
pH	R 6.84	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	3A				
Calcium	87.2	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 01:24	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	βA				
Antimony	0.0016J	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/17/21 23:19	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/17/21 23:19	7440-38-2	
Barium	0.052	mg/L	0.0050	0.00071	1		03/17/21 23:19	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/17/21 23:19		
Boron	0.089	mg/L	0.040	0.0052	1	03/17/21 13:06	03/17/21 23:19		
Cadmium	ND	mg/L	0.00050	0.00012	1		03/18/21 18:49		
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/17/21 23:19	7440-47-3	
Cobalt	0.00061J	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/17/21 23:19	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/17/21 23:19	7440-50-8	
_ead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/17/21 23:19	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/17/21 23:19	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/17/21 23:19	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/17/21 23:19	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/17/21 23:19	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 23:19	7440-62-2	
Zinc	0.0034J	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 23:19	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	3A				
Total Dissolved Solids	460	mg/L	10.0	10.0	1		03/10/21 17:22		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	5.6	mg/L	1.0	0.60	1		03/16/21 11:03	16887-00-6	
Fluoride	0.10	mg/L	0.10	0.050	1		03/16/21 11:03		
Sulfate	152	mg/L	3.0	1.5	3		03/16/21 17:04		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWA-11	Lab ID:	92526337004	Collecte	ed: 03/08/2	1 15:53	Received: 03/	09/21 10:15 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME				1		03/22/21 11:50		
pH	R 6.78	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, (GΑ				
Calcium	22.0	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 01:29	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Me	thod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, (GA				
Antimony	0.00050J	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/17/21 23:25	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/17/21 23:25	7440-38-2	
Barium	0.031	mg/L	0.0050	0.00071	1	03/17/21 13:06	03/17/21 23:25	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/17/21 23:25	7440-41-7	
Boron	0.042	mg/L	0.040	0.0052	1	03/17/21 13:06	03/17/21 23:25	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 18:55	7440-43-9	
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/17/21 23:25	7440-47-3	
Cobalt	0.00049J	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/17/21 23:25	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/17/21 23:25	7440-50-8	
_ead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/17/21 23:25	7439-92-1	
Nickel	0.0010J	mg/L	0.0050	0.00069	1		03/17/21 23:25		
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/17/21 23:25	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/17/21 23:25	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/17/21 23:25	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 23:25		
Zinc	ND	mg/L	0.010	0.0022	1		03/17/21 23:25		
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, (GΑ				
Total Dissolved Solids	107	mg/L	10.0	10.0	1		03/10/21 17:22		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.3	mg/L	1.0	0.60	1		03/16/21 11:17	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1		03/16/21 11:17	16984-48-8	
Sulfate	11.5	mg/L	1.0	0.50	1		03/16/21 11:17		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWA-2	Lab ID:	92526337005	Collecte	ed: 03/09/2	1 09:22	Received: 03/	10/21 12:25 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
						· 			
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME				1		03/22/21 11:50		
	R	0, 1, 1, 1, 1,					00/00/04 44 50		
pH	6.93	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GA				
Calcium	48.7	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 01:34	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Me	thod: EF	PA 3005A			
	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/17/21 23:30	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/17/21 23:30	7440-38-2	
Barium	0.17	mg/L	0.0050	0.00071	1	03/17/21 13:06	03/17/21 23:30	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/17/21 23:30	7440-41-7	
Boron	0.081	mg/L	0.040	0.0052	1	03/17/21 13:06	03/17/21 23:30	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 19:01	7440-43-9	
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/17/21 23:30	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/17/21 23:30	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/17/21 23:30	7440-50-8	
_ead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/17/21 23:30	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/17/21 23:30	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/17/21 23:30	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/17/21 23:30	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/17/21 23:30	7440-28-0	
/anadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 23:30	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 23:30	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, (GΑ				
Total Dissolved Solids	227	mg/L	10.0	10.0	1		03/13/21 15:45		D6
800.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	2.1	mg/L	1.0	0.60	1		03/16/21 23:16	16887-00-6	
Fluoride	0.099J	mg/L	0.10	0.050	1		03/16/21 23:16	16984-48-8	
Sulfate	16.8	mg/L	1.0	0.50	1		03/16/21 23:16	14808-79-8	

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-5	Lab ID:	92526337006	Collecte	ed: 03/09/2	1 12:10	Received: 03/	10/21 12:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	•					
Performed by	CUSTOME R				1		03/22/21 11:50		
ЭΗ	6.93	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Calcium	85.4	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 01:38	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/17/21 23:47	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/17/21 23:47	7440-38-2	
Barium	0.063	mg/L	0.0050	0.00071	1		03/17/21 23:47	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/17/21 23:47		
Boron	0.046	mg/L	0.040	0.0052	1	03/17/21 13:06	03/17/21 23:47		
Cadmium	ND	mg/L	0.00050	0.00012	1		03/18/21 19:07		
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/17/21 23:47	7440-47-3	
Cobalt	0.00043J	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/17/21 23:47	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/17/21 23:47	7440-50-8	
_ead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/17/21 23:47	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/17/21 23:47	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/17/21 23:47	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/17/21 23:47	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/17/21 23:47	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 23:47	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1		03/17/21 23:47		
2540C Total Dissolved Solids	Analytical	Method: SM 24	150C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	364	mg/L	10.0	10.0	1		03/13/21 15:45		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	2.0	mg/L	1.0	0.60	1		03/17/21 00:01	16887-00-6	
Fluoride	0.050J	mg/L	0.10	0.050	1		03/17/21 00:01		
Sulfate	86.9	mg/L	1.0	0.50	1		03/17/21 00:01		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-6	Lab ID:	92526337007	Collecte	ed: 03/09/2	1 14:15	Received: 03/	10/21 12:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME				1		03/22/21 11:50		
pH	R 7.09	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Calcium	70.8	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 01:43	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/17/21 23:53	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/17/21 23:53		
Barium	0.17	mg/L	0.0050	0.00071	1		03/17/21 23:53	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/17/21 23:53		
Boron	0.038J	mg/L	0.040	0.0052	1	03/17/21 13:06	03/17/21 23:53	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 19:24	7440-43-9	
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/17/21 23:53	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/17/21 23:53	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/17/21 23:53	7440-50-8	
Lead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/17/21 23:53	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/17/21 23:53	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/17/21 23:53	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/17/21 23:53	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/17/21 23:53	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 23:53	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 23:53	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	3A				
Total Dissolved Solids	298	mg/L	10.0	10.0	1		03/13/21 15:46		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.5	mg/L	1.0	0.60	1		03/17/21 00:16	16887-00-6	
Fluoride	0.060J	mg/L	0.10	0.050	1		03/17/21 00:16		
Sulfate	105	mg/L	2.0	1.0	2		03/17/21 10:29		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-7	Lab ID:	92526337008	Collecte	ed: 03/09/2	1 16:05	Received: 03/	10/21 12:25 Ma	atrix: Water	
D	Danulta	l lucito	Report Limit	MDL	DE	Duenened	A a l a al	CACNE	0
Parameters	Results -	Units	LIIIIIL		DF	Prepared	Analyzed ————	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	;					
Performed by	CUSTOME				1		03/22/21 11:50		
pH	R 6.59	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GA				
Calcium	64.3	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 01:57	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Me	thod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, (GA				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/17/21 23:59	7440-36-0	
Arsenic	0.0052	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/17/21 23:59		
Barium	0.31	mg/L	0.0050	0.00071	1		03/17/21 23:59		
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/17/21 23:59		
Boron	0.041	mg/L	0.040	0.0052	1	03/17/21 13:06	03/17/21 23:59		
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 19:29		
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/17/21 23:59		
Cobalt	0.0093	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/17/21 23:59	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/17/21 23:59	7440-50-8	
_ead	0.000085J	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/17/21 23:59	7439-92-1	
Nickel	0.035	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/17/21 23:59	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/17/21 23:59	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/17/21 23:59	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/17/21 23:59	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 23:59		
Zinc	0.057	mg/L	0.010	0.0022	1	03/17/21 13:06	03/17/21 23:59		
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GΑ				
Total Dissolved Solids	299	mg/L	10.0	10.0	1		03/13/21 15:46		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
-		lytical Services							
Chloride	1.5	mg/L	1.0	0.60	1		03/17/21 00:31	16887-00-6	
Fluoride	0.17	mg/L	0.10	0.050	1		03/17/21 00:31		
Sulfate	87.4	mg/L	1.0	0.50	1		03/17/21 00:31		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-8	Lab ID:	92526337009	Collecte	ed: 03/09/2	1 11:52	Received: 03/	10/21 12:25 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method: lytical Services	- Charlotte						
Performed by	CUSTOME	Tytical Oct vices	- Onanotte		1		03/22/21 11:50		
r enormed by	R				'		03/22/21 11.30		
pH	7.06	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	-	Method: EPA 6 lytical Services				PA 3010A			
Calcium	83.2	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 02:02	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/18/21 00:05	7440-36-0	
Arsenic	0.0018J	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/18/21 00:05	7440-38-2	
Barium	0.14	mg/L	0.0050	0.00071	1	03/17/21 13:06	03/18/21 00:05	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/18/21 00:05	7440-41-7	
Boron	0.050	mg/L	0.040	0.0052	1	03/17/21 13:06	03/18/21 00:05	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 19:35	7440-43-9	
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/18/21 00:05	7440-47-3	
Cobalt	0.0013J	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/18/21 00:05	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/18/21 00:05	7440-50-8	
-ead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/18/21 00:05	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/18/21 00:05	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/18/21 00:05	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/18/21 00:05	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/18/21 00:05	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:05	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:05	7440-66-6	
2540C Total Dissolved Solids	•	Method: SM 24		e Corners (3Δ				
Total Dissolved Solids	308	mg/L	10.0	10.0	1		03/13/21 15:46		
		Ū			'		50/10/21 15.40		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		1993					
Chloride	2.2	mg/L	1.0	0.60	1		03/17/21 00:46	16887-00-6	
Fluoride	0.12	mg/L	0.10	0.050	1		03/17/21 00:40		
Sulfate	33.1	mg/L	1.0	0.50	1		03/17/21 00:46		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-9	Lab ID:	92526337010	Collecte	ed: 03/09/2	1 09:47	Received: 03/	/10/21 12:25 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte)					
Performed by	CUSTOME R				1		03/22/21 11:50		
Н	6.92	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA 6	8010D Pre	paration Met	hod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Calcium	36.8	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 02:07	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/18/21 00:10	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/18/21 00:10	7440-38-2	
Barium	0.059	mg/L	0.0050	0.00071	1		03/18/21 00:10		
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/18/21 00:10		
Boron	0.014J	mg/L	0.040	0.0052	1	03/17/21 13:06	03/18/21 00:10		
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 19:41		
Chromium	ND	mg/L	0.0050	0.00055	1		03/18/21 00:10		
Cobalt	0.00042J	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/18/21 00:10		
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/18/21 00:10	7440-50-8	
_ead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/18/21 00:10		
Nickel	0.0014J	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/18/21 00:10		
Selenium	ND	mg/L	0.0050	0.0016	1		03/18/21 00:10		
Silver	ND	mg/L	0.0050	0.00036	1		03/18/21 00:10		
Гhallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/18/21 00:10		
/anadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:10		
Zinc	ND	mg/L	0.010	0.0022	1		03/18/21 00:10		
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	209	mg/L	10.0	10.0	1		03/13/21 15:46	5	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	-	lytical Services							
Chloride	0.74J	mg/L	1.0	0.60	1		03/17/21 02:01	16887-00-6	
Fluoride	0.080J	mg/L	0.10	0.050	1		03/17/21 02:01	16984-48-8	
Sulfate	65.1	mg/L	1.0	0.50	1		03/17/21 02:01	14808-79-8	M1

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-10	Lab ID:	92526337011	Collecte	ed: 03/09/2	1 12:23	Received: 03/	10/21 12:25 Ma	atrix: Water	
_			Report						-
Parameters —	Results _	Units	Limit	MDL_	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte)					
Performed by	CUSTOME R				1		03/22/21 11:50		
рН	7.43	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	hod: El	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Calcium	48.7	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 02:12	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: Ef	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/18/21 00:16	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/18/21 00:16	7440-38-2	
Barium	0.15	mg/L	0.0050	0.00071	1	03/17/21 13:06	03/18/21 00:16	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/18/21 00:16	7440-41-7	
Boron	0.037J	mg/L	0.040	0.0052	1	03/17/21 13:06	03/18/21 00:16	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 19:47	7440-43-9	
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/18/21 00:16	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/18/21 00:16	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/18/21 00:16	7440-50-8	
Lead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/18/21 00:16	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/18/21 00:16	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/18/21 00:16	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/18/21 00:16	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/18/21 00:16	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:16	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:16	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	€A				
Total Dissolved Solids	201	mg/L	10.0	10.0	1		03/13/21 15:47		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.1	mg/L	1.0	0.60	1		03/17/21 03:15	16887-00-6	
Fluoride	0.078J	mg/L	0.10	0.050	1		03/17/21 03:15		
Sulfate	14.2	mg/L	1.0	0.50	1		03/17/21 03:15		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-18	Lab ID:	92526337012	Collecte	ed: 03/09/2	1 13:32	Received: 03/	10/21 12:25 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	CUSTOME				1		03/22/21 11:50		
pH	R 7.66	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	-	Method: EPA 6 lytical Services				PA 3010A			
Calcium	44.9	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 02:17	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/18/21 00:22	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/18/21 00:22	7440-38-2	
Barium	0.077	mg/L	0.0050	0.00071	1	03/17/21 13:06	03/18/21 00:22	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/18/21 00:22	7440-41-7	
Boron	0.13	mg/L	0.040	0.0052	1	03/17/21 13:06	03/18/21 00:22	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 19:52	7440-43-9	
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/18/21 00:22	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/18/21 00:22	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/18/21 00:22	7440-50-8	
_ead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/18/21 00:22	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/18/21 00:22	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/18/21 00:22	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/18/21 00:22	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/18/21 00:22	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:22	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:22	7440-66-6	
2540C Total Dissolved Solids	•	Method: SM 24 lytical Services		e Corners, 0	GA				
Total Dissolved Solids	192	mg/L	10.0	10.0	1		03/13/21 15:47		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		2.1 1993					
Chloride	0.97J	mg/L	1.0	0.60	1		03/17/21 03:30	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1				
Sulfate	7.9	mg/L	1.0	0.50	1		03/17/21 03:30		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-21	Lab ID:	92526337013	Collecte	ed: 03/09/2	1 15:07	Received: 03/	10/21 12:25 Ma	atrix: Water	
			Report						
Parameters —	Results -	Units	Limit	MDL_	DF_	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte)					
Performed by	CUSTOME R				1		03/22/21 11:50		
рН	7.04	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Calcium	67.8	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 02:22	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: Ef	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	3A				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/18/21 00:28	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/18/21 00:28	7440-38-2	
Barium	0.12	mg/L	0.0050	0.00071	1	03/17/21 13:06	03/18/21 00:28	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/18/21 00:28	7440-41-7	
Boron	0.030J	mg/L	0.040	0.0052	1	03/17/21 13:06	03/18/21 00:28	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 19:58	7440-43-9	
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/18/21 00:28	7440-47-3	
Cobalt	0.00049J	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/18/21 00:28	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/18/21 00:28	7440-50-8	
Lead	0.00013J	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/18/21 00:28	7439-92-1	
Nickel	0.0013J	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/18/21 00:28	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/18/21 00:28	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/18/21 00:28	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/18/21 00:28	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:28	7440-62-2	
Zinc	0.0033J	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:28	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SΑ				
Total Dissolved Solids	243	mg/L	10.0	10.0	1		03/13/21 15:47		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	1.8	mg/L	1.0	0.60	1		03/17/21 03:45	16887-00-6	
Fluoride	0.058J	mg/L	0.10	0.050	1		03/17/21 03:45	16984-48-8	
Sulfate	41.6	mg/L	1.0	0.50	1		03/17/21 03:45		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-22	Lab ID:	92526337014	Collecte	ed: 03/09/2	1 13:54	Received: 03/	10/21 12:25 Ma	atrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua	
1 diameters						- Troparcu	- Analyzed			
Field Data	Analytical	Method:								
	Pace Ana	lytical Services	- Charlotte	;						
Performed by	CUSTOME				1		03/22/21 11:50			
рН	R 7.52	Std. Units			1		03/22/21 11:50			
ргг	7.52	Stu. Offits			'		03/22/21 11.30			
6010D ATL ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3010A									
	Pace Ana	lytical Services	- Peachtre	e Corners, (GA					
Calcium	48.7	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 02:26	7440-70-2		
6020 MET ICPMS	Analytical Method: EPA 6020B Preparation Method: EPA 3005A									
	Pace Ana	lytical Services	- Peachtre	e Corners, (GA					
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/18/21 00:33	7440-36-0		
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/18/21 00:33			
Barium	0.089	mg/L	0.0050	0.00071	1		03/18/21 00:33			
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/18/21 00:33			
Boron	0.065	mg/L	0.040	0.0052	1	03/17/21 13:06	03/18/21 00:33			
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 20:04			
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/18/21 00:33			
Cobalt	ND	mg/L	0.0050	0.00038	1		03/18/21 00:33			
Copper	ND	mg/L	0.0050	0.0017	1		03/18/21 00:33			
_ead	0.000038J	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/18/21 00:33			
Nickel	ND	mg/L	0.0050	0.00069	1		03/18/21 00:33			
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/18/21 00:33	7782-49-2		
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/18/21 00:33	7440-22-4		
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06		7440-28-0		
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:33			
Zinc	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:33	7440-66-6		
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011							
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GA					
Total Dissolved Solids	178	mg/L	10.0	10.0	1		03/13/21 15:47			
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993						
-	Pace Ana	lytical Services	- Asheville							
Chloride	1.0	mg/L	1.0	0.60	1		03/17/21 04:00	16887-00-6		
Fluoride	0.067J	mg/L	0.10	0.050	1		03/17/21 04:00			
Sulfate	6.4	mg/L	1.0	0.50	1		03/17/21 04:00			

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-23	Lab ID:	92526337015	Collecte	ed: 03/09/2	16:03	Received: 03/	10/21 12:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	•					
Performed by	CUSTOME				1		03/22/21 11:50		
pΗ	R 6.81	Std. Units			1		03/22/21 11:50		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Calcium	54.3	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 02:31	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/18/21 00:39	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/18/21 00:39		
Barium	0.085	mg/L	0.0050	0.00071	1		03/18/21 00:39		
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/18/21 00:39		
Boron	0.044	mg/L	0.040	0.0052	1	03/17/21 13:06	03/18/21 00:39		
Cadmium	ND	mg/L	0.00050	0.00012	1		03/18/21 20:10		
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/18/21 00:39	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/18/21 00:39	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/18/21 00:39	7440-50-8	
-ead	0.00011J	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/18/21 00:39	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/18/21 00:39	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/18/21 00:39	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/18/21 00:39	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/18/21 00:39	7440-28-0	
/anadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:39	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 00:39	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 24	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	216	mg/L	10.0	10.0	1		03/13/21 15:57		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	0.85J	mg/L	1.0	0.60	1		03/17/21 04:15	16887-00-6	
Fluoride	0.069J	mg/L	0.10	0.050	1		03/17/21 04:15		
Sulfate	10.2	mg/L	1.0	0.50	1		03/17/21 04:15		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: DUP-5	Lab ID:	9252633701	6 Collecte	ed: 03/09/2	1 00:00	Received: 03/	10/21 12:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL_	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Me	hod: Ef	PA 3010A			
	Pace Anal	ytical Service	s - Peachtre	e Corners, 0	βA				
Calcium	67.5	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 02:41	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Service	s - Peachtre	e Corners, 0	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/18/21 01:02	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/18/21 01:02	7440-38-2	
Barium	0.16	mg/L	0.0050	0.00071	1	03/17/21 13:06	03/18/21 01:02	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/18/21 01:02	7440-41-7	
Boron	0.037J	mg/L	0.040	0.0052	1	03/17/21 13:06	03/18/21 01:02	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 20:15	7440-43-9	
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/18/21 01:02	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/18/21 01:02	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/18/21 01:02	7440-50-8	
_ead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/18/21 01:02	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/18/21 01:02	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/18/21 20:15	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/18/21 01:02	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/18/21 01:02	7440-28-0	
√anadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 01:02	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 01:02	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2450C-2011						
	Pace Anal	ytical Service	s - Peachtre	e Corners, 0	SA.				
Total Dissolved Solids	329	mg/L	10.0	10.0	1		03/13/21 15:57		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Service	s - Asheville						
Chloride	1.5	mg/L	1.0	0.60	1		03/17/21 04:30	16887-00-6	
Fluoride	0.059J	mg/L	0.10	0.050	1		03/17/21 04:30	16984-48-8	
Sulfate	106	mg/L	2.0	1.0	2		03/17/21 11:14	14808-79-8	

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: EB-4	Lab ID: 9	2526337017	Collecte	ed: 03/09/2	16:00	Received: 03/	10/21 12:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical M	lethod: EPA 6	010D Pre	paration Met	hod: EF	A 3010A			
	Pace Analyt	tical Services	- Peachtre	e Corners, C	SA.				
Calcium	ND	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 03:00	7440-70-2	
6020 MET ICPMS	Analytical M	lethod: EPA 6	020B Prep	paration Met	hod: EF	A 3005A			
	Pace Analyt	tical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/18/21 01:08	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/18/21 01:08	7440-38-2	
Barium	ND	mg/L	0.0050	0.00071	1	03/17/21 13:06	03/18/21 01:08		
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/18/21 01:08		
Boron	ND	mg/L	0.040	0.0052	1	03/17/21 13:06	03/18/21 01:08		
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 20:32		
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/18/21 01:08		
Cobalt	ND	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/18/21 01:08		
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/18/21 01:08		
Lead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/18/21 01:08		
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/18/21 01:08	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/18/21 20:32	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/18/21 01:08		
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/18/21 01:08		
Vanadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 01:08		
Zinc	ND	mg/L	0.010	0.0022	1	03/17/21 13:06			
2540C Total Dissolved Solids	Analytical M	lethod: SM 24	50C-2011						
	Pace Analyt	tical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		03/13/21 15:58		
300.0 IC Anions 28 Days	Analytical M	lethod: EPA 3	00.0 Rev 2	2.1 1993					
-	Pace Analyt	tical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		03/17/21 04:45	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		03/17/21 04:45		
Sulfate	ND	mg/L	1.0	0.50	1		03/17/21 04:45		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: FB-5	Lab ID:	9252633701	3 Collecte	ed: 03/09/2	1 16:10	Received: 03/	10/21 12:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical l	Method: EPA	6010D Pre	paration Met	thod: El	PA 3010A			
	Pace Analy	ytical Service	s - Peachtre	e Corners, C	βA				
Calcium	ND	mg/L	1.0	0.070	1	03/17/21 11:59	03/19/21 03:05	7440-70-2	
6020 MET ICPMS	Analytical l	Method: EPA	6020B Pre	paration Met	hod: Ef	PA 3005A			
	Pace Analy	ytical Service	s - Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	03/17/21 13:06	03/18/21 01:13	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/17/21 13:06	03/18/21 01:13	7440-38-2	
Barium	ND	mg/L	0.0050	0.00071	1	03/17/21 13:06	03/18/21 01:13	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1	03/17/21 13:06	03/18/21 01:13	7440-41-7	
Boron	ND	mg/L	0.040	0.0052	1	03/17/21 13:06	03/18/21 01:13	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00012	1	03/17/21 13:06	03/18/21 20:38	7440-43-9	
Chromium	ND	mg/L	0.0050	0.00055	1	03/17/21 13:06	03/18/21 01:13	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	03/17/21 13:06	03/18/21 01:13	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/17/21 13:06	03/18/21 01:13	7440-50-8	
_ead	ND	mg/L	0.0010	0.000036	1	03/17/21 13:06	03/18/21 01:13	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/17/21 13:06	03/18/21 01:13	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/17/21 13:06	03/18/21 20:38	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/17/21 13:06	03/18/21 01:13	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00014	1	03/17/21 13:06	03/18/21 01:13	7440-28-0	
√anadium	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 01:13	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1	03/17/21 13:06	03/18/21 01:13	7440-66-6	
2540C Total Dissolved Solids	Analytical l	Method: SM 2	2450C-2011						
	Pace Analy	ytical Service	s - Peachtre	e Corners, C	βA				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		03/13/21 15:58		
300.0 IC Anions 28 Days	Analytical l	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Analy	ytical Service	s - Asheville						
Chloride	ND	mg/L	1.0	0.60	1		03/17/21 05:00	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		03/17/21 05:00		
Sulfate	ND	mg/L	1.0	0.50	1		03/17/21 05:00		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-19	Lab ID:	92527273001	Collecte	ed: 03/10/2	1 14:03	Received: 03/	/11/21 15:55 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:				•	•		- ·
ielu Data	•	llytical Services	- Charlotte						
Performed by	CUSTOME				1		03/22/21 11:51		
Н	R 7.49	Std. Units			1		03/22/21 11:51		
6010D ATL ICP	-	Method: EPA 6				PA 3010A			
		llytical Services		•					
Calcium	47.4	mg/L	1.0	0.070	1	03/18/21 12:20	03/20/21 01:57	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Me	thod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, (GΑ				
Antimony	ND	mg/L	0.0030	0.00028	1	03/18/21 12:57	03/18/21 20:36	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1	03/18/21 12:57			
Barium	0.15	mg/L	0.0050	0.00071	1		03/18/21 20:36		
Beryllium	ND	mg/L	0.00050	0.000046	1		03/18/21 20:36		
Boron	0.16	mg/L	0.040	0.0052	1		03/18/21 20:36		
Cadmium	ND	mg/L	0.00050	0.00012	1		03/18/21 20:36		
Chromium	ND	mg/L	0.0050	0.00055	1	03/18/21 12:57	03/18/21 20:36	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1		03/18/21 20:36		
Copper	ND	mg/L	0.0050	0.0017	1		03/18/21 20:36		
ead.	ND	mg/L	0.0010	0.000036	1		03/18/21 20:36		
lickel	ND	mg/L	0.0050	0.00069	1		03/18/21 20:36		
Selenium	ND	mg/L	0.0050	0.0016	1		03/18/21 20:36		
Silver	ND	mg/L	0.0050	0.00036	1		03/18/21 20:36		
⊺hallium	ND	mg/L	0.0010	0.00014	1		03/18/21 20:36		
/anadium	ND	mg/L	0.010	0.0022	1		03/18/21 20:36		
Zinc	ND	mg/L	0.010	0.0022	1		03/18/21 20:36		
2540C Total Dissolved Solids	Analytical	Method: SM 2	450C-2011						
	Pace Ana	llytical Services	- Peachtre	e Corners, (GΑ				
Total Dissolved Solids	223	mg/L	10.0	10.0	1		03/15/21 13:15		D6
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.3	mg/L	1.0	0.60	1		03/17/21 22:42	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1		03/17/21 22:42		
Sulfate	18.7	mg/L	1.0	0.50	1		03/17/21 22:42		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Sample: GWC-20	Lab ID:	92527273002	Collecte	ed: 03/10/21	1 16:06	Received: 03/	/11/21 15:55 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytica	Method:							
	Pace Ana	lytical Services	- Charlotte	;					
Performed by	CUSTOME				1		03/22/21 11:51		
Н	R 7.41	Std. Units			1		03/22/21 11:51		
6010D ATL ICP	Analytica	Method: EPA 6	010D Pre	paration Met	hod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Calcium	64.9	mg/L	1.0	0.070	1	03/18/21 12:20	03/20/21 02:11	7440-70-2	
6020 MET ICPMS	Analytica	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00028	1	03/18/21 12:57	03/18/21 20:42	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.00078	1		03/18/21 20:42		
Barium	0.13	mg/L	0.0050	0.00071	1	03/18/21 12:57	03/18/21 20:42	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000046	1		03/18/21 20:42		
Boron	0.018J	mg/L	0.040	0.0052	1		03/18/21 20:42		
Cadmium	ND	mg/L	0.00050	0.00012	1		03/18/21 20:42		
Chromium	ND	mg/L	0.0050	0.00055	1	03/18/21 12:57	03/18/21 20:42	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00038	1	03/18/21 12:57	03/18/21 20:42	7440-48-4	
Copper	ND	mg/L	0.0050	0.0017	1	03/18/21 12:57	03/18/21 20:42	7440-50-8	
.ead	ND	mg/L	0.0010	0.000036	1	03/18/21 12:57	03/18/21 20:42	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00069	1	03/18/21 12:57	03/18/21 20:42	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0016	1	03/18/21 12:57	03/18/21 20:42	7782-49-2	
Silver	ND	mg/L	0.0050	0.00036	1	03/18/21 12:57	03/18/21 20:42	7440-22-4	
⁻ hallium	ND	mg/L	0.0010	0.00014	1	03/18/21 12:57	03/18/21 20:42	7440-28-0	
/anadium	ND	mg/L	0.010	0.0022	1	03/18/21 12:57	03/18/21 20:42	7440-62-2	
Zinc	ND	mg/L	0.010	0.0022	1	03/18/21 12:57	03/18/21 20:42	7440-66-6	
540C Total Dissolved Solids	Analytica	Method: SM 24	450C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	241	mg/L	10.0	10.0	1		03/15/21 13:16		
300.0 IC Anions 28 Days	Analytica	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.2	mg/L	1.0	0.60	1		03/17/21 23:24	16887-00-6	
Fluoride	0.068J	mg/L	0.10	0.050	1		03/17/21 23:24		
Sulfate	64.7	mg/L	1.0	0.50	1		03/17/21 23:24		

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

QC Batch: 607239 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92526337001, 92526337002, 92526337003, 92526337004, 92526337005, 92526337006, 92526337007,

92526337008, 92526337009, 92526337010, 92526337011, 92526337012, 92526337013, 92526337014,

92526337015, 92526337016, 92526337017, 92526337018

METHOD BLANK: 3199018 Matrix: Water

Associated Lab Samples: 92526337001, 92526337002, 92526337003, 92526337004, 92526337005, 92526337006, 92526337007,

92526337008, 92526337009, 92526337010, 92526337011, 92526337012, 92526337013, 92526337014,

92526337015, 92526337016, 92526337017, 92526337018

 Parameter
 Units
 Blank Reporting Result
 Reporting Limit
 MDL
 Analyzed
 Qualifiers

 Calcium
 mg/L
 ND
 1.0
 0.070
 03/19/21 00:35

LABORATORY CONTROL SAMPLE: 3199020

Spike LCS LCS % Rec % Rec Parameter Units Conc. Result Limits Qualifiers Calcium 1 1.0 100 80-120 mg/L

MS

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3199021 3199022

92526337001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 20 M1 Calcium 16.2 16.8 62 75-125 mg/L 16.7 51

MSD

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

QC Batch: 607584 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92527273001, 92527273002

METHOD BLANK: 3200680 Matrix: Water

Associated Lab Samples: 92527273001, 92527273002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

LABORATORY CONTROL SAMPLE: 3200681

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Calcium 1.1 105 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3200682 3200683

MS MSD

92524632021 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 35.7 20 M1 Calcium mg/L 39.0 38.7 328 296 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

QC Batch: 607261 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92526337001, 92526337002, 92526337003, 92526337004, 92526337005, 92526337006, 92526337007,

92526337008, 92526337009, 92526337010, 92526337011, 92526337012, 92526337013, 92526337014,

92526337015, 92526337016, 92526337017, 92526337018

METHOD BLANK: 3199110 Matrix: Water

Associated Lab Samples: 92526337001, 92526337002, 92526337003, 92526337004, 92526337005, 92526337006, 92526337007,

92526337008, 92526337009, 92526337010, 92526337011, 92526337012, 92526337013, 92526337014,

92526337015, 92526337016, 92526337017, 92526337018

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00028	03/17/21 22:39	
Arsenic	mg/L	ND	0.0050	0.00078	03/17/21 22:39	
Barium	mg/L	ND	0.0050	0.00071	03/17/21 22:39	
Beryllium	mg/L	ND	0.00050	0.000046	03/17/21 22:39	
Boron	mg/L	ND	0.040	0.0052	03/17/21 22:39	
Cadmium	mg/L	ND	0.00050	0.00012	03/18/21 18:15	
Chromium	mg/L	ND	0.0050	0.00055	03/17/21 22:39	
Cobalt	mg/L	ND	0.0050	0.00038	03/17/21 22:39	
Copper	mg/L	ND	0.0050	0.0017	03/17/21 22:39	
Lead	mg/L	ND	0.0010	0.000036	03/17/21 22:39	
Nickel	mg/L	ND	0.0050	0.00069	03/17/21 22:39	
Selenium	mg/L	ND	0.0050	0.0016	03/17/21 22:39	
Silver	mg/L	ND	0.0050	0.00036	03/17/21 22:39	
Thallium	mg/L	ND	0.0010	0.00014	03/17/21 22:39	
Vanadium	mg/L	ND	0.010	0.0022	03/17/21 22:39	
Zinc	mg/L	ND	0.010	0.0022	03/17/21 22:39	

LABORATORY CONTROL SAMPLE:	3199111					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.098	98	80-120	
Arsenic	mg/L	0.1	0.092	92	80-120	
Barium	mg/L	0.1	0.094	94	80-120	
Beryllium	mg/L	0.1	0.092	92	80-120	
Boron	mg/L	1	0.90	90	80-120	
Cadmium	mg/L	0.1	0.099	99	80-120	
Chromium	mg/L	0.1	0.091	91	80-120	
Cobalt	mg/L	0.1	0.092	92	80-120	
Copper	mg/L	0.1	0.094	94	80-120	
Lead	mg/L	0.1	0.096	96	80-120	
Nickel	mg/L	0.1	0.092	92	80-120	
Selenium	mg/L	0.1	0.091	91	80-120	
Silver	mg/L	0.1	0.094	94	80-120	
Thallium	mg/L	0.1	0.095	95	80-120	
Vanadium	mg/L	0.1	0.094	94	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

LABORATORY CONTROL SAMPLE: 3199111

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers

Zinc mg/L 0.1 0.090 90 80-120

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3199	112		3199113							
			MS	MSD								
		92526337002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L		0.1	0.1	0.10	0.10	101	101	75-125	0	20	
Arsenic	mg/L	ND	0.1	0.1	0.097	0.098	96	97	75-125	1	20	
Barium	mg/L	0.12	0.1	0.1	0.22	0.22	98	100	75-125	1	20	
Beryllium	mg/L	ND	0.1	0.1	0.091	0.089	91	89	75-125	1	20	
Boron	mg/L	0.13	1	1	1.0	1.0	91	89	75-125	1	20	
Cadmium	mg/L	ND	0.1	0.1	0.10	0.10	102	100	75-125	2	20	
Chromium	mg/L	ND	0.1	0.1	0.098	0.094	98	94	75-125	4	20	
Cobalt	mg/L	ND	0.1	0.1	0.098	0.094	97	94	75-125	4	20	
Copper	mg/L	ND	0.1	0.1	0.097	0.093	97	93	75-125	5	20	
Lead	mg/L	0.000040J	0.1	0.1	0.091	0.094	91	94	75-125	3	20	
Nickel	mg/L	ND	0.1	0.1	0.097	0.093	97	93	75-125	4	20	
Selenium	mg/L	ND	0.1	0.1	0.091	0.091	90	91	75-125	1	20	
Silver	mg/L	ND	0.1	0.1	0.094	0.092	94	92	75-125	2	20	
Thallium	mg/L	ND	0.1	0.1	0.092	0.096	92	96	75-125	5	20	
Vanadium	mg/L	ND	0.1	0.1	0.10	0.096	100	96	75-125	4	20	
Zinc	mg/L	ND	0.1	0.1	0.092	0.090	91	89	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

QC Batch: 607620 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92527273001, 92527273002

METHOD BLANK: 3200852 Matrix: Water

Associated Lab Samples: 92527273001, 92527273002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00028	03/18/21 19:10	
Arsenic	mg/L	ND	0.0050	0.00078	03/18/21 19:10	
Barium	mg/L	ND	0.0050	0.00071	03/18/21 19:10	
Beryllium	mg/L	ND	0.00050	0.000046	03/18/21 19:10	
Boron	mg/L	ND	0.040	0.0052	03/18/21 19:10	
Cadmium	mg/L	ND	0.00050	0.00012	03/18/21 19:10	
Chromium	mg/L	ND	0.0050	0.00055	03/18/21 19:10	
Cobalt	mg/L	ND	0.0050	0.00038	03/18/21 19:10	
Copper	mg/L	ND	0.0050	0.0017	03/18/21 19:10	
Lead	mg/L	ND	0.0010	0.000036	03/18/21 19:10	
Nickel	mg/L	ND	0.0050	0.00069	03/18/21 19:10	
Selenium	mg/L	ND	0.0050	0.0016	03/18/21 19:10	
Silver	mg/L	ND	0.0050	0.00036	03/18/21 19:10	
Thallium	mg/L	ND	0.0010	0.00014	03/18/21 19:10	
Vanadium	mg/L	ND	0.010	0.0022	03/18/21 19:10	
Zinc	mg/L	ND	0.010	0.0022	03/18/21 19:10	

LABORATORY CONTROL SAMPLE:	3200853					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.11	108	80-120	
Arsenic	mg/L	0.1	0.097	97	80-120	
Barium	mg/L	0.1	0.097	97	80-120	
Beryllium	mg/L	0.1	0.098	98	80-120	
Boron	mg/L	1	0.97	97	80-120	
Cadmium	mg/L	0.1	0.099	99	80-120	
Chromium	mg/L	0.1	0.097	97	80-120	
Cobalt	mg/L	0.1	0.097	97	80-120	
Copper	mg/L	0.1	0.096	96	80-120	
ead	mg/L	0.1	0.099	99	80-120	
ickel	mg/L	0.1	0.096	96	80-120	
elenium	mg/L	0.1	0.093	93	80-120	
Bilver	mg/L	0.1	0.096	96	80-120	
hallium	mg/L	0.1	0.098	98	80-120	
'anadium	mg/L	0.1	0.097	97	80-120	
Zinc	mg/L	0.1	0.096	96	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3200	854		3200855							
			MS	MSD								
		92524632021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.11	0.11	109	112	75-125	2	20	
Arsenic	mg/L	ND	0.1	0.1	0.10	0.10	100	102	75-125	2	20	
Barium	mg/L	0.028	0.1	0.1	0.13	0.13	100	101	75-125	1	20	
Beryllium	mg/L	ND	0.1	0.1	0.098	0.10	98	103	75-125	5	20	
Boron	mg/L	0.0098J	1	1	1.0	1.1	99	104	75-125	5	20	
Cadmium	mg/L	ND	0.1	0.1	0.10	0.11	103	106	75-125	3	20	
Chromium	mg/L	0.00090J	0.1	0.1	0.10	0.11	103	107	75-125	3	20	
Cobalt	mg/L	ND	0.1	0.1	0.10	0.11	102	107	75-125	5	20	
Copper	mg/L	ND	0.1	0.1	0.10	0.11	101	106	75-125	5	20	
Lead	mg/L	ND	0.1	0.1	0.099	0.10	99	100	75-125	1	20	
Nickel	mg/L	ND	0.1	0.1	0.10	0.11	101	106	75-125	5	20	
Selenium	mg/L	ND	0.1	0.1	0.097	0.098	97	98	75-125	2	20	
Silver	mg/L	ND	0.1	0.1	0.097	0.099	97	99	75-125	2	20	
Thallium	mg/L	ND	0.1	0.1	0.096	0.099	96	99	75-125	3	20	
Vanadium	mg/L	ND	0.1	0.1	0.11	0.11	105	109	75-125	3	20	
Zinc	mg/L	ND	0.1	0.1	0.098	0.11	97	105	75-125	8	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

QC Batch: 605516 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92526337001, 92526337002, 92526337003, 92526337004

METHOD BLANK: 3189891 Matrix: Water

Associated Lab Samples: 92526337001, 92526337002, 92526337003, 92526337004

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND10.010.003/10/21 17:21

LABORATORY CONTROL SAMPLE: 3189892

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 400 370 92 90-111 mg/L

SAMPLE DUPLICATE: 3189893

92524831026 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 798 **Total Dissolved Solids** 800 0 mg/L 10

SAMPLE DUPLICATE: 3189894

Date: 03/31/2021 11:52 AM

92526337002 Dup Max Parameter RPD RPD Units Result Result Qualifiers Total Dissolved Solids 415 425 2 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

QC Batch: 606468 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92526337005, 92526337006, 92526337007, 92526337008, 92526337009, 92526337010, 92526337011,

92526337012, 92526337013, 92526337014

METHOD BLANK: 3195225 Matrix: Water

Associated Lab Samples: 92526337005, 92526337006, 92526337007, 92526337008, 92526337009, 92526337010, 92526337011,

92526337012, 92526337013, 92526337014

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND10.010.003/13/21 15:41

LABORATORY CONTROL SAMPLE: 3195226

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. 92 90-111 **Total Dissolved Solids** mg/L 400 368

SAMPLE DUPLICATE: 3195227

92526574001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 78.0 60.0 26 10 D6 **Total Dissolved Solids** mg/L

SAMPLE DUPLICATE: 3195228

Date: 03/31/2021 11:52 AM

92526337005 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** mg/L 227 203 11 10 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

QC Batch: 606469 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92526337015, 92526337016, 92526337017, 92526337018

METHOD BLANK: 3195229 Matrix: Water

Associated Lab Samples: 92526337015, 92526337016, 92526337017, 92526337018

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 03/13/21 15:56

LABORATORY CONTROL SAMPLE: 3195230

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 400 369 92 90-111

SAMPLE DUPLICATE: 3195231

Date: 03/31/2021 11:52 AM

92526337015 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 216 **Total Dissolved Solids** 203 6 mg/L 10

SAMPLE DUPLICATE: 3195232

92524632027 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 158 10 D6 mg/L 141 11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

QC Batch: 606587 Analysis Method: SM 2450C-2011

QC Batch Method: SM 2450C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92527273001, 92527273002

METHOD BLANK: 3195825 Matrix: Water

Associated Lab Samples: 92527273001, 92527273002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 03/15/21 13:13

LABORATORY CONTROL SAMPLE: 3195826

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 400 362 90 90-111 mg/L

SAMPLE DUPLICATE: 3195827

92527234005 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 2120 **Total Dissolved Solids** 10 D6 mg/L 2390 12

SAMPLE DUPLICATE: 3195998

Date: 03/31/2021 11:52 AM

92527273001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 223 190 10 D6 mg/L 16

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

QC Batch: 606641 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92526337001, 92526337002, 92526337003, 92526337004

METHOD BLANK: 3196222 Matrix: Water

Associated Lab Samples: 92526337001, 92526337002, 92526337003, 92526337004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	03/16/21 04:09	
Fluoride	mg/L	ND	0.10	0.050	03/16/21 04:09	
Sulfate	mg/L	ND	1.0	0.50	03/16/21 04:09	

LABORATORY CONTROL SAMPLE: 3196223 LCS Spike LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 50 49.5 99 90-110 mg/L Fluoride 2.5 100 90-110 mg/L 2.5 Sulfate 104 90-110 mg/L 50 52.2

MATRIX SPIKE & MATRIX	SPIKE DUPL	LICATE: 3196	3196225									
Parameter	Units	92527305006 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	2170	50	50	2220	2220	100	95	90-110	0	10	
Fluoride	mg/L				8.8	8.5				3	10	M6
Sulfate	mg/L				1800	1790				0	10	

MATRIX SPIKE & MATRIX SI	PIKE DUPL	3196227										
			MS	MSD								
		92527315001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	1620	50	50	1640	1650	49	61	90-110	0	10	M6
Fluoride	mg/L	ND	2.5	2.5	ND	ND	0	0	90-110		10	M6
Sulfate	mg/L	25.1	50	50	70.0	71.8	90	93	90-110	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

LABORATORY CONTROL SAMPLE: 2106040

Date: 03/31/2021 11:52 AM

Pace Project No.: 92526337

QC Batch: 606813 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92526337005, 92526337006, 92526337007, 92526337008, 92526337009

METHOD BLANK: 3196939 Matrix: Water

Associated Lab Samples: 92526337005, 92526337006, 92526337007, 92526337008, 92526337009

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	03/16/21 17:28	
Fluoride	mg/L	ND	0.10	0.050	03/16/21 17:28	
Sulfate	mg/L	ND	1.0	0.50	03/16/21 17:28	

LABORATORY CONTROL SAMPLE.	3190940					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	46.9	94	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	50	47.4	95	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 3196		3196942								
			MS	MSD								
		92527577023	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.9	50	50	51.8	52.3	98	99	90-110	1	10	
Fluoride	mg/L	0.15	2.5	2.5	3.6	3.6	136	138	90-110	1	10	M1
Sulfate	mg/L	34.0	50	50	81.4	81.6	95	95	90-110	0	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3196	943		3196944							
			MS	MSD								
		92526337009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.2	50	50	51.4	50.5	99	97	90-110	2	10	
Fluoride	mg/L	0.12	2.5	2.5	2.6	2.5	99	96	90-110	2	10	
Sulfate	mg/L	33.1	50	50	83.2	82.3	100	98	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

QC Batch: 606814 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92526337010, 92526337011, 92526337012, 92526337013, 92526337014, 92526337015, 92526337016,

 $92526337017,\,92526337018$

METHOD BLANK: 3196945 Matrix: Water

Associated Lab Samples: 92526337010, 92526337011, 92526337012, 92526337013, 92526337014, 92526337015, 92526337016,

92526337017, 92526337018

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	03/17/21 01:31	
Fluoride	mg/L	ND	0.10	0.050	03/17/21 01:31	
Sulfate	mg/L	ND	1.0	0.50	03/17/21 01:31	

LABORATORY CONTROL SAMPLE:	3196946					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	46.8	94	90-110	
Fluoride	mg/L	2.5	2.4	96	90-110	
Sulfate	mg/L	50	47.2	94	90-110	

MATRIX SPIKE & MATRIX SF	IKE DUPLI	CATE: 3196		3196948								
			MS	MSD								
		92526337010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	0.74J	50	50	47.3	48.4	93	95	90-110	2	10	
Fluoride	mg/L	0.080J	2.5	2.5	2.4	2.5	95	97	90-110	3	10	
Sulfate	mg/L	65.1	50	50	101	102	71	74	90-110	1	10	M1

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 3196	949		3196950							
		0050400000	MS	MSD		1400		1400	0/ 5			
		92524632022	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	1.8	50	50	50.5	50.8	97	98	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.4	2.4	96	96	90-110	0	10	
Sulfate	mg/L	1.4	50	50	50.5	50.8	98	99	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

QC Batch: 607170 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92527273001, 92527273002

METHOD BLANK: 3198670 Matrix: Water

Associated Lab Samples: 92527273001, 92527273002

LABORATORY CONTROL SAMPLE: 2100671

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	03/17/21 17:51	
Fluoride	mg/L	ND	0.10	0.050	03/17/21 17:51	
Sulfate	mg/L	ND	1.0	0.50	03/17/21 17:51	

LABORATORT CONTROL SAMPLE.	3190071					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	50.3	101	90-110	
Fluoride	mg/L	2.5	2.7	107	90-110	
Sulfate	mg/L	50	52.7	105	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3198	672		3198673							
			MS	MSD								
		92527256001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	7.4	50	50	59.6	59.8	104	105	90-110	0	10	
Fluoride	mg/L	0.079J	2.5	2.5	2.7	2.7	106	107	90-110	0	10	
Sulfate	mg/L	49.6	50	50	94.1	95.1	89	91	90-110	1	10	M1

MATRIX SPIKE & MATRIX SF	PIKE DUPL	ICATE: 3198	674		3198675							
			MS	MSD								
		92527256002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.9	50	50	54.4	53.4	103	101	90-110	2	10	
Fluoride	mg/L	ND	2.5	2.5	3.0	2.8	118	112	90-110	6	10	M1
Sulfate	mg/L	1.2	50	50	54.5	53.7	107	105	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/31/2021 11:52 AM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2526337001	GWA-1		·	-, .	
2526337002	GWA-3				
2526337003	GWA-4				
2526337004	GWA-11				
2526337005	GWA-2				
2526337006	GWC-5				
2526337007	GWC-6				
2526337008	GWC-7				
2526337009	GWC-8				
2526337010	GWC-9				
2526337011	GWC-10				
2526337012	GWC-18				
2526337013	GWC-21				
2526337014	GWC-22				
2526337015	GWC-23				
2527273001	GWC-19				
2527273002	GWC-20				
2526337001	GWA-1	EPA 3010A	607239	EPA 6010D	607307
2526337002	GWA-3	EPA 3010A	607239	EPA 6010D	607307
2526337003	GWA-4	EPA 3010A	607239	EPA 6010D	607307
2526337004	GWA-11	EPA 3010A	607239	EPA 6010D	607307
2526337005	GWA-2	EPA 3010A	607239	EPA 6010D	607307
2526337006	GWC-5	EPA 3010A	607239	EPA 6010D	607307
2526337007	GWC-6	EPA 3010A	607239	EPA 6010D	607307
2526337008	GWC-7	EPA 3010A	607239	EPA 6010D	607307
2526337009	GWC-8	EPA 3010A	607239	EPA 6010D	607307
2526337010	GWC-9	EPA 3010A	607239	EPA 6010D	607307
2526337011	GWC-10	EPA 3010A	607239	EPA 6010D	607307
2526337012	GWC-18	EPA 3010A	607239	EPA 6010D	607307
2526337013	GWC-21	EPA 3010A	607239	EPA 6010D	607307
2526337014	GWC-22	EPA 3010A	607239	EPA 6010D	607307
2526337015	GWC-23	EPA 3010A	607239	EPA 6010D	607307
2526337016	DUP-5	EPA 3010A	607239	EPA 6010D	607307
2526337017	EB-4	EPA 3010A	607239	EPA 6010D	607307
2526337018	FB-5	EPA 3010A	607239	EPA 6010D	607307
2527273001	GWC-19	EPA 3010A	607584	EPA 6010D	607676
2527273002	GWC-20	EPA 3010A	607584	EPA 6010D	607676
2526337001	GWA-1	EPA 3005A	607261	EPA 6020B	607376
2526337002	GWA-3	EPA 3005A	607261	EPA 6020B	607376
2526337003	GWA-4	EPA 3005A	607261	EPA 6020B	607376
2526337004	GWA-11	EPA 3005A	607261	EPA 6020B	607376
2526337005	GWA-2	EPA 3005A	607261	EPA 6020B	607376
2526337006	GWC-5	EPA 3005A	607261	EPA 6020B	607376
2526337007	GWC-6	EPA 3005A	607261	EPA 6020B	607376
2526337008	GWC-7	EPA 3005A	607261	EPA 6020B	607376
2526337009	GWC-8	EPA 3005A	607261	EPA 6020B	607376
2526337010	GWC-9	EPA 3005A	607261	EPA 6020B	607376

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92526337011	GWC-10	EPA 3005A	607261	EPA 6020B	607376
2526337012	GWC-18	EPA 3005A	607261	EPA 6020B	607376
2526337013	GWC-21	EPA 3005A	607261	EPA 6020B	607376
2526337014	GWC-22	EPA 3005A	607261	EPA 6020B	607376
2526337015	GWC-23	EPA 3005A	607261	EPA 6020B	607376
2526337016	DUP-5	EPA 3005A	607261	EPA 6020B	607376
2526337017	EB-4	EPA 3005A	607261	EPA 6020B	607376
2526337018	FB-5	EPA 3005A	607261	EPA 6020B	607376
2527273001	GWC-19	EPA 3005A	607620	EPA 6020B	607757
2527273002	GWC-20	EPA 3005A	607620	EPA 6020B	607757
2526337001	GWA-1	SM 2450C-2011	605516		
2526337002	GWA-3	SM 2450C-2011	605516		
2526337003	GWA-4	SM 2450C-2011	605516		
2526337004	GWA-11	SM 2450C-2011	605516		
2526337005	GWA-2	SM 2450C-2011	606468		
2526337006	GWC-5	SM 2450C-2011	606468		
2526337007	GWC-6	SM 2450C-2011	606468		
2526337008	GWC-7	SM 2450C-2011	606468		
2526337009	GWC-8	SM 2450C-2011	606468		
2526337010	GWC-9	SM 2450C-2011	606468		
2526337011	GWC-10	SM 2450C-2011	606468		
2526337012	GWC-18	SM 2450C-2011	606468		
2526337013	GWC-21	SM 2450C-2011	606468		
2526337014	GWC-22	SM 2450C-2011	606468		
2526337015	GWC-23	SM 2450C-2011	606469		
2526337016	DUP-5	SM 2450C-2011	606469		
2526337017	EB-4	SM 2450C-2011	606469		
2526337018	FB-5	SM 2450C-2011	606469		
2527273001	GWC-19	SM 2450C-2011	606587		
2527273002	GWC-20	SM 2450C-2011	606587		
2526337001	GWA-1	EPA 300.0 Rev 2.1 1993	606641		
2526337002	GWA-3	EPA 300.0 Rev 2.1 1993	606641		
2526337003	GWA-4	EPA 300.0 Rev 2.1 1993	606641		
2526337004	GWA-11	EPA 300.0 Rev 2.1 1993	606641		
2526337005	GWA-2	EPA 300.0 Rev 2.1 1993	606813		
2526337006	GWC-5	EPA 300.0 Rev 2.1 1993	606813		
2526337007	GWC-6	EPA 300.0 Rev 2.1 1993	606813		
2526337008	GWC-7	EPA 300.0 Rev 2.1 1993	606813		
2526337009	GWC-8	EPA 300.0 Rev 2.1 1993	606813		
2526337010	GWC-9	EPA 300.0 Rev 2.1 1993	606814		
2526337011	GWC-10	EPA 300.0 Rev 2.1 1993	606814		
2526337012	GWC-18	EPA 300.0 Rev 2.1 1993	606814		
2526337013	GWC-21	EPA 300.0 Rev 2.1 1993	606814		
2526337014	GWC-22	EPA 300.0 Rev 2.1 1993	606814		
92526337015	GWC-23	EPA 300.0 Rev 2.1 1993	606814		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HAMMOND HUFFAKER SEMIANNUAL

Pace Project No.: 92526337

Date: 03/31/2021 11:52 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92526337016	DUP-5	EPA 300.0 Rev 2.1 1993	606814	_	
92526337017	EB-4	EPA 300.0 Rev 2.1 1993	606814		
92526337018	FB-5	EPA 300.0 Rev 2.1 1993	606814		
92527273001	GWC-19	EPA 300.0 Rev 2.1 1993	607170		
92527273002	GWC-20	EPA 300.0 Rev 2.1 1993	607170		

Shara A mah abash	Sample Condition Upon Receipt(SCUR)	Page 1 of 2	
Face Analytical*	Document No.:	Issuing Authority:	
	F-CAR-CS-033-Rev.07	Pace Carolinas Quality Office	
Laboratory receiving samples: Asheville Eden Greenwood Sample Condition Client Name: Upon Receipt	☐ Huntersville ☐ Raleigh☐ Project :	Mechanicsville Atlanta Kernersville	
Courier: Fed Ex U		92526337	
custody Seal Present? Yes No S	Seals Intact? // Yes No	Date/Initials Person Examining Contents: 3/9/	<i> </i>
Packing Material: Bubble Wrap	Bubble Bags Affone C Other	Biological Tissue Frozen?	S. Comment
Thermometer 230 Correction F	Type of Ice:	None TYes No IN/A	4
Cooler Temp: Add/Subtra		emp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling produced in the cooling produced in	cess
Cooler Temp Corrected (°C): USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the	e United States: CA, NY, or SC (check maps)? D	has begun id samples originate from a foreign source (internationally, cluding Hawaii and Puerto Rico)? Comments/Discrepancy:	
	or a second control of the second control o	Continents discrepancy;	ATT ATTEMPT SECTION
Chain of Custody Present?	TIES' NO ON/A 1.		
Samples Arrived within Hold Time?	Etres DNa DN/A 2.		annamnts ýja
Short Hold Time Analysis (<72 hr.)?	☐Yes ☐## ☐N/A 3.		
Rush Turn Around Time Requested?	□Yes ØNo □N/A 4.		
Sufficient Volume?	Wes ONO ON/A 5.		
Correct Containers Used? -Pace Containers Used?	☐Yes ☐NO ☐N/A 6.		
Containers Intact?	□Yes □No □N/A 7.		
Dissolved analysis: Samples Field Filtered?	□yes □No □N/A 8.		
Sample Labels Match COC?	1 Yes □No □N/A 9.	•	
-Includes Date/Time/ID/Analysis Matrix:	W.	MBMMBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	
Headspace in VOA Vials (>5-6mm)?	□Yes □No □YZ 10.	and the state of t	
Trip Blank Present?	Yes No ZN/A 11	Parameter 15 to State Control of the State Control	
Trip Blank Custody Seals Present?	CYES INO DWA	CO DIA CONTRACTION OF THE PRESENTANT REPORTED HER REPORTS HER REPO	
COMMENTS/SAMPLE DISCREPANCY		Field Data Required? Yes A	10
- End with the property of the control of country and property of the control of		O of split containers:	***************************************
CLIENT NOTIFICATION/RESOLUTION			andre andresse and the contract of the contrac
Person contacted:	Date/Time:		
		Date	
Project Manager SCURF Review:	The state of the s	Date:	
Project Manager SRF Review:		Date:	

Document Name:

Document Revised: October 28, 2020

Section B Required Project Information: Report To: SCS Contacts Copy To: Geosyntec Contacts The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately. Section C Invoice information: Attention: Southern Co. Company Name REGULATORY AGENCY ...

-address

OTHER DAR-DRINKING WATER

GROUND WATE

2

Page 51 of 54

CHAIN-OF-CUSTODY / Analytical Request Document

Section A Required Client Information: Company GA Power

Atlanta, GA

Pace Analytical

				Metah=Sb. As		Please n		12	11	ő			7	0	•	6	•	u	N	-	ļ	TEM#		-	Requeste	Phone	Email to:
Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agrissing to late charges of 1,5% per month for any investors not paid within 30 days.	n a consistencia e comencia e com			Sb. As. Be, Be, B. Cot. Ca. Ca. Co., Cu., Po, NI, Se, Ag.	THE PROPERTY OF THE PROPERTY O	Please note dry wells, strike thorugh any wells not sampled, and note that the last sample for the event has been laken.	ADDITIONAL CONSIDENTS	SWC-18	GMC-10		(WC-8					SMA-11	GWA-4	GWA-3		GWA-1			Section D Valid Matrix Codes Required Cleat Information MATRIX CO		Requested Due Date/TAT: 10 Da	Fax	SCS Contacts
Pace's NET 30 day paymon					``\ ~	office wes	RELINCUIS		WT G	I Visit						wr g	w⊤ e b	WT G		WT G		# 유 및 및 무 의 및 및 MATRIX CODE (Geovalus cod SAMPLE TYPE (G=GRAB C=	M. les to left)	The state of the s	Project Number GIN6561B	≓ryect Name Plant	Punchase Order No.
Crieding but substi		SAM			¥.	Kess L	RELINQUISHED BY / AFFILIATION					A CONTRACTOR OF THE CONTRACTOR				3821 1553	3662) 1427	3/8/21 1543		29/2V	٢	DATE	COL		81B	Plant Hammond Huffaker Semiannual	
to late charges of 1.5	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE		.,,,,,,,,,	Tree P		NOEV				1						-	<u>}</u>		1	^	SA S	COLLECTED		200	aker Semiarnu	**************************************
S% per month for a	A SYMPLES: A	D SIGNATURE			1/2/1/	1441	E E	4	- - -						1	1	1	100	60			SAMPLE TEMP AT COLLECTION # OF CONTAINERS	ON		30E,#		Nate State
A lunci sea suo (ban	Thomas V				P	1 5/0	JUNE	3	3 2 1	ш	3 2 1			3 1	1 2 11	2	22	2 1	2 1	•		Unpreserved H ₂ SO ₄ HNO ₃	Ртаз		77	Pace Project Keyli Menager	1 1
well-in 30 days.	Xess.7.			Value of the latest of the lat	The K		Acces		1	14: N			1									HCI NaOH Na ₂ S ₂ O ₃ Methanol	Preservatives		10839-11	Kevin Herring	
	(a) %		: :	.5			Sen of Manager					4	++	×	X	I × ×	×	×		ţ.	×	Analysis Test Choride, Fluoride, Sulfale TDS	YIN Z Z	R			
	DATE Signed (MM/DDYYY): 3				30	T, The				1	4 >	-11	e e	×	ς *	×	×	+		++	×	Netals*	z	Requested Analysis Filtered		Sit	
	3/8/21		hundernunfan	*	刻	7/4/2/		3 -					1							H				7815 Fillianed	STATE:		UST F
7		11. 1.87 11.			*	0101	3 / A						1													G≱ ·	RCRA
F-ALL-Q-020rev.07; 15-Feb-2007	Temp i					-					- 11		4	N DH-	E E				-	È	Z	Residual Chlorine (Y/N)					रा
Orev.07	Ice (Y	/N)	-	-	1		1			-				1		ſ) (7		- 6.86	ace Pro					Q
15-Feb-2	Sealed (Coole		_		_		SAMPLE CONDITIONS							-	X	5 0		ñ		ñ	ect N					OTHER OFF
007	Sample:		**************************************					ž		A Commission of the Commission			laura de la company			Approximation of the control of the						Pace Project No. ³ Lab LD.					1

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

			Metals:		Pleaso s		12	=	10	ç,	•	7	\$	O1	4	Ç,	Pu)]-	•	ITEM#			Requeste	Phone	Email To:		Address	Company	Section A Required C
			"Metaler St. As. Ba, Be, B. Cd. Ca, Cr. Co, Cu. Pb, Ni. Se, Ag. Ti. V. Zo		Please role dry wells, strike though any wells not sampled, and note when the last sample for the event has been taken	ADDITIONAL COMMENTS	GWC-18	GWC-10	GWC-9	GWC-8	GWC-7	GWC-6	GWC-5	- GWA-11	GWA-4	- GWA-3	GWA-2			SAMPLE ID WHE ONE (AZ 0-9) ONE ONE SAMPLE INSTERNATION ON THE CONTROL ONE	Section D Valid Matrix Codes Required Ciert Information MATRIX CO		Requested Due Date/TAT: 10 Day		SCS Contacts		Atlanta, GA	GA Power	Section A Required Client Information:
			ᆉ	V #*~	and Heamen															4 6 7 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4	3003		Project Number GW65818	Project Name:	Purchase Order No.		Copy To G	Report To: SCS Contacts	Section B Required Project Information:
	l			٤		RELING	₩T G	¥ o	WT G	₩T ©	€ 0	¥T G	ક ્ર	4	≱ a	6	_	十	1	MATRIX CODE (See valid coordes SAMPLETYPE (G-GRAB C-C		-	Per G	P	der No.		eosyn	S S	bject Info
			į		7	MSHEC	3 <i>P</i> /20		I		<u> </u>		13/P/C		Ħ	Ť	Ц	-	H		Τ	1	V6581	nt Har			Geosyntec Contacts	ntacts	mation
		ĺ		}	سأعصا	A ! YB C					ļ	3/9/2			Щ		NA PARK	֭֭֝֟֝֜֜֜֝֜֜֜֓֓֓֓֓֓֓֟֜֜֟	L	DATE	_		(F)	monc			ntacts		
	SAMPL		1	_	Trec	RELINQUISHED BY I AFFILIATION	32	3	2477	152	5	51h1	212				10/12			TAKE	CO [Huffa					
PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	SAMPLER NAME AND SIGNATURE			20.00	2	NOI	-	i	ţ	***	1	1	1	-		7035	,			DATE	COLLECTED			Plant Hammond Huffaker Semiannual					
ne of SAM	AND SIG			3/10/21	12/01K	DATE	.1	N	ı	,		*-1	t:	-			,	,		TIME				nnua					
PLER: PLER:	Ž			2.		E	S	2	₹	ñ	ว	₽	Ţ		H		1			SAMPLE TEMP AT COLLECTION		1	L					Į	- 4=
	#			1	5221	THE	3	w	မ	ω	w	ω	۳	٤	4	4	۵	_ (1	# OF CONTAINERS			ace Pa	Manager	Pace Quote Reference	Address	Company Name	Attention	Section C Invoice Information
tueme >			ŀ	7	S	ME .	2	~	2	~	<u> ~</u>	~	2	H	H	~	~	╬	┡	Unpreserved H ₂ SO ₄	┨		*	8	¥ 8		Na.	,	n C Inform
			寸	(Z	#.	=	Ė	-4	=	-	-			H	=	ŢΞ	ŀ	E	HNO ₃]g		8	es.			£	Sou	ation:
X۲			ľ	V	71.00		┡	╀╌	╫┈	┢	┝	-	H	H	3	+	╫	+	t	HCI NaOH	reservatives		10838-11	Kevin Herring			Ì	Southern Co.	
A IV	2		l	1	×	ACCE								I.	V			1	Ţ	Na ₂ S ₂ O ₃	Ş.			8				င္ပ	
1				1 N	Л	EPTE	┝	┝	-		├-	\vdash	┢	H	Н	H	+	╅	╁	Methanol Other	1			1					
To.				Duck	1,74	0 87		N	, diji	ijÜ.	405		Œ.		113	÷		Š ķ		Analysis Test	Y/ N								
E				1		Ä	×	×	×	×	×	×	×	봈	×	Ļ	×	4	<u>‡</u>	Chloride, Fluoride, Sulfate TDS	z	- 2							
Chand Rayses			-		Pace	PTED BY ! AFRILIATION	×	×	×	×	×	×	×	À	×) 	×	-	╁	Metals'	z								
3 5					^	Ž								Ц		\prod	1	1	1				_	Ļ		Ļ	_		
N F			_	74		95	1	├-	-	┼	├-	┝	╀	H	Н	+	+	╫	+		_	- 3		量			EQL		
14:45 P				HIJOIK	15/01/21	PATE	┢	T	-		\vdash				Ħ			1	1			Requested Analysis Filtered (Yill)	STATE	Site Location	Ę	NPOES	REGULATORY AGENCY		
Y 20					7	m		L		L			lacksquare	\prod				4	4		╀	- 3	L	3	-	-	ORY		
7				にかり	1225	11111	┝	╀	╄	╀	╄		╁╌	Н	Н	+	╫	+	\dashv		-	43			1	G	AGE		
u Ca				2	び.	M			1					1	1	†		1]*		ହ	RCRA	GROUND WATE	NO.		Page:
Temp in	·c			3.		Г		L						Ц	Ц	Ţ	Щ	4	4		24030	*******				Š			12
							Z	Z	z	Z	Z	Z	Z	긤	-13	2	Į	+	z	Residual Chlorine (Y/N)						AIR			,,,,,
Receive Ice (Y				7		SAM	무	OH =7.40	무무	물.	PH = C	PH =		胃	P1 *	: PT	97 - 4		모	P B C					য	- 4			
Custo Sealed C	ocie:			2		SAMPLE CONDITIONS	25.7	6	25.9=Hd	7,06	6.59	7.09	693				Q TO	3		Project					OTHER OF	DRINK			9.
Samples (Yi)	Intact			Υ		PINOLIA														Pace Project No./ Lab I.D.					R OFF	DRINKING WATER			\sim

Important Note: By Egining Fix form you are accepting Pace's NET 30 day payment terms and agreeing to late changes of 1.5% per month for any montes not paid within 30 days.

F-ALL-Q-020rev.07, 15-Feb-2007

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

		"Metals=Sb.	SUA SPOU	Pleasen		12	1	1 0	8	5	7 ::	•	6	*	٠	13	_	ITEM#	-	76.74		Requeste	Phone	Email To:		Address.	Company	Required C
		Sb. As. Ba, Be, B. Cd. Ca, Cr. Co, Cu. Pb. Ni. Se, Ag	now when the last sample for the event has been taken.	Please note dry wells, strike thorugh any wells not sampled, and	ADDITIONAL COMMENTS					FB-5	EB-4	Dup-5	GWC-23	GWC-22	GWC-21		GWC-19	SAMPLE ID were on the control of the	DATES	Section D Valid Required Cherk Information MAIF		Requested Due Date/TAT: 10 Day	Fex	SCS Contacts		Atlanta, GA	GA Power	Section A Required Client Information:
-		N. Sa. Ag.	(all Lysely)															28 48 48 49 48 48 48 48 48 48 48 48 48 48 48 48 48				Project Number GW6581B	Project Name:	Purchase Order No.		Copy To: G	Report To: SCS Contacts	Required Project Information:
		, S	-		RELIA			Н	_	¥	Š	ş	WT .	\$	1	\$	W.					G		der No		èesy	SS C	oject in
		(5	Sist	-	_	H	┡	9	0 V	n G	G	6	6 W	4	٩		T	J.M.F.,		₩658	E H			ntec C	ontac	tormati
1	İ	1	17.31		ED BY					Sirva	3K/21	3/4/2	3A/21	MAR	以天			DATE				818	ammo		-	Geosyntec Contacts	ŝ	2
SAM		TACE		10	RELINQUISHED BY / AFFILIATION					S C C	Se	_	S	-	ROJ.			TIWE		8			and Huffa			3	Ì	
PRINT N		100		2	NO.			 		,	į	,	1	-	ļ,			DATE	COMPOSITE	COLLECTED			Plant Hammond Huffaker Semiannual					
SAMPLER NAME AND SYGNATURE PRINT Name of SAMPLER: 41		1/0/2/	9	Y/of2	31,40	-						,	1	,	1	1		TWAC	ale.				iannual			-		
PER TU			٠	77	A	<u> </u>						V	7	7	Ci		\parallel	SAMPLE TEMP AT COLLE	CTION									
4 8		- 1	E,	7.1			6	N		3	3	ω	3	з	з	3	ŀ					Pace Profile #:	Раса Р _і	Pace Quote Reference	Address	Company Name:	Attention:	krycice information:
			اد	6231	TIME		A	¥	1	2	2	2	Ŋ	Α,	1/2	2	H	Unpreserved H ₂ \$O ₄		ł		ofile #:	, o	9	•	iny Nar	ž	mom
7	7	1	. k	A			\	2	7	-	Ē	-		Ξ	-	1	Ħ	HNO ₃		Preservatives		10839-11				ë	Sout	ation:
	I	1/1	4	?		\vdash					L	士		上			Ц	NaOH		Tagi		9-1-1	Kevin Herring				Southern Co.	
<u> </u>		Mr	1	٠	ACCE			_	\vdash	╀	┡	╀	╀	╁	╀	Н	₩	Na ₂ S ₂ O ₃ Methanol		8			3				ò	
		3		111	XEPTED BY / AFRIJATION				۲.		上	L				Ц		Other		Y/ N								
٦			2	3	BYIA		T .		15	×	Ī×	Ī×	×	Τ×	×	ÍЯ	K	Analysis Test Chloride, Fluoride, Sulfate	SMP 1	z						I		
		'	7	7	1	┢	15	W		×	×	×	×	×	×	X	B			Z	Įįįį							
			ŀ	1,1,1	₫	┡	-	10	╄	×	×	×	×	×	×	X	Ľ	Metals*		Z	量							
			١			\vdash	+	-	╫	╁	十	╁	╁	╈	+-	\prod	H				1	200	2	1***	П	高	_	ı
		ž	<u>;</u>	<u>~</u>	,	匚			厂		L		ļ	Ţ	1	П	\prod			_	Requested Analysis Fixered (Y/N)	9	Site Location	UST	푗	REGULATORY AGENCY		
		Merry		1,0/2	H	-	-	+	╀	+-	╀	╁╴	╀	╀	┿	H	H			┢	₽	STATE:			NPDES	ğ		
		\vdash	_	_		1	H	╁	+	╁	十	t	t	土		\coprod	\parallel						=_	IT.	IT!	3		
8			1417	326	Ħ		\prod			L	I	Ţ	Ţ	I	1.	\Box	\prod			<u> </u>	ž		อ	RCRA	ရှိ	NE S	ı	3
					1,100	╀	₩	╀	╀	╀	+	╀	╁	╁	+-	H	H			╂-		ľ	ĕ	۶	Ĭ	×		rage:
npîn ⁴C			<u>.</u>					T		z	z	z	z	z	z	Z	1	Residual Chlorine (Y/	V)			Ľ			GROUND WATEL			k
eived on e (Y/N)			7		٤		T						PH=			- 100		Pac						ΓŪ	Α,			ľ
ustody ed Cooler		1 .	_	ļ <u>-</u>	100 100 100 100 100 100 100 100 100 100								681	100				e Projec						HLO	DRIN			ļ,
(Y/N)	-	 	<u>}</u>	-	SAMPLE CONDITIONS	V								1	2			Pace Project No./ Lab LD.						OTHER OFF	DRINKING WATER			ľ '
ples Intact (Y/N)			۲		"													ab LD.							ATER			

Imported Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involves not peld within 30 days.

F-ALL-Q-020rev.07, 15-Feb-2007

age 53 of 54

			TI, V. Zn		note wh		2	=	5		-		-	<u></u>	-	u	N	4	ITEM#			Request	Phone:	o læwg		Address	Company	Section
			Metals≕Sb. As, fla, Be, B, Cd, Ca, Cr, Co, Cu, Pb, Ni, Se, Ag 1, V. Zr		Please note dry wells, sinke though any wells not sampled, and role when the last sample for the event has been laken.	ADDITIONAL COMMENTS					FB-5	EB4	Dup-5	GWC-23	GWC-22	GWC-21	GWC-20	GWC-19	SAMPLE ID WE OHER OF THE SAMPLE ID WE ARE OHER OHER OHER OHER OHER OHER OHER OH	Section D Valid Ma Required Client Information MATRIX		Requested Due Date/TAT: 10 Day	Fa	x SCS Contacts		Allanta, GA	y. GA Power	Section A Required Chert Information:
		*	4		iled, and	1					14								ATER WY ATER WOA ATER WOA ATER WOA ATER WOA ATER WOA ATER WOA ATER WATER			Project Number	Pioject Name	Purchase Order No.		Copy To.	Report To: SCS Contacts	Section B Required Project Information
		3	5			RELIN					WT	¥ ⊺	¥17		1	<u>₹</u>	\$	wT .	MATRIX CODE (see valid codes SAMPLE TYPE (G=GRAB C=C)					rder No.		Geosy	SCSC	oject in
		生	ľ,	K	怚	HSH	<u> </u>	-	-		6	େ	ଜ	\$	٥	G	G 3/	G 3/) [GW6581B	ant Ha	``		80	ontact	formatic
	ø	Pace	hes	ussal	アイナ	RELINQUISHED BY / AFFILIATION		<u> </u>		<u>.</u>			1				311021 16	EDEN PATATOR	DATE I	C		18	Plant Hammond Huffaker Semiannual			Geosyntec Contacts	25	Ą
SIGN	MPLER N.		ress) Mon	Speed		NOTAL		_					 	_					TIME	COLLECTED			tuffaker S					
SIGNATURE of SAMPLER:	SAMPLER NAME AND SIGNATURE		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	-				<u> </u>	<u>'</u>		:		1			CCMPOSITE DATE TIME	Ö			emiannua					
AMPL		3:H.∂	F	21012		DATE:	L	L	_		Ļ	Ż.	Ľ.	_]													
77	7 2		<u> </u>		\mathbb{H}		┡			_	-	7	3		3	w	<u>Λ</u>	19 3	* OF CONTAINERS				Ma C	70 TO	à	8	Αn	E S
$oldsymbol{eta}_{i}$		1565	5	730	P	į	-	-	-	H	3 /	ω \	H	3	2	2	22	1 2	Unpreserved	T		70	оварет: Межерет	aca Quota Reference:	Addness:	Company Name:	Attention	Saction C invalos Information
3			<u> </u>		V					I	Ĭ	4							H₂SO₄ HNO₃	20			1			Naga Naga Naga Naga Naga Naga Naga Naga	(r)	C C
H		nucl	5	thowe			-	<u> </u>			H	7	\mathcal{I}				_	-	HCI	Preservatives		10839-11	Kevin Herring				Southern Co	5
AT.		200	18	Š							\Box				L				NaOH Na ₂ S ₂ O ₃	ativ		Í	Hemi				Š	
إذ	1		1	8		Ç	-	┢	┢	٧	7	-	_			_			Methanol	25 			ď				,	
6/2		124			41	ACCEPTED BY		Ļ	L	Ц								Ļ	Other									
	3	10	5	Ē			9.	57	., ali e.	1	ı.	C.		i j	i.	×	×	×	Analysis Test	Y/ H Z								, 70
		1	K			Į	-	\vdash	H	-	×	×	×	×	×	,	×	×	TOS	<u>-</u>	2							-
3 5 6			င	3	Ш	NOTALIA NO					×	×	×	×	×	×	×	×	Māntais"	z								341413
	F			5	1	1	_	_	L		_			<u> </u>	 _	L		-		<u> </u>	5	-	L	П	-	7	. acmir	ĺ
Q	H	_	.		╁	8 .0	-		H	 	-		┢┈	_	┝	┢				 	Į		Site Location	ľ	z	2		
	tl	James.	3-11-2	PIORE		DATE			П												15	STATE:	ocat	UST	NPDES	3		
DATE Signed C 3/LO/21		34 M.W.	<u> =</u>	7			L		1		_	L	_	L		L				<u> </u>	Requested Analysis Filtered (Y/N)	ij	ड	177	[]	REGULATORY AGENCY		
12	-	5553	10	084		1	H	┡	⊬		-	Ŀ	┝	-	-	 	<u> </u>	-		-	Ę			İ		Age		
Ī		1	공	Ö		R	H	十	T	一	<u> </u>			T							jš		ହ	RCRA	GROUND WATEL	K		Γ
Temr	in C	£	T		1	Π		L								L				301503033					20 <			
1 Grith	· · · ·		_	<u> </u>	↓_	1	L	H	-	┞	z	Z	z	2	z	Z	Z	Z,	Residual Chlorine (Y/N)			288	1000 E		M	5		
	ived on (Y/N)	~				SEE S								PH=	PH=	PH=		7 = Ha	Pace F					17	LJ.			
Seales	stady 1 Coater (/N)	3				SAMPLE CONDITIONS											7.5	2,49	roject N					OTHER COR	DRINKIN			
	es intaci '/N)	Y				ONS				,							かれずん		Pace Project No./ Lab LD.					97	DRINKING WATER			

accepting Pace's NET 30 day payment terms and agreeing to late changes of 1.5% per month for lany invoices and paid within 30 days.

August 23, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on August 11, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Micole D'oleo

Nicole D'Oleo nicole.d'oleo@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Christine Hug, Geosyntec Consultants, Inc.
Kristen Jurinko
Thomas Kessler, Geosyntec
Whitney Law, Geosyntec Consultants
Noelia Muskus, Geosyntec Consultants
Ms. Lauren Petty, Southern Company
Nardos Tilahun, GeoSyntec
Dawit Yifru, Geosyntec Consultants, Inc.

CERTIFICATIONS

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804
Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001

SAMPLE SUMMARY

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92554829001	GWA-1	Water	08/09/21 15:30	08/11/21 10:35
92554829002	GWA-2	Water	08/09/21 14:00	08/11/21 10:35
92554829003	GWA-3	Water	08/09/21 15:35	08/11/21 10:35
92554829004	GWA-4	Water	08/09/21 14:23	08/11/21 10:35
92554829005	GWA-11	Water	08/10/21 09:20	08/11/21 10:35
92554829006	GWC-5	Water	08/10/21 09:45	08/11/21 10:35
92554829007	GWC-6	Water	08/10/21 11:55	08/11/21 10:35
92554829008	GWC-7	Water	08/10/21 11:35	08/11/21 10:35
92554829009	GWC-8	Water	08/10/21 13:44	08/11/21 10:35
92554829010	GWC-9	Water	08/10/21 13:05	08/11/21 10:35
92554829011	GWC-10	Water	08/10/21 11:58	08/11/21 10:35
92554829012	GWC-18	Water	08/10/21 14:20	08/11/21 10:35
92554829013	GWC-19	Water	08/10/21 15:45	08/11/21 10:35
92554829014	GWC-20	Water	08/10/21 16:02	08/11/21 10:35
92554829015	GWC-21	Water	08/10/21 16:13	08/11/21 10:35
92554829016	GWC-22	Water	08/10/21 14:02	08/11/21 10:35
92554829017	GWC-23	Water	08/10/21 10:04	08/11/21 10:35
92554829018	DUP-5	Water	08/10/21 00:00	08/11/21 10:35
92554829019	EB-5	Water	08/10/21 16:40	08/11/21 10:35
92554829020	FB-5	Water	08/10/21 16:35	08/11/21 10:35

SAMPLE ANALYTE COUNT

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92554829001	GWA-1	EPA 6010D	DRB	1
		EPA 6020B	CW1	16
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92554829002	GWA-2	EPA 6010D	KH	1
		EPA 6020B	CW1	16
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92554829003	GWA-3	EPA 6010D	KH	1
		EPA 6020B	CW1	16
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92554829004	GWA-4	EPA 6010D	KH	1
		EPA 6020B	CW1	16
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92554829005	GWA-11	EPA 6010D	KH	1
		EPA 6020B	CW1	16
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92554829006	GWC-5	EPA 6010D	KH	1
		EPA 6020B	CW1	16
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92554829007	GWC-6	EPA 6010D	KH	1
		EPA 6020B	CW1	16
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92554829008	GWC-7	EPA 6010D	KH	1
		EPA 6020B	CW1	16
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92554829009	GWC-8	EPA 6010D	KH	1
		EPA 6020B	CW1	16
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92554829010	GWC-9	EPA 6010D	KH	1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

EPA 6020B CW1 16	Lab ID	Sample ID	Method	Analysts	Analytes Reported
92554829011			EPA 6020B	CW1	16
92554829011			SM 2540C-2011	ALW	1
Page Page			EPA 300.0 Rev 2.1 1993	CDC	3
SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 SP 300.0 Rev 2.1 1993 CDC 3 SP 300.0 Rev 2.1 1993 CDC 3 EPA 6010D KH 1 EPA 6020B CW1 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 SM 2540C-2011 ALW 1 EPA 6020B CW1 16 SM 2540C-2011 ALW 1 EPA 6020B CW1 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 SP 300.0 Rev 2.1 1993 CDC 3 SP 300.0 Rev 2.1 1993 CDC 3 SM 2540C-2011 ALW 1 EPA 6020B CW1 16 SM 2540C-2011 ALW 1 EPA 6020B CW1 KH 1 EPA 6020B	92554829011	GWC-10	EPA 6010D	KH	1
92554829012			EPA 6020B	CW1	16
92554829012			SM 2540C-2011	ALW	1
EPA 6020B			EPA 300.0 Rev 2.1 1993	CDC	3
SM 2540C-2011 ALW 1	92554829012	GWC-18	EPA 6010D	KH	1
92554829013			EPA 6020B	CW1	16
92554829013			SM 2540C-2011	ALW	1
EPA 6020B CW1 16			EPA 300.0 Rev 2.1 1993	CDC	3
SM 2540C-2011 ALW 1	92554829013	GWC-19	EPA 6010D	KH	1
92554829014			EPA 6020B	CW1	16
92554829014			SM 2540C-2011	ALW	1
EPA 6020B			EPA 300.0 Rev 2.1 1993	CDC	3
SM 2540C-2011 ALW 1	92554829014	GWC-20	EPA 6010D	KH	1
P2554829015 GWC-21 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829015 GWC-21 EPA 6010D KH 1 EPA 6020B CW1 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829016 GWC-22 EPA 6010D KH 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829017 GWC-23 EPA 6020B CW1, KH 16 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829017 GWC-23 EPA 6010D KH 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829018 DUP-5 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829018 DUP-5 EPA 6010D KH 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829018 DUP-5 EPA 6010D KH 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829018 EPA 6020B CW1, KH 16 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829018 EPA 6020B CW1, KH 16 EPA 6020B			EPA 6020B	CW1	16
92554829015			SM 2540C-2011	ALW	1
PART STAR STAR STAR STAR STAR STAR STAR S			EPA 300.0 Rev 2.1 1993	CDC	3
SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829016 GWC-22 EPA 6010D KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829017 GWC-23 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829018 DUP-5 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829019 EB-5 EPA 6010D KH 1	92554829015	GWC-21	EPA 6010D	KH	1
P2554829016 GWC-22 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829018 DUP-5 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1			EPA 6020B	CW1	16
92554829016			SM 2540C-2011	ALW	1
PA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829017 GWC-23 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829018 DUP-5 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 P2554829019 EB-5 EPA 6010D KH 1			EPA 300.0 Rev 2.1 1993	CDC	3
SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829017 GWC-23 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829018 DUP-5 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829019 EB-5 EPA 6010D KH 1	92554829016	GWC-22	EPA 6010D	KH	1
92554829017			EPA 6020B	CW1, KH	16
92554829017			SM 2540C-2011	ALW	1
EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829018 DUP-5 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829019 EB-5 EPA 6010D KH 1			EPA 300.0 Rev 2.1 1993	CDC	3
SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829018 DUP-5 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829019 EB-5 EPA 6010D KH 1	92554829017	GWC-23	EPA 6010D	KH	1
EPA 300.0 Rev 2.1 1993 CDC 3 92554829018 DUP-5 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829019 EB-5 EPA 6010D KH 1			EPA 6020B	CW1, KH	16
92554829018 DUP-5 EPA 6010D KH 1 EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829019 EB-5 EPA 6010D KH 1			SM 2540C-2011	ALW	1
EPA 6020B CW1, KH 16 SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829019 EB-5 EPA 6010D KH 1			EPA 300.0 Rev 2.1 1993	CDC	3
SM 2540C-2011 ALW 1 EPA 300.0 Rev 2.1 1993 CDC 3 92554829019 EB-5 EPA 6010D KH 1	92554829018	DUP-5	EPA 6010D	KH	1
EPA 300.0 Rev 2.1 1993 CDC 3 92554829019 EB-5 EPA 6010D KH 1			EPA 6020B	CW1, KH	16
92554829019 EB-5 EPA 6010D KH 1			SM 2540C-2011	ALW	1
			EPA 300.0 Rev 2.1 1993	CDC	3
EPA 6020B CW1, KH 16	92554829019	EB-5	EPA 6010D	KH	1
			EPA 6020B	CW1, KH	16

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Lab ID	Sample ID	Method	Analysts	Analytes Reported	
		SM 2540C-2011	ALW	1	
		EPA 300.0 Rev 2.1 1993	CDC	3	
92554829020	FB-5	EPA 6010D	KH	1	
		EPA 6020B	CW1, KH	16	
		SM 2540C-2011	ALW	1	
		EPA 300.0 Rev 2.1 1993	CDC	3	

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

SUMMARY OF DETECTION

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2554829001	GWA-1					
	Performed by	CUSTOME R			08/11/21 15:05	
	рН	7.23	Std. Units		08/11/21 15:05	
EPA 6010D	Calcium	20.2	mg/L	1.0	08/12/21 16:54	M1
EPA 6020B	Barium	0.046	mg/L	0.0050	08/13/21 14:40	
EPA 6020B	Boron	0.021J	mg/L	0.040	08/13/21 14:40	
EPA 6020B	Vanadium	0.0019J	mg/L	0.010	08/13/21 14:40	
SM 2540C-2011	Total Dissolved Solids	96.0	mg/L	10.0	08/16/21 17:05	
PA 300.0 Rev 2.1 1993	Chloride	1.1	mg/L	1.0	08/16/21 04:41	
PA 300.0 Rev 2.1 1993	Fluoride	0.083J	mg/L	0.10	08/16/21 04:41	
PA 300.0 Rev 2.1 1993	Sulfate	4.7	mg/L	1.0	08/16/21 04:41	
2554829002	GWA-2					
	Performed by	CUSTOME R			08/11/21 15:05	
	рН	6.90	Std. Units		08/11/21 15:05	
EPA 6010D	Calcium	49.9	mg/L	1.0	08/12/21 17:34	M1
EPA 6020B	Antimony	0.0023J	mg/L	0.0030	08/13/21 15:03	
EPA 6020B	Barium	0.19	mg/L	0.0050	08/13/21 15:03	
PA 6020B	Boron	0.085	mg/L	0.040	08/13/21 15:03	
M 2540C-2011	Total Dissolved Solids	245	mg/L	10.0	08/13/21 09:52	
PA 300.0 Rev 2.1 1993	Chloride	2.4	mg/L	1.0	08/16/21 04:56	
PA 300.0 Rev 2.1 1993	Fluoride	0.081J	mg/L	0.10	08/16/21 04:56	
PA 300.0 Rev 2.1 1993	Sulfate	23.2	mg/L	1.0	08/16/21 04:56	
2554829003	GWA-3					
	Performed by	CUSTOME			08/11/21 15:06	
	рН	R 6.89	Std. Units		08/11/21 15:06	
PA 6010D	Calcium	73.2	mg/L	1.0	08/12/21 17:53	
PA 6020B	Barium	0.12	mg/L	0.0050	08/13/21 15:09	
PA 6020B	Boron	0.14	mg/L	0.040	08/13/21 15:09	
PA 6020B	Cobalt	0.00042J	mg/L	0.0050	08/13/21 15:09	
M 2540C-2011	Total Dissolved Solids	416	mg/L	10.0	08/16/21 17:05	
PA 300.0 Rev 2.1 1993	Chloride	2.1	mg/L	1.0	08/16/21 05:12	
PA 300.0 Rev 2.1 1993	Fluoride	0.10	mg/L	0.10	08/16/21 05:12	
PA 300.0 Rev 2.1 1993	Sulfate	93.3	mg/L	1.0	08/16/21 05:12	
2554829004	GWA-4					
	Performed by	CUSTOME R			08/11/21 15:06	
	рН	6.76	Std. Units		08/11/21 15:06	
EPA 6010D	Calcium	69.7	mg/L	1.0	08/12/21 17:58	
PA 6020B	Barium	0.034	mg/L	0.0050	08/13/21 15:15	
PA 6020B	Boron	0.073	mg/L	0.040	08/13/21 15:15	
PA 6020B	Copper	0.00051J	mg/L	0.0050	08/13/21 15:15	
PA 6020B	Nickel	0.0010J	mg/L	0.0050	08/13/21 15:15	
M 2540C-2011	Total Dissolved Solids	371	mg/L	10.0	08/13/21 09:52	
PA 300.0 Rev 2.1 1993	Chloride	3.0	mg/L	1.0	08/16/21 05:58	M1
PA 300.0 Rev 2.1 1993	Fluoride	0.12	mg/L	0.10	08/16/21 05:58	M1

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Lab Sample ID	Client Sample ID	Descrip		D I in . it	A I I	0
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifier
2554829004	GWA-4					
EPA 300.0 Rev 2.1 1993	Sulfate	106	mg/L	2.0	08/17/21 18:08	M1
2554829005	GWA-11					
	Performed by	CUSTOME R			08/11/21 15:06	
	pH	6.84	Std. Units		08/11/21 15:06	
EPA 6010D	Calcium	20.8	mg/L	1.0	08/12/21 18:02	
EPA 6020B	Barium -	0.030	mg/L	0.0050	08/13/21 15:20	
EPA 6020B	Boron	0.034J	mg/L	0.040	08/13/21 15:20	
EPA 6020B	Cobalt	0.00047J	mg/L	0.0050	08/13/21 15:20	
EPA 6020B	Nickel	0.0017J	mg/L	0.0050	08/13/21 15:20	
SM 2540C-2011	Total Dissolved Solids	107	mg/L	10.0	08/17/21 08:08	
EPA 300.0 Rev 2.1 1993	Chloride	1.2	mg/L	1.0	08/16/21 07:31	
EPA 300.0 Rev 2.1 1993	Fluoride	0.068J	mg/L	0.10	08/16/21 07:31	
EPA 300.0 Rev 2.1 1993	Sulfate	11.2	mg/L	1.0	08/16/21 07:31	
2554829006	GWC-5	OUGTOME				
	Performed by	CUSTOME R			08/11/21 15:06	
	рН	6.87	Std. Units		08/11/21 15:06	
PA 6010D	Calcium	78.3	mg/L	1.0	08/12/21 18:07	
PA 6020B	Barium	0.077	mg/L	0.0050	08/13/21 15:40	
PA 6020B	Boron	0.056	mg/L	0.040	08/13/21 15:40	
EPA 6020B	Cobalt	0.00098J	mg/L	0.0050	08/13/21 15:40	
EPA 6020B	Nickel	0.00085J	mg/L	0.0050	08/13/21 15:40	
SM 2540C-2011	Total Dissolved Solids	363	mg/L	10.0	08/17/21 08:08	
EPA 300.0 Rev 2.1 1993	Chloride	2.3	mg/L	1.0	08/16/21 07:47	
EPA 300.0 Rev 2.1 1993	Fluoride	0.057J	mg/L	0.10	08/16/21 07:47	
EPA 300.0 Rev 2.1 1993	Sulfate	76.1	mg/L	1.0	08/16/21 07:47	
2554829007	GWC-6	OUGTOME				
	Performed by	CUSTOME R			08/11/21 15:07	
	рН	7.06	Std. Units		08/11/21 15:07	
PA 6010D	Calcium	67.7	mg/L	1.0	08/12/21 18:12	
PA 6020B	Barium	0.18	mg/L	0.0050	08/13/21 15:46	
PA 6020B	Boron	0.037J	mg/L	0.040	08/13/21 15:46	
SM 2540C-2011	Total Dissolved Solids	318	mg/L	10.0	08/17/21 08:08	
EPA 300.0 Rev 2.1 1993	Chloride	1.6	mg/L	1.0	08/19/21 15:24	
EPA 300.0 Rev 2.1 1993	Fluoride	0.057J	mg/L	0.10	08/19/21 15:24	
EPA 300.0 Rev 2.1 1993	Sulfate	95.9	mg/L	2.0	08/20/21 16:52	
2554829008	GWC-7					
	Performed by	CUSTOME R			08/11/21 15:07	
	рН	6.29	Std. Units		08/11/21 15:07	
PA 6010D	Calcium	40.5	mg/L	1.0	08/12/21 18:26	
PA 6020B	Arsenic	0.0072	mg/L	0.0050	08/13/21 15:51	
PA 6020B	Barium	0.14	mg/L	0.0050	08/13/21 15:51	
PA 6020B	Beryllium	0.000061J	mg/L	0.00050	08/13/21 15:51	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed	Qualifiers
2554829008	GWC-7					
EPA 6020B	Boron	0.037J	mg/L	0.040	08/13/21 15:51	
EPA 6020B	Cobalt	0.013	mg/L	0.0050	08/13/21 15:51	
EPA 6020B	Nickel	0.057	mg/L	0.0050	08/13/21 15:51	
PA 6020B	Zinc	0.093	mg/L	0.010	08/13/21 15:51	
SM 2540C-2011	Total Dissolved Solids	210	mg/L	10.0	08/17/21 08:08	
PA 300.0 Rev 2.1 1993	Chloride	1.6	mg/L	1.0	08/16/21 08:18	
PA 300.0 Rev 2.1 1993	Fluoride	0.19	mg/L	0.10	08/16/21 08:18	
PA 300.0 Rev 2.1 1993	Sulfate	101	mg/L	2.0	08/17/21 19:11	
2554829009	GWC-8					
	Performed by	CUSTOME R			08/11/21 15:07	
	рН	6.65	Std. Units		08/11/21 15:07	
PA 6010D	Calcium	111	mg/L	1.0	08/12/21 18:31	
PA 6020B	Arsenic	0.0050	mg/L	0.0050	08/13/21 15:57	
PA 6020B	Barium	0.23	mg/L	0.0050	08/13/21 15:57	
PA 6020B	Boron	0.088	mg/L	0.040	08/13/21 15:57	
PA 6020B	Cobalt	0.0040J	mg/L	0.0050	08/13/21 15:57	
PA 6020B	Nickel	0.0073	mg/L	0.0050	08/13/21 15:57	
M 2540C-2011	Total Dissolved Solids	425	mg/L	10.0	08/17/21 08:08	
PA 300.0 Rev 2.1 1993	Chloride	2.7	mg/L	1.0	08/16/21 08:33	
PA 300.0 Rev 2.1 1993	Fluoride	0.13	mg/L	0.10	08/16/21 08:33	
PA 300.0 Rev 2.1 1993	Sulfate	31.6	mg/L	1.0	08/16/21 08:33	
2554829010	GWC-9					
	Performed by	CUSTOME R			08/11/21 15:08	
	рН	6.91	Std. Units		08/11/21 15:08	
EPA 6010D	Calcium	38.1	mg/L	1.0	08/12/21 18:36	
PA 6020B	Barium	0.067	mg/L	0.0050	08/13/21 16:03	
PA 6020B	Boron	0.012J	mg/L	0.040	08/13/21 16:03	
PA 6020B	Copper	0.0018J	mg/L	0.0050	08/13/21 16:03	
PA 6020B	Nickel	0.0019J	mg/L	0.0050	08/13/21 16:03	
M 2540C-2011	Total Dissolved Solids	208	mg/L	10.0	08/17/21 08:08	
PA 300.0 Rev 2.1 1993	Chloride	0.85J	mg/L	1.0	08/16/21 08:49	
PA 300.0 Rev 2.1 1993	Fluoride	0.076J	mg/L	0.10	08/16/21 08:49	
PA 300.0 Rev 2.1 1993	Sulfate	76.3	mg/L	1.0	08/16/21 08:49	
2554829011	GWC-10					
	Performed by	CUSTOME R			08/11/21 15:08	
	рН	7.45	Std. Units		08/11/21 15:08	
PA 6010D	Calcium	45.5	mg/L	1.0	08/12/21 18:41	
PA 6020B	Barium	0.14	mg/L	0.0050	08/13/21 16:08	
PA 6020B	Boron	0.033J	mg/L	0.040	08/13/21 16:08	
M 2540C-2011	Total Dissolved Solids	185	mg/L	10.0	08/17/21 08:09	
PA 300.0 Rev 2.1 1993	Chloride	1.2	mg/L	1.0	08/16/21 09:04	
PA 300.0 Rev 2.1 1993	Fluoride	0.078J	mg/L	0.10	08/16/21 09:04	
PA 300.0 Rev 2.1 1993	Sulfate	14.9	mg/L	1.0	08/16/21 09:04	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
2554829012	GWC-18					
	Performed by	CUSTOME R			08/11/21 15:08	
	рН	7.40	Std. Units		08/11/21 15:08	
EPA 6010D	Calcium	48.2	mg/L	1.0	08/12/21 18:45	
EPA 6020B	Barium	0.093	mg/L	0.0050	08/13/21 16:14	
PA 6020B	Boron	0.14	mg/L	0.040		
SM 2540C-2011	Total Dissolved Solids	224	mg/L	10.0	08/17/21 08:09	
PA 300.0 Rev 2.1 1993	Chloride	0.93J	mg/L	1.0	08/16/21 09:20	
PA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	08/16/21 09:20	
EPA 300.0 Rev 2.1 1993	Sulfate	10.3	mg/L	1.0	08/16/21 09:20	
2554829013	GWC-19					
	Performed by	CUSTOME R			08/11/21 15:09	
	рH	7.49	Std. Units		08/11/21 15:09	
PA 6010D	Calcium	44.9	mg/L	1.0		
PA 6020B	Barium	0.14	mg/L	0.0050	08/13/21 16:20	
PA 6020B	Boron	0.14	mg/L	0.040	08/13/21 16:20	
SM 2540C-2011	Total Dissolved Solids	209	mg/L	10.0	08/17/21 08:09	
PA 300.0 Rev 2.1 1993	Chloride	1.2	mg/L	1.0	08/16/21 09:35	
EPA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	08/16/21 09:35	
PA 300.0 Rev 2.1 1993	Sulfate	17.8	mg/L	1.0	08/16/21 09:35	
2554829014	GWC-20					
	Performed by	CUSTOME R			08/11/21 15:09	
	рH	7.31	Std. Units		08/11/21 15:09	
PA 6010D	Calcium	62.0	mg/L	1.0		
PA 6020B	Barium	0.14	mg/L	0.0050	08/13/21 16:26	
PA 6020B	Boron	0.013J	mg/L	0.040	08/13/21 16:26	
M 2540C-2011	Total Dissolved Solids	270	mg/L	10.0	08/17/21 08:09	
PA 300.0 Rev 2.1 1993	Chloride	1.2	mg/L	1.0	08/16/21 10:22	
PA 300.0 Rev 2.1 1993	Fluoride	0.066J	mg/L	0.10	08/16/21 10:22	
PA 300.0 Rev 2.1 1993	Sulfate	66.4	mg/L	1.0	08/16/21 10:22	M1
2554829015	GWC-21					
	Performed by	CUSTOME R			08/11/21 15:09	
	рН	6.05	Std. Units		08/11/21 15:09	
PA 6010D	Calcium	29.7	mg/L	1.0	08/12/21 19:00	
PA 6020B	Barium	0.057	mg/L	0.0050	08/13/21 16:31	
PA 6020B	Boron	0.026J	mg/L	0.040	08/13/21 16:31	
PA 6020B	Cobalt	0.0041J	mg/L	0.0050	08/13/21 16:31	
PA 6020B	Nickel	0.0076	mg/L	0.0050	08/13/21 16:31	
M 2540C-2011	Total Dissolved Solids	121	mg/L	10.0	08/17/21 08:09	
PA 300.0 Rev 2.1 1993	Chloride	2.0	mg/L	1.0	08/16/21 11:08	
PA 300.0 Rev 2.1 1993	Sulfate	23.8	mg/L	1.0	08/16/21 11:08	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92554829016	GWC-22			- '		
	Performed by	CUSTOME R			08/11/21 15:09	
	рН	7.75	Std. Units		08/11/21 15:09	
EPA 6010D	Calcium	48.1	mg/L	1.0	08/12/21 19:04	
EPA 6020B	Barium	0.091	mg/L	0.0050	08/13/21 17:20	
EPA 6020B	Boron	0.057	mg/L	0.040	08/13/21 17:20	
SM 2540C-2011	Total Dissolved Solids	206	mg/L	10.0	08/17/21 08:09	
EPA 300.0 Rev 2.1 1993	Chloride	1.1	mg/L	1.0	08/16/21 11:24	
EPA 300.0 Rev 2.1 1993	Fluoride	0.071J	mg/L	0.10	08/16/21 11:24	
EPA 300.0 Rev 2.1 1993	Sulfate	6.2	mg/L	1.0	08/16/21 11:24	
2554829017	GWC-23					
	Performed by	CUSTOME R			08/11/21 15:09	
	рН	6.96	Std. Units		08/11/21 15:09	
EPA 6010D	Calcium	48.2	mg/L	1.0	08/12/21 19:09	
EPA 6020B	Barium	0.085	mg/L	0.0050	08/13/21 17:26	
EPA 6020B	Boron	0.027J	mg/L	0.040	08/13/21 17:26	
EPA 6020B	Copper	0.00078J	mg/L	0.0050	08/13/21 17:26	
EPA 6020B	Nickel	0.00080J	mg/L	0.0050	08/13/21 17:26	
SM 2540C-2011	Total Dissolved Solids	178	mg/L	10.0	08/17/21 08:09	
EPA 300.0 Rev 2.1 1993	Chloride	1.0	mg/L	1.0	08/16/21 11:39	
EPA 300.0 Rev 2.1 1993	Fluoride	0.087J	mg/L	0.10	08/16/21 11:39	
EPA 300.0 Rev 2.1 1993	Sulfate	8.0	mg/L	1.0	08/16/21 11:39	
2554829018	DUP-5					
EPA 6010D	Calcium	46.3	mg/L	1.0	08/12/21 19:29	
EPA 6020B	Barium	0.13	mg/L	0.0050	08/13/21 17:37	
EPA 6020B	Boron	0.036J	mg/L	0.040	08/16/21 14:13	
SM 2540C-2011	Total Dissolved Solids	185	mg/L	10.0	08/17/21 10:01	
EPA 300.0 Rev 2.1 1993	Chloride	1.2	mg/L	1.0	08/16/21 11:55	
EPA 300.0 Rev 2.1 1993	Fluoride	0.080J	mg/L	0.10	08/16/21 11:55	
EPA 300.0 Rev 2.1 1993	Sulfate	15.1	mg/L	1.0	08/16/21 11:55	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWA-1	Lab ID:	9255482900	1 Collecte	ed: 08/09/2	1 15:30	Received: 08/	/11/21 10:35 Ma	atrix: Water	
D	D 14 .	11	Report	MDI	D.E.	Downson	A so a loser and	040 N	0
Parameters	Results -	Units	Limit	MDL_	DF	Prepared	Analyzed ————	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Service	s - Charlotte)					
Performed by	CUSTOME				1		08/11/21 15:05		
Н	R 7.23	Std. Units			1		08/11/21 15:05		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	hod: Ef	PA 3010A			
		lytical Service							
Calcium	20.2	mg/L	1.0	0.12	1	08/12/21 11:53	08/12/21 16:54	7440-70-2	M1
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
		lytical Service							
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 14:40	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52			
arium	0.046	mg/L	0.0050	0.00067	1	08/12/21 11:52			
Beryllium	ND	mg/L	0.00050	0.000054	1		08/13/21 14:40		
Boron	0.021J	mg/L	0.040	0.0086	1	08/12/21 11:52			
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52			
Chromium	ND	mg/L	0.0050	0.0011	1		08/13/21 14:40		
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52			
Copper	ND	mg/L	0.0050	0.00050	1		08/13/21 14:40		
ead	ND	mg/L	0.0010	0.00089	1		08/13/21 14:40		
lickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52			
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52			
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 14:40	7440-22-4	
-hallium	ND	mg/L	0.0010	0.00018	1		08/13/21 14:40		
/anadium	0.0019J	mg/L	0.010	0.0019	1		08/13/21 14:40		
Zinc	ND	mg/L	0.010	0.0070	1		08/13/21 14:40		
540C Total Dissolved Solids	Analytical	Method: SM 2	2540C-2011						
	Pace Ana	lytical Service	s - Peachtre	e Corners, C	βA				
Total Dissolved Solids	96.0	mg/L	10.0	10.0	1		08/16/21 17:05		
800.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Service	s - Asheville						
Chloride	1.1	mg/L	1.0	0.60	1		08/16/21 04:41	16887-00-6	
- Fluoride	0.083J	mg/L	0.10	0.050	1		08/16/21 04:41	16984-48-8	
Sulfate	4.7	mg/L	1.0	0.50	1		08/16/21 04:41		

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWA-2	Lab ID:	92554829002	Collecte	d: 08/09/2	1 14:00	Received: 08/	/11/21 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	CUSTOME				1		08/11/21 15:05		
ЭΗ	R 6.90	Std. Units			1		08/11/21 15:05		
6010D ATL ICP	•	Method: EPA 6 lytical Services				PA 3010A			
Calcium	49.9	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 17:34	7440-70-2	M1
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	0.0023J	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 15:03	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:03	7440-38-2	
Barium	0.19	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 15:03	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/13/21 15:03	7440-41-7	
Boron	0.085	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 15:03	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 15:03	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:03	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 15:03	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 15:03	7440-50-8	
∟ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 15:03	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 15:03	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 15:03	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 15:03	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1		08/13/21 15:03		
Vanadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52			
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 15:03	7440-66-6	
2540C Total Dissolved Solids	•	Method: SM 2							
	Pace Ana	lytical Services	- Peachtre	e Corners, (3A				
Total Dissolved Solids	245	mg/L	10.0	10.0	1		08/13/21 09:52		
300.0 IC Anions 28 Days		Method: EPA 3		.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	2.4	mg/L	1.0	0.60	1		08/16/21 04:56	16887-00-6	
Fluoride	0.081J	mg/L	0.10	0.050	1		08/16/21 04:56	16984-48-8	
Sulfate	23.2	mg/L	1.0	0.50	1		08/16/21 04:56	14808-79-8	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWA-3	Lab ID:	92554829003	Collected	d: 08/09/21	15:35	Received: 08/	11/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME				1		08/11/21 15:06		
рН	R 6.89	Std. Units			1		08/11/21 15:06		
6010D ATL ICP	•	Method: EPA 6	•			PA 3010A			
	Pace Ana	lytical Services	- Peachtree	Corners, G	šΑ				
Calcium	73.2	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 17:53	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtree	Corners, G	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 15:09	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:09		
Barium	0.12	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 15:09	7440-39-3	
Beryllium	ND	mg/L		0.000054	1	08/12/21 11:52	08/13/21 15:09	7440-41-7	
Boron	0.14	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 15:09	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 15:09	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:09	7440-47-3	
Cobalt	0.00042J	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 15:09	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 15:09	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 15:09	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 15:09	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 15:09	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 15:09	7440-22-4	
Гhallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 15:09	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 15:09	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 15:09	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Peachtree	Corners, G	βA				
Total Dissolved Solids	416	mg/L	10.0	10.0	1		08/16/21 17:05		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	2.1	mg/L	1.0	0.60	1		08/16/21 05:12	16887-00-6	
Fluoride	0.10	mg/L	0.10	0.050	1		08/16/21 05:12		
Sulfate	93.3	mg/L	1.0	0.50	1		08/16/21 05:12		

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWA-4	Lab ID:	92554829004	Collecte	ed: 08/09/21	14:23	Received: 08	/11/21 10:35 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	•					
Performed by	CUSTOME R				1		08/11/21 15:06	i	
Н	6.76	Std. Units			1		08/11/21 15:06	i	
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, G	βA				
Calcium	69.7	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 17:58	3 7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, G	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 15:1	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:15	7440-38-2	
Barium	0.034	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 15:15	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/13/21 15:1	7440-41-7	
Boron	0.073	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 15:1	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 15:15	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:15	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 15:15	7440-48-4	
Copper	0.00051J	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 15:15	7440-50-8	
-ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 15:15	7439-92-1	
Nickel	0.0010J	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 15:15	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 15:15	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 15:15	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 15:15	7440-28-0	
√anadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 15:15	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 15:15	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, G	βA				
Total Dissolved Solids	371	mg/L	10.0	10.0	1		08/13/21 09:52	2	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
·	-	lytical Services							
Chloride	3.0	mg/L	1.0	0.60	1		08/16/21 05:58	16887-00-6	M1
Fluoride	0.12	mg/L	0.10	0.050	1		08/16/21 05:58	3 16984-48-8	M1
Sulfate	106	mg/L	2.0	1.0	2		08/17/21 18:08	3 14808-79-8	M1

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWA-11	Lab ID:	92554829005	Collecte	ed: 08/10/2	09:20	Received: 08/	/11/21 10:35 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte)					
Performed by	CUSTOME R				1		08/11/21 15:06		
Н	6.84	Std. Units			1		08/11/21 15:06		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	 Peachtre 	e Corners, C	SA.				
Calcium	20.8	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 18:02	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 15:20	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:20	7440-38-2	
Barium	0.030	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 15:20		
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52			
Boron	0.034J	mg/L	0.040	0.0086	1	08/12/21 11:52			
Cadmium	ND	mg/L	0.00050	0.00011	1		08/13/21 15:20		
Chromium	ND	mg/L	0.0050	0.0011	1		08/13/21 15:20		
Cobalt	0.00047J	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 15:20	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 15:20	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 15:20	7439-92-1	
Nickel	0.0017J	mg/L	0.0050	0.00071	1	08/12/21 11:52			
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 15:20		
Silver	ND	mg/L	0.0050	0.00044	1		08/13/21 15:20		
Thallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52			
√anadium	ND	mg/L	0.010	0.0019	1		08/13/21 15:20		
Zinc	ND	mg/L	0.010	0.0070	1		08/13/21 15:20		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	107	mg/L	10.0	10.0	1		08/17/21 08:08	3	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
·	-	lytical Services							
Chloride	1.2	mg/L	1.0	0.60	1		08/16/21 07:31	16887-00-6	
Fluoride	0.068J	mg/L	0.10	0.050	1		08/16/21 07:31	16984-48-8	
Sulfate	11.2	mg/L	1.0	0.50	1		08/16/21 07:31	14808-79-8	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-5	Lab ID:	92554829006	Collecte	ed: 08/10/2	1 09:45	Received: 08/	/11/21 10:35 Ma	atrix: Water	
5 .	D "	11.2	Report	MDI	55			0404	•
Parameters	Results -	Units	Limit	MDL_	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	;					
Performed by	CUSTOME				1		08/11/21 15:06		
ЭН	R 6.87	Std. Units			1		08/11/21 15:06		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	thod: EF	PA 3010A			
		lytical Services							
Calcium	78.3	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 18:07	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Me	thod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GΑ				
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 15:40	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52			
Barium	0.077	mg/L	0.0050	0.00067	1	08/12/21 11:52			
Beryllium	ND	mg/L	0.00050	0.000054	1		08/13/21 15:40		
Boron	0.056	mg/L	0.040	0.0086	1	08/12/21 11:52			
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52			
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52			
Cobalt	0.00098J	mg/L	0.0050	0.00039	1		08/13/21 15:40		
Copper	ND	mg/L	0.0050	0.00050	1		08/13/21 15:40		
_ead	ND	mg/L	0.0010	0.00089	1		08/13/21 15:40		
Nickel	0.00085J	mg/L	0.0050	0.00071	1		08/13/21 15:40		
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52			
Silver	ND	mg/L	0.0050	0.00044	1		08/13/21 15:40		
Γhallium	ND	mg/L	0.0010	0.00018	1		08/13/21 15:40		
√anadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52			
Zinc	ND	mg/L	0.010	0.0070	1		08/13/21 15:40		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GΑ				
Total Dissolved Solids	363	mg/L	10.0	10.0	1		08/17/21 08:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	2.3	mg/L	1.0	0.60	1		08/16/21 07:47	16887-00-6	
Fluoride	0.057J	mg/L	0.10	0.050	1		08/16/21 07:47	16984-48-8	
Sulfate	76.1	mg/L	1.0	0.50	1		08/16/21 07:47	14808-79-8	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-6	Lab ID:	92554829007	Collecte	ed: 08/10/2	1 11:55	Received: 08/	/11/21 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	CUSTOME				1		08/11/21 15:07		
pH	R 7.06	Std. Units			1		08/11/21 15:07		
6010D ATL ICP	-	Method: EPA 6 lytical Services				PA 3010A			
Calcium	67.7	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 18:12	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 15:46	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:46	7440-38-2	
Barium	0.18	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 15:46	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/13/21 15:46	7440-41-7	
Boron	0.037J	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 15:46	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 15:46	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:46	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 15:46	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 15:46	7440-50-8	
₋ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 15:46	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 15:46	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 15:46	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 15:46	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 15:46	7440-28-0	
√anadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 15:46	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 15:46	7440-66-6	
2540C Total Dissolved Solids	•	Method: SM 25							
	Pace Ana	lytical Services	- Peachtre	e Corners, C	3A				
Total Dissolved Solids	318	mg/L	10.0	10.0	1		08/17/21 08:08		
300.0 IC Anions 28 Days	•	Method: EPA 3		2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.6	mg/L	1.0	0.60	1		08/19/21 15:24	16887-00-6	
Fluoride	0.057J	mg/L	0.10	0.050	1		08/19/21 15:24	16984-48-8	
Sulfate	95.9	mg/L	2.0	1.0	2		08/20/21 16:52	14808-79-8	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-7	Lab ID:	92554829008	Collecte	d: 08/10/2	1 11:35	Received: 08/	/11/21 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	CUSTOME				1		08/11/21 15:07		
рН	R 6.29	Std. Units			1		08/11/21 15:07		
6010D ATL ICP	-	Method: EPA 6 lytical Services				PA 3010A			
Calcium	40.5	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 18:26	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 15:51	7440-36-0	
Arsenic	0.0072	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:51	7440-38-2	
Barium	0.14	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 15:51	7440-39-3	
Beryllium	0.000061J	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/13/21 15:51	7440-41-7	
Boron	0.037J	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 15:51	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 15:51	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:51	7440-47-3	
Cobalt	0.013	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 15:51	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 15:51	7440-50-8	
₋ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 15:51	7439-92-1	
Nickel	0.057	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 15:51	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 15:51	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 15:51	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 15:51	7440-28-0	
√anadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 15:51	7440-62-2	
Zinc	0.093	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 15:51	7440-66-6	
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services		e Corners, C	ΘA				
Total Dissolved Solids	210	mg/L	10.0	10.0	1		08/17/21 08:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	1.6	mg/L	1.0	0.60	1		08/16/21 08:18	16887-00-6	
Fluoride	0.19	mg/L	0.10	0.050	1		08/16/21 08:18	16984-48-8	
Sulfate	101	mg/L	2.0	1.0	2		08/17/21 19:11	14808-79-8	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-8	Lab ID:	92554829009	Collecte	ed: 08/10/2	1 13:44	Received: 08	/11/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL_	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	•					
Performed by	CUSTOME R				1		08/11/21 15:07		
рН	6.65	Std. Units			1		08/11/21 15:07		
6010D ATL ICP	Analytical	Method: EPA 6	6010D Pre	paration Met	hod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Calcium	111	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 18:31	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 15:57	7440-36-0	
Arsenic	0.0050	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:57	7440-38-2	
Barium	0.23	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 15:57	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/13/21 15:57	7440-41-7	
Boron	0.088	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 15:57	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 15:57	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 15:57	7440-47-3	
Cobalt	0.0040J	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 15:57	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 15:57	7440-50-8	
Lead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 15:57	7439-92-1	
Nickel	0.0073	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 15:57	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 15:57	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 15:57	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 15:57	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 15:57	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 15:57	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	§A				
Total Dissolved Solids	425	mg/L	10.0	10.0	1		08/17/21 08:08		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	2.7	mg/L	1.0	0.60	1		08/16/21 08:33	16887-00-6	
Fluoride	0.13	mg/L	0.10	0.050	1		08/16/21 08:33	16984-48-8	
Sulfate	31.6	mg/L	1.0	0.50	1		08/16/21 08:33		

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-9	Lab ID:	92554829010	Collecte	d: 08/10/2 ²	1 13:05	Received: 08/	/11/21 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	CUSTOME				1		08/11/21 15:08		
Н	R 6.91	Std. Units			1		08/11/21 15:08		
6010D ATL ICP	-	Method: EPA 6 lytical Services				PA 3010A			
Calcium	38.1	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 18:36	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 16:03	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 16:03	7440-38-2	
Barium	0.067	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 16:03	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/13/21 16:03	7440-41-7	
Boron	0.012J	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 16:03	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 16:03	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 16:03	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 16:03	7440-48-4	
Copper	0.0018J	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 16:03	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 16:03	7439-92-1	
Nickel	0.0019J	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 16:03	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 16:03	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 16:03	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 16:03	7440-28-0	
<i>V</i> anadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 16:03	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 16:03	7440-66-6	
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services		e Corners, C	ΘA				
Total Dissolved Solids	208	mg/L	10.0	10.0	1		08/17/21 08:08		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		.1 1993					
Chloride	0.85J	mg/L	1.0	0.60	1		08/16/21 08:49	16887-00-6	
Fluoride	0.076J	mg/L	0.10	0.050	1		08/16/21 08:49	16984-48-8	
Sulfate	76.3	mg/L	1.0	0.50	1		08/16/21 08:49		

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-10	Lab ID:	92554829011	Collecte	ed: 08/10/2	1 11:58	Received: 08/	/11/21 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	CUSTOME				1		08/11/21 15:08		
pH	R 7.45	Std. Units			1		08/11/21 15:08		
6010D ATL ICP	-	Method: EPA 6 lytical Services				PA 3010A			
Calcium	45.5	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 18:41	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 16:08	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 16:08	7440-38-2	
Barium	0.14	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 16:08	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/13/21 16:08	7440-41-7	
Boron	0.033J	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 16:08	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 16:08	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 16:08	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 16:08	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 16:08	7440-50-8	
₋ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 16:08	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 16:08	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 16:08	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 16:08	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 16:08	7440-28-0	
√anadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 16:08	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 16:08	7440-66-6	
2540C Total Dissolved Solids	•	Method: SM 29 lytical Services		e Corners, 0	SΑ				
Total Dissolved Solids	185	mg/L	10.0	10.0	1		08/17/21 08:09		
300.0 IC Anions 28 Days	•	Method: EPA 3		2.1 1993					
Chloride	1.2	mg/L	1.0	0.60	1		08/16/21 09:04	16887-00-6	
Fluoride	0.078J	mg/L	0.10	0.050	1		08/16/21 09:04		
Sulfate	14.9	mg/L	1.0	0.50	1		08/16/21 09:04		

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-18	Lab ID:	92554829012	Collecte	ed: 08/10/2	1 14:20	Received: 08/	/11/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME				1		08/11/21 15:08		
pH	R 7.40	Std. Units			1		08/11/21 15:08		
6010D ATL ICP	Analytica	Method: EPA 6	010D Pre	paration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	3A				
Calcium	48.2	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 18:45	7440-70-2	
6020 MET ICPMS	Analytica	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 16:14	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 16:14	7440-38-2	
Barium	0.093	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 16:14	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1		08/17/21 18:43		
Boron	0.14	mg/L	0.040	0.0086	1		08/17/21 18:43		
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52			
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 16:14	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 16:14	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 16:14	7440-50-8	
Lead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 16:14	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 16:14	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 16:14	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 16:14	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 16:14	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 16:14	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 16:14	7440-66-6	
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C-2011						
	Pace Ana	llytical Services	- Peachtre	e Corners, (βA				
Total Dissolved Solids	224	mg/L	10.0	10.0	1		08/17/21 08:09		
300.0 IC Anions 28 Days	Analytica	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	llytical Services	- Asheville						
Chloride	0.93J	mg/L	1.0	0.60	1		08/16/21 09:20	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1		08/16/21 09:20	16984-48-8	
Sulfate	10.3	mg/L	1.0	0.50	1		08/16/21 09:20		

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-19	Lab ID:	92554829013	Collecte	ed: 08/10/2	15:45	Received: 08	/11/21 10:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte)					
Performed by	CUSTOME R				1		08/11/21 15:09		
рН	7.49	Std. Units			1		08/11/21 15:09		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	hod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Calcium	44.9	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 18:50	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 16:20	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 16:20	7440-38-2	
3arium	0.14	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 16:20	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/13/21 16:20	7440-41-7	
Boron	0.14	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 16:20	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 16:20	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 16:20	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 16:20	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 16:20	7440-50-8	
Lead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 16:20	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 16:20	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 16:20	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 16:20	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 16:20	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 16:20	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 16:20	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	209	mg/L	10.0	10.0	1		08/17/21 08:09		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.2	mg/L	1.0	0.60	1		08/16/21 09:35	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1		08/16/21 09:35	16984-48-8	
Sulfate	17.8	mg/L	1.0	0.50	1		08/16/21 09:35		

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-20	Lab ID:	92554829014	Collecte	ed: 08/10/2	1 16:02	Received: 08/	/11/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytica	Method:							
	Pace Ana	lytical Services	- Charlotte	•					
Performed by	CUSTOME				1		08/11/21 15:09		
Н	R 7.31	Std. Units			1		08/11/21 15:09		
6010D ATL ICP	Analytica	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	llytical Services	- Peachtre	e Corners, C	SA.				
Calcium	62.0	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 18:55	7440-70-2	
6020 MET ICPMS	Analytica	Method: EPA 6	020B Pre	paration Met	hod: EF	A 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 16:26	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1		08/13/21 16:26		
arium	0.14	mg/L	0.0050	0.00067	1		08/13/21 16:26		
Beryllium	ND	mg/L	0.00050	0.000054	1		08/13/21 16:26		
Boron	0.013J	mg/L	0.040	0.0086	1		08/13/21 16:26		
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52			
Chromium	ND	mg/L	0.0050	0.0011	1		08/13/21 16:26		
Cobalt	ND	mg/L	0.0050	0.00039	1		08/13/21 16:26		
Copper	ND	mg/L	0.0050	0.00050	1		08/13/21 16:26		
_ead	ND	mg/L	0.0010	0.00089	1		08/13/21 16:26		
Nickel	ND	mg/L	0.0050	0.00071	1		08/13/21 16:26		
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 16:26	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 16:26	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 16:26	7440-28-0	
/anadium	ND	mg/L	0.010	0.0019	1		08/13/21 16:26		
Zinc	ND	mg/L	0.010	0.0070	1		08/13/21 16:26		
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C-2011						
	Pace Ana	llytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	270	mg/L	10.0	10.0	1		08/17/21 08:09		
300.0 IC Anions 28 Days	Analytica	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	llytical Services	- Asheville						
Chloride	1.2	mg/L	1.0	0.60	1		08/16/21 10:22	16887-00-6	
- - - - - - - - - - - - - -	0.066J	mg/L	0.10	0.050	1		08/16/21 10:22	16984-48-8	
Sulfate	66.4	mg/L	1.0	0.50	1		08/16/21 10:22	14808-79-8	M1

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-21	Lab ID:	92554829015	Collecte	d: 08/10/2	1 16:13	Received: 08/	/11/21 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	CUSTOME				1		08/11/21 15:09		
pH	R 6.05	Std. Units			1		08/11/21 15:09		
6010D ATL ICP	-	Method: EPA 6 lytical Services				PA 3010A			
Calcium	29.7	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 19:00	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 16:31	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 16:31	7440-38-2	
Barium	0.057	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 16:31	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/13/21 16:31	7440-41-7	
Boron	0.026J	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 16:31	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 16:31	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 16:31	7440-47-3	
Cobalt	0.0041J	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 16:31	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 16:31	7440-50-8	
₋ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 16:31	7439-92-1	
Nickel	0.0076	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 16:31	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 16:31	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 16:31	7440-22-4	
Гhallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 16:31	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 16:31	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 16:31	7440-66-6	
2540C Total Dissolved Solids	•	Method: SM 25		Corners (20				
Total Dissolved Solids	121	mg/L	10.0	10.0	1		08/17/21 08:09		
		· ·			ı		00/11/21 00.09		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		.1 1993					
Chloride	2.0	mg/L	1.0	0.60	1		08/16/21 11:08	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/16/21 11:08	16984-48-8	
Sulfate	23.8	mg/L	1.0	0.50	1		08/16/21 11:08		

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-22	Lab ID:	92554829016	Collecte	d: 08/10/2 ²	1 14:02	Received: 08/	11/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME				1		08/11/21 15:09		
рΗ	R 7.75	Std. Units			1		08/11/21 15:09		
6010D ATL ICP	•	Method: EPA 6				PA 3010A			
Calcium	48.1	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 19:04	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 17:20	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 17:20		
Barium	0.091	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 17:20	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/16/21 14:01		
Boron	0.057	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 17:20		
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 17:20		
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 17:20	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 17:20	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 17:20	7440-50-8	
-ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 17:20	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 17:20	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 17:20	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 17:20	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 17:20	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 17:20	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 17:20	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Ana	lytical Services	- Peachtree	Corners, C	SA				
Total Dissolved Solids	206	mg/L	10.0	10.0	1		08/17/21 08:09		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.1	mg/L	1.0	0.60	1		08/16/21 11:24	16887-00-6	
Fluoride	0.071J	mg/L	0.10	0.050	1		08/16/21 11:24	16984-48-8	
Sulfate	6.2	mg/L	1.0	0.50	1		08/16/21 11:24	14808-79-8	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: GWC-23	Lab ID:	92554829017	Collecte	d: 08/10/2	1 10:04	Received: 08/	/11/21 10:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	CUSTOME				1		08/11/21 15:09		
pH	R 6.96	Std. Units			1		08/11/21 15:09		
6010D ATL ICP		Method: EPA 6 lytical Services				PA 3010A			
Calcium	48.2	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 19:09	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 17:26	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 17:26	7440-38-2	
Barium	0.085	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 17:26	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/16/21 14:07	7440-41-7	
Boron	0.027J	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 17:26	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 17:26	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 17:26	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 17:26	7440-48-4	
Copper	0.00078J	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 17:26	7440-50-8	
Lead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 17:26	7439-92-1	
Nickel	0.00080J	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 17:26	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 17:26	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 17:26	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 17:26	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 17:26	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 17:26	7440-66-6	
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services		e Corners, C	ΘA				
Total Dissolved Solids	178	mg/L	10.0	10.0	1		08/17/21 08:09		
300.0 IC Anions 28 Days	•	Method: EPA 3		.1 1993					
Chloride	1.0	mg/L	1.0	0.60	1		08/16/21 11:39		
Fluoride	0.087J	mg/L	0.10	0.050	1		08/16/21 11:39	16984-48-8	
Sulfate	8.0	mg/L	1.0	0.50	1		08/16/21 11:39	14808-79-8	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: DUP-5	Lab ID:	92554829018	Collecte	ed: 08/10/21	1 00:00	Received: 08/	11/21 10:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	thod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	ЭΑ				
Calcium	46.3	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 19:29	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	3A				
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 17:37	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 17:37	7440-38-2	
Barium	0.13	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 17:37	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/16/21 14:13	7440-41-7	
Boron	0.036J	mg/L	0.040	0.0086	1	08/12/21 11:52	08/16/21 14:13	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 17:37	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 17:37	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 17:37	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 17:37	7440-50-8	
₋ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 17:37	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 17:37	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 17:37	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 17:37	7440-22-4	
Гhallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 17:37	7440-28-0	
/anadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 17:37	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 17:37	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	SA				
Total Dissolved Solids	185	mg/L	10.0	10.0	1		08/17/21 10:01		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	1.2	mg/L	1.0	0.60	1		08/16/21 11:55	16887-00-6	
Fluoride	0.080J	mg/L	0.10	0.050	1		08/16/21 11:55	16984-48-8	
Sulfate	15.1	mg/L	1.0	0.50	1		08/16/21 11:55	14808-79-8	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: EB-5	Lab ID:	92554829019	• Collecte	ed: 08/10/21	1 16:40	Received: 08/	11/21 10:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	thod: El	PA 3010A			
	Pace Anal	ytical Service	s - Peachtre	e Corners, C	βA				
Calcium	ND	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 19:33	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: El	PA 3005A			
	Pace Anal	ytical Service	s - Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 17:43	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 17:43	7440-38-2	
Barium	ND	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 17:43	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/16/21 14:19	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 17:43	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 17:43	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 17:43	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 17:43	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 17:43	7440-50-8	
.ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 17:43	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 17:43	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 17:43	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 17:43	7440-22-4	
「hallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 17:43	7440-28-0	
/anadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 17:43	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 17:43	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C-2011						
	Pace Anal	ytical Service	s - Peachtre	e Corners, C	3A				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		08/17/21 10:01		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Service	s - Asheville						
Chloride	ND	mg/L	1.0	0.60	1		08/16/21 12:10	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/16/21 12:10	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		08/16/21 12:10	14808-79-8	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Sample: FB-5	Lab ID:	92554829020	Collecte	ed: 08/10/21	16:35	Received: 08/	11/21 10:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, G	βA				
Calcium	ND	mg/L	1.0	0.12	1	08/12/21 12:21	08/12/21 19:38	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	•	ytical Services		•					
Antimony	ND	mg/L	0.0030	0.00078	1	08/12/21 11:52	08/13/21 17:49	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 17:49	7440-38-2	
Barium	ND	mg/L	0.0050	0.00067	1	08/12/21 11:52	08/13/21 17:49	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/12/21 11:52	08/16/21 14:24	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	08/12/21 11:52	08/13/21 17:49	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/12/21 11:52	08/13/21 17:49	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/12/21 11:52	08/13/21 17:49	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/12/21 11:52	08/13/21 17:49	7440-48-4	
Copper	ND	mg/L	0.0050	0.00050	1	08/12/21 11:52	08/13/21 17:49	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	08/12/21 11:52	08/13/21 17:49	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/12/21 11:52	08/13/21 17:49	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/12/21 11:52	08/13/21 17:49	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/12/21 11:52	08/13/21 17:49	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	08/12/21 11:52	08/13/21 17:49	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	08/12/21 11:52	08/13/21 17:49	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/12/21 11:52	08/13/21 17:49	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Peachtre	e Corners, G	SA				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		08/17/21 10:01		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		08/16/21 12:26	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/16/21 12:26	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		08/16/21 12:26	14808-79-8	

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

QC Batch: 639885 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92554829001

METHOD BLANK: 3358486 Matrix: Water

Associated Lab Samples: 92554829001

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Calcium mg/L ND 1.0 0.12 08/12/21 16:35

LABORATORY CONTROL SAMPLE: 3358487

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Calcium 1.1 109 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3358488 3358489

MS MSD

92554829001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result 20.2 20 M1 Calcium mg/L 21.1 21.5 87 131 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Parameter

Date: 08/23/2021 10:20 AM

QC Batch: 639905 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

% Rec

Limits

Qualifiers

Associated Lab Samples: 92554829002, 92554829003, 92554829004, 92554829005, 92554829006, 92554829007, 92554829008,

92554829009, 92554829010, 92554829011, 92554829012, 92554829013, 92554829014, 92554829015,

92554829016, 92554829017, 92554829018, 92554829019, 92554829020

METHOD BLANK: 3358589 Matrix: Water

Associated Lab Samples: 92554829002, 92554829003, 92554829004, 92554829005, 92554829006, 92554829007, 92554829008,

92554829009, 92554829010, 92554829011, 92554829012, 92554829013, 92554829014, 92554829015,

92554829016, 92554829017, 92554829018, 92554829019, 92554829020

Blank Reporting Result Limit Qualifiers Parameter Units MDL Analyzed Calcium mg/L ND 1.0 0.12 08/12/21 17:13 LABORATORY CONTROL SAMPLE: 3358590 Spike LCS LCS % Rec

MSD

Calcium mg/L 1 1.0 104 80-120

Conc.

MS

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3358591 3358592

Units

92554829002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 20 M1 Calcium 49.9 51.5 155 39 75-125 2 mg/L 50.3

Result

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

QC Batch: 639886 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92554829001, 92554829002, 92554829003, 92554829004, 92554829005, 92554829006, 92554829007,

92554829008, 92554829009, 92554829010, 92554829011, 92554829012, 92554829013, 92554829014,

92554829015, 92554829016, 92554829017, 92554829018, 92554829019, 92554829020

METHOD BLANK: 3358493 Matrix: Water

Associated Lab Samples: 92554829001, 92554829002, 92554829003, 92554829004, 92554829005, 92554829006, 92554829007,

92554829008, 92554829009, 92554829010, 92554829011, 92554829012, 92554829013, 92554829014,

92554829015, 92554829016, 92554829017, 92554829018, 92554829019, 92554829020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND ND	0.0030	0.00078	08/13/21 14:29	
Arsenic	mg/L	ND	0.0050	0.0011	08/13/21 14:29	
Barium	mg/L	ND	0.0050	0.00067	08/13/21 14:29	
Beryllium	mg/L	ND	0.00050	0.000054	08/13/21 14:29	
Boron	mg/L	ND	0.040	0.0086	08/13/21 14:29	
Cadmium	mg/L	ND	0.00050	0.00011	08/13/21 14:29	
Chromium	mg/L	ND	0.0050	0.0011	08/13/21 14:29	
Cobalt	mg/L	ND	0.0050	0.00039	08/13/21 14:29	
Copper	mg/L	ND	0.0050	0.00050	08/13/21 14:29	
Lead	mg/L	ND	0.0010	0.00089	08/13/21 14:29	
Nickel	mg/L	ND	0.0050	0.00071	08/13/21 14:29	
Selenium	mg/L	ND	0.0050	0.0014	08/13/21 14:29	
Silver	mg/L	ND	0.0050	0.00044	08/13/21 14:29	
Thallium	mg/L	ND	0.0010	0.00018	08/13/21 14:29	
Vanadium	mg/L	ND	0.010	0.0019	08/13/21 14:29	
Zinc	mg/L	ND	0.010	0.0070	08/13/21 14:29	

LABORATORY CONTROL SAMPLE:	3358494					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.11	107	80-120	_
Arsenic	mg/L	0.1	0.098	98	80-120	
Barium	mg/L	0.1	0.099	99	80-120	
Beryllium	mg/L	0.1	0.095	95	80-120	
Boron	mg/L	1	0.96	96	80-120	
Cadmium	mg/L	0.1	0.10	100	80-120	
Chromium	mg/L	0.1	0.10	101	80-120	
Cobalt	mg/L	0.1	0.099	99	80-120	
Copper	mg/L	0.1	0.099	99	80-120	
Lead	mg/L	0.1	0.099	99	80-120	
Nickel	mg/L	0.1	0.099	99	80-120	
Selenium	mg/L	0.1	0.097	97	80-120	
Silver	mg/L	0.1	0.10	102	80-120	
Thallium	mg/L	0.1	0.097	97	80-120	
Vanadium	mg/L	0.1	0.10	100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

LABORATORY CONTROL SAMPLE: 3358494

Spike LCS LCS % Rec

 Parameter
 Units
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

 Zinc
 mg/L
 0.1
 0.10
 101
 80-120

MATRIX SPIKE & MATRIX	SPIKE DUPL	LICATE: 3358	495		3358496	·		·	·			
			MS	MSD								
		92554829001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.11	0.11	110	110	75-125	1	20	
Arsenic	mg/L	ND	0.1	0.1	0.099	0.10	99	101	75-125	2	20	
Barium	mg/L	0.046	0.1	0.1	0.15	0.15	101	104	75-125	2	20	
Beryllium	mg/L	ND	0.1	0.1	0.11	0.10	106	102	75-125	4	20	
Boron	mg/L	0.021J	1	1	1.1	1.0	104	101	75-125	3	20	
Cadmium	mg/L	ND	0.1	0.1	0.10	0.10	102	103	75-125	0	20	
Chromium	mg/L	ND	0.1	0.1	0.10	0.10	102	104	75-125	2	20	
Cobalt	mg/L	ND	0.1	0.1	0.10	0.10	101	99	75-125	2	20	
Copper	mg/L	ND	0.1	0.1	0.10	0.10	102	101	75-125	2	20	
Lead	mg/L	ND	0.1	0.1	0.098	0.10	98	102	75-125	4	20	
Nickel	mg/L	ND	0.1	0.1	0.10	0.10	102	102	75-125	0	20	
Selenium	mg/L	ND	0.1	0.1	0.099	0.096	99	96	75-125	3	20	
Silver	mg/L	ND	0.1	0.1	0.10	0.10	102	104	75-125	2	20	
Thallium	mg/L	ND	0.1	0.1	0.098	0.10	98	102	75-125	4	20	
Vanadium	mg/L	0.0019J	0.1	0.1	0.11	0.11	104	108	75-125	4	20	
Zinc	mg/L	ND	0.1	0.1	0.10	0.10	104	104	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

QC Batch: 639828 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92554829002, 92554829004

METHOD BLANK: 3358246 Matrix: Water

Associated Lab Samples: 92554829002, 92554829004

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 08/13/21 09:50

LABORATORY CONTROL SAMPLE: 3358247

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 400 379 95 90-111 mg/L

SAMPLE DUPLICATE: 3358248

Parameter Units Pesult Result RPD Max Result RPD Qualifiers

Total Dissolved Solids mg/L ND ND 10

SAMPLE DUPLICATE: 3358249

Date: 08/23/2021 10:20 AM

ParameterUnits92554551007 ResultDup ResultMax ResultMax ResultTotal Dissolved Solidsmg/LNDND10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Total Dissolved Solids

Date: 08/23/2021 10:20 AM

QC Batch: 640326 Analysis Method: SM 2540C-2011

mg/L

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92554829005, 92554829006, 92554829007, 92554829008, 92554829009, 92554829010, 92554829011,

92554829012, 92554829013, 92554829014, 92554829015, 92554829016, 92554829017

METHOD BLANK: 3360770 Matrix: Water

Associated Lab Samples: 92554829005, 92554829006, 92554829007, 92554829008, 92554829009, 92554829010, 92554829011,

92554829012, 92554829013, 92554829014, 92554829015, 92554829016, 92554829017

Blank Reporting Units Limit MDL Qualifiers Parameter Result Analyzed **Total Dissolved Solids** mg/L ND 10.0 10.0 08/17/21 08:07 LABORATORY CONTROL SAMPLE: 3360771 LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc.

422

106

90-111

SAMPLE DUPLICATE: 3360772 92554621003 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 20600 10 **Total Dissolved Solids** 20500 1 mg/L

400

SAMPLE DUPLICATE: 3360773 92554829012 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** mg/L 224 217 3 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

QC Batch Method:

QC Batch: 640771

SM 2540C-2011

Analysis Method: Analysis Description: SM 2540C-2011

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Peachtree Corners, GA

92554829001, 92554829003 Associated Lab Samples:

METHOD BLANK:

Total Dissolved Solids

Total Dissolved Solids

Matrix: Water

Associated Lab Samples: 92554829001, 92554829003

Parameter

Blank

Units Result

mg/L

Units

mg/L

Reporting MDL Limit

Qualifiers Analyzed

ND 10.0 10.0 08/16/21 17:05

LABORATORY CONTROL SAMPLE: 3363115

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

SAMPLE DUPLICATE: 3363116

Parameter

92554829001

400

Dup

391

RPD

98

Max **RPD**

90-111

Qualifiers

Date: 08/23/2021 10:20 AM

Parameter **Total Dissolved Solids**

Units mg/L

Result 96.0

Result 96.0

0

10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

QC Batch: 640773 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92554829018, 92554829019, 92554829020

METHOD BLANK: 3363170 Matrix: Water

Associated Lab Samples: 92554829018, 92554829019, 92554829020

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 08/17/21 10:00

LABORATORY CONTROL SAMPLE: 3363171

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 400 394 98 90-111 mg/L

SAMPLE DUPLICATE: 3363172

92554829018 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 185 **Total Dissolved Solids** 6 mg/L 197 10

SAMPLE DUPLICATE: 3363173

Date: 08/23/2021 10:20 AM

92554551017 Dup Max Parameter RPD RPD Units Result Result Qualifiers Total Dissolved Solids 120 3 10 mg/L 124

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HUFFAKER ROAD LANDFILL

LABORATORY CONTROL SAMPLE: 2261706

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

QC Batch: 640537 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92554829001, 92554829002, 92554829003

METHOD BLANK: 3361795 Matrix: Water

Associated Lab Samples: 92554829001, 92554829002, 92554829003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	08/15/21 21:41	
Fluoride	mg/L	ND	0.10	0.050	08/15/21 21:41	
Sulfate	mg/L	ND	1.0	0.50	08/15/21 21:41	

LABORATORY CONTROL SAMPLE.	3301790					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	52.3	105	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	50	54.4	109	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3361		3361798								
			MS	MSD								
		92555375001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	15.1	50	50	68.1	68.3	106	106	90-110	0	10	
Fluoride	mg/L	0.23	2.5	2.5	2.9	2.9	108	108	90-110	0	10	
Sulfate	mg/L	5.2	50	50	60.2	60.6	110	111	90-110	1	10	M1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3361799 3361800												
			MS	MSD								
		92555487008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD C	Qual
Chloride	mg/L	1.3	50	50	55.4	41.9	108	81	90-110	28	10 M1	,R1
Fluoride	mg/L	ND	2.5	2.5	2.8	2.2	111	89	90-110	22	10 M1	,R1
Sulfate	mg/L	1.3	50	50	57.5	43.6	112	85	90-110	27	10 M1	,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

QC Batch: 640540 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92554829004, 92554829005, 92554829006, 92554829008, 92554829009, 92554829010, 92554829011,

92554829012, 92554829013, 92554829014, 92554829015, 92554829016, 92554829017, 92554829018,

92554829019, 92554829020

METHOD BLANK: 3361802 Matrix: Water

Associated Lab Samples: 92554829004, 92554829005, 92554829006, 92554829008, 92554829009, 92554829010, 92554829011,

92554829012, 92554829013, 92554829014, 92554829015, 92554829016, 92554829017, 92554829018,

92554829019, 92554829020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	08/16/21 05:27	
Fluoride	mg/L	ND	0.10	0.050	08/16/21 05:27	
Sulfate	ma/L	ND	1.0	0.50	08/16/21 05:27	

LABORATORY CONTROL SAMPLE:	3361803					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	52.8	106	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	50	55.0	110	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPLI		3361805									
			MS	MSD								
	,	92554829004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.0	50	50	54.3	58.2	103	111	90-110	7	10	M1
Fluoride	mg/L	0.12	2.5	2.5	2.7	2.9	103	113	90-110	9	10	M1
Sulfate	mg/L	106	50	50	166	168	121	124	90-110	1	10	M1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3361806 3361807												
Parameter	Units	92554829014 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	1.2	50	50	53.3	55.6	104	109	90-110	4	10	
Fluoride	mg/L	0.066J	2.5	2.5	2.6	2.7	103	107	90-110	4	10	
Sulfate	mg/L	66.4	50	50	98.9	95.0	65	57	90-110	4	10	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

QC Batch: 641348

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

EPA 300.0 Rev 2.1 1993

Associated Lab Samples: 92554829007

METHOD BLANK: 3366287 Matrix: Water

Associated Lab Samples: 92554829007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	08/19/21 09:37	
Fluoride	mg/L	ND	0.10	0.050	08/19/21 09:37	
Sulfate	mg/L	ND	1.0	0.50	08/19/21 09:37	

Analysis Method:

LABORATORY CONTROL SAMPLE:	3366288						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Chloride	mg/L	50	53.1	106	90-110		
Fluoride	mg/L	2.5	2.6	103	90-110		
Sulfate	mg/L	50	53.3	107	90-110		

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3366289					3366290								
			MS	MSD									
		92555934006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Chloride	mg/L	2.9	50	50	52.3	57.3	99	109	90-110	9	10		
Fluoride	mg/L	0.12	2.5	2.5	2.6	2.8	99	108	90-110	8	10		
Sulfate	mg/L	11.0	50	50	59.8	64.7	98	107	90-110	8	10		

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3366291					3366292								
			MS	MSD									
		92555937007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Chloride	mg/L	20.0	50	50	71.7	72.5	103	105	90-110	1	10		
Fluoride	mg/L	ND	2.5	2.5	2.3	2.3	90	91	90-110	2	10		
Sulfate	mg/L	34.1	50	50	84.9	85.7	102	103	90-110	1	10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 08/23/2021 10:20 AM

- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92554829001	GWA-1		-	_	
92554829002	GWA-2				
2554829003	GWA-3				
2554829004	GWA-4				
2554829005	GWA-11				
2554829006	GWC-5				
2554829007	GWC-6				
2554829008	GWC-7				
2554829009	GWC-8				
2554829010	GWC-9				
2554829011	GWC-10				
2554829012	GWC-18				
2554829013	GWC-19				
2554829014	GWC-20				
2554829015	GWC-21				
2554829016	GWC-22				
2554829017	GWC-23				
2554829001	GWA-1	EPA 3010A	639885	EPA 6010D	639970
2554829002	GWA-2	EPA 3010A	639905	EPA 6010D	640004
2554829003	GWA-3	EPA 3010A	639905	EPA 6010D	640004
2554829004	GWA-4	EPA 3010A	639905	EPA 6010D	640004
2554829005	GWA-11	EPA 3010A	639905	EPA 6010D	640004
2554829006	GWC-5	EPA 3010A	639905	EPA 6010D	640004
2554829007	GWC-6	EPA 3010A	639905	EPA 6010D	640004
2554829008	GWC-7	EPA 3010A	639905	EPA 6010D	640004
2554829009	GWC-8	EPA 3010A	639905	EPA 6010D	640004
2554829010	GWC-9	EPA 3010A	639905	EPA 6010D	640004
2554829011	GWC-10	EPA 3010A	639905	EPA 6010D	640004
2554829012	GWC-18	EPA 3010A	639905	EPA 6010D	640004
2554829013	GWC-19	EPA 3010A	639905	EPA 6010D	640004
2554829014	GWC-20	EPA 3010A	639905	EPA 6010D	640004
2554829015	GWC-21	EPA 3010A	639905	EPA 6010D	640004
2554829016	GWC-22	EPA 3010A	639905	EPA 6010D	640004
2554829017	GWC-23	EPA 3010A	639905	EPA 6010D	640004
2554829018	DUP-5	EPA 3010A	639905	EPA 6010D	640004
2554829019	EB-5	EPA 3010A	639905	EPA 6010D	640004
2554829020	FB-5	EPA 3010A	639905	EPA 6010D	640004
2554829001	GWA-1	EPA 3005A	639886	EPA 6020B	640010
2554829002	GWA-2	EPA 3005A	639886	EPA 6020B	640010
2554829003	GWA-3	EPA 3005A	639886	EPA 6020B	640010
2554829004	GWA-4	EPA 3005A	639886	EPA 6020B	640010
2554829005	GWA-11	EPA 3005A	639886	EPA 6020B	640010
2554829006	GWC-5	EPA 3005A	639886	EPA 6020B	640010
2554829007	GWC-6	EPA 3005A	639886	EPA 6020B	640010
2554829008	GWC-7	EPA 3005A	639886	EPA 6020B	640010
2554829009	GWC-8	EPA 3005A	639886	EPA 6020B	640010
2554829010	GWC-9	EPA 3005A	639886	EPA 6020B	640010

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92554829011	GWC-10	EPA 3005A	639886	EPA 6020B	640010
2554829012	GWC-18	EPA 3005A	639886	EPA 6020B	640010
2554829013	GWC-19	EPA 3005A	639886	EPA 6020B	640010
2554829014	GWC-20	EPA 3005A	639886	EPA 6020B	640010
2554829015	GWC-21	EPA 3005A	639886	EPA 6020B	640010
2554829016	GWC-22	EPA 3005A	639886	EPA 6020B	640010
2554829017	GWC-23	EPA 3005A	639886	EPA 6020B	640010
2554829018	DUP-5	EPA 3005A	639886	EPA 6020B	640010
2554829019	EB-5	EPA 3005A	639886	EPA 6020B	640010
2554829020	FB-5	EPA 3005A	639886	EPA 6020B	640010
				LI A 0020B	040010
2554829001	GWA-1	SM 2540C-2011	640771		
2554829002	GWA-2	SM 2540C-2011	639828		
2554829003	GWA-3	SM 2540C-2011	640771		
2554829004	GWA-4	SM 2540C-2011	639828		
2554829005	GWA-11	SM 2540C-2011	640326		
2554829006	GWC-5	SM 2540C-2011	640326		
2554829007	GWC-6	SM 2540C-2011	640326		
2554829008	GWC-7	SM 2540C-2011	640326		
2554829009	GWC-8	SM 2540C-2011	640326		
2554829010	GWC-9	SM 2540C-2011	640326		
2554829011	GWC-10	SM 2540C-2011	640326		
2554829012	GWC-18	SM 2540C-2011	640326		
2554829012 2554829013	GWC-18	SM 2540C-2011 SM 2540C-2011	640326		
2554829013 2554829014	GWC-19	SM 2540C-2011 SM 2540C-2011	640326		
2554829014 2554829015	GWC-20	SM 2540C-2011 SM 2540C-2011	640326		
2554829016	GWC-22	SM 2540C-2011	640326		
2554829017	GWC-23	SM 2540C-2011	640326		
2554829018	DUP-5	SM 2540C-2011	640773		
2554829019	EB-5	SM 2540C-2011	640773		
2554829020	FB-5	SM 2540C-2011	640773		
2554829001	GWA-1	EPA 300.0 Rev 2.1 1993	640537		
2554829002	GWA-2	EPA 300.0 Rev 2.1 1993	640537		
2554829003	GWA-3	EPA 300.0 Rev 2.1 1993	640537		
2554829004	GWA-4	EPA 300.0 Rev 2.1 1993	640540		
2554829005	GWA-11	EPA 300.0 Rev 2.1 1993	640540		
2554829006	GWC-5	EPA 300.0 Rev 2.1 1993	640540		
2554829007	GWC-6	EPA 300.0 Rev 2.1 1993	641348		
2554829008	GWC-7	EPA 300.0 Rev 2.1 1993	640540		
2554829009	GWC-8	EPA 300.0 Rev 2.1 1993	640540		
2554829010	GWC-9	EPA 300.0 Rev 2.1 1993	640540		
2554829011	GWC-10	EPA 300.0 Rev 2.1 1993	640540		
2554829012	GWC-18	EPA 300.0 Rev 2.1 1993	640540		
2554829013	GWC-19	EPA 300.0 Rev 2.1 1993	640540		
2554829014	GWC-20	EPA 300.0 Rev 2.1 1993	640540		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92554829

Date: 08/23/2021 10:20 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92554829015	GWC-21	EPA 300.0 Rev 2.1 1993	640540		
92554829016	GWC-22	EPA 300.0 Rev 2.1 1993	640540		
92554829017	GWC-23	EPA 300.0 Rev 2.1 1993	640540		
92554829018	DUP-5	EPA 300.0 Rev 2.1 1993	640540		
92554829019	EB-5	EPA 300.0 Rev 2.1 1993	640540		
92554829020	FB-5	EPA 300.0 Rev 2.1 1993	640540		

Pace Analytical

Document Name: Sample Condition Upon Receipt(SCUR)

Document Revised: October 28, 2020

Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office Document No.: F-CAR-CS-033-Rev.07

Laboratory receiving samples: Asheville Eden Greenwood H	unters	ville 🗌	Raleig	h_	Mechanicsville Atlanta Kernersville
Sample Condition Upon Receipt Courier: Client Name: (9 A P v v v	USPS		F □Clie	rojec	WO#: 92554829
☐ Commercial ☐ Pace	Othe	er:			92554829
Custody Seal Present? Yes No Seals Inta	ict?	☐Yes	√No		Date/Initials Person Examining Contents: 17 8/1/2
Packing Material: Bubble Wrap Bubble	Bags	□None	· 📈 0t	her	Biological Tissue Frozen?
Thermometer:			Wet □BI	ue	□None □Yes □No □N/A
Correction Factor:	Type of le	7022			
Cooler Temp: Add/Subtract (°C)	<u></u>		=		Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process
Cooler Temp Corrected (°C): USDA Regulated Soil (N/A, water sample)					has begun
Did samples originate in a quarantine zone within the United Si	tates: CA	A, NY, or SC	Check map	os)?	Did samples originate from a foreign source (internationally, including Hawaii and Puerto R⋅co)? ☐Yes ☐No
					Comments/Discrepancy:
Chain of Custody Present?	Yes	□No	□N/A	1.	
Samples Arrived within Hold Time?	Yes	□No	□N/A	2.	
Short Hold Time Analysis (<72 hr.)?	□Yes	EINO.	□N/A	3.	
Rush Turn Around Time Requested?	Yes	ZNo	□N/A	4.	
Sufficient Volume?	Yes	□No	□N/A	5.	
Correct Containers Used?	1 Yes	□No	□n/a	6.	
Pace Containers Used?	Yes	□No	□N/A		
Containers Intact?	Yes	□No	□N/A	7.	
Dissolved analysis: Samples Field Filtered?	Yes	DNo	□N/A	8.	
Sample Labels Match COC?	□Yes	□No	□N/A	9.	
-Includes Date/Time/ID/Analysis Matrix:	T				
Headspace in VOA Vials (>5-6mm)?	□Yes	□No	-BN/A	10.	
Trip Blank Present?	Yes	□No	NAA	11.	
Trip Blank Custody Seals Present?	□Yes	□No	DNA		
COMMENTS/SAMPLE DISCREPANCY					Field Data Required? Yes No
				Lo	t ID of split containers:
CLIENT NOTIFICATION/RESOLUTION					
Person contacted:			Date/Tir	ne: _	
Project Manager SCURF Review:					Date:
Project Manager SRF Review:					Date:

Pace Analytical

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project #

WO#: 92554829

PM: NMG

Due Date: 08/25/21

CLIENT: GA-GA Power

Rem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 {pH < 2}	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2504 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4C! (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1					K								7														_
2		1	١			1																		7	7			
3		1	1			10																		7				
4		1				1																		7				
5		1	1			K																		7				
6	/	1	1			je																			7			
7		١	1			1																		7				
8		1	1			1																						
9			1		1	1/L							1											7	1			
10	1	1	1			1							1											7	/			
11	1	1	1			1	1																	1	7	-		
12		-	1			1	X																	1				

			justment Log for Pres		Amount of Preservative	Lot #
Sample ID Ty	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	added	LOCK

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

> Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project # WO#: 925

PM: NMG

Due Date: 08/25/21

CLIENT: GA-GA Power

tem#	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) {Cl-}	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass Jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na25203 (N/A)	VG9U-40 ml VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1		1	1			1																						
2	/	-	١			1																						
3		-	1			N																						
4		(1		1	Y							/															
5	1	ı	t			W							1	1										/				
6	/	1	١	R -		V	X	7			1		1	/														
7	/	(1	Z	7					7	/	/													
8	/	((10							/	1	/													
9	/	,					/						/	/														
10	/				1	7	/				/		/															
11	/												/															
12																												

	рн до	ljustment Log for Pres	erved Samples		
Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
	Type of Preservative				Type of Preservative pH upon receipt Date preservation adjusted Time preservation Amount of Preservative

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Section A
Required Client Information:

ompany

GA Power

Required Project Information

Invoice Information Attention: Section C

Page:

-

9

Page 50 of 52

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Emuil To Please note dry welfs, strike thorough any walfs not campied, and note when the last sample for the event has been taken. Requested Due Date/TAT: Address. ITEM# 7 á œ 8 ch. cn 4 ω N Required Clant Information Section D (A-Z 0-9 / ,-)
Sample IDs MUST BE UNIQUE SCS Contacts Atlanta, GA SAMPLE ADDITIONAL COMMENTS 10 Day 6 GWA-4 GWA-3 GWA-2 GWA-1 DHINGWATER
WATER
WASTE WATER
PRODUCT Valid Matrix Codes AAAA AAAA AAAA 19 A F 9 P Report To: SCS Contacts Project Name: Project Number copy To: urchase Order thanks! RELINQUISHED BY / AFFILIATION TW N TW TW Geosyntec Contacts MATRIX CODE (see valid codes to left) SAMPLE TYPE Hufflaker Road Ø O Ø G (G=GRAB C=COMP 8/9/21 8/9/21 8/8/21 8/9/21 DATE SAMPLER NAME AND SIGNATURE 1423 Landfill 15:35 15.30 14:00 Chees TIME COLLECTED Pace SIGNATURE of SAMPLER: PRINT Name of SAMPLER: DATE SUSCAMOS TIME DATE 22 24 12 2 SAMPLE TEMP AT COLLECTION Pace Quota Reference Pace Project w cus. w # OF CONTAINERS 1335 220 are Piolis # ompany Name TIME N N N Unpreserved H₂SO₄ Preservatives 10839 Southern Co. HNO₃ Kevin Herring HCI NaOH Na₂S₂O ACCEPTED BY / AFFILIATION 3:1:07 Methanol Other Y/ N Analysis Test Chloride, Fluoride, Sulfate DATE Signed Requested Analysis Filtered (Y/N) × × TOS Pace × >< × Sb. As. Ba. Be. B. Cd. Ca.Cr × × Co, Cu, Pb, Ni, Sa, Ag, Ti, V, Zn REGULATORY AGENCY Site Location UST NPDES STATE: DATE 19 NO 0010 10:35 TIME 3 RCRA GROUND WATER GA Temp in °C Residual Chlorine (Y/N) Received on -Pace Project No./ Lab I.D. SAMPLE CONDITIONS Ice (Y/N) Custody OTHER DRINKING WATER 42 pH = 6.89 pH = 6.90 pH = 7.23Sealed Cooler pH = 6.76(Y/N) Samples Intact (Y/N)

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Gustody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section C

Page:

0

Page 51 of 52

Section A Required Client Information: Requested Due Date/TAT: Email To: Please note dry wells, sirike thatough any wells not sampled, and note when the fast sample for the event has been taken. Address: dubaut. ITEM# 10 æ 00 ~4 on u ,ţa w N Required Clast Information Section D Sample IDs MUST BE UNIQUE GA Power SCS Contacts Atlanta, GA SAMPLE ID ADDITIONAL COMMENTS 15 Day FOX GWC-18 GWC-22 GWC-21 GWC-20 GWC-19 GWC-10 GWC-9 GWC-8 GWC-7 GWC-5 GWC-6 GWA-11 DEPARTMENT AND ALTER WASTEWATER PRODUCT SOIL FOILD OIL WINE WINE AND COLLEGE TIGGLE MATRIX Valld Matrix Codes Section B
Required Project Information: Project Number Report Fo: SCS Contacts utchase Order njedt Name: 70 Pyromery. Geosyntec Contacts RELINQUISHED BY / AFFILIATION TW TW TW TW TW TW ¥, TW TW TW TA TW MATRIX CODE (see valid codes to left) Huffaker Road Landfill Q G 8/10/21 Ø ្ឋា Ç) 0 0 O Q Ø 6 Ø SAMPLE TYPE (G=GRAB C=COMP) 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 DATE Nexall 14:02 SAMPLER NAME AND SIGNATURE 16:13 13:05 09:45 09:20 16:02 15:45 14:20 11:58 13:44 11:35 11:55 TIME COLLECTED Pacu DATE DATE 2 22 22 22 NA CD 23 3 23 22 25 22 23 m SAMPLE TEMP AT COLLECTION svoice Information: 58.01 w w w w w # OF CONTAINERS 13% impany Name 2 N N 12 2 12 13 N 12 2 N Unpreserved N H2SO4 Preservatives HNO: 10839 Southern Kevin Herring HCI NaOH Co. Na₂S₂O ACCEPTED BY I AFFILIATION ₹.11.6 Methanol Other Analysis Test YIN × Chloride, Fluoride, Sulfate × × × × × × × Requested Analysis Filtered (Y/N) × × × × × TOS × × × × Pau × × × × Sb., As., Ba., Be., B., Cd., Co., Cr. × × × Co, Cu, Ph. Ni, Se, Ag. Ti, V. Zn × REGULATORY AGENCY Site Location UST W111/8 NPDES STATE: DATE 153 10:35 TIME RCRA GROUND WATE! GA 7 Temp in °C -Residual Chlorine (Y/N) 4 Received on Pace Project No./ Lab I.D. SAMPLE CONDITIONS 7 OTHER CCE DRINKING WATER pH = 6.05 pH = 7.459H = 6.65pH = 6.29 pH = 7.06pH = 6.87 pH = 7.75 pH = 7.31pH = 7.48pH = 7.40 pH = 6.91pH = 6.84Sealed Cooler N Samples Intact

PRINT Name of SAMPLER: 10000 SIGNATURE OF SAMPLER:

SE CO

AND BOATE SIGNED & COLOR COLOR

Hesylw

Ice (Y/N)

Custody

 $\{Y/N\}$

(Y/N)

Section A Regulred Client Information

Section B Regulred Project Information

Section C Invoice Information

Page:

N

0

N

Page 52 of 52

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Requested Due Date/TAT: Email To: Address: and note when the last sample for the event has been taken Please note dry wells, strike thorough any walls not sampled, ITEM# 12 : 10 ហ Required Clent Inform (A-Z, 0-8 / ,-)
Sample IDs MUST BE UNIQUE Atlanta, GA GA Power SCS Contacts SAMPLE ID ADDITIONAL COMMENTS ratton 10 Day **GWC-23** Dup-5 EB-5 FB-5 DRMARIAMINER
WATER
WASTE WATER
PRODUCT
SOIL/BOLID
OIL Valid Matrix Codes Report To: SCS Contacts Copy To: Project Name: Purchase Order No. roject Number howers ころ Geosyntec Contacts TW 5 RELINQUISHED BY ! AFFILIATION F.S TW MATRIX CODE (see valid codes to laft) Huffaker Road Ç 0 ç, G SAMPLE TYPE (G=GRAB C=COMP) Messin 8/10/21 8/10/21 8/10/21 8/10/21 DATE Landfill SAMPLER NAME AND SIGNATURE 10.04 18:35 15:40 0:00 THINE COLLECTED Re (Green PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SUSCHMEN ME DATE 100 SAMPLE TEMP AT COLLECTION 3 19 ŝ Attention: Address w # OF CONTAINERS Jampany Neme w ω w 1336 03% THE N N Unpreserved H₂SO, Preservativas 10839 Southern Co. HNO₃ Kevin Herring HC NaOH Na₂S₂O W.11.7~ ACCEPTED BY / AFFILIATION Methanol Other Analysis Test Y/ N Chloride, Fluoride, Sulfate × Park Requested Analysis Filtered (Y/N) (MWDD/YY): TDS × × × Sb, As, Be, Be, B, Cd, Ca, Gr Co, Cu, Pb, Ni, Se, Ag, Ti, V, Zn REGULATORY AGENCY Site Location 21012 GOWNEY COLV MAN TO UST NPDES STATE: /11 /21 DATE 10:55 133) TIME RCRA GROUND WATER SA 7 Temp in °C Residual Chlorine (Y/N) • Received on Pace Project No./ Lab I.D. SAMPLE CONDITIONS Ice (Y/N) 8/10/202 DRINKING WATER Custody OTHER pH = 6.96Sealed Cooler NA Z Z (Y/N) Samples Intact (Y/N)

*Unportant Neto. By signing that form you are accepting Pace's NET 30 day payment terms and

agreeing to late charges of 1.5% per month for an

-ALL-Q-020rev.07, 15-Feb-2007

October 12, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92564022

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 29, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Micole D'oles

Nicole D'Oleo nicole.d'oleo@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Christine Hug, Geosyntec Consultants, Inc.
Kristen Jurinko
Thomas Kessler, Geosyntec
Whitney Law, Geosyntec Consultants
Noelia Muskus, Geosyntec Consultants
Ms. Lauren Petty, Southern Company
Nardos Tilahun, GeoSyntec
Dawit Yifru, Geosyntec Consultants, Inc.

CERTIFICATIONS

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92564022

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Certification #: 381 South Carolina Certification #: 98011001

SAMPLE SUMMARY

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92564022

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92564022001	GWC-8	Water	09/28/21 11:16	09/29/21 11:50

SAMPLE ANALYTE COUNT

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92564022

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92564022001	GWC-8	EPA 6020B	CW1, KH	2

PASI-C = Pace Analytical Services - Charlotte
PASI-GA = Pace Analytical Services - Peachtree Corners, GA

SUMMARY OF DETECTION

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92564022

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92564022001	GWC-8	_				
	Performed by	CUSTOME R			09/29/21 16:05	
	рН	6.77	Std. Units		09/29/21 16:05	
EPA 6020B EPA 6020B	Barium Nickel	0.20 0.00090J	mg/L mg/L	0.025 0.0050	10/11/21 14:27 10/08/21 21:27	

ANALYTICAL RESULTS

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92564022

Date: 10/12/2021 11:50 AM

Sample: GWC-8	Lab ID:	92564022001	Collecte	d: 09/28/21	11:16	Received: 09/	/29/21 11:50 Ma	ıtrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME				1		09/29/21 16:05		
рН	R 6.77	Std. Units			1		09/29/21 16:05		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3005A			
	Pace Ana	lytical Services	- Peachtree	e Corners, G	SA.				
Barium	0.20	mg/L	0.025	0.0034	5	10/08/21 10:25	10/11/21 14:27	7440-39-3	
Nickel	0.00090J	mg/L	0.0050	0.00071	1	10/08/21 10:25	10/08/21 21:27	7440-02-0	

Qualifiers

QUALITY CONTROL DATA

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92564022

Nickel

Date: 10/12/2021 11:50 AM

QC Batch: 651684

QC Batch Method: EPA 3005A

Analysis Method: EPA 6020B Analysis Description: 6020 MET

Laboratory:

Pace Analytical Services - Peachtree Corners, GA

Analyzed

MDL

Associated Lab Samples: 92564022001

METHOD BLANK: 3417564

Matrix: Water

Associated Lab Samples: 92564022001

Blank Reporting
Parameter Units Result Limit

ND

mg/L

 Barium
 mg/L
 ND
 0.0050
 0.0067
 10/08/21 19:44

 Nickel
 mg/L
 ND
 0.0050
 0.00071
 10/08/21 19:44

LABORATORY CONTROL SAMPLE: 3417565

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Barium 0.1 0.096 96 80-120 mg/L Nickel mg/L 0.1 0.093 93 80-120

0.1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3417566 3417567 MS MSD 92563761001 Spike Spike MS MSD MS MSD % Rec Max Parameter RPD Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Barium mg/L 0.025 0.1 0.1 0.12 0.12 96 75-125 2 20

0.1

0.091

0.090

90

89

75-125

20

1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92564022

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/12/2021 11:50 AM

Project: HUFFAKER ROAD LANDFILL

Pace Project No.: 92564022

Date: 10/12/2021 11:50 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92564022001	GWC-8	,			
92564022001	GWC-8	EPA 3005A	651684	EPA 6020B	651759

Pace Analytical*

Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden Greenwood	Hunters	ville _] Ralei	gh 🗌	Mechanicsville Atlanta Kernersville
Courler: Fed Ex UP	v-l/ s □usps □Othe			Proje ent	Hect #: WO# : 92564022
	eals Intact?	☐Yes	□N∘ ○ □ ∘	ther	Date/Initials Person Examining Contents: 1/24/11 Biological Tissue Frozen?
Thermometer: IR Gun ID: Correction Fa Cooler Temp: Cooler Temp Corrected (°C):	1 (1)	e:	Wet □	Yue	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun
USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the l Yes No	Jnited States: CA	, NY, or S	C (check ma	ps)?	Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? ☐ Yes ☐ No Comments/Discrepancy:
Chain of Custody Present?	Ø Ves	□No	□N/A	1.	*1
Samples Arrived within Hold Time?	Ø√es	□No	□N/A	2.	
Short Hold Time Analysis (<72 hr.)?	□Yes		□N/A	3	
Rush Turn Around Time Requested?	□Yes	No.	□N/A	4.	
Sufficient Volume?	Ø Yes	ΠNο	□N/A	5.	
Correct Containers Used?	☑ Yes	□No	□N/A	6.	The state of the s
-Pace Containers Used?	ØYes	□No	□N/A	0.	
Containers Intact?	☑ Yes	□No	□N/A	7.	
Dissolved analysis: Samples Field Filtered?	□Yes	∠□No	EN/A	8.	
Sample Labels Match COC?	□Yes	□No	□N/A	9.	
-Includes Date/Time/ID/Analysis Matrix:	W		•••		
Headspace in VOA Vials (>5-6mm)?	Yes	□No	ENIA	10.	
Trip Blank Present?	☐Yes	□No	ZNA	11.	
Trip Blank Custody Seals Present?	□Yes	□No	ĎN/A		
COMMENTS/SAMPLE DISCREPANCY		(A)			Field Data Required? ☐Yes ☐No
CLIENT NOTIFICATION/RESOLUTION				Lot	ot ID of split containers:
Person contacted:			Date/Tir	ne: _	
Delegando California					Date:
Project Manager SRF Review:					Date:

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project #

WO#: 92564022

PM: NMG

Due Date: 10/13/21

CLIENT: GA-GA Power

Items	BP4U-125 mL Plastic Unpreserved (N/A) (G-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-}	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1						1																						
2																												
3																												
4																												
5																												
6					J								/															
7									C.																			
8																												
9														/										\angle	7			
10																									7			
11					V	V	V																		1			
12																									7			

	pH Adjustment Log for Preserved Samples									
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#				
		AAME								

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document

				r rease note by west, slike from the any wells not sampled, and note when the last sample for the event has been taken.	ADDITIONAL COMMENTS	12	11	10	89	8	7	6	55	4	3	12/	1	ess: Atlanta GA ITo: SCS Contacts o: Section D Required Chart Information (AZ, 0-9); Sample IDs MUST 8
PRINT N. SIGNATU	SAMPLER NAME		/: \n /	the event has been taken. TUOMUS (1986) (Geb	COMMENTS RELINQUISHED BY / AFFILIATION		WT G	WT G	WT G	WT G	WT G	WT G	WT G	WT G	WI G	WT G	91:11 RK211 0 MT 0 112919 11:16	Valid Matrix Codes MATER WASTE WATER WATER WASTE WATER WASTE WATER WATE
SIGNATURE OF SAMPLER: HOS MCS KESSE DATE Signed SIGNATURE OF SAMPLER: HOS MCS KESSE DATE Signed DATE SIGNE	SAMPLER NAME AND SIGNATURE	,	200	9/29/21 1150 Py an William 12,00	DATE TIME ACCEPTED BY / AFFILIATION													SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other Analysis Test Zn, Ni Company Name: Address: Address: Preservatives Requested Revin Herring Requested Requested Requested Requested Requested Requested Requested Requested
Temp in Received Ice (Y/N) Custoch Sealed Co (Y/N) Samples In (Y/N)	on ()		Chi Hall	9/20/31 1150	DATE TIME SAMPLE CONDITIONS		7		<i>y</i> -							of the state of th	pH=6.77	REGULATORY AGENCY NPDES GROUND WATEI DRINKING WATER UST RCRA OTHER CEL Site Location GA STATE: Analysis Filtered (YIN) Y OTHER CEL OTHE

Data Validation Reports

Memorandum

Date: April 16, 2021

To: Whitney Law

From: Kristoffer Henderson

CC: J. Caprio

Subject: Stage 2A Data Validation - Level II Data Deliverable - Pace

Analytical Services, LLC Project Number 92526337

SITE: Plant Hammond Huffaker

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of seventeen aqueous samples, one field duplicate, one equipment blank and one field blank, collected 8-10 March 2021, as part of the Plant Hammond Huffaker on-site sampling event.

The samples were analyzed at Pace Analytical Services Atlanta, Peachtree Corners, Georgia, for the following analytical tests:

- Calcium by United States (US) Environmental Protection Agency (EPA) Methods 3010A/6010D
- Metals by USEPA Methods 3005A/6020B
- Total Dissolved Solids (TDS) by Standard Method 2540C

The samples were analyzed at Pace Analytical Services Asheville, North Carolina, for the following analytical test:

• Anions (Chloride, Fluoride and Sulfate) by USEPA Method 300.0

EXECUTIVE SUMMARY

Based on the Stage 2A data validation covering the quality control (QC) parameters listed below and the information provided, the data as qualified are usable for meeting project objectives. Qualified data should be used within the limitation of the qualification.

The data were reviewed based on the pertinent methods referenced in the laboratory reports, professional and technical judgment and the following documents:

- US EPA Region IV Data Validation Standard Operating Procedures (US EPA Region IV, September 2011);
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (EPA 542-R-20-006); and
- American National Standard, Verification and Validation of Radiological Data for use in Waste Management and Environmental Remediation, February 15, 2012 (ANSI/ANS-41.5-2012).

The following samples were analyzed and reported in the laboratory reports:

Laboratory ID	Client ID
92526337001	GWA-1
92526337002	GWA-3
92526337003	GWA-4
92526337004	GWA-11
92526337005	GWA-2
92526337006	GWC-5
92526337007	GWC-6
92526337008	GWC-7
92526337009	GWC-8
92526337010	GWC-9

Laboratory ID	Client ID
92526337011	GWC-10
92526337012	GWC-18
92526337013	GWC-21
92526337014	GWC-22
92526337015	GWC-23
92526337016	DUP-5
92526337017	EB-4
92526337018	FB-5
92527273001	GWC-19
92527273002	GWC-20

The samples were received within 0-6 degrees Celsius (°C). No sample preservation issues were noted by the laboratory.

A collection time was not documented on the chain of custody (COC) for field duplicate, DUP-05. DUP-05 was logged in with the collection time of 00:00.

Incorrect error corrections were observed on the chain of custody (COC), instead of the proper procedure of a single strike through, correction, and initials and date of person making the corrections

The field pH data included in the laboratory report were not validated.

1.0 METALS

The samples were analyzed for metals by USEPA methods 3010A/6010D and USEPA methods 3005A/6020B.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Equipment Blank
- ✓ Field Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

1.1 Overall Assessment

The metals data reported in this data package are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this dataset is 100%.

1.2 Holding Time

The holding time for the metals analysis of a water sample is 180 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Four method blanks were reported (batches 607239, 607584, 607261 and 607620). Metals were not detected in the method blanks above the method detection limits (MDLs.

1.4 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two sample set specific MS/MSD pairs were reported using samples GWA-1 and GWA-3. The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria.

No qualifications were applied based on the MS/MSD recoveries if the sample concentration was greater than four times the spiked concentration.

Two batch MS/MSD pairs were also reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

1.5 <u>Laboratory Control Sample (LCS)</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Four LCSs were reported. The recovery results were within the laboratory specified acceptance criteria.

1.6 <u>Laboratory Duplicate</u>

Laboratory duplicates were not reported.

1.7 Equipment Blank

One equipment blank was collected with the sample set, EB-4. Metals were not detected in the equipment blank above the MDLs.

1.8 Field Blank

One field blank was collected with the sample set, FB-5. Metals were not detected in the field blank above the MDLs.

1.9 Field Duplicate

One field duplicate sample was collected with the sample set, DUP-05. Acceptable precision (RPD $\leq 20\%$ or the difference between the concentrations < RL) was demonstrated between the field duplicate and the original sample, GWC-6.

1.10 **Sensitivity**

The samples were reported to the MDLs. No elevated nondetect results were reported.

1.11 Electronic Data Deliverable (EDD) Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

2.0 WET CHEMISTRY

The samples were analyzed for TDS by Standard method 2540C and anions by USEPA method 300.0.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ⊗ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ⊗ Laboratory Duplicate
- ✓ Equipment Blank
- ✓ Field Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

2.1 Overall Assessment

The wet chemistry data reported in this data package are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for these analyses, for this dataset is 100%.

2.2 **Holding Times**

The holding time for the TDS analysis of a water sample is 7 days from sample collection to analysis. The holding time for the anions (chloride, fluoride, and sulfate) analysis of a water sample is 28 days from sample collection to analysis. The holding times were met for the sample analyses.

2.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Four method blanks were reported for TDS (batches 605516, 606468, 606469 and 606587) and four method blanks were reported for the anions

(batches 606641, 606813, 606814 and 607170). The wet chemistry parameters were not detected in the method blanks above the MDLs.

2.4 Matrix Spike/Matrix Spike Duplicate

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two sample set specific MS/MSD pairs were reported for the anions using samples GWC-8 and GWC-9. The recovery and RPD results were within the laboratory specified acceptance criteria, with the following exceptions.

The recoveries of sulfate in the MS/MSD pair using sample GWC-9 were low and outside of the laboratory specified acceptance criteria. Therefore, the sulfide concentration in sample GWC-9 was J- qualified as estimated with low bias.

Six batch MS/MSD pairs were reported for the anions. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

Sample	Analyte	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier*	Reason Code**
GWC-9	Sulfate	65.1	M1	65.1	J-	4

mg/L-milligrams per liter

M1-laboratory flag indicating MS recovery was outside the QC limits

2.5 Laboratory Control Sample

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Four LCSs were reported for TDS and four LCSs were reported for the anions. The recovery results were within the laboratory specified acceptance criteria.

2.6 <u>Laboratory Duplicate</u>

Four sample set specific laboratory duplicates were reported using samples GWA-3, GWA-2, GWC-23, and GWC-19. The RPD results were within the laboratory specified acceptance criteria with the following exceptions.

The relative percent difference (RPD) of TDS in the laboratory duplicates using samples GWA-2 and GWC-19 were high and outside of the laboratory specified acceptance criteria. Therefore, the TDS concentrations in samples GWA-2 and GWC-19 were J qualified as estimated.

^{*} Validation qualifiers are defined in Attachment 1 at the end of this report

^{**}Reason codes are defined in Attachment 2 at the end of this report

Four batch laboratory duplicates were also reported for TDS. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

Sample	Analyte	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier*	Reason Code**
GWA-2	TDS	227	D6	227	J	12
GWC-19	TDS	223	D6	223	J	12

mg/L-milligrams per liter

D6-laboratory flag indicating the precision between the sample and sample duplicate exceeded the laboratory specified acceptance criteria

2.7 **Equipment Blank**

One equipment blank was collected with the sample set, EB-4. The wet chemistry parameters were not detected in the equipment blank above the MDLs.

2.8 Field Blank

One field blank was collected with the sample set, FB-5. The wet chemistry parameters were not detected in the field blank above the MDL.

2.9 Field Duplicate

One field duplicate sample was collected with the sample set, DUP-05. Acceptable precision (RPD \leq 20% or the difference between the concentrations < RL) was demonstrated between the field duplicate and the original sample, GWC-6.

2.10 **Sensitivity**

The samples were reported to the MDL. No elevated nondetect results were reported.

2.11 Electronic Data Deliverable Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

* * * * *

^{*} Validation qualifiers are defined in Attachment 1 at the end of this report

^{**}Reason codes are defined in Attachment 2 at the end of this report

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY

Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS or RPD recovery outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample duplicate

RPD - Relative percent difference

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

Memorandum

Date: October 18, 2021

To: Whitney Law

From: Kristoffer Henderson

CC: J. Caprio

Subject: Stage 2A Data Validation - Level II Data Deliverable - Pace

Analytical Services, LLC Project Number 92554829

SITE: Plant Hammond Huffaker

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of seventeen aqueous samples, one field duplicate, one equipment blank and one field blank, collected 9-10 August 2021, as part of the Plant Hammond Huffaker on-site sampling event.

The samples were analyzed at Pace Analytical Services Atlanta, Peachtree Corners, Georgia, for the following analytical tests:

- Calcium by United States (US) Environmental Protection Agency (EPA) Methods 3010A/6010D
- Metals by US EPA Methods 3005A/6020B
- Total Dissolved Solids (TDS) by Standard Method 2540C

The samples were analyzed at Pace Analytical Services Asheville, North Carolina, for the following analytical test:

• Anions (Chloride, Fluoride and Sulfate) by US EPA Method 300.0

EXECUTIVE SUMMARY

Based on the Stage 2A data validation covering the quality control (QC) parameters listed below and the information provided, the data as qualified are usable for meeting project objectives. Qualified data should be used within the limitation of the qualification.

The data were reviewed based on the pertinent methods referenced in the laboratory reports, professional and technical judgment and the following documents:

DVR Huff 082021 Final Review: JK Caprio 11/16/2021

- US EPA Region IV Data Validation Standard Operating Procedures (US EPA Region IV, September 2011);
- US EPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (EPA 542-R-20-006); and
- American National Standard, Verification and Validation of Radiological Data for use in Waste Management and Environmental Remediation, February 15, 2012 (ANSI/ANS-41.5-2012).

The following samples were analyzed and reported in the laboratory reports:

Laboratory ID	Client ID
92554829001	GWA-1
92554829002	GWA-2
92554829003	GWA-3
92554829004	GWA-4
92554829005	GWA-11
92554829006	GWC-5
92554829007	GWC-6
92554829008	GWC-7
92554829009	GWC-8
92554829010	GWC-9

Laboratory ID	Client ID
92554829011	GWC-10
92554829012	GWC-18
92554829013	GWC-19
92554829014	GWC-20
92554829015	GWC-21
92554829016	GWC-22
92554829017	GWC-23
92554829018	DUP-5
92554829019	EB-5
92554829020	FB-5

The samples were received within 0-6 degrees Celsius (°C). No sample preservation issues were noted by the laboratory.

A collection time was not documented on the chain of custody (COC) for field duplicate, DUP-5. DUP-5 was logged in with the collection time of 00:00.

The year was not documented for the *relinquished by* date for the first sample transfer on the COC.

Incorrect error corrections were observed on the COC, instead of the proper procedure of a single strike through, correction, and initials and date of person making the corrections

The field pH data included in the laboratory report were not validated.

1.0 METALS

The samples were analyzed for metals by US EPA methods 3010A/6010D and US EPA methods 3005A/6020B.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues

Plant Hammond AP Site Data Validation 18 October 2021 Page 3

were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Equipment Blank
- ✓ Field Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

1.1 Overall Assessment

The metals data reported in this data package are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this dataset is 100%.

1.2 **Holding Time**

The holding time for the metals analysis of a water sample is 180 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three method blanks were reported (batches 639885, 639905 and 639886). Metals were not detected in the method blanks above the method detection limits (MDLs).

1.4 <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three sample set specific MS/MSD pairs were reported, two using sample GWA-1 and one using sample GWA-2. The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria, with the following exceptions.

DVR Huff 082021 Final Review: JK Caprio 11/16/2021

Plant Hammond AP Site Data Validation 18 October 2021 Page 4

The MSD recovery of calcium in the MS/MSD pair using sample GWA-1 was high and outside of the laboratory specified acceptance criteria. Since the calcium concentration in sample GWA-1 was greater than four times the spiked concentration, no qualifications were applied to the data.

The MS recovery was high, and the MSD recovery was low, both outside of the laboratory specified acceptance criteria for calcium in the MS/MSD pair using sample GWA-2. Since the calcium concentration in sample GWA-2 was greater than four times the spiked concentration, no qualifications were applied to the data.

1.5 <u>Laboratory Control Sample (LCS)</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three LCSs were reported. The recovery results were within the laboratory specified acceptance criteria.

1.6 <u>Laboratory Duplicate</u>

Laboratory duplicates were not reported.

1.7 Equipment Blank

One equipment blank was collected with the sample set, EB-5. Metals were not detected in the equipment blank above the MDLs.

1.8 Field Blank

One field blank was collected with the sample set, FB-5. Metals were not detected in the field blank above the MDLs.

1.9 Field Duplicate

One field duplicate sample was collected with the sample set, DUP-05. Acceptable precision [RPD $\leq 20\%$ or the difference between the concentrations < reporting limit (RL)] was demonstrated between the field duplicate and the original sample, GWC-10.

1.10 Sensitivity

The samples were reported to the MDLs. No elevated nondetect results were reported.

1.11 <u>Electronic Data Deliverable (EDD) Review</u>

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

2.0 WET CHEMISTRY

The samples were analyzed for TDS by Standard method 2540C and anions by US EPA method 300.0.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ⊗ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Equipment Blank
- ✓ Field Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

2.1 Overall Assessment

The wet chemistry data reported in this data package are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for these analyses, for this dataset is 100%.

2.2 **Holding Times**

The holding time for the TDS analysis of a water sample is 7 days from sample collection to analysis. The holding time for the anions (chloride, fluoride, and sulfate) analysis of a water sample is 28 days from sample collection to analysis. The holding times were met for the sample analyses.

2.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Four method blanks were reported for TDS (batches 639828, 640326, 640771 and 640773) and three method blanks were reported for the anions (batches 640537, 640540 and 641348). The wet chemistry parameters were not detected in the method blanks above the MDLs.

2.4 Matrix Spike/Matrix Spike Duplicate

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two sample set specific MS/MSD pairs were reported for the anions using samples GWA-4 and GWC-20. The recovery and RPD results were within the laboratory specified acceptance criteria, with the following exceptions.

One or both the recoveries of chloride, fluoride and sulfate in the MS/MSD pair using sample GWA-4 were high and outside of the laboratory specified acceptance criteria. Therefore, the chloride, fluoride and sulfate concentrations in sample GWA-4 were J+ qualified as estimated with high biases.

The recoveries of sulfate in the MS/MSD pair using sample GWC-20 were low and outside the laboratory specified acceptance criteria. Therefore, the sulfate concentration in sample GWC-20 was J- qualified as estimated with a low bias.

Four batch MS/MSD pairs were reported for the anions. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

Sample	Analyte	Laboratory Result (mg/kg)	Laboratory Flag	Validation Result (mg/kg)	Validation Qualifier*	Reason Code**
GWA-4	Chloride	3.0	M1	3.0	J+	4
GWA-4	Fluoride	0.12	M1	0.12	J+	4
GWA-4	Sulfate	106	M1	106	J+	4
GWC-20	Sulfate	66.4	M1	66.4	J-	4

mg/L-milligrams per liter

M1-laboratory flag indicating MS recovery was outside the QC limits

2.5 <u>Laboratory Control Sample</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Four LCSs were reported for TDS and three LCSs were reported for the anions. The recovery results were within the laboratory specified acceptance criteria.

^{*} Validation qualifiers are defined in Attachment 1 at the end of this report

^{**}Reason codes are defined in Attachment 2 at the end of this report

Plant Hammond AP Site Data Validation 18 October 2021 Page 7

2.6 <u>Laboratory Duplicate</u>

Three sample set specific laboratory duplicates were reported using samples GWC-18, GWA-1 and DUP-5. The RPD results were within the laboratory specified acceptance criteria.

Four batch laboratory duplicates were also reported for TDS. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

2.7 Equipment Blank

One equipment blank was collected with the sample set, EB-5. The wet chemistry parameters were not detected in the equipment blank above the MDLs.

2.8 Field Blank

One field blank was collected with the sample set, FB-5. The wet chemistry parameters were not detected in the field blank above the MDLs.

2.9 Field Duplicate

One field duplicate sample was collected with the sample set, DUP-05. Acceptable precision (RPD $\leq 20\%$ or the difference between the concentrations < RL) was demonstrated between the field duplicate and the original sample, GWC-10.

2.10 **Sensitivity**

The samples were reported to the MDLs. No elevated nondetect results were reported.

2.11 Electronic Data Deliverable Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

* * * * *

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY

Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

DVR Huff 082021 Final Review: JK Caprio 11/16/2021

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS or RPD recovery outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required
NV	Data was not validated

LCS - Laboratory Control Sample LCSD - Laboratory Control Sample duplicate RPD - Relative percent difference

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

Memorandum

Date: November 1, 2021

To: Whitney Law

From: Kristoffer Henderson

CC: J. Caprio

Subject: Stage 2A Data Validation - Level II Data Deliverable - Pace

Analytical Services, LLC Project Number 92564022

SITE: Plant Hammond Huffaker

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of one aqueous sample collected 28 September 2021, as part of the Plant Hammond Huffaker on-site sampling event.

The sample was analyzed at Pace Analytical Services Atlanta, Peachtree Corners, Georgia, for the following analytical test:

• Barium and Nickel by US EPA Methods 3005A/6020B

EXECUTIVE SUMMARY

Based on the Stage 2A data validation covering the quality control (QC) parameters listed below and the information provided, the data are usable for meeting project objectives.

The data were reviewed based on the pertinent methods referenced in the laboratory reports, professional and technical judgment and the following documents:

- US EPA Region IV Data Validation Standard Operating Procedures (US EPA Region IV, September 2011);
- US EPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (EPA 542-R-20-006); and
- American National Standard, Verification and Validation of Radiological Data for use in Waste Management and Environmental Remediation, February 15, 2012 (ANSI/ANS-41.5-2012).

The following sample was analyzed and reported in the laboratory report:

DVR Huff 92564022 Final Review: JK Caprio 11/16/2021

Plant Hammond Huffaker 1 November 2021 Page 2

Laboratory ID	Client ID
92564022001	GWC-8

The sample was received within 0-6 degrees Celsius (°C). No sample preservation issues were noted by the laboratory.

The field pH data included in the laboratory report were not validated.

1.0 METALS

The sample was analyzed for barium and nickel by US EPA methods 3005A/6020B.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Sensitivity
- ✓ Electronic Data Deliverable Review

1.1 Overall Assessment

The metals data reported in this data package are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this dataset is 100%.

1.2 **Holding Time**

The holding time for the metals analysis of a water sample is 180 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One method blank was reported (batch 3417564). Metals were not detected in the method blank above the method detection limits (MDLs).

DVR Huff 92564022 Final Review: JK Caprio 11/16/2021

1.4 <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One batch MS/MSD pair was reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

1.5 Laboratory Control Sample (LCS)

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS was reported. The recovery results were within the laboratory specified acceptance criteria.

1.6 **Sensitivity**

The sample was reported to the MDLs. No elevated nondetect results were reported.

1.7 Electronic Data Deliverable (EDD) Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

* * * * *

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY

Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

DVR Huff 92564022 Final Review: JK Caprio 11/16/2021

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS or RPD recovery outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required
NV	Data was not validated

LCS - Laboratory Control Sample LCSD - Laboratory Control Sample duplicate RPD - Relative percent difference

APPENDIX B2

Field Sampling Forms

Purge Logs

Test Date / Time: 3/8/2021 4:20:52 PM

Project: GP-Plant Hammond **Operator Name:** Vashish Taukoor

Location Name: GWA-1
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 30 ft
Total Depth: 40.05 ft

Initial Depth to Water: 11.15 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 35 ft
Estimated Total Volume Pumped:

6.946667 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.22 ft Instrument Used: Aqua TROLL 400

Serial Number: 728563

Test Notes:

Three bottles: Metals, TDS, Inorganics

Weather Conditions:

Sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
3/8/2021 4:20 PM	00:00	7.05 pH	16.04 °C	174.03 μS/cm	2.71 mg/L	3.24 NTU	28.8 mV	11.20 ft	200.00 ml/min
3/8/2021 4:25 PM	04:44	7.02 pH	15.86 °C	170.38 μS/cm	2.44 mg/L	1.89 NTU	11.0 mV	11.25 ft	200.00 ml/min
3/8/2021 4:30 PM	09:44	6.96 pH	15.96 °C	165.27 μS/cm	2.39 mg/L	1.86 NTU	6.3 mV	11.28 ft	200.00 ml/min
3/8/2021 4:35 PM	14:44	6.93 pH	15.92 °C	163.92 µS/cm	2.04 mg/L	1.75 NTU	0.4 mV	11.30 ft	200.00 ml/min
3/8/2021 4:40 PM	19:44	6.91 pH	15.96 °C	158.42 μS/cm	2.01 mg/L	1.28 NTU	-2.3 mV	11.32 ft	200.00 ml/min
3/8/2021 4:45 PM	24:44	6.89 pH	15.93 °C	155.62 μS/cm	2.04 mg/L	0.90 NTU	-3.6 mV	11.35 ft	200.00 ml/min
3/8/2021 4:50 PM	29:44	6.87 pH	15.85 °C	152.67 μS/cm	1.80 mg/L	1.09 NTU	-6.0 mV	11.35 ft	200.00 ml/min
3/8/2021 4:55 PM	34:44	6.86 pH	15.93 °C	149.44 μS/cm	1.66 mg/L	1.34 NTU	-7.9 mV	11.37 ft	200.00 ml/min

Sample ID:	Description:
GWA-1	Grab Sample.

Test Date / Time: 3/9/2021 8:40:06 AM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWA-2
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 15.81 ft
Total Depth: 25.81 ft

Initial Depth to Water: 6.1 ft

Pump Type: Peri

Tubing Type: polyethylene
Pump Intake From TOC: 20.81 ft
Estimated Total Volume Pumped:

7 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.43 ft Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes:

Three bottles: Metals, TDS, Inorganics, Total depth = 26.12 feet.

Weather Conditions:

Sunny 45 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
3/9/2021 8:40 AM	00:00	6.98 pH	11.11 °C	411.04 μS/cm	0.36 mg/L	29.00 NTU	44.5 mV	6.10 ft	200.00 ml/min
3/9/2021 8:42 AM	01:59	6.94 pH	10.88 °C	421.83 μS/cm	0.28 mg/L	29.00 NTU	28.1 mV	6.10 ft	200.00 ml/min
3/9/2021 8:47 AM	06:59	6.92 pH	13.22 °C	414.39 μS/cm	0.09 mg/L	21.00 NTU	5.7 mV	6.56 ft	200.00 ml/min
3/9/2021 8:52 AM	11:59	6.91 pH	13.79 °C	412.77 μS/cm	0.05 mg/L	19.10 NTU	-5.3 mV	6.56 ft	200.00 ml/min
3/9/2021 8:57 AM	16:59	6.91 pH	13.95 °C	412.82 μS/cm	0.06 mg/L	11.60 NTU	-15.6 mV	6.57 ft	200.00 ml/min
3/9/2021 9:02 AM	21:59	6.91 pH	14.20 °C	410.98 μS/cm	0.05 mg/L	10.65 NTU	-18.6 mV	6.57 ft	200.00 ml/min
3/9/2021 9:07 AM	26:59	6.93 pH	14.04 °C	411.71 μS/cm	0.05 mg/L	8.30 NTU	-21.3 mV	6.53 ft	200.00 ml/min
3/9/2021 9:12 AM	31:59	6.93 pH	14.13 °C	410.98 μS/cm	0.04 mg/L	5.57 NTU	-23.7 mV	6.53 ft	200.00 ml/min
3/9/2021 9:17 AM	36:59	6.93 pH	14.25 °C	411.34 μS/cm	0.04 mg/L	2.82 NTU	-26.9 mV	6.53 ft	200.00 ml/min

Sample ID:	Description:
GWA-2	Grab Sample.

Test Date / Time: 3/8/2021 2:58:13 PM

Project: GP-Plant Hammond . **Operator Name:** Chad Russo

Location Name: GWA-3
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 11.09 ft
Total Depth: 21.09 ft

Initial Depth to Water: 4.9 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 16 ft
Estimated Total Volume Pumped:

8 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.37 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Three bottles: Metals, TDS, Inorganics

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
3/8/2021 2:58 PM	00:00	7.29 pH	18.02 °C	694.81 μS/cm	3.34 mg/L		80.5 mV	4.90 ft	200.00 ml/min
3/8/2021 3:03 PM	05:00	7.14 pH	16.47 °C	712.04 µS/cm	3.15 mg/L	9.84 NTU	72.2 mV	5.23 ft	200.00 ml/min
3/8/2021 3:08 PM	10:00	7.11 pH	16.22 °C	712.34 μS/cm	2.81 mg/L	6.93 NTU	59.8 mV	5.23 ft	200.00 ml/min
3/8/2021 3:13 PM	15:00	7.06 pH	15.96 °C	712.61 µS/cm	2.37 mg/L	5.12 NTU	62.7 mV	5.27 ft	200.00 ml/min
3/8/2021 3:18 PM	20:00	7.02 pH	15.78 °C	713.17 µS/cm	1.95 mg/L	4.55 NTU	60.6 mV	5.27 ft	200.00 ml/min
3/8/2021 3:23 PM	25:00	6.99 pH	15.76 °C	713.06 µS/cm	1.68 mg/L	3.05 NTU	55.1 mV	5.27 ft	200.00 ml/min
3/8/2021 3:28 PM	30:00	6.96 pH	15.58 °C	711.14 µS/cm	1.37 mg/L	2.24 NTU	57.7 mV	5.27 ft	200.00 ml/min
3/8/2021 3:33 PM	35:00	6.96 pH	15.49 °C	713.70 µS/cm	1.29 mg/L	4.06 NTU	56.8 mV	5.27 ft	200.00 ml/min
3/8/2021 3:38 PM	40:00	6.95 pH	15.57 °C	710.25 μS/cm	1.25 mg/L	2.68 NTU	55.9 mV	5.27 ft	200.00 ml/min

Sample ID:	Description:
GWA-3	Grab Sample.

Test Date / Time: 3/8/2021 1:52:46 PM

Project: GP-Plant Hammond **Operator Name:** Chad Russo

Location Name: GWA-4
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 11.39 ft

Total Depth: 21.39 ft

Initial Depth to Water: 9.14 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 16 ft
Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.36 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Three bottles: Metals, TDS, Inorganics

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
3/8/2021 1:52 PM	00:00	6.84 pH	16.71 °C	709.90 μS/cm	1.78 mg/L		57.7 mV	9.14 ft	200.00 ml/min
3/8/2021 1:57 PM	05:00	6.94 pH	15.53 °C	731.45 µS/cm	1.61 mg/L	1.21 NTU	52.8 mV	9.37 ft	200.00 ml/min
3/8/2021 2:02 PM	10:00	6.92 pH	15.58 °C	737.10 µS/cm	1.40 mg/L	0.90 NTU	49.6 mV	9.41 ft	200.00 ml/min
3/8/2021 2:07 PM	15:00	6.89 pH	15.53 °C	739.33 µS/cm	1.26 mg/L	1.62 NTU	50.3 mV	9.44 ft	200.00 ml/min
3/8/2021 2:12 PM	20:00	6.89 pH	15.35 °C	742.92 μS/cm	1.18 mg/L	1.41 NTU	48.7 mV	9.46 ft	200.00 ml/min
3/8/2021 2:17 PM	25:00	6.87 pH	15.40 °C	742.36 μS/cm	1.10 mg/L	0.97 NTU	50.3 mV	9.48 ft	200.00 ml/min
3/8/2021 2:22 PM	30:00	6.84 pH	15.67 °C	746.15 µS/cm	1.00 mg/L	0.94 NTU	48.6 mV	9.50 ft	200.00 ml/min

Samples

Sample ID:	Description:
GWA-4	Grab Sample.

Test Date / Time: 3/8/2021 2:59:22 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWA-11
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 25.9 ft
Total Depth: 35.9 ft

Initial Depth to Water: 15.85 ft

Pump Type: Peri

Tubing Type: polyethylene
Pump Intake From TOC: 30.9 ft
Estimated Total Volume Pumped:

8 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.38 ft Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 36.45 feet.

Weather Conditions:

Sunny, 70 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
3/8/2021 2:59 PM	00:00	6.75 pH	17.03 °C	185.90 μS/cm	0.80 mg/L	12.60 NTU	14.5 mV	15.85 ft	200.00 ml/min
3/8/2021 3:02 PM	02:38	6.75 pH	16.55 °C	182.92 μS/cm	0.53 mg/L	12.60 NTU	7.9 mV	15.85 ft	200.00 ml/min
3/8/2021 3:07 PM	07:38	6.75 pH	16.17 °C	186.44 μS/cm	0.38 mg/L	17.10 NTU	2.1 mV	16.22 ft	200.00 ml/min
3/8/2021 3:12 PM	12:38	6.77 pH	16.16 °C	187.33 μS/cm	0.64 mg/L	11.70 NTU	3.9 mV	16.22 ft	200.00 ml/min
3/8/2021 3:17 PM	17:38	6.78 pH	16.18 °C	185.81 μS/cm	0.82 mg/L	12.20 NTU	3.0 mV	16.22 ft	200.00 ml/min
3/8/2021 3:22 PM	22:38	6.78 pH	16.20 °C	187.99 μS/cm	1.39 mg/L	9.23 NTU	0.2 mV	16.22 ft	200.00 ml/min
3/8/2021 3:27 PM	27:38	6.76 pH	16.25 °C	187.91 μS/cm	0.66 mg/L	8.23 NTU	-0.9 mV	16.23 ft	200.00 ml/min
3/8/2021 3:32 PM	32:38	6.78 pH	16.23 °C	188.96 μS/cm	0.48 mg/L	6.09 NTU	-4.0 mV	16.23 ft	200.00 ml/min
3/8/2021 3:37 PM	37:38	6.79 pH	16.26 °C	188.73 μS/cm	0.46 mg/L	5.69 NTU	-6.0 mV	16.23 ft	200.00 ml/min
3/8/2021 3:42 PM	42:38	6.77 pH	16.27 °C	188.87 μS/cm	0.43 mg/L	5.29 NTU	-5.9 mV	16.23 ft	200.00 ml/min
3/8/2021 3:47 PM	47:38	6.78 pH	16.23 °C	189.07 μS/cm	0.51 mg/L	4.61 NTU	-6.8 mV	16.23 ft	200.00 ml/min

Sample ID:	Description:
GWA-11	Grab Sample.

Test Date / Time: 3/9/2021 10:35:42 AM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-5
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 11.41 ft
Total Depth: 21.74 ft

Initial Depth to Water: 4.73 ft

Pump Type: Peri

Tubing Type: polyethylene
Pump Intake From TOC: 16.41 ft
Estimated Total Volume Pumped:

18 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.15 ft Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions:

Sunny, 65 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
3/9/2021 10:35 AM	00:00	7.16 pH	16.07 °C	589.48 μS/cm	5.00 mg/L	8.89 NTU	9.4 mV	4.73 ft	200.00 ml/min
3/9/2021 10:40 AM	05:00	7.11 pH	14.89 °C	595.50 μS/cm	3.79 mg/L	8.09 NTU	8.4 mV	4.82 ft	200.00 ml/mir
3/9/2021 10:45 AM	10:00	7.11 pH	14.80 °C	603.19 μS/cm	3.08 mg/L	6.84 NTU	7.6 mV	4.85 ft	200.00 ml/mir
3/9/2021 10:50 AM	15:00	7.03 pH	14.83 °C	603.80 μS/cm	2.57 mg/L	4.09 NTU	2.5 mV	4.85 ft	200.00 ml/min
3/9/2021 10:55 AM	20:00	7.01 pH	14.81 °C	604.37 μS/cm	2.04 mg/L	4.74 NTU	-2.1 mV	4.86 ft	200.00 ml/mir
3/9/2021 11:00 AM	25:00	7.03 pH	14.90 °C	605.87 μS/cm	1.73 mg/L	2.55 NTU	-6.0 mV	4.86 ft	200.00 ml/mir
3/9/2021 11:05 AM	30:00	7.01 pH	14.99 °C	605.62 μS/cm	1.52 mg/L	3.18 NTU	-8.6 mV	4.86 ft	200.00 ml/mir
3/9/2021 11:10 AM	35:00	6.98 pH	15.00 °C	601.98 μS/cm	1.33 mg/L	2.87 NTU	-11.8 mV	4.87 ft	200.00 ml/mir
3/9/2021 11:15 AM	40:00	6.95 pH	15.03 °C	605.23 μS/cm	1.13 mg/L	1.90 NTU	-17.3 mV	4.87 ft	200.00 ml/mir
3/9/2021 11:20 AM	45:00	6.98 pH	15.08 °C	602.83 μS/cm	0.94 mg/L	1.80 NTU	-17.3 mV	4.87 ft	200.00 ml/mir
3/9/2021 11:25 AM	50:00	6.95 pH	15.08 °C	604.03 μS/cm	0.77 mg/L	2.20 NTU	-22.2 mV	4.87 ft	200.00 ml/mir
3/9/2021 11:30 AM	55:00	6.94 pH	15.08 °C	600.49 μS/cm	0.71 mg/L	1.90 NTU	-21.4 mV	4.87 ft	200.00 ml/mir
3/9/2021 11:35 AM	01:00:00	6.97 pH	15.17 °C	600.70 μS/cm	1.55 mg/L	1.70 NTU	-25.7 mV	4.87 ft	200.00 ml/mir

3/9/2021	01:05:00	6.94 pH	15.13 °C	601.56 μS/cm	4.91 mg/L	1.62 NTU	-24.5 mV	4.87 ft	200.00 ml/min
11:40 AM									
3/9/2021	01:10:00	6.95 pH	15.22 °C	COO COC/	1.58 mg/L	1.49 NTU	-26.1 mV	4.87 ft	200.00 ml/min
11:45 AM	01.10.00	6.95 pH	15.22 C	602.62 μS/cm	1.56 Hig/L	1.49 N10	-20.11117	4.07 11	200.00 1111/111111
3/9/2021	01:15:00	6.02 511	45 00 °C	507.26 uC/om	2 F2 ma/l	1.91 NTU	26.6 m)/	4.87 ft	200 00 ml/min
11:50 AM	01.15.00	6.93 pH	15.08 °C	597.36 μS/cm	3.53 mg/L	1.91 N10	-26.6 mV	4.07 10	200.00 ml/min
3/9/2021	01:20:00	6.94 pH	15.13 °C	602.40 µS/cm	1.34 mg/L	1.48 NTU	-30.5 mV	4.88 ft	200.00 ml/min
11:55 AM	01.20.00	6.94 рп					-30.5 111		
3/9/2021	01:25:00	6.04 ml l	15.12 °C	603.07 µS/cm	4.00 ma/l	1.45 NTU	-31.6 mV	4.88 ft	200.00 ml/min
12:00 PM	01.25.00	6.94 pH	15.12 C	603.07 μ3/6111	1.23 mg/L	1.45 N10	-31.01110	4.00 11	200.00 mi/min
3/9/2021	04.20.00	04.00.00	45.40.00	507.04 v.C/a	4.44 "		22.0 \/	4.00.0	
12:05 PM	01:30:00	6.93 pH	15.12 °C	597.94 μS/cm	1.14 mg/L	1.22 NTU	-32.9 mV	4.88 ft	200.00 ml/min

Samples

Sample ID:	Description:
GWC-5	Grab Sample.

Test Date / Time: 3/9/2021 1:15:58 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-6
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 32.58 ft
Total Depth: 43.10 ft

Initial Depth to Water: 15.29 ft

Pump Type: Peri

Tubing Type: polyethylene
Pump Intake From TOC: 37.59 ft
Estimated Total Volume Pumped:

11 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.08 ft Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes:

Three bottles; Metals, TDS, Inorganics. Total depth = 43.10 feet.

Weather Conditions:

Sunny, 70 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
3/9/2021 1:15 PM	00:00	7.51 pH	17.50 °C	475.24 μS/cm	5.40 mg/L	12.90 NTU	24.0 mV	15.29 ft	200.00 ml/min
3/9/2021 1:20 PM	05:00	7.36 pH	17.94 °C	452.39 μS/cm	5.43 mg/L	11.33 NTU	-2.7 mV	15.37 ft	200.00 ml/min
3/9/2021 1:25 PM	10:00	7.12 pH	17.96 °C	439.42 μS/cm	3.25 mg/L	15.40 NTU	-53.8 mV	15.37 ft	200.00 ml/min
3/9/2021 1:30 PM	15:00	7.10 pH	17.97 °C	464.90 μS/cm	2.76 mg/L	11.10 NTU	-70.9 mV	15.37 ft	200.00 ml/min
3/9/2021 1:35 PM	20:00	7.07 pH	17.98 °C	486.95 μS/cm	2.44 mg/L	8.92 NTU	-79.6 mV	15.37 ft	200.00 ml/min
3/9/2021 1:40 PM	25:00	7.10 pH	18.02 °C	500.37 μS/cm	1.95 mg/L	5.23 NTU	-84.5 mV	15.37 ft	200.00 ml/min
3/9/2021 1:45 PM	30:00	7.11 pH	18.04 °C	439.00 μS/cm	2.58 mg/L	3.48 NTU	-88.2 mV	15.37 ft	200.00 ml/min
3/9/2021 1:50 PM	35:00	7.10 pH	18.10 °C	492.21 μS/cm	2.32 mg/L	3.55 NTU	-91.3 mV	15.37 ft	200.00 ml/min
3/9/2021 1:55 PM	40:00	7.08 pH	18.13 °C	513.48 μS/cm	1.69 mg/L	3.67 NTU	-93.9 mV	15.37 ft	200.00 ml/min
3/9/2021 2:00 PM	45:00	7.10 pH	18.25 °C	484.66 μS/cm	1.63 mg/L	2.62 NTU	-95.0 mV	15.37 ft	200.00 ml/min
3/9/2021 2:05 PM	50:00	7.06 pH	18.22 °C	497.66 μS/cm	1.57 mg/L	1.79 NTU	-95.7 mV	15.37 ft	200.00 ml/min
3/9/2021 2:10 PM	55:00	7.09 pH	18.21 °C	507.16 μS/cm	1.51 mg/L	2.19 NTU	-96.4 mV	15.37 ft	200.00 ml/min

Samples

Sample ID:	Description:
GWC-6	Grab Sample.

Test Date / Time: 3/9/2021 3:00:38 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-7
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 21.91 ft
Total Depth: 32.51 ft

Initial Depth to Water: 14.15 ft

Pump Type: Peri

Tubing Type: polyethylene
Pump Intake From TOC: 26.91 ft
Estimated Total Volume Pumped:

12 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.22 ft Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes:

Three bottles; Metals, TDS, Inorganics. Total depth = 32.51 feet.

Weather Conditions:

Sunny, 70 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.5	
3/9/2021 3:00 PM	00:00	6.83 pH	18.66 °C	679.03 μS/cm	1.36 mg/L	49.40 NTU	-72.1 mV	14.15 ft	200.00 ml/min
3/9/2021 3:05 PM	05:00	6.84 pH	16.49 °C	680.70 μS/cm	0.15 mg/L	25.30 NTU	-74.7 mV	14.37 ft	200.00 ml/min
3/9/2021 3:10 PM	10:00	6.83 pH	16.42 °C	680.05 μS/cm	0.10 mg/L	18.70 NTU	-79.6 mV	14.37 ft	200.00 ml/min
3/9/2021 3:15 PM	15:00	6.83 pH	16.67 °C	665.93 µS/cm	0.07 mg/L	13.50 NTU	-81.9 mV	14.37 ft	200.00 ml/min
3/9/2021 3:20 PM	20:00	6.76 pH	16.65 °C	640.63 µS/cm	0.06 mg/L	11.70 NTU	-82.7 mV	14.37 ft	200.00 ml/min
3/9/2021 3:25 PM	25:00	6.75 pH	16.66 °C	626.75 μS/cm	0.05 mg/L	9.30 NTU	-83.1 mV	14.37 ft	200.00 ml/min
3/9/2021 3:30 PM	30:00	6.75 pH	17.01 °C	602.91 μS/cm	0.05 mg/L	7.94 NTU	-82.5 mV	14.37 ft	200.00 ml/min
3/9/2021 3:35 PM	35:00	6.72 pH	17.06 °C	588.53 μS/cm	0.04 mg/L	6.49 NTU	-81.8 mV	14.37 ft	200.00 ml/min
3/9/2021 3:40 PM	40:00	6.68 pH	16.79 °C	577.65 μS/cm	0.04 mg/L	5.63 NTU	-80.4 mV	14.37 ft	200.00 ml/min
3/9/2021 3:45 PM	45:00	6.68 pH	16.73 °C	559.79 μS/cm	0.03 mg/L	5.27 NTU	-78.6 mV	14.37 ft	200.00 ml/min
3/9/2021 3:50 PM	50:00	6.64 pH	16.75 °C	547.27 μS/cm	0.03 mg/L	3.82 NTU	-76.7 mV	14.37 ft	200.00 ml/min
3/9/2021 3:55 PM	55:00	6.62 pH	16.83 °C	532.46 μS/cm	0.03 mg/L	4.78 NTU	-74.2 mV	14.37 ft	200.00 ml/min
3/9/2021 4:00 PM	01:00:00	6.59 pH	16.97 °C	527.19 μS/cm	0.03 mg/L	4.24 NTU	-73.9 mV	14.37 ft	200.00 ml/min

Samples

Sample ID:	Description:
GWC-7	Grab Sample.

Test Date / Time: 3/9/2021 11:27:06 AM

Project: GP-Plant Hammond **Operator Name:** Vashish Taukoor

Location Name: GWC-8
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 17.49 ft

Total Depth: 27.49 ft

Initial Depth to Water: 11.8 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 22 ft
Estimated Total Volume Pumped:

16 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 2.45 ft Instrument Used: Aqua TROLL 400

Serial Number: 728563

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 27.40 ft

Weather Conditions:

Sunny

65 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
3/9/2021 11:27 AM	00:00	7.01 pH	16.14 °C	614.71 µS/cm	0.11 mg/L	9.86 NTU	-24.4 mV	14.26 ft	200.00 ml/min
3/9/2021 11:32 AM	05:00	7.03 pH	16.29 °C	600.34 μS/cm	0.10 mg/L	5.97 NTU	-38.0 mV	14.27 ft	200.00 ml/min
3/9/2021 11:37 AM	10:00	7.04 pH	16.38 °C	593.50 μS/cm	0.10 mg/L	6.77 NTU	-31.5 mV	14.24 ft	200.00 ml/min
3/9/2021 11:42 AM	15:00	7.04 pH	16.38 °C	589.74 μS/cm	0.10 mg/L	4.52 NTU	-41.4 mV	14.25 ft	200.00 ml/min
3/9/2021 11:47 AM	20:00	7.04 pH	16.43 °C	584.84 μS/cm	0.09 mg/L	4.83 NTU	-34.6 mV	14.25 ft	200.00 ml/min
3/9/2021 11:52 AM	25:00	7.06 pH	16.43 °C	572.18 μS/cm	0.09 mg/L	4.31 NTU	-37.7 mV	14.25 ft	200.00 ml/min

Sample ID:	Description:
GWC-8	Grab Sample.

Test Date / Time: 3/9/2021 9:21:49 AM

Project: GP-Plant Hammond **Operator Name:** Vashish Taukoor

Location Name: GWC-9

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 42.4 ft

Total Depth: 52.4 ft

Initial Depth to Water: 13.39 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 47 ft
Estimated Total Volume Pumped:

9 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.33 ft Instrument Used: Aqua TROLL 400

Serial Number: 728563

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 52.40 ft

Weather Conditions:

Sunny

41 Degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
3/9/2021 9:21 AM	00:00	6.87 pH	15.28 °C	335.13 μS/cm	0.19 mg/L	2.84 NTU	-41.6 mV	13.68 ft	200.00 ml/min
3/9/2021 9:26 AM	05:00	6.89 pH	15.30 °C	335.28 μS/cm	0.16 mg/L	2.06 NTU	-46.9 mV	13.68 ft	200.00 ml/min
3/9/2021 9:31 AM	10:00	6.89 pH	15.35 °C	335.42 μS/cm	0.15 mg/L	2.14 NTU	-49.6 mV	13.72 ft	200.00 ml/min
3/9/2021 9:36 AM	15:00	6.91 pH	15.48 °C	336.29 μS/cm	0.14 mg/L	1.45 NTU	-61.9 mV	13.72 ft	200.00 ml/min
3/9/2021 9:41 AM	20:00	6.91 pH	15.66 °C	334.32 μS/cm	0.13 mg/L	0.83 NTU	-55.4 mV	13.72 ft	200.00 ml/min
3/9/2021 9:46 AM	25:00	6.92 pH	15.84 °C	333.75 μS/cm	0.13 mg/L	0.82 NTU	-66.9 mV	13.72 ft	200.00 ml/min

Sample ID:	Description:
GWC-9	Grab Sample.

Test Date / Time: 3/9/2021 9:18:31 AM

Project: GP-Plant Hammond **Operator Name:** Chad Russo

Location Name: GWC-10
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 23.98 ft

Total Depth: 33.98 ft

Initial Depth to Water: 13.1 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 29 ft
Estimated Total Volume Pumped:

36 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.04 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 34.51'

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
3/9/2021 9:18 AM	00:00	7.09 pH	14.60 °C	357.43 μS/cm	2.05 mg/L		31.9 mV	13.10 ft	200.00 ml/min
3/9/2021 9:23 AM	05:00	7.29 pH	14.74 °C	342.88 μS/cm	0.69 mg/L	70.20 NTU	-8.9 mV	13.14 ft	200.00 ml/min
3/9/2021 9:28 AM	10:00	7.32 pH	15.03 °C	341.57 μS/cm	0.43 mg/L	70.40 NTU	-7.1 mV	13.14 ft	200.00 ml/min
3/9/2021 9:33 AM	15:00	7.34 pH	15.14 °C	340.94 μS/cm	0.38 mg/L	43.70 NTU	-21.1 mV	13.14 ft	200.00 ml/min
3/9/2021 9:38 AM	20:00	7.34 pH	15.19 °C	340.76 μS/cm	0.31 mg/L	34.30 NTU	-16.8 mV	13.14 ft	200.00 ml/min
3/9/2021 9:43 AM	25:00	7.36 pH	15.17 °C	338.73 μS/cm	0.31 mg/L	31.20 NTU	-29.5 mV	13.14 ft	200.00 ml/min
3/9/2021 9:48 AM	30:00	7.37 pH	15.08 °C	339.00 μS/cm	0.29 mg/L	21.15 NTU	-23.5 mV	13.14 ft	200.00 ml/min
3/9/2021 9:53 AM	35:00	7.37 pH	15.04 °C	338.34 μS/cm	0.28 mg/L	22.10 NTU	-35.2 mV	13.14 ft	200.00 ml/min
3/9/2021 9:58 AM	40:00	7.36 pH	15.04 °C	337.81 μS/cm	0.26 mg/L	14.20 NTU	-30.0 mV	13.14 ft	200.00 ml/min
3/9/2021 10:03 AM	45:00	7.37 pH	15.01 °C	338.66 μS/cm	0.26 mg/L	13.30 NTU	-41.7 mV	13.14 ft	200.00 ml/min
3/9/2021 10:08 AM	50:00	7.37 pH	15.11 °C	338.53 μS/cm	0.22 mg/L	12.10 NTU	-37.5 mV	13.14 ft	200.00 ml/min
3/9/2021 10:13 AM	55:00	7.37 pH	15.17 °C	336.37 μS/cm	0.23 mg/L	18.00 NTU	-47.0 mV	13.14 ft	200.00 ml/min
3/9/2021 10:18 AM	01:00:00	7.37 pH	15.35 °C	337.04 μS/cm	0.23 mg/L	15.70 NTU	-41.0 mV	13.14 ft	200.00 ml/min
3/9/2021 10:23 AM	01:05:00	7.37 pH	15.44 °C	337.23 μS/cm	0.22 mg/L	14.50 NTU	-51.6 mV	13.14 ft	200.00 ml/min
3/9/2021 10:28 AM	01:10:00	7.38 pH	15.49 °C	336.79 µS/cm	0.21 mg/L	13.10 NTU	-45.6 mV	13.14 ft	200.00 ml/min

3/9/2021 10:33 AM	01:15:00	7.38 pH	15.50 °C	337.46 μS/cm	0.21 mg/L	11.67 NTU	-47.4 mV	13.14 ft	200.00 ml/min
3/9/2021 10:38 AM	01:20:00	7.38 pH	15.58 °C	338.06 μS/cm	0.20 mg/L	11.44 NTU	-58.0 mV	13.14 ft	200.00 ml/min
3/9/2021 10:43 AM	01:25:00	7.39 pH	15.60 °C	336.05 μS/cm	0.21 mg/L	11.69 NTU	-51.0 mV	13.14 ft	200.00 ml/min
3/9/2021	01:30:00	7.39 pH	15.67 °C	337.01 μS/cm	0.19 mg/L	10.03 NTU	-60.9 mV	13.14 ft	200.00 ml/min
10:48 AM 3/9/2021	01:35:00	7.39 pH	15.76 °C	338.03 μS/cm	0.31 mg/L	12.00 NTU	-62.1 mV	13.14 ft	200.00 ml/min
10:53 AM 3/9/2021	01:40:00	7.39 pH	15.85 °C	336.50 µS/cm	0.22 mg/L	11.46 NTU	-55.8 mV	13.14 ft	200.00 ml/min
10:58 AM 3/9/2021		•		,					
11:03 AM 3/9/2021	01:45:00	7.39 pH	15.97 °C	336.40 μS/cm	0.20 mg/L	11.72 NTU	-65.0 mV	13.14 ft	200.00 ml/min
11:08 AM	01:50:00	7.40 pH	16.06 °C	335.69 μS/cm	0.20 mg/L	12.18 NTU	-58.2 mV	13.14 ft	200.00 ml/min
3/9/2021 11:13 AM	01:55:00	7.40 pH	16.12 °C	336.59 μS/cm	0.19 mg/L	11.68 NTU	-66.8 mV	13.14 ft	200.00 ml/min
3/9/2021 11:18 AM	02:00:00	7.40 pH	16.34 °C	334.84 μS/cm	0.17 mg/L	6.80 NTU	-61.2 mV	13.14 ft	200.00 ml/min
3/9/2021 11:23 AM	02:05:00	7.40 pH	16.50 °C	334.97 μS/cm	0.16 mg/L	9.13 NTU	-71.6 mV	13.14 ft	200.00 ml/min
3/9/2021 11:28 AM	02:10:00	7.41 pH	16.53 °C	335.26 μS/cm	0.17 mg/L	8.08 NTU	-64.2 mV	13.14 ft	200.00 ml/min
3/9/2021 11:33 AM	02:15:00	7.41 pH	16.66 °C	334.45 μS/cm	0.17 mg/L	8.72 NTU	-73.6 mV	13.14 ft	200.00 ml/min
3/9/2021 11:38 AM	02:20:00	7.41 pH	16.83 °C	335.62 μS/cm	0.16 mg/L	8.06 NTU	-67.1 mV	13.14 ft	200.00 ml/min
3/9/2021 11:43 AM	02:25:00	7.42 pH	17.04 °C	336.04 µS/cm	0.15 mg/L	7.70 NTU	-76.4 mV	13.14 ft	200.00 ml/min
3/9/2021	02:30:00	7.41 pH	16.97 °C	332.04 μS/cm	0.16 mg/L	8.31 NTU	-67.7 mV	13.14 ft	200.00 ml/min
11:48 AM 3/9/2021	02:35:00	7.42 pH	16.83 °C	334.50 μS/cm	0.15 mg/L	8.80 NTU	-68.5 mV	13.14 ft	200.00 ml/min
11:53 AM 3/9/2021	02:40:00	7.42 pH	16.79 °C	333.57 µS/cm	0.17 mg/L	8.10 NTU	-77.5 mV	13.14 ft	200.00 ml/min
11:58 AM 3/9/2021				,					
12:03 PM 3/9/2021	02:45:00	7.42 pH	16.98 °C	333.05 μS/cm	0.15 mg/L	8.90 NTU	-70.3 mV	13.14 ft	200.00 ml/min
12:08 PM 3/9/2021	02:50:00	7.42 pH	17.54 °C	334.23 μS/cm	0.14 mg/L	8.84 NTU	-80.4 mV	13.14 ft	200.00 ml/min
12:13 PM	02:55:00	7.42 pH	17.59 °C	333.81 μS/cm	0.13 mg/L	6.23 NTU	-73.0 mV	13.14 ft	200.00 ml/min
3/9/2021 12:18 PM	03:00:00	7.43 pH	17.41 °C	332.77 μS/cm	0.13 mg/L	7.80 NTU	-82.4 mV	13.14 ft	200.00 ml/min

Sample ID:	Description:
GWC-10	Grab Sample.

Test Date / Time: 3/9/2021 1:07:14 PM

Project: GP-Plant Hammond **Operator Name:** Vashish Taukoor

Location Name: GWC-18
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 47.06 ft
Total Depth: 57.06 ft

Initial Depth to Water: 12.72 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 52 ft
Estimated Total Volume Pumped:

10.5 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 1.55 ft Instrument Used: Aqua TROLL 400

Serial Number: 728563

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions:

Sunny No wind Low humidity

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
3/9/2021 1:07 PM	00:00	7.64 pH	17.50 °C	390.63 μS/cm	3.99 mg/L	1.15 NTU	21.3 mV	14.12 ft	200.00 ml/min
3/9/2021 1:12 PM	05:00	7.64 pH	17.67 °C	381.11 μS/cm	3.91 mg/L	0.55 NTU	16.0 mV	14.18 ft	200.00 ml/min
3/9/2021 1:17 PM	10:00	7.64 pH	17.86 °C	372.15 μS/cm	3.82 mg/L	0.61 NTU	15.4 mV	14.24 ft	200.00 ml/min
3/9/2021 1:22 PM	15:00	7.66 pH	17.49 °C	366.98 μS/cm	3.80 mg/L	0.36 NTU	14.2 mV	14.27 ft	200.00 ml/min
3/9/2021 1:25 PM	18:27	7.66 pH	17.37 °C	364.25 μS/cm	3.80 mg/L	0.87 NTU	14.1 mV	14.27 ft	200.00 ml/min
3/9/2021 1:30 PM	23:27	7.66 pH	17.37 °C	357.61 µS/cm	3.67 mg/L	0.55 NTU	12.6 mV	14.27 ft	200.00 ml/min

Sample ID:	Description:
GWC-18	Grab Sample.

Test Date / Time: 3/10/2021 1:27:58 PM

Project: GP-Plant Hammond **Operator Name:** Chad Russo

Location Name: GWC-19
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft

Top of Screen: 47.51 ft Total Depth: 57.51 ft

Initial Depth to Water: 18.65 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 52 ft
Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.43 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 56.96'

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
3/10/2021 1:27 PM	00:00	7.37 pH	21.24 °C	378.59 μS/cm	1.40 mg/L		-40.9 mV	18.65 ft	200.00 ml/min
3/10/2021 1:32 PM	05:00	7.45 pH	19.46 °C	386.51 μS/cm	0.44 mg/L	5.40 NTU	-50.7 mV	19.05 ft	200.00 ml/min
3/10/2021 1:37 PM	10:00	7.48 pH	19.36 °C	385.38 μS/cm	0.28 mg/L	4.91 NTU	-73.8 mV	19.05 ft	200.00 ml/min
3/10/2021 1:42 PM	15:00	7.51 pH	19.51 °C	384.80 μS/cm	0.24 mg/L	2.24 NTU	-62.8 mV	19.05 ft	200.00 ml/min
3/10/2021 1:47 PM	20:00	7.51 pH	19.51 °C	389.77 μS/cm	0.20 mg/L	1.48 NTU	-82.7 mV	19.05 ft	200.00 ml/min
3/10/2021 1:52 PM	25:00	7.51 pH	19.51 °C	385.41 μS/cm	0.21 mg/L	1.64 NTU	-66.2 mV	19.08 ft	200.00 ml/min
3/10/2021 1:57 PM	30:00	7.49 pH	19.42 °C	389.07 μS/cm	0.19 mg/L	3.31 NTU	-83.0 mV	19.08 ft	200.00 ml/min

Samples

Sample ID:	Description:
GWC-19	Grab Sample.

Test Date / Time: 3/10/2021 2:35:50 PM

Project: GP-Plant Hammond **Operator Name:** Chad Russo

Location Name: GWC-20
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 24.18 ft
Total Depth: 34.18 ft

Initial Depth to Water: 3.2 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 29 ft
Estimated Total Volume Pumped:

17 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.93 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 31.45'

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
3/10/2021 2:35 PM	00:00	7.56 pH	18.39 °C	391.15 μS/cm	3.48 mg/L		-8.2 mV	3.20 ft	200.00 ml/min
3/10/2021 2:40 PM	05:00	7.55 pH	15.37 °C	414.65 μS/cm	3.50 mg/L	39.70 NTU	2.2 mV	3.91 ft	200.00 ml/min
3/10/2021 2:45 PM	10:00	7.55 pH	15.29 °C	417.08 μS/cm	3.44 mg/L	38.70 NTU	-3.4 mV	4.02 ft	200.00 ml/min
3/10/2021 2:50 PM	15:00	7.54 pH	15.39 °C	417.10 μS/cm	3.27 mg/L	32.20 NTU	2.4 mV	4.09 ft	200.00 ml/min
3/10/2021 2:55 PM	20:00	7.53 pH	15.49 °C	416.19 μS/cm	2.97 mg/L	21.10 NTU	-18.0 mV	4.13 ft	200.00 ml/min
3/10/2021 3:00 PM	25:00	7.50 pH	15.50 °C	416.67 μS/cm	2.59 mg/L	17.10 NTU	-16.3 mV	4.13 ft	200.00 ml/min
3/10/2021 3:05 PM	30:00	7.49 pH	15.71 °C	415.92 μS/cm	2.21 mg/L	13.90 NTU	-40.5 mV	4.13 ft	200.00 ml/min
3/10/2021 3:10 PM	35:00	7.48 pH	15.64 °C	416.71 μS/cm	2.10 mg/L	15.30 NTU	-31.6 mV	4.13 ft	200.00 ml/min
3/10/2021 3:15 PM	40:00	7.45 pH	15.61 °C	418.87 μS/cm	1.79 mg/L	11.20 NTU	-55.7 mV	4.13 ft	200.00 ml/min
3/10/2021 3:20 PM	45:00	7.45 pH	15.49 °C	417.79 μS/cm	1.57 mg/L	11.70 NTU	-45.0 mV	4.13 ft	200.00 ml/min
3/10/2021 3:25 PM	50:00	7.44 pH	15.66 °C	418.89 μS/cm	1.60 mg/L	11.29 NTU	-47.5 mV	4.13 ft	200.00 ml/min
3/10/2021 3:30 PM	55:00	7.44 pH	15.87 °C	417.34 μS/cm	1.30 mg/L	6.82 NTU	-68.8 mV	4.13 ft	200.00 ml/min
3/10/2021 3:35 PM	01:00:00	7.44 pH	15.83 °C	419.04 μS/cm	1.33 mg/L	9.89 NTU	-54.0 mV	4.13 ft	200.00 ml/min
3/10/2021 3:40 PM	01:05:00	7.43 pH	15.67 °C	418.08 μS/cm	1.21 mg/L	6.22 NTU	-72.9 mV	4.13 ft	200.00 ml/min
3/10/2021 3:45 PM	01:10:00	7.44 pH	15.63 °C	418.53 μS/cm	1.20 mg/L	8.46 NTU	-56.7 mV	4.13 ft	200.00 ml/min

3/10/2021	01:15:00	7.42 pH	15.59 °C	419.22 µS/cm	0.93 mg/L	4.59 NTU	-77.3 mV	4.13 ft	200.00 ml/min
3:50 PM		·		·					
3/10/2021	04.00.00	7 44	45.00.00	440.000/	0.00/	4 40 NITH	70.0\/	4 40 #	200 001/
3:55 PM	01:20:00	7.41 pH	15.68 °C	419.33 µS/cm	0.99 mg/L	4.43 NTU	-78.6 mV	4.13 ft	200.00 ml/min
3/10/2021	01:25:00	7.41 pH	15.64 °C	419.27 µS/cm	0.86 mg/L	4.50 NTU	-63.4 mV	4.13 ft	200.00 ml/min
4:00 PM	01.25.00	7.41 pm	15.04 C	419.27 μ3/6111	0.86 mg/L	4.50 1110	-03.4 1110	4.1310	200.00 1111/111111
3/10/2021	01:26:06	7.42 pH	15.64 °C	420.21 µS/cm	0.78 mg/L		-62.3 mV	4.13 ft	200.00 ml/min
4:01 PM	01.20.00	7.42 pm	10.04	420.21 μο/οπ	0.70 mg/L		02.01117	4.1010	200.00 1111/111111

Samples

Sample ID:	Description:
GWC-20	Grab Sample.

Test Date / Time: 3/9/2021 2:32:36 PM

Project: GP-Plant Hammond **Operator Name:** Chad Russo

Location Name: GWC-21
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 8 ft
Total Depth: 18 ft

Initial Depth to Water: 4.9 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 13 ft
Estimated Total Volume Pumped:

3000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 0.07 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 18.50'

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
3/9/2021 2:32 PM	00:00	7.18 pH	15.75 °C	453.23 μS/cm	5.59 mg/L		-4.5 mV	4.90 ft	100.00 ml/min
3/9/2021 2:37 PM	05:00	7.14 pH	14.95 °C	459.49 μS/cm	5.45 mg/L	5.91 NTU	-0.2 mV	4.97 ft	100.00 ml/min
3/9/2021 2:42 PM	10:00	7.13 pH	14.85 °C	462.58 μS/cm	5.40 mg/L	6.72 NTU	2.1 mV	4.97 ft	100.00 ml/min
3/9/2021 2:47 PM	15:00	7.12 pH	14.63 °C	460.34 μS/cm	5.27 mg/L	11.34 NTU	-1.7 mV	4.97 ft	100.00 ml/min
3/9/2021 2:52 PM	20:00	7.11 pH	14.60 °C	457.91 μS/cm	5.10 mg/L	5.44 NTU	6.8 mV	4.97 ft	100.00 ml/min
3/9/2021 2:57 PM	25:00	7.08 pH	14.51 °C	455.39 μS/cm	4.98 mg/L	6.00 NTU	2.5 mV	4.97 ft	100.00 ml/min
3/9/2021 3:02 PM	30:00	7.04 pH	14.53 °C	449.65 μS/cm	4.70 mg/L	3.78 NTU	9.7 mV	4.97 ft	100.00 ml/min

Samples

Sample ID:	Description:
GWC-21	Grab Sample.

Test Date / Time: 3/9/2021 1:19:00 PM

Project: GP-Plant Hammond **Operator Name:** Chad Russo

Location Name: GWC-22

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 32 ft Total Depth: 42 ft

Initial Depth to Water: 2.09 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 37 ft
Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.89 ft Instrument Used: Aqua TROLL 400

Serial Number: 728550

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 42.29'

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
3/9/2021 1:19 PM	00:00	7.58 pH	17.10 °C	363.95 μS/cm	0.59 mg/L		-103.0 mV	2.09 ft	200.00 ml/min
3/9/2021 1:24 PM	05:00	7.51 pH	16.13 °C	365.57 μS/cm	0.36 mg/L	2.07 NTU	-124.7 mV	2.87 ft	200.00 ml/min
3/9/2021 1:29 PM	10:00	7.52 pH	15.94 °C	363.29 μS/cm	0.26 mg/L	1.55 NTU	-105.1 mV	2.90 ft	200.00 ml/min
3/9/2021 1:34 PM	15:00	7.51 pH	15.99 °C	361.68 μS/cm	0.22 mg/L	1.33 NTU	-125.2 mV	2.91 ft	200.00 ml/min
3/9/2021 1:39 PM	20:00	7.51 pH	16.14 °C	360.64 μS/cm	0.18 mg/L	1.77 NTU	-107.5 mV	2.92 ft	200.00 ml/min
3/9/2021 1:44 PM	25:00	7.52 pH	16.07 °C	359.25 μS/cm	0.15 mg/L	2.05 NTU	-128.1 mV	2.96 ft	200.00 ml/min
3/9/2021 1:49 PM	30:00	7.52 pH	16.13 °C	358.43 µS/cm	0.13 mg/L	2.58 NTU	-109.2 mV	2.98 ft	200.00 ml/min

Samples

Sample ID:	Description:
GWC-22	Grab Sample.

Test Date / Time: 3/9/2021 3:33:36 PM

Project: GP-Plant Hammond **Operator Name:** Vashish Taukoor

Location Name: GWC-23
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 40.09 ft
Total Depth: 50.09 ft

Initial Depth to Water: 8 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 44 ft
Estimated Total Volume Pumped:

18.5 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.45 ft Instrument Used: Aqua TROLL 400

Serial Number: 728563

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 50.09 ft

Weather Conditions:

Sunny 65 degrees F Low humidity

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
3/9/2021 3:33 PM	00:00	6.77 pH	17.12 °C	389.54 μS/cm	0.44 mg/L	7.85 NTU	-16.9 mV	8.45 ft	200.00 ml/min
3/9/2021 3:38 PM	05:00	6.79 pH	16.87 °C	373.84 μS/cm	0.43 mg/L	5.28 NTU	-30.7 mV	8.45 ft	200.00 ml/min
3/9/2021 3:43 PM	10:00	6.79 pH	16.76 °C	377.89 μS/cm	0.42 mg/L	4.58 NTU	-19.8 mV	8.45 ft	200.00 ml/min
3/9/2021 3:48 PM	15:00	6.79 pH	16.74 °C	376.34 μS/cm	0.43 mg/L	1.65 NTU	-20.0 mV	8.45 ft	200.00 ml/min
3/9/2021 3:53 PM	20:00	6.79 pH	16.80 °C	368.61 μS/cm	0.43 mg/L	3.02 NTU	-21.9 mV	8.45 ft	200.00 ml/min
3/9/2021 3:58 PM	25:00	6.81 pH	16.84 °C	357.70 μS/cm	0.43 mg/L	1.11 NTU	-24.6 mV	8.45 ft	200.00 ml/min
3/9/2021 4:03 PM	30:00	6.81 pH	17.05 °C	363.22 μS/cm	0.42 mg/L	2.34 NTU	-23.2 mV	8.45 ft	200.00 ml/min

Sample ID:	Description:
GWC-23	Grab Sample.

Test Date / Time: 8/9/2021 2:57:08 PM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: GWA-1
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 29.30 ft

Initial Depth to Water: 14.01 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 34.30 ft
Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.28 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 39.98

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/9/2021 2:57 PM	00:00	7.52 pH	35.76 °C	167.97 μS/cm	3.36 mg/L	27.30 NTU	107.4 mV	14.01 ft	200.00 ml/min
8/9/2021 3:02 PM	05:00	7.32 pH	23.07 °C	171.07 μS/cm	0.65 mg/L	5.61 NTU	98.8 mV	14.24 ft	200.00 ml/min
8/9/2021 3:07 PM	10:00	7.30 pH	21.91 °C	173.56 μS/cm	0.54 mg/L	3.54 NTU	58.9 mV	14.25 ft	200.00 ml/min
8/9/2021 3:12 PM	15:00	7.27 pH	21.28 °C	173.08 μS/cm	0.33 mg/L	2.62 NTU	24.4 mV	14.28 ft	200.00 ml/min
8/9/2021 3:17 PM	20:00	7.25 pH	21.17 °C	172.74 μS/cm	0.28 mg/L	3.71 NTU	14.3 mV	14.29 ft	200.00 ml/min
8/9/2021 3:22 PM	25:00	7.23 pH	21.11 °C	172.29 μS/cm	0.24 mg/L	2.50 NTU	8.4 mV	14.29 ft	200.00 ml/min
8/9/2021 3:27 PM	30:00	7.23 pH	21.33 °C	170.87 μS/cm	0.23 mg/L	2.76 NTU	3.7 mV	14.29 ft	200.00 ml/min

Sample ID:	Description:
GWA-1	Grab Sample.

Test Date / Time: 8/9/2021 1:24:54 PM **Project:** GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: GWA-2
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 15.81 ft

Initial Depth to Water: 6.45 ft

Pump Type: Peri

Tubing Type: Polyethylene

Pump Intake From TOC: 20.81 ft Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.14 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Three bottles: Metals, Inorganics, TDS. Total depth = 26.01

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/9/2021 1:24 PM	00:00	6.88 pH	27.18 °C	421.24 μS/cm	0.76 mg/L	1.73 NTU	-32.3 mV	6.61 ft	200.00 ml/min
8/9/2021 1:29 PM	05:00	6.88 pH	24.44 °C	373.31 μS/cm	0.50 mg/L	3.32 NTU	-40.3 mV	6.63 ft	200.00 ml/min
8/9/2021 1:34 PM	10:00	6.88 pH	24.98 °C	438.71 μS/cm	0.61 mg/L	3.90 NTU	-27.6 mV	6.59 ft	200.00 ml/min
8/9/2021 1:37 PM	12:37	6.89 pH	25.22 °C	435.50 μS/cm	0.59 mg/L	3.84 NTU	-28.5 mV	6.59 ft	200.00 ml/min
8/9/2021 1:42 PM	17:37	6.89 pH	24.83 °C	435.44 μS/cm	0.50 mg/L	1.83 NTU	-25.4 mV	6.59 ft	200.00 ml/min
8/9/2021 1:47 PM	22:37	6.89 pH	24.96 °C	433.88 μS/cm	0.47 mg/L	1.40 NTU	-40.8 mV	6.59 ft	200.00 ml/min
8/9/2021 1:52 PM	27:37	6.89 pH	24.50 °C	436.23 μS/cm	0.49 mg/L	1.77 NTU	-40.7 mV	6.59 ft	200.00 ml/min
8/9/2021 1:57 PM	32:37	6.90 pH	24.33 °C	434.46 μS/cm	0.44 mg/L	0.86 NTU	-41.0 mV	6.59 ft	200.00 ml/min

Sample ID:	Description:
GWA-2	Grab Sample.

Test Date / Time: 8/9/2021 3:01:25 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Initial Depth to Water: 5.15 ft

Location Name: GWA-3
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 11.09 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 16.09 ft
Estimated Total Volume Pumped:

7 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.33 ft Instrument Used: Aqua TROLL 400

Serial Number: 728634

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 21.65

Weather Conditions:

Sunny, 90 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/9/2021 3:01 PM	00:00	7.06 pH	26.23 °C	666.82 μS/cm	0.89 mg/L	12.20 NTU	-18.4 mV	5.45 ft	200.00 ml/min
8/9/2021 3:06 PM	05:00	7.01 pH	24.50 °C	753.03 μS/cm	0.76 mg/L	14.87 NTU	-18.3 mV	5.46 ft	200.00 ml/min
8/9/2021 3:11 PM	10:00	6.98 pH	24.05 °C	731.36 μS/cm	0.82 mg/L	11.90 NTU	-26.7 mV	5.46 ft	200.00 ml/min
8/9/2021 3:16 PM	15:00	6.95 pH	23.60 °C	735.33 µS/cm	0.81 mg/L	11.63 NTU	-23.1 mV	5.48 ft	200.00 ml/min
8/9/2021 3:21 PM	20:00	6.92 pH	23.73 °C	704.81 μS/cm	0.69 mg/L	8.83 NTU	-17.4 mV	5.48 ft	200.00 ml/min
8/9/2021 3:26 PM	25:00	6.90 pH	24.03 °C	674.89 μS/cm	0.67 mg/L	6.42 NTU	-14.5 mV	5.48 ft	200.00 ml/min
8/9/2021 3:31 PM	30:00	6.89 pH	24.45 °C	706.38 μS/cm	0.68 mg/L	3.73 NTU	-13.5 mV	5.48 ft	200.00 ml/min

Sample ID:	Description:
GWA-3	Grab Sample.

Test Date / Time: 8/9/2021 1:43:47 PM **Project: GP- Plant Hammond**

Operator Name: Thomas Kessler

Location Name: GWA-4

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 11.39 ft

Initial Depth to Water: 11.61 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 16.39
Estimated Total Volume Pumped:

7 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.19 ft **Instrument Used: Aqua TROLL 400**

Serial Number: 728634

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 21.75

Weather Conditions: Sunny, 90 degrees. Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/9/2021 1:43 PM	00:00	7.47 pH	23.78 °C	648.64 μS/cm	0.58 mg/L	0.49 NTU	114.5 mV	11.75 ft	200.00 ml/min
8/9/2021 1:48 PM	05:00	7.05 pH	22.08 °C	526.43 μS/cm	0.38 mg/L	0.42 NTU	104.9 mV	11.76 ft	200.00 ml/min
8/9/2021 1:53 PM	10:00	6.93 pH	21.81 °C	525.49 μS/cm	0.49 mg/L	0.61 NTU	126.7 mV	11.78 ft	200.00 ml/min
8/9/2021 1:58 PM	15:00	6.87 pH	21.91 °C	534.18 μS/cm	0.26 mg/L	0.33 NTU	126.4 mV	11.79 ft	200.00 ml/min
8/9/2021 2:03 PM	20:00	6.81 pH	22.63 °C	426.02 μS/cm	0.35 mg/L	0.38 NTU	125.5 mV	11.79 ft	200.00 ml/min
8/9/2021 2:08 PM	25:00	6.80 pH	22.52 °C	551.01 μS/cm	0.35 mg/L	0.45 NTU	120.3 mV	11.80 ft	200.00 ml/min
8/9/2021 2:13 PM	30:00	6.78 pH	22.61 °C	552.78 μS/cm	0.26 mg/L	0.35 NTU	112.7 mV	11.80 ft	200.00 ml/min
8/9/2021 2:18 PM	35:00	6.76 pH	22.51 °C	553.88 μS/cm	0.44 mg/L	0.26 NTU	103.3 mV	11.80 ft	200.00 ml/min

Sample ID:	Description:
GWA-4	Grab Sample.

Test Date / Time: 8/10/2021 8:45:32 AM

Project: GP-Plant Hammond **Operator Name**: Thomas Kessler

Location Name: GWA-11 Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 25.90 ft

Initial Depth to Water: 17.60 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 30.90 ft
Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.37 ft Instrument Used: Aqua TROLL 400

Serial Number: 728634

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 36.45 ft.

Weather Conditions:

Sunny, 80 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 8:45 AM	00:00	6.91 pH	18.33 °C	183.65 μS/cm	0.30 mg/L	6.71 NTU	-18.1 mV	17.97 ft	200.00 ml/min
8/10/2021 8:50 AM	05:00	6.87 pH	17.62 °C	186.74 μS/cm	0.21 mg/L	12.25 NTU	-21.1 mV	17.97 ft	200.00 ml/min
8/10/2021 8:55 AM	10:00	6.86 pH	17.62 °C	187.19 μS/cm	0.20 mg/L	2.83 NTU	-31.2 mV	17.97 ft	200.00 ml/min
8/10/2021 9:00 AM	15:00	6.85 pH	17.87 °C	188.27 μS/cm	0.14 mg/L	2.00 NTU	-20.9 mV	17.97 ft	200.00 ml/min
8/10/2021 9:05 AM	20:00	6.84 pH	18.00 °C	187.43 μS/cm	0.13 mg/L	0.82 NTU	-20.5 mV	17.97 ft	200.00 ml/min
8/10/2021 9:10 AM	25:00	6.84 pH	17.85 °C	188.25 μS/cm	0.12 mg/L	0.84 NTU	-20.0 mV	17.97 ft	200.00 ml/min
8/10/2021 9:15 AM	30:00	6.84 pH	17.71 °C	188.19 μS/cm	0.11 mg/L	1.21 NTU	-19.3 mV	17.97 ft	200.00 ml/min

Sample ID:	Description:
GWA-11	Grab Sample.

Test Date / Time: 8/10/2021 9:10:06 AM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: GWC-5
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 11.41 ft
Total Depth: 21.41 ft

Initial Depth to Water: 5.59 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 16.41 ft
Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.05 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 21.60

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 9:10 AM	00:00	6.87 pH	24.87 °C	578.32 μS/cm	1.77 mg/L	7.79 NTU	10.0 mV	5.59 ft	200.00 ml/min
8/10/2021 9:15 AM	05:00	6.88 pH	23.15 °C	582.11 μS/cm	0.77 mg/L	8.72 NTU	-8.0 mV	5.64 ft	200.00 ml/min
8/10/2021 9:20 AM	10:00	6.87 pH	23.08 °C	584.60 μS/cm	0.42 mg/L	4.82 NTU	-16.6 mV	5.64 ft	200.00 ml/min
8/10/2021 9:25 AM	15:00	6.88 pH	23.16 °C	584.09 μS/cm	0.21 mg/L	4.93 NTU	-21.5 mV	5.64 ft	200.00 ml/min
8/10/2021 9:30 AM	20:00	6.87 pH	23.21 °C	583.04 μS/cm	0.16 mg/L	2.88 NTU	-14.6 mV	5.64 ft	200.00 ml/min
8/10/2021 9:35 AM	25:00	6.87 pH	23.18 °C	581.22 μS/cm	0.13 mg/L	2.44 NTU	-16.3 mV	5.64 ft	200.00 ml/min
8/10/2021 9:40 AM	30:00	6.87 pH	23.25 °C	578.62 μS/cm	0.12 mg/L	4.40 NTU	-28.7 mV	5.64 ft	200.00 ml/min

Sample II	D:	Description:
GWC-5	;	Grab Sample.

Test Date / Time: 8/10/2021 11:17:21 AM **Project:** GP-Plant Hammond bladder **Operator Name:** Connor Cain

Location Name: GWC-6
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 32.58 ft
Total Depth: 42.58 ft

Total Deptil. 42.30 it

Initial Depth to Water: 16.34 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 37.58 ft
Estimated Total Volume Pumped:

8 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.14 ft Instrument Used: Aqua TROLL 400

Serial Number: 728541

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 42.82

Weather Conditions:

Sunny, 75F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 11:17 AM	00:00	7.11 pH	23.12 °C	474.71 μS/cm	0.81 mg/L	29.80 NTU	-60.0 mV	16.46 ft	200.00 ml/min
8/10/2021 11:22 AM	05:00	7.08 pH	21.58 °C	483.35 μS/cm	0.70 mg/L	19.00 NTU	-57.5 mV	16.46 ft	200.00 ml/min
8/10/2021 11:27 AM	10:00	7.08 pH	21.60 °C	482.77 μS/cm	0.66 mg/L	22.50 NTU	-58.4 mV	16.46 ft	200.00 ml/min
8/10/2021 11:32 AM	15:00	7.07 pH	21.84 °C	488.93 μS/cm	0.54 mg/L	13.80 NTU	-76.6 mV	16.47 ft	200.00 ml/min
8/10/2021 11:37 AM	20:00	7.07 pH	21.54 °C	485.50 μS/cm	0.58 mg/L	11.20 NTU	-58.2 mV	16.47 ft	200.00 ml/min
8/10/2021 11:42 AM	25:00	7.06 pH	21.62 °C	492.94 μS/cm	0.51 mg/L	7.15 NTU	-61.9 mV	16.47 ft	200.00 ml/min
8/10/2021 11:47 AM	30:00	7.06 pH	21.85 °C	490.55 μS/cm	0.51 mg/L	6.30 NTU	-78.1 mV	16.47 ft	200.00 ml/min
8/10/2021 11:52 AM	35:00	7.06 pH	22.00 °C	493.18 μS/cm	0.47 mg/L	4.07 NTU	-63.4 mV	16.48 ft	200.00 ml/min

Sample ID:	Description:
GWC-6	Grab Sample.

Test Date / Time: 8/10/2021 10:17:00 AM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: GWC-7
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 21.91 ft
Total Depth: 31.91 ft

Initial Depth to Water: 15.7 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 26.91 ft
Estimated Total Volume Pumped:

11.5 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 0.16 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total Depth = 32.20

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 10:17 AM	00:00	6.69 pH	29.79 °C	475.03 μS/cm	3.03 mg/L	23.30 NTU	-64.3 mV	15.70 ft	200.00 ml/min
8/10/2021 10:22 AM	05:00	6.53 pH	23.07 °C	490.68 μS/cm	0.27 mg/L	56.60 NTU	-59.1 mV	15.90 ft	200.00 ml/min
8/10/2021 10:27 AM	10:00	6.49 pH	22.62 °C	481.46 μS/cm	0.17 mg/L	30.50 NTU	-54.5 mV	15.92 ft	200.00 ml/min
8/10/2021 10:32 AM	15:00	6.44 pH	22.76 °C	468.95 μS/cm	0.15 mg/L	15.70 NTU	-49.9 mV	15.92 ft	200.00 ml/min
8/10/2021 10:37 AM	20:00	6.39 pH	22.49 °C	457.11 μS/cm	0.13 mg/L	18.50 NTU	-42.9 mV	15.92 ft	200.00 ml/min
8/10/2021 10:42 AM	25:00	6.35 pH	22.60 °C	450.22 μS/cm	0.12 mg/L	13.80 NTU	-39.1 mV	15.92 ft	200.00 ml/min
8/10/2021 10:47 AM	30:00	6.34 pH	22.58 °C	446.94 μS/cm	0.11 mg/L	9.04 NTU	-37.3 mV	15.92 ft	200.00 ml/min
8/10/2021 10:52 AM	35:00	6.33 pH	23.21 °C	449.94 μS/cm	0.12 mg/L	7.20 NTU	-39.5 mV	15.92 ft	200.00 ml/min
8/10/2021 10:57 AM	40:00	6.31 pH	23.44 °C	442.95 μS/cm	0.13 mg/L	9.50 NTU	-36.4 mV	15.92 ft	200.00 ml/min
8/10/2021 11:02 AM	45:00	6.31 pH	23.79 °C	444.38 μS/cm	0.13 mg/L	6.68 NTU	-39.2 mV	15.85 ft	100.00 ml/min
8/10/2021 11:07 AM	50:00	6.30 pH	23.99 °C	446.56 μS/cm	0.14 mg/L	9.80 NTU	-39.6 mV	15.85 ft	100.00 ml/min
8/10/2021 11:12 AM	55:00	6.30 pH	24.20 °C	444.33 μS/cm	0.15 mg/L	7.23 NTU	-39.3 mV	15.85 ft	100.00 ml/min
8/10/2021 11:17 AM	01:00:00	6.31 pH	24.17 °C	447.98 μS/cm	0.15 mg/L	6.58 NTU	-41.3 mV	15.85 ft	100.00 ml/min

8/10/2021	01:05:00	6.30 pH	24.08 °C	447.15 µS/cm	0.15 mg/L	5.58 NTU	-40.8 mV	15.86 ft	100.00 ml/min
11:22 AM	01.05.00	6.30 μπ	24.00 C	447.15 μ5/611	0.15 Hig/L	5.56 NTU	-40.6 1117	15.00 11	100.00 1111/111111
8/10/2021	01:10:00	6.30 pH	24.47 °C	445.85 µS/cm	0.14 mg/L	5.25 NTU	-46.8 mV	15.86 ft	100.00 ml/min
11:27 AM	01:10:00	6.30 pm	24.47 C	445.65 μ5/011	0.14 mg/L	5.25 1110	-40.0 1110	15.00 11	100.00 111/111111
8/10/2021	01:15:00	6.29 pH	24.69 °C	443.90 µS/cm	0.15 mg/L	4.50 NTU	-40.6 mV	15.86 ft	100.00 ml/min
11:32 AM	01.15.00	0.29 pn	24.09 0	443.90 μ3/011	0.15 Hig/L	4.50 NTO	-40.01110	13.00 11	100.00 1111/111111

Samples

Sample ID:	Description:
GWC-7	Grab Sample.

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/10/2021 1:10:32 PM

Project: GP-Plant Hammond **Operator Name:** Connor Cain

Initial Depth to Water: 12.44 ft

Location Name: GWC-8
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 17.13 ft

Initial Depth to Water: 12.44 ft

Pump Type: Peri

Tubing Type: Polyethlylene
Pump Intake From TOC: 22.13 ft
Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 2.54 ft Instrument Used: Aqua TROLL 400

Serial Number: 728541

Test Notes: Metals, Inorganics, TDS, Total depth = 27.35

Weather Conditions: Sunny, 85 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 1:10 PM	00:00	8.19 pH	35.10 °C	0.18 μS/cm	6.73 mg/L	26.50 NTU	59.7 mV	14.35 ft	200.00 ml/min
8/10/2021 1:15 PM	05:00	6.71 pH	23.34 °C	746.10 μS/cm	1.11 mg/L	24.60 NTU	-69.0 mV	14.69 ft	200.00 ml/min
8/10/2021 1:20 PM	10:00	6.71 pH	22.38 °C	767.44 µS/cm	1.08 mg/L	21.40 NTU	-77.5 mV	14.76 ft	200.00 ml/min
8/10/2021 1:25 PM	15:00	6.67 pH	21.85 °C	797.59 μS/cm	0.92 mg/L	16.20 NTU	-72.0 mV	14.88 ft	200.00 ml/min
8/10/2021 1:30 PM	20:00	6.65 pH	21.73 °C	806.63 μS/cm	0.88 mg/L	8.59 NTU	-70.8 mV	14.98 ft	200.00 ml/min
8/10/2021 1:35 PM	25:00	6.65 pH	21.73 °C	807.94 μS/cm	0.71 mg/L	4.19 NTU	-73.5 mV	14.98 ft	200.00 ml/min
8/10/2021 1:40 PM	30:00	6.65 pH	21.51 °C	795.79 μS/cm	0.72 mg/L	3.73 NTU	-73.9 mV	14.98 ft	200.00 ml/min

Sample ID:	Description:
GWC-8	Grab Sample.

Test Date / Time: 8/10/2021 12:34:57 PM

Project: GP-Plant Hammond peri **Operator Name:** Ashley Ramsey

Location Name: GWC-9
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 41.91 ft
Total Depth: 51.91 ft

Initial Depth to Water: 15.4 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 46.91 ft
Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.18 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 52.44

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 12:34 PM	00:00	7.17 pH	30.31 °C	276.35 μS/cm	3.82 mg/L	18.00 NTU	57.8 mV	15.40 ft	200.00 ml/min
8/10/2021 12:39 PM	05:00	6.97 pH	23.30 °C	322.26 μS/cm	1.44 mg/L	5.63 NTU	-79.4 mV	15.56 ft	200.00 ml/min
8/10/2021 12:44 PM	10:00	6.95 pH	22.85 °C	328.80 μS/cm	0.50 mg/L	4.70 NTU	-90.4 mV	15.58 ft	200.00 ml/min
8/10/2021 12:49 PM	15:00	6.95 pH	22.68 °C	329.73 μS/cm	0.32 mg/L	3.66 NTU	-91.5 mV	15.58 ft	200.00 ml/min
8/10/2021 12:54 PM	20:00	6.92 pH	22.74 °C	332.03 μS/cm	0.28 mg/L	4.86 NTU	-91.6 mV	15.58 ft	200.00 ml/min
8/10/2021 12:59 PM	25:00	6.93 pH	22.96 °C	329.95 μS/cm	0.26 mg/L	3.09 NTU	-91.5 mV	15.58 ft	200.00 ml/min
8/10/2021 1:04 PM	30:00	6.91 pH	23.03 °C	329.08 μS/cm	0.23 mg/L	3.51 NTU	-91.1 mV	15.58 ft	200.00 ml/min

Sample ID:	Description:
GWC-9	Grab Sample.

Test Date / Time: 8/10/2021 9:53:33 AM

Project: GP-Plant Hammond **Operator Name**: Thomas Kessler

Location Name: GWC-10
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 23.98 ft

Initial Depth to Water: 15.36 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 28.98 ft
Estimated Total Volume Pumped:

23 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.04 ft Instrument Used: Aqua TROLL 400

Serial Number: 728634

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 34.50

Weather Conditions:

Sunny, 80 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 9:53 AM	00:00	7.37 pH	19.67 °C	326.04 μS/cm	0.75 mg/L	181.00 NTU	-81.3 mV	15.38 ft	200.00 ml/min
8/10/2021 9:58 AM	05:00	7.43 pH	18.68 °C	327.71 μS/cm	0.58 mg/L	97.20 NTU	-98.9 mV	15.38 ft	200.00 ml/min
8/10/2021 10:03 AM	10:00	7.44 pH	18.69 °C	323.50 μS/cm	0.53 mg/L	69.60 NTU	-99.7 mV	15.40 ft	200.00 ml/min
8/10/2021 10:08 AM	15:00	7.44 pH	18.77 °C	320.97 μS/cm	0.51 mg/L	57.60 NTU	-82.6 mV	15.40 ft	200.00 ml/min
8/10/2021 10:13 AM	20:00	7.45 pH	18.53 °C	316.25 μS/cm	0.50 mg/L	49.80 NTU	-81.8 mV	15.40 ft	200.00 ml/min
8/10/2021 10:18 AM	25:00	7.45 pH	18.67 °C	315.93 μS/cm	0.52 mg/L	35.60 NTU	-83.5 mV	15.40 ft	200.00 ml/min
8/10/2021 10:23 AM	30:00	7.44 pH	18.73 °C	330.09 µS/cm	0.48 mg/L	26.20 NTU	-85.2 mV	15.40 ft	200.00 ml/min
8/10/2021 10:28 AM	35:00	7.45 pH	18.81 °C	328.03 µS/cm	0.52 mg/L	22.60 NTU	-85.7 mV	15.40 ft	200.00 ml/min
8/10/2021 10:33 AM	40:00	7.44 pH	18.94 °C	326.01 µS/cm	0.53 mg/L	18.20 NTU	-86.1 mV	15.40 ft	200.00 ml/min
8/10/2021 10:38 AM	45:00	7.44 pH	18.88 °C	322.74 μS/cm	0.54 mg/L	14.90 NTU	-86.7 mV	15.40 ft	200.00 ml/min
8/10/2021 10:43 AM	50:00	7.45 pH	18.79 °C	318.53 μS/cm	0.51 mg/L	12.00 NTU	-86.1 mV	15.40 ft	200.00 ml/min
8/10/2021 10:48 AM	55:00	7.44 pH	19.08 °C	318.17 μS/cm	0.51 mg/L	11.10 NTU	-104.3 mV	15.40 ft	200.00 ml/min
8/10/2021 10:53 AM	01:00:00	7.44 pH	19.00 °C	316.23 μS/cm	0.51 mg/L	11.60 NTU	-87.0 mV	15.40 ft	200.00 ml/min

8/10/2021	01:05:00	7.45 pH	19.00 °C	317.86 µS/cm	0.50 mg/L	9.22 NTU	-103.9 mV	15.40 ft	200.00 ml/min
10:58 AM	01.00.00	о р		011100 µ0 70111		0.22 0			200100 1111/111111
8/10/2021	01:10:00	7.44 pH	19.15 °C	317.31 µS/cm	0.49 mg/L	11.00 NTU	-88.2 mV	15.40 ft	200.00 ml/min
11:03 AM	01.10.00	7.44 pm	13.13	317.31 μο/οπ	0.43 mg/L	11.001110	-00.2 IIIV	13.4011	200.00 111/111111
8/10/2021	01:15:00	7.44 pH	19.29 °C	316.93 µS/cm	0.48 mg/L	8.32 NTU	-88.5 mV	15.40 ft	200.00 ml/min
11:08 AM	01.15.00	7.44 pm	19.29 0	310.93 µ3/сті	0.40 Hig/L	0.32 1110	-00.5 111	13.40 10	200.00 111/111111
8/10/2021	01:20:00	7.45 pH	19.05 °C	312.31 µS/cm	0.48 mg/L	7.97 NTU	-104.2 mV	15.40 ft	200.00 ml/min
11:13 AM	01.20.00	7.45 pm	19.05	312.31 μ3/6/11	0.40 Hig/L	7.97 1110	-104.21110	13.40 10	200.00 111/111111
8/10/2021	01:25:00	7.45 pH	19.19 °C	315.87 µS/cm	0.50 mg/L	6.78 NTU	-88.1 mV	15.40 ft	200.00 ml/min
11:18 AM	01.25.00	7.45 pm	19.19	313.07 μ3/0111	0.50 mg/L	0.70 1410	-00.11117	13.4011	200.00 111/111111
8/10/2021	01:30:00	7.44 pH	19.17 °C	318.27 µS/cm	0.50 mg/L	6.95 NTU	-89.0 mV	15.40 ft	200.00 ml/min
11:23 AM	01.30.00	7.44 pm	19.17	316.27 μ3/011	0.30 mg/L	0.95 1110	-09.0 1110	15.40 10	200.00 111/111111
8/10/2021	01:35:00	7.44 pH	19.36 °C	320.04 µS/cm	0.50 mg/L	6.49 NTU	-89.8 mV	15.40 ft	200.00 ml/min
11:28 AM	01.55.00	7.44 pm	19.50 C	320.04 μ3/6/11	0.50 mg/L	0.49 1110	-09.01110	13.4011	200.00 111/111111
8/10/2021	01:40:00	7.45 pH	19.33 °C	320.53 µS/cm	0.50 mg/L	6.08 NTU	-89.2 mV	15.40 ft	200.00 ml/min
11:33 AM	01.40.00	7.43 pm	19.33 C	320.33 μ3/6/11	0.30 mg/L	0.00 1110	-09.2 1110	15.40 11	200.00 111/111111
8/10/2021	01:45:00	7.45 pH	19.27 °C	321.11 µS/cm	0.51 mg/l	5.10 NTU	-89.6 mV	15.40 ft	200.00 ml/min
11:38 AM	01.45.00	7.45 pH	19.27	321.11 μ3/CIII	0.51 mg/L	3.10 N10	-09.0 1110	15.40 10	200.00 111/11111
8/10/2021	01:50:00	7 /F nU	19.27 °C	210 01 uS/om	0.40 mg/l	4 24 NTU	90.2 m\/	15 10 ft	200 00 ml/min
11:43 AM	01:50:00	7.45 pH	19.27	319.01 μS/cm	0.49 mg/L	4.21 NTU	-89.3 mV	15.40 ft	200.00 ml/min

Samples

Sample ID:	Description:
GWC-10	Grab Sample.

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/10/2021 1:45:53 PM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: GWC-18
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 47.02 ft
Total Depth: 57.02 ft

Initial Depth to Water: 14.74 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 52.02 ft
Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.96 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 57.10

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 1:45 PM	00:00	7.31 pH	36.20 °C	343.33 μS/cm	3.00 mg/L	2.21 NTU	63.0 mV	14.44 ft	200.00 ml/min
8/10/2021 1:50 PM	05:00	7.36 pH	22.67 °C	375.32 μS/cm	0.38 mg/L	1.69 NTU	78.9 mV	15.55 ft	200.00 ml/min
8/10/2021 1:55 PM	10:00	7.38 pH	21.93 °C	376.58 μS/cm	0.28 mg/L	1.87 NTU	61.9 mV	15.58 ft	200.00 ml/min
8/10/2021 2:00 PM	15:00	7.38 pH	23.13 °C	379.35 μS/cm	0.29 mg/L	2.86 NTU	59.3 mV	15.67 ft	200.00 ml/min
8/10/2021 2:05 PM	20:00	7.38 pH	23.12 °C	375.69 μS/cm	0.27 mg/L	2.38 NTU	55.6 mV	15.70 ft	200.00 ml/min
8/10/2021 2:10 PM	25:00	7.40 pH	23.09 °C	372.71 μS/cm	0.23 mg/L	2.15 NTU	41.4 mV	15.70 ft	200.00 ml/min
8/10/2021 2:15 PM	30:00	7.39 pH	23.11 °C	374.47 μS/cm	0.23 mg/L	1.82 NTU	33.7 mV	15.70 ft	200.00 ml/min

Sample ID:	Description:
GWC-18	Grab Sample.

Test Date / Time: 8/10/2021 3:00:44 PM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: GWC-19
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 47.51 ft

Initial Depth to Water: 19.73 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 52.51 ft
Estimated Total Volume Pumped:

4.5 Liters

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 1.19 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 56.90

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 3:00 PM	00:00	7.53 pH	38.82 °C	356.03 μS/cm	3.97 mg/L	9.77 NTU	26.8 mV	19.73 ft	200.00 ml/min
8/10/2021 3:05 PM	05:00	7.50 pH	26.49 °C	367.94 μS/cm	0.92 mg/L	10.96 NTU	-72.2 mV	20.92 ft	200.00 ml/min
8/10/2021 3:10 PM	10:00	7.50 pH	25.51 °C	375.62 μS/cm	0.66 mg/L	7.11 NTU	-91.4 mV	20.92 ft	100.00 ml/min
8/10/2021 3:15 PM	15:00	7.51 pH	25.07 °C	376.82 μS/cm	0.50 mg/L	5.32 NTU	-92.5 mV	20.92 ft	100.00 ml/min
8/10/2021 3:20 PM	20:00	7.50 pH	25.17 °C	379.57 μS/cm	0.45 mg/L	8.63 NTU	-79.2 mV	20.92 ft	100.00 ml/min
8/10/2021 3:25 PM	25:00	7.50 pH	25.42 °C	381.21 μS/cm	0.40 mg/L	6.27 NTU	-80.6 mV	20.92 ft	100.00 ml/min
8/10/2021 3:30 PM	30:00	7.50 pH	25.32 °C	377.88 μS/cm	0.37 mg/L	5.02 NTU	-79.6 mV	20.92 ft	100.00 ml/min
8/10/2021 3:35 PM	35:00	7.48 pH	25.10 °C	384.64 μS/cm	0.35 mg/L	4.98 NTU	-76.6 mV	20.92 ft	100.00 ml/min
8/10/2021 3:40 PM	40:00	7.49 pH	24.92 °C	382.77 μS/cm	0.31 mg/L	4.08 NTU	-90.0 mV	20.92 ft	100.00 ml/min
8/10/2021 3:43 PM	42:39	7.62 pH	25.13 °C	0.91 μS/cm	4.65 mg/L	-	21.3 mV	20.92 ft	100.00 ml/min

Sample ID:	Description:
GWC-19	Grab Sample.

Test Date / Time: 8/10/2021 2:55:13 PM

Project: GP-Plant Hammond **Operator Name:** Connor Cain

Location Name: GWC-20 Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 24.18 ft

Initial Depth to Water: 5.19 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 29.13 ft
Estimated Total Volume Pumped:

14 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.99 ft Instrument Used: Aqua TROLL 400

Serial Number: 728541

Test Notes: Three bottles: Metals, Inorganics, TDS. Total depth = 31.45

Weather Conditions: Sunny, 90 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 2:55 PM	00:00	7.42 pH	25.37 °C	392.68 μS/cm	0.65 mg/L	15.50 NTU	-141.6 mV	5.83 ft	200.00 ml/min
8/10/2021 3:00 PM	05:00	7.30 pH	22.84 °C	414.43 μS/cm	0.50 mg/L	12.30 NTU	-137.9 mV	6.02 ft	200.00 ml/min
8/10/2021 3:05 PM	10:00	7.30 pH	22.63 °C	411.09 μS/cm	0.47 mg/L	14.40 NTU	-147.1 mV	6.06 ft	200.00 ml/min
8/10/2021 3:10 PM	15:00	7.30 pH	22.36 °C	410.03 μS/cm	0.70 mg/L	13.30 NTU	-144.4 mV	6.09 ft	200.00 ml/min
8/10/2021 3:15 PM	20:00	7.31 pH	22.36 °C	408.57 μS/cm	0.65 mg/L	13.10 NTU	-143.1 mV	6.11 ft	200.00 ml/min
8/10/2021 3:20 PM	25:00	7.30 pH	22.46 °C	411.66 μS/cm	0.60 mg/L	11.20 NTU	-142.5 mV	6.14 ft	200.00 ml/min
8/10/2021 3:25 PM	30:00	7.31 pH	22.40 °C	406.06 μS/cm	0.44 mg/L	11.20 NTU	-142.9 mV	6.14 ft	200.00 ml/min
8/10/2021 3:30 PM	35:00	7.30 pH	22.39 °C	408.38 μS/cm	0.43 mg/L	11.80 NTU	-141.8 mV	6.18 ft	200.00 ml/min
8/10/2021 3:35 PM	40:00	7.30 pH	22.40 °C	408.85 μS/cm	0.42 mg/L	9.36 NTU	-140.9 mV	6.18 ft	200.00 ml/min
8/10/2021 3:40 PM	45:00	7.30 pH	22.36 °C	408.71 μS/cm	0.45 mg/L	7.85 NTU	-140.6 mV	6.18 ft	200.00 ml/min
8/10/2021 3:45 PM	50:00	7.30 pH	22.25 °C	405.24 μS/cm	0.44 mg/L	8.58 NTU	-139.1 mV	6.18 ft	200.00 ml/min
8/10/2021 3:50 PM	55:00	7.30 pH	22.45 °C	406.35 μS/cm	0.44 mg/L	5.49 NTU	-140.4 mV	6.18 ft	200.00 ml/min
8/10/2021 3:55 PM	01:00:00	7.31 pH	22.18 °C	405.31 μS/cm	0.35 mg/L	5.16 NTU	-142.6 mV	6.18 ft	200.00 ml/min

8/10/2021	04.05.00	7.04 -11	00.04.00	407.400/2	0.00/	4.70 NITU	400.0\/	C 40 ft	200 001/
4:00 PM	01:05:00	7.31 pH	22.01 °C	407.42 µS/cm	0.38 mg/L	4.76 NTU	-128.2 mV	6.18 ft	200.00 ml/min

Samples

Sample ID:	Description:
GWC-20	Grab Sample.

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/10/2021 2:38:45 PM

Project: GP-Plant Hammond **Operator Name**: Thomas Kessler

Location Name: GWC-21 Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 8.23 ft

Initial Depth to Water: 7.39 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 13.23 ft
Estimated Total Volume Pumped:

19 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.23 ft Instrument Used: Aqua TROLL 400

Serial Number: 728634

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 18.50

Weather Conditions:

Sunny, 90 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 2:38 PM	00:00	7.08 pH	22.67 °C	556.96 μS/cm	0.38 mg/L	0.95 NTU	-55.6 mV	7.62 ft	200.00 ml/min
8/10/2021 2:43 PM	05:00	7.07 pH	21.93 °C	564.95 μS/cm	0.23 mg/L	2.59 NTU	-58.2 mV	7.62 ft	200.00 ml/min
8/10/2021 2:48 PM	10:00	7.01 pH	21.94 °C	535.10 μS/cm	0.28 mg/L	2.53 NTU	-53.1 mV	7.62 ft	200.00 ml/min
8/10/2021 2:53 PM	15:00	6.71 pH	22.16 °C	426.24 μS/cm	0.93 mg/L	1.81 NTU	-26.7 mV	7.62 ft	200.00 ml/min
8/10/2021 2:58 PM	20:00	6.61 pH	22.25 °C	404.70 μS/cm	0.93 mg/L	1.31 NTU	-14.3 mV	7.62 ft	200.00 ml/min
8/10/2021 3:03 PM	25:00	6.56 pH	22.34 °C	389.67 μS/cm	0.96 mg/L	1.12 NTU	-10.6 mV	7.62 ft	200.00 ml/min
8/10/2021 3:08 PM	30:00	6.48 pH	22.30 °C	359.48 μS/cm	0.98 mg/L	0.92 NTU	-2.9 mV	7.62 ft	200.00 ml/min
8/10/2021 3:13 PM	35:00	6.40 pH	22.26 °C	330.95 μS/cm	0.86 mg/L	0.66 NTU	2.8 mV	7.62 ft	200.00 ml/min
8/10/2021 3:18 PM	40:00	6.34 pH	22.28 °C	307.56 μS/cm	0.70 mg/L	0.77 NTU	11.4 mV	7.62 ft	200.00 ml/min
8/10/2021 3:23 PM	45:00	6.27 pH	22.37 °C	289.92 μS/cm	0.52 mg/L	0.70 NTU	18.1 mV	7.62 ft	200.00 ml/min
8/10/2021 3:28 PM	50:00	6.23 pH	22.25 °C	277.97 μS/cm	0.39 mg/L	1.13 NTU	22.6 mV	7.62 ft	200.00 ml/min
8/10/2021 3:33 PM	55:00	6.18 pH	22.25 °C	265.43 μS/cm	0.30 mg/L	0.49 NTU	26.5 mV	7.62 ft	200.00 ml/min
8/10/2021 3:38 PM	01:00:00	6.16 pH	22.23 °C	258.70 μS/cm	0.24 mg/L	0.67 NTU	28.6 mV	7.62 ft	200.00 ml/min

8/10/2021 3:43 PM	01:05:00	6.13 pH	22.26 °C	248.63 μS/cm	0.21 mg/L	0.44 NTU	32.4 mV	7.62 ft	200.00 ml/min
8/10/2021 3:48 PM	01:10:00	6.11 pH	22.26 °C	242.93 μS/cm	0.17 mg/L	0.41 NTU	33.4 mV	7.62 ft	200.00 ml/min
8/10/2021 3:53 PM	01:15:00	6.08 pH	22.28 °C	236.09 μS/cm	0.16 mg/L	0.63 NTU	35.4 mV	7.62 ft	200.00 ml/min
8/10/2021 3:58 PM	01:20:00	6.07 pH	22.25 °C	234.53 μS/cm	0.15 mg/L	0.56 NTU	37.2 mV	7.62 ft	200.00 ml/min
8/10/2021 4:03 PM	01:25:00	6.06 pH	22.30 °C	230.44 μS/cm	0.14 mg/L	0.48 NTU	36.9 mV	7.62 ft	200.00 ml/min
8/10/2021 4:08 PM	01:30:00	6.05 pH	22.30 °C	226.57 μS/cm	0.13 mg/L	0.63 NTU	38.4 mV	7.62 ft	200.00 ml/min

Samples

Sample ID:	Description:
GWC-21	Grab Sample.

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/10/2021 1:02:17 PM

Project: GP-Plant Hammond **Operator Name**: Thomas Kessler

Location Name: GWC-22
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 31.91 ft

Initial Depth to Water: 4.30 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 36.91 ft
Estimated Total Volume Pumped:

12 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.65 ft Instrument Used: Aqua TROLL 400

Serial Number: 728634

Test Notes:

Three bottles: Metals, TDS, Inorganics. Total depth = 42.30

Weather Conditions:

Sunny, 85 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 1:02 PM	00:00	7.66 pH	23.65 °C	355.79 μS/cm	1.94 mg/L	2.69 NTU	-150.5 mV	4.84 ft	200.00 ml/min
8/10/2021 1:07 PM	05:00	7.68 pH	22.58 °C	360.28 μS/cm	1.50 mg/L	1.01 NTU	-169.0 mV	4.84 ft	200.00 ml/min
8/10/2021 1:12 PM	10:00	7.68 pH	22.57 °C	361.38 μS/cm	1.41 mg/L	0.96 NTU	-153.8 mV	4.89 ft	200.00 ml/min
8/10/2021 1:17 PM	15:00	7.68 pH	22.35 °C	358.71 μS/cm	1.25 mg/L	3.61 NTU	-153.5 mV	4.93 ft	200.00 ml/min
8/10/2021 1:22 PM	20:00	7.68 pH	21.81 °C	360.63 μS/cm	1.28 mg/L	1.45 NTU	-153.5 mV	4.93 ft	200.00 ml/min
8/10/2021 1:27 PM	25:00	7.68 pH	22.27 °C	358.59 μS/cm	1.23 mg/L	2.35 NTU	-170.2 mV	4.93 ft	200.00 ml/min
8/10/2021 1:32 PM	30:00	7.69 pH	22.13 °C	356.37 μS/cm	1.27 mg/L	2.10 NTU	-169.0 mV	4.95 ft	200.00 ml/min
8/10/2021 1:37 PM	35:00	7.68 pH	22.26 °C	356.59 μS/cm	1.15 mg/L	0.69 NTU	-151.5 mV	4.95 ft	200.00 ml/min
8/10/2021 1:42 PM	40:00	7.69 pH	22.37 °C	352.22 μS/cm	1.05 mg/L	2.66 NTU	-166.5 mV	4.95 ft	200.00 ml/min
8/10/2021 1:47 PM	45:00	7.69 pH	22.37 °C	355.32 μS/cm	0.24 mg/L	0.93 NTU	-148.1 mV	4.95 ft	200.00 ml/min
8/10/2021 1:52 PM	50:00	7.76 pH	22.55 °C	358.15 μS/cm	0.21 mg/L	1.91 NTU	-139.5 mV	4.95 ft	200.00 ml/min
8/10/2021 1:57 PM	55:00	7.75 pH	22.43 °C	359.05 μS/cm	0.12 mg/L	3.90 NTU	-158.3 mV	4.95 ft	200.00 ml/min

Sample ID:	Description:
GWC-22	Grab Sample.

Test Date / Time: 8/10/2021 9:12:22 AM

Project: GP-Plant Hammond **Operator Name:** Connor Cain

Location Name: GWC-23
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 39.73 ft
Total Depth: 49.73 ft

Initial Depth to Water: 12.26 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 44.73 ft
Estimated Total Volume Pumped:

11 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.45 ft Instrument Used: Aqua TROLL 400

Serial Number: 728541

Test Notes:

Three bottles: metals, TDS, inorganics. Total depth = 49.73

Weather Conditions: Sunny, 75 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/10/2021 9:12 AM	00:00	6.87 pH	18.38 °C	431.32 μS/cm	1.52 mg/L	7.64 NTU	-34.9 mV	12.71 ft	200.00 ml/min
8/10/2021 9:17 AM	05:00	6.88 pH	18.39 °C	422.90 μS/cm	1.82 mg/L	6.47 NTU	-29.5 mV	12.71 ft	200.00 ml/min
8/10/2021 9:22 AM	10:00	6.89 pH	18.83 °C	415.56 μS/cm	1.16 mg/L	7.45 NTU	-30.9 mV	12.71 ft	200.00 ml/min
8/10/2021 9:27 AM	15:00	6.88 pH	18.70 °C	408.90 μS/cm	1.13 mg/L	5.85 NTU	-47.8 mV	12.71 ft	200.00 ml/min
8/10/2021 9:32 AM	20:00	6.89 pH	18.62 °C	401.82 μS/cm	2.09 mg/L	6.39 NTU	-45.7 mV	12.71 ft	200.00 ml/min
8/10/2021 9:37 AM	25:00	6.89 pH	18.53 °C	396.70 μS/cm	1.02 mg/L	5.39 NTU	-28.0 mV	12.71 ft	200.00 ml/min
8/10/2021 9:42 AM	30:00	6.93 pH	18.67 °C	387.29 μS/cm	1.17 mg/L	4.80 NTU	-29.8 mV	12.71 ft	200.00 ml/min
8/10/2021 9:47 AM	35:00	6.94 pH	18.83 °C	375.83 μS/cm	1.30 mg/L	5.37 NTU	-48.8 mV	12.71 ft	200.00 ml/min
8/10/2021 9:52 AM	40:00	6.95 pH	18.92 °C	365.68 μS/cm	1.35 mg/L	3.96 NTU	-30.5 mV	12.71 ft	200.00 ml/min
8/10/2021 9:57 AM	45:00	6.96 pH	18.84 °C	360.32 μS/cm	1.31 mg/L	3.97 NTU	-51.0 mV	12.71 ft	200.00 ml/min

Sample ID:	Description:
GWC-23	Grab Sample.

Test Date / Time: 9/28/2021 9:46:15 AM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-8
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 17.13 ft
Total Depth: 27.13 ft

Initial Depth to Water: 11.45 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 22.13 ft Estimated Total Volume Pumped:

9.5 liter

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 1.64 ft Instrument Used: Aqua TROLL 400

Serial Number: 728638

Test Notes:

One bottle, metals.

Weather Conditions:

Sunny, 60 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
9/28/2021 9:46 AM	00:00	6.78 pH	19.38 °C	734.16 µS/cm	0.30 mg/L	8.33 NTU	-56.8 mV	12.82 ft	200.00 ml/min
9/28/2021 9:51 AM	05:00	6.67 pH	19.33 °C	815.70 μS/cm	0.20 mg/L	5.44 NTU	-53.6 mV	13.20 ft	200.00 ml/min
9/28/2021 9:56 AM	10:00	6.66 pH	19.18 °C	833.86 μS/cm	0.21 mg/L	1.60 NTU	-68.0 mV	13.18 ft	200.00 ml/min
9/28/2021 10:01 AM	15:00	6.66 pH	19.19 °C	841.90 μS/cm	0.31 mg/L	1.46 NTU	-66.8 mV	13.10 ft	200.00 ml/min
9/28/2021 10:06 AM	20:00	6.66 pH	19.20 °C	843.78 μS/cm	0.23 mg/L	1.48 NTU	-51.8 mV	13.10 ft	200.00 ml/min
9/28/2021 10:11 AM	25:00	6.67 pH	19.18 °C	843.15 μS/cm	0.31 mg/L	1.22 NTU	-69.3 mV	13.09 ft	200.00 ml/min
9/28/2021 10:16 AM	30:00	6.67 pH	19.20 °C	842.49 μS/cm	0.20 mg/L	1.40 NTU	-70.5 mV	13.09 ft	200.00 ml/min
9/28/2021 10:21 AM	35:00	6.68 pH	19.23 °C	839.71 μS/cm	0.19 mg/L	1.25 NTU	-54.0 mV	13.09 ft	200.00 ml/min
9/28/2021 10:26 AM	40:00	6.69 pH	19.26 °C	824.54 μS/cm	0.19 mg/L	1.76 NTU	-54.6 mV	13.09 ft	200.00 ml/min
9/28/2021 10:31 AM	45:00	6.70 pH	19.32 °C	806.95 μS/cm	0.19 mg/L	1.09 NTU	-55.5 mV	13.09 ft	200.00 ml/min
9/28/2021 10:36 AM	50:00	6.71 pH	19.33 °C	791.10 μS/cm	0.18 mg/L	1.35 NTU	-56.1 mV	13.09 ft	200.00 ml/min
9/28/2021 10:41 AM	55:00	6.72 pH	19.36 °C	778.97 μS/cm	0.17 mg/L	1.07 NTU	-74.2 mV	13.09 ft	200.00 ml/min
9/28/2021 10:46 AM	01:00:00	6.73 pH	19.41 °C	768.11 µS/cm	0.18 mg/L	1.36 NTU	-57.5 mV	13.09 ft	200.00 ml/min

9/28/2021	01:05:00	6.74 pH	19.47 °C	754.56 µS/cm	0.19 mg/L	1.16 NTU	-75.2 mV	13.09 ft	200.00 ml/min
10:51 AM	01.03.00	0.74 pm	19.47	734.30 μ3/cm	0.19 Hig/L	1.10 1010	-73.21110	13.09 11	200.00 1111/111111
9/28/2021	01:10:00	6.75 pH	19.58 °C	742.10 uS/cm	0.16 mg/L	1.65 NTU	-59.2 mV	13.09 ft	200.00 ml/min
10:56 AM	01.10.00	0.75 pm	19.50 C	742.10 μο/οπ	0.10 mg/L	1.05 1110	-39.2 1110	15.09 10	200.00 1111/111111
9/28/2021	01:15:00	6.76 pH	19.51 °C	736.29 µS/cm	0.15 mg/L	1.18 NTU	-59.2 mV	13.09 ft	200.00 ml/min
11:01 AM	01.15.00	0.70 pm	19.51	730.29 μ3/6/11	0.15 Hig/L	1.10 1110	-39.2 1110	15.09 10	200.00 1111/111111
9/28/2021	01:20:00	6.77 pH	19.60 °C	725.98 µS/cm	0.15 mg/L	1.73 NTU	-59.7 mV	13.09 ft	200.00 ml/min
11:06 AM	01.20.00	0.77 pm	19.00 C	725.96 μ5/611	0.15 Hig/L	1.73 1110	-59.7 1110	15.09 10	200.00 1111/111111

Samples

Sample ID:	Description:
GWC-8	Grab Sample.

Created using VuSitu from In-Situ, Inc.

Calibration Logs

Geosyntec Consultants			E	QUIPMENT CA	LIBRATION L	OG				
Field Technician: Chard	RUSSO			Date: 3/8/101				315	Time (finish): 1326	
smarTroll SN:	50	_		Turbidity Meter Type:	LaMote 2020we		SN:	-1416		
Weather Conditions:	SUNDY			Facility and Unit: Plant			Project No. GW6	581		
				Calibr	ation log					1
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?		Comments	
Specific Conductance (μS/cm)	20010025	24.29	4490	4773.2	4490	+/- 5 %	(res) No			
pH (4)	8/2021		4.00	4.11	4	⊦/- 0,1 SU	Yes No			
Mid-Day pH Crieck (7)	17340057 8/2021	23.61	4.00	7.1	7	+/- 0 I SU	Yes No			c
риу(10)		23.15	7.00	10.03	10	+/- 0.1 SU	Yes No			
Mid-Day pH (7) check	200100-5	२८, 58	7.00	4.01	4.07	+/- 0 _* 1 SU	No No			
pH (FT)	8/2021	20.28	10.00	7.01	2.01	+/- 0 _* 1 SU	Cres No			
Mid-Day pH (10) check		21.13	10.00	1003	10.03	+/- 0,1 SU	(Yes) No			
ORP (mV)	8/2821	2254	228	2204	228	+/- 20mV	Q No			
DO (%) (1pt, 100% water saturated air cal)			100	103.5	(00	+/- 6 % saturation	Yes No			
Turbidity 0 NTU			0	0	0	⊦/- 0₌5 N°TU	YES No			
Turbidity 1 NTU			1.00	0.5	0.5	+/- 0,5 NTU	No No			
Turbidity 10 NTU			10.00	10.05	10.05	+/- 0 _* 5 NTU	V) No			

(F.)

Geosyntec Consultants			E	QUIPMENT CA	LIBRATION L	OG			
Field Technician: Hom	cs hes	du		Date: 318/	21				Time (finish): 1400
smarTroll SN: 72850	66	_		Turbidity Meter Type:	LaMote 2020we		SN. 279	89-261	5
Weather Conditions: SUNV	14,70°	_		Facility and Unit:	Hammond AP-1/2		Project NoGW6	581	
				Calibr	ation log				
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?		Comments
Specific Conductance (µS/cm)	200100Z	25°	4490	51415.5	4490	+/- 5 %	Ves No		
рН (4)	C6121		4.00	4.02	4.00	+/- 0 ₌ 1 SU	Yes No		
Mid-Day pH (4) check		2166	4.00			1/2 AT SU	Yes No		
pH (7)	19346057	21.24	7.00	7.05	7.00	+/- 0 _* 1 SU	Yes No		
Mid-Day pH (7) check		/	7.00			169.TSU	Yes No		
pH (10)	19370102	21.74	10.00	(0.00	10,00	+/- 0 ₋ 1 SU	(Yes) No	*	
Mid-Day pH (10) check			10.00			+/ <u>-0-1</u> \$U	Yes No		-
ORP (mV)	19460167	21.10	228	273.3	228	+/- 20mV	Jes No		
DO (%) (1pt, 100% water saturated air cal)			100	107.71	100-16	+/- 6 % saturation	Yes No		
Turbidity 0 NTU			0	0.67	0.03	+/- 0_5 NTU	Yes No		_
Turbidity 1 NTU			1.00	0.50	[.00	+/- 0_5 NTU	No No		
Turbidity 10 NTU		5-2 L. L	10.00	10.11	9.44	+/- 0.5 NTU	Yes No		

		E	QUIPMENT CA	LIBRATION LO	OG				
TAUKOOIZ			Date: 3-8-7	الكدا		Time (start): 14	12	Time (finish): 14 34	-
63			Turbidity Meter Type:	LaMote 2020we		sn: 710 -	0711		
66°F			Facility and Unit: Plant	Hammond AP-1/2		Project No : GW6	581		
	7.00		Calibr	ation log					
Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?		Comments	
200/0025	21.19	4490	166,122	4490	+/- 5 %	Ves No			
08/21		4.00	4.02	4.00	+/- 0.1 SU	Yes No			
	20-25	4.00			-/≥0.1 SIL3	Ves No.			
	20:25	7.00	7.20	7.00	+/- 0.1 SU	(Ves No			
		7.00			+/0.1 SU	Yes No			
19320/02	19.97	10.00	10:18	10.00	+/- 0 _* 1 SU	(Yes) No			
3/21		10.00	5		17.0.1.811	- Yes - No			
194601678/2	19.55	228	223.4	228	+/- 20mV	yes No			
		100	106.65	100	+/- 6 % saturation	Ves No			
	100	0	-0.03	0.00	+/- 0.5 NTU	Yes No			
		1.00	1.22	1.00	+/- 0.5 NTU	(Yes) No			
		10.00		10:00	+/- 0.5 NTU	(Ves) No			
	63 66°F Standard Lot #/ Date of Expiration 200 0025 08 21 19320 02 8 21	5tandard Lot #/ Date of Expiration Standard (°C) 206 0025 21.19 08 21 20.25 20.25 19320 02 19.97 19460 678 21 19.55	TANKOOP2 63 663 668 Standard Lot # / Date of Expiration Standard (°C) Value of Standard 206 0025 21.19 4490 08 21 4.00 20.25 4.00 20.25 7.00 7.00 19320 02 19.97 10.00 19460 678 21 19.55 228 100 0 1.00	TAUKOOP2 1	TANKOOT2 Date : 3 - 8 - 2021	Calibration log Calibration log	Table 2 3 - 8 - 2071 Tame (smrt): 14 63 Turbidity Meter Type: LaMote 2020 No. 5 No. 7 10 - 100	Table Tabl	Table Time (family 4 2 Time (family 4 54

Geosyntec Consultants			E	QUIPMENT CA	ALIBRATION L	og			
Field Technician: Chad	RUSSO			Date: 3/1/2021			Time (start):	750	Time (finish): 0870
smarTroll SN:			Turbidity Meter Type:LaMote 2020we					-1416	
Weather Conditions:	, b Enunh	_		Facility and Unit: Plant	Hammond AP-1/2		Project No.: GW6		
				Calibr	ration log				
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?		Comments
Specific Conductance (µS/cm)	26016025	(477	4490	4465.6	4490	+/- 5 %	Yes No		_
pH (4)	8/2021	(1, 11	4.00	4.05	4	+/- 0_1 SU	Yes No		
Mid-Day pH (4) check		26.13	4.00	4.15	4	+/- 0 ₌ 1 SU	Yes No		
pH (7)	19346957	14.9	7.00	7.02	7	±/- 0.1 SU	Yes No		
Mid-Day pH (7) check	9/2021	18.63	7.00	7.12	7	+/- 0 ₋ 1 SU	(Yes) No		
pH (10)	14326102	14-93	10.00	10.06	10	+/- 0 _* SU	Ves No		
Mid-Day pH (10) check	19320162	17.86	10.00	10.01	16	+/- 0 ₊ SU	Yes No		
ORP (mV)	19460127	14.7	228	240.3	228	+/- 20mV	Yes No		
DO (%) (1pt, 100% water saturated air cal)			100	T3.17	100	+/- 6 % saturation	Ces No		
Turbidity 0 NTU			0	0.23	0.23	+/- 0.5 NTU	No No		
Turbidity 1 NTU			1.00	0.90	0,90	+/- 0,5 NTU	(Yes) No		
Turbidity 10 NTU			10.00	9.92	9.92	1/- 0.5 N TU	No No		

Geosyntec Consultants			E	QUIPMENT CA	ALIBRATION L	OG				
Field Technician: Theme	us lhess	141		Date 3 19	121		Time (start): 0	725 Time (finish): 0752		
	8566			Turbidity Meter Type:	LaMote 2020we		SN: 2789-2612			
Weather Conditions: Sunv	14 450			Facility and Unit: Plant	Hammond AP-1/2	Project No.#_GW6	5581			
				Calibi	ration log					
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments		
Specific Conductance (μS/cm)		5.76	4490	44930	449	+/- 5 %	(Yes) No			
pH (4)	70010075	2. 66	4.00	4.00	4.00	+/- 0.1 SU	(Yes No			
Mid-Day pH (4) check			4.00	4.10		+/- 0.1 SU	Yés No	within range		
pH (7)	19340059	5.58	7.00	7.06	7.60	+/- 0 _* 1 SU	Yes No			
Mid-Day pH (7) check			7.00	6.96		+/- 0.1 SU	Yes No	within vengo		
pH (10)	14320102	5.72	10.00	16.71	10.00	+/- 0.1 SU	(Yes) No	V		
Mid-Day pH (10) check			10.00	9.93		+/- 0 _* 1 SU	Yes No	withou veryo		
ORP (mV)	146067	5,76	228	257.6	228	+/- 20mV	(Yes) No			
DO (%) (1pt, 100% water saturated air cal)			100	941.49	100	+/- 6 % saturation	Ves No			
Turbidity 0 NTU			0	1.03	0.07	+/- 0_5 NTU	Yes) No			
Turbidity 1 NTU			1.00	0.14	1.32	+/- 0 ₋ 5 NTU	Yes No			

11.74

10.00

Turbidity 10 NTU

(0.00

+/- 0.5 NTU

No

Geosyntec consultants			E	QUIPMENT CA	LIBRATION L	OG			
Field Technician: NASHISH	TAUKOOR			Date: 3 - 9 - 7	2021		Time (start):	7 40	Time (finish): 07 56
smarTroll SN: 728 5 6	53			Turbidity Meter Type:		sn: 710-	1150		
Weather Conditions:	36°F			Facility and Unit: Plant	Hammond AP-1/2		Project No. GW6	5581	
				Calibr	ration log		43.4		
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?		Comments
Specific Conductance (μS/cm)	200/0025	14.40	4490	4328	4490	+/- 5 %	(Yes) No		
pH (4)	08/21		4.00	4.03	4.00	⊦/- 0.1 SU	(Yes) No		
Mid-Day pH (4) check	н	23.14	4.00	4.04	4.00	+/- 0 ₋ I SU	(Yes) No		
pH (7)	19340057	13 72	7.00	7.04	7.00	+/- 0_1 SU	No No		
Mid-Day pH (7) check	н	22.63	7.00	7.03	7.00	+/- 0 ₋ 1 SU	Yes No		
pH (10)	19320102	13.20	10.00	10.14	10.00	+/- 0:1 SU	(Res) No		
Mid-Day pH (10) check	11	21.37	10.00	J.J0	10.00	+/- 0 1 SU	(Ves) No		
ORP (mV)	194 60167	12.72	228	2463	228	⊦/- 20mV	Yes No		
DO (%) (1pt, 100% water saturated air cal)			100	93,90	100	+/- 6 % saturation	Yes No		
Turbidity 0 NTU			0	-0.05	0	H- 0.5 NTU	(Yes No		
Turbidity 1 NTU			1.00	1.33	1.00	+/- 0 _* 5 NTU	Ves No		
Turbidity 10 NTU			10.00	10:35	10.00	+/- 0,5 NTU	Yes No		

Geosyntec Consultants	EQUIPMENT CALIBRATION LOG		
ield Technician: Chad Russo	Date: 3/10/2621	Time (start): 1215	Time (finish): 1246
marTroll SN: 718550	Turbidity Meter Type:LaMote 2020we	6411-1416 SN:	_
Vealher Conditions: 70 F SURWY	Facility and Unit: Plant Hammond AP-1/2	Project No GW6581	-

Calibration log

	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (μS/cm)	2001 0025	19.77	4490	4449,5	4490	∍/- 5 %	Yes No	
pH (4)	8/2021	() , , ,	4.00	3,9	4	+/- 0,1 SU	(Yes) No	
Mid-Day pH (4) check	20010022	21.23	4.00	4.02	4.02	+/- 0_1 SU	(Yes) No	
рН (7)	9/200	19.11	7.00	6.92	7	+/- 0.1 SU	(Ves) No	
Mid-Day pH (7) check	1434607	22.64	7.00	7.05	7.05	+/- 0,1 SU	No No	
рН (10)	19320102	18.50	10.00	9.98	10	+/- 0.1 SU	Yes No	
Mid-Day pH (10) check		21.87	10.00	10.01	10,01	+/- 0.1 SU	(Yes) No	
ORP (mV)	19460167 8/WZJ	18.15	228	2213	27.8	+/- 20mV	No No	
DO (%) pt, 100% water saturated air cal)			100	9647	100	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0	6.39	0.39	±/- 0.5 NTU	Yes No	
Turbidity 1 NTU			1.00	0.52	0.52	+/- 0,5 NTU	No No	
Turbidity 10 NTU			10.00	9.94	9.94	+/- 0.5 NTU	(Yes) No	

Geosyntec Consultants			E	OG						
field Technician: Ther	neo hessi	1,-		Date: 3/(0	3/5(Time (start):	30 Time (finish): 1210		
marTroll SN: 728	566	_		Turbidity Meter Type: _	LaMole 2020we		SN: 12289-2617			
Veather Conditions: See	nny X	>		Facility and Unit	Hammond AP-1/2		Project NoGW6	581		
				Calibr	ation log					
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments		
Specific Conductance (μS/cm)	700100.28	1	4490	4368.3	4490	+/- 5 %	Yes No			
pH (4)	OSIZI	596	4.00	4.68	4.0	+/- 0 I SU	(Yes) No			
Mid-Day pH (4) check			4.00			+/- 0.1 SU	Yes No			
рН (7)	19340687	15.43	7.00	704	7.00	+/- 0,1 SU	Yes No			
Mid-Day pH (7) check			7.00			+/- 0.1 SU	Yes No			
рН (10)	163 2005	14.89	10.00	944	10.00	-+/- 0₁1 SU	Yes No			
Mid-Day pH (10) check			10.00			+/- 0 ₋ 1 SU	Yes No			
ORP (mV)	19460167	14.39	228	214	208	+/- 20mV	Pes No			
DO (%) 1pt, 100% water saturated air cal)			100	101.73	100	+/- 6 % saturation	(Yes) No			
Turbidity 0 NTU		+==;	0	1.07	0.00	+/- 0.5 NTU	Cyes No			
Turbidity 1 NTU			1.00	1.03	[.03	+/- 0.5 N°ľU	Yes No			
Turbidity 10 NTU			10.00	8,23	E0.0)	=+/- 0_5 NTU	(%) No			

Geosy	ntec ^D
cons	sultants

EQUIPMENT CALIBRATION LOG

Field Technician: VASHISH TAUROOR

Date: 3-10-2021

ne (start): 1 20 Ti

Time (finish): 11 30

smarTroll SN 728 563

Turbidity Meter Type: ____LaMote 2020we

sn: 71n-0711

Weather Conditions: SUNNY, 55°F

Facility and Unit: Plant Hammond AP-1/2

Project No.: GW6581

Calibration log

	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (μS/cm)	200/0025	18.38	4490	4665	4490	+/- 5 %	(Yes) No	
pH (4)	08/21		4.00	3,96	4.00	+/- 0 ₋ 1 SU	(Ves) No	
Mid-Day pH (4) check	н		4.00		4.00	V-0.1-SU	- Ves No	
pH (7)	19340057 8/21	19.08	7.00	6.99	7.00	+/- 0.1 SU	Os No	
€Mid-Day pH (7) check	η		7.00		7.00	+/- 0.1.8[]	Yes No	
pH (10)	193 20102 8/24	18.96	10.00	10.05	10.00	+/- 0 ₋ 1 SU	(Yes) No	
Mid Day pH (10) check	n		10.00		10.00		Ves No	
ORP (mV)	194 60167 8/21	19.08	228	234.6	228	+/- 20mV	(es) No	
DO (%) (1pt, 100% water saturated air cal)			100	105.4	100	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0	-0.06	0	+/- 0,5 NTU	No No	
Turbidity 1 NTU			1.00	0.92	1.00	+/- 0,5 NTU	(Yes No	
Turbidity 10 NTU			10.00	10.40	1.00	+/- 0.5 N°TU	Yes No	

Cassimtes	E To Brown and	3775, V3.15					I Language and			
Geosyntec consultants		100	E	QUIPMENT CA	LIBRATION L	OG				
Field Technician A. Row	sey			Date 8 9 20	15		Time (start)	220 Time (finish): 1256		
smarTroll SN		_		Turbidity Meter Type	LaMote 2020we		SN: 1859-0412			
Weather Conditions SUNNU	19108			Facility and Unit:	ant Homn	nond	Project NoGW6581			
Calibration log										
	Standard Lot #/ Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments		
Specific Conductance (µS/cm)	20440203	25	4490	4315.9	4490	+/- 5 %	Yes No			
pH (4)			4.00	4.14	400	+/- 0_1 SU	No No			
Mid-Day pH (4) check		27-62	£ 4.00			+/- 0 1 SU	Yes No			
pH (7)	21630188	2762	7.00	7.13	7.00	+/- 0_1 SU	Yes No			
Mid-Day pH (7) check			7.00			+/- 0.1 SU	Yes No			
pH (10)	21080189	2753	10.00	10.35	10.00	+/- 0 1 SU	Yes No			
Mid-Day pH (10) check			10.00			+/- 0_1 SU	Yes No			
ORP (mV)	19460167	29.83	228	213-4	228.0	+/- 20mV	No No			
DO (%) (1pt, 100% water saturated air cal)			100	10192	100.00	+/- 6 % saturation	Yes No			
Turbidity 0 NTU			0	0.94	0.12	+/- 0 ₁ 5 NTU	(Ves No			
Turbidity 1 NTU			1.00	142	0.97	+/- 0 5 NTU	(Yes) No			
Turbidity 10 NTU			10.00	7:11	10.00	+/- 0,5 NTU	No No			

Geosyntec consultants			E	QUIPMENT CA	LIBRATION L	OG				
Field Technician + Hom	us hees	do		Date _ &/9	121		Time (start): 12	10 Time (finish): 1300		
smarTroll SN	Turbidity Meter Type	LaMote 2020we		SN 5573-1515						
Weather Conditions:	eather Conditions: SOS Sun my					_	Project No			
Calibration log										
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments		
Specific Conductance (µS/cm)	204408	2669	4490	45753	4490	+/- 5 %	Yes \ No			
pH (4)	OZIZZ	E CORD !	4.00	4.17	4.00	+/- 0.1 SU	Yes No			
Mid-Day pH (4) check			4.00			+/- 0 ₁ 1 SU	Yes No			
рН (7)	7108018K	27.88	7.00	7.64	7.00	+/- 0.1 SU	Yes No			
Mid-Day pH (7) check			7.00			+/- 0 1 SU	Yes No			
pH (10)	2106122 06122	77,Q	10.00	10-02	10.00	+/- 0,1 SU	Yes No			
Mid-Day pH (10) check			10.00			+/- 0.1 SU	Yes No			
ORP (mV)	14760167 02/2022	7893	228	7.815	228	+/- 20mV	Yes No			
DO (%) (1pt, 100% water saturated air cal)			100	171,5	100%	+/- 6 % saturation	Yes No			
Turbidity 0 NTU			0	1.75	0.77	+/- 0,5 NTU	Yes			
Turbidity 1 NTU			1.00	1.59	0.67	+/- 0.5 NTU	Yes No			
Turbidity 10 NTU			10.00	6.71	10.06	+/- 0.5 NTU	Yes No			
			-		1					

Geosyntec consultants			E	QUIPMENT CA	LIBRATION L	OG				
Field Technician A. Ram	Suy	-		Date 8 10	121		Time (start)	Time (finish): 07 28		
smarTroll SN: 12862	Turbidity Meter Type	LaMote 2020we		SN: 1859-0412						
Weather Conditions: _Suny		Facility and Unit:	ant Ham	mond	Project No.:GW6581					
Calibration log										
	Standard Lot #/ Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments		
Specific Conductance (µS/cm)	2044023	2.1	4490	4601.8	4490.0	+/- 5 %	Yes No			
рН (4)		24.95	4.00	9.18	4.00	+/- 0.1 SU	Yes No			
Mid-Day pH (4) check	i. 🔌	34.05	4.00	4.03	-	+/- 0_1 SU	Yes No			
pH (7)	21080188 6122	25.97	7.00	7.18	7.00	+/- 0.1 SU	Yes No			
Mid-Day pH (7) check	4 5	32.84	7.00	6.97	<u> </u>	+/- 0 1 SU	Ves No			
pH (10)	210 30189	26.11	10.00	10.41	10.00	+/- 0_1 SU	Yes No			
Mid-Day pH (10) check	u vi	32, 36	10.00	9.95	ر.	+/- 0.1 SU	Yes No			
ORP (mV)	19460161	25.83	228	231.5	2280	+/- 20mV	No No			
DO (%) (1pt, 100% water saturated air cal)			100	96.59	100.0	+/- 6 % saturation	Yes No			
Turbidity 0 NTU			0	G-72	0.00	+/- 0.5 NTU	(Yes) No			
Turbidity 1 NTU			1.00	1,38	1.00	+/- 0.5 NTU	Ves No			
Turbidity 10 NTU			10.00	7,49	10.00	+/- 0 5 NTU	Yes No			

Geosyntec consultants EQUIPMENT CALIBRATION LOG									
Field Technician: C. CAI	N			Date 8/10/21			Time (start)	10 Time (finish): 07%	
smarTroll SN 7285 4/				Turbidity Meter Type:LaMote 2020we			sn: 2953		
Weather Conditions		Facility and Unit Plant Hammond			Project No. GW6581				
Calibration log									
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments	
Specific Conductance (µS/cm)		25%	4490	4478	4490	+/- 5 %	No No		
рН (4)		2,0	4.00	4.05	4.0	+/- 0.1 SU	∠ s No		
Mid-Day pH (4) check		24.47	4.00	7.104.04	7.04.0	+/- 0 ₋ 1 SU	₩ No		
pH (7)		24.47	7.00	7.10	7.0	+/- 0,1 S U	> No		
Mid-Day pH (7) check			7.00	7.04	7.0	+/- 0 ₋ 1 SU	Yes No		
рН (10)	:	24.51	10.00	10.06	10.0	+/- 0.1 SU	€ No		
Mid-Day pH (10) check			10.00	4.97	10.0	+/- 0.1 SU	Yes No		
ORP (mV)		24.24	228	225.4	228	+/- 20mV	Mo No		
DO (%) (1pt, 100% water saturated air cal)			100	102.38	1004	+/- 6 % saturation	6 No		
Turbidity 0 NTU			0	0.02	0.02	+/- 0 5 NTU	& No		
Turbidity 1 NTU			1.00	0.75	0.95	+/- 0 _. 5 NTU	No No		
Turbidity 10 NTU			10.00	11.78	10.0	+/- 0 5 NTU	6 No	-	

Geosyntec consultants EQUIPMENT CALIBRATION LOG										
Field Technician: Them	es lessi	0-		Date 8/10/	٤(Time (start)	10 7 Time (finish) 07 まてら		
smarTroll SN 7	8634			Turbidity Meter Type:	LaMote 2020we		SN S 573-1515			
smarTroll SN 77	175°			Facility and Unit: Plant	Hammond AP-1/2	 #	Project No. GW6581			
Calibration log										
	Standard Lot #/ Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments		
Specific Conductance (μS/cm)	704(1070)	74.09	4490	4570.8	4490	+/- 5 %	Yes No			
pH (4)	02/27		4.00	4.13	4.00	+/- 0_1 SU	Yes No			
Mid-Day pH (4) check	// \\		4.00	4.09		+/- 0.1 SU	Yes No			
рН (7)	21080188 O(127	24.40	7.00	7.07	200	+/- 0.1 SU	Yės No			
Mid-Day pH (7) check			7.00	Gan		+/- 0 1 SU	Yes No			
pH (10)	21080189	24.71	10.00	16.03	16.0	+/- 0.1 SU	Yes No			
Mid-Day pH (10) check			10.00	9.94		+/- 0 1 SU	Yes No			
ORP (mV)	19460167	24.68	228	279.0	528	+/- 20mV	Yes No			
DO (%) (1pt, 100% water saturated air cal)			100	95.07	100	+/- 6 % saturation	Yes No			
Turbidity 0 NTU			0	0.68	0.01	+/- 0 5 NTU	(Yes No			
Turbidity 1 NTU			1.00	(.00	1,00	+/- 0.5 NTU	Yes No			
Turbidity 10 NTU			10.00	10-5C	9.98	+/- 0.5 NTU	Yes No			

Geosyntec ^D
consultants

EQUIPMENT CALIBRATION LOG

Field Technician: Thomas Kasher

Date 9\$/28/21

Time (finish): USGC

marTroll SN: 728638

Turbidity Meter Type LaMote 2020we

IN 1779-5011

Weather Conditions Sunny 60°

Facility and Unit: Plant Hammond AP-1/2

Project No. GW6581

Calibration log

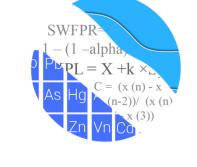
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (µS/cm)	21070193		4490	41522.8	4490		es No	
pH (4)	68/22	18.39	4.00	4.00	4.00	+/- 0,1 SU	(Yes) No	
Mid-Day pH (4) check			4.00	3.44		+/- 0 ₁ 1 SU	Yes No	
рН (7)	21010066	18.87	7.00	7.03	7.00	+/- 0,1 SU	(cs) No	
Mid-Day pH (7) check			7.00	7.00	-	+/- 0, I SU	Yes No	
pH (10)	21 4 6189	\$ 8.9K	10.00	10.09	10.00	+/- 0.1 SU	Yo No	=
Mid-Day pH (10) check	•		10.00	10.02		+/- 0 1 SU	Yes No	
ORP (mV)	इ विकार	18.90	228	531.8	228	+/- 20mV	Yes No	
DO (%) pt, 100% water saturated air cal)			100	801,88	100	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0	0.09	0.00	+/- 0_5 NTU	(Yes) No	
Turbidity 1 NTU			1.00	0.89	1.00	+/- 0 ₈ 5 NTU	Yes No	
Turbidity 10 NTU			10.00	9.11	10.00	+/- 0_5 NTU	Yes No	

APPENDIX C

Statistical Analysis Reports

March 2021 Semiannual Event

GROUNDWATER STATS CONSULTING


August 24, 2021

Southern Company Services Attn: Ms. Kristen Jurinko 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Plant Hammond's Huffaker Road Landfill

Statistical Analysis – March 2021

Dear Ms. Jurinko,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the March 2021 Semi-Annual Groundwater Detection Monitoring Statistical summary of the groundwater data analysis for Georgia Power Company's Plant Hammond's Huffaker Road Landfill. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015), the Georgia Environmental Protection Division (EPD) Rules for Solid Waste Management Chapter 391-3-4-.10, and follows the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began for the Georgia EPD parameters in 2007 and for the CCR program in 2016. At least 8 background samples have been collected at each of the groundwater monitoring wells. Semi-annual sampling for select constituents has been performed for several years in accordance with the Georgia Department of Natural Resources, Environmental Protection Division groundwater monitoring regulations; and all available data are screened in this report.

The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient: GWA-1, GWA-11, GWA-2, GWA-3, and GWA-4
- Downgradient: GWC-10, GWC-18, GWC-19, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8, and GWC-9

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was prepared according to the recommended statistical methodology provided in the Fall 2017 by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance. The analysis was reviewed by Kristina Rayner, Groundwater Statistician and Founder of Groundwater Stats Consulting.

The following constituents were evaluated:

- Appendix III boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Georgia EPD antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, vanadium and zinc

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of well/constituent pairs with 100% non-detects follows this letter.

A substitution of the most recent reporting limit is used for non-detect data. Reporting limits often decrease over time due to improved laboratory practices, which sometimes results in more conservative statistical limits compared to the previous statistical analysis. Such changes in reporting limits have occurred for beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, and zinc, and prediction limits for those constituents have decreased over time at some of the wells. Also, the most recent reporting limit is substituted on a well-by-well basis for computing prediction limits. Therefore, individual wells can have different substitutions for a given parameter depending on what the laboratory has reported for each well.

Time series plots for all well/constituent pairs are provided and are particularly useful for screening parameters detected in downgradient wells which require statistical analyses (Figure A). Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

In earlier analyses, data at all wells for constituents detected in downgradient wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided in the previous background update to demonstrate that the

selected statistical methods for the parameters listed above comply with the USEPA Unified Guidance and the Georgia Environmental Protection Division Rules for Solid Waste Management Chapter 391-3-4-.10. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations. During the initial background screening of the Appendix III parameters, the 1-of-2 resample plan did not provide sufficient power; therefore, a 1-of-3 resample plan was initially recommended due to the limited background sample sizes in each of the wells at that time.

During the March 2020 background update for the Appendix III parameters, however, the background sample sizes increased in each of the wells, and power curves were provided to show that the 1-of-2 resample plan provides sufficient power to meet the EPA recommendation mentioned above. Power curves were based on the following:

Georgia EPD Constituents:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan (all Georgia EPD parameters)
- # Constituents: 15
- # Downgradient wells: 12

CCR Appendix III Constituents:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan (all Appendix III parameters)
- # Constituents: 7
- # Downgradient wells: 12

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

 No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).

- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. In the intrawell case, data for all wells and constituents may re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, an earlier portion of data is deselected prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Two-Step Statistical Analysis

Intrawell statistical methods, combined with a 1-of-2 resample plan, may be used as a conservative first step for identifying potential facility impacts in downgradient wells. Intrawell methods use background data for individual wells and may be overly sensitive to natural variation. In particular for nonparametric limits with small background sample sizes, the probability of a false positive is much higher than the desired annual sitewide rate of 10%. Therefore, a large number of exceedances may occur as a result of natural variation rather than facility impacts. A second step can be used to further evaluate those exceedances and reduce the overall number of SSIs that result from natural variation. In instances where intrawell statistical methods identify an apparent SSI, a second step of interwell statistical evaluation may be used to determine whether the measurement exceeds the sitewide background limit based on pooled upgradient well data. This is similar in concept to the procedure used in compliance monitoring programs where an interwell statistical limit is used to determine "background" (USEPA Unified Guidance (2009), Chapter 7, Section 7.5). For the detection monitoring program, if the result does not exceed sitewide (interwell) background, an SSI is not declared.

When the result exceeds the sitewide (interwell) background, the 1-of-2 resample plan allows for collection of an independent resample to confirm or disconfirm the initial finding. A statistically significant increase is not declared unless the resample also exceeds the intrawell prediction limit (United States Environmental Protection Agency (USEPA) Unified Guidance, March 2009, Chapter 19). When the resample confirms the initial exceedance, further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). When any resample falls within the statistical limit, the initial exceedance is considered to be a false positive result, and no further action is necessary. In cases where intrawell and interwell exceedances are noted and no resamples are collected, the initial exceedance will be considered a confirmed statistically significant increase (SSI).

Trend tests, in addition to interwell prediction limits, are recommended for well/constituent pairs found to have an initial intrawell SSI. Trend analysis will provide for detection of long-term changes and potential facility impacts at a given well in cases where the concentrations at that well remain below the sitewide upgradient limits. Thus, the two-step approach has additional capability to detect long-term changes at downgradient wells compared to interwell methods alone. While a trend may be identified by visual inspection, a quantification of the trend and its significance is needed to identify whether concentrations are statistically significantly increasing, decreasing, or remaining stable over time. The absence of a statistically significant increasing trend indicates that an initial intrawell exceedance is short-term and may be the result of natural variation rather than facility impact to groundwater. If a facility impact has occurred, it will likely result in additional exceedances in future sampling events. When a statistically significant increasing trend is noted, additional data may be needed to demonstrate that there is reasonable evidence that the initial intrawell statistical exceedance is a result of natural variation rather than a result of impact to groundwater quality downgradient of the facility.

Georgia EPD Background Screening Summary – Conducted in August 2019

Outlier and Trend Testing

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not representative of the current background data population. Suspected outliers for all wells and parameters are formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Using the Tukey box plot method, several outliers were identified. When the most recent values were identified as outliers, values were not flagged in the database (except in cases where they would cause background limits to be elevated) as they may represent a possible trend. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e. measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers. Due to changing reporting limits for many constituents, when the non-detects were replaced with the most recent reporting limit, previously flagged "J" values (or estimated values) required flagging as outliers because they were much higher than current reporting limits.

Of the outliers identified by Tukey's method, several values were flagged in the database, and the remaining values were similar to other measurements within a given well or neighboring wells or were reported non-detects. In some cases, values were flagged in addition to those identified by Tukey's because the values were higher than all remaining concentrations and would cause the statistical limits to be elevated. These values are plotted in a disconnected and lighter symbol on the time series graph. The accompanying data pages display the flagged values in a lighter font as well. A substitution of the most recent reporting limit was applied when varying detection limits existed in data. A summary of all flagged values is included in Figure C.

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test, which tests for statistically significant increasing or decreasing trends, was used to evaluate data at all upgradient and downgradient wells with detections.

In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, all available data are evaluated to determine whether earlier concentration levels are significantly different from current reported concentrations, and earlier data will be deselected as necessary. Several

statistically significant decreasing trends were noted, as well as a few statistically significant increasing trends for barium. The magnitudes of most of these trends were low relative to the average concentrations and, therefore, required no adjustments to the record.

However, background adjustments were made for barium in wells GWA-2, GWC-19, GWC-22, GWC-6, GWC-7, and GWC-9; and cobalt, nickel, and zinc in well GWC-7. Earlier data for each of these well/constituent pairs were deselected to reduce variation and utilize samples that were more representative of current groundwater concentrations. For those cases with increasing trends in barium, the assumption is that the increase is a result of natural variation and not the result of the facility. Under that assumption, the more recent data would represent unimpacted conditions. Thorough evaluation of that assumption requires a separate geochemical investigation that is beyond the scope of services provided by Groundwater Stats Consulting. However, increasing barium concentrations were noted in both upgradient and downgradient wells, suggesting that the groundwater quality is changing due to natural spatial variation. The trends for cobalt, nickel and zinc are decreasing, and the more recent data result in more conservative prediction limits. Complete trend analysis results were presented with the August 2019 screening report. A date range summary table is provided with this report to show the adjusted date ranges used in construction of the statistical limits.

<u>Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells for constituents detected in downgradient wells. The ANOVA assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells are not representative of the current background data population; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified statistically significant variation among upgradient well data for: arsenic, barium, cobalt, and nickel. The ANOVA did not identify variation for antimony, beryllium, cadmium, chromium, copper, lead, selenium, and zinc. The ANOVA could not test the following constituents because the data had no variation among the upgradient wells: silver, thallium, and vanadium.

Where significant spatial variation is not identified, this suggests that interwell analysis would be the most appropriate statistical method for these constituents. However, because this is a lined landfill with pre-waste data showing that metals occur naturally in low level detections, intrawell methods are recommended as the primary statistical method for all detected well/constituent pairs. Intrawell methods are generally based on an assumption of no existing impacts of the facility in background data. While the assumption is supported by pre-waste data, thorough evaluation of that assumption requires a separate geochemical investigation, especially for the cases of increasing trends in concentration following waste placement. That study is beyond the scope of services provided by Groundwater Stats Consulting.

Appendix III Background Update Summary – Conducted in March 2020

Prior to updating background data, Tukey's outlier test and visual screening were used to evaluate Appendix III data from both upgradient and downgradient wells through November 2019. Tukey's test noted potential outliers in downgradient wells for all parameters, but not all of these values were flagged as some appeared to be representative of natural variation. Any flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A summary of flagged outliers follows this letter (Figure C).

For constituents requiring intrawell prediction limits (all constituents in this instance), the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through March 2017 to the new compliance samples at each well through November 2019. If the medians of the two groups are not significantly different at the 99% confidence level, background data are typically updated to include the newer compliance data. Statistically significant differences were found between the two groups for the following well/constituent pairs: boron in downgradient wells GWC-19 and GWC-7; chloride in downgradient well GWC-8; pH in downgradient wells GWC-20 and GWC-22; sulfate in downgradient well GWC-20; and TDS in downgradient wells GWC-6 and GWC-8.

Although not statistically significant at the 99% confidence level, the increase in median concentrations between background and compliance data for boron at GWC-8 was significant at the 98% confidence level. This case is discussed below.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data unless it can be reasonably justified that the change in concentrations reflects a naturally occurring shift unrelated to practices at the site. In

studies in which at least one of the segments being compared is of short duration, the comparison is complicated by the fact that normal short-term variation may be mistaken for long-term change in medians. In this analysis, all but one of the cases with statistically significant Mann-Whitney results were updated. The individual cases are discussed below.

Boron in wells GWC-19 and GWC-7 trended over time toward more stable concentrations at slightly lower levels. Boron at GWC-8 had higher values recently, but the higher concentrations were similar to those in upgradient wells. The measured pH in downgradient wells GWC-20 and GWC-22 stabilized at slightly lower levels, closer to a neutral pH of 7.

Chloride in GWC-8 and TDS in both GWC-6 and GWC-8 showed moderate increases in median concentrations due to a short-term spike with the most recent concentrations similar to those in one or more background wells. The only case that was not updated at the time of the update was sulfate at well GWC-20, which has a marked and steadily increasing trend that was not present in the upgradient wells. However, it was later determined through an alternate source demonstration that this trend is either short-term or not the result of the facility, and this record was appropriately updated. Since the update, the upward trend in sulfate has continued and will continue to be evaluated. Concentrations remain below those in upgradient wells. A list of well/constituent pairs that use a truncated portion of their record also follows this report in the date range table mentioned above.

Evaluation of Georgia EPD Constituents – March 2021

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that are representative of the background data population, and that will rapidly identify a change in more recent compliance data from within a given well. The most recent sample from the same well is compared to its respective background. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility.

In cases where downgradient average concentrations are higher than observed upgradient concentrations for a given constituent where intrawell analyses are recommended, the current assumption is that this is due to natural spatial variation rather than a result of practices at the landfill. Validation of this assumption requires a separate analysis or investigation that is beyond the scope of this data screening study. However, for this site, the pre-waste data support the assumption of natural variation rather than impacts of the landfill.

Intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed using all available data for each well through December 2018, except for the cases mentioned above and listed in the Date Range Table. The March 2021 compliance data were compared to these intrawell background limits. No statistical analyses were included for well/constituent pairs with 100% non-detects.

A summary of the Georgia EPD intrawell prediction limits follows this report (Figure D). Exceedances were noted for the following downgradient well/constituent pairs:

Barium: GWC-8 and GWC-23

The reported measurements for barium of 0.14 mg/L in well GWC-8 and 0.085 mg/L in well GWC-23 exceeded their intrawell prediction limits of 0.1227 mg/L and 0.08464 mg/L, respectively. While the Sanitas software identified a statistical exceedance for barium in downgradient well GWC-23, it is due to a rounding of significant figures with a reported March 2021 measurement of 0.085 mg/L when compared to its prediction limit of 0.08464 mg/L. An interwell prediction limit was then constructed for barium using pooled upgradient well data to evaluate the apparent intrawell prediction limit exceedances (Figure E). The reported measurements of barium in these wells were within the interwell prediction limit of 0.21 mg/L. Therefore, no statistically significant increase is identified, and no further action is necessary.

When prediction limit exceedances occur in any of the downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable. Upgradient wells are included in the trend analyses to identify whether increasing or decreasing patterns exist upgradient of the site which is an indication of natural variability in groundwater unrelated to practices at the site. While no trend was identified for barium in downgradient well GWC-8, an increasing trend was noted for barium in downgradient well GWC-23. Both increasing and decreasing trends were noted for barium in upgradient wells which suggest natural variability is present in groundwater quality unrelated to practices at the site. A summary of the trend test results follows this letter (Figure F). Statistically significant trends were noted for the following well/constituent pairs:

Increasing trends:

Barium: GWA-2 (upgradient) and GWC-23

Decreasing trends:

• Barium: GWA-3 (upgradient) and GWA-4 (upgradient)

Evaluation of CCR Appendix III Parameters – March 2021

For all Appendix III parameters, intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical data through November 2019. The most recent sample from each downgradient well is compared to the background limit to determine whether there are exceedances over background. A summary of the Appendix III prediction limits follows this report (Figure G). Exceedances were noted for the following downgradient well/constituent pairs:

Calcium: GWC-20 and GWC-23

• Sulfate: GWC-20

When interwell prediction limits were constructed for the apparent intrawell prediction limit exceedances in downgradient wells, no exceedances were noted. Therefore, the initial statistical exceedances are considered false positive results and no further action is required. Data that exceeded intrawell background limits are further evaluated using trend tests as discussed below.

Data from downgradient well/constituent pairs found to exceed their respective prediction limit were further evaluated using the Sen's Slope/Mann Kendall trend test using a 99% confidence level, along with upgradient wells for the same constituents. A summary of the trend test results follows this letter (Figure I). Statistically significant increasing trends were identified for the following well/constituent pairs:

Calcium: GWC-20Sulfate: GWC-20

When similar patterns or concentrations occur both upgradient and downgradient of the facility for a given constituent, it suggests the changes in groundwater quality are naturally occurring and are unrelated to practices at the site. Although both calcium and sulfate concentrations at downgradient well GWC-20 are higher than those reported at upgradient well GWA-1, they remain lower than reported concentrations in upgradient wells GWA-3 and GWA-4.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Hammond's Huffaker Road Landfill. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Andrew T. Collins Project Manager Kristina L. Rayner Groundwater Statistician

Kristina Rayner

Sanitas™ v.9.6.28 Groundwater Stats Consulting. U

100% Non-Detects: Appendix I

Analysis Run 4/1/2021 1:17 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Antimony (mg/L)

GWC-20, GWC-21, GWC-22, GWC-23

Arsenic (mg/L)

GWA-1, GWA-2, GWC-10, GWC-19, GWC-20, GWC-22, GWC-6

Beryllium (mg/L)

GWA-1, GWA-1, GWA-2, GWA-4, GWC-10, GWC-18, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-8, GWC-9

Cadmium (mg/L)

GWA-1, GWA-11, GWA-2, GWA-3, GWC-19, GWC-22, GWC-6

Cobalt (mg/L)

GWC-18, GWC-19, GWC-20, GWC-22

Copper (mg/L)

GWA-1

Lead (mg/L)

GWA-1, GWA-2, GWA-4, GWC-9

Selenium (mg/L)

GWA-1, GWA-11, GWA-2, GWA-3, GWC-18, GWC-19, GWC-20, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8

Silver (mg/L)

GWA-1, GWA-2, GWA-3, GWA-4, GWC-10, GWC-18, GWC-19, GWC-20, GWC-22, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8, GWC-9

Thallium (mg/L

GWA-1, GWA-2, GWA-3, GWA-4, GWC-10, GWC-18, GWC-19, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-8, GWC-9

Vanadium (mg/L)

GWA-1, GWA-1, GWA-2, GWA-3, GWA-4, GWC-10, GWC-18, GWC-19, GWC-20, GWC-22, GWC-6, GWC-8

Sanitas™ v.9.6.28 Groundwater Stats Consulting.

Page 1

Date Ranges

Date: 4/5/2021 10:34 AM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Barium (mg/L)

GWA-2 background:4/13/2010-10/4/2018

GWC-19 background:4/13/2010-10/4/2018

GWC-22 background:4/13/2010-10/4/2018

GWC-6 background:3/23/2016-10/4/2018

GWC-7 background:4/3/2012-10/4/2018

GWC-9 background: 10/4/2011-10/5/2018

Cobalt (mg/L)

GWC-7 background:3/12/2013-10/4/2018

Nickel (mg/L)

GWC-7 background:3/12/2013-10/4/2018

Zinc (mg/L)

GWC-7 background:3/12/2013-10/4/2018

State Intrawell Prediction Limits - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/1/2021, 1:24 PM

	Fiaiii	Hammond	Ciletti. South	erri Compani	Dala. I	iuliakei ivo	au Lanuilli	Fillited 4/ II	2021, 1	.24 F IVI			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Barium (mg/L)	GWC-23	0.08464	n/a	3/9/2021	0.085	Yes 32	0.06272	0.009212	0	None	No	0.0002926	Param Intra 1 of 2
Davisson (mag/L)	OWO 0	0.4007	-1-	2/0/2024	0.44	V 04	0.040	0.04.400	^	Mana		0 0000000	Danson Inter 4 of 0

State Intrawell Prediction Limits - All Results

	Ott		liawc			/ 1 1		11110			uito			
	Plant	Hammond	Client: South	nern Compan	ny Data: H	luffake	er Ro	ad Landfill	Printed 4/1	/2021, 1	:24 PM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n <u>Alpha</u>	Method
Antimony (mg/L)	GWA-1	0.003	n/a	3/8/2021	0.003ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-11	0.003	n/a	3/8/2021	0.0005J	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-2	0.003	n/a	3/9/2021	0.003ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-3	0.003	n/a	3/8/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-4	0.003	n/a	3/8/2021	0.0016J	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-10	0.003	n/a	3/9/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-18	0.003	n/a	3/9/2021	0.003ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-19	0.003	n/a	3/10/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-5	0.003	n/a	3/9/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-6	0.003	n/a	3/9/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-7	0.003	n/a	3/9/2021	0.003ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-8	0.003	n/a	3/9/2021	0.003ND	No	30	n/a	n/a	96.67	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-9	0.003	n/a	3/9/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-11	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	71.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-4	0.0065	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	90.63	n/a	n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-18	0.005	n/a	3/9/2021	0.005ND		32	n/a	n/a	96.88		n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.005ND		30	n/a	n/a	86.67		n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-23	0.005	n/a	3/9/2021	0.005ND		32	n/a	n/a	100	n/a	n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-5	0.005	n/a	3/9/2021	0.005ND		32	n/a	n/a	93.75		n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-7	0.0088	n/a	3/9/2021	0.0052		30	n/a	n/a	46.67	n/a	n/a		NP Intra (normality) 1 of 2
Arsenic (mg/L)	GWC-8	0.005	n/a	3/9/2021	0.003 <u>2</u>		31	n/a	n/a	87.1	n/a	n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-9	0.005	n/a	3/9/2021	0.00103 0.005ND		32	n/a	n/a	100	n/a	n/a		NP Intra (NDs) 1 of 2
, ,	GWA-1	0.05021		3/8/2021	0.00311D	No		0.03919	0.00463	0	None			, ,
Barium (mg/L)			n/a									No		Param Intra 1 of 2
Barium (mg/L)	GWA-11	0.04217	n/a	3/8/2021	0.031		32	-3.4	0.09826	0	None	ln(x)		Param Intra 1 of 2
Barium (mg/L)	GWA-2	0.1987	n/a	3/9/2021	0.17	No		0.1657	0.01314	0	None	No		Param Intra 1 of 2
Barium (mg/L)	GWA-3	0.2268	n/a	3/8/2021	0.12		32	0.1719	0.02304	0	None	No		Param Intra 1 of 2
Barium (mg/L)	GWA-4	0.14	n/a	3/8/2021	0.052	No		n/a	n/a	0	n/a	n/a		NP Intra (normality) 1 of 2
Barium (mg/L)	GWC-10	0.1952	n/a	3/9/2021	0.15	No		0.1271	0.02885	0	None	No		Param Intra 1 of 2
Barium (mg/L)	GWC-18	0.08974	n/a	3/9/2021	0.077	No	32	0.07311	0.006987		None	No	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-19	0.1697	n/a	3/10/2021	0.15	No	23	0.0003879	0.000176		None	x^4		Param Intra 1 of 2
Barium (mg/L)	GWC-20	0.1358	n/a	3/10/2021	0.13	No	31	0.001502	0.0004195	0	None	x^3	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-21	0.2404	n/a	3/9/2021	0.12	No	30	-2.722	0.5402	0	None	ln(x)	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-22	0.121	n/a	3/9/2021	0.089	No	23	n/a	n/a	0	n/a	n/a	0.003415	NP Intra (normality) 1 of 2
Barium (mg/L)	GWC-23	0.08464	n/a	3/9/2021	0.085	Yes	32	0.06272	0.009212	0	None	No	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-5	0.1274	n/a	3/9/2021	0.063	No	32	0.1019	0.01074	0	None	No	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-6	0.1978	n/a	3/9/2021	0.17	No	11	0.1654	0.01034	0	None	No	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-7	0.4063	n/a	3/9/2021	0.31	No	19	0.3226	0.1206	0	None	sqrt(x)	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-8	0.1227	n/a	3/9/2021	0.14	Yes	31	0.316	0.01439	0	None	sqrt(x)	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-9	0.07338	n/a	3/9/2021	0.059	No	20	0.06193	0.00445	0	None	No	0.0002926	Param Intra 1 of 2
Beryllium (mg/L)	GWA-3	0.0005	n/a	3/8/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Beryllium (mg/L)	GWC-19	0.0005	n/a	3/10/2021	0.0005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Beryllium (mg/L)	GWC-7	0.093	n/a	3/9/2021	0.0005ND	No	30	n/a	n/a	23.33	n/a	n/a	0.002008	NP Intra (normality) 1 of 2
Cadmium (mg/L)	GWA-4	0.0005	n/a	3/8/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-10	0.0005	n/a	3/9/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-18	0.0005	n/a	3/9/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-20	0.0005	n/a	3/10/2021	0.0005ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-21	0.0005	n/a	3/9/2021	0.0005ND	No	30	n/a	n/a	93.33	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-23	0.0005	n/a	3/9/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-5	0.0015	n/a	3/9/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-7	0.0035	n/a	3/9/2021	0.0005ND			n/a	n/a	82.76		n/a		NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-8	0.0005	n/a	3/9/2021	0.0005ND			n/a	n/a	96.77		n/a		NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-9	0.0005	n/a	3/9/2021	0.0005ND			n/a	n/a	93.75		n/a		NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-1	0.016	n/a	3/8/2021	0.005ND			n/a	n/a	93.75		n/a		NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-11	0.005	n/a	3/8/2021	0.005ND			n/a	n/a	90.63		n/a		NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-2	0.005	n/a	3/9/2021	0.005ND			n/a	n/a	100	n/a	n/a		NP Intra (NDs) 1 of 2
- ···-··· (···· 3 · =/					2.220.10									(

State Intrawell Prediction Limits - All Results

Otate intrawent regioner Limite					/ \	103	uito							
	Plant	Hammond	Client: South	nern Compan	y Data: H	luffak	er Ro	ad Landfill	Printed 4/1	/2021, 1	:24 PM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transforn	n Alpha	Method
Chromium (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-4	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-10	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	90.63	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-18	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-19	0.005	n/a	3/10/2021	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
, - ,													0.001803	,
Chromium (mg/L)	GWC-20	0.0064	n/a	3/10/2021	0.005ND	No	31	n/a	n/a	90.32	n/a	n/a		NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.005ND	No	30	n/a	n/a	96.67	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-22	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-23	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-5	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-6	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-7	0.005	n/a	3/9/2021	0.005ND	No	30	n/a	n/a	83.33	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-8	0.005	n/a	3/9/2021	0.005ND	No	31	n/a	n/a	90.32	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-9	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	90.63	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-1	0.01	n/a	3/8/2021	0.0005J	No	32	n/a	n/a	68.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-11	0.01	n/a	3/8/2021	0.00049J	No	32	n/a	n/a	62.5	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-2	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-4	0.005	n/a	3/8/2021	0.00061J	No	32	n/a	n/a	68.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-10	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-21	0.01	n/a	3/9/2021	0.00049J	No	30	n/a	n/a	63.33	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-23	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-5	0.005	n/a	3/9/2021	0.00043J		32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-6	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
								0.03376	0.01735	0				Param Intra 1 of 2
Cobalt (mg/L)	GWC-7	0.08032	n/a	3/9/2021	0.0093	No	17				None	No -/-		
Cobalt (mg/L)	GWC-8	0.01	n/a	3/9/2021	0.0013J	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-9	0.005	n/a	3/9/2021	0.00042J	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-11	0.005	n/a	3/8/2021	0.005ND		27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-2	0.005	n/a	3/9/2021	0.005ND	No		n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.005ND	No	27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-4	0.0066	n/a	3/8/2021	0.005ND	No	27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-10	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-18	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-19	0.005	n/a	3/10/2021	0.005ND	No	27	n/a	n/a	88.89	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-20	0.005	n/a	3/10/2021	0.005ND	No	26	n/a	n/a	96.15	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.005ND	No	25	n/a	n/a	76	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-22	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-23	0.0084	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	85.19	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-5	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	88.89	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-6	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	100	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-7	0.016	n/a	3/9/2021	0.005ND	No	25	n/a	n/a	80	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-8	0.005	n/a	3/9/2021	0.005ND	No	26	n/a	n/a	100	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-9	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWA-11	0.001	n/a	3/8/2021	0.001ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.00004J		32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-10	0.001	n/a	3/9/2021	0.001ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-18	0.001	n/a	3/9/2021	0.001ND			n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-19	0.001	n/a	3/10/2021	0.001ND			n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
		0.001		3/10/2021				n/a					0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-20		n/a		0.001ND				n/a	96.77	n/a	n/a		,
Lead (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.00013J			n/a	n/a	96.67	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-22	0.005	n/a	3/9/2021	0.000038			n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-23	0.005	n/a	3/9/2021	0.00011J			n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-5	0.001	n/a	3/9/2021	0.001ND			n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-6	0.001	n/a	3/9/2021	0.001ND			n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-7	0.005	n/a	3/9/2021	0.000085			n/a	n/a	83.87		n/a	0.001905	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-8	0.001	n/a	3/9/2021	0.001ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2

State Intrawell Prediction Limits - All Results

Otate intrawent regioner Emilio						iiito	/ \	100	uito					
	Plant	Hammond	Client: South	nern Compan	y Data: H	luffaker	r Roa	ad Landfill	Printed 4/1	/2021, 1	:24 PM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. E	3g N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transforr	n Alpha	Method
Nickel (mg/L)	GWA-1	0.005	n/a	3/8/2021	0.005ND	No 2	27	n/a	n/a	85.19	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-11	0.01	n/a	3/8/2021	0.001J	No 2	27	n/a	n/a	66.67	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-2	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.005ND	No 2	27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-4	0.0055	n/a	3/8/2021	0.005ND	No 2	27	n/a	n/a	59.26	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-10	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	100	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-18	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	85.19	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-19	0.0062	n/a	3/10/2021	0.005ND	No 2	27	n/a	n/a	88.89	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-20	0.005	n/a	3/10/2021	0.005ND	No 2	26	n/a	n/a	92.31	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-21	0.01035	n/a	3/9/2021	0.0013J	No 2	26	0.1566	0.02496	23.08	Kaplan-Meier	x^(1/3)	0.0002926	Param Intra 1 of 2
Nickel (mg/L)	GWC-22	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-23	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	81.48	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-5	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-6	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-7	0.3321	n/a	3/9/2021	0.035	No 1	12	0.133	0.06625	0	None	No	0.0002926	Param Intra 1 of 2
Nickel (mg/L)	GWC-8	0.005	n/a	3/9/2021	0.005ND	No 2	26	n/a	n/a	96.15	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-9	0.01	n/a	3/9/2021	0.0014J	No 2	27	n/a	n/a	66.67	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-4	0.005	n/a	3/8/2021	0.005ND	No 3	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-10	0.005	n/a	3/9/2021	0.005ND	No 3	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.005ND	No 3	30	n/a	n/a	93.33	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-22	0.005	n/a	3/9/2021	0.005ND	No 3	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-9	0.005	n/a	3/9/2021	0.005ND	No 3	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.005ND	No 2	25	n/a	n/a	96	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWC-7	0.001	n/a	3/9/2021	0.001ND	No 3	30	n/a	n/a	96.67	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-21	0.01	n/a	3/9/2021	0.01ND	No 2	25	n/a	n/a	92	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-23	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	100	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-5	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-7	0.01	n/a	3/9/2021	0.01ND	No 2	26	n/a	n/a	80.77	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-9	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-1	0.01	n/a	3/8/2021	0.01ND	No 2	27	n/a	n/a	77.78	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-11	0.01	n/a	3/8/2021	0.01ND	No 2	27	n/a	n/a	66.67	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-2	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	70.37	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-3	0.01	n/a	3/8/2021	0.01ND	No 2	27	n/a	n/a	55.56	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-4	0.02	n/a	3/8/2021	0.0034J	No 2	27	n/a	n/a	33.33	n/a	n/a	0.002502	NP Intra (normality) 1 of 2
Zinc (mg/L)	GWC-10	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	77.78	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-18	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	70.37	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-19	0.013	n/a	3/10/2021	0.01ND	No 2	27	n/a	n/a	59.26	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-20	0.01	n/a	3/10/2021	0.01ND	No 2	26	n/a	n/a	80.77	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-21	0.02	n/a	3/9/2021	0.0033J	No 2	25	n/a	n/a	12	n/a	n/a	0.002832	NP Intra (normality) 1 of 2
Zinc (mg/L)	GWC-22	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	81.48	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-23	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	55.56	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-5	0.01	n/a	3/9/2021	0.01ND	No 2		n/a	n/a	55.56		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-6	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	74.07	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-7	0.6123	n/a	3/9/2021	0.057	No 1	12	0.2426	0.123	0	None	No	0.0002926	Param Intra 1 of 2
Zinc (mg/L)	GWC-8	0.01	n/a	3/9/2021	0.01ND	No 2	26	n/a	n/a	73.08	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-9	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	66.67	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
														•

State Interwell Prediction Limits - All Results (No Significant)

	Plant I	Hammond	Client: Southern Company Data: Huffaker Road Landfill Pr					2021, 1	:27 PM		
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u> <u>Method</u>
Barium (mg/L)	GWC-23	0.21	n/a	3/9/2021	0.085	No 185 n/a	n/a	0	n/a	n/a	0.00005765NP Inter (normality) 1 of 2
Barium (mg/L)	GWC-8	0.21	n/a	3/9/2021	0.14	No 185 n/a	n/a	0	n/a	n/a	0.00005765NP Inter (normality) 1 of 2

State Trend Tests - Prediction Limit Exceedances - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/1/2021, 1:32 PM

	Plant Hammond	Client: Southern Compan	y Data: Huffa	aker Road	Landfill	Printed	4/1/202	21, 1:32	РМ			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	GWA-2 (bg)		0.003826	359	199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)		-0.004861	-394	-199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)		-0.002733	-224	-199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-23		0.001249	222	199	Yes	37	0	n/a	n/a	0.01	NP

State Trend Tests - Prediction Limit Exceedances - All Results

	Plant Hammond	Client: Southern Compan	y Data: Huffa	ker Road	Landfill	Printed	4/1/202	21, 1:32	PM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	GWA-1 (bg)		-0.00007595	-37	-199	No	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-11 (bg)		-0.00016	-135	-199	No	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-2 (bg)		0.003826	359	199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)		-0.004861	-394	-199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)		-0.002733	-224	-199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-23		0.001249	222	199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-8		0.0007645	111	199	No	37	0	n/a	n/a	0.01	NP

Federal Intrawell Prediction Limits - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/1/2021, 2:00 PM

	Plant	Hammond	Client: South	ern Compan	y Data: F	Huffaker Ro	ad Landfill	Printed 4/1	/2021, 2	2:00 PM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	GWA-11	0.04165	n/a	3/8/2021	0.042	Yes 13	0.0356	0.002301	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-20	63.52	n/a	3/10/2021	64.9	Yes 13	52.64	4.139	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-23	45.95	n/a	3/9/2021	54.3	Yes 13	36.75	3.5	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-20	58.56	n/a	3/10/2021	64.7	Yes 18	35.78	9.504	0	None	No	0.0006269	Param Intra 1 of 2

Federal Intrawell Prediction Limits - All Results

	Plant	Hammond	Client: South	hern Compar	y Data:	Huffake	er Ro	ad Landfill	Printed 4/1	/2021, 2	2:00 PM			
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	GWA-1	0.05	n/a	3/8/2021	0.021J	No	13	n/a	n/a	15.38	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Boron (mg/L)	GWA-11	0.04165	n/a	3/8/2021	0.042	Yes	13	0.0356	0.002301	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-2	0.1059	n/a	3/9/2021	0.081	No	13	0.08618	0.007513	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-3	0.195	n/a	3/8/2021	0.13	No	13	0.1502	0.01706	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-4	0.1507	n/a	3/8/2021	0.089	No	13	0.09276	0.02204	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-10	0.04348	n/a	3/9/2021	0.037J	No	13	0.03321	0.003909	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-18	0.1547	n/a	3/9/2021	0.13	No	13	0.1292	0.009697	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-19	0.2048	n/a	3/10/2021	0.16	No	13	0.1773	0.01047	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-20	0.05	n/a	3/10/2021	0.018J	No	13	n/a	n/a	7.692	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Boron (mg/L)	GWC-21	0.1406	n/a	3/9/2021	0.03J	No	13	0.199	0.06698	0	None	sqrt(x)	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-22	0.08272	n/a	3/9/2021	0.065	No	13	0.06841	0.005445	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-23	0.1347	n/a	3/9/2021	0.044	No	13	0.191	0.067	7.692	None	sqrt(x)	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-5	0.08013	n/a	3/9/2021	0.046	No	13	0.05944	0.007872	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-6	0.04531	n/a	3/9/2021	0.038J	No	14	0.03949	0.002264	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-7	0.07265	n/a	3/9/2021	0.041	No	13	0.05612	0.006289	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-8	0.055	n/a	3/9/2021	0.05	No	13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Boron (mg/L)	GWC-9	0.05	n/a	3/9/2021	0.014J	No	13	n/a	n/a	7.692	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Calcium (mg/L)	GWA-1	20.51	n/a	3/8/2021	16.2	No	13	15.95	1.735	7.692	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-11	27.27	n/a	3/8/2021	22	No	13	19.82	2.834	7.692	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-2	51.4	n/a	3/9/2021	48.7	No	13	41.93	3.601	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-3	94.16	n/a	3/8/2021	73.5	No	13	75.85	6.964	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-4	130.7	n/a	3/8/2021	87.2	No	13	88.18	16.18	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-10	60.36	n/a	3/9/2021	48.7	No	15	41.41	7.541	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-18	46.36	n/a	3/9/2021	44.9	No	14	40.09	2.439	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-19	49.63	n/a	3/10/2021	47.4	No	13	43.91	2.178	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-20	63.52	n/a	3/10/2021	64.9	Yes	13	52.64	4.139	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-21	95.47	n/a	3/9/2021	67.8	No	15	48.65	18.63	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-22	52.66	n/a	3/9/2021	48.7	No	13	47.68	1.891	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-23	45.95	n/a	3/9/2021	54.3	Yes	13	36.75	3.5	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-5	90.26	n/a	3/9/2021	85.4	No	13	73.43	6.404	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-6	71.95	n/a	3/9/2021	70.8	No	13	62.28	3.678	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-7	74.21	n/a	3/9/2021	64.3	No	13	36.61	14.31	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-8	90.82	n/a	3/9/2021	83.2	No	15	63.08	11.04	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-9	39.77	n/a	3/9/2021	36.8	No	13	35.16	1.751	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-1	1.55	n/a	3/8/2021	1.1	No	13	1.179	0.1409	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-11	2.158	n/a	3/8/2021	1.3	No	13	1.493	0.253	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-2	3.162	n/a	3/9/2021	2.1	No	13	2.431	0.2783	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-3	4.883	n/a	3/8/2021	2.8	No	13	3.95	0.3552	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-4	11.19	n/a	3/8/2021	5.6	No	13	6.268	1.874	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-10	2.285	n/a	3/9/2021	1.1	No	15	1.609	0.269	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-18	1.907	n/a	3/9/2021	0.97J	No	13	1.385	0.1987	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-19	2.57	n/a	3/10/2021	1.3	No	13	1.915	0.2492	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-20	2.396	n/a	3/10/2021	1.2	No	14	1.7	0.2708	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-21	3.962	n/a	3/9/2021	1.8	No	14	2.712	0.4862	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-22	2.011	n/a	3/9/2021	1	No	13	1.555	0.1736	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-23	2.104	n/a	3/9/2021	0.85J	No	13	1.552	0.2101	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-5	4.279	n/a	3/9/2021	2	No	13	3.029	0.4757	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-6	2.458	n/a	3/9/2021	1.5	No	13	1.955	0.1913	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-7	2.458	n/a	3/9/2021	1.5	No	13	1.654	0.3056	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-8	3.306	n/a	3/9/2021	2.2	No	15	1.936	0.545	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-9	1.823	n/a	3/9/2021	0.74J	No	13	1.195	0.239	0	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-1	0.2142	n/a	3/8/2021	0.094J	No	13	0.1055	0.04138	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-11	0.1844	n/a	3/8/2021	0.11	No	13	0.07757	0.04064	23.08	Kaplan-Meier	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-2	0.267	n/a	3/9/2021	0.099J	No	13	0.1289	0.05253	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-3	0.5357	n/a	3/8/2021	0.13	No	13	0.2393	0.1127	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-4	0.5087	n/a	3/8/2021	0.1	No	13	0.2241	0.1082	0	None	No	0.0006269	Param Intra 1 of 2

Federal Intrawell Prediction Limits - All Results

	Plan	Hammond	Client: South	nern Compan	y Data: I	Huff	faker R	oad Landfill	Printed 4/1	/2021, 2	2:00 PM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Si	ig. Bg	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	m <u>Alpha</u>	Method
Fluoride (mg/L)	GWC-10	0.2027	n/a	3/9/2021	0.078J	N	lo 13	0.1064	0.03664	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-18	0.2327	n/a	3/9/2021	0.11	N	lo 13	0.1467	0.03273	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-19	0.2758	n/a	3/10/2021	0.11	N	lo 13	0.1547	0.04606	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-20	0.2054	n/a	3/10/2021	0.068J	N	lo 13	0.09322	0.0427	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-21	0.252	n/a	3/9/2021	0.058J	N	lo 13	0.09554	0.05953	15.38	Kaplan-Meier	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-22	0.1652	n/a	3/9/2021	0.067J	N	lo 13	0.09188	0.0279	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-23	0.1978	n/a	3/9/2021	0.069J	N	lo 13	0.1127	0.03238	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-5	0.4044	n/a	3/9/2021	0.05J	N	lo 13	0.4643	0.1047	15.38	Kaplan-Meier	x^(1/3)	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-6	0.3208	n/a	3/9/2021	0.06J	N	lo 13	0.1139	0.07868	15.38	Kaplan-Meier	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-7	0.548	n/a	3/9/2021	0.17	N	lo 13	0.2598	0.1097	0	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-8	0.4854	n/a	3/9/2021	0.12	N	lo 14	0.4306	0.1035	0	None	sqrt(x)	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWC-9	0.1929	n/a	3/9/2021	0.08J	N	lo 13	0.09607	0.03684	7.692	None	No	0.0006269	Param Intra 1 of 2
pH (SU)	GWA-1	7.414	6.463	3/8/2021	6.86	N	lo 13	6.938	0.1807	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWA-11	7.075	6.309	3/8/2021	6.78	N	lo 13	6.692	0.1457	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWA-2	7.273	6.46	3/9/2021	6.93	N	lo 13	6.867	0.1547	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWA-3	7.238	6.227	3/8/2021	6.95	N	lo 13	6.732	0.1922	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWA-4	7.246	6.263	3/8/2021	6.84	N	lo 13	6.755	0.1869	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-10	7.697	6.845	3/9/2021	7.43	N	lo 13	7.271	0.162	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-18	7.781	7.39	3/9/2021	7.66	N	lo 13	7.585	0.07423	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-19	7.732	7.179	3/10/2021	7.49	N	lo 13	7.455	0.1052	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-20	7.588	6.958	3/10/2021	7.41	N	lo 15	7.273	0.1253	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-21	7.759	5.557	3/9/2021	7.04	N	lo 13	6.658	0.4189	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-22	7.968	7.278	3/9/2021	7.52	N	lo 14	7.623	0.1341	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-23	7.564	6.735	3/9/2021	6.81	N	lo 13	7.149	0.1578	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-5	7.288	6.348	3/9/2021	6.93	N	lo 13	6.818	0.1788	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-6	7.369	6.632	3/9/2021	7.09	N	lo 13	7.001	0.1401	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-7	6.623	5.502	3/9/2021	6.59	N	lo 13	6.062	0.2132	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-8	7.808	6.743	3/9/2021	7.06	N	lo 15	7.275	0.2119	0	None	No	0.0003135	Param Intra 1 of 2
pH (SU)	GWC-9	7.362	6.212	3/9/2021	6.92	N	lo 13	6.787	0.2186	0	None	No	0.0003135	Param Intra 1 of 2
Sulfate (mg/L)	GWA-1	5.454	n/a	3/8/2021	4.6	N	lo 13	4.79	0.2524	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWA-11	15.5	n/a	3/8/2021	11.5	N	lo 13	12.58	1.108	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWA-2	20.34	n/a	3/9/2021	16.8	N	lo 13	14.94	2.053	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWA-3	231.1	n/a	3/8/2021	99.5	N	lo 13	131.7	37.85	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWA-4	348.3	n/a	3/8/2021	152	N	lo 13	192.8	59.18	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-10	46.25	n/a	3/9/2021	14.2	N	lo 14	4.162	1.026	0	None	sqrt(x)	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-18	14.99	n/a	3/9/2021	7.9	N	lo 13	10.94	1.541	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-19	20.78	n/a	3/10/2021	18.7	N	lo 13	16.18	1.748	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-20	58.56	n/a	3/10/2021	64.7	Y	es 18	35.78	9.504	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-21	57.26	n/a	3/9/2021	41.6	N	lo 13	30.96	10.01	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-22	14	n/a	3/9/2021	6.4	N	lo 13	7.792	2.363	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-23	43	n/a	3/9/2021	10.2	N	lo 13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Sulfate (mg/L)	GWC-5	159.3	n/a	3/9/2021	86.9	N	lo 13	9.222	1.293	0	None	sqrt(x)	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-6	150.6	n/a	3/9/2021	105	N	lo 17	109.2	17.06	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-7	189.7	n/a	3/9/2021	87.4	N	lo 13	114.7	28.53	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-8	62.67	n/a	3/9/2021	33.1	N	lo 13	42.48	7.682	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-9	85.53	n/a	3/9/2021	65.1	N	lo 14	69.87	6.092	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWA-1	175.9	n/a	3/8/2021	96	N	lo 13	105.2	26.93	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWA-11	186	n/a	3/8/2021	107	N	lo 13	128.5	21.88	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWA-2	274.9	n/a	3/9/2021	227	N	lo 13	220.5	20.67	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWA-3	682.3	n/a	3/8/2021	415	N	lo 13	7.827	0.3714	0	None	x^(1/3)	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWA-4	772.9	n/a	3/8/2021	460	N	lo 13	531.9	91.69	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-10	281.6	n/a	3/9/2021	201	N	lo 13	184.1	37.09	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-18	427	n/a	3/9/2021	192	N	lo 13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-19	393	n/a	3/10/2021	223	N	lo 13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-20	306.2	n/a	3/10/2021	241	N	lo 13	229.2	29.3	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-21	417.6	n/a	3/9/2021	243	N	lo 15	203.2	85.29	0	None	No	0.0006269	Param Intra 1 of 2

Page 3

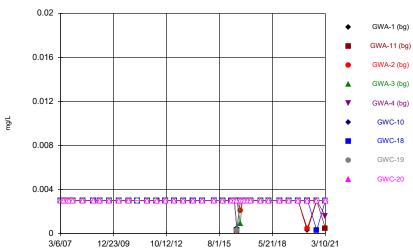
Federal Intrawell Prediction Limits - All Results

	Plant	Hammond	Client: Southern Company Data: Huffaker Road Landfill F			Printed 4/1/2021, 2:00 PM								
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. E	3g N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Total Dissolved Solids (mg/L)	GWC-22	324	n/a	3/9/2021	178	No 1	13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-23	313.1	n/a	3/9/2021	216	No 1	13	197.3	44.03	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-5	520.9	n/a	3/9/2021	364	No 1	13	395	47.9	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-6	439.1	n/a	3/9/2021	298	No 1	15	333.5	42.03	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-7	369	n/a	3/9/2021	299	No 1	13	271.2	37.22	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-8	428.8	n/a	3/9/2021	308	No 1	15	269.7	63.28	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-9	326	n/a	3/9/2021	209	No 1	13	235.2	34.54	0	None	No	0.0006269	Param Intra 1 of 2

Federal Interwell Prediction Limits - All Results (No Significant) Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/5/2021, 10:15 AM

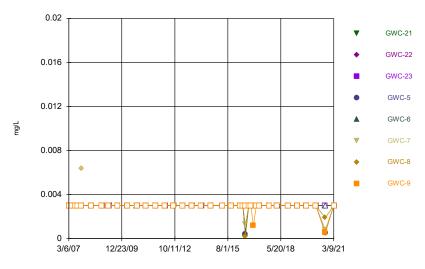
	Plant H	ammond	Client: Southern Company		/ Data: Huffaker Road Landfill			Printed 4/5/2	2021, 10):15 AM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Calcium (mg/L)	GWC-20	123	n/a	3/10/2021	64.9	No 80	n/a	n/a	2.5	n/a	n/a	0.0002963	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-23	123	n/a	3/9/2021	54.3	No 80	n/a	n/a	2.5	n/a	n/a	0.0002963	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-20	302.3	n/a	3/10/2021	64.7	No 80	n/a	n/a	0	n/a	n/a	0.0002963	NP Inter (normality) 1 of 2

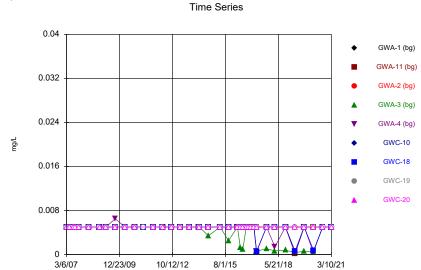
Federal Trend Tests - Prediction Limit Exceedances - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/5/2021, 10:20 AM


	Plant Hammond	Client: Southern Company	Data: Huffa	ker Road	Landfill	Printed	4/5/202	1, 10:20	AM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWC-20		2.583	66	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-20		7 658	172	87	Yes	21	0	n/a	n/a	0.01	NP

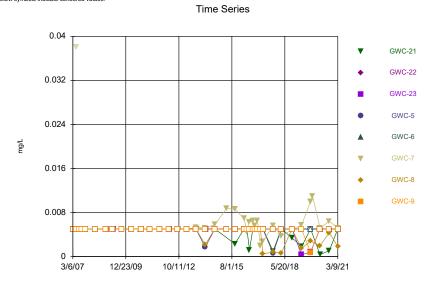
Federal Trend Tests - Prediction Limit Exceedances - All Results

	Plant Hammond	Client: Southern Company	Data: Huffaker Road Landfill		andfill F	Printed	4/5/202	1, 10:21	AM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWA-1 (bg)		0.02906	6	58	No	16	6.25	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-11 (bg)		-0.04409	-3	-58	No	16	6.25	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-2 (bg)		0.6357	16	58	No	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-3 (bg)		-0.09493	-2	-58	No	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-4 (bg)		-3.43	-36	-58	No	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-20		2.583	66	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-23		1.954	37	58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-1 (bg)		0.1633	48	58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-11 (bg)		-0.01836	-10	-58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-2 (bg)		0.6594	39	58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-3 (bg)		-2.39	-13	-58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-4 (bg)		-18.44	-47	-58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-20		7.658	172	87	Yes	21	0	n/a	n/a	0.01	NP

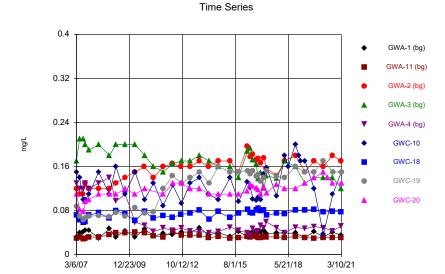

FIGURE A.


Constituent: Antimony Analysis Run 4/1/2021 1:41 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

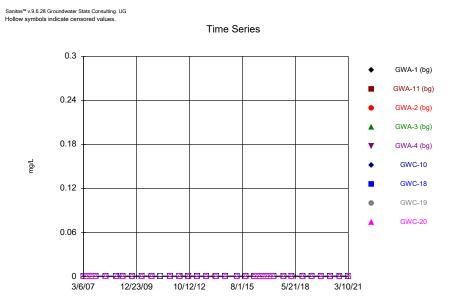
Time Series

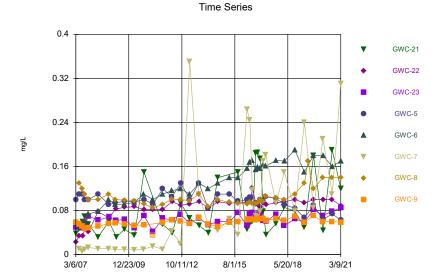

Constituent: Antimony Analysis Run 4/1/2021 1:41 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

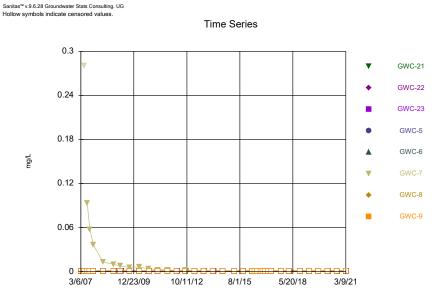
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values



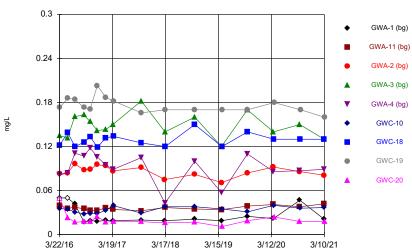
Constituent: Arsenic Analysis Run 4/1/2021 1:41 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

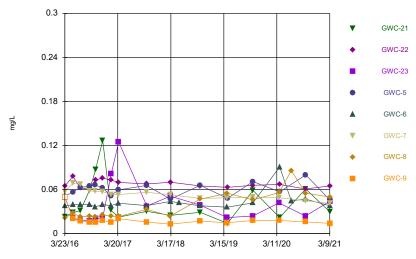

Constituent: Arsenic Analysis Run 4/1/2021 1:41 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Barium Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Beryllium Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

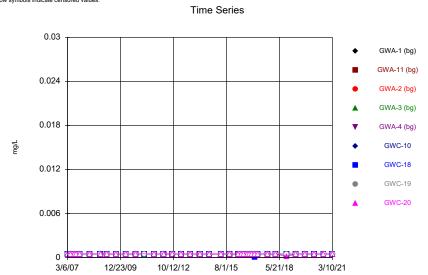

Constituent: Barium Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Beryllium Analysis Run 4/1/2021 1:41 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

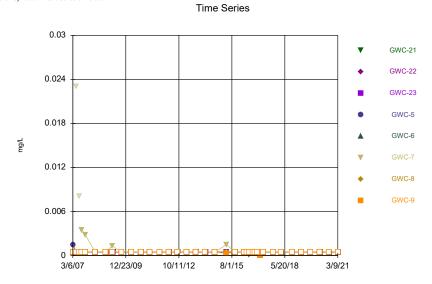
Constituent: Boron Analysis Run 4/1/2021 1:41 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



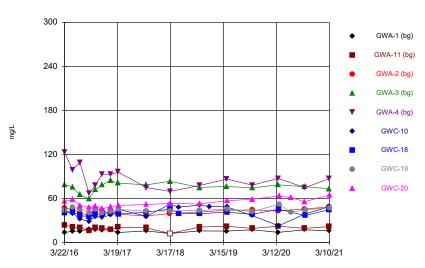
Time Series

Constituent: Boron Analysis Run 4/1/2021 1:41 PM

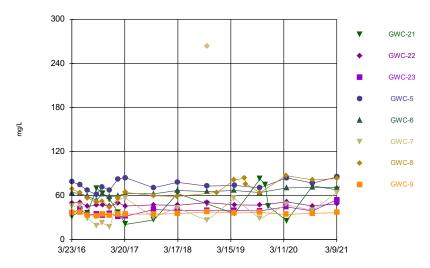

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



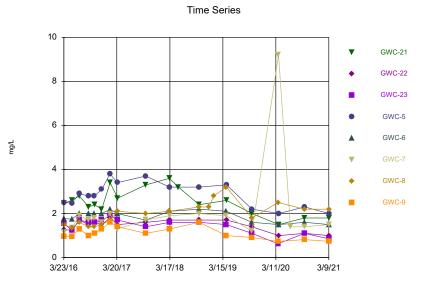

Constituent: Cadmium Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

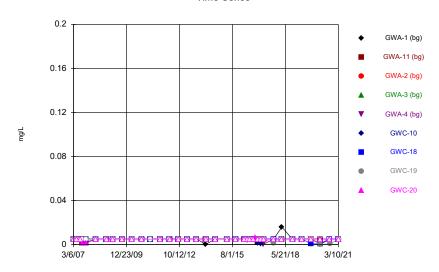

Constituent: Cadmium Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Calcium Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

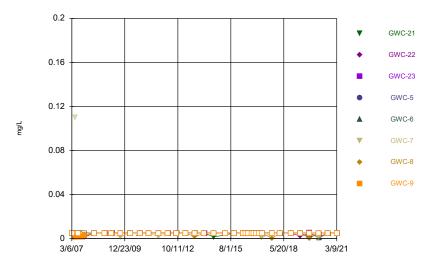

Constituent: Calcium Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas[™] v.9.6.28 Groundwater Stats Consulting. UG

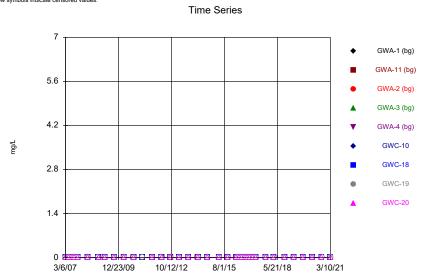

Constituent: Chloride Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

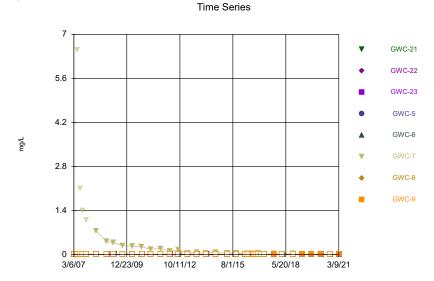
Constituent: Chloride Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



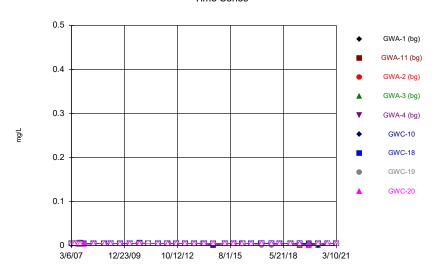
Constituent: Chromium Analysis Run 4/1/2021 1:41 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

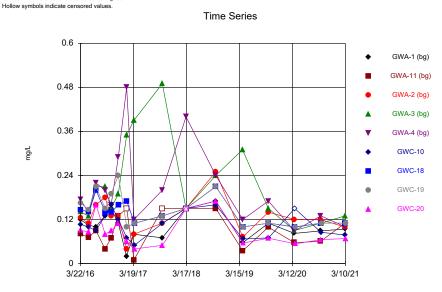

Constituent: Chromium Analysis Run 4/1/2021 1:41 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

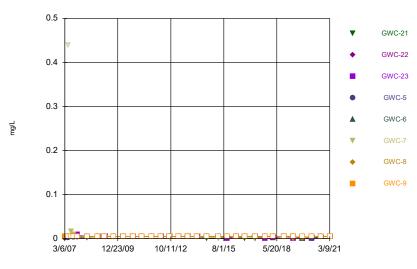
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values



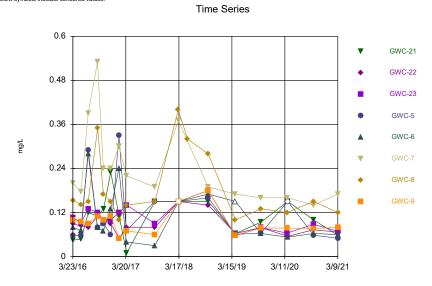
Constituent: Cobalt Analysis Run 4/1/2021 1:41 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



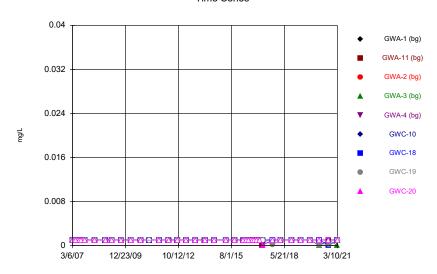

Constituent: Copper Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

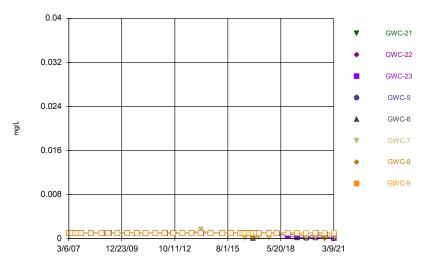

Constituent: Fluoride Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

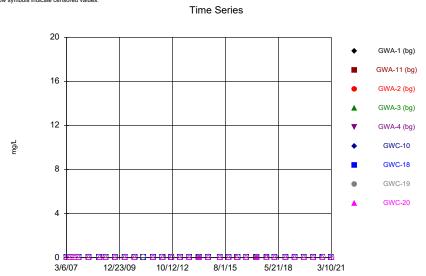
Constituent: Copper Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Fluoride Analysis Run 4/1/2021 1:41 PM

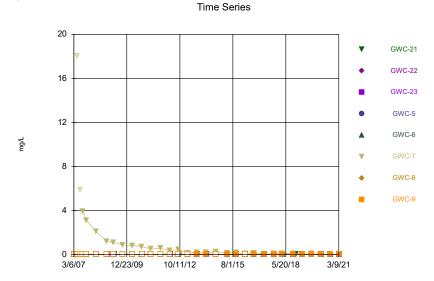

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Lead Analysis Run 4/1/2021 1:41 PM

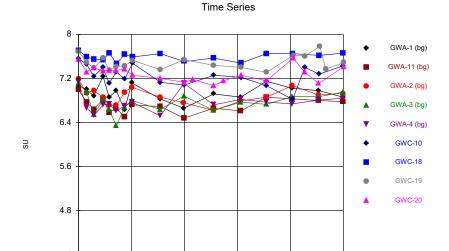

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Lead Analysis Run 4/1/2021 1:41 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

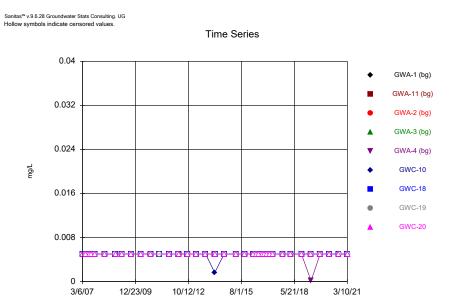
Constituent: Nickel Analysis Run 4/1/2021 1:41 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

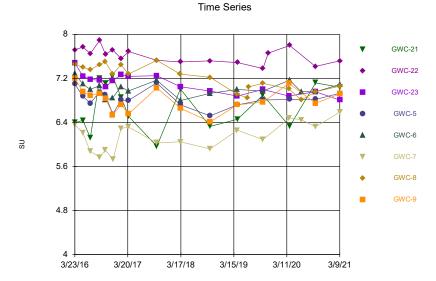
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

3/22/16

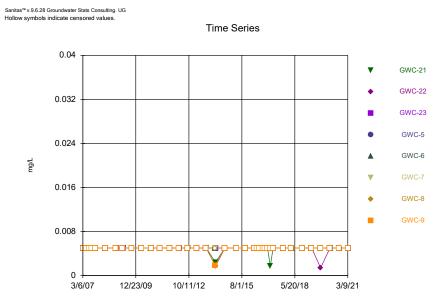
3/19/17


Constituent: pH Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

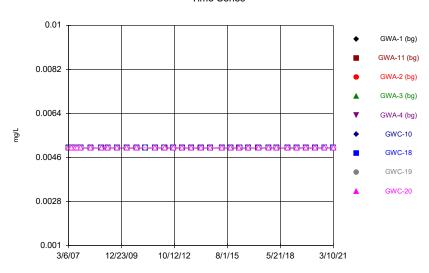
3/15/19


3/12/20

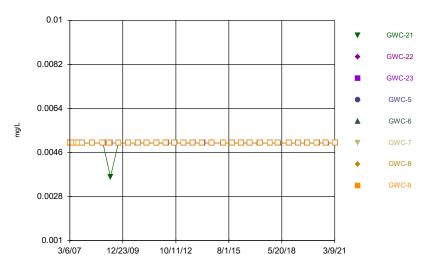
3/17/18


3/10/21

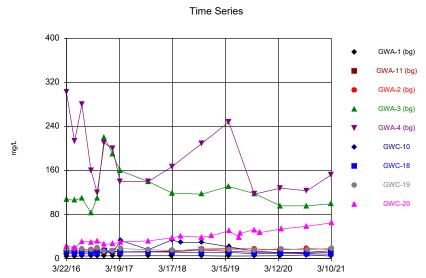
Constituent: Selenium Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: pH Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Selenium Analysis Run 4/1/2021 1:41 PM

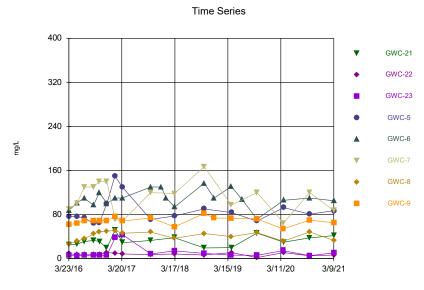

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Silver Analysis Run 4/1/2021 1:41 PM

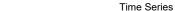

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

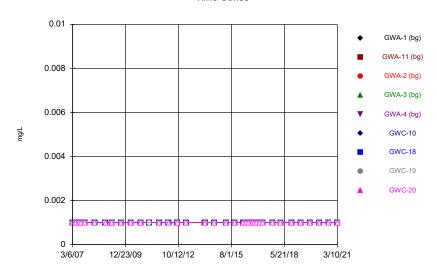
Constituent: Silver Analysis Run 4/1/2021 1:41 PM

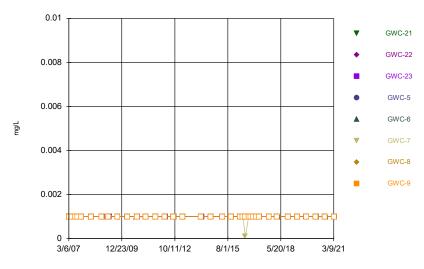
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

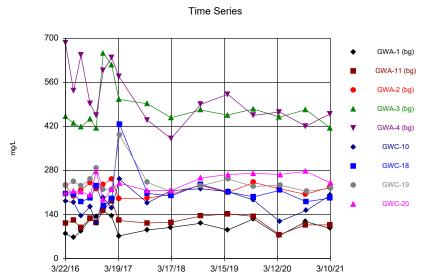
Constituent: Sulfate Analysis Run 4/1/2021 1:41 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

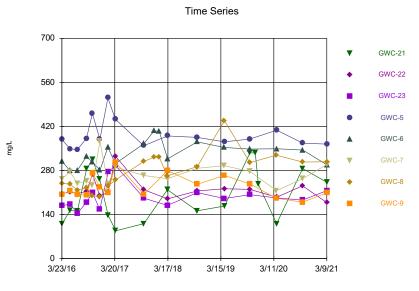

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Constituent: Sulfate Analysis Run 4/1/2021 1:41 PM

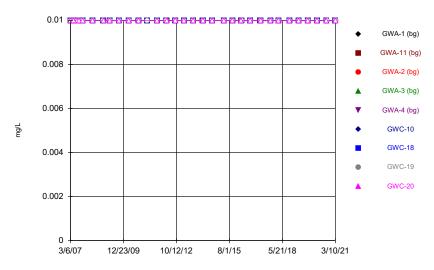
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Thallium Analysis Run 4/1/2021 1:41 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Thallium Analysis Run 4/1/2021 1:41 PM

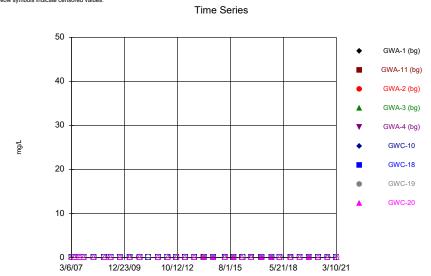

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas[™] v.9.6.28 Groundwater Stats Consulting. UG



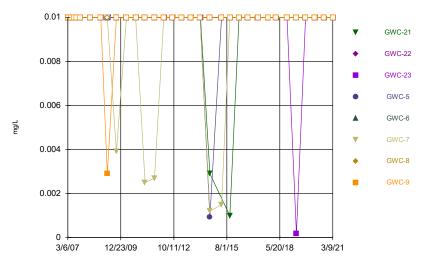
Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:42 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

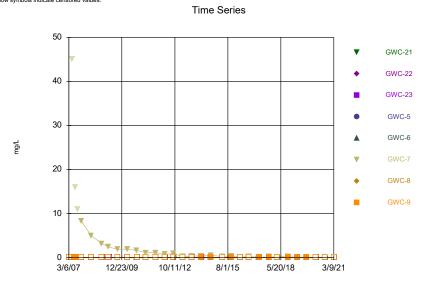


Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:42 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Vanadium Analysis Run 4/1/2021 1:42 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Constituent: Zinc Analysis Run 4/1/2021 1:42 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

Constituent: Vanadium Analysis Run 4/1/2021 1:42 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.003		<0.003	<0.003	<0.003			<0.003	
3/7/2007		<0.003				<0.003	<0.003		<0.003
5/8/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
5/9/2007							<0.003	<0.003	<0.003
7/7/2007	<0.003		<0.003						
7/17/2007		<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/28/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
8/29/2007									<0.003
11/6/2007	<0.003		<0.003	<0.003	<0.003				
11/7/2007		<0.003				<0.003	<0.003	<0.003	<0.003
5/7/2008							<0.003	<0.003	<0.003
5/8/2008				<0.003	<0.003				
5/9/2008	<0.003	<0.003	<0.003			<0.003			
12/2/2008		<0.003				<0.003			
12/3/2008	<0.003		<0.003	<0.003	<0.003		<0.003		
12/4/2008								<0.003	
12/5/2008									<0.003
4/7/2009	<0.003		<0.003	<0.003	<0.003				
4/8/2009		<0.003				<0.003			
4/14/2009							<0.003	<0.003	<0.003
9/30/2009									<0.003
10/1/2009	<0.003	<0.003	<0.003			<0.003	<0.003		
10/2/2009				<0.003	<0.003			<0.003	
4/13/2010							<0.003	<0.003	<0.003
4/14/2010	<0.003	<0.003		<0.003	<0.003	<0.003			
10/7/2010			<0.003						
10/12/2010							<0.003	<0.003	<0.003
10/13/2010	<0.003	<0.003				<0.003			
10/14/2010				<0.003	<0.003				
4/5/2011				<0.003	<0.003				
4/6/2011	<0.003	<0.003	<0.003			<0.003	<0.003	<0.003	
10/4/2011		<0.003				<0.003			
10/6/2011			<0.003						
10/10/2011	<0.003								
10/12/2011				<0.003	<0.003		<0.003	<0.003	<0.003
4/3/2012	<0.003		<0.003						
4/4/2012				<0.003	<0.003				
4/5/2012							<0.003	<0.003	
4/9/2012									<0.003
4/10/2012		<0.003				<0.003			
9/19/2012			<0.003				<0.003		
9/24/2012	<0.003				<0.003				
9/25/2012								<0.003	<0.003
9/26/2012		<0.003		<0.003		<0.003			
3/12/2013	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
3/13/2013							<0.003	<0.003	<0.003
9/9/2013			<0.003						
9/10/2013		<0.003		<0.003	<0.003	<0.003	<0.003		
9/11/2013	<0.003							<0.003	<0.003
3/4/2014	<0.003	<0.003	<0.003			<0.003			
3/10/2014							<0.003	<0.003	<0.003
3/11/2014				<0.003	<0.003				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.003	<0.003	<0.003			<0.003	<0.003		
9/8/2014				<0.003	<0.003				
9/9/2014								<0.003	<0.003
4/21/2015	<0.003	<0.003		<0.003	<0.003	<0.003			
4/22/2015			<0.003				<0.003	<0.003	
4/23/2015									<0.003
9/29/2015		<0.003		<0.003	<0.003				
9/30/2015	<0.003		<0.003			<0.003	<0.003	<0.003	<0.003
3/22/2016	<0.003	<0.003	<0.003	<0.003	<0.003				
3/23/2016						<0.003			<0.003
3/24/2016							<0.003	<0.003	
5/17/2016	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
5/18/2016							<0.003	<0.003	<0.003
7/5/2016	<0.003		<0.003	<0.003					
7/6/2016		0.0003 (J)			0.0003 (J)	0.0005 (J)		0.0003 (J)	
7/7/2016							<0.003		<0.003
9/7/2016	<0.003	<0.003	0.0021 (J)	0.0009 (J)	<0.003	<0.003			
9/8/2016							<0.003	<0.003	<0.003
10/18/2016	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	
10/19/2016							<0.003		<0.003
12/6/2016	<0.003	<0.003		<0.003	<0.003	<0.003			
12/7/2016			<0.003					<0.003	<0.003
12/8/2016							<0.003		
1/31/2017	<0.003		<0.003						
2/1/2017		<0.003		<0.003	<0.003				
2/2/2017						<0.003	<0.003	<0.003	
2/3/2017									<0.003
3/23/2017	<0.003		<0.003	<0.003					
3/24/2017		<0.003			<0.003				
3/27/2017						<0.003	<0.003	<0.003	<0.003
10/4/2017	<0.003		<0.003	<0.003	<0.003				
10/5/2017		<0.003				<0.003	<0.003	<0.003	<0.003
3/14/2018	<0.003		<0.003						
3/15/2018		<0.003		<0.003	<0.003	<0.003		<0.003	
3/16/2018							<0.003		<0.003
10/4/2018	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	
10/5/2018							<0.003		<0.003
4/5/2019				<0.003					
4/8/2019	<0.003	<0.003	<0.003		<0.003				
4/9/2019						<0.003	<0.003	<0.003	<0.003
9/30/2019	<0.003	<0.003	<0.003	<0.003	<0.003				
10/1/2019						<0.003	<0.003	<0.003	<0.003
3/26/2020	0.00028 (J)	<0.003	0.00049 (J)	<0.003	<0.003				
3/27/2020						<0.003			
3/30/2020							<0.003		
3/31/2020								<0.003	<0.003
9/21/2020			<0.003						
9/22/2020		<0.003							
9/23/2020	<0.003			<0.003	<0.003				<0.003
9/24/2020							0.00033 (J)		
9/25/2020						<0.003			
9/28/2020								<0.003	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.003	0.0005 (J)		<0.003	0.0016 (J)				
3/9/2021			<0.003			<0.003	<0.003		
3/10/2021								<0.003	<0.003

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.003	<0.003	<0.003					
3/7/2007				<0.003	<0.003			<0.003
5/8/2007				<0.003				<0.003
5/9/2007	<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	
7/6/2007				<0.003		<0.003	<0.003	<0.003
7/17/2007	<0.003	<0.003	<0.003		<0.003			
8/28/2007				<0.003	<0.003	<0.003	<0.003	<0.003
8/29/2007	<0.003	<0.003	<0.003					
11/6/2007				<0.003	<0.003	<0.003	0.0064 (o)	<0.003
11/7/2007	<0.003	<0.003	<0.003					
5/7/2008	<0.003	<0.003	<0.003					
5/8/2008				<0.003	<0.003	<0.003	<0.003	<0.003
12/2/2008						<0.003	<0.003	<0.003
12/3/2008				<0.003	<0.003			
12/5/2008	<0.003	<0.003	<0.003					
4/7/2009				<0.003	<0.003			
4/8/2009						<0.003	<0.003	<0.003
4/14/2009		<0.003	<0.003					
4/27/2009	<0.003							
9/30/2009	<0.003	<0.003					<0.003	<0.003
10/1/2009			<0.003	<0.003	<0.003	<0.003		
4/13/2010	<0.003	<0.003			<0.003	<0.003	<0.003	<0.003
4/14/2010			<0.003	<0.003				
10/6/2010					<0.003			
10/7/2010						<0.003		
10/12/2010	<0.003	<0.003						
10/13/2010			<0.003				<0.003	<0.003
10/14/2010				<0.003				
4/5/2011				<0.003	<0.003	<0.003	<0.003	<0.003
4/6/2011		<0.003	<0.003					
10/4/2011					<0.003	<0.003	<0.003	<0.003
10/5/2011	<0.003	<0.003						
10/12/2011			<0.003	<0.003				
4/3/2012					<0.003	<0.003	<0.003	
4/4/2012				<0.003				<0.003
4/9/2012		<0.003	<0.003					
4/10/2012	<0.003							
9/18/2012					<0.003	<0.003		
9/19/2012			<0.003				<0.003	<0.003
9/24/2012				<0.003				
9/25/2012		<0.003						
9/26/2012	<0.003							
3/12/2013				<0.003	<0.003	<0.003	<0.003	<0.003
3/13/2013	<0.003	<0.003	<0.003					
9/9/2013					<0.003			
9/10/2013			<0.003	<0.003		<0.003	<0.003	<0.003
9/11/2013	<0.003	<0.003						
3/5/2014				<0.003	<0.003	<0.003	<0.003	<0.003
3/11/2014	<0.003	<0.003	<0.003					
9/3/2014			<0.003					<0.003
9/8/2014					<0.003	<0.003		
9/9/2014	<0.003	<0.003		<0.003			<0.003	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.003		<0.003		<0.003
4/22/2015					<0.003		<0.003	
4/23/2015		<0.003	<0.003					
9/29/2015				<0.003	<0.003	<0.003	<0.003	<0.003
9/30/2015	<0.003	<0.003	<0.003					
3/23/2016		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/24/2016	<0.003							
5/17/2016				<0.003	<0.003			
5/18/2016	<0.003	<0.003				<0.003	<0.003	<0.003
5/19/2016			<0.003					
7/6/2016				0.0004 (J)	0.0005 (J)	0.0013 (J)	0.0002 (J)	<0.003
7/7/2016	<0.003	<0.003	<0.003					
9/7/2016				<0.003	<0.003	<0.003		
9/8/2016	<0.003	<0.003	<0.003				<0.003	<0.003
10/18/2016				<0.003	<0.003	<0.003	<0.003	
10/19/2016	<0.003	<0.003	<0.003					<0.003
12/7/2016	<0.003	<0.003	<0.003					
12/8/2016				<0.003	<0.003	<0.003	<0.003	0.0012 (J)
2/1/2017				<0.003	<0.003			
2/2/2017	<0.003	<0.003				<0.003	<0.003	<0.003
2/3/2017			<0.003					
3/23/2017				<0.003	<0.003			
3/24/2017						<0.003	<0.003	
3/27/2017	<0.003	<0.003	<0.003					<0.003
10/4/2017				<0.003	<0.003	<0.003		
10/5/2017	<0.003	<0.003	<0.003				<0.003	<0.003
3/14/2018							<0.003	
3/15/2018	<0.003	<0.003	<0.003			<0.003		<0.003
3/16/2018				<0.003	<0.003			
10/4/2018	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	
10/5/2018			<0.003					<0.003
4/8/2019			<0.003		<0.003	<0.003	<0.003	<0.003
4/9/2019	<0.003	<0.003		<0.003				
10/1/2019	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/26/2020			<0.003					
3/27/2020							<0.003	<0.003
3/30/2020						<0.003		
3/31/2020	<0.003	<0.003		<0.003	<0.003			
9/23/2020		<0.003	<0.003					
9/24/2020	<0.003					0.0008 (J)	0.0019 (J)	0.00056 (J)
9/25/2020				0.00052 (J)	<0.003			. ,
3/9/2021	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

	G	WA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/20	07 <0	0.005		<0.005	<0.005	<0.005			<0.005	
3/7/20	07		<0.005				<0.005	<0.005		<0.005
5/8/20	07 <0	0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/20	07							<0.005	<0.005	<0.005
7/7/20	07 <0	0.005		<0.005						
7/17/2			<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2										<0.005
11/6/2		0.005		<0.005	<0.005	<0.005				
11/7/2			<0.005	0.000	0.000	0.000	<0.005	<0.005	<0.005	<0.005
5/7/20			0.000				0.000	<0.005	<0.005	<0.005
5/8/20					<0.005	<0.005		-0.000	-0.000	-0.000
5/9/20		0.005	<0.005	<0.005	~0.003	~0.003	<0.005			
				~0.003			<0.005			
12/2/2			<0.005	-0.005	-0.005	10.005	<0.005	-0.005		
12/3/2		0.005		<0.005	<0.005	<0.005		<0.005	.0.005	
12/4/2									<0.005	.0.005
12/5/2										<0.005
4/7/20		0.005		<0.005	<0.005	<0.005				
4/8/20			<0.005				<0.005			
4/14/2								<0.005	<0.005	<0.005
9/30/2	009									<0.005
10/1/2	009 <0	0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2	009				<0.005	0.0065			<0.005	
4/13/2	010			<0.005				<0.005	<0.005	<0.005
4/14/2	010 <0	0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2	010			<0.005						
10/12/	2010							<0.005	<0.005	<0.005
10/13/	2010 <0	0.005	<0.005				<0.005			
10/14/	2010				<0.005	<0.005				
4/5/20	11				<0.005	<0.005				
4/6/20	11 <(0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2	011		<0.005				<0.005			
10/6/2	011			<0.005						
10/10/	2011 <(0.005								
10/12/	2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/20		0.005		<0.005						
4/4/20					<0.005	<0.005				
4/5/20								<0.005	<0.005	
4/9/20										<0.005
4/10/2			<0.005				<0.005			0.000
9/19/2			10.000	<0.005			10.003	<0.005		
9/24/2		0.005		~0.003		<0.005		~0.003		
		J.003				<0.005			<0.00E	<0.00E
9/25/2			.0.005		.0.005		.0.005		<0.005	<0.005
9/26/2			<0.005		<0.005	.0.005	<0.005			
3/12/2		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	.0.005	.0.005
3/13/2								<0.005	<0.005	<0.005
9/9/20				<0.005						
9/10/2			<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2		0.005							<0.005	<0.005
3/4/20		0.005	<0.005	<0.005			<0.005			
3/10/2								<0.005	<0.005	<0.005
3/11/2	014				0.005	<0.005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	<0.005	<0.005			<0.005	<0.005		
9/8/2014				0.0034 (J)	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		0.0025 (J)	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	0.00129 (J)	<0.005	<0.005			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	<0.005		<0.005	0.001 (J)					
7/6/2016		<0.005			<0.005	<0.005		<0.005	
7/7/2016							<0.005		<0.005
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		<0.005
12/6/2016	<0.005	<0.005		<0.005	<0.005	<0.005			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	<0.005		<0.005						
2/1/2017		<0.005		<0.005	<0.005				
2/2/2017						<0.005	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	<0.005		<0.005	0.0006 (J)					
3/24/2017		<0.005			0.0006 (J)				
3/27/2017						<0.005	0.0005 (J)	<0.005	<0.005
10/4/2017	<0.005		<0.005	0.0011 (J)	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		0.00066 (J)	0.0014 (J)	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	0.0008 (J)	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				0.00035 (J)					
4/8/2019	<0.005	0.00012 (J)	<0.005		0.00023 (J)				
4/9/2019						<0.005	0.00063 (J)	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	0.00058 (J)	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	0.00048 (J)	0.00044 (J)				
3/27/2020						<0.005			
3/30/2020							0.00073 (J)		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	0.038 (o)	<0.005	
7/6/2007				<0.005		<0.005	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	<0.005	<0.005	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		0.0053	<0.005	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				0.0017 (J)	<0.005	0.0052	0.0022 (J)	<0.005
3/11/2014	<0.005	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	0.0058		
9/9/2014	<0.005	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.0088		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.0086	<0.005	<0.005
9/30/2015	0.0023 (J)	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.00693	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				0.00451 (J)	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	0.0063	<0.005	<0.005
7/7/2016	0.0012 (J)	<0.005	<0.005					
9/7/2016				<0.005	<0.005	0.0065		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	0.0056	<0.005	
10/19/2016	<0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	0.0065	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.005	<0.005				0.002 (J)	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						0.0027 (J)	0.0005 (J)	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				0.0006 (J)	<0.005	0.0056		
10/5/2017	0.001 (J)	<0.005	<0.005				0.0008 (J)	<0.005
3/14/2018							0.00064 (J)	
3/15/2018	<0.005	<0.005	<0.005			0.0037 (J)		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	0.0034 (J)	<0.005		<0.005	<0.005	0.0049 (J)	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			0.00034 (J)		<0.005	0.0057	0.0015 (J)	<0.005
4/9/2019	0.0018 (J)	<0.005		<0.005				
10/1/2019	<0.005	<0.005	0.00082 (J)	<0.005	<0.005	0.01	0.0028 (J)	0.00071 (J)
11/6/2019						0.011		
3/26/2020			<0.005					
3/27/2020							0.002 (J)	<0.005
3/30/2020						0.0052		
3/31/2020	0.00035 (J)	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	0.0011 (J)					0.0064	0.0043 (J)	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	0.0052	0.0018 (J)	<0.005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	0.032		0.12	0.17	0.13			0.088	
3/7/2007		0.03				0.15	0.072		0.11
5/8/2007	0.04	0.032	0.11	0.21	0.12	0.14			
5/9/2007							0.063	0.07	0.082
7/7/2007	0.041		0.11						
7/17/2007	,	0.028		0.21	0.12	0.1	0.058	0.063	0.078
8/28/2007	0.044	0.03	0.13	0.2	0.13	0.1	0.06	0.066	
8/29/2007									0.096
11/6/2007	0.044		0.12	0.19	0.12				
11/7/2007		0.032				0.11	0.072	0.07	0.1
5/7/2008							0.076	0.071	0.11
5/8/2008				0.2	0.13				
5/9/2008	0.03	0.032	0.12			0.15			
12/2/2008		0.036				0.11			
12/3/2008			0.12	0.18	0.14		0.066		
12/4/2008								0.068	
12/5/2008									0.11
4/7/2009	0.032		0.13	0.2	0.097				
4/8/2009		0.04				0.16			
4/14/2009)	0.0 .				0.10	0.08	0.076	0.11
9/30/2009									0.12
10/1/2009		0.039	0.14			0.11	0.074		0.12
10/2/2009		0.000	0.14	0.2	0.11	0.11	0.074	0.07	
4/13/2010			0.15	0.2	0.11		0.062	0.085	0.11
4/14/2010		0.041	0.10	0.2	0.059	0.15	0.002	0.000	0.11
10/7/2010		0.041	0.16	0.2	0.033	0.15			
10/12/2010			0.10				0.078	0.075	0.12
10/13/201		0.039				0.1	0.070	0.070	0.12
10/14/201		0.000		0.18	0.053	0.1			
4/5/2011	·			0.16	0.042				
4/6/2011	0.034	0.034	0.14	0.10	0.042	0.13	0.066	0.077	
10/4/2011		0.032	0.14			0.089	0.000	0.077	
10/6/2011		0.002	0.16			0.000			
10/10/201			0.10						
10/12/201				0.15	0.048		0.071	0.12	0.11
4/3/2012	0.0363		0.165	0.10	0.0.0		0.07 .	0.12	•
4/4/2012	0.0000		0.100	0.165	0.044				
4/5/2012				0.100	0.011		0.0675	0.143	
4/9/2012								511.15	0.13
4/10/2012)	0.0425				0.126			0.10
9/19/2012		0.0 120	0.16			0.120	0.073		
9/24/2012			0.10		0.048		0.070		
9/25/2012					0.0.0			0.13	0.13
9/26/2012		0.035		0.17		0.093		0.10	0.10
3/12/2013		0.035	0.16	0.17	0.043	0.13			
3/13/2013							0.075	0.14	0.12
9/9/2013			0.17						- -
9/10/2013	,	0.035	····	0.18	0.042	0.14	0.081		
9/11/2013		0.000		00	5.5.2	· · · ·	5.55	0.15	0.12
3/4/2014	0.036	0.031	0.16			0.11		00	-:·-
3/10/2014		0.007	55			· · · ·	0.064	0.13	0.11
3/11/2014				0.17	0.04		0.00.	00	=: * *
5. 1.1.2014				-					

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20	
9/3/2014	0.04	0.033	0.17			0.1	0.078			
9/8/2014				0.16	0.042					
9/9/2014								0.16	0.11	
4/21/2015	0.033	0.03		0.16	0.05	0.14				
4/22/2015			0.17				0.067	0.15		
4/23/2015									0.11	
9/29/2015		0.031		0.14	0.044					
9/30/2015	0.042		0.15			0.096	0.075	0.15	0.11	
3/22/2016	0.0326	0.0327	0.197	0.188	0.0397					
3/23/2016						0.132			0.115	
3/24/2016							0.0818	0.152		
5/17/2016	0.0387	0.0323	0.178	0.193	0.0351	0.122				
5/18/2016							0.0763	0.146	0.128	
7/5/2016	0.0403		0.182	0.172						
7/6/2016		0.0344			0.0475	0.101		0.152		
7/7/2016							0.0747		0.124	
9/7/2016	0.0413	0.0324	0.172	0.164	0.0415	0.0985				
9/8/2016							0.081	0.142	0.121	
10/18/2016	0.0409	0.0311	0.174	0.138	0.0424	0.104	0.001	0.145	0.121	
10/19/2016		0.0011	0.174	0.100	0.0424	0.104	0.084	0.140	0.117	
12/6/2016	0.0408	0.0311		0.149	0.0528	0.1	0.004		0.117	
12/7/2016	0.0400	0.0311	0.167	0.145	0.0320	0.1		0.133	0.11	
12/8/2016			0.107				0.0799	0.133	0.11	
1/31/2017	0.0435		0.176				0.0755			
2/1/2017	0.0433	0.0332	0.170	0.121	0.0482					
2/2/2017		0.0332		0.121	0.0402	0.147	0.0813	0.14		
2/3/2017						0.147	0.0013	0.14	0.123	
3/23/2017	0.038		0.157	0.143					0.120	
3/24/2017	0.000	0.032	0.137	0.145	0.0595					
3/27/2017		0.032			0.0000	0.158	0.0714	0.152	0.112	
10/4/2017	0.0396		0.143	0.139	0.0486	0.130	0.0714	0.132	0.112	
10/5/2017	0.0000	0.0325	0.140	0.100	0.0400	0.106	0.0755	0.142	0.128	
3/14/2018	0.039	0.0323	0.17			0.100	0.0755	0.142	0.120	
3/15/2018	0.000	0.031	0.17	0.17	0.04	0.18		0.14		
3/16/2018		0.001		0.17	0.04	0.10	0.074	0.14	0.12	
5/15/2018						0.16	0.074		0.12	
10/4/2018	0.039	0.033	0.18	0.16	0.05	0.2		0.16		
10/5/2018	0.000	0.000	0.10	0.10	0.03	0.2	0.081	0.10	0.12	
12/11/2018						0.18	0.001		0.12	
1/11/2019						0.17				
4/5/2019				0.13		0.17				
4/8/2019	0.031	0.031	0.15	0.13	0.047					
4/9/2019	0.001	0.001	0.10		0.047	0.17	0.081	0.15	0.13	
9/30/2019	0.042	0.03	0.17	0.14	0.051	0.17	0.001	0.10	0.10	
10/1/2019	0.042	0.03	0.17	0.14	0.001	0.12	0.082	0.15	0.14	
3/26/2020	0.032	0.031	0.16	0.14	0.049	0.12	0.002	0.10	0.14	
3/27/2020	0.032	0.031	0.10	0.14	0.043	0.037				
3/30/2020						0.037	0.077			
3/30/2020							0.077	0.17	0.15	
6/19/2020								0.17	0.13 0.14 (R)	
9/21/2020			0.18						0.17 (11)	
9/21/2020		0.031	0.10							
5,22,2020		0.001								

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/23/2020	0.041			0.14	0.043				0.13
9/24/2020							0.079		
9/25/2020						0.11			
9/28/2020								0.15	
3/8/2021	0.035	0.031		0.12	0.052				
3/9/2021			0.17			0.15	0.077		
3/10/2021								0.15	0.13

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	0.038	0.023	0.05					
3/7/2007				0.1	0.057			0.059
5/8/2007				0.11				0.055
5/9/2007	0.046	0.034	0.055		0.054	0.011	0.13	
7/6/2007				0.11		0.0065	0.12	0.052
7/17/2007	0.06	0.034	0.048		0.059			
8/28/2007				0.1	0.061	0.0095	0.11	0.047
8/29/2007	0.07	0.048	0.056					
11/6/2007				0.1	0.074	0.013	0.1	0.048
11/7/2007	0.055	0.042	0.07					
5/7/2008	0.032	0.078	0.063					
5/8/2008				0.11	0.079	0.011	0.1	0.052
12/2/2008						0.011	0.11	0.056
12/3/2008				0.091	0.1			
12/5/2008	0.06	0.067	0.068					
4/7/2009				0.094	0.091			
4/8/2009						0.0091	0.1	0.057
4/14/2009		0.083	0.062					
4/27/2009	0.032							
9/30/2009	0.046	0.086					0.099	0.055
10/1/2009			0.064	0.097	0.092	0.0098		
4/13/2010	0.035	0.087			0.095	0.0084	0.098	0.053
4/14/2010			0.048	0.096				
10/6/2010			0.0.0	0.000	0.11			
10/7/2010						0.01		
10/12/2010	0.15	0.082						
10/13/2010			0.071				0.092	0.054
10/14/2010				0.1				
4/5/2011				0.092	0.1	0.015	0.085	0.035 (o)
4/6/2011		0.082	0.042					
10/4/2011					0.11	0.01	0.091	0.058
10/5/2011	0.055	0.082						
10/12/2011			0.066	0.12				
4/3/2012					0.116	0.0426	0.101	
4/4/2012				0.105	00	0.0.20	0.101	0.0632
4/9/2012		0.0959	0.0628					
4/10/2012	0.0399							
9/18/2012					0.12	0.02		
9/19/2012			0.073				0.1	0.061
9/24/2012				0.13				
9/25/2012		0.09						
9/26/2012	0.093							
3/12/2013				0.1	0.11	0.35	0.098	0.056
3/13/2013	0.066	0.092	0.057					
9/9/2013					0.13			
9/10/2013			0.066	0.13		0.11	0.11	0.067
9/11/2013	0.053	0.096						
3/5/2014				0.084	0.12	0.054	0.087	0.055
3/11/2014	0.039	0.085	0.054					
9/3/2014			0.06					0.051
9/8/2014					0.13	0.044		
9/9/2014	0.14	0.096		0.11			0.1	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				0.11		0.065		0.059
4/22/2015					0.14		0.095	
4/23/2015		0.093	0.06					
9/29/2015				0.097	0.14	0.036	0.093	0.06
9/30/2015	0.15	0.096	0.076					
3/23/2016		0.0938	0.0533	0.0993	0.156	0.263	0.0918	0.0636
3/24/2016	0.046							
5/17/2016				0.104	0.168			
5/18/2016	0.0557	0.0983				0.245	0.0957	0.0629
5/19/2016			0.074					
7/6/2016				0.104	0.171	0.117	0.0935	0.0646
7/7/2016	0.0596	0.121	0.0766					
9/7/2016				0.0945	0.154	0.0703		
9/8/2016	0.184	0.0917	0.0726				0.0925	0.063
10/18/2016				0.0928	0.159	0.068	0.0939	
10/19/2016	0.186	0.091	0.072					0.0644
12/7/2016	0.174	0.0868	0.0732					
12/8/2016				0.1	0.156	0.0791	0.0996	0.0648
2/1/2017				0.0972	0.163			
2/2/2017	0.0783	0.0939				0.17	0.096	0.0656
2/3/2017			0.0619					
3/23/2017				0.105	0.161			
3/24/2017						0.181	0.106	
3/27/2017	0.0363	0.0905	0.0602					0.0619
10/4/2017				0.102	0.171	0.0937		
10/5/2017	0.0562	0.0945	0.0734				0.103	0.0655
3/14/2018							0.1	
3/15/2018	0.086	0.096	0.053			0.15		0.062
3/16/2018				0.091	0.17			
10/4/2018	0.079	0.1		0.084	0.19	0.08	0.11	
10/5/2018			0.065					0.07
4/8/2019			0.059		0.15	0.24	0.13	0.058
4/9/2019	0.05	0.094		0.067				
6/18/2019							0.17	
10/1/2019	0.18	0.1	0.082	0.09	0.18	0.085	0.12	0.071
3/26/2020			0.071					
3/27/2020							0.14	0.06
3/30/2020						0.21		
3/31/2020	0.044	0.1		0.064	0.18			
9/23/2020		0.1	0.079					
9/24/2020	0.19					0.11	0.14	0.06
9/25/2020				0.074	0.16			
3/9/2021	0.12	0.089	0.085	0.063	0.17	0.31	0.14	0.059

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.0005	(0,	<0.0005	<0.0005	<0.0005			<0.0005	
3/7/2007		<0.0005				<0.0005	<0.0005		<0.0005
5/8/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/9/2007							<0.0005	<0.0005	<0.0005
7/7/2007	<0.0005		<0.0005						
7/17/2007		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/28/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
8/29/2007									<0.0005
11/6/2007	<0.0005		<0.0005	<0.0005	<0.0005				
11/7/2007	0.0000	<0.0005	0.0000	0.0000	0.000	<0.0005	<0.0005	<0.0005	<0.0005
5/7/2008							<0.0005	<0.0005	<0.0005
5/8/2008				<0.0005	<0.0005				
5/9/2008	<0.0005	<0.0005	<0.0005			<0.0005			
12/2/2008		<0.0005				<0.0005			
12/3/2008	<0.0005	0.0000	<0.0005	<0.0005	<0.0005	0.000	<0.0005		
12/4/2008	0.0000		0.0000	0.000	0.000		0.000	<0.0005	
12/5/2008								10.0003	<0.0005
4/7/2009	<0.0005		<0.0005	<0.0005	<0.0005				10.0003
4/8/2009	10.0003	<0.0005	10.0003	10.0003	10.0003	<0.0005			
4/14/2009		10.0003				~ 0.0003	<0.0005	<0.0005	<0.0005
9/30/2009							-0.0003	10.0003	<0.0005
10/1/2009	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		<0.0003
10/1/2009	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
4/13/2010			<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
	<0.000E	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
4/14/2010	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
10/7/2010 10/12/2010			<0.0005				<0.0005	<0.0005	<0.0005
	<0.000E	<0.000E				<0.000E	<0.0005	<0.0005	<0.0005
10/13/2010	<0.0005	<0.0005		<0.000E	<0.000E	<0.0005			
10/14/2010				<0.0005	<0.0005				
4/5/2011	<0.000E	<0.000E	<0.0005	<0.0005	<0.0005	<0.000E	<0.000E	<0.000E	
4/6/2011	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	
10/4/2011		<0.0005	<0.000E			<0.0005			
10/6/2011	-0.0005		<0.0005						
10/10/2011	<0.0005			<0.000E	<0.000E		<0.000E	<0.000E	<0.000E
10/12/2011	<0.000E		<0.000E	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
4/3/2012 4/4/2012	<0.0005		<0.0005	<0.000E	<0.000E				
4/5/2012				<0.0005	<0.0005		<0.0005	<0.0005	
							<0.0005	<0.0005	<0.000E
4/9/2012		-0.0005				10.0005			<0.0005
4/10/2012		<0.0005	-0.0005			<0.0005	-0.0005		
9/19/2012	-0.0005		<0.0005		-0.0005		<0.0005		
9/24/2012	<0.0005				<0.0005			-0.0005	-0.0005
9/25/2012		.0.005		.0.005		.0.005		<0.0005	<0.0005
9/26/2012	0.0005	<0.0005	0.0005	<0.0005	.0.0005	<0.0005			
3/12/2013	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0005	.0.0005	.0.0005
3/13/2013							<0.0005	<0.0005	<0.0005
9/9/2013		.0.005	<0.0005	.0.005	.0.005	.0.005	0.005		
9/10/2013	.0.005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	.0.005	
9/11/2013	<0.0005							<0.0005	<0.0005
3/4/2014	<0.0005	<0.0005	<0.0005			<0.0005			
3/10/2014				.0.005	.0.005		<0.0005	<0.0005	<0.0005
3/11/2014				<0.0005	<0.0005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
9/8/2014				<0.0005	<0.0005				
9/9/2014								<0.0005	<0.0005
4/21/2015	<0.0005	<0.0005		8E-05 (J)	<0.0005	<0.0005			
4/22/2015			<0.0005				<0.0005	<0.0005	
4/23/2015									<0.0005
9/29/2015		<0.0005		<0.0005	<0.0005				
9/30/2015	<0.0005		<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
3/22/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/23/2016						<0.0005			<0.0005
3/24/2016							<0.0005	<0.0005	
5/17/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/18/2016							<0.0005	<0.0005	<0.0005
7/5/2016	<0.0005		<0.0005	<0.0005					
7/6/2016		<0.0005			<0.0005	<0.0005		<0.0005	
7/7/2016							<0.0005		<0.0005
9/7/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
9/8/2016							<0.0005	<0.0005	<0.0005
10/18/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10/19/2016							<0.0005		<0.0005
12/6/2016	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
12/7/2016			<0.0005					<0.0005	<0.0005
12/8/2016							<0.0005		
1/31/2017	<0.0005		<0.0005						
2/1/2017		<0.0005		<0.0005	<0.0005				
2/2/2017						<0.0005	<0.0005	<0.0005	
2/3/2017									<0.0005
3/23/2017	<0.0005		<0.0005	<0.0005					
3/24/2017		<0.0005			<0.0005				
3/27/2017						<0.0005	<0.0005	<0.0005	<0.0005
10/4/2017	<0.0005		<0.0005	<0.0005	<0.0005				
10/5/2017		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
3/14/2018	<0.0005		<0.0005						
3/15/2018		<0.0005		<0.0005	<0.0005	<0.0005		<0.0005	
3/16/2018							<0.0005		<0.0005
10/4/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10/5/2018							<0.0005		<0.0005
4/5/2019				<0.0005					
4/8/2019	<0.0005	<0.0005	<0.0005		<0.0005				
4/9/2019						<0.0005	<0.0005	<0.0005	<0.0005
9/30/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
10/1/2019						<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/27/2020						<0.0005			
3/30/2020							<0.0005		
3/31/2020								<0.0005	<0.0005
9/21/2020			<0.0005						
9/22/2020		<0.0005							
9/23/2020	<0.0005			<0.0005	<0.0005				<0.0005
9/24/2020							<0.0005		
9/25/2020						<0.0005			
9/28/2020								0.0001 (J)	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.0005	<0.0005		<0.0005	<0.0005				
3/9/2021			<0.0005			<0.0005	<0.0005		
3/10/2021								<0.0005	<0.0005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.0005	<0.0005	<0.0005					
3/7/2007				<0.0005	<0.0005			<0.0005
5/8/2007				<0.0005				<0.0005
5/9/2007	<0.0005	<0.0005	<0.0005		<0.0005	0.28 (o)	<0.0005	
7/6/2007				<0.0005		0.093	<0.0005	<0.0005
7/17/2007	<0.0005	<0.0005	<0.0005		<0.0005			
8/28/2007				<0.0005	<0.0005	0.057	<0.0005	<0.0005
8/29/2007	<0.0005	<0.0005	<0.0005					
11/6/2007				<0.0005	<0.0005	0.036	<0.0005	<0.0005
11/7/2007	<0.0005	<0.0005	<0.0005					
5/7/2008	<0.0005	<0.0005	<0.0005					
5/8/2008				<0.0005	<0.0005	0.013	<0.0005	<0.0005
12/2/2008						0.01	<0.0005	<0.0005
12/3/2008				<0.0005	<0.0005			
12/5/2008	<0.0005	<0.0005	<0.0005					
4/7/2009				<0.0005	<0.0005			
4/8/2009						0.0076	<0.0005	<0.0005
4/14/2009		<0.0005	<0.0005					
4/27/2009	<0.0005							
9/30/2009	<0.0005	<0.0005					<0.0005	<0.0005
10/1/2009			<0.0005	<0.0005	<0.0005	0.0057		
4/13/2010	<0.0005	<0.0005			<0.0005	0.0061	<0.0005	<0.0005
4/14/2010			<0.0005	<0.0005				
10/6/2010					<0.0005			
10/7/2010						0.0039		
10/12/2010	<0.0005	<0.0005						
10/13/2010			<0.0005				<0.0005	<0.0005
10/14/2010				<0.0005				
4/5/2011				<0.0005	<0.0005	0.0025	<0.0005	<0.0005
4/6/2011		<0.0005	<0.0005					
10/4/2011					<0.0005	0.0024	<0.0005	<0.0005
10/5/2011	<0.0005	<0.0005						
10/12/2011			<0.0005	<0.0005				
4/3/2012					<0.0005	0.0008	<0.0005	
4/4/2012				<0.0005				<0.0005
4/9/2012		<0.0005	<0.0005					
4/10/2012	<0.0005							
9/18/2012					<0.0005	0.002		
9/19/2012			<0.0005				<0.0005	<0.0005
9/24/2012				<0.0005				
9/25/2012		<0.0005						
9/26/2012	<0.0005							
3/12/2013				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/13/2013	<0.0005	<0.0005	<0.0005					
9/9/2013					<0.0005			
9/10/2013			<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
9/11/2013	<0.0005	<0.0005						
3/5/2014				<0.0005	<0.0005	0.00037 (J)	<0.0005	<0.0005
3/11/2014	<0.0005	<0.0005	<0.0005					
9/3/2014			<0.0005					<0.0005
9/8/2014					<0.0005	0.00055 (J)		
9/9/2014	<0.0005	<0.0005		<0.0005			<0.0005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.0005		0.00033 (J)		<0.0005
4/22/2015					<0.0005		<0.0005	
4/23/2015		<0.0005	<0.0005					
9/29/2015				<0.0005	<0.0005	0.00046 (J)	<0.0005	<0.0005
9/30/2015	<0.0005	<0.0005	<0.0005					
3/23/2016		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/24/2016	<0.0005							
5/17/2016				<0.0005	<0.0005			
5/18/2016	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
5/19/2016			<0.0005					
7/6/2016				<0.0005	<0.0005	0.0002 (J)	<0.0005	<0.0005
7/7/2016	<0.0005	<0.0005	<0.0005					
9/7/2016				<0.0005	<0.0005	0.0002 (J)		
9/8/2016	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
10/18/2016				<0.0005	<0.0005	0.0002 (J)	<0.0005	
10/19/2016	<0.0005	<0.0005	<0.0005					<0.0005
12/7/2016	<0.0005	<0.0005	<0.0005					
12/8/2016				<0.0005	<0.0005	0.0003 (J)	<0.0005	<0.0005
2/1/2017				<0.0005	<0.0005			
2/2/2017	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
2/3/2017			<0.0005					
3/23/2017				<0.0005	<0.0005			
3/24/2017						<0.0005	<0.0005	
3/27/2017	<0.0005	<0.0005	<0.0005					<0.0005
10/4/2017				<0.0005	<0.0005	0.0001 (J)		
10/5/2017	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
3/14/2018							<0.0005	
3/15/2018	<0.0005	<0.0005	<0.0005			<0.0005		<0.0005
3/16/2018				<0.0005	<0.0005			
10/4/2018	<0.0005	<0.0005		<0.0005	<0.0005	0.0002 (J)	<0.0005	
10/5/2018			<0.0005					<0.0005
4/8/2019			<0.0005		<0.0005	5.8E-05 (J)	<0.0005	<0.0005
4/9/2019	<0.0005	<0.0005		<0.0005				
10/1/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0001 (J)	<0.0005	<0.0005
3/26/2020			<0.0005					
3/27/2020							<0.0005	<0.0005
3/30/2020						<0.0005		
3/31/2020	<0.0005	<0.0005		<0.0005	<0.0005			
9/23/2020		<0.0005	<0.0005					
9/24/2020	<0.0005					5E-05 (J)	<0.0005	<0.0005
9/25/2020				<0.0005	<0.0005			
3/9/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

3/22/2016	GWA-1 (bg) <0.1	GWA-11 (bg) 0.04 (J)	GWA-2 (bg) 0.0828 (J)	GWA-3 (bg) 0.135	GWA-4 (bg) 0.0815 (J)	GWC-10	GWC-18	GWC-19	GWC-20
3/23/2016		(-)	(0)			0.0354 (J)			<0.1
3/24/2016						(-)	0.122	0.173	
5/17/2016	<0.1	0.0358 (J)	0.0844 (J)	0.132	0.0838 (J)	0.0349 (J)			
5/18/2016		(-)			(,)	(5)	0.139	0.186	0.0229 (J)
7/5/2016	0.0419 (J)		0.0962 (J)	0.161					(0)
7/6/2016	()	0.0373 (J)	. ,		0.111	0.0308 (J)		0.184	
7/7/2016		. ,				,	0.12		0.0169 (J)
9/7/2016	0.0174 (J)	0.0352 (J)	0.0884 (J)	0.163	0.107	0.0283 (J)			()
9/8/2016	, ,	.,	.,			. ,	0.126	0.173	0.0178 (J)
10/18/2016	0.0192 (J)	0.0332 (J)	0.0889 (J)	0.154	0.118	0.0292 (J)		0.171	
10/19/2016							0.133		0.018 (J)
12/6/2016	0.0182 (J)	0.033 (J)		0.142	0.106	0.0287 (J)			
12/7/2016			0.0954					0.203	0.0248 (J)
12/8/2016							0.119		
1/31/2017	0.0193 (J)		0.0939						
2/1/2017		0.0365 (J)		0.143	0.0949				
2/2/2017						0.0334 (J)	0.132	0.187	
2/3/2017									0.0171 (J)
3/23/2017	0.0192 (J)		0.0869	0.15					
3/24/2017		0.0343 (J)			0.0887				
3/27/2017						0.0396 (J)	0.134	0.182	0.0181 (J)
10/4/2017	0.0199 (J)		0.0914	0.182	0.105				
10/5/2017		0.0325 (J)				0.0294 (J)	0.125	0.166	0.0178 (J)
3/14/2018	0.019 (J)		0.075						
3/15/2018		0.037 (J)		0.14	0.043	0.038 (J)		0.17	
3/16/2018							0.12		0.016 (J)
10/4/2018	0.021 (J)	0.035 (J)	0.082	0.16	0.1	0.038 (J)		0.17	
10/5/2018							0.15		0.017 (J)
4/5/2019				0.12					
4/8/2019	0.019 (J)	0.034 (J)	0.071 (J)		0.057 (J)				
4/9/2019						0.035 (J)	0.12	0.17	0.011 (J)
9/30/2019	0.025 (J)	0.039 (J)	0.084	0.17	0.11				
10/1/2019						0.031 (J)	0.14	0.17	0.019 (J)
3/26/2020	0.022 (J)	0.041 (J)	0.092 (J)	0.14	0.086 (J)				
3/27/2020						0.04 (J)			
3/30/2020							0.13		
3/31/2020								0.18	0.024 (J)
9/21/2020			0.086 (J)						
9/22/2020		0.038 (J)							
9/23/2020	0.047 (J)			0.15	0.087 (J)				0.018 (J)
9/24/2020							0.13		
9/25/2020						0.036 (J)			
9/28/2020								0.17	
3/8/2021	0.021 (J)	0.042		0.13	0.089				
3/9/2021			0.081			0.037 (J)	0.13		
3/10/2021								0.16	0.018 (J)

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		0.0649 (J)	<0.1	0.0509 (J)	0.0379 (J)	0.0574 (J)	0.0213 (J)	<0.1
3/24/2016	0.0232 (J)							
5/17/2016				0.0565 (J)	0.0395 (J)			
5/18/2016	0.0289 (J)	0.0781 (J)				0.0686 (J)	0.028 (J)	0.0202 (J)
5/19/2016			0.0212 (J)					
7/6/2016				0.0628 (J)	0.0393 (J)	0.0675 (J)	0.0231 (J)	0.0171 (J)
7/7/2016	0.0313 (J)	0.0621 (J)	0.0183 (J)					
9/7/2016				0.0648 (J)	0.04 (J)	0.0582 (J)		
9/8/2016	0.0593 (J)	0.0607 (J)	0.017 (J)				0.0234 (J)	0.0157 (J)
10/18/2016				0.0666 (J)	0.0366 (J)	0.0577 (J)	0.0228 (J)	
10/19/2016	0.087 (J)	0.0733 (J)	0.0203 (J)					0.0152 (J)
12/7/2016	0.127	0.0758	0.0215 (J)					
12/8/2016				0.062	0.0397 (J)	0.0572	0.0251 (J)	0.0178 (J)
2/1/2017				0.0516	0.0381 (J)			
2/2/2017	0.0318 (J)	0.0729				0.0534	0.0238 (J)	0.0151 (J)
2/3/2017			0.0812					
3/23/2017				0.0597	0.0416			
3/24/2017						0.0532	0.0234 (J)	
3/27/2017	0.0225 (J)	0.0698	0.125					0.0203 (J)
10/4/2017				0.0658	0.0382 (J)	0.0563		
10/5/2017	0.0304 (J)	0.0677	0.0375 (J)				0.0329 (J)	0.0157 (J)
3/14/2018							0.024 (J)	
3/15/2018	0.025 (J)	0.07	0.051			0.053		0.013 (J)
3/16/2018				0.047	0.044			
5/16/2018					0.042			
10/4/2018	0.029 (J)	0.065		0.066	0.038 (J)	0.048	0.047 (J)	
10/5/2018			0.039 (J)					0.017 (J)
4/8/2019			0.022 (J)		0.036 (J)	0.049 (J)	0.055 (J)	0.015 (J)
4/9/2019	0.014 (J)	0.063		0.048				
10/1/2019	0.059	0.066	0.024 (J)	0.071	0.042	0.05	0.046	0.018 (J)
3/26/2020			0.042 (J)					
3/27/2020							0.056 (J)	0.018 (J)
3/30/2020						0.049 (J)		
3/31/2020	0.022 (J)	0.067 (J)		0.057 (J)	0.091 (J)			
6/18/2020					0.045 (JR)			
6/19/2020							0.086 (JR)	
9/23/2020		0.061 (J)	0.024 (J)					
9/24/2020	0.061 (J)					0.045 (J)	0.055 (J)	0.016 (J)
9/25/2020				0.08 (J)	0.047 (J)			
3/9/2021	0.03 (J)	0.065	0.044	0.046	0.038 (J)	0.041	0.05	0.014 (J)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.0005		<0.0005	<0.0005	<0.0005			<0.0005	
3/7/2007		<0.0005				<0.0005	<0.0005		<0.0005
5/8/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/9/2007							<0.0005	<0.0005	<0.0005
7/7/2007	<0.0005		<0.0005						
7/17/2007		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/28/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
8/29/2007									<0.0005
11/6/2007	<0.0005		<0.0005	<0.0005	<0.0005				
11/7/2007		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
5/7/2008							<0.0005	<0.0005	<0.0005
5/8/2008				<0.0005	<0.0005				
5/9/2008	<0.0005	<0.0005	<0.0005			<0.0005			
12/2/2008		<0.0005				<0.0005			
12/3/2008	<0.0005		<0.0005	<0.0005	<0.0005		<0.0005		
12/4/2008								<0.0005	
12/5/2008									<0.0005
4/7/2009	<0.0005		<0.0005	<0.0005	<0.0005				
4/8/2009		<0.0005				<0.0005			
4/14/2009							<0.0005	<0.0005	<0.0005
9/30/2009									<0.0005
10/1/2009	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
10/2/2009				<0.0005	<0.0005			<0.0005	
4/13/2010			<0.0005				<0.0005	<0.0005	<0.0005
4/14/2010	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
10/7/2010			<0.0005						
10/12/2010							<0.0005	<0.0005	<0.0005
10/13/2010	<0.0005	<0.0005				<0.0005			
10/14/2010				<0.0005	<0.0005				
4/5/2011				<0.0005	<0.0005				
4/6/2011	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	
10/4/2011		<0.0005				<0.0005			
10/6/2011			<0.0005						
10/10/2011	<0.0005								
10/12/2011				<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
4/3/2012	<0.0005		<0.0005						
4/4/2012				<0.0005	<0.0005				
4/5/2012							<0.0005	<0.0005	
4/9/2012									<0.0005
4/10/2012		<0.0005				<0.0005			
9/19/2012			<0.0005				<0.0005		
9/24/2012	<0.0005				<0.0005				
9/25/2012								<0.0005	<0.0005
9/26/2012		<0.0005		<0.0005		<0.0005			
3/12/2013	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
3/13/2013							<0.0005	<0.0005	<0.0005
9/9/2013			<0.0005						
9/10/2013		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005		
9/11/2013	<0.0005							<0.0005	<0.0005
3/4/2014	<0.0005	<0.0005	<0.0005			<0.0005			
3/10/2014							<0.0005	<0.0005	<0.0005
3/11/2014				<0.0005	<0.0005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
9/8/2014				<0.0005	<0.0005				
9/9/2014								<0.0005	<0.0005
4/21/2015	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
4/22/2015			<0.0005				<0.0005	<0.0005	
4/23/2015									<0.0005
9/29/2015		<0.0005		<0.0005	<0.0005				
9/30/2015	<0.0005		<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
3/22/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/23/2016						<0.0005			<0.0005
3/24/2016							<0.0005	<0.0005	
5/17/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/18/2016							<0.0005	<0.0005	<0.0005
7/5/2016	<0.0005		<0.0005	<0.0005					
7/6/2016		<0.0005			<0.0005	<0.0005		<0.0005	
7/7/2016							<0.0005		<0.0005
9/7/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
9/8/2016							<0.0005	<0.0005	<0.0005
10/18/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10/19/2016							<0.0005		<0.0005
12/6/2016	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
12/7/2016			<0.0005					<0.0005	<0.0005
12/8/2016							<0.0005		
1/31/2017	<0.0005		<0.0005						
2/1/2017		<0.0005		<0.0005	0.0001 (J)				
2/2/2017						9E-05 (J)	8E-05 (J)	<0.0005	
2/3/2017									<0.0005
3/23/2017	<0.0005		<0.0005	<0.0005					
3/24/2017		<0.0005			<0.0005				
3/27/2017						<0.0005	<0.0005	<0.0005	<0.0005
10/4/2017	<0.0005		<0.0005	<0.0005	<0.0005				
10/5/2017		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
3/14/2018	<0.0005		<0.0005						
3/15/2018		<0.0005		<0.0005	<0.0005	<0.0005		<0.0005	
3/16/2018							<0.0005		<0.0005
10/4/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10/5/2018							<0.0005		0.00011 (J)
4/5/2019				<0.0005					
4/8/2019	<0.0005	<0.0005	<0.0005		<0.0005				
4/9/2019						<0.0005	<0.0005	<0.0005	<0.0005
9/30/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
10/1/2019						<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/27/2020						<0.0005			
3/30/2020							<0.0005		
3/31/2020								<0.0005	<0.0005
9/21/2020			<0.0005						
9/22/2020		<0.0005							
9/23/2020	<0.0005			<0.0005	<0.0005				<0.0005
9/24/2020							<0.0005		
9/25/2020						<0.0005		.0.000	
9/28/2020								<0.0005	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.0005	<0.0005		<0.0005	<0.0005				
3/9/2021			<0.0005			<0.0005	<0.0005		
3/10/2021								<0.0005	<0.0005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.0005	<0.0005	<0.0005					
3/7/2007				0.0015	<0.0005			<0.0005
5/8/2007				<0.0005				<0.0005
5/9/2007	<0.0005	<0.0005	<0.0005		<0.0005	0.023 (o)	<0.0005	
7/6/2007				<0.0005		0.0081 (o)	<0.0005	<0.0005
7/17/2007	<0.0005	<0.0005	<0.0005		<0.0005			
8/28/2007				<0.0005	<0.0005	0.0035	<0.0005	<0.0005
8/29/2007	<0.0005	<0.0005	<0.0005					
11/6/2007				<0.0005	<0.0005	0.0028	<0.0005	<0.0005
11/7/2007	<0.0005	<0.0005	<0.0005					
5/7/2008	<0.0005	<0.0005	<0.0005					
5/8/2008				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
12/2/2008						<0.0005	<0.0005	<0.0005
12/3/2008				<0.0005	<0.0005			
12/5/2008	<0.0005	<0.0005	<0.0005					
4/7/2009				<0.0005	<0.0005			
4/8/2009						0.0013	<0.0005	<0.0005
4/14/2009		<0.0005	<0.0005					
4/27/2009	<0.0005							
9/30/2009	<0.0005	<0.0005					<0.0005	<0.0005
10/1/2009			<0.0005	<0.0005	<0.0005	<0.0005		
4/13/2010	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
4/14/2010			<0.0005	<0.0005				
10/6/2010					<0.0005			
10/7/2010						<0.0005		
10/12/2010	<0.0005	<0.0005						
10/13/2010			<0.0005				<0.0005	<0.0005
10/14/2010				<0.0005				
4/5/2011				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
4/6/2011		<0.0005	<0.0005					
10/4/2011					<0.0005	<0.0005	<0.0005	<0.0005
10/5/2011	<0.0005	<0.0005						
10/12/2011			<0.0005	<0.0005				
4/3/2012					<0.0005	<0.0005	<0.0005	
4/4/2012				<0.0005				<0.0005
4/9/2012		<0.0005	<0.0005					
4/10/2012	<0.0005							
9/18/2012					<0.0005	<0.0005		
9/19/2012			<0.0005				<0.0005	<0.0005
9/24/2012				<0.0005				
9/25/2012		<0.0005						
9/26/2012	<0.0005							
3/12/2013				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/13/2013	<0.0005	<0.0005	<0.0005		.0.005			
9/9/2013			0.0005	.0.005	<0.0005	.0.0005	.0.005	0.0005
9/10/2013			<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
9/11/2013	<0.0005	<0.0005						
3/5/2014	-0.000F	-0.00C	~0.000 <u>=</u>	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/11/2014	<0.0005	<0.0005	<0.0005					-0.0005
9/3/2014			<0.0005		-0.0005	-0.0005		<0.0005
9/8/2014	<0.000E	<0.000E		<0.000F	<0.0005	<0.0005	<0.000F	
9/9/2014	<0.0005	<0.0005		<0.0005			<0.0005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.0005		0.0015		0.00029 (J)
4/22/2015					<0.0005		<0.0005	
4/23/2015		<0.0005	<0.0005					
9/29/2015				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
9/30/2015	<0.0005	<0.0005	<0.0005					
3/23/2016		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/24/2016	<0.0005							
5/17/2016				<0.0005	<0.0005			
5/18/2016	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
5/19/2016			<0.0005					
7/6/2016				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
7/7/2016	0.0001 (J)	<0.0005	<0.0005					
9/7/2016				<0.0005	<0.0005	<0.0005		
9/8/2016	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
10/18/2016				<0.0005	<0.0005	<0.0005	<0.0005	
10/19/2016	<0.0005	<0.0005	<0.0005					<0.0005
12/7/2016	<0.0005	<0.0005	<0.0005					
12/8/2016				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/1/2017				<0.0005	<0.0005			
2/2/2017	0.0001 (J)	<0.0005				0.0001 (J)	8E-05 (J)	8E-05 (J)
2/3/2017			8E-05 (J)					
3/23/2017				<0.0005	<0.0005			
3/24/2017						<0.0005	<0.0005	
3/27/2017	<0.0005	<0.0005	<0.0005					<0.0005
10/4/2017				<0.0005	<0.0005	<0.0005		
10/5/2017	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
3/14/2018							<0.0005	
3/15/2018	<0.0005	<0.0005	<0.0005			<0.0005		<0.0005
3/16/2018				<0.0005	<0.0005			
10/4/2018	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	
10/5/2018			<0.0005					<0.0005
4/8/2019			<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
4/9/2019	<0.0005	<0.0005		<0.0005				
10/1/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020			<0.0005					
3/27/2020							<0.0005	<0.0005
3/30/2020						<0.0005		
3/31/2020	<0.0005	<0.0005		<0.0005	<0.0005			
9/23/2020		<0.0005	<0.0005					
9/24/2020	<0.0005					<0.0005	<0.0005	<0.0005
9/25/2020				<0.0005	<0.0005			
3/9/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	13.9	23.8	47.4	79.3	123				
3/23/2016						43.9			56.3
3/24/2016							40.7	43.9	
5/17/2016	15.6	21.5	45.5	75.8	99.2	40.1			
5/18/2016							41.9	48.2	59
7/5/2016	15.7		40.5	65.3					
7/6/2016		20.6			109	32.3		45.8	
7/7/2016							36.8		50.9
9/7/2016	18.2	16.7	37.3	59.8	67.2	28.9			
9/8/2016							35.9	40.9	48
10/18/2016	17.7	20.3	46.6	72.4	77.9	35.4		45.5	
10/19/2016							38.7		49.7
12/6/2016	16.9	19.7		78.6	93.3	34.3			
12/7/2016			43.5					40.6	46.4
12/8/2016							39.4		
1/31/2017	17.9		39.2				00.4		
2/1/2017	17.5	18.1	55.2	85	92.8				
2/2/2017		10.1		03	32.0	38.1	41.5	42.4	
2/3/2017						30.1	41.5	72.7	49
3/23/2017	13.9		38.7	81.2					45
3/24/2017	13.3	21.1	30.7	01.2	96.3				
3/27/2017		21.1			90.5	45.4	39.1	45.5	50.7
10/4/2017	15.0		36.5	78.8	75.1	45.4	39.1	45.5	30.7
10/4/2017	15.9	20.1	30.3	70.0	75.1	35.8	41.6	42.9	52
	-DE	20.1	39.5			33.0	41.0	42.9	52
3/14/2018	<25	-OF	39.3	92 5	60.0	F2.4		42.2	
3/15/2018		<25		83.5	69.9	52.4	45.9	43.3	53.4
3/16/2018						40.4	45.9		55.4
5/15/2018						48.4	40		
5/16/2018	45070	01.0 (1)	44.7	75.0	77.0	54.0	40	40.7	
10/4/2018	15.9 (J)	21.3 (J)	41.7	75.2	77.8	51.2	00.0	43.7	50.7
10/5/2018						40.0	39.6		52.7
12/11/2018						49.3			
4/5/2019				76.5					
4/8/2019	15.7	22.4	44.1		86.6				
4/9/2019						48.8	41.4	45.8	57.1
9/30/2019	17.6	19.6	44.6	74.7	78.3				
10/1/2019						36.8	38.7	42.3	59.1
3/26/2020	14	22.4	43.2	78.7	87.4				
3/27/2020						22.9			
3/30/2020							45.7		
3/31/2020								52.3	63.6
6/19/2020								41.3 (R)	61.4 (R)
9/21/2020			45.8						
9/22/2020		19.5							
9/23/2020	17.6			76.2	74.9				55.8
9/24/2020							36.9		
9/25/2020						39.4			
9/28/2020								44.7	
3/8/2021	16.2 (M1)	22		73.5	87.2				
3/9/2021			48.7			48.7	44.9		
3/10/2021								47.4	64.9

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		49.9	36.4	79	64.1	45.2	69.1	36
3/24/2016	31.4							
5/17/2016				74.6	62.8			
5/18/2016	39.2	50.7				46.5	63.7	37.3
5/19/2016			41.5					
7/6/2016				66.9	59.5	29.1	56.8	32.8
7/7/2016	36	45.5	33.5					
9/7/2016				61.6	53.7	19.2		
9/8/2016	70	46.8	34.7				51.3	32.1
10/18/2016				71.6	62.3	22.6	52.6	
10/19/2016	63	47.3	33.4					35
12/7/2016	54.7	45.3	35.5					
12/8/2016				67.6	58.8	17.5	43.7	33.4
2/1/2017				82.5	59.6			
2/2/2017	37.4	49.9				54.4	56.5	34.3
2/3/2017			31.7					
3/23/2017				84.4	62.9			
3/24/2017						56.8	64.4	
3/27/2017	20.9	45.8	32					34.9
10/4/2017				70.8	62.4	30.5		
10/5/2017	26.8	47.3	41				59.9	34.7
3/14/2018							58.8	
3/15/2018	62.8	46.8	39.8			43.4		35.3
3/16/2018				78.1	66.9			
10/4/2018	48.6	50.4		73	65.5	26.1	264 (o)	
10/5/2018			39.3					37.8
12/11/2018							64.3	
4/8/2019			39.8		67	56.1	81.5	36.3
4/9/2019	35.4	47.3		73.9				
6/18/2019							83.7	
6/27/2019							75.9	
10/1/2019	82.8	46.9	39.1	70.6	64.2	28.5	64	37.2
11/6/2019	74.9							
11/26/2019	45.8							
3/26/2020			44.7					
3/27/2020							87.3	34.3
3/30/2020						47.8		
3/31/2020	25.6	51.5		84.2	70.6			
9/23/2020		45.9	39.2					
9/24/2020	73.4					39.5	81.4	35.9
9/25/2020				77.1	71.3			
3/9/2021	67.8	48.7	54.3	85.4	70.8	64.3	83.2	36.8

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	1.1933	1.3137	2.0975	4.0352	5.549				
3/23/2016						1.3507			1.4238
3/24/2016							1.1313	1.6497	
5/17/2016	1.14	1.29	2.1	3.81	6.74	1.28			
5/18/2016								1.74	1.57
5/19/2016							1.13		
7/5/2016	1.4		2.4	4					
7/6/2016		1.6			5.2	1.5		2.1	
7/7/2016							1.5		1.7
9/7/2016	1	1.5	2.5	4.2	7.2	1.5			
9/8/2016							1.4	1.9	1.5
10/18/2016	1.1	1.6	2.7	4.4	7.4	1.4		2.1	
10/19/2016							1.4		1.7
12/6/2016	1	1.2		4.6	7.6	1.3			
12/7/2016			2.6					2	1.8
12/8/2016							1.4		
1/31/2017	1.2		2.5						
2/1/2017		2.1		3.7	8.5				
2/2/2017						1.8	1.6	2.3	
2/3/2017									2
3/23/2017	1.1		2	3.5					
3/24/2017		1.3			7				
3/27/2017						1.7	1.5	2.1	1.8
10/4/2017	1.1		2.2	3.6	7.4				
10/5/2017		1.3				1.5	1.4	1.9	5.5 (o)
12/14/2017									1.5
3/14/2018	1.2		2.4						
3/15/2018		1.6		3.8	1.7	2		1.9	
3/16/2018				0.0		_	1.5		1.9
5/15/2018						1.4	1.0		1.0
10/4/2018	1.4	1.8	2.5	3.4	6.1	2.1		2	
10/5/2018			2.0	0	0		1.5	_	2.2
12/11/2018						1.9	1.0		1.8
4/5/2019				4.2		1.5			1.0
4/8/2019	1.1	1.3	2.6	4.2	3.6				
4/9/2019	1.1	1.5	2.0		5.0	1.9	1.6	1.9	1.8
9/30/2019	1.4	1.5	3	4.1	7.5	1.9	1.0	1.9	1.0
10/1/2019	1.4	1.5	3	4.1	7.5	1 5	0.04 (1)	1.2	1.1
	1.1	1.4	2	2.6	E 4	1.5	0.94 (J)	1.3	1.1
3/26/2020 3/27/2020	1.1	1.4	2	2.6	5.4	1.0			
						1.2	4		
3/30/2020							1	1.0	4.4
3/31/2020			0.1					1.3	1.1
9/21/2020			2.1						
9/22/2020	1.0	1		2.0	4.0				4.4
9/23/2020	1.6			2.8	4.2		0.0471)		1.1
9/24/2020							0.94 (J)		
9/25/2020						1.1			
9/28/2020		1.0		0.0	5.0			1.3	
3/8/2021	1.1	1.3		2.8	5.6				
3/9/2021			2.1			1.1	0.97 (J)		
3/10/2021								1.3	1.2

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		1.2595	1.5409	2.5045	1.7709	1.1569	1.4936	0.9561
3/24/2016	2.461							
5/17/2016				2.47	1.75			
5/18/2016	2.61	1.25				1.35		
5/19/2016			1.23				1.35	0.972
7/6/2016				2.9	2	1.9	1.6	1.3
7/7/2016	2.8	1.7	1.7					
9/7/2016				2.8	2	1.7		
9/8/2016	2.3	1.5	1.6				1.4	1
10/18/2016				2.8	2	1.8	1.4	
10/19/2016	2.4	1.6	1.6					1.1
12/7/2016	2.2	1.5	1.7					
12/8/2016				3.1	2	1.6	1.5	1.3
2/1/2017				3.8	2.2			
2/2/2017	3.4	1.8				2	1.7	1.6
2/3/2017			1.9					
3/23/2017				3.4	2			
3/24/2017						1.3	2.1	
3/27/2017	2.7	1.5	1.7					1.4
10/4/2017				3.7	1.7	1.7		
10/5/2017	3.3	1.6	1.4				2	1.1
3/14/2018							2.1	
3/15/2018	3.6	1.7	1.6			1.9		1.3
3/16/2018				3.2	2.1			
5/15/2018	3.2							
10/4/2018	2.4	1.7		3.2	2.2	2	2.3	
10/5/2018			1.6					1.6
12/11/2018							2.3	
1/11/2019							2.8	
4/8/2019			1.5		2.1	1.9	3.2	1
4/9/2019	2.6	1.7		3.3				
10/1/2019	2	1.4	1.1	2.2	1.6	1.2	1.8	0.91 (J)
3/26/2020			0.63 (J)					
3/27/2020							2.5	0.74 (J)
3/30/2020						9.2		
3/31/2020	1.5	1		2	1.5			
6/19/2020						1.4 (R)		
9/23/2020		1.1	1.1					
9/24/2020	1.8					1.4	2.2	0.82 (J)
9/25/2020				2.3	1.6			
3/9/2021	1.8	1	0.85 (J)	2	1.5	1.5	2.2	0.74 (J)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	0.0013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									0.0016
11/6/2007	<0.005		<0.005	0.0014	<0.005				
11/7/2007		0.0024				<0.005	<0.005	<0.005	0.0016
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				<0.005				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	0.00032 (J)	<0.005	<0.005			<0.005			
3/10/2014							<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9)/3/2014	<0.005	<0.005	<0.005			<0.005	<0.005		
9)/8/2014				<0.005	<0.005				
9	9/9/2014								<0.005	<0.005
4	/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4	/22/2015			<0.005				<0.005	<0.005	
4	/23/2015									<0.005
9	9/29/2015		<0.005		<0.005	<0.005				
9	/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3	3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3	3/23/2016						<0.005			<0.005
3	3/24/2016							<0.005	<0.005	
5	5/17/2016	<0.005	<0.005	<0.005	<0.005	<0.005	0.00424 (J)			
5	5/18/2016							<0.005	<0.005	<0.005
7	7/5/2016	<0.005		<0.005	<0.005					
7	7/6/2016		<0.005			<0.005	<0.005		<0.005	
7	7/7/2016							<0.005		<0.005
	0/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
	9/8/2016							<0.005	<0.005	<0.005
	0/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
	0/19/2016							<0.005		0.0064 (J)
	2/6/2016	<0.005	0.0018 (J)		<0.005	<0.005	0.0013 (J)			(-)
	2/7/2016		(1)	<0.005			(-)		<0.005	<0.005
	2/8/2016							<0.005		
	/31/2017	<0.005		<0.005						
	2/1/2017		<0.005		<0.005	<0.005				
	2/2/2017		0.000		0.000	0.000	0.001 (J)	<0.005	<0.005	
	2/3/2017						0.001 (0)	0.000	0.000	<0.005
	3/23/2017	<0.005		<0.005	<0.005					0.000
	3/24/2017	-0.000	<0.005	-0.000	-0.000	0.0004 (J)				
	8/27/2017		-0.000			0.0004 (0)	<0.005	<0.005	<0.005	<0.005
	0/4/2017	<0.005		<0.005	<0.005	<0.005	10.000	-0.003	-0.003	-0.003
	0/5/2017	10.000	<0.005	-0.000	10.000	-0.000	<0.005	<0.005	0.0012 (J)	<0.005
	3/14/2018	0.016	10.000	<0.005			10.000	10.003	0.0012 (3)	·0.003
	3/15/2018	0.010	<0.005	10.003	<0.005	<0.005	<0.005		<0.005	
	3/16/2018		-0.003		10.003	-0.003	10.000	<0.005	-0.003	<0.005
	0/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-0.000	<0.005	-0.000
	0/5/2018	10.003	10.000	10.003	10.003	10.003	10.000	<0.005	10.003	<0.005
	1/5/2019				<0.005			10.003		-0.003
	/8/2019	<0.005	<0.005	<0.005	10.000	<0.005				
	1/9/2019	10.003	-0.003	10.003		-0.003	<0.005	<0.005	<0.005	<0.005
	0/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005	10.000	-0.003	-0.003	-0.003
	0/1/2019	~ 0.003	~ 0.003	~0.003	~ 0.003	~ 0.003	<0.005	0.00086 (J)	<0.005	<0.005
	3/26/2020	<0.005	<0.005	0.00043 (J)	0.00062 (J)	0.0013 (J)	10.000	0.00000 (3)	10.003	·0.003
	8/27/2020	~0.003	~0.003	0.00043 (3)	0.00002 (3)	0.0013 (3)	<0.005			
	3/30/2020						~0.003	0.00071 (J)		
	3/31/2020							0.00071 (3)	0.00042 (J)	<0.005
	0/21/2020			<0.005					0.00042 (3)	-0.003
	0/22/2020		<0.005	50.000						
	0/23/2020	<0.005	-0.000		<0.005	<0.005				<0.005
	0/24/2020	~U.UUJ			-0.003	-0.000		<0.005		-0.003
	0/25/2020						<0.005	-0.003		
	0/28/2020						~U.UUO		0.00063 (J)	
8	"LUIZUZU								0.00003 (3)	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				0.0013
5/9/2007	<0.005	0.002	0.0013		<0.005	0.11 (o)	<0.005	
7/6/2007				<0.005		0.0029	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	0.0038	<0.005	0.0014
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	0.0035	0.0024
11/7/2007	<0.005	0.0013	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	0.0016		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	0.0018	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		<0.005	0.0017	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2014	<0.005	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	<0.005		
9/9/2014	0.0015	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				<0.005	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	<0.005	<0.005	<0.005
7/7/2016	<0.005	<0.005	<0.005					
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	<0.005	<0.005	
10/19/2016	<0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	<0.005	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.005	<0.005				<0.005	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						0.0011 (J)	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				0.0005 (J)	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	0.0023 (J)		<0.005				
10/1/2019	<0.005	<0.005	0.0051 (J)	0.0012 (J)	<0.005	<0.005	0.0005 (J)	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						0.00041 (J)		
3/31/2020	0.00093 (J)	0.0015 (J)		<0.005	0.00085 (J)			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Cobalt (mg/L) Analysis Run 4/1/2021 1:42 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

2/6/2007	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00E	<0.00E	<0.005	<0.005
3/7/2007	<0.00E		<0.00E	<0.00E	<0.00E	<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00E	<0.00E	<0.00E
5/9/2007	-0.005		-0.005				<0.005	<0.005	<0.005
7/7/2007	<0.005	<0.00E	<0.005	<0.00E	<0.00E	<0.00E	<0.00E	<0.00E	<0.00E
7/17/2007	-0.005	<0.005	-0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007	0.005		0.005	0.005	.0.005				<0.005
11/6/2007	<0.005	.0.005	<0.005	<0.005	<0.005	0.005	.0.005	.0.005	
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008				0.005	.0.005		<0.005	<0.005	<0.005
5/8/2008	.0.005	.0.005		<0.005	<0.005	0.005			
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				0.0016				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.005		<0.005	0.002	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	0.00043 (J)	0.00047 (J)	<0.005			<0.005			
3/10/2014							<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	0.00076 (J)	0.00065 (J)	<0.005			<0.005	<0.005		
9/8/2014				<0.005	0.001 (J)				
9/9/2014								<0.005	<0.005
4/21/2015	0.00051 (J)	0.00062 (J)		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		0.0009 (J)		<0.005	0.0025 (J)				
9/30/2015	0.0006 (J)		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	0.0004 (J)		<0.005	0.0003 (J)					
7/6/2016		0.0009 (J)			0.0004 (J)	<0.005		<0.005	
7/7/2016							<0.005		<0.005
9/7/2016	<0.005	0.0011 (J)	<0.005	<0.005	0.0008 (J)	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	0.0011 (J)	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		<0.005
12/6/2016	0.0006 (J)	0.0011 (J)		0.0007 (J)	0.0026 (J)	<0.005			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	0.0006 (J)		<0.005						
2/1/2017		0.0011 (J)		<0.005	0.0013 (J)				
2/2/2017						<0.005	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	0.0007 (J)		<0.005	<0.005					
3/24/2017		0.0008 (J)			0.0014 (J)				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	0.0006 (J)		<0.005	<0.005	0.0012 (J)				
10/5/2017		0.0008 (J)				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	0.00058 (J)	0.00072 (J)	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				0.00031 (J)					
4/8/2019	0.00026 (J)	0.00076 (J)	6.1E-05 (J)		0.00044 (J)				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	0.00042 (J)	0.00054 (J)	<0.005	<0.005	0.00079 (J)				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	0.00049 (J)	0.00063 (J)	<0.005	<0.005	0.00082 (J)				
3/27/2020						0.00082 (J)			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		0.00049 (J)							
9/23/2020	0.00051 (J)			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	0.0005 (J)	0.00049 (J)		<0.005	0.00061 (J)				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005

		GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3	3/6/2007	<0.005	<0.005	<0.005					
3	3/7/2007				<0.005	<0.005			<0.005
5	5/8/2007				<0.005				<0.005
5	5/9/2007	<0.005	<0.005	<0.005		<0.005	6.5 (o)	<0.005	
7	7/6/2007				<0.005		2.1 (o)	<0.005	<0.005
7	7/17/2007	<0.005	<0.005	<0.005		<0.005			
8	3/28/2007				<0.005	<0.005	1.4 (o)	<0.005	<0.005
8	3/29/2007	<0.005	<0.005	<0.005					
1	1/6/2007				<0.005	<0.005	1.1 (o)	<0.005	<0.005
1	1/7/2007	<0.005	<0.005	<0.005					
5	5/7/2008	<0.005	<0.005	<0.005					
5	5/8/2008				<0.005	<0.005	0.75	<0.005	<0.005
1	12/2/2008						0.41	<0.005	<0.005
1	12/3/2008				<0.005	<0.005			
1	12/5/2008	<0.005	<0.005	<0.005					
4	1/7/2009				<0.005	<0.005			
4	1/8/2009						0.38	<0.005	<0.005
4	1/14/2009		<0.005	<0.005					
4	1/27/2009	<0.005							
9	9/30/2009	<0.005	<0.005					<0.005	<0.005
1	10/1/2009			<0.005	<0.005	<0.005	0.29		
4	1/13/2010	<0.005	<0.005			<0.005	0.26	<0.005	<0.005
4	1/14/2010			<0.005	<0.005				
1	10/6/2010					<0.005			
1	10/7/2010						0.24		
1	10/12/2010	<0.005	<0.005						
1	10/13/2010			<0.005				<0.005	<0.005
1	10/14/2010				<0.005				
4	1/5/2011				<0.005	<0.005	0.17	<0.005	<0.005
4	1/6/2011		<0.005	<0.005					
1	10/4/2011					<0.005	0.19	<0.005	<0.005
1	10/5/2011	<0.005	<0.005						
1	10/12/2011			<0.005	<0.005				
4	1/3/2012					<0.005	0.114	<0.005	
4	1/4/2012				<0.005				<0.005
4	1/9/2012		<0.005	<0.005					
4	1/10/2012	<0.005							
g	9/18/2012					<0.005	0.14		
g	9/19/2012			<0.005				<0.005	<0.005
g	9/24/2012				<0.005				
g	9/25/2012		<0.005						
g	9/26/2012	0.0033							
3	3/12/2013				<0.005	<0.005	0.041	<0.005	<0.005
3	3/13/2013	<0.005	<0.005	<0.005					
g	9/9/2013					<0.005			
9	9/10/2013			<0.005	<0.005		0.06	<0.005	<0.005
9	9/11/2013	0.0018	<0.005						
3	3/5/2014				<0.005	<0.005	0.049	<0.005	<0.005
3	3/11/2014	0.00029 (J)	<0.005	<0.005					
9	9/3/2014			<0.005					<0.005
g	9/8/2014					<0.005	0.068		
9	9/9/2014	0.0011 (J)	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.043		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.0525	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.0172	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				0.021	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	0.0278	<0.005	0.0004 (J)
7/7/2016	0.0016 (J)	<0.005	<0.005					
9/7/2016				<0.005	<0.005	0.0334		
9/8/2016	0.0006 (J)	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	0.0368	<0.005	
10/19/2016	0.0006 (J)	<0.005	<0.005					<0.005
12/7/2016	0.0006 (J)	<0.005	<0.005					
12/8/2016				<0.005	<0.005	0.0419	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.005	<0.005				0.0113	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				0.0007 (J)	<0.005			
3/24/2017						0.0094 (J)	<0.005	
3/27/2017	0.001 (J)	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	0.0237		
10/5/2017	0.0051 (J)	<0.005	<0.005				0.0003 (J)	0.0004 (J)
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			0.014		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	0.0065 (J)	<0.005		<0.005	<0.005	0.024	<0.005	
10/5/2018			0.00058 (J)					<0.005
4/8/2019			0.00046 (J)		0.00022 (J)	0.0086 (J)	0.0017 (J)	0.00041 (J)
4/9/2019	0.0023 (J)	<0.005		<0.005				
10/1/2019	0.00046 (J)	<0.005	0.00033 (J)	<0.005	<0.005	0.017	0.00081 (J)	0.00041 (J)
3/26/2020			0.00035 (J)					
3/27/2020							0.0016 (J)	0.00063 (J)
3/30/2020						0.012		
3/31/2020	0.0019 (J)	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	0.00068 (J)					0.01	0.0011 (J)	<0.005
9/25/2020				0.00057 (J)	<0.005			
3/9/2021	0.00049 (J)	<0.005	<0.005	0.00043 (J)	<0.005	0.0093	0.0013 (J)	0.00042 (J)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				0.0025	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		0.0028	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	0.0032	0.0032	0.0039	0.0061	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		0.0036				<0.005	0.0029	0.0035	0.0028
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	0.0066				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005							
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				<0.005				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	<0.005	<0.005	<0.005			<0.005			
3/10/2014							<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

9/3/2014	GWA-1 (bg) <0.005	GWA-11 (bg) <0.005	GWA-2 (bg) 0.0011 (J)	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.005	GWC-18 0.00099 (J)	GWC-19	GWC-20
9/8/2014	10.000	-0.000	0.0011(0)	<0.005	<0.005	-0.000	0.0000 (0)		
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		<0.005	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			<0.005				
3/27/2017						<0.005	<0.005	0.0004 (J)	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	0.0005 (J)	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	0.0013 (J)	0.00029 (J)		<0.005				
4/9/2019						<0.005	<0.005	0.0014 (J)	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	0.00037 (J)	0.00019 (J)	0.00023 (J)
3/26/2020	<0.005	<0.005	<0.005	0.00022 (J)	<0.005				
3/27/2020						0.00022 (J)			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005		10.005	
9/28/2020	-0.005	-0.005		-0.005	-0.005			<0.005	
3/8/2021	<0.005	<0.005	-0.005	<0.005	<0.005	-0.005	-0.005		
3/9/2021			<0.005			<0.005	<0.005	<0.00E	<0.00E
3/10/2021								<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				0.0027	<0.005			0.0043
5/8/2007				0.0026				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	0.44 (o)	<0.005	
7/6/2007				<0.005		0.016	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				0.0036	<0.005	0.0091	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	0.0029	0.0033	0.0084					
5/7/2008	0.0026	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						0.003	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		<0.005	<0.005	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2014	<0.005	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	<0.005		
9/9/2014	0.0013 (J)	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.00082 (J)		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	0.0008 (J)	<0.005	0.0012 (J)					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	0.0006 (J)	<0.005	<0.005				<0.005	<0.005
3/23/2017				<0.005	<0.005			
3/24/2017						0.0007 (J)	<0.005	
3/27/2017	0.0005 (J)	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	0.0003 (J)				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	0.0016 (J)			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			0.0005 (J)		<0.005	0.00025 (J)	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	0.00084 (J)	0.00031 (J)	0.00083 (J)	0.00031 (J)	0.00023 (J)	0.00034 (J)	0.00036 (J)	<0.005
3/26/2020			0.00067 (J)					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	0.00082 (J)	0.0002 (J)		0.00019 (J)	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	0.119 (J)	0.0811 (J)	0.1252 (J)	0.1415 (J)	0.1754 (J)				
3/23/2016						0.1069 (J)			0.0905 (J)
3/24/2016							0.1459 (J)	0.1652 (J)	
5/17/2016	0.1049 (J)	0.0706 (J)	0.1091 (J)	0.1293 (J)	0.1385 (J)	0.0991 (J)			
5/18/2016								0.1459 (J)	0.0864 (J)
5/19/2016							0.1408 (J)		
7/5/2016	0.1 (J)		0.16 (J)	0.21 (J)					
7/6/2016		0.09 (J)			0.22 (J)	0.09 (J)		0.21 (J)	
7/7/2016							0.2 (J)		0.16 (J)
9/7/2016	0.13 (J)	0.04 (J)	0.18 (J)	0.21 (J)	0.2 (J)	0.13 (J)			
9/8/2016							0.14 (J)	0.15 (J)	0.08 (J)
10/18/2016	0.15 (J)	0.07 (J)	0.13 (J)	0.15 (J)	0.16 (J)	0.16 (J)		0.19 (J)	
10/19/2016							0.14 (J)		0.09 (J)
12/6/2016	0.11 (J)	0.13 (J)		0.19 (J)	0.29 (J)	0.12 (J)			
12/7/2016			0.13 (J)					0.24 (J)	0.11 (J)
12/8/2016							0.16 (J)		
1/31/2017	0.02 (J)		0.04 (J)						
2/1/2017		<0.3		0.35	0.48				
2/2/2017						0.07 (J)	0.17 (J)	0.1 (J)	
2/3/2017									0.06 (J)
3/23/2017	0.08 (J)		0.08 (J)	0.39					
3/24/2017		0.01 (J)			0.12 (J)				
3/27/2017						0.05 (J)	0.11 (J)	0.11 (J)	0.04 (J)
10/4/2017	0.07 (J)		0.11 (J)	0.49	0.2 (J)				
10/5/2017		<0.3				0.11 (J)	0.13 (J)	0.13 (J)	0.05 (J)
3/14/2018	<0.3		<0.3						
3/15/2018		<0.3		<0.3	0.4	<0.3		<0.3	
3/16/2018							<0.3		<0.3
10/4/2018	0.17 (J)	0.15 (J)	0.25 (J)	0.24 (J)	0.24 (J)	0.16 (J)		0.21 (J)	
10/5/2018							0.21 (J)		0.17 (J)
4/5/2019				0.31					
4/8/2019	0.057 (J)	0.035 (J)	0.072 (J)		0.12 (J)				
4/9/2019						0.067 (J)	0.1 (J)	0.1 (J)	0.056 (J)
9/30/2019	0.11 (J)	0.099 (J)	0.14 (J)	0.15 (J)	0.17 (J)				
10/1/2019						0.07 (J)	0.11 (J)	0.11 (J)	0.069 (J)
3/26/2020	0.082 (J)	0.057 (J)	0.12 (J)	0.09 (J)	0.089 (J)				
3/27/2020						<0.3			
3/30/2020							0.1 (J)		
3/31/2020								0.099 (J)	0.054 (J)
9/21/2020			0.12						
9/22/2020	0.000 (1)	0.061 (J)		0.11	0.10				0.005 ("
9/23/2020	0.089 (J)			0.11	0.13				0.065 (J)
9/24/2020						0.005 (1)	0.11		
9/25/2020						0.085 (J)		0.11	
9/28/2020	0.004 (1)	0.11		0.12	0.1			0.11	
3/8/2021	0.094 (J)	0.11	0.000 (1)	0.13	0.1	0.079 / 15	0.11		
3/9/2021			0.099 (J)			0.078 (J)	0.11	0.11	0.000 (1)
3/10/2021								0.11	0.068 (J)

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		0.0886 (J)	0.1064 (J)	0.0582 (J)	0.0791 (J)	0.2004 (J)	0.1537 (J)	0.0993 (J)
3/24/2016	0.0445 (J)							
5/17/2016				0.0571 (J)	0.0712 (J)			
5/18/2016	0.0476 (J)	0.0839 (J)				0.1766 (J)		
5/19/2016			0.0928 (J)				0.1414 (J)	0.0936 (J)
7/6/2016				0.29 (J)	0.28 (J)	0.39	0.15 (J)	0.09 (J)
7/7/2016	0.12 (J)	0.08 (J)	0.13 (J)					
9/7/2016				0.08 (J)	0.08 (J)	0.53		
9/8/2016	0.11 (J)	0.11 (J)	0.12 (J)				0.35	0.11 (J)
10/18/2016				0.09 (J)	0.07 (J)	0.24 (J)	0.17 (J)	
10/19/2016	0.13 (J)	0.1 (J)	0.1 (J)					0.1 (J)
12/7/2016	0.23 (J)	0.09 (J)	0.1 (J)					
12/8/2016				0.06 (J)	0.13 (J)	0.24 (J)	0.15 (J)	0.11 (J)
2/1/2017				0.33	0.24 (J)			
2/2/2017	0.11 (J)	0.05 (J)				0.3 (J)	0.1 (J)	0.05 (J)
2/3/2017			0.12 (J)					
3/23/2017				0.07 (J)	0.04 (J)			
3/24/2017						0.22 (J)	0.14 (J)	
3/27/2017	0.01 (J)	0.08 (J)	0.14 (J)					0.07 (J)
10/4/2017				<0.3	0.03 (J)	0.19 (J)		
10/5/2017	<0.3	0.08 (J)	0.09 (J)				0.15 (J)	0.06 (J)
3/14/2018							0.4	
3/15/2018	<0.3	<0.3	<0.3			0.37		<0.3
3/16/2018				<0.3	<0.3			
5/16/2018							0.32	
10/4/2018	0.15 (J)	0.14 (J)		0.16 (J)	0.17 (J)	0.19 (J)	0.28 (J)	
10/5/2018			0.18 (J)					0.18 (J)
4/8/2019			0.057 (J)		<0.3	0.17 (J)	0.1 (J)	0.058 (J)
4/9/2019	0.063 (J)	0.063 (J)		0.061 (J)				
10/1/2019	0.094 (J)	0.079 (J)	0.079 (J)	0.064 (J)	0.063 (J)	0.16 (J)	0.13 (J)	0.078 (J)
3/26/2020			0.064 (J)					
3/27/2020							0.12 (J)	0.078 (J)
3/30/2020						0.16 (J)		
3/31/2020	<0.3	0.055 (J)		<0.3	0.053 (J)			
9/23/2020		0.073 (J)	0.088 (J)					
9/24/2020	0.1					0.14	0.15	0.076 (J)
9/25/2020				0.058 (J)	0.063 (J)			
3/9/2021	0.058 (J)	0.067 (J)	0.069 (J)	0.05 (J)	0.06 (J)	0.17	0.12	0.08 (J)

Constituent: Lead (mg/L) Analysis Run 4/1/2021 1:42 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

3/6/2007	GWA-1 (bg) <0.001	GWA-11 (bg)	GWA-2 (bg) <0.001	GWA-3 (bg) <0.001	GWA-4 (bg) <0.001	GWC-10	GWC-18	GWC-19 <0.001	GWC-20
3/7/2007	~0.001	<0.001	~ 0.001	~0.001	~0.001	<0.001	<0.001	~0.001	<0.001
5/8/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	10.001		10.001
5/9/2007	10.001	10.001	10.001	40.001	10.001	10.001	<0.001	<0.001	<0.001
7/7/2007	<0.001		<0.001				10.001	10.001	10.001
7/17/2007	10.001	<0.001	10.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/28/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-0.001
8/29/2007	0.001	0.001	0.001	0.001	0.001	0.001	0.00	0.00	<0.001
11/6/2007	<0.001		<0.001	<0.001	<0.001				0.001
11/7/2007	0.001	<0.001	0.001	0.001	0.00	<0.001	<0.001	<0.001	<0.001
5/7/2008							<0.001	<0.001	<0.001
5/8/2008				<0.001	<0.001				
5/9/2008	<0.001	<0.001	<0.001			<0.001			
12/2/2008		<0.001				<0.001			
12/3/2008	<0.001		<0.001	<0.001	<0.001		<0.001		
12/4/2008								<0.001	
12/5/2008									<0.001
4/7/2009	<0.001		<0.001	<0.001	<0.001				
4/8/2009		<0.001				<0.001			
4/14/2009							<0.001	<0.001	<0.001
9/30/2009									<0.001
10/1/2009	<0.001	<0.001	<0.001			<0.001	<0.001		
10/2/2009				<0.001	<0.001			<0.001	
4/13/2010			<0.001				<0.001	<0.001	<0.001
4/14/2010	<0.001	<0.001		<0.001	<0.001	<0.001			
10/7/2010			<0.001						
10/12/2010							<0.001	<0.001	<0.001
10/13/2010	<0.001	<0.001				<0.001			
10/14/2010				<0.001	<0.001				
4/5/2011				<0.001	<0.001				
4/6/2011	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	
10/4/2011		<0.001				<0.001			
10/6/2011			<0.001						
10/10/2011	<0.001								
10/12/2011				<0.001	<0.001		<0.001	<0.001	<0.001
4/3/2012	<0.001		<0.001						
4/4/2012				<0.001	<0.001				
4/5/2012							<0.001	<0.001	
4/9/2012									<0.001
4/10/2012		<0.001				<0.001			
9/19/2012			<0.001				<0.001		
9/24/2012	<0.001				<0.001				
9/25/2012								<0.001	<0.001
9/26/2012		<0.001		<0.001		<0.001			
3/12/2013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
3/13/2013							<0.001	<0.001	<0.001
9/9/2013			<0.001						
9/10/2013		<0.001		<0.001	<0.001	<0.001	<0.001		
9/11/2013	<0.001							<0.001	<0.001
3/4/2014	<0.001	<0.001	<0.001			<0.001			
3/10/2014							<0.001	<0.001	<0.001
3/11/2014				<0.001	<0.001				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.001	<0.001	<0.001			<0.001	<0.001		
9/8/2014				<0.001	<0.001				
9/9/2014								<0.001	<0.001
4/21/201	5 <0.001	<0.001		<0.001	<0.001	<0.001			
4/22/201	5		<0.001				<0.001	<0.001	
4/23/201	5								<0.001
9/29/201	5	<0.001		<0.001	<0.001				
9/30/201	5 <0.001		<0.001			<0.001	<0.001	<0.001	<0.001
3/22/201	6 <0.001	<0.001	<0.001	<0.001	<0.001				
3/23/201	6					<0.001			<0.001
3/24/201	6						<0.001	<0.001	
5/17/201	6 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/18/201	6						<0.001	<0.001	<0.001
7/5/2016	<0.001		<0.001	<0.001					
7/6/2016		<0.001			<0.001	<0.001		<0.001	
7/7/2016							<0.001		<0.001
9/7/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
9/8/2016							<0.001	<0.001	<0.001
10/18/20	16 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/19/20	16						<0.001		<0.001
12/6/201	6 <0.001	<0.001		<0.001	<0.001	<0.001			
12/7/201	6		<0.001					<0.001	<0.001
12/8/201	6						<0.001		
1/31/201	7 <0.001		<0.001						
2/1/2017		<0.001		<0.001	<0.001				
2/2/2017						<0.001	<0.001	<0.001	
2/3/2017									<0.001
3/23/201	7 <0.001		<0.001	<0.001					
3/24/201	7	7E-05 (J)			<0.001				
3/27/201	7					<0.001	<0.001	<0.001	7E-05 (J)
10/4/201	7 <0.001		<0.001	<0.001	<0.001				
10/5/201	7	<0.001				<0.001	<0.001	0.0002 (J)	<0.001
3/14/201	8 <0.001		<0.001						
3/15/201	8	<0.001		<0.001	<0.001	<0.001		<0.001	
3/16/201	8						<0.001		<0.001
10/4/201	8 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/5/201	8						<0.001		<0.001
4/5/2019				<0.001					
4/8/2019	<0.001	<0.001	<0.001		<0.001				
4/9/2019						<0.001	<0.001	<0.001	<0.001
9/30/201	9 <0.001	<0.001	<0.001	<0.001	<0.001				
10/1/201	9					<0.001	<0.001	<0.001	<0.001
3/26/202	0 <0.001	<0.001	<0.001	4.7E-05 (J)	<0.001				
3/27/202	0					5.4E-05 (J)			
3/30/202	0						<0.001		
3/31/202	0							6.1E-05 (J)	<0.001
9/21/202	0		<0.001						
9/22/202	0	<0.001							
9/23/202	0 <0.001			<0.001	<0.001				<0.001
9/24/202	0						4E-05 (J)		
9/25/202						<0.001			
9/28/202	0							0.00014 (J)	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.001	<0.001		4E-05 (J)	<0.001				
3/9/2021			<0.001			<0.001	<0.001		
3/10/2021								<0.001	<0.001

Constituent: Lead (mg/L) Analysis Run 4/1/2021 1:42 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.001	<0.001	<0.001	ano	ano	awo,	ano	arros
3/7/2007	0.001	0.001	0.001	<0.001	<0.001			<0.001
5/8/2007				<0.001				<0.001
5/9/2007	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	
7/6/2007	0.001	0.001	0.001	<0.001	0.001	<0.001	<0.001	<0.001
7/17/2007	<0.001	<0.001	<0.001	10.001	<0.001	10.001	10.001	-0.001
8/28/2007	-0.001	10.001	10.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/29/2007	<0.001	<0.001	<0.001	10.001	10.001	10.001	40.001	10.001
11/6/2007	10.001	10.001	40.001	<0.001	<0.001	<0.001	<0.001	<0.001
11/7/2007	<0.001	<0.001	<0.001	\0.001	\0.001	\0.001	\0.001	~0.001
5/7/2008	<0.001	<0.001	<0.001					
5/8/2008	10.001	10.001	40.001	<0.001	<0.001	<0.001	<0.001	<0.001
12/2/2008				~0.001	~0.001	<0.001	<0.001	<0.001
12/3/2008				<0.001	<0.001	<0.001	~0.001	VO.001
12/5/2008	<0.001	<0.001	<0.001	~0.001	~0.001			
	<0.001	<0.001	<0.001	<0.001	<0.001			
4/7/2009				<0.001	<0.001	<0.001	<0.001	<0.001
4/8/2009		-0.001	-0.001			<0.001	<0.001	<0.001
4/14/2009	10.001	<0.001	<0.001					
4/27/2009	<0.001	<0.001					<0.001	-0.001
9/30/2009	<0.001	<0.001	-0.001	-0.001	-0.001	-0.001	<0.001	<0.001
10/1/2009	0.004	0.004	<0.001	<0.001	<0.001	<0.001	0.004	.0.004
4/13/2010	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001
4/14/2010			<0.001	<0.001	-0.001			
10/6/2010					<0.001	0.004		
10/7/2010	.0.004	.0.004				<0.001		
10/12/2010	<0.001	<0.001	-0.001				-0.004	10.001
10/13/2010			<0.001	.0.004			<0.001	<0.001
10/14/2010				<0.001	0.004	0.004	0.004	.0.004
4/5/2011		.0.004	0.004	<0.001	<0.001	<0.001	<0.001	<0.001
4/6/2011		<0.001	<0.001		-0.001	-0.001	-0.004	10.001
10/4/2011	0.004	0.004			<0.001	<0.001	<0.001	<0.001
10/5/2011	<0.001	<0.001	0.004	0.004				
10/12/2011			<0.001	<0.001	0.004	0.004	0.004	
4/3/2012				-0.001	<0.001	<0.001	<0.001	10.001
4/4/2012		0.004		<0.001				<0.001
4/9/2012	0.004	<0.001	<0.001					
4/10/2012	<0.001				<0.001	<0.001		
9/18/2012			-0.001		<0.001	<0.001	-0.004	10.001
9/19/2012			<0.001	-0.001			<0.001	<0.001
9/24/2012		0.004		<0.001				
9/25/2012	10.001	<0.001						
9/26/2012	<0.001			-0.001	-0.001	-0.001	-0.004	10.001
3/12/2013	.0.004	.0.004	0.004	<0.001	<0.001	<0.001	<0.001	<0.001
3/13/2013	<0.001	<0.001	<0.001		.0.004			
9/9/2013					<0.001			
9/10/2013	.0.004	.0.004	<0.001	<0.001		<0.001	<0.001	<0.001
9/11/2013	<0.001	<0.001		0.004	0.004	0.0046.75	0.004	
3/5/2014	.0.004	.0.004	0.004	<0.001	<0.001	0.0016 (J)	<0.001	<0.001
3/11/2014	<0.001	<0.001	<0.001					
9/3/2014			<0.001					<0.001
9/8/2014	.0.004	.0.004		0.004	<0.001	<0.001	0.004	
9/9/2014	<0.001	<0.001		<0.001			<0.001	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.001		<0.001		<0.001
4/22/2015					<0.001		<0.001	
4/23/2015		<0.001	<0.001					
9/29/2015				<0.001	<0.001	<0.001	<0.001	<0.001
9/30/2015	<0.001	<0.001	<0.001					
3/23/2016		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/24/2016	<0.001							
5/17/2016				<0.001	<0.001			
5/18/2016	<0.001	<0.001				<0.001	<0.001	<0.001
5/19/2016			<0.001					
7/6/2016				<0.001	<0.001	0.0001 (J)	<0.001	<0.001
7/7/2016	<0.001	<0.001	<0.001					
9/7/2016				<0.001	<0.001	<0.001		
9/8/2016	<0.001	<0.001	<0.001				<0.001	<0.001
10/18/2016				<0.001	<0.001	<0.001	<0.001	
10/19/2016	<0.001	<0.001	<0.001					<0.001
12/7/2016	0.0001 (J)	<0.001	<0.001					
12/8/2016				<0.001	0.0001 (J)	<0.001	0.0002 (J)	<0.001
2/1/2017				<0.001	<0.001			
2/2/2017	<0.001	<0.001				0.0003 (J)	<0.001	<0.001
2/3/2017			<0.001					
3/23/2017				<0.001	<0.001			
3/24/2017						0.0002 (J)	<0.001	
3/27/2017	<0.001	<0.001	<0.001					<0.001
10/4/2017				<0.001	<0.001	7E-05 (J)		
10/5/2017	<0.001	<0.001	<0.001				<0.001	<0.001
3/14/2018							<0.001	
3/15/2018	<0.001	<0.001	<0.001			<0.001		<0.001
3/16/2018				<0.001	<0.001			
10/4/2018	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	
10/5/2018			0.00042 (J)					<0.001
4/8/2019			0.00018 (J)		<0.001	<0.001	<0.001	<0.001
4/9/2019	<0.001	<0.001		0.00039 (J)				
10/1/2019	7.5E-05 (J)	0.00012 (J)	0.00022 (J)	6.5E-05 (J)	<0.001	5E-05 (J)	<0.001	<0.001
3/26/2020			0.00016 (J)					
3/27/2020							<0.001	<0.001
3/30/2020						4.8E-05 (J)		
3/31/2020	<0.001	0.00013 (J)		<0.001	<0.001			
9/23/2020		6.6E-05 (J)	0.00036 (J)					
9/24/2020	0.00012 (J)					6E-05 (J)	4.9E-05 (J)	<0.001
9/25/2020				<0.001	<0.001			
3/9/2021	0.00013 (J)	3.8E-05 (J)	0.00011 (J)	<0.001	<0.001	8.5E-05 (J)	<0.001	<0.001

Constituent: Nickel (mg/L) Analysis Run 4/1/2021 1:42 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009		0.000				0.000	<0.005	<0.005	<0.005
9/30/2009							0.000	0.000	<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		-0.000
10/1/2009	~0.003	~0.003	~0.003	<0.005	<0.005	~ 0.003	~0.003	<0.005	
4/13/2010			<0.005	<0.005	<0.005		<0.005	<0.005	<0.005
	<0.00E	<0.00E	<0.005	<0.00E	<0.00E	<0.00E	<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005	-0.005	<0.005	<0.005	<0.005			
10/7/2010			<0.005				-0.005	-0.005	-0.005
10/12/2010	0.005	0.005				.0.005	<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	0.0032				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				0.0032				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	0.001 (J)	0.002 (J)	0.0007 (J)			<0.005			
3/10/2014							0.0013 (J)	0.00072 (J)	0.00074 (J)
3/11/2014				0.0013 (J)	0.0026				

0/0/0044	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	0.002 (J)	<0.005	<0.00E	0.0017 (1)	<0.005	<0.005		
9/8/2014 9/9/2014				<0.005	0.0017 (J)			<0.005	<0.005
9/9/2014 4/21/2015	<0.005	0.002 (J)		<0.005	0.0016 (J)	<0.005		<0.005	<0.005
4/21/2015	<0.005	0.002 (3)	<0.005	<0.005	0.0010 (3)	<0.003	<0.005	<0.005	
4/23/2015			~0.003				~ 0.003	~ 0.005	<0.005
9/29/2015		0.0022 (J)		<0.005	0.0055				٠٥.005
9/30/2015	<0.005	0.0022 (3)	<0.005	10.003	0.0033	<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005	10.003	40.003	10.003	٠٥.005
3/23/2016	10.000	10.000	10.000	-0.000	-0.000	<0.005			<0.005
3/24/2016						0.000	<0.005	<0.005	0.000
9/7/2016	0.0008 (J)	0.0026 (J)	<0.005	<0.005	0.0014 (J)	<0.005	0.000	0.000	
9/8/2016	(-,						0.0009 (J)	<0.005	<0.005
3/23/2017	0.0007 (J)		<0.005	0.0022 (J)			(-,		
3/24/2017	(-,	0.0024 (J)		(3)	0.0017 (J)				
3/27/2017		(-)			(-,	<0.005	0.0006 (J)	0.0062 (J)	0.0006 (J)
10/4/2017	0.0006 (J)		<0.005	<0.005	0.0023 (J)		(-,	(-,	(-,
10/5/2017		0.0023 (J)			.,	<0.005	0.0008 (J)	0.0005 (J)	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		0.0026 (J)		<0.005	0.0024 (J)	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	0.0023 (J)	<0.005	<0.005	0.0013 (J)	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				0.00075 (J)					
4/8/2019	0.00034 (J)	0.0023 (J)	<0.005		0.00089 (J)				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	0.00037 (J)	0.0017 (J)	<0.005	<0.005	0.0013 (J)				
10/1/2019						<0.005	0.0015 (J)	<0.005	<0.005
3/26/2020	0.00065 (J)	0.002 (J)	<0.005	0.0011 (J)	0.00096 (J)				
3/27/2020						0.0023 (J)			
3/30/2020							0.00048 (J)		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		0.0014 (J)							
9/23/2020	<0.005			<0.005	0.00091 (J)				<0.005
9/24/2020							0.0011 (J)		
9/25/2020						<0.005			
9/28/2020								<0.005	
3/8/2021	<0.005	0.001 (J)		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	18 (o)	<0.005	
7/6/2007				<0.005		5.9 (o)	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	3.9	<0.005	<0.005
8/29/2007	0.0055	<0.005	<0.005					
11/6/2007				<0.005	<0.005	3.1	<0.005	<0.005
11/7/2007	0.0044	<0.005	<0.005					
5/7/2008	0.0047	<0.005	<0.005					
5/8/2008				<0.005	<0.005	2.1	<0.005	<0.005
12/2/2008						1.2	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						1.1	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	0.0027							
9/30/2009	0.0051	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	0.88		
4/13/2010	0.0031	<0.005			<0.005	0.82	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						0.72		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	0.52	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	0.56	<0.005	<0.005
10/5/2011	0.0032	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	0.365	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	0.45		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	0.0063							
3/12/2013				<0.005	<0.005	0.13	<0.005	<0.005
3/13/2013	0.0029	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		0.2	<0.005	0.003
9/11/2013	0.0046	<0.005						
3/5/2014	0.000 (1)	0.00050 ("	0.0040 / "	0.001 (J)	0.00092 (J)	0.17	0.00079 (J)	0.0022 (J)
3/11/2014	0.002 (J)	0.00059 (J)	0.0016 (J)					0.005
9/3/2014			<0.005		.0.005	0.05		<0.005
9/8/2014	0.0020	-0.00E		<0.00F	<0.005	0.25	<0.00E	
9/9/2014	0.0029	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.15		0.0019 (J)
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.203	<0.005	0.0019 (J)
9/30/2015	0.0025 (J)	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.0607	<0.005	<0.005
3/24/2016	0.00317 (J)							
9/7/2016				<0.005	<0.005	0.141		
9/8/2016	0.0038 (J)	<0.005	0.0011 (J)				<0.005	0.0023 (J)
3/23/2017				0.0008 (J)	<0.005			
3/24/2017						0.0313	<0.005	
3/27/2017	0.0024 (J)	<0.005	0.0007 (J)					0.0023 (J)
10/4/2017				<0.005	<0.005	0.093		
10/5/2017	0.0104	<0.005	<0.005				<0.005	0.0024 (J)
3/14/2018							<0.005	
3/15/2018	0.0026 (J)	<0.005	0.001 (J)			0.057		0.0023 (J)
3/16/2018				<0.005	<0.005			
10/4/2018	0.012	<0.005		<0.005	<0.005	0.11	<0.005	
10/5/2018			0.0014 (J)					0.0025 (J)
12/11/2018	0.0052 (J)							
4/8/2019			0.0011 (J)		0.00032 (J)	0.03	0.00064 (J)	0.0021 (J)
4/9/2019	0.0048 (J)	<0.005		0.00098 (J)				
10/1/2019	0.0031 (J)	<0.005	0.0035 (J)	0.00088 (J)	0.00042 (J)	0.07	0.00063 (J)	0.0022 (J)
3/26/2020			0.001 (J)					
3/27/2020							0.00053 (J)	0.0022 (J)
3/30/2020						0.037		
3/31/2020	0.0039 (J)	<0.005		0.0013 (J)	<0.005			
9/23/2020		<0.005	0.00079 (J)					
9/24/2020	0.0068					0.042	0.001 (J)	0.0024 (J)
9/25/2020				0.00078 (J)	<0.005			
3/9/2021	0.0013 (J)	<0.005	<0.005	<0.005	<0.005	0.035	<0.005	0.0014 (J)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	7.07	7	7.19	7.11	7.14				
3/23/2016						7.56			7.55
3/24/2016							7.71	7.69	
5/17/2016	7	6.77	6.94	6.95	6.67	7.46			
5/18/2016							7.59	7.49	7.32
7/5/2016	6.88		6.98	6.55					
7/6/2016		6.64			6.53	7.24		7.39	
7/7/2016							7.55		7.39
9/7/2016	7.24	6.83	6.86	6.81	6.72	7.4			
9/8/2016							7.54	7.57	7.34
10/18/2016	6.86	6.58	6.71	6.64	6.73	7.11		7.35	
10/19/2016							7.66		7.35
12/6/2016	6.98	6.66		6.34	6.61	7.32			
12/7/2016			6.71					7.42	7.35
12/8/2016							7.47		
1/31/2017	6.63		6.95						
2/1/2017		6.5		6.68	6.7				
2/2/2017						7.19	7.64	7.43	
2/3/2017									7.37
3/23/2017	7.12		7.04	6.8					
3/24/2017		6.72			6.77				
3/27/2017						7.48	7.59	7.53	7.26
10/4/2017	6.83		6.86	6.64	6.52				
10/5/2017		6.69				7.13	7.65	7.36	7.2
3/14/2018	6.66		6.76						
3/15/2018		6.48		6.88	7.11	7.08		7.54	
3/16/2018							7.51		7.13
5/15/2018									7.18
10/4/2018	6.92	6.66	6.62	6.62	6.72	7.26		7.44	
10/5/2018							7.57		7.07
12/11/2018									7.16
4/5/2019				6.77					
4/8/2019	6.86	6.61	6.79		6.82				
4/9/2019						7.22	7.48	7.4	7.26
9/30/2019	7.15	6.86	6.86	6.73	6.77				
10/1/2019						7.07	7.65	7.31	7.16
3/26/2020	7.02	6.83	7.07	6.87	6.74				
3/27/2020						6.82			
3/30/2020							7.65		
3/31/2020								7.62	7.57
6/19/2020						7.4 (R)		7.61 (R)	7.31 (R)
9/21/2020			6.9						
9/22/2020		6.8							
9/23/2020	6.98			6.87	6.81				7.11
9/24/2020							7.62		
9/25/2020						7.28			
9/28/2020								7.78	
11/10/2020								7.37 (R)	
3/8/2021	6.86	6.78		6.95	6.84				
3/9/2021			6.93			7.43	7.66		
3/10/2021								7.49	7.41

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		7.72	7.48	7.1	7.29			7.2
3/24/2016	6.4		7.1.0	•••	7.20	0.00	7.10	
5/17/2016				6.88	7.1			
5/18/2016	6.44	7.77				6.21	7.4	6.96
5/19/2016			7.24					
7/6/2016				6.75	7	5.88	7.36	6.89
7/7/2016	6.12	7.65	7.18					
9/7/2016				6.95	7.07	5.77		
9/8/2016	7.2	7.89	7.17				7.45	6.93
10/18/2016				6.9	6.81		7.5	
10/19/2016	7.11	7.64	7.05					6.84
12/7/2016	7.24	7.72	7.16					
12/8/2016				6.55	6.85		7.28	6.54
12/9/2016						5.73		
2/1/2017				6.81	7.05			
2/2/2017	6.86	7.56				6.29	7.45	6.72
2/3/2017			7.27					
3/23/2017				6.8	6.97			
3/24/2017						6.32	7.28	
3/27/2017	6.51	7.69	7.24					6.56
10/4/2017				7.12	7.17	6.03		
10/5/2017	5.97	7.53	7.25				7.53	7.03
3/14/2018							7.28	
3/15/2018	7.01	7.5	7.05			6.05		6.66
3/16/2018				6.72	6.8			
10/4/2018	6.33	7.52		6.52	6.93	5.92	7.22	
10/5/2018			6.97					6.41
4/8/2019			6.88		7	6.26	6.91	6.72
4/9/2019	6.46	7.49		6.72				
6/18/2019							6.85	
6/27/2019							7.05	
10/1/2019	6.9	7.38	7	6.81	6.97	6.09	7.11	6.77
11/6/2019		7.66						
3/26/2020			6.88					
3/27/2020							7.01	7.11
3/30/2020						6.48		
3/31/2020	6.33	7.8		6.82	7.17			
6/18/2020					6.96 (R)			
6/19/2020						6.45 (R)	6.81 (R)	
9/23/2020		7.42	6.96					
9/24/2020	7.12					6.32	6.96	6.75
9/25/2020					6.96			
3/9/2021	7.04	7.52	6.81	6.93	7.09	6.59	7.06	6.92

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				<0.005				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	<0.005	<0.005	<0.005			0.0016 (J)			
3/10/2014							<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	<0.005	<0.005			<0.005	<0.005		
9/8/2014				<0.005	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		<0.005	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	<0.005		<0.005	<0.005					
7/6/2016		<0.005			<0.005	<0.005		<0.005	
7/7/2016							<0.005		<0.005
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		<0.005
12/6/2016	<0.005	<0.005		<0.005	<0.005	<0.005			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	<0.005		<0.005						
2/1/2017		<0.005		<0.005	<0.005				
2/2/2017						<0.005	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			<0.005				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	<0.005	<0.005		0.00014 (J)				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	<0.005	<0.005				
3/27/2020						<0.005			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	
7/6/2007				<0.005		<0.005	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	<0.005	<0.005	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005		.0.005			
9/9/2013			.0.005	.0.005	<0.005	0.005	0.005	0.005
9/10/2013	-0.005	10.005	<0.005	<0.005		<0.005	<0.005	<0.005
9/11/2013	<0.005	<0.005		.0.005	.0.005	0.005	0.005	0.0040 (1)
3/5/2014	0.0024 (!)	0.0017 (!)	<0.00E	<0.005	<0.005	<0.005	<0.005	0.0018 (J)
3/11/2014 9/3/2014	0.0024 (J)	0.0017 (J)	<0.005 <0.005					<0.005
9/8/2014			~0.000		<0.005	<0.005		~0.000
9/9/2014	<0.005	<0.005		<0.005	-0.003	-0.003	<0.005	
5.5/2017	5.000	5.000		0.000			5.000	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				<0.005	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	<0.005	<0.005	<0.005
7/7/2016	<0.005	<0.005	<0.005					
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	<0.005	<0.005	
10/19/2016	<0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	<0.005	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	0.0017 (J)	<0.005				<0.005	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						<0.005	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	<0.005	0.0014 (J)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	<0.005	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Silver (mg/L) Analysis Run 4/1/2021 1:42 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				<0.005				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013	.0.00=	<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	<0.005	<0.005	<0.005			<0.005	0.00-	0.00=	.0.00=
3/10/2014				10.005	10.005		<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

9/3/2014	GWA-1 (bg) <0.005	GWA-11 (bg) <0.005	GWA-2 (bg) <0.005	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.005	GWC-18 <0.005	GWC-19	GWC-20
9/8/2014	~0.003	10.003	~0.003	<0.005	<0.005	~0.003	~0.003		
9/9/2014				10.000	-0.003			<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005		~0.003	~ 0.005
4/22/2015	10.003	10.005	<0.005	10.003	10.003	10.000	<0.005	<0.005	
4/23/2015			-0.000				10.003	10.003	<0.005
9/29/2015		<0.005		<0.005	<0.005				-0.000
9/30/2015	<0.005	0.000	<0.005	0.000	0.000	<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			<0.005				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	<0.005	<0.005		<0.005				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	<0.005	<0.005				
3/27/2020						<0.005			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	
7/6/2007				<0.005		<0.005	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	<0.005	<0.005	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	0.0036							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		<0.005	<0.005	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2014	<0.005	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014	-0.005	-0.005		-0.005	<0.005	<0.005	-0.005	
9/9/2014	<0.005	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
3/23/2017				<0.005	<0.005			
3/24/2017						<0.005	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	<0.005	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

2/22/2016	GWA-1 (bg)	GWA-11 (bg)		GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016 3/23/2016	4.4409	11.6823	13.0789	107.476	302.2975	14.6529			22.9683
3/24/2016							10.1818	16.8473	22.0000
5/17/2016	4.43	11.4	15.3	106	213	13.3		10.0170	
5/18/2016	4.40	11.4	10.0	100	210	10.0		18.4	19.2
5/19/2016							9.58		10.2
7/5/2016	4.6		15	110			0.00		
7/6/2016	4.0	12	10	110	280	10		17	
7/7/2016					200		9.6	.,	31
9/7/2016	4.8	13	16	83	160	10	0.0		
9/8/2016							9.4	16	30
10/18/2016	4.7	13	16	110	120	10		19	
10/19/2016					.20		9.9		32
12/6/2016	4.7	12		220	210	11			
12/7/2016			15					13	26
12/8/2016							14		
1/31/2017	5.1		13						
2/1/2017		13		190	200				
2/2/2017						11	13	14	
2/3/2017									27
3/23/2017	4.7		12	160					
3/24/2017		12			140				
3/27/2017						33	12	18	30
10/4/2017	5		12	140	140				
10/5/2017		13				16	12	16	32
3/14/2018	5.1		13.9						
3/15/2018		12.2		119	167	33.9		14.8	
3/16/2018							11.7		37.5
5/15/2018						29.1			41
10/4/2018	5.2	15.6	17.4	117	209	29.5		15.9	
10/5/2018							10.6		38.9
12/11/2018									41.8
4/5/2019				131					
4/8/2019	4.6	13.2	18.1		248				
4/9/2019						21.4	11.3	16.7	50.3
6/18/2019									38.7
6/27/2019									46
9/30/2019	4.9	11.5	17.5	118	117				
10/1/2019						13.4	8.9	14.7	52.3
11/6/2019									47.3
3/26/2020	5	10.8	15.6	95.8	128				
3/27/2020						10.8			
3/30/2020							9.7		
3/31/2020								17.8	53.6
9/21/2020			18.2						
9/22/2020		9.8							
9/23/2020	6.6			95.6	123				58.9
9/24/2020							8.5		
9/25/2020						11.6			
9/28/2020								15.8	
3/8/2021	4.6	11.5		99.5	152				
3/9/2021			16.8			14.2	7.9		

Page 2

Time Series

Constituent: Sulfate (mg/L) Analysis Run 4/1/2021 1:42 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

GWA-1 (bg) GWA-11 (bg) GWA-2 (bg) GWA-3 (bg) GWA-4 (bg) GWC-10 GWC-18 GWC-19 GWC-20 3/10/2021 5WA-3 (bg) GWA-4 (bg) GWC-10 GWC-18 GWC-19 GWC-20

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		9.1183	6.2867	76.011	87.512	90.229	26.3455	61.8335
3/24/2016	24.8075							
5/17/2016				76.2	101			
5/18/2016	26.2	6.88				100		
5/19/2016			5.42				31.7	64.3
7/6/2016				74	110	130	36	69
7/7/2016	31	6.8	5.7					
9/7/2016				64	97	130		
9/8/2016	33	6.8	5.7				45	68
10/18/2016				65	120	140	49	
10/19/2016	31	7.5	5.8					69
12/7/2016	19	11	5.9					
12/8/2016				100	100	140	50	69
2/1/2017				150	110			
2/2/2017	52	9.9				71	51	76
2/3/2017			38					
3/23/2017				130	110			
3/24/2017						68	46	
3/27/2017	29	8.4	43					68
10/4/2017				71	130	120		
10/5/2017	33	7.4	8.3				48	74
12/14/2017					130			
1/18/2018					110			
3/14/2018							36.8	
3/15/2018	38	8.2	14			118		57.8
3/16/2018				77.4	93.6			
10/4/2018	19.3	6.4		90.3	137	167	45.4	
10/5/2018			9.3					81.9
12/11/2018					110			73.6
4/8/2019			6.2		131	97.1	39.9	73.5
4/9/2019	19.9	11		83.6				
6/19/2019					108			
10/1/2019	46.3	1.9	5.8	68.1	71.7	120	47.1	72.2
3/26/2020			14.5					
3/27/2020							31.5	54
3/30/2020						64.6		
3/31/2020	29.9	10.9		92.6	106			
9/23/2020		5	5.3					
9/24/2020	37.6					120	48.3	69.9
9/25/2020				80.7	110			
3/9/2021	41.6	6.4	10.2	86.9	105	87.4	33.1	65.1 (M1)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.001		<0.001	<0.001	<0.001			<0.001	
3/7/2007		<0.001				<0.001	<0.001		<0.001
5/8/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/9/2007							<0.001	<0.001	<0.001
7/7/2007	<0.001		<0.001						
7/17/2007		<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/28/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/29/2007									<0.001
11/6/2007	<0.001		<0.001	<0.001	<0.001				
11/7/2007		<0.001				<0.001	<0.001	<0.001	<0.001
5/7/2008							<0.001	<0.001	<0.001
5/8/2008				<0.001	<0.001				
5/9/2008	<0.001	<0.001	<0.001			<0.001			
12/2/2008		<0.001				<0.001			
12/3/2008	<0.001		<0.001	<0.001	<0.001		<0.001		
12/4/2008								<0.001	
12/5/2008									<0.001
4/7/2009	<0.001		<0.001	<0.001	<0.001				
4/8/2009		<0.001				<0.001			
4/14/2009							<0.001	<0.001	<0.001
9/30/2009									<0.001
10/1/2009	<0.001	<0.001	<0.001			<0.001	<0.001		
10/2/2009				<0.001	<0.001			<0.001	
4/13/2010			<0.001				<0.001	<0.001	<0.001
4/14/2010	<0.001	<0.001		<0.001	<0.001	<0.001			
10/7/2010			<0.001						
10/12/2010)						<0.001	<0.001	<0.001
10/13/2010	0 <0.001	<0.001				<0.001			
10/14/2010)			<0.001	<0.001				
4/5/2011				<0.001	<0.001				
4/6/2011	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	
10/4/2011		<0.001				<0.001			
10/6/2011			<0.001						
10/10/201									
10/12/201	1			<0.001	<0.001		<0.001	<0.001	<0.001
4/3/2012	<0.001		<0.001						
4/4/2012				<0.001	<0.001				
4/5/2012							<0.001	<0.001	
4/9/2012									<0.001
4/10/2012		<0.001				<0.001			
9/19/2012			<0.001				<0.001		
9/24/2012					<0.001				
9/25/2012								<0.001	<0.001
9/26/2012		<0.001		<0.001		<0.001			
3/12/2013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
3/13/2013	_						<0.001	<0.001	<0.001
3/4/2014	<0.001	<0.001	<0.001			<0.001			
3/10/2014							<0.001	<0.001	<0.001
3/11/2014	_			<0.001	<0.001				
9/3/2014	<0.001	<0.001	<0.001			<0.001	<0.001		
9/8/2014				<0.001	<0.001				
9/9/2014								<0.001	<0.001

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
4/21/2015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
9/29/2015		<0.001		<0.001	<0.001				
9/30/2015	<0.001		<0.001			<0.001	<0.001	<0.001	<0.001
3/22/2016	<0.001	<0.001	<0.001	<0.001	<0.001				
3/23/2016						<0.001			<0.001
3/24/2016							<0.001	<0.001	
5/17/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/18/2016							<0.001	<0.001	<0.001
7/5/2016	<0.001		<0.001	<0.001					
7/6/2016		<0.001			<0.001	<0.001		<0.001	
7/7/2016							<0.001		<0.001
9/7/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
9/8/2016							<0.001	<0.001	<0.001
10/18/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/19/2016							<0.001		<0.001
12/6/2016	<0.001	<0.001		<0.001	<0.001	<0.001			
12/7/2016			<0.001					<0.001	<0.001
12/8/2016							<0.001		
1/31/2017	<0.001		<0.001						
2/1/2017		<0.001		<0.001	<0.001				
2/2/2017						<0.001	<0.001	<0.001	
2/3/2017									<0.001
3/23/2017	<0.001		<0.001	<0.001					
3/24/2017		<0.001			<0.001				
3/27/2017						<0.001	<0.001	<0.001	<0.001
10/4/2017	<0.001		<0.001	<0.001	<0.001				
10/5/2017		<0.001				<0.001	<0.001	<0.001	<0.001
3/14/2018	<0.001		<0.001						
3/15/2018		<0.001		<0.001	<0.001	<0.001		<0.001	
3/16/2018							<0.001		<0.001
10/4/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/5/2018							<0.001		<0.001
4/5/2019				<0.001					
4/8/2019	<0.001	<0.001	<0.001		<0.001				
4/9/2019						<0.001	<0.001	<0.001	<0.001
9/30/2019	<0.001	<0.001	<0.001	<0.001	<0.001				
10/1/2019						<0.001	<0.001	<0.001	<0.001
3/26/2020	<0.001	<0.001	<0.001	<0.001	<0.001				
3/27/2020						<0.001			
3/30/2020							<0.001		
3/31/2020								<0.001	<0.001
9/21/2020			<0.001						
9/22/2020		<0.001							
9/23/2020	<0.001			<0.001	<0.001				<0.001
9/24/2020							<0.001		
9/25/2020						<0.001			
9/28/2020								<0.001	
3/8/2021	<0.001	<0.001		<0.001	<0.001				
3/9/2021			<0.001			<0.001	<0.001		
3/10/2021								<0.001	<0.001

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.001	<0.001	<0.001					
3/7/2007				<0.001	<0.001			<0.001
5/8/2007				<0.001				<0.001
5/9/2007	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	
7/6/2007				<0.001		<0.001	<0.001	<0.001
7/17/2007	<0.001	<0.001	<0.001		<0.001			
8/28/2007				<0.001	<0.001	<0.001	<0.001	<0.001
8/29/2007	<0.001	<0.001	<0.001					
11/6/2007				<0.001	<0.001	<0.001	<0.001	<0.001
11/7/2007	<0.001	<0.001	<0.001					
5/7/2008	<0.001	<0.001	<0.001					
5/8/2008				<0.001	<0.001	<0.001	<0.001	<0.001
12/2/2008						<0.001	<0.001	<0.001
12/3/2008				<0.001	<0.001			
12/5/2008	<0.001	<0.001	<0.001					
4/7/2009				<0.001	<0.001			
4/8/2009						<0.001	<0.001	<0.001
4/14/2009		<0.001	<0.001					
4/27/2009	<0.001							
9/30/2009	<0.001	<0.001					<0.001	<0.001
10/1/2009			<0.001	<0.001	<0.001	<0.001		
4/13/2010	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001
4/14/2010			<0.001	<0.001				
10/6/2010					<0.001			
10/7/2010						<0.001		
10/12/2010	<0.001	<0.001						
10/13/2010			<0.001				<0.001	<0.001
10/14/2010				<0.001				
4/5/2011				<0.001	<0.001	<0.001	<0.001	<0.001
4/6/2011		<0.001	<0.001					
10/4/2011					<0.001	<0.001	<0.001	<0.001
10/5/2011	<0.001	<0.001						
10/12/2011			<0.001	<0.001				
4/3/2012					<0.001	<0.001	<0.001	
4/4/2012				<0.001				<0.001
4/9/2012		<0.001	<0.001					
4/10/2012	<0.001							
9/18/2012					<0.001	<0.001		
9/19/2012			<0.001				<0.001	<0.001
9/24/2012				<0.001	<0.001		<0.001	
9/25/2012		<0.001						
9/26/2012	<0.001							
3/12/2013				<0.001	<0.001	<0.001	<0.001	<0.001
3/13/2013	<0.001	<0.001	<0.001					
3/5/2014				<0.001	<0.001	<0.001	<0.001	<0.001
3/11/2014	<0.001	<0.001	<0.001					
9/3/2014			<0.001					<0.001
9/8/2014					<0.001	<0.001		*****
9/9/2014	<0.001	<0.001		<0.001	9- - -	9- -	<0.001	
4/21/2015		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
9/29/2015				<0.001	<0.001	<0.001	<0.001	<0.001
9/30/2015	<0.001	<0.001	<0.001		9- - -	9- -		*****
· · · -								

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/24/2016	<0.001							
5/17/2016				<0.001	<0.001			
5/18/2016	<0.001	<0.001				<0.001	<0.001	<0.001
5/19/2016			<0.001					
7/6/2016				<0.001	<0.001	0.0001 (J)	<0.001	<0.001
7/7/2016	<0.001	<0.001	<0.001					
9/7/2016				<0.001	<0.001	<0.001		
9/8/2016	<0.001	<0.001	<0.001				<0.001	<0.001
10/18/2016				<0.001	<0.001	<0.001	<0.001	
10/19/2016	<0.001	<0.001	<0.001					<0.001
12/7/2016	<0.001	<0.001	<0.001					
12/8/2016				<0.001	<0.001	<0.001	<0.001	<0.001
2/1/2017				<0.001	<0.001			
2/2/2017	<0.001	<0.001				<0.001	<0.001	<0.001
2/3/2017			<0.001					
3/23/2017				<0.001	<0.001			
3/24/2017						<0.001	<0.001	
3/27/2017	<0.001	<0.001	<0.001					<0.001
10/4/2017				<0.001	<0.001	<0.001		
10/5/2017	<0.001	<0.001	<0.001				<0.001	<0.001
3/14/2018							<0.001	
3/15/2018	<0.001	<0.001	<0.001			<0.001		<0.001
3/16/2018				<0.001	<0.001			
10/4/2018	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	
10/5/2018			<0.001					<0.001
4/8/2019			<0.001		<0.001	<0.001	<0.001	<0.001
4/9/2019	<0.001	<0.001		<0.001				
10/1/2019	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/26/2020			<0.001					
3/27/2020							<0.001	<0.001
3/30/2020						<0.001		
3/31/2020	<0.001	<0.001		<0.001	<0.001			
9/23/2020		<0.001	<0.001					
9/24/2020	<0.001					<0.001	<0.001	<0.001
9/25/2020				<0.001	<0.001			
3/9/2021	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	78	112	233	451	686				
3/23/2016						182			208
3/24/2016							205	232	
5/17/2016	67	121	197	430	533	178			
5/18/2016								245	213
5/19/2016							204		
7/5/2016	87		218	418					
7/6/2016		98			646	135		231	
7/7/2016							181		212
9/7/2016	125	128	240	443	493	165			
9/8/2016							193	252	201
10/18/2016	133	115	221	415	455	113		288	
10/19/2016							231		276
12/6/2016	151	153		653	597	194			
12/7/2016			235					220	186
12/8/2016							166		
1/31/2017	135		253						
2/1/2017		183		615	638				
2/2/2017						160	191	220	
2/3/2017									219
3/23/2017	72		190	506					
3/24/2017		121			579				
3/27/2017						252	427	393	239
10/4/2017	91		192	492	440				
10/5/2017		113				177	207	242	216
3/14/2018	99		204						
3/15/2018		115		448	381	216		213	
3/16/2018							199		216
10/4/2018	112	135	233	472	490	222		231	
10/5/2018							235		256
4/5/2019				456					
4/8/2019	91	142	209		522				
4/9/2019						213	212	253	267
9/30/2019	126	134	242	475	455				
10/1/2019						186	196	229	271
3/26/2020	73	76	222	450	466				
3/27/2020						118			
3/30/2020							217		
3/31/2020								233	267
9/21/2020			204						
9/22/2020		107		.=-					
9/23/2020	117			473	421		404		277
9/24/2020							181		
9/25/2020						153		011	
9/28/2020	00	107		445	100			214	
3/8/2021	96	107	007 (50)	415	460	004	100		
3/9/2021			227 (D6)			201	192	222 (DC)	044
3/10/2021								223 (D6)	241

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		206	168	379	310	253	239	204
3/24/2016	110							
5/17/2016				349	280			
5/18/2016	153	212				276		
5/19/2016			173				236	215
7/6/2016				346	280	239	218	204
7/7/2016	151	206	144					
9/7/2016				382	324	247		
9/8/2016	285	214	179				225	201
10/18/2016				461	307	233	200	
10/19/2016	314	269	209					272
12/7/2016	252	199	156					
12/8/2016				379	281	373	196	227
2/1/2017				511	354			
2/2/2017	138	211				236	231	209
2/3/2017			276					
3/23/2017				443	302			
3/24/2017						291	250	
3/27/2017	88	324	295					305
10/4/2017				359	365	264		
10/5/2017	111	219	192				309	204
12/14/2017					406		322	
1/18/2018					404		322	
3/14/2018							263	
3/15/2018	219	190	169			254		280
3/16/2018				390	317			
10/4/2018	152	215		385	371	287	292	
10/5/2018			210					236
4/8/2019			191		353	295	438	264
4/9/2019	167	222		371				
10/1/2019	336	220	203	380	348	277	305	237
11/6/2019	336							
11/26/2019	236							
3/26/2020			193					
3/27/2020							329	192
3/30/2020						216		
3/31/2020	111	195		408	349			
9/23/2020		231	186					
9/24/2020	286					254	307	179
9/25/2020				367	345			
3/9/2021	243	178	216	364	298	299	308	209

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.01		<0.01	<0.01	<0.01			<0.01	
3/7/2007		<0.01				<0.01	<0.01		<0.01
5/8/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
5/9/2007							<0.01	<0.01	<0.01
7/7/2007	<0.01		<0.01						
7/17/2007		<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8/28/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
8/29/2007	-0.01	10.01	10.01	-0.01	-0.01	-0.01	-0.01	10.01	<0.01
11/6/2007	<0.01		<0.01	<0.01	<0.01				-0.01
11/7/2007	40.01	<0.01	40.01	40.01	40.01	<0.01	<0.01	<0.01	<0.01
5/7/2008		10.01				10.01	<0.01	<0.01	<0.01
5/8/2008				<0.01	<0.01		40.01	40.01	10.01
5/9/2008	<0.01	<0.01	<0.01	<0.01	~0.01	<0.01			
12/2/2008	~0.01		~0.01			<0.01			
	z0.01	<0.01	-0.01	z0.01	<0.01	<0.01	-0.01		
12/3/2008	<0.01		<0.01	<0.01	<0.01		<0.01	-0.01	
12/4/2008								<0.01	-0.04
12/5/2008									<0.01
4/7/2009	<0.01		<0.01	<0.01	<0.01				
4/8/2009		<0.01				<0.01			
4/14/2009							<0.01	<0.01	<0.01
9/30/2009									<0.01
10/1/2009	<0.01	<0.01	<0.01			<0.01	<0.01		
10/2/2009				<0.01	<0.01			<0.01	
4/13/2010			<0.01				<0.01	<0.01	<0.01
4/14/2010	<0.01	<0.01		<0.01	<0.01	<0.01			
10/7/2010			<0.01						
10/12/2010)						<0.01	<0.01	<0.01
10/13/2010	0 <0.01	<0.01				<0.01			
10/14/2010)			<0.01	<0.01				
4/5/2011				<0.01	<0.01				
4/6/2011	<0.01	<0.01	<0.01			<0.01	<0.01	<0.01	
10/4/2011		<0.01				<0.01			
10/6/2011			<0.01						
10/10/2011	1 <0.01								
10/12/2011	1			<0.01	<0.01		<0.01	<0.01	<0.01
4/3/2012	<0.01		<0.01						
4/4/2012				<0.01	<0.01				
4/5/2012							<0.01	<0.01	
4/9/2012									<0.01
4/10/2012		<0.01				<0.01			
9/19/2012			<0.01				<0.01		
9/24/2012	<0.01				<0.01				
9/25/2012								<0.01	<0.01
9/26/2012		<0.01		<0.01		<0.01			
3/12/2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
3/13/2013							<0.01	<0.01	<0.01
9/9/2013			<0.01						
9/10/2013		<0.01		<0.01	<0.01	<0.01	<0.01		
9/11/2013	<0.01							<0.01	<0.01
3/4/2014	<0.01	<0.01	<0.01			<0.01			
3/10/2014							<0.01	<0.01	<0.01
3/11/2014				<0.01	<0.01				:
2.1.12017									

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.01	<0.01	<0.01	0.04	0.04	<0.01	<0.01		
9/8/2014				<0.01	<0.01			0.04	.0.04
9/9/2014								<0.01	<0.01
4/21/2015	<0.01	<0.01		<0.01	<0.01	<0.01			
4/22/2015			<0.01				<0.01	<0.01	
4/23/2015									<0.01
9/29/2015		<0.01		<0.01	<0.01				
9/30/2015	<0.01		<0.01			<0.01	<0.01	<0.01	<0.01
3/22/2016	<0.01	<0.01	<0.01	<0.01	<0.01				
3/23/2016						<0.01			<0.01
3/24/2016							<0.01	<0.01	
9/7/2016	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
9/8/2016							<0.01	<0.01	<0.01
3/23/2017	<0.01		<0.01	<0.01					
3/24/2017		<0.01			<0.01				
3/27/2017						<0.01	<0.01	<0.01	<0.01
10/4/2017	<0.01		<0.01	<0.01	<0.01				
10/5/2017		<0.01				<0.01	<0.01	<0.01	<0.01
3/14/2018	<0.01		<0.01						
3/15/2018		<0.01		<0.01	<0.01	<0.01		<0.01	
3/16/2018							<0.01		<0.01
10/4/2018	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	
10/5/2018							<0.01		<0.01
4/5/2019				<0.01					
4/8/2019	<0.01	<0.01	<0.01		<0.01				
4/9/2019						<0.01	<0.01	<0.01	<0.01
9/30/2019	<0.01	<0.01	<0.01	<0.01	<0.01				
10/1/2019						<0.01	<0.01	<0.01	<0.01
3/26/2020	<0.01	<0.01	<0.01	<0.01	<0.01				
3/27/2020						<0.01			
3/30/2020							<0.01		
3/31/2020								<0.01	<0.01
9/21/2020			<0.01						
9/22/2020		<0.01							
9/23/2020	<0.01			<0.01	<0.01				<0.01
9/24/2020							<0.01		
9/25/2020						<0.01			
9/28/2020								<0.01	
3/8/2021	<0.01	<0.01		<0.01	<0.01				
3/9/2021			<0.01			<0.01	<0.01		
3/10/2021								<0.01	<0.01

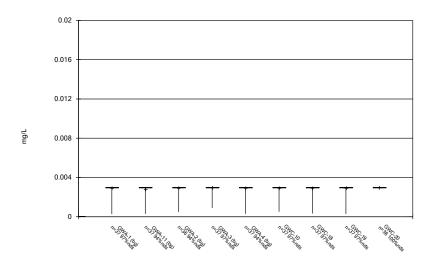
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.01	<0.01	<0.01					
3/7/2007				<0.01	<0.01			<0.01
5/8/2007				<0.01				<0.01
5/9/2007	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
7/6/2007				<0.01		<0.01	<0.01	<0.01
7/17/2007	<0.01	<0.01	<0.01		<0.01			
8/28/2007				<0.01	<0.01	<0.01	<0.01	<0.01
8/29/2007	<0.01	<0.01	<0.01					
11/6/2007				<0.01	<0.01	<0.01	<0.01	<0.01
11/7/2007	<0.01	<0.01	<0.01					
5/7/2008	<0.01	<0.01	<0.01					
5/8/2008				<0.01	<0.01	<0.01	<0.01	<0.01
12/2/2008						<0.01	<0.01	<0.01
12/3/2008				<0.01	<0.01			
12/5/2008	<0.01	<0.01	<0.01					
4/7/2009				<0.01	<0.01			
4/8/2009						<0.01	<0.01	0.0029
4/14/2009		<0.01	<0.01					
4/27/2009	<0.01							
9/30/2009	<0.01	<0.01					<0.01	<0.01
10/1/2009			<0.01	<0.01	<0.01	0.0039		
4/13/2010	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01
4/14/2010			<0.01	<0.01				
10/6/2010					<0.01			
10/7/2010						<0.01		
10/12/2010	<0.01	<0.01						
10/13/2010			<0.01				<0.01	<0.01
10/14/2010				<0.01				
4/5/2011				<0.01	<0.01	0.0025	<0.01	<0.01
4/6/2011		<0.01	<0.01					
10/4/2011					<0.01	0.0027	<0.01	<0.01
10/5/2011	<0.01	<0.01						
10/12/2011			<0.01	<0.01				
4/3/2012					<0.01	<0.01	<0.01	
4/4/2012				<0.01				<0.01
4/9/2012		<0.01	<0.01					
4/10/2012	<0.01							
9/18/2012					<0.01	<0.01		
9/19/2012			<0.01				<0.01	<0.01
9/24/2012				<0.01				
9/25/2012		<0.01						
9/26/2012	<0.01							
3/12/2013				<0.01	<0.01	<0.01	<0.01	<0.01
3/13/2013	<0.01	<0.01	<0.01					
9/9/2013					<0.01			
9/10/2013			<0.01	<0.01		<0.01	<0.01	<0.01
9/11/2013	<0.01	<0.01						
3/5/2014				<0.01	<0.01	<0.01	<0.01	<0.01
3/11/2014	<0.01	<0.01	<0.01					.0.04
9/3/2014			<0.01		-0.01	0.0040.72		<0.01
9/8/2014	0.0020 (!)	<0.01		0.00003 (1)	<0.01	0.0012 (J)	<0.01	
9/9/2014	0.0029 (J)	<0.01		0.00093 (J)			<0.01	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.01		0.0015 (J)		<0.01
4/22/2015					<0.01		<0.01	
4/23/2015		<0.01	<0.01					
9/29/2015				<0.01	<0.01	<0.01	<0.01	<0.01
9/30/2015	0.001 (J)	<0.01	<0.01					
3/23/2016		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/24/2016	<0.01							
9/7/2016				<0.01	<0.01	<0.01		
9/8/2016	<0.01	<0.01	<0.01				<0.01	<0.01
3/23/2017				<0.01	<0.01			
3/24/2017						<0.01	<0.01	
3/27/2017	<0.01	<0.01	<0.01					<0.01
10/4/2017				<0.01	<0.01	<0.01		
10/5/2017	<0.01	<0.01	<0.01				<0.01	<0.01
3/14/2018							<0.01	
3/15/2018	<0.01	<0.01	<0.01			<0.01		<0.01
3/16/2018				<0.01	<0.01			
10/4/2018	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	
10/5/2018			<0.01					<0.01
4/8/2019			0.00017 (J)		<0.01	<0.01	<0.01	<0.01
4/9/2019	<0.01	<0.01		<0.01				
10/1/2019	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/26/2020			<0.01					
3/27/2020							<0.01	<0.01
3/30/2020						<0.01		
3/31/2020	<0.01	<0.01		<0.01	<0.01			
9/23/2020		<0.01	<0.01					
9/24/2020	<0.01					<0.01	<0.01	<0.01
9/25/2020				<0.01	<0.01			
3/9/2021	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Constituent: Zinc (mg/L) Analysis Run 4/1/2021 1:42 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

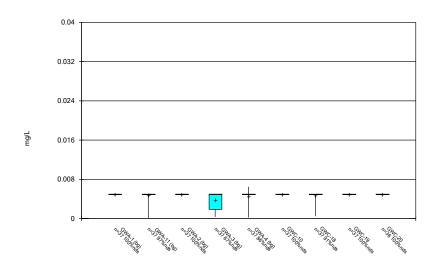
2/0/007	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/7/2007	<0.01	<0.01	-0.01	<0.01	-0.01	<0.01	<0.01		<0.01
5/8/2007	<0.01	0.0025	<0.01	<0.01	<0.01	<0.01	0.0026	0.0035	-0.01
5/9/2007	<0.01		-0.01				0.0026	0.0025	<0.01
7/7/2007	<0.01	0.0047	<0.01	0.0022	-0.01	0.0060	0.0042	0.0025	-0.01
7/17/2007	-0.01	0.0047	0.0000	0.0033	<0.01	0.0069	0.0043	0.0035	<0.01
8/28/2007	<0.01	0.0033	0.0026	<0.01	0.0026	<0.01	<0.01	<0.01	-0.01
8/29/2007	-0.01		-0.04	-0.01	-0.01				<0.01
11/6/2007	<0.01	<0.01	<0.01	<0.01	<0.01	-0.01	-0.01	-0.01	-0.01
11/7/2007		<0.01				<0.01	<0.01	<0.01	<0.01
5/7/2008				0.0022	0.0027		<0.01	<0.01	<0.01
5/8/2008	<0.01	<0.01	-0.01	0.0033	0.0037	-0.01			
5/9/2008	<0.01	<0.01	<0.01			<0.01			
12/2/2008	-0.01	<0.01	-0.01	0.0054	0.000	<0.01	-0.01		
12/3/2008	<0.01		<0.01	0.0054	0.003		<0.01	-0.01	
12/4/2008								<0.01	-0.01
12/5/2008	0.0020		-0.01	<0.01	0.0045				<0.01
4/7/2009	0.0028	<0.01	<0.01	<0.01	0.0045	-0.01			
4/8/2009 4/14/2009		<0.01				<0.01	<0.01	<0.01	<0.01
9/30/2009							<0.01	<0.01	<0.01
10/1/2009	<0.01	<0.01	<0.01			<0.01	<0.01		VO.01
10/1/2009	<0.01	<0.01	<0.01	<0.01	0.0027	<0.01	<0.01	<0.01	
4/13/2010			<0.01	<0.01	0.0027		<0.01	0.0043	<0.01
4/14/2010	<0.01	<0.01	<0.01	0.003	<0.01	<0.01	<0.01	0.0043	VO.01
10/7/2010	<0.01	<0.01	<0.01	0.003	\0.01	<0.01			
10/12/2010			~0.01				<0.01	<0.01	<0.01
10/13/2010	<0.01	<0.01				<0.01	40.01	10.01	40.01
10/14/2010	10.01	10.01		<0.01	0.0041	40.01			
4/5/2011				<0.01	<0.01				
4/6/2011	<0.01	<0.01	<0.01	-0.01	-0.01	<0.01	<0.01	<0.01	
10/4/2011	0.01	<0.01	0.01			<0.01	0.01	0.01	
10/6/2011		0.01	<0.01			0.01			
10/10/2011	<0.01		0.01						
10/12/2011	0.01			<0.01	0.0033		<0.01	<0.01	<0.01
4/3/2012	<0.01		<0.01	0.01	0.000		0.01	0.01	0.01
4/4/2012	0.01		0.01	<0.01	<0.01				
4/5/2012				0.01	0.01		<0.01	<0.01	
4/9/2012							0.01	0.01	<0.01
4/10/2012		<0.01				<0.01			
9/19/2012		0.01	<0.01			0.01	<0.01		
9/24/2012	<0.01		0.01		0.0039		0.01		
9/25/2012								<0.01	<0.01
9/26/2012		<0.01		<0.01		<0.01			
3/12/2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
3/13/2013	-	-	-	-			<0.01	<0.01	<0.01
9/9/2013			<0.01				-	-	•
9/10/2013		<0.01	-	<0.01	0.0035	<0.01	<0.01		
9/11/2013	<0.01							<0.01	<0.01
3/4/2014	0.0026	<0.01	0.0035			0.0026			
3/10/2014							0.0022 (J)	0.0031	0.0024 (J)
3/11/2014				0.0037	0.0045		•		


9/3/2014	GWA-1 (bg) 0.001 (J)	GWA-11 (bg) 0.00074 (J)	GWA-2 (bg) 0.0015 (J)	GWA-3 (bg)	GWA-4 (bg)	GWC-10 0.00079 (J)	GWC-18 0.0013 (J)	GWC-19	GWC-20
9/8/2014	()	. ,	.,	0.00087 (J)	0.0026	. ,	.,		
9/9/2014								0.00098 (J)	0.00078 (J)
4/21/2015	<0.01	<0.01		0.002 (J)	0.0028	<0.01		, ,	, ,
4/22/2015			<0.01	, ,			0.0019 (J)	0.0015 (J)	
4/23/2015							, ,	, ,	<0.01
9/29/2015		0.0024 (J)		0.0021 (J)	0.008 (J)				
9/30/2015	<0.01		0.0026 (J)			0.0018 (J)	0.0037 (J)	0.002 (J)	0.0016 (J)
3/22/2016	<0.01	<0.01	<0.01	<0.01	<0.01				
3/23/2016						<0.01			<0.01
3/24/2016							<0.01	<0.01	
9/7/2016	0.0047 (J)	0.0023 (J)	0.0024 (J)	0.0034 (J)	0.0035 (J)	<0.01			
9/8/2016							0.0024 (J)	0.0029 (J)	<0.01
3/23/2017	<0.01		<0.01	0.0031 (J)					
3/24/2017		0.0068 (J)			0.0095 (J)				
3/27/2017						0.0014 (J)	<0.01	0.0019 (J)	0.0017 (J)
10/4/2017	<0.01		0.0017 (J)	<0.01	0.0031 (J)				
10/5/2017		<0.01				<0.01	<0.01	0.0024 (J)	0.0016 (J)
3/14/2018	0.0032 (J)		0.0023 (J)						
3/15/2018		0.0042 (J)		0.0028 (J)	0.0041 (J)	<0.01		<0.01	
3/16/2018							<0.01		<0.01
10/4/2018	0.003 (J)	0.0046 (J)	0.0041 (J)	0.0043 (J)	0.0058 (J)	0.0033 (J)		0.013	
10/5/2018							0.0029 (J)		<0.01
4/5/2019				0.0013 (J)					
4/8/2019	<0.01	0.0024 (J)	0.0014 (J)		0.0023 (J)				
4/9/2019						<0.01	0.0037 (J)	<0.01	<0.01
9/30/2019	0.0032 (J)	0.004 (J)	0.0043 (J)	0.0045 (J)	0.0059 (J)				
10/1/2019						0.0049 (J)	0.006 (J)	0.0049 (J)	0.0063 (J)
3/26/2020	<0.01	<0.01	<0.01	<0.01	<0.01				
3/27/2020						<0.01			
3/30/2020							<0.01		
3/31/2020								<0.01	<0.01
9/21/2020			<0.01						
9/22/2020		<0.01							
9/23/2020	0.0025 (J)			<0.01	0.0025 (J)				<0.01
9/24/2020							<0.01		
9/25/2020						<0.01			
9/28/2020								0.0033 (J)	
3/8/2021	<0.01	<0.01		<0.01	0.0034 (J)				
3/9/2021			<0.01			<0.01	<0.01		
3/10/2021								<0.01	<0.01

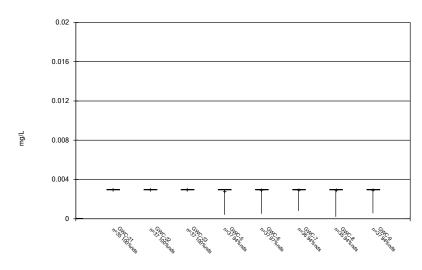
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.01	<0.01	0.0054					
3/7/2007				0.0064	<0.01			<0.01
5/8/2007				<0.01				0.0027
5/9/2007	<0.01	0.0035	0.0041		<0.01	45 (o)	0.0038	
7/6/2007				<0.01		16 (o)	<0.01	0.0032
7/17/2007	0.0031	<0.01	0.005		<0.01			
8/28/2007				0.0025	<0.01	11 (o)	<0.01	0.0026
8/29/2007	0.0056	<0.01	0.0044					
11/6/2007				<0.01	<0.01	8.3	<0.01	<0.01
11/7/2007	0.0059	<0.01	<0.01					
5/7/2008	0.0059	<0.01	<0.01					
5/8/2008				<0.01	<0.01	5	<0.01	<0.01
12/2/2008						3.2	<0.01	<0.01
12/3/2008				<0.01	<0.01			
12/5/2008	<0.01	<0.01	<0.01					
4/7/2009				0.0025	<0.01			
4/8/2009						2.4	<0.01	<0.01
4/14/2009		<0.01	<0.01					
4/27/2009	0.0051							
9/30/2009	0.0066	<0.01					<0.01	<0.01
10/1/2009			<0.01	<0.01	<0.01	1.9		
4/13/2010	0.0041	<0.01			<0.01	1.9	<0.01	<0.01
4/14/2010			<0.01	<0.01				
10/6/2010					<0.01			
10/7/2010						1.6		
10/12/2010	0.004	<0.01						
10/13/2010			<0.01				<0.01	<0.01
10/14/2010				<0.01				
4/5/2011				0.0025	<0.01	1.1	<0.01	<0.01
4/6/2011		<0.01	<0.01					
10/4/2011					<0.01	1.1	<0.01	<0.01
10/5/2011	0.0043	<0.01						
10/12/2011			<0.01	0.0037				
4/3/2012					<0.01	0.75	<0.01	
4/4/2012				<0.01				<0.01
4/9/2012		<0.01	<0.01					
4/10/2012	0.0108							
9/18/2012					<0.01	0.88		
9/19/2012			<0.01				<0.01	<0.01
9/24/2012				<0.01				
9/25/2012		<0.01						
9/26/2012	0.0066							
3/12/2013				<0.01	<0.01	0.23	<0.01	<0.01
3/13/2013	0.0035	<0.01	<0.01					
9/9/2013					<0.01			
9/10/2013			<0.01	<0.01		0.36	<0.01	<0.01
9/11/2013	0.005	<0.01						
3/5/2014				0.0028	0.0026	0.33	0.0028	0.0029
3/11/2014	0.005	0.0037	0.0033					
9/3/2014			0.0014 (J)					0.0011 (J)
9/8/2014					0.00055 (J)	0.47		
9/9/2014	0.0041	0.0006 (J)		0.00058 (J)			0.0014 (J)	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				0.0043		0.27		<0.01
4/22/2015					<0.01		<0.01	
4/23/2015		<0.01	0.0024 (J)					
9/29/2015				0.0031 (J)	0.0026 (J)	0.359	0.0016 (J)	0.0034 (J)
9/30/2015	0.0031 (J)	0.0021 (J)	0.0041 (J)					
3/23/2016		<0.01	<0.01	0.00272 (J)	<0.01	0.102	<0.01	<0.01
3/24/2016	0.00393 (J)							
9/7/2016				<0.01	0.0024 (J)	0.24		
9/8/2016	0.0047 (J)	<0.01	<0.01				<0.01	<0.01
3/23/2017				0.0026 (J)	0.0035 (J)			
3/24/2017						0.0512	0.0031 (J)	
3/27/2017	0.0036 (J)	<0.01	0.0014 (J)					0.0014 (J)
10/4/2017				<0.01	<0.01	0.159		
10/5/2017	0.0065 (J)	<0.01	0.0014 (J)				<0.01	0.0013 (J)
3/14/2018							0.0053 (J)	
3/15/2018	0.0053 (J)	<0.01	0.0039 (J)			0.12		<0.01
3/16/2018				<0.01	0.0029 (J)			
10/4/2018	0.0077 (J)	0.003 (J)		0.0028 (J)	0.0039 (J)	0.22	0.0031 (J)	
10/5/2018			0.0048 (J)					0.0044 (J)
4/8/2019			0.0016 (J)		0.0013 (J)	0.051	0.0012 (J)	0.0016 (J)
4/9/2019	0.0041 (J)	<0.01		<0.01				
10/1/2019	0.0078 (J)	0.0054 (J)	0.0057 (J)	0.0053 (J)	0.0056 (J)	0.12	0.0055 (J)	0.0052 (J)
3/26/2020			<0.01					
3/27/2020							<0.01	<0.01
3/30/2020						0.051		
3/31/2020	<0.01	<0.01		<0.01	<0.01			
9/23/2020		<0.01	0.0022 (J)					
9/24/2020	0.0046 (J)					0.07	<0.01	<0.01
9/25/2020				<0.01	<0.01			
3/9/2021	0.0033 (J)	<0.01	<0.01	<0.01	<0.01	0.057	<0.01	<0.01

FIGURE B.

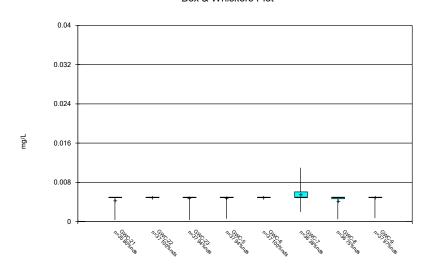

Box & Whiskers Plot

Constituent: Antimony Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

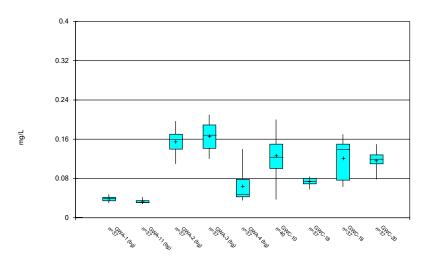
Box & Whiskers Plot

Constituent: Arsenic Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

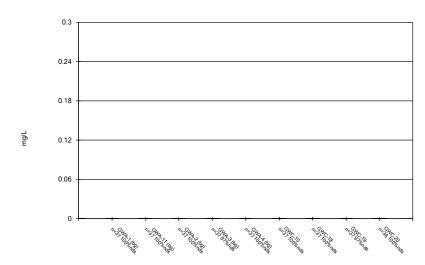
Constituent: Antimony Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

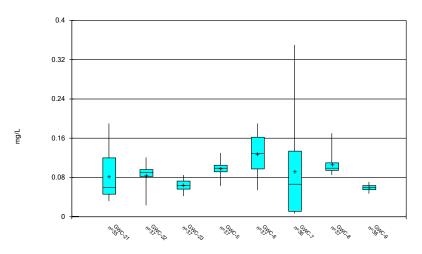

Box & Whiskers Plot

Constituent: Arsenic Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

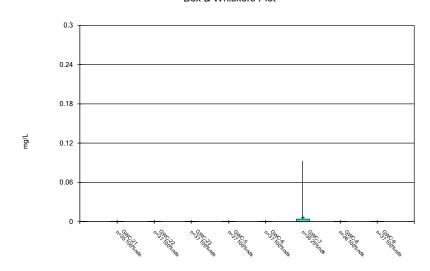

Box & Whiskers Plot

Constituent: Barium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

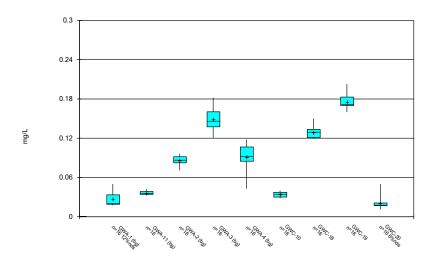

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Beryllium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

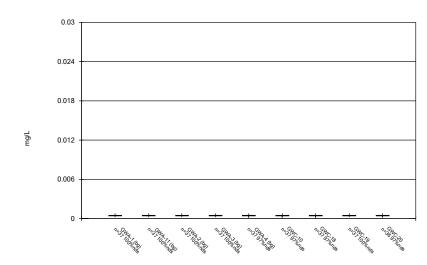
Constituent: Barium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot

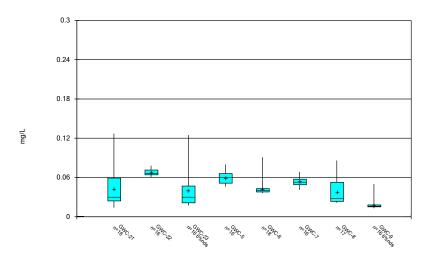
Constituent: Beryllium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot



Constituent: Boron Analysis Run 4/1/2021 1:43 PM

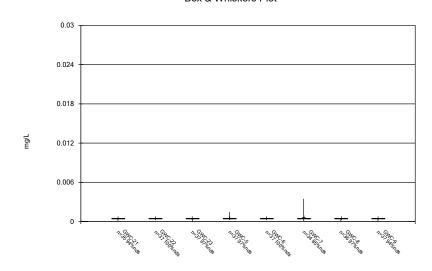
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot

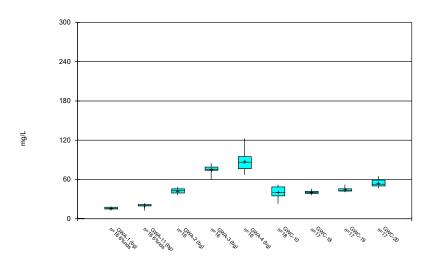
Constituent: Cadmium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot



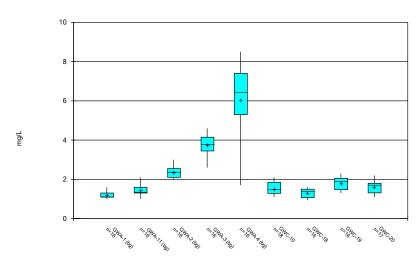
Constituent: Boron Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

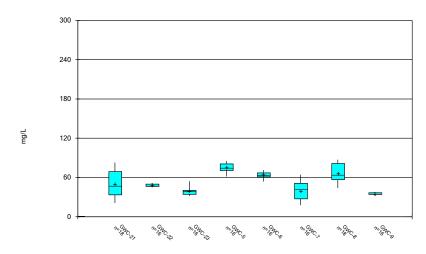

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Cadmium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

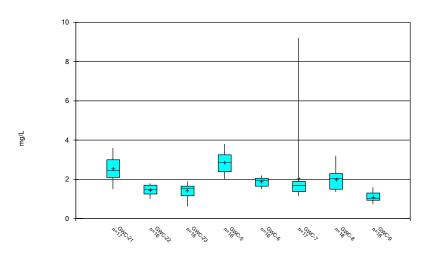

Box & Whiskers Plot

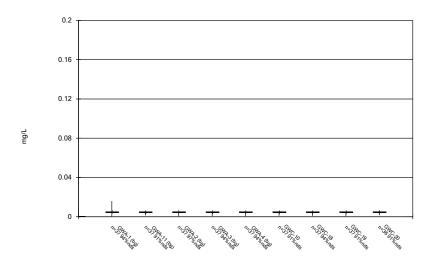
Constituent: Calcium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot

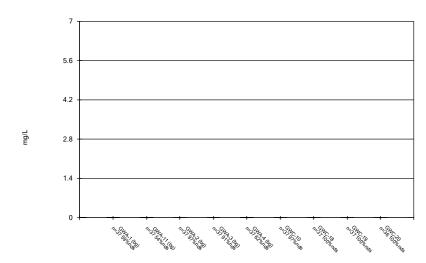
Constituent: Chloride Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot


Constituent: Calcium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

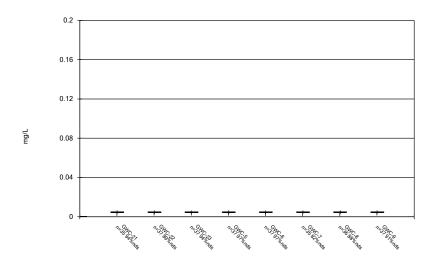
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot


Box & Whiskers Plot

Constituent: Chromium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

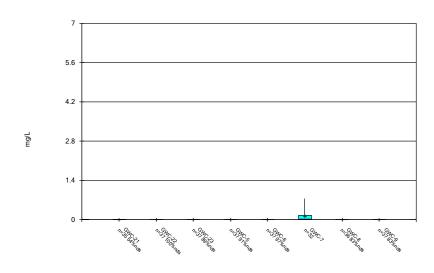
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Cobalt Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

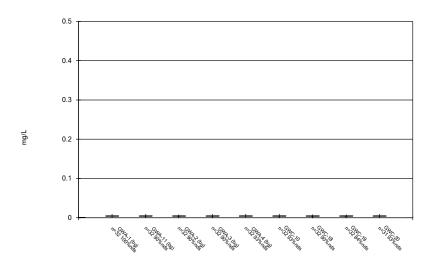
Box & Whiskers Plot



Constituent: Chromium Analysis Run 4/1/2021 1:43 PM

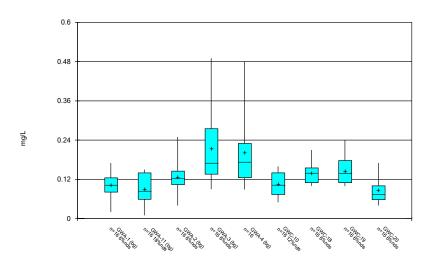
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

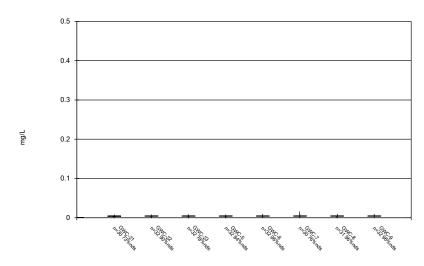

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

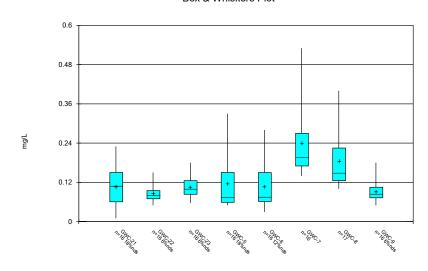
Constituent: Copper Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas[™] v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

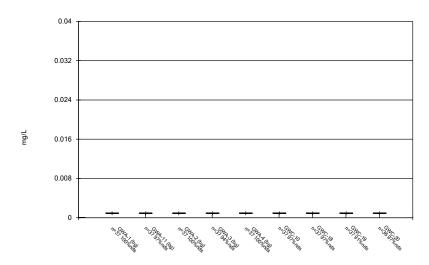
Box & Whiskers Plot



Constituent: Copper Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

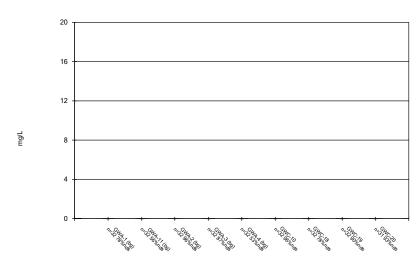
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Fluoride Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

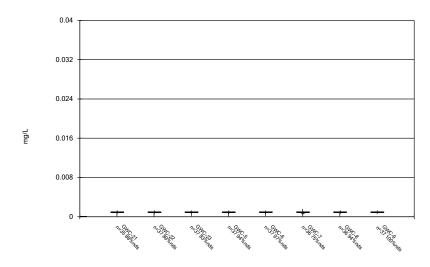
Box & Whiskers Plot



Constituent: Lead Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

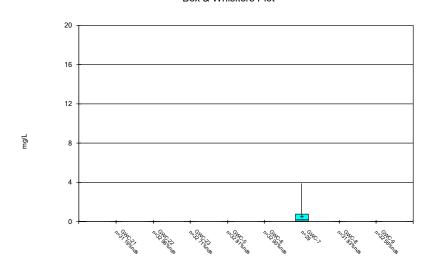
Sanitas[™] v.9.6.28 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Nickel Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

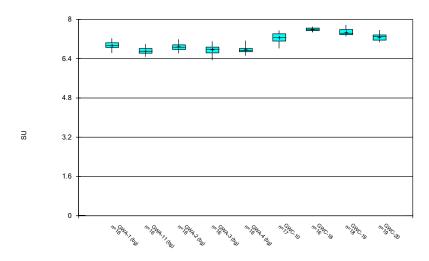
Box & Whiskers Plot



Constituent: Lead Analysis Run 4/1/2021 1:43 PM

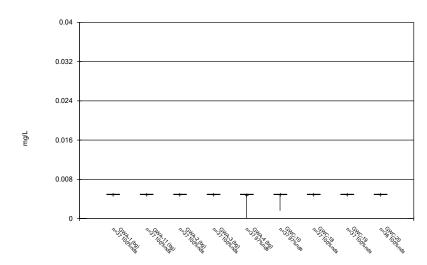
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

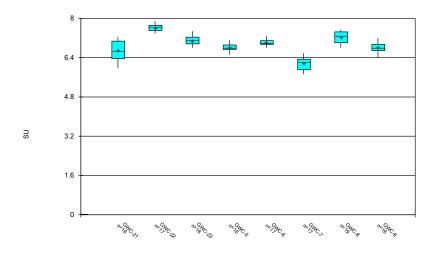

Box & Whiskers Plot

Constituent: Nickel Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

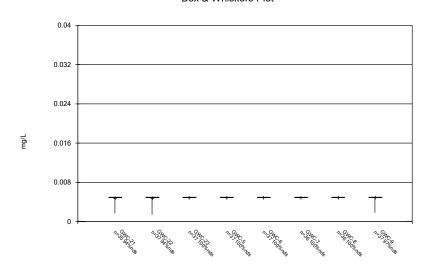

Box & Whiskers Plot

Constituent: pH Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Selenium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

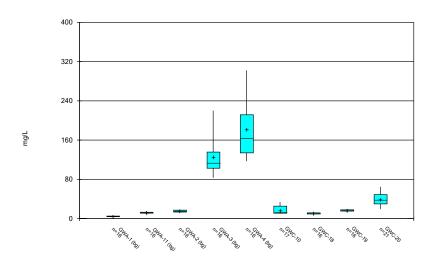

Box & Whiskers Plot

Constituent: pH Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot

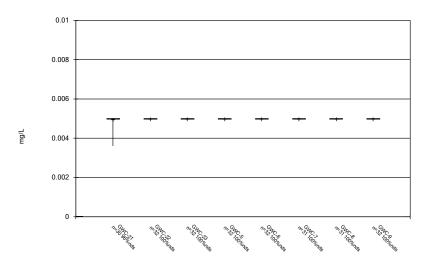
Constituent: Selenium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



Constituent: Silver Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

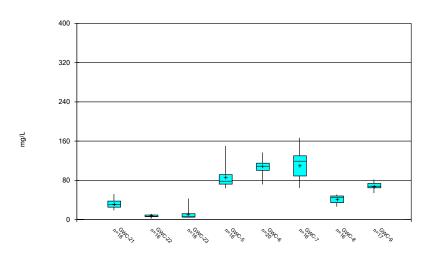
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Sulfate Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

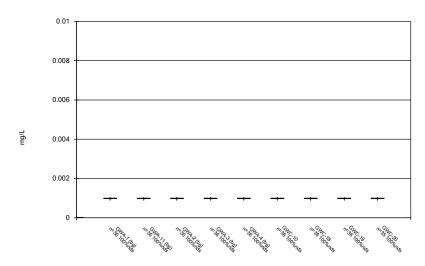
Box & Whiskers Plot



Constituent: Silver Analysis Run 4/1/2021 1:43 PM

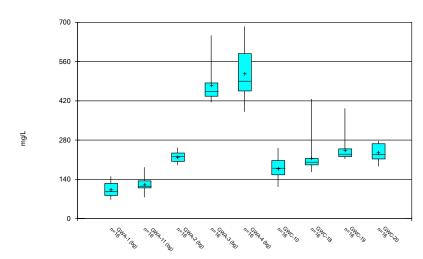
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

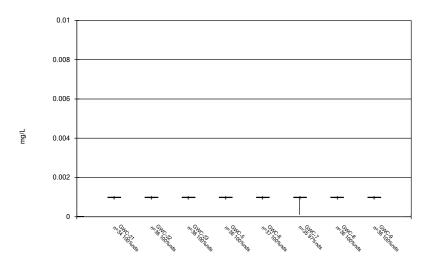

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 4/1/2021 1:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

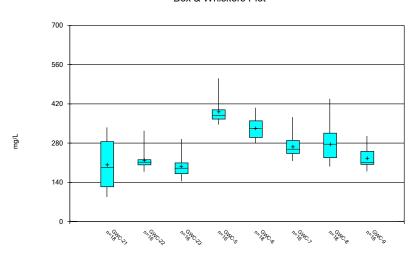

Box & Whiskers Plot

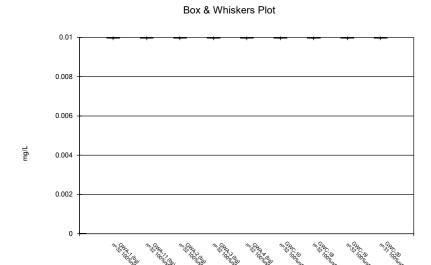
Constituent: Thallium Analysis Run 4/1/2021 1:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

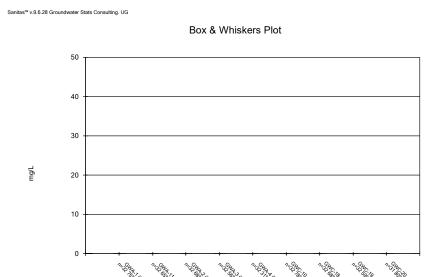
Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:44 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

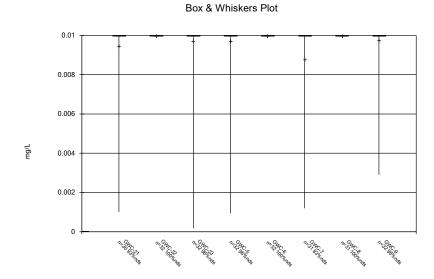

Box & Whiskers Plot


Constituent: Thallium Analysis Run 4/1/2021 1:44 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

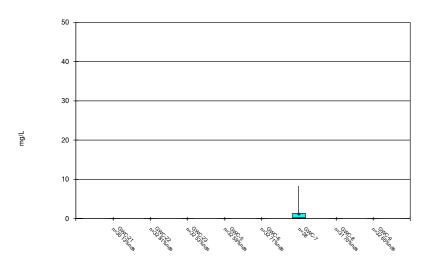

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:44 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



Constituent: Vanadium Analysis Run 4/1/2021 1:44 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Zinc Analysis Run 4/1/2021 1:44 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Vanadium Analysis Run 4/1/2021 1:44 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot

Constituent: Zinc Analysis Run 4/1/2021 1:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

FIGURE C.

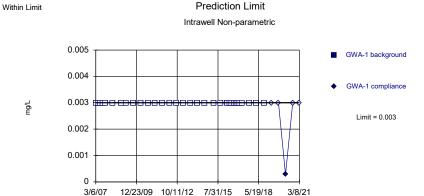
Outlier Summary Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/1/2021, 1:45 PM CWC-8 Antimony (mg/L) GWC-7 Arsenic (mg/L) GWC-9 Barium (mg/L) GWC-7 Beryllium (mg/L) GWC-7 Cadmium (mg/L) GWC-7 Copper (mg/L) GWC-7 Copper (mg/L) GWC-7 Copper (mg/L) 0.023 (o) 0.28 (o) 0.11 (o) 5/9/2007 6.5 (o) 0.44 (o) 7/6/2007 0.0081 (o) 2.1 (o) 8/28/2007 1.4 (o) 11/6/2007 0.0064 (o) 1.1 (o) 4/5/2011 0.035 (o) 10/5/2017 5.5 (o) 10/4/2018 264 (o) GWC-7 Nickel (mg/L) GWC-7 Zinc (mg/L) 5/9/2007 18 (o) 45 (o) 7/6/2007 5.9 (o) 16 (o) 11 (o) 8/28/2007 11/6/2007 4/5/2011 10/5/2017 10/4/2018

FIGURE D.

State Intrawell Prediction Limits - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/1/2021, 1:24 PM

	Fiant	Hammond	Ciletti. South	erri Compani	y Data. I	iuliakei ivo	au Lanuilli	Fillited 4/1	2021, 1	.24 F IVI			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Barium (mg/L)	GWC-23	0.08464	n/a	3/9/2021	0.085	Yes 32	0.06272	0.009212	0	None	No	0.0002926	Param Intra 1 of 2
Davisson (mag/L)	OWO 0	0.4007	-1-	2/0/2024	0.44	V 24	0.040	0.04400	•	Mana		0 0000000	Danson Inter 4 of 0

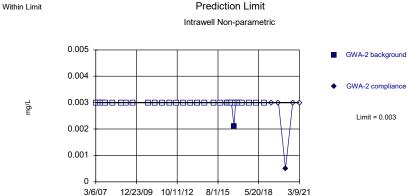
State Intrawell Prediction Limits - All Results


	Ote		avvc			/1 1		11110			uito			
	Plant	Hammond	Client: South	nern Compan	ny Data: H	luffake	er Ro	ad Landfill	Printed 4/1	/2021, 1	:24 PM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n <u>Alpha</u>	Method
Antimony (mg/L)	GWA-1	0.003	n/a	3/8/2021	0.003ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-11	0.003	n/a	3/8/2021	0.0005J	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-2	0.003	n/a	3/9/2021	0.003ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-3	0.003	n/a	3/8/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-4	0.003	n/a	3/8/2021	0.0016J	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-10	0.003	n/a	3/9/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-18	0.003	n/a	3/9/2021	0.003ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-19	0.003	n/a	3/10/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-5	0.003	n/a	3/9/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-6	0.003	n/a	3/9/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-7	0.003	n/a	3/9/2021	0.003ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-8	0.003	n/a	3/9/2021	0.003ND	No	30	n/a	n/a	96.67	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-9	0.003	n/a	3/9/2021	0.003ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-11	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	71.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-4	0.0065	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	90.63	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-18	0.005	n/a	3/9/2021	0.005ND		32	n/a	n/a	96.88		n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.005ND		30	n/a	n/a	86.67		n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-23	0.005	n/a	3/9/2021	0.005ND		32	n/a	n/a	100	n/a	n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-5	0.005	n/a	3/9/2021	0.005ND		32	n/a	n/a	93.75	n/a	n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-7	0.0088	n/a	3/9/2021	0.0052		30	n/a	n/a	46.67	n/a	n/a		NP Intra (normality) 1 of 2
Arsenic (mg/L)	GWC-8	0.005	n/a	3/9/2021	0.0002 0.0018J		31	n/a	n/a	87.1	n/a	n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-9	0.005	n/a	3/9/2021	0.005ND		32	n/a	n/a	100	n/a	n/a		NP Intra (NDs) 1 of 2
Barium (mg/L)	GWA-1	0.05021	n/a	3/8/2021	0.035	No		0.03919	0.00463	0	None	No		Param Intra 1 of 2
	GWA-11	0.04217		3/8/2021	0.033			-3.4	0.09826	0	None			Param Intra 1 of 2
Barium (mg/L)	GWA-11		n/a	3/9/2021	0.031		32		0.09626			ln(x)		
Barium (mg/L)		0.1987	n/a			No		0.1657		0	None	No		Param Intra 1 of 2
Barium (mg/L)	GWA-3	0.2268	n/a	3/8/2021	0.12		32	0.1719	0.02304	0	None ,	No		Param Intra 1 of 2
Barium (mg/L)	GWA-4	0.14	n/a	3/8/2021	0.052	No		n/a	n/a	0	n/a	n/a		NP Intra (normality) 1 of 2
Barium (mg/L)	GWC-10	0.1952	n/a	3/9/2021	0.15	No		0.1271	0.02885	0	None	No 		Param Intra 1 of 2
Barium (mg/L)	GWC-18	0.08974	n/a	3/9/2021	0.077	No		0.07311	0.006987		None	No		Param Intra 1 of 2
Barium (mg/L)	GWC-19	0.1697	n/a	3/10/2021	0.15	No		0.0003879	0.000176		None	x^4		Param Intra 1 of 2
Barium (mg/L)	GWC-20	0.1358	n/a	3/10/2021	0.13	No		0.001502	0.0004195		None	x^3		Param Intra 1 of 2
Barium (mg/L)	GWC-21	0.2404	n/a	3/9/2021	0.12	No		-2.722	0.5402	0	None	ln(x)		Param Intra 1 of 2
Barium (mg/L)	GWC-22	0.121	n/a	3/9/2021	0.089	No		n/a	n/a	0	n/a	n/a		NP Intra (normality) 1 of 2
Barium (mg/L)	GWC-23	0.08464	n/a	3/9/2021	0.085	Yes		0.06272	0.009212		None	No		Param Intra 1 of 2
Barium (mg/L)	GWC-5	0.1274	n/a	3/9/2021	0.063		32	0.1019	0.01074	0	None	No		Param Intra 1 of 2
Barium (mg/L)	GWC-6	0.1978	n/a	3/9/2021	0.17	No		0.1654	0.01034	0	None	No		Param Intra 1 of 2
Barium (mg/L)	GWC-7	0.4063	n/a	3/9/2021	0.31	No	19	0.3226	0.1206	0	None	sqrt(x)	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-8	0.1227	n/a	3/9/2021	0.14	Yes		0.316	0.01439	0	None	sqrt(x)		Param Intra 1 of 2
Barium (mg/L)	GWC-9	0.07338	n/a	3/9/2021	0.059	No		0.06193	0.00445	0	None	No	0.0002926	Param Intra 1 of 2
Beryllium (mg/L)	GWA-3	0.0005	n/a	3/8/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Beryllium (mg/L)	GWC-19	0.0005	n/a	3/10/2021	0.0005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Beryllium (mg/L)	GWC-7	0.093	n/a	3/9/2021	0.0005ND	No	30	n/a	n/a	23.33	n/a	n/a	0.002008	NP Intra (normality) 1 of 2
Cadmium (mg/L)	GWA-4	0.0005	n/a	3/8/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-10	0.0005	n/a	3/9/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-18	0.0005	n/a	3/9/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-20	0.0005	n/a	3/10/2021	0.0005ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-21	0.0005	n/a	3/9/2021	0.0005ND	No	30	n/a	n/a	93.33	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-23	0.0005	n/a	3/9/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-5	0.0015	n/a	3/9/2021	0.0005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-7	0.0035	n/a	3/9/2021	0.0005ND	No	29	n/a	n/a	82.76	n/a	n/a	0.002172	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-8	0.0005	n/a	3/9/2021	0.0005ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-9	0.0005	n/a	3/9/2021	0.0005ND	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-1	0.016	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-11	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	90.63	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-2	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2

State Intrawell Prediction Limits - All Results

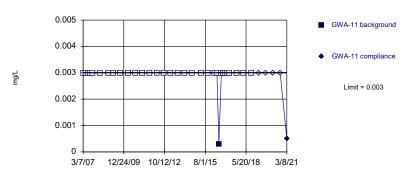
	Otate intrawent rediction Limits					111113	- / \li \C3\dit3							
	Plant Hammond Client: Southern Company Data: Huffaker Road Landfi				ad Landfill	Printed 4/1/2021, 1:24 PM								
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transforn	n Alpha	Method
Chromium (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-4	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-10	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	90.63	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-18	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-19	0.005	n/a	3/10/2021	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
, - ,													0.001803	,
Chromium (mg/L)	GWC-20	0.0064	n/a	3/10/2021	0.005ND	No	31	n/a	n/a	90.32	n/a	n/a		NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.005ND	No	30	n/a	n/a	96.67	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-22	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-23	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-5	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-6	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-7	0.005	n/a	3/9/2021	0.005ND	No	30	n/a	n/a	83.33	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-8	0.005	n/a	3/9/2021	0.005ND	No	31	n/a	n/a	90.32	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-9	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	90.63	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-1	0.01	n/a	3/8/2021	0.0005J	No	32	n/a	n/a	68.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-11	0.01	n/a	3/8/2021	0.00049J	No	32	n/a	n/a	62.5	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-2	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.005ND	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-4	0.005	n/a	3/8/2021	0.00061J	No	32	n/a	n/a	68.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-10	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-21	0.01	n/a	3/9/2021	0.00049J	No	30	n/a	n/a	63.33	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-23	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-5	0.005	n/a	3/9/2021	0.00043J		32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-6	0.005	n/a	3/9/2021	0.005ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-7	0.08032		3/9/2021	0.003112			0.03376	0.01735	0	None	No		Param Intra 1 of 2
			n/a			No	17							
Cobalt (mg/L)	GWC-8	0.01	n/a	3/9/2021	0.0013J	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-9	0.005	n/a	3/9/2021	0.00042J	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-11	0.005	n/a	3/8/2021	0.005ND		27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-2	0.005	n/a	3/9/2021	0.005ND	No		n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.005ND	No	27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-4	0.0066	n/a	3/8/2021	0.005ND	No	27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-10	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-18	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-19	0.005	n/a	3/10/2021	0.005ND	No	27	n/a	n/a	88.89	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-20	0.005	n/a	3/10/2021	0.005ND	No	26	n/a	n/a	96.15	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.005ND	No	25	n/a	n/a	76	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-22	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-23	0.0084	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	85.19	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-5	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	88.89	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-6	0.005	n/a	3/9/2021	0.005ND	No	27	n/a	n/a	100	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-7	0.016	n/a	3/9/2021	0.005ND	No	25	n/a	n/a	80	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-8	0.005	n/a	3/9/2021	0.005ND	No	26	n/a	n/a	100	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-9	0.005	n/a	3/9/2021	0.005ND			n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWA-11	0.001	n/a	3/8/2021	0.001ND		32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.00004J		32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-10	0.001	n/a	3/9/2021	0.001ND	No	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-18	0.001		3/9/2021	0.001ND			n/a	n/a	100	n/a	n/a	0.001803	,
Lead (mg/L)	GWC-18 GWC-19	0.001	n/a n/a	3/10/2021	0.001ND			n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-20	0.001	n/a	3/10/2021	0.001ND			n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.00013J			n/a	n/a	96.67	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-22	0.005	n/a	3/9/2021	0.000038			n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-23	0.005	n/a	3/9/2021	0.00011J			n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-5	0.001	n/a	3/9/2021	0.001ND			n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-6	0.001	n/a	3/9/2021	0.001ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-7	0.005	n/a	3/9/2021	0.000085	J No	31	n/a	n/a	83.87	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-8	0.001	n/a	3/9/2021	0.001ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2

State Intrawell Prediction Limits - All Results


	Ott	Otate intrawent regioner Limits					iiito	7 (ii i toodito						
	Plant	Plant Hammond Client: Southern Company Data: Huffaker Roa					ad Landfill Printed 4/1/2021, 1:24 PM							
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. E	3g N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transforr	n <u>Alpha</u>	Method
Nickel (mg/L)	GWA-1	0.005	n/a	3/8/2021	0.005ND	No 2	27	n/a	n/a	85.19	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-11	0.01	n/a	3/8/2021	0.001J	No 2	27	n/a	n/a	66.67	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-2	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-3	0.005	n/a	3/8/2021	0.005ND	No 2	27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-4	0.0055	n/a	3/8/2021	0.005ND	No 2	27	n/a	n/a	59.26	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-10	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	100	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-18	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	85.19	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-19	0.0062	n/a	3/10/2021	0.005ND	No 2	27	n/a	n/a	88.89	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-20	0.005	n/a	3/10/2021	0.005ND	No 2	26	n/a	n/a	92.31	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-21	0.01035	n/a	3/9/2021	0.0013J	No 2	26	0.1566	0.02496	23.08	Kaplan-Meier	x^(1/3)	0.0002926	Param Intra 1 of 2
Nickel (mg/L)	GWC-22	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-23	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	81.48	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-5	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	92.59	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-6	0.005	n/a	3/9/2021	0.005ND	No 2	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-7	0.3321	n/a	3/9/2021	0.035	No 1	12	0.133	0.06625	0	None	No	0.0002926	Param Intra 1 of 2
Nickel (mg/L)	GWC-8	0.005	n/a	3/9/2021	0.005ND	No 2	26	n/a	n/a	96.15	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-9	0.01	n/a	3/9/2021	0.0014J	No 2	27	n/a	n/a	66.67	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-4	0.005	n/a	3/8/2021	0.005ND	No 3	32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-10	0.005	n/a	3/9/2021	0.005ND	No 3	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.005ND	No 3	30	n/a	n/a	93.33	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-22	0.005	n/a	3/9/2021	0.005ND	No 3	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-9	0.005	n/a	3/9/2021	0.005ND	No 3	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWC-21	0.005	n/a	3/9/2021	0.005ND	No 2	25	n/a	n/a	96	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWC-7	0.001	n/a	3/9/2021	0.001ND	No 3	30	n/a	n/a	96.67	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-21	0.01	n/a	3/9/2021	0.01ND	No 2	25	n/a	n/a	92	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-23	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	100	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-5	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-7	0.01	n/a	3/9/2021	0.01ND	No 2	26	n/a	n/a	80.77	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-9	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-1	0.01	n/a	3/8/2021	0.01ND	No 2	27	n/a	n/a	77.78	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-11	0.01	n/a	3/8/2021	0.01ND	No 2	27	n/a	n/a	66.67	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-2	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	70.37	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-3	0.01	n/a	3/8/2021	0.01ND	No 2	27	n/a	n/a	55.56	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-4	0.02	n/a	3/8/2021	0.0034J	No 2	27	n/a	n/a	33.33	n/a	n/a	0.002502	NP Intra (normality) 1 of 2
Zinc (mg/L)	GWC-10	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	77.78	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-18	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	70.37	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-19	0.013	n/a	3/10/2021	0.01ND	No 2	27	n/a	n/a	59.26	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-20	0.01	n/a	3/10/2021	0.01ND	No 2	26	n/a	n/a	80.77	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-21	0.02	n/a	3/9/2021	0.0033J	No 2	25	n/a	n/a	12	n/a	n/a	0.002832	NP Intra (normality) 1 of 2
Zinc (mg/L)	GWC-22	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	81.48	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-23	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	55.56	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-5	0.01	n/a	3/9/2021	0.01ND	No 2		n/a	n/a	55.56		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-6	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	74.07	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-7	0.6123	n/a	3/9/2021	0.057	No 1	12	0.2426	0.123	0	None	No	0.0002926	Param Intra 1 of 2
Zinc (mg/L)	GWC-8	0.01	n/a	3/9/2021	0.01ND	No 2	26	n/a	n/a	73.08	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-9	0.01	n/a	3/9/2021	0.01ND	No 2	27	n/a	n/a	66.67	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
														•

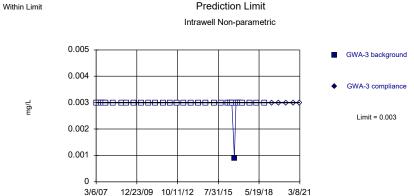
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

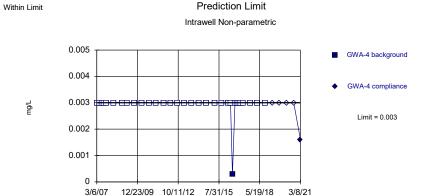
Constituent: Antimony Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

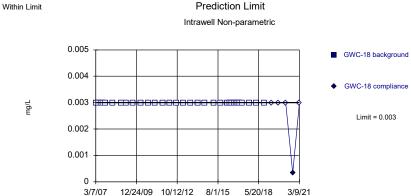
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

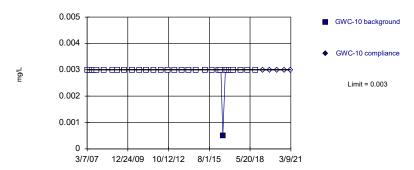
Constituent: Antimony Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

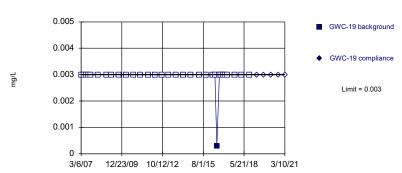
Constituent: Antimony Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

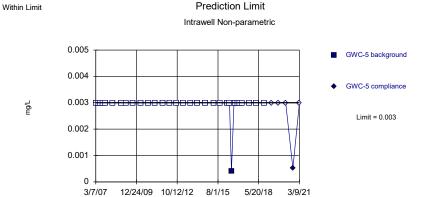
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric

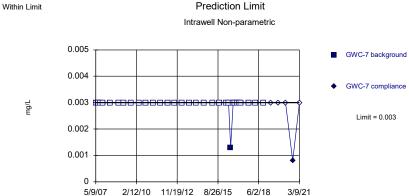


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).


Constituent: Antimony Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

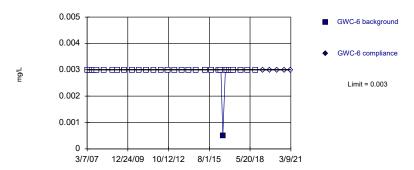
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Antimony Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \mbox{ v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Antimony Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 96.67% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

3/7/07

Within Limit

Intrawell Non-parametric 0.005 GWC-9 background 0.004 GWC-9 compliance 0.003 Limit = 0.003 0.002 0.001

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha

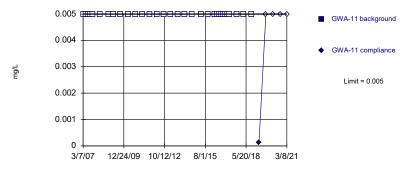
5/20/18

3/9/21

12/24/09 10/12/12 8/1/15

Constituent: Antimony Analysis Run 4/1/2021 1:18 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

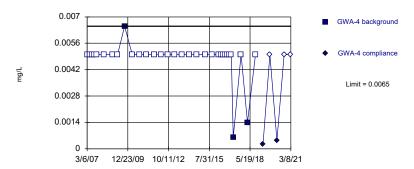
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit Intrawell Non-parametric 0.005 GWA-3 background 0.004 GWA-3 compliance 0.003 Limit = 0.005 0.002 0.001 3/6/07 12/23/09 10/11/12 7/31/15 5/19/18 3/8/21

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 71.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

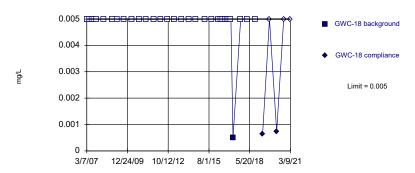
> Constituent: Arsenic Analysis Run 4/1/2021 1:18 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

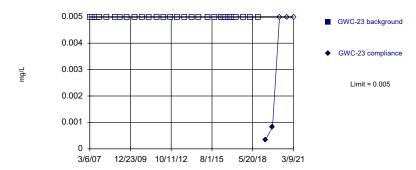
> Constituent: Arsenic Analysis Run 4/1/2021 1:18 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 90.63% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric



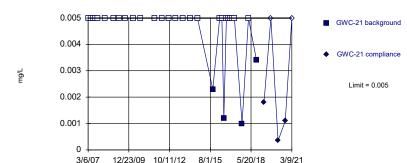
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Arsenic Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny TN}} \mbox{ v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

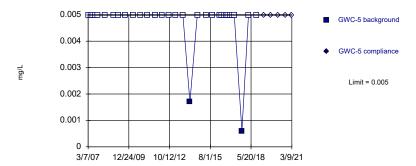

Constituent: Arsenic Analysis Run 4/1/2021 1:18 PM View: State Parameters

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 86.67% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Constituent: Arsenic Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit

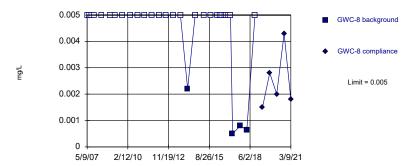
0.02
0.016
0.012
0.008
0.004
0.004
0.004
0.004
0.008
0.004
0.007
0.007
0.007
0.007
0.008
0.008
0.008
0.008
0.008
0.008

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 30 background values. 46.67% NDs. Well-constituent pair annual alpha = 0.0040011. Individual comparison alpha = 0.002008 (1 of 2).

Constituent: Arsenic Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

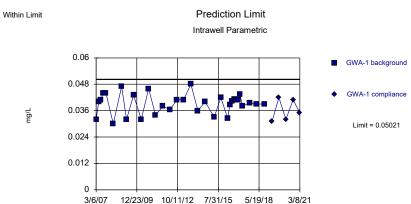
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Arsenic Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

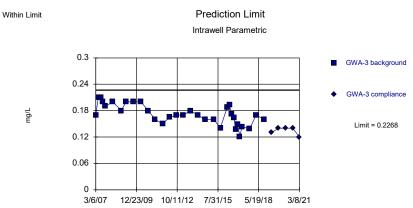

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 87.1% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

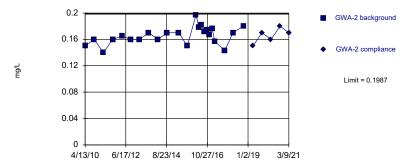
Constituent: Arsenic Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.03919, Std. Dev.=0.00463, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9563, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

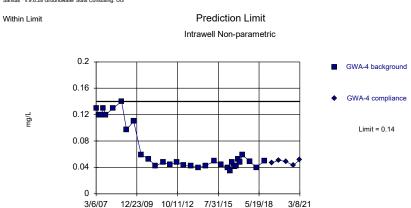

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary (based on natural log transformation): Mean=-3.4, Std. Dev=0.09826, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9108, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

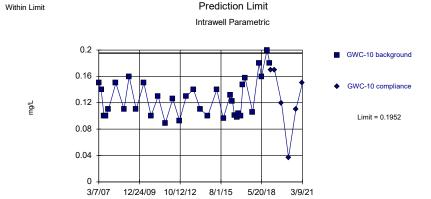

Constituent: Barium Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.1719, Std. Dev.=0.02304, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9617, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

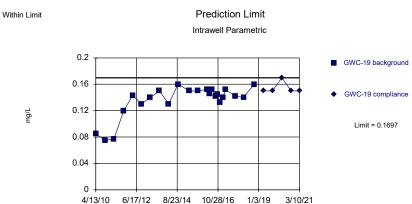

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.1657, Std. Dev.=0.01314, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9756, critical = 0.881. Kappa = 2.512 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

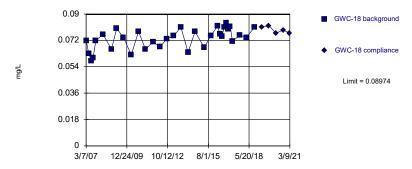

Constituent: Barium Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 32 background values. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

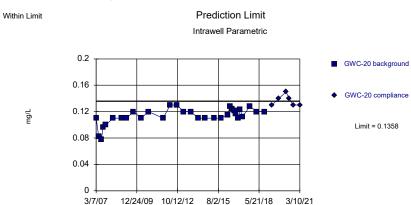

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.1271, Std. Dev.=0.02885, n=34. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9143, critical = 0.908. Kappa = 2.36 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.002026

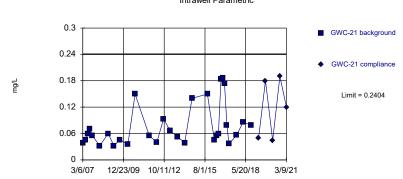

Constituent: Barium Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary (based on x^4 transformation): Mean=0.0003879, Std. Dev.=0.000176, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9161, critical = 0.881. Kappa = 2.512 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.


Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.07311, Std. Dev.=0.006987, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.946, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.


Constituent: Barium Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

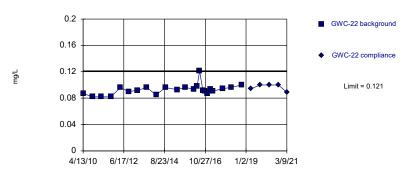
Background Data Summary (based on cube transformation): Mean=0.001502, Std. Dev.=0.0004195, n=31. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9239, critical = 0.902. Kappa = 2.39 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary (based on natural log transformation): Mean=-2.722, Std. Dev.=0.5402, n=30. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9034, critical = 0.9. Kappa = 0.9034, critical =

Constituent: Barium Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

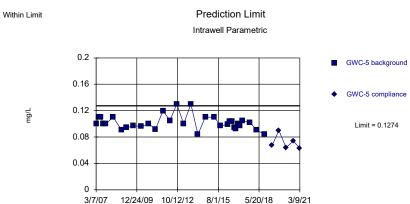
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Exceeds Limit Intrawell Parametric

0.09
0.072
0.054
0.054
0.036
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0

Background Data Summary: Mean=0.06272, Std. Dev.=0.009212, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9573, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 23 background values. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).

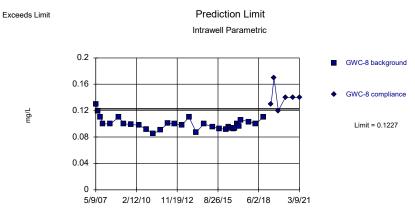
Constituent: Barium Analysis Run 4/1/2021 1:18 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.1019, Std. Dev.=0.01074, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9137, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

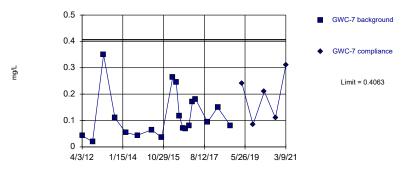
Within Limit

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


0.2
0.16
0.10
GWC-6 background
GWC-6 compliance
Limit = 0.1978

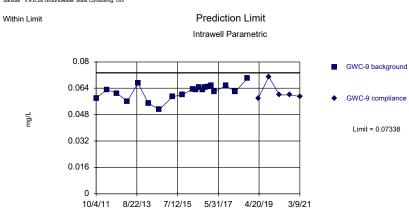
Prediction Limit

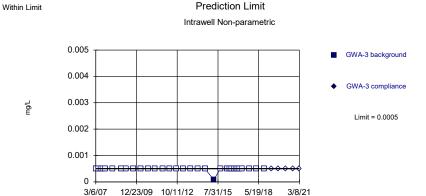
Background Data Summary: Mean=0.1654, Std. Dev.=0.01034, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8754, critical = 0.792. Kappa = 3.135 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.002026


Constituent: Barium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

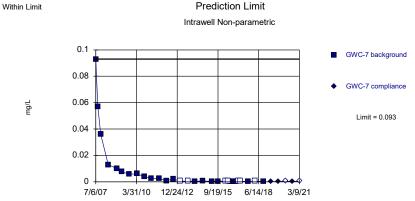
Background Data Summary (based on square root transformation): Mean=0.316, Std. Dev.=0.01439, n=31. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9173, critical = 0.902. Kappa = 2.39 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.


Within Limit Prediction Limit
Intrawell Parametric


Background Data Summary (based on square root transformation): Mean=0.3226, Std. Dev.=0.1206, n=19. Normality test: Shapiro WIIK @alpha = 0.01, calculated = 0.9476, critical = 0.863. Kappa = 2.611 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

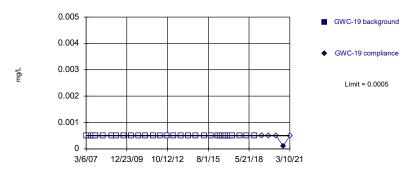
Constituent: Barium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Background Data Summary: Mean=0.06193, Std. Dev.=0.00445, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9577, critical = 0.868. Kappa = 2.575 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

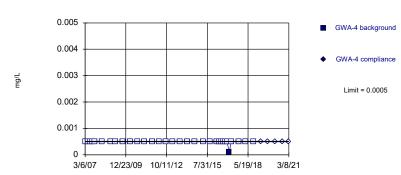
Constituent: Beryllium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 30 background values. 23.33% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

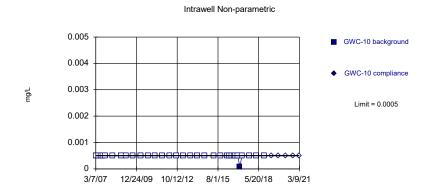
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

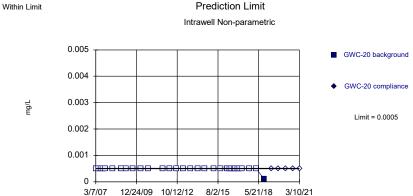
Constituent: Beryllium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

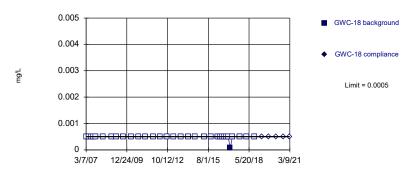
Within Limit



Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

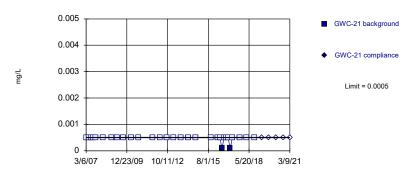
Constituent: Cadmium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

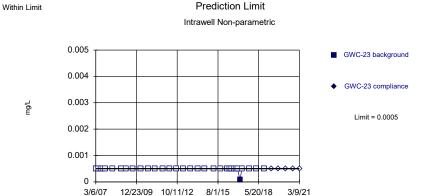
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric

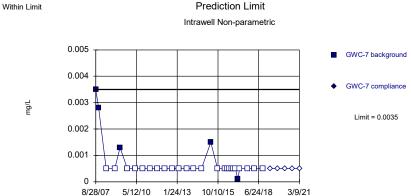


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).


Constituent: Cadmium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

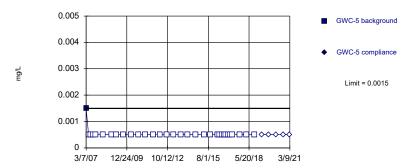
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 93.33% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

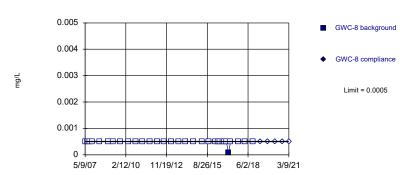
Constituent: Cadmium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 29 background values. 82.76% NDs. Well-constituent pair annual alpha = 0.00434. Individual comparison alpha = 0.002172 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cadmium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Within Limit

Intrawell Non-parametric

0.005

0.004

0.004

GWC-9 background

↓ GWC-9 compliance

Limit = 0.0005

377/07 12/24/09 10/12/12 8/1/15 5/20/18 3/9/21

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

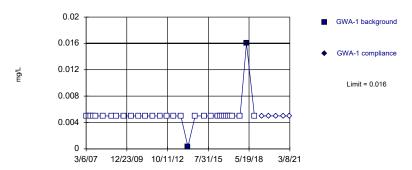
Constituent: Cadmium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

3/7/07 12/24/09 10/12/12 8/1/15

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 90.63% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

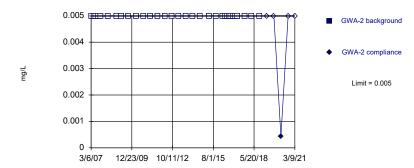

5/20/18

3/8/21

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

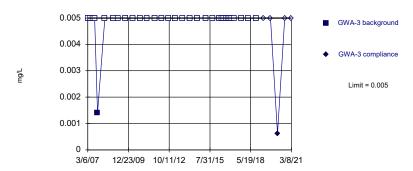
Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

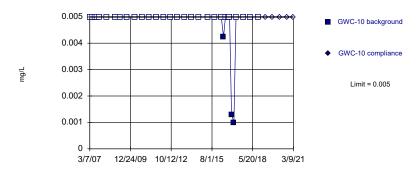
Constituent: Chromium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Prediction Limit Within Limit Intrawell Non-parametric

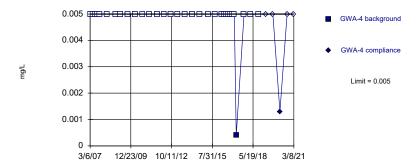


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha

> Constituent: Chromium Analysis Run 4/1/2021 1:19 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

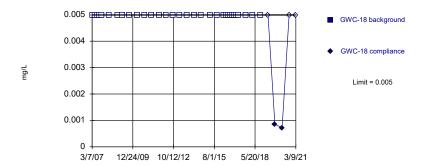


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 90.63% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

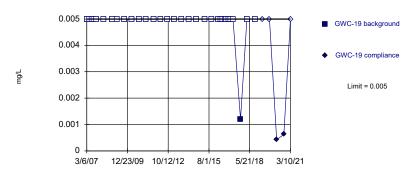
Prediction Limit

Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha

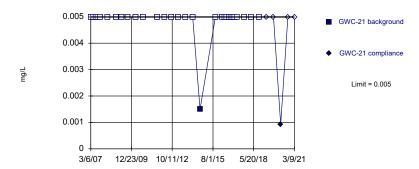
> Constituent: Chromium Analysis Run 4/1/2021 1:19 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

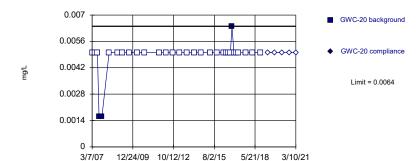
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Chromium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

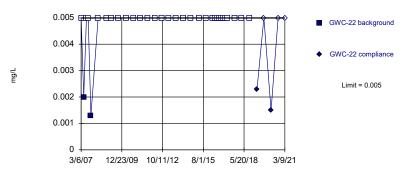
 $\mbox{Sanitas}^{\mbox{\tiny TN}} \mbox{ v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 96.67% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

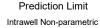
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

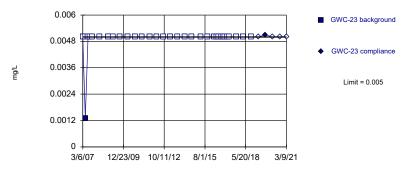
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 90.32% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

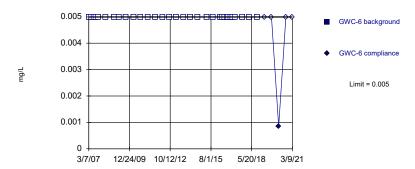
Constituent: Chromium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit

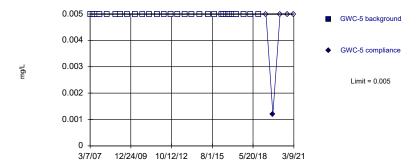


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha

> Constituent: Chromium Analysis Run 4/1/2021 1:19 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

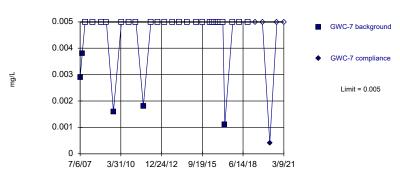


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

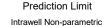
Prediction Limit

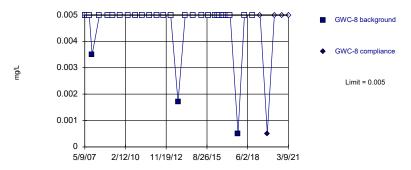
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

> Constituent: Chromium Analysis Run 4/1/2021 1:19 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 83.33% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 90.32% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Constituent: Chromium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\ensuremath{\,^{\text{\tiny{M}}}}}\ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Within Limit Prediction Limit
Intrawell Non-parametric

GWA-1 background

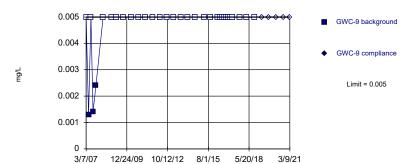
0.008

0.006

0.004

0.002

3/6/07 12/23/09 10/11/12 7/31/15 5/19/18

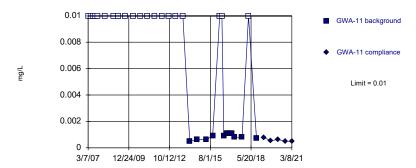

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cobalt Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

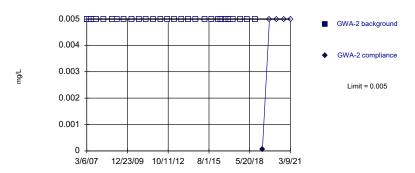
Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 90.63% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

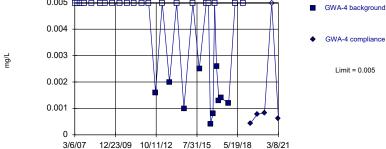
Constituent: Chromium Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 ${\it Sanitas^{\rm TM}}\, v. 9. 6. 28 \,\, {\it Groundwater Stats Consulting. \, UG} \\ {\it Hollow symbols indicate censored values.}$

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

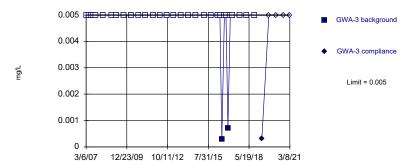


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cobalt Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 ${\it Sanitas^{\rm IM}}~v.9.6.28~Groundwater~Stats~Consulting.~UG~Hollow~symbols~indicate~censored~values.$

Within Limit Prediction Limit
Intrawell Non-parametric

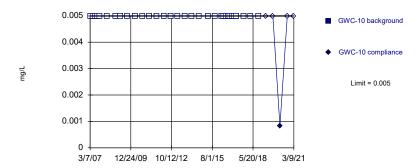

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cobalt Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

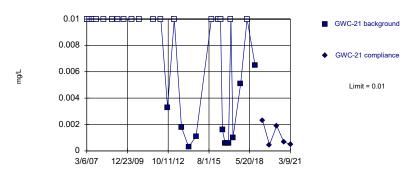
Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

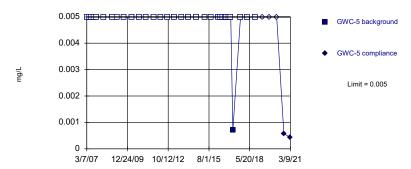
Constituent: Cobalt Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 63.33% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Constituent: Cobalt Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny TN}} \mbox{ v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Within Limit Prediction Limit
Intrawell Non-parametric

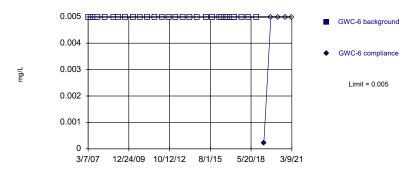
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cobalt Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cobalt Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit Prediction Limit Intrawell Parametric

O.09

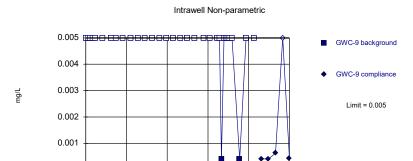
O.072

O.054

O.054

O.036

O.018


3/9/21

3/12/13 10/16/14 5/22/16 12/27/17 8/3/19

Constituent: Cobalt Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

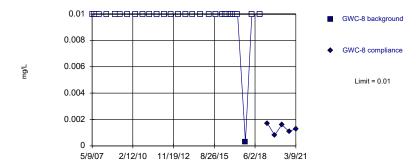
Prediction Limit

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

5/20/18

3/9/21

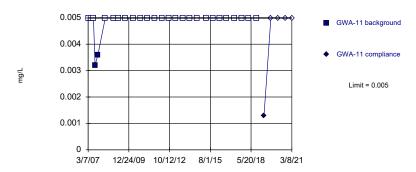

3/7/07 12/24/09 10/12/12 8/1/15

Constituent: Cobalt Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

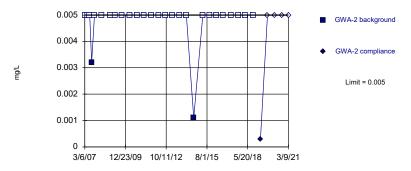
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

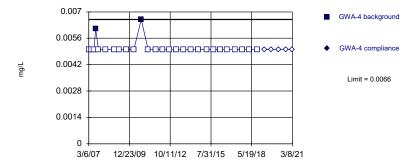
Constituent: Cobalt Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

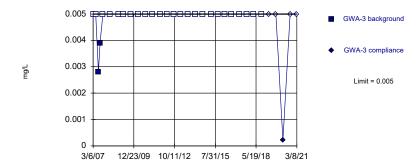
Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Copper Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

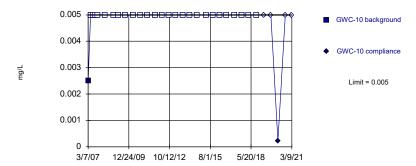
 $\mbox{Sanitas}^{\mbox{\tiny TN}} \mbox{ v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

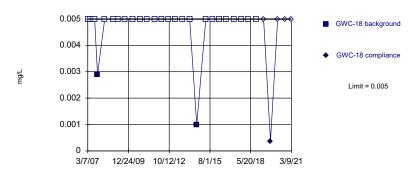
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Copper Analysis Run 4/1/2021 1:19 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

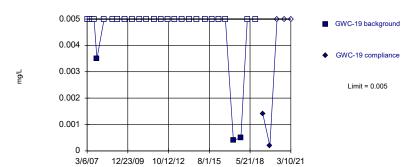
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Prediction Limit Within Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha

> Constituent: Copper Analysis Run 4/1/2021 1:20 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

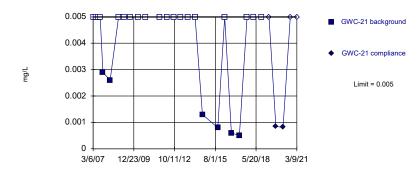

Prediction Limit Within Limit Intrawell Non-parametric 0.005 ■ GWC-20 background 0.004 ♦ GWC-20 compliance 0.003 Limit = 0.005 0.002 0.001 3/7/07 12/24/09 10/12/12 8/2/15

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 96.15% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

5/21/18 3/10/21

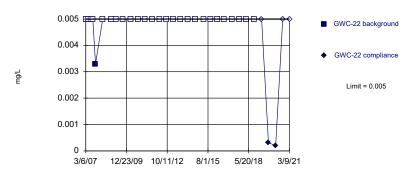
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

> Constituent: Copper Analysis Run 4/1/2021 1:20 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 76% NDs. Well-constituent pair annual alpha = 0.005656. Individual comparison alpha = 0.002832 (1 of 2).

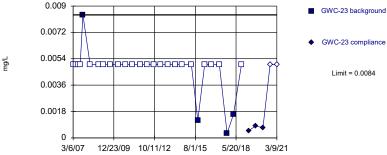
Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2)

Constituent: Copper Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny TN}} \mbox{ v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

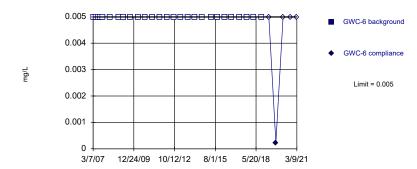
Within Limit Prediction Limit Intrawell Non-parametric


0.005
0.004
0.004
0.003
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.00

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

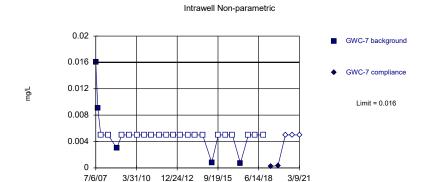
Prediction Limit
Intrawell Non-parametri



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 85.19% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Copper Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

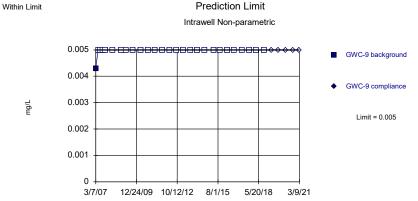
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 27) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Copper Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Within Limit

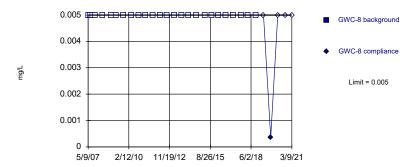


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 80% NDs. Well-constituent pair annual alpha = 0.005656. Individual comparison alpha = 0.002832 (1 of 2).

Constituent: Copper Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

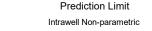
 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

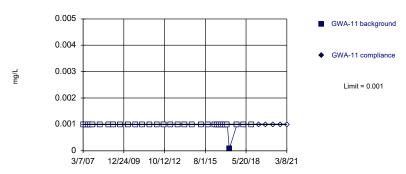

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Copper Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

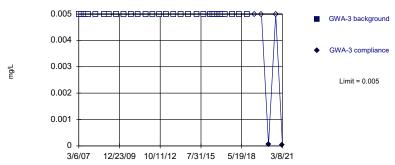
Within Limit


Prediction Limit
Intrawell Non-parametric

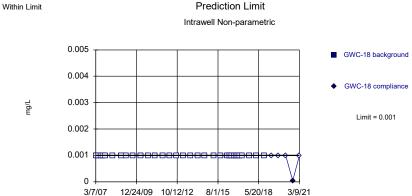


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 26) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Constituent: Copper Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

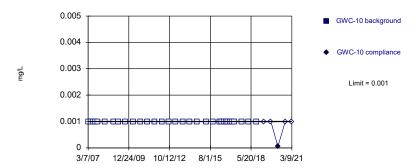
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Lead Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

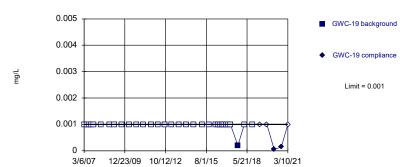


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Lead Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Lead Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit

0.005
0.004
0.004
0.003
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001

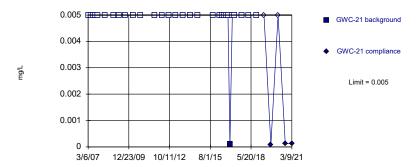
Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Constituent: Lead Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

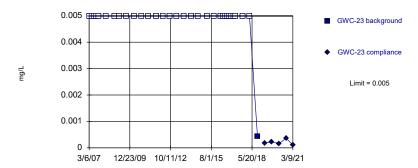

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Lead Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

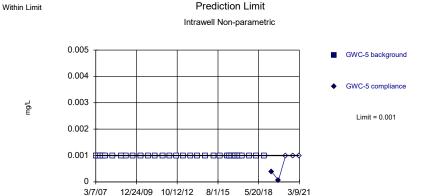
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

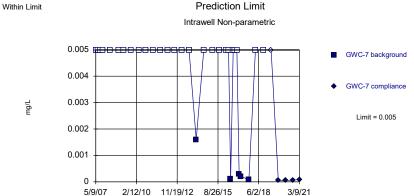


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 96.67% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).


Constituent: Lead Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

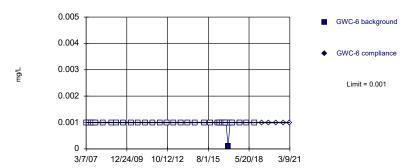
Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Lead Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

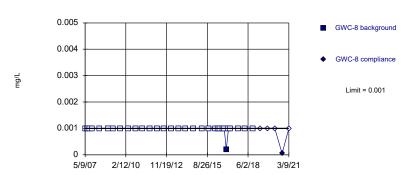


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 83.87% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Constituent: Lead Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

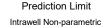
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

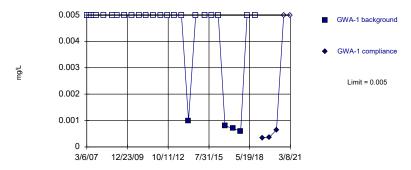
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

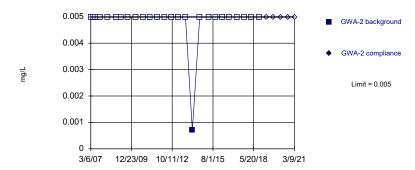
Constituent: Lead Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Within Limit

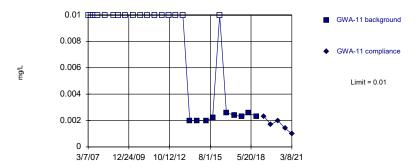


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 85.19% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha

> Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

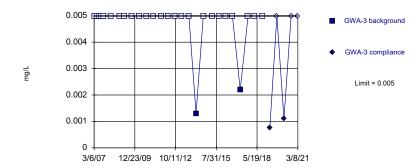

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

> Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

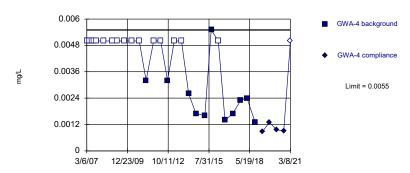
Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

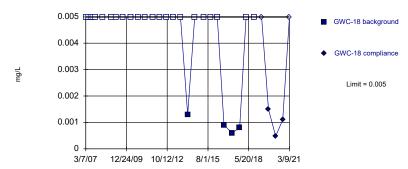
> Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

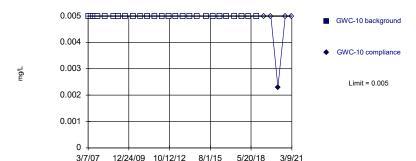


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 59.26% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny TN}} \mbox{ v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Within Limit Prediction Limit Intrawell Non-parametric

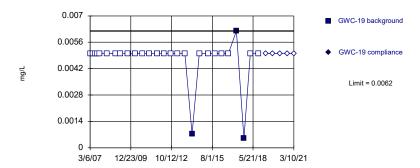

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 85.19% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

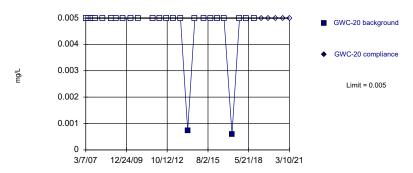
Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 27) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

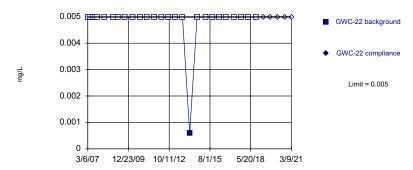
Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

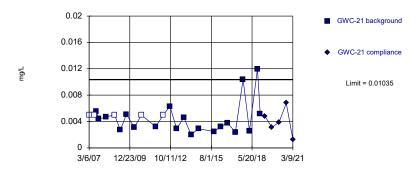


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 92.31% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny TN}} \mbox{ v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

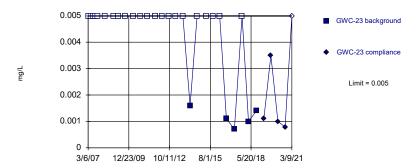
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

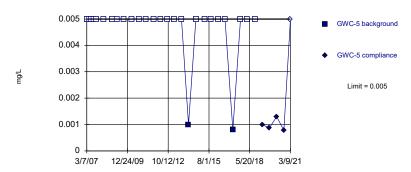
Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=0.1566, Std. Dev.=0.02496, n=26, 23.08% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8923, critical = 0.891. Kappa = 2.456 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

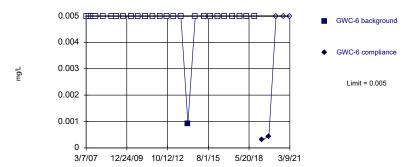
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 81.48% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

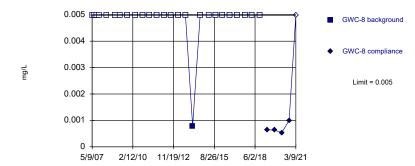

Background Data Summary: Mean=0.133, Std. Dev.=0.06625, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9771, critical = 0.805. Kappa = 3.005 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

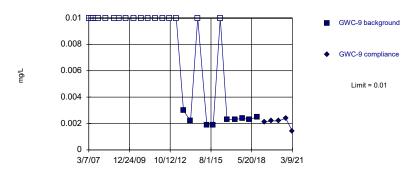
Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

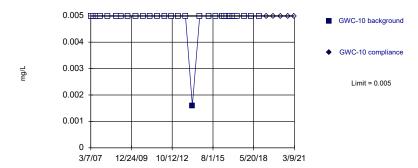
Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 96.15% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Prediction Limit Within Limit Intrawell Non-parametric

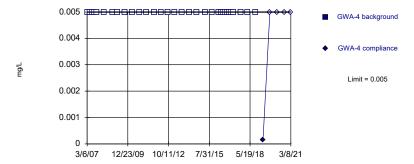


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha

> Constituent: Nickel Analysis Run 4/1/2021 1:20 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

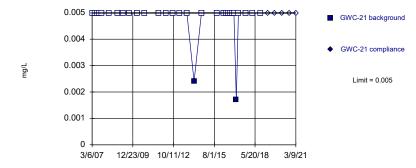


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

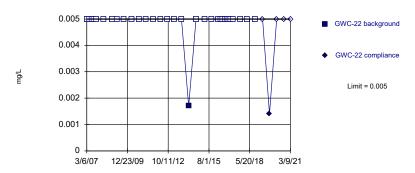
Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

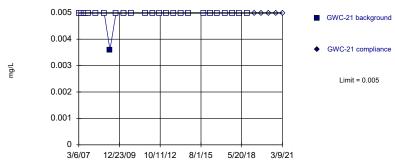
> Constituent: Selenium Analysis Run 4/1/2021 1:20 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 93.33% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

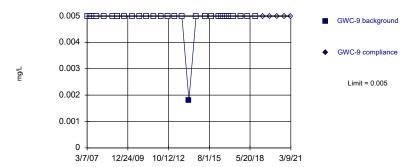


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Selenium Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\ensuremath{\,^{\text{\tiny{M}}}}}\ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Within Limit Prediction Limit
Intrawell Non-parametric

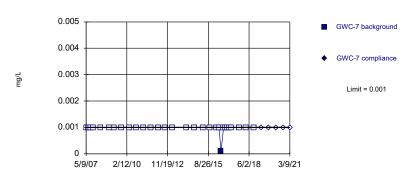


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 96% NDs. Well-constituent pair annual alpha = 0.005656. Individual comparison alpha = 0.002832 (1 of 2).

Constituent: Silver Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

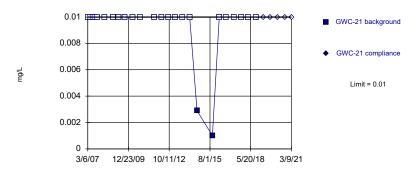
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



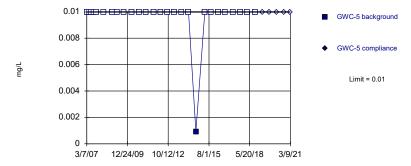
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Selenium Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\label{eq:sanitas} Sanitas ^{\text{\tiny{TM}}} \text{ v.9.6.28 Groundwater Stats Consulting. UG} \\ Hollow symbols indicate censored values.$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 96.67% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

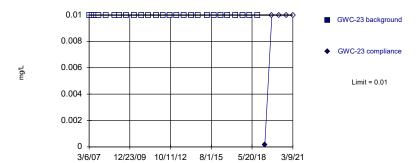
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 92% NDs. Well-constituent pair annual alpha = 0.005656. Individual comparison alpha = 0.002832 (1 of 2).

Constituent: Vanadium Analysis Run 4/1/2021 1:20 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

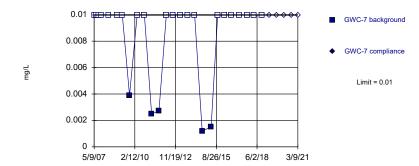
 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

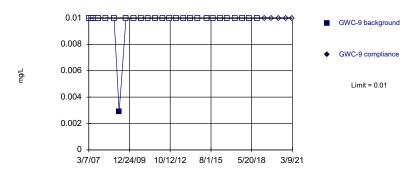
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Intrawell Non-parametric


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background velues (n = 27) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Vanadium Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 80.77% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Vanadium Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

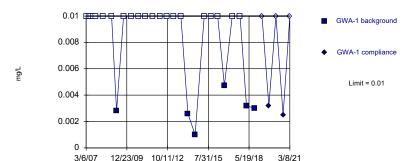
Prediction Limit

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

0.01 GWA-11 background
0.008
0.000
0.000
0.000
0.0002

3/7/07 12/24/09 10/12/12 8/1/15

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).


5/20/18

3/8/21

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 77.78% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 70.37% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

3/6/07

Within Limit

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

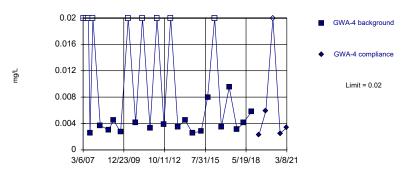
3/8/21

12/23/09 10/11/12 7/31/15 5/19/18

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

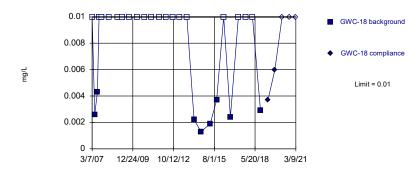

0.01 GWC-10 background
0.008
0.006
0.004
0.002
0.002
3/7/07 12/24/09 10/12/12 8/1/15 5/20/18 3/9/21

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 77.78% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 27 background values. 33.33% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 70.37% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

3/6/07

Within Limit

0.02
0.016
0.012
0.008
0.004
Limit = 0.013

Prediction Limit

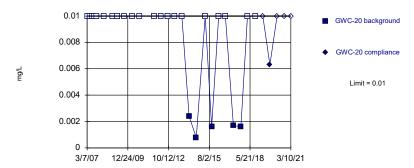
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 59.26% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

5/21/18

3/10/21

12/23/09 10/12/12 8/1/15

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

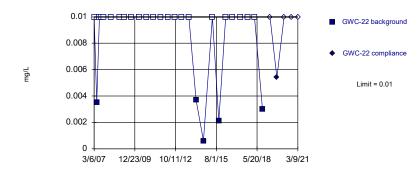

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 25 background values. 12% NDs. Well-constituent pair annual alpha = 0.005656. Individual comparison alpha = 0.002832 (1 of 2).

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of background values. 80.77% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $Sanitas \begin{tabular}{l} Sanitas \begin{tabular}{l} V.9.6.28 & Groundwater Stats Consulting. UG \\ Hollow symbols indicate censored values. \\ \end{tabular}$

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 81.48% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

3/6/07

Within Limit

0.01
0.008
0.006
0.004
0.002

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

5/20/18

3/9/21

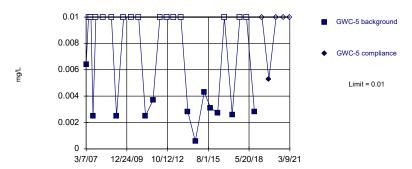
12/23/09 10/11/12 8/1/15

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

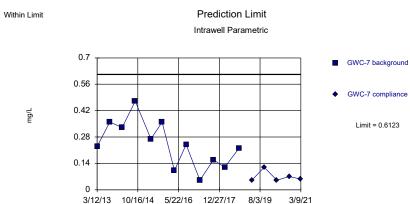
0.01 GWC-6 background
0.008
0.006
0.004
0.002
0.002
0.007
12/24/09 10/12/12 8/1/15 5/20/18 3/9/21


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 74.07% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

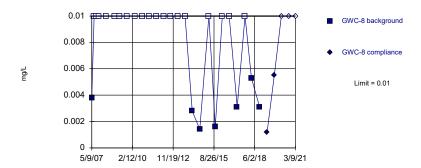
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

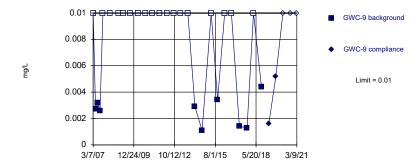
Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.2426, Std. Dev.=0.123, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9762, critical = 0.805. Kappa = 3.005 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 73.08% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Constituent: Zinc Analysis Run 4/1/2021 1:21 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

	GWA-1	GWA-1
3/6/2007	<0.003	
5/8/2007	<0.003	
7/7/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/9/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/10/2011	<0.003	
4/3/2012	<0.003	
9/24/2012	<0.003	
3/12/2013	<0.003	
9/11/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/30/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
1/31/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
9/30/2019		<0.003
3/26/2020		0.00028 (J)
9/23/2020		<0.003
3/8/2021		<0.003

	GWA-11	GWA-11
3/7/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/9/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/4/2011	<0.003	
4/10/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0003 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/1/2017	<0.003	
3/24/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
9/30/2019		<0.003
3/26/2020		<0.003
9/22/2020		<0.003
3/8/2021		0.0005 (J)

	GWA-2	GWA-2
3/6/2007	<0.003	
5/8/2007	<0.003	
7/7/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/9/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
10/7/2010	<0.003	
4/6/2011	<0.003	
10/6/2011	<0.003	
4/3/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/9/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	0.0021 (J)	
10/18/2016	<0.003	
12/7/2016	<0.003	
1/31/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
9/30/2019		<0.003
3/26/2020		0.00049 (J)
9/21/2020		<0.003
3/9/2021		<0.003

	GWA-3	GWA-3
3/6/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/2/2009	<0.003	
4/14/2010	<0.003	
10/14/2010	<0.003	
4/5/2011	<0.003	
10/12/2011	<0.003	
4/4/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/11/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
	<0.003	
3/22/2016 5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016 10/18/2016	0.0009 (J) <0.003	
12/6/2016	<0.003	
2/1/2017	<0.003	
3/23/2017	<0.003	
10/4/2017		
3/15/2018	<0.003 <0.003	
10/4/2018	<0.003	~0 003
4/5/2019		<0.003 <0.003
9/30/2019		
3/26/2020		<0.003
9/23/2020		<0.003
3/8/2021		<0.003

	GWA-4	GWA-4
3/6/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/2/2009	<0.003	
4/14/2010	<0.003	
10/14/2010	<0.003	
4/5/2011	<0.003	
10/12/2011	<0.003	
4/4/2012	<0.003	
9/24/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/11/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0003 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/1/2017	<0.003	
3/24/2017	<0.003	
10/4/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		< 0.003
9/30/2019		< 0.003
3/26/2020		< 0.003
9/23/2020		<0.003
3/8/2021		0.0016 (J)
3/8/2021		0.0016 (J)

	GWC-10	GWC-10
3/7/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/9/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/4/2011	<0.003	
4/10/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/30/2015	<0.003	
3/23/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0005 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/9/2019		<0.003
10/1/2019		<0.003
3/27/2020		<0.003
9/25/2020		<0.003
3/9/2021		<0.003

	GWC-18	GWC-18
3/7/2007	<0.003	
5/9/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/7/2008	<0.003	
12/3/2008	<0.003	
4/14/2009	<0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/12/2010	<0.003	
4/6/2011	<0.003	
10/12/2011	<0.003	
4/5/2012	<0.003	
9/19/2012	<0.003	
3/13/2013	<0.003	
9/10/2013	<0.003	
3/10/2014	<0.003	
9/3/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/24/2016	<0.003	
5/18/2016	<0.003	
7/7/2016	<0.003	
9/8/2016	<0.003	
10/19/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/16/2018	<0.003	
10/5/2018	<0.003	
4/9/2019		<0.003
10/1/2019		<0.003
3/30/2020		<0.003
9/24/2020		0.00033 (J)
3/9/2021		<0.003

	GWC-19	GWC-19
3/6/2007	<0.003	
5/9/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/7/2008	<0.003	
12/4/2008	<0.003	
4/14/2009	<0.003	
10/2/2009	<0.003	
4/13/2010	<0.003	
10/12/2010	<0.003	
4/6/2011	<0.003	
10/12/2011	<0.003	
4/5/2012	<0.003	
9/25/2012	<0.003	
3/13/2013	<0.003	
9/11/2013	<0.003	
3/10/2014	<0.003	
9/9/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/24/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	0.0003 (J)	
9/8/2016	<0.003	
10/18/2016	<0.003	
12/7/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/9/2019		<0.003
10/1/2019		<0.003
3/31/2020		<0.003
9/28/2020		<0.003
3/10/2021		<0.003

	GWC-5	GWC-5
3/7/2007	<0.003	
5/8/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/14/2010	<0.003	
4/5/2011	<0.003	
10/12/2011	<0.003	
4/4/2012	<0.003	
9/24/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/9/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0004 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/1/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/16/2018	<0.003	
10/4/2018	<0.003	
4/9/2019		<0.003
10/1/2019		<0.003
3/31/2020		<0.003
9/25/2020		0.00052 (J)
3/9/2021		<0.003

	GWC-6	GWC-6
3/7/2007	<0.003	
5/9/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/6/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/3/2012	<0.003	
9/18/2012	<0.003	
3/12/2013	<0.003	
9/9/2013	<0.003	
3/5/2014	<0.003	
9/8/2014	<0.003	
4/22/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0005 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/1/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/16/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
10/1/2019		<0.003
3/31/2020		<0.003
9/25/2020		<0.003
3/9/2021		<0.003

	GWC-7	GWC-7
5/9/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/7/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/3/2012	<0.003	
9/18/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	0.0013 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/24/2017	<0.003	
10/4/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
10/1/2019		<0.003
3/30/2020		<0.003
9/24/2020		0.0008 (J)
3/9/2021		<0.003

_			
		GWC-8	GWC-8
	5/9/2007	<0.003	
	7/6/2007	<0.003	
	8/28/2007	<0.003	
	11/6/2007	0.0064 (o)	
	5/8/2008	<0.003	
	12/2/2008	<0.003	
	4/8/2009	<0.003	
	9/30/2009	<0.003	
	4/13/2010	<0.003	
	10/13/2010	<0.003	
	4/5/2011	<0.003	
	10/4/2011	<0.003	
	4/3/2012	<0.003	
	9/19/2012	<0.003	
	3/12/2013	<0.003	
	9/10/2013	<0.003	
	3/5/2014	<0.003	
	9/9/2014	<0.003	
	4/22/2015	<0.003	
	9/29/2015	<0.003	
	3/23/2016	<0.003	
	5/18/2016	<0.003	
	7/6/2016	0.0002 (J)	
	9/8/2016	<0.003	
	10/18/2016	<0.003	
	12/8/2016	<0.003	
	2/2/2017	<0.003	
	3/24/2017	<0.003	
	10/5/2017	<0.003	
	3/14/2018	<0.003	
	10/4/2018	<0.003	
	4/8/2019		<0.003
	10/1/2019		<0.003
	3/27/2020		<0.003
	9/24/2020		0.0019 (J)
	3/9/2021		<0.003

	GWC-9	GWC-9
3/7/2007	<0.003	
5/8/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
9/30/2009	<0.003	
4/13/2010	<0.003	
10/13/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/4/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	<0.003	
9/8/2016	<0.003	
10/19/2016	<0.003	
12/8/2016	0.0012 (J)	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/5/2018	<0.003	
4/8/2019		<0.003
10/1/2019		<0.003
3/27/2020		<0.003
9/24/2020		0.00056 (J)
3/9/2021		<0.003

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00012 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/22/2020		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.005	
9/8/2014	0.0034 (J)	
4/21/2015	<0.005	
9/29/2015	0.0025 (J)	
3/22/2016	<0.005	
5/17/2016	0.00129 (J)	
7/5/2016	0.001 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	0.0006 (J)	
10/4/2017	0.0011 (J)	
3/15/2018	0.00066 (J)	
10/4/2018	0.0008 (J)	
4/5/2019		0.00035 (J)
9/30/2019		0.00058 (J)
3/26/2020		0.00048 (J)
9/23/2020		<0.005
3/8/2021		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	0.0065	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	0.0006 (J)	
10/4/2017	<0.005	
3/15/2018	0.0014 (J)	
10/4/2018	<0.005	
4/8/2019		0.00023 (J)
9/30/2019		<0.005
3/26/2020		0.00044 (J)
9/23/2020		<0.005
3/8/2021		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	0.0005 (J)	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		0.00063 (J)
10/1/2019		<0.005
3/30/2020		0.00073 (J)
9/24/2020		<0.005
3/9/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
9/30/2015	0.0023 (J)	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	0.0012 (J)	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.001 (J)	
3/15/2018	<0.005	
10/4/2018	0.0034 (J)	
4/9/2019		0.0018 (J)
10/1/2019		<0.005
3/31/2020		0.00035 (J)
9/24/2020		0.0011 (J)
3/9/2021		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		0.00034 (J)
10/1/2019		0.00082 (J)
3/26/2020		<0.005
9/23/2020		<0.005
3/9/2021		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0017 (J)	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	0.0006 (J)	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005

	GWC-7	GWC-7
5/9/2007	0.038 (o)	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	0.0053	
3/5/2014	0.0052	
9/8/2014	0.0058	
4/21/2015	0.0088	
9/29/2015	0.0086	
3/23/2016	0.00693	
5/18/2016	0.00451 (J)	
7/6/2016	0.0063	
9/7/2016	0.0065	
10/18/2016	0.0056	
12/8/2016	0.0065	
2/2/2017	0.002 (J)	
3/24/2017	0.0027 (J)	
10/4/2017	0.0056	
3/15/2018	0.0037 (J)	
10/4/2018	0.0049 (J)	
4/8/2019		0.0057
10/1/2019		0.01
11/6/2019		0.011
3/30/2020		0.0052
9/24/2020		0.0064
3/9/2021		0.0052

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0022 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/24/2017	0.0005 (J)	
10/5/2017	0.0008 (J)	
3/14/2018	0.00064 (J)	
10/4/2018	<0.005	
4/8/2019		0.0015 (J)
10/1/2019		0.0028 (J)
3/27/2020		0.002 (J)
9/24/2020		0.0043 (J)
3/9/2021		0.0018 (J)

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		<0.005
10/1/2019		0.00071 (J)
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005

	GWA-1	GWA-1
3/6/2007	0.032	
5/8/2007	0.04	
7/7/2007	0.041	
8/28/2007	0.044	
11/6/2007	0.044	
5/9/2008	0.03	
12/3/2008	0.047	
4/7/2009	0.032	
10/1/2009	0.043	
4/14/2010	0.032	
10/13/2010	0.046	
4/6/2011	0.034	
10/10/2011	0.038	
4/3/2012	0.0363	
9/24/2012	0.041	
3/12/2013	0.041	
9/11/2013	0.048	
3/4/2014	0.036	
9/3/2014	0.04	
4/21/2015	0.033	
9/30/2015	0.042	
3/22/2016	0.0326	
5/17/2016	0.0387	
7/5/2016	0.0403	
9/7/2016	0.0413	
10/18/2016	0.0409	
12/6/2016	0.0408	
1/31/2017	0.0435	
3/23/2017	0.038	
10/4/2017	0.0396	
3/14/2018	0.039	
10/4/2018	0.039	
4/8/2019		0.031
9/30/2019		0.042
3/26/2020		0.032
9/23/2020		0.041
3/8/2021		0.035

	GWA-11	GWA-11
3/7/2007	0.03	
5/8/2007	0.032	
7/17/2007	0.028	
8/28/2007	0.03	
11/7/2007	0.032	
5/9/2008	0.032	
12/2/2008	0.036	
4/8/2009	0.04	
10/1/2009	0.039	
4/14/2010	0.041	
10/13/2010	0.039	
4/6/2011	0.034	
10/4/2011	0.032	
4/10/2012	0.0425	
9/26/2012	0.035	
3/12/2013	0.035	
9/10/2013	0.035	
3/4/2014	0.031	
9/3/2014	0.033	
4/21/2015	0.03	
9/29/2015	0.031	
3/22/2016	0.0327	
5/17/2016	0.0323	
7/6/2016	0.0344	
9/7/2016	0.0324	
10/18/2016	0.0311	
12/6/2016	0.0311	
2/1/2017	0.0332	
3/24/2017	0.032	
10/5/2017	0.0325	
3/15/2018	0.031	
10/4/2018	0.033	
4/8/2019		0.031
9/30/2019		0.03
3/26/2020		0.031
9/22/2020		0.031
3/8/2021		0.031

	GWA-2	GWA-2
3/6/2007	0.12	
5/8/2007	0.11	
7/7/2007	0.11	
8/28/2007	0.13	
11/6/2007	0.12	
5/9/2008	0.12	
12/3/2008	0.12	
4/7/2009	0.13	
10/1/2009	0.14	
4/13/2010	0.15	
10/7/2010	0.16	
4/6/2011	0.14	
10/6/2011	0.16	
4/3/2012	0.165	
9/19/2012	0.16	
3/12/2013	0.16	
9/9/2013	0.17	
3/4/2014	0.16	
9/3/2014	0.17	
4/22/2015	0.17	
9/30/2015	0.15	
3/22/2016	0.197	
5/17/2016	0.178	
7/5/2016	0.182	
9/7/2016	0.172	
10/18/2016	0.174	
12/7/2016	0.167	
1/31/2017	0.176	
3/23/2017	0.157	
10/4/2017	0.143	
3/14/2018	0.17	
10/4/2018	0.18	
4/8/2019		0.15
9/30/2019		0.17
3/26/2020		0.16
9/21/2020		0.18
3/9/2021		0.17

	GWA-3	GWA-3
3/6/2007	0.17	
5/8/2007	0.21	
7/17/2007	0.21	
8/28/2007	0.2	
11/6/2007	0.19	
5/8/2008	0.2	
12/3/2008	0.18	
4/7/2009	0.2	
10/2/2009	0.2	
4/14/2010	0.2	
10/14/2010	0.18	
4/5/2011	0.16	
10/12/2011	0.15	
4/4/2012	0.165	
9/26/2012	0.17	
3/12/2013	0.17	
9/10/2013	0.18	
3/11/2014	0.17	
9/8/2014	0.16	
4/21/2015	0.16	
9/29/2015	0.14	
3/22/2016	0.188	
5/17/2016	0.193	
7/5/2016	0.172	
9/7/2016	0.164	
10/18/2016	0.138	
12/6/2016	0.149	
2/1/2017	0.121	
3/23/2017	0.143	
10/4/2017	0.139	
3/15/2018	0.17	
10/4/2018	0.16	
4/5/2019		0.13
9/30/2019		0.14
3/26/2020		0.14
9/23/2020		0.14
3/8/2021		0.12

	GWA-4	GWA-4
3/6/2007	0.13	
5/8/2007	0.12	
7/17/2007	0.12	
8/28/2007	0.13	
11/6/2007	0.12	
5/8/2008	0.13	
12/3/2008	0.14	
4/7/2009	0.097	
10/2/2009	0.11	
4/14/2010	0.059	
10/14/2010	0.053	
4/5/2011	0.042	
10/12/2011	0.048	
4/4/2012	0.044	
9/24/2012	0.048	
3/12/2013	0.043	
9/10/2013	0.042	
3/11/2014	0.04	
9/8/2014	0.042	
4/21/2015	0.05	
9/29/2015	0.044	
3/22/2016	0.0397	
5/17/2016	0.0351	
7/6/2016	0.0475	
9/7/2016	0.0415	
10/18/2016	0.0424	
12/6/2016	0.0528	
2/1/2017	0.0482	
3/24/2017	0.0595	
10/4/2017	0.0486	
3/15/2018	0.04	
10/4/2018	0.05	
4/8/2019		0.047
9/30/2019		0.051
3/26/2020		0.049
9/23/2020		0.043
3/8/2021		0.052

	GWC-10	GWC-10
3/7/2007	0.15	
5/8/2007	0.14	
7/17/2007	0.1	
8/28/2007	0.1	
11/7/2007	0.11	
5/9/2008	0.15	
12/2/2008	0.11	
4/8/2009	0.16	
10/1/2009	0.11	
4/14/2010	0.15	
10/13/2010	0.1	
4/6/2011	0.13	
10/4/2011	0.089	
4/10/2012	0.126	
9/26/2012	0.093	
3/12/2013	0.13	
9/10/2013	0.14	
3/4/2014	0.11	
9/3/2014	0.1	
4/21/2015	0.14	
9/30/2015	0.096	
3/23/2016	0.132	
5/17/2016	0.122	
7/6/2016	0.101	
9/7/2016	0.0985	
10/18/2016	0.104	
12/6/2016	0.1	
2/2/2017	0.147	
3/27/2017	0.158	
10/5/2017	0.106	
3/15/2018	0.18	
5/15/2018	0.16	
10/4/2018	0.2	
12/11/2018	0.18	
1/11/2019		0.17
4/9/2019		0.17
10/1/2019		0.12
3/27/2020		0.037
9/25/2020		0.11
3/9/2021		0.15

	GWC-18	GWC-18
3/7/2007	0.072	
5/9/2007	0.063	
7/17/2007	0.058	
8/28/2007	0.06	
11/7/2007	0.072	
5/7/2008	0.076	
12/3/2008	0.066	
4/14/2009	0.08	
10/1/2009	0.074	
4/13/2010	0.062	
10/12/2010	0.078	
4/6/2011	0.066	
10/12/2011	0.071	
4/5/2012	0.0675	
9/19/2012	0.073	
3/13/2013	0.075	
9/10/2013	0.081	
3/10/2014	0.064	
9/3/2014	0.078	
4/22/2015	0.067	
9/30/2015	0.075	
3/24/2016	0.0818	
5/18/2016	0.0763	
7/7/2016	0.0747	
9/8/2016	0.081	
10/19/2016	0.084	
12/8/2016	0.0799	
2/2/2017	0.0813	
3/27/2017	0.0714	
10/5/2017	0.0755	
3/16/2018	0.074	
10/5/2018	0.081	
4/9/2019		0.081
10/1/2019		0.082
3/30/2020		0.077
9/24/2020		0.079
3/9/2021		0.077

	GWC-19	GWC-19
3/6/2007	0.088	
5/9/2007	0.07	
7/17/2007	0.063	
8/28/2007	0.066	
11/7/2007	0.07	
5/7/2008	0.071	
12/4/2008	0.068	
4/14/2009	0.076	
10/2/2009	0.07	
4/13/2010	0.085	
10/12/2010	0.075	
4/6/2011	0.077	
10/12/2011	0.12	
4/5/2012	0.143	
9/25/2012	0.13	
3/13/2013	0.14	
9/11/2013	0.15	
3/10/2014	0.13	
9/9/2014	0.16	
4/22/2015	0.15	
9/30/2015	0.15	
3/24/2016	0.152	
5/18/2016	0.146	
7/6/2016	0.152	
9/8/2016	0.142	
10/18/2016	0.145	
12/7/2016	0.133	
2/2/2017	0.14	
3/27/2017	0.152	
10/5/2017	0.142	
3/15/2018	0.14	
10/4/2018	0.16	
4/9/2019		0.15
10/1/2019		0.15
3/31/2020		0.17
9/28/2020		0.15
3/10/2021		0.15

_			
		GWC-20	GWC-20
	3/7/2007	0.11	
	5/9/2007	0.082	
	7/17/2007	0.078	
	8/29/2007	0.096	
	11/7/2007	0.1	
	5/7/2008	0.11	
	12/5/2008	0.11	
	4/14/2009	0.11	
	9/30/2009	0.12	
	4/13/2010	0.11	
	10/12/2010	0.12	
	10/12/2011	0.11	
	4/9/2012	0.13	
	9/25/2012	0.13	
	3/13/2013	0.12	
	9/11/2013	0.12	
	3/10/2014	0.11	
	9/9/2014	0.11	
	4/23/2015	0.11	
	9/30/2015	0.11	
	3/23/2016	0.115	
	5/18/2016	0.128	
	7/7/2016	0.124	
	9/8/2016	0.121	
	10/19/2016	0.117	
	12/7/2016	0.11	
	2/3/2017	0.123	
	3/27/2017	0.112	
	10/5/2017	0.128	
	3/16/2018	0.12	
	10/5/2018	0.12	
	4/9/2019		0.13
	10/1/2019		0.14
	3/31/2020		0.15
	6/19/2020		0.14 (R)
	9/23/2020		0.13
	3/10/2021		0.13

	GWC-21	GWC-21
3/6/2007	0.038	
5/9/2007	0.046	
7/17/2007	0.06	
8/29/2007	0.07	
11/7/2007	0.055	
5/7/2008	0.032	
12/5/2008	0.06	
4/27/2009	0.032	
9/30/2009	0.046	
4/13/2010	0.035	
10/12/2010	0.15	
10/5/2011	0.055	
4/10/2012	0.0399	
9/26/2012	0.093	
3/13/2013	0.066	
9/11/2013	0.053	
3/11/2014	0.039	
9/9/2014	0.14	
9/30/2015	0.15	
3/24/2016	0.046	
5/18/2016	0.0557	
7/7/2016	0.0596	
9/8/2016	0.184	
10/19/2016	0.186	
12/7/2016	0.174	
2/2/2017	0.0783	
3/27/2017	0.0363	
10/5/2017	0.0562	
3/15/2018	0.086	
10/4/2018	0.079	
4/9/2019		0.05
10/1/2019		0.18
3/31/2020		0.044
9/24/2020		0.19
3/9/2021		0.12

	GWC-22	GWC-22
3/6/2007	0.023	
5/9/2007	0.034	
7/17/2007	0.034	
8/29/2007	0.048	
11/7/2007	0.042	
5/7/2008	0.078	
12/5/2008	0.067	
4/14/2009	0.083	
9/30/2009	0.086	
4/13/2010	0.087	
10/12/2010	0.082	
4/6/2011	0.082	
10/5/2011	0.082	
4/9/2012	0.0959	
9/25/2012	0.09	
3/13/2013	0.092	
9/11/2013	0.096	
3/11/2014	0.085	
9/9/2014	0.096	
4/23/2015	0.093	
9/30/2015	0.096	
3/23/2016	0.0938	
5/18/2016	0.0983	
7/7/2016	0.121	
9/8/2016	0.0917	
10/19/2016	0.091	
12/7/2016	0.0868	
2/2/2017	0.0939	
3/27/2017	0.0905	
10/5/2017	0.0945	
3/15/2018	0.096	
10/4/2018	0.1	
4/9/2019		0.094
10/1/2019		0.1
3/31/2020		0.1
9/23/2020		0.1
3/9/2021		0.089

	GWC-23	GWC-23
3/6/2007	0.05	
5/9/2007	0.055	
7/17/2007	0.048	
8/29/2007	0.056	
11/7/2007	0.07	
5/7/2008	0.063	
12/5/2008	0.068	
4/14/2009	0.062	
10/1/2009	0.064	
4/14/2010	0.048	
10/13/2010	0.071	
4/6/2011	0.042	
10/12/2011	0.066	
4/9/2012	0.0628	
9/19/2012	0.073	
3/13/2013	0.057	
9/10/2013	0.066	
3/11/2014	0.054	
9/3/2014	0.06	
4/23/2015	0.06	
9/30/2015	0.076	
3/23/2016	0.0533	
5/19/2016	0.074	
7/7/2016	0.0766	
9/8/2016	0.0726	
10/19/2016	0.072	
12/7/2016	0.0732	
2/3/2017	0.0619	
3/27/2017	0.0602	
10/5/2017	0.0734	
3/15/2018	0.053	
10/5/2018	0.065	
4/8/2019		0.059
10/1/2019		0.082
3/26/2020		0.071
9/23/2020		0.079
3/9/2021		0.085

	GWC-5	GWC-5
3/7/2007	0.1	
5/8/2007	0.11	
7/6/2007	0.11	
8/28/2007	0.1	
11/6/2007	0.1	
5/8/2008	0.11	
12/3/2008	0.091	
4/7/2009	0.094	
10/1/2009	0.097	
4/14/2010	0.096	
10/14/2010	0.1	
4/5/2011	0.092	
10/12/2011	0.12	
4/4/2012	0.105	
9/24/2012	0.13	
3/12/2013	0.1	
9/10/2013	0.13	
3/5/2014	0.084	
9/9/2014	0.11	
4/21/2015	0.11	
9/29/2015	0.097	
3/23/2016	0.0993	
5/17/2016	0.104	
7/6/2016	0.104	
9/7/2016	0.0945	
10/18/2016	0.0928	
12/8/2016	0.1	
2/1/2017	0.0972	
3/23/2017	0.105	
10/4/2017	0.102	
3/16/2018	0.091	
10/4/2018	0.084	
4/9/2019		0.067
10/1/2019		0.09
3/31/2020		0.064
9/25/2020		0.074
3/9/2021		0.063

	GWC-6	GWC-6
3/7/2007	0.057	
5/9/2007	0.054	
7/17/2007	0.059	
8/28/2007	0.061	
11/6/2007	0.074	
5/8/2008	0.079	
12/3/2008	0.1	
4/7/2009	0.091	
10/1/2009	0.092	
4/13/2010	0.095	
10/6/2010	0.11	
4/5/2011	0.1	
10/4/2011	0.11	
4/3/2012	0.116	
9/18/2012	0.12	
3/12/2013	0.11	
9/9/2013	0.13	
3/5/2014	0.12	
9/8/2014	0.13	
4/22/2015	0.14	
9/29/2015	0.14	
3/23/2016	0.156	
5/17/2016	0.168	
7/6/2016	0.171	
9/7/2016	0.154	
10/18/2016	0.159	
12/8/2016	0.156	
2/1/2017	0.163	
3/23/2017	0.161	
10/4/2017	0.171	
3/16/2018	0.17	
10/4/2018	0.19	
4/8/2019		0.15
10/1/2019		0.18
3/31/2020		0.18
9/25/2020		0.16
3/9/2021		0.17

	GWC-7	GWC-7
5/9/2007	0.011	
7/6/2007	0.0065	
8/28/2007	0.0095	
11/6/2007	0.013	
5/8/2008	0.011	
12/2/2008	0.011	
4/8/2009	0.0091	
10/1/2009	0.0098	
4/13/2010	0.0084	
10/7/2010	0.01	
4/5/2011	0.015	
10/4/2011	0.01	
4/3/2012	0.0426	
9/18/2012	0.02	
3/12/2013	0.35	
9/10/2013	0.11	
3/5/2014	0.054	
9/8/2014	0.044	
4/21/2015	0.065	
9/29/2015	0.036	
3/23/2016	0.263	
5/18/2016	0.245	
7/6/2016	0.117	
9/7/2016	0.0703	
10/18/2016	0.068	
12/8/2016	0.0791	
2/2/2017	0.17	
3/24/2017	0.181	
10/4/2017	0.0937	
3/15/2018	0.15	
10/4/2018	0.08	
4/8/2019		0.24
10/1/2019		0.085
3/30/2020		0.21
9/24/2020		0.11
3/9/2021		0.31

	GWC-8	GWC-8
5/9/2007	0.13	
7/6/2007	0.12	
8/28/2007	0.11	
11/6/2007	0.1	
5/8/2008	0.1	
12/2/2008	0.11	
4/8/2009	0.1	
9/30/2009	0.099	
4/13/2010	0.098	
10/13/2010	0.092	
4/5/2011	0.085	
10/4/2011	0.091	
4/3/2012	0.101	
9/19/2012	0.1	
3/12/2013	0.098	
9/10/2013	0.11	
3/5/2014	0.087	
9/9/2014	0.1	
4/22/2015	0.095	
9/29/2015	0.093	
3/23/2016	0.0918	
5/18/2016	0.0957	
7/6/2016	0.0935	
9/8/2016	0.0925	
10/18/2016	0.0939	
12/8/2016	0.0996	
2/2/2017	0.096	
3/24/2017	0.106	
10/5/2017	0.103	
3/14/2018	0.1	
10/4/2018	0.11	
4/8/2019		0.13
6/18/2019		0.17
10/1/2019		0.12
3/27/2020		0.14
9/24/2020		0.14
3/9/2021		0.14

	GWC-9	GWC-9
3/7/2007	0.059	
5/8/2007	0.055	
7/6/2007	0.052	
8/28/2007	0.047	
11/6/2007	0.048	
5/8/2008	0.052	
12/2/2008	0.056	
4/8/2009	0.057	
9/30/2009	0.055	
4/13/2010	0.053	
10/13/2010	0.054	
4/5/2011	0.035 (o)	
10/4/2011	0.058	
4/4/2012	0.0632	
9/19/2012	0.061	
3/12/2013	0.056	
9/10/2013	0.067	
3/5/2014	0.055	
9/3/2014	0.051	
4/21/2015	0.059	
9/29/2015	0.06	
3/23/2016	0.0636	
5/18/2016	0.0629	
7/6/2016	0.0646	
9/8/2016	0.063	
10/19/2016	0.0644	
12/8/2016	0.0648	
2/2/2017	0.0656	
3/27/2017	0.0619	
10/5/2017	0.0655	
3/15/2018	0.062	
10/5/2018	0.07	
4/8/2019		0.058
10/1/2019		0.071
3/27/2020		0.06
9/24/2020		0.06
3/9/2021		0.059

	GWA-3	GWA-3
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/2/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/26/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	8E-05 (J)	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/5/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/5/2019		<0.0005
9/30/2019		<0.0005
3/26/2020		<0.0005
9/23/2020		<0.0005
3/8/2021		<0.0005

	GWC-19	GWC-19
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/4/2008	<0.0005	
4/14/2009	<0.0005	
10/2/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/5/2012	<0.0005	
9/25/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/10/2014	<0.0005	
9/9/2014	<0.0005	
4/22/2015	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/18/2016	<0.0005	
12/7/2016	<0.0005	
2/2/2017	<0.0005	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/31/2020		<0.0005
9/28/2020		0.0001 (J)
3/10/2021		<0.0005

	GWC-7	GWC-7
5/9/2007	0.28 (o)	
7/6/2007	0.093	
8/28/2007	0.057	
11/6/2007	0.036	
5/8/2008	0.013	
12/2/2008	0.01	
4/8/2009	0.0076	
10/1/2009	0.0057	
4/13/2010	0.0061	
10/7/2010	0.0039	
4/5/2011	0.0025	
10/4/2011	0.0024	
4/3/2012	0.0008	
9/18/2012	0.002	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	0.00037 (J)	
9/8/2014	0.00055 (J)	
4/21/2015	0.00033 (J)	
9/29/2015	0.00046 (J)	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	0.0002 (J)	
9/7/2016	0.0002 (J)	
10/18/2016	0.0002 (J)	
12/8/2016	0.0003 (J)	
2/2/2017	<0.0005	
3/24/2017	<0.0005	
10/4/2017	0.0001 (J)	
3/15/2018	<0.0005	
10/4/2018	0.0002 (J)	
4/8/2019		5.8E-05 (J)
10/1/2019		0.0001 (J)
3/30/2020		<0.0005
9/24/2020		5E-05 (J)
3/9/2021		<0.0005

	GWA-4	GWA-4
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/2/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/24/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	0.0001 (J)	
3/24/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019		<0.0005
9/30/2019		<0.0005
3/26/2020		<0.0005
9/23/2020		<0.0005

	GWC-10	GWC-10
3/7/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/9/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/13/2010	<0.0005	
4/6/2011	<0.0005	
10/4/2011	<0.0005	
4/10/2012	<0.0005	
9/26/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/4/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	<0.0005	
9/30/2015	<0.0005	
3/23/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/2/2017	9E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/27/2020		<0.0005
9/25/2020		<0.0005
3/9/2021		<0.0005

	GWC-18	GWC-18
3/7/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/3/2008	<0.0005	
4/14/2009	<0.0005	
10/1/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/5/2012	<0.0005	
9/19/2012	<0.0005	
3/13/2013	<0.0005	
9/10/2013	<0.0005	
3/10/2014	<0.0005	
9/3/2014	<0.0005	
4/22/2015	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/16/2018	<0.0005	
10/5/2018	<0.0005	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/30/2020		<0.0005
9/24/2020		<0.0005
3/9/2021		<0.0005

	GWC-20	GWC-20
3/7/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/14/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
10/12/2011	<0.0005	
4/9/2012	<0.0005	
9/25/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/10/2014	<0.0005	
9/9/2014	<0.0005	
4/23/2015	<0.0005	
9/30/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/3/2017	<0.0005	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/16/2018	<0.0005	
10/5/2018	0.00011 (J)	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/31/2020		<0.0005
9/23/2020		<0.0005
3/10/2021		<0.0005

	GWC-21	GWC-21
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/27/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
10/5/2011	<0.0005	
4/10/2012	<0.0005	
9/26/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/11/2014	<0.0005	
9/9/2014	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	0.0001 (J)	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/2/2017	0.0001 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/31/2020		<0.0005
9/24/2020		<0.0005
3/9/2021		<0.0005

	GWC-23	GWC-23
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/14/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/13/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/9/2012	<0.0005	
9/19/2012	<0.0005	
3/13/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/3/2014	<0.0005	
4/23/2015	<0.0005	
9/30/2015	<0.0005	
3/23/2016	<0.0005	
5/19/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/3/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/5/2018	<0.0005	
4/8/2019		<0.0005
10/1/2019		<0.0005
3/26/2020		<0.0005
9/23/2020		<0.0005
3/9/2021		<0.0005

	GWC-5	GWC-5
3/7/2007	0.0015	
5/8/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012		
	<0.0005	
9/24/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/9/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/8/2016	<0.0005	
2/1/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	~0.0003	
3/16/2018	<0.0005	
3/10/2010		
	<0.0005 <0.0005	
10/4/2018	<0.0005	<0.0005
10/4/2018 4/9/2019	<0.0005 <0.0005	<0.0005 <0.0005
10/4/2018 4/9/2019 10/1/2019	<0.0005 <0.0005	<0.0005
10/4/2018 4/9/2019 10/1/2019 3/31/2020	<0.0005 <0.0005	<0.0005 <0.0005
10/4/2018 4/9/2019 10/1/2019	<0.0005 <0.0005	<0.0005

_			
		GWC-7	GWC-7
	5/9/2007	0.023 (o)	
	7/6/2007	0.0081 (o)	
	8/28/2007	0.0035	
	11/6/2007	0.0028	
	5/8/2008	<0.0005	
	12/2/2008	<0.0005	
	4/8/2009	0.0013	
	10/1/2009	<0.0005	
	4/13/2010	<0.0005	
	10/7/2010	<0.0005	
	4/5/2011	<0.0005	
	10/4/2011	<0.0005	
	4/3/2012	<0.0005	
	9/18/2012	<0.0005	
	3/12/2013	<0.0005	
	9/10/2013	<0.0005	
	3/5/2014	<0.0005	
	9/8/2014	<0.0005	
	4/21/2015	0.0015	
	9/29/2015	<0.0005	
	3/23/2016	<0.0005	
	5/18/2016	<0.0005	
	7/6/2016	<0.0005	
	9/7/2016	<0.0005	
	10/18/2016	<0.0005	
	12/8/2016	<0.0005	
	2/2/2017	0.0001 (J)	
	3/24/2017	<0.0005	
	10/4/2017	<0.0005	
	3/15/2018	<0.0005	
	10/4/2018	<0.0005	
	4/8/2019		<0.0005
	10/1/2019		<0.0005
	3/30/2020		<0.0005
	9/24/2020		<0.0005
	3/9/2021		<0.0005

	GWC-8	GWC-8
5/9/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/13/2010	<0.0005	
4/5/2011	<0.0005	
10/4/2011	<0.0005	
4/3/2012	<0.0005	
9/19/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/9/2014	<0.0005	
4/22/2015	<0.0005	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/18/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/24/2017	<0.0005	
10/5/2017	<0.0005	
3/14/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019		<0.0005
10/1/2019		<0.0005
3/27/2020		<0.0005
9/24/2020		<0.0005
3/9/2021		<0.0005

	GWC-9	GWC-9
3/7/2007	<0.0005	
5/8/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/13/2010	<0.0005	
4/5/2011	<0.0005	
10/4/2011	<0.0005	
4/4/2012	<0.0005	
9/19/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	0.00029 (J)	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/5/2018	<0.0005	
4/8/2019		<0.0005
10/1/2019		<0.0005
3/27/2020		<0.0005
9/24/2020		<0.0005
3/9/2021		<0.0005

	GWA-1	GWA-1		
3/6/2007	<0.005			
5/8/2007	<0.005			
7/7/2007	<0.005			
8/28/2007	<0.005			
11/6/2007	<0.005			
5/9/2008	<0.005			
12/3/2008	<0.005			
4/7/2009	<0.005			
10/1/2009	<0.005			
4/14/2010	<0.005			
10/13/2010	<0.005			
4/6/2011	<0.005			
10/10/2011	<0.005			
4/3/2012	<0.005			
9/24/2012	<0.005			
3/12/2013	<0.005			
9/11/2013	<0.005			
3/4/2014	0.00032 (J)			
9/3/2014	<0.005			
4/21/2015	<0.005			
9/30/2015	<0.005			
3/22/2016	<0.005			
5/17/2016	<0.005			
7/5/2016	<0.005			
9/7/2016	<0.005			
10/18/2016	<0.005			
12/6/2016	<0.005			
1/31/2017	<0.005			
3/23/2017	<0.005			
10/4/2017	<0.005			
3/14/2018	0.016			
10/4/2018	<0.005			
4/8/2019		<0.005		
9/30/2019		<0.005		
3/26/2020		<0.005		
9/23/2020		<0.005		
3/8/2021		<0.005		

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	0.0013	
11/7/2007	0.0024	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0018 (J)	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
9/30/2019		<0.005
3/26/2020		<0.005
9/22/2020		<0.005
3/8/2021		<0.005

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
9/30/2019		<0.005
3/26/2020		0.00043 (J)
9/21/2020		<0.005
3/9/2021		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	0.0014	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019		<0.005
9/30/2019		<0.005
3/26/2020		0.00062 (J)
9/23/2020		<0.005
3/8/2021		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	0.0004 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
9/30/2019		<0.005
3/26/2020		0.0013 (J)
9/23/2020		<0.005
3/8/2021		<0.005

_			
		GWC-10	GWC-10
	3/7/2007	<0.005	
	5/8/2007	<0.005	
	7/17/2007	<0.005	
	8/28/2007	<0.005	
	11/7/2007	<0.005	
	5/9/2008	<0.005	
	12/2/2008	<0.005	
	4/8/2009	<0.005	
	10/1/2009	<0.005	
	4/14/2010	<0.005	
	10/13/2010	<0.005	
	4/6/2011	<0.005	
	10/4/2011	<0.005	
	4/10/2012	<0.005	
	9/26/2012	<0.005	
	3/12/2013	<0.005	
	9/10/2013	<0.005	
	3/4/2014	<0.005	
	9/3/2014	<0.005	
	4/21/2015	<0.005	
	9/30/2015	<0.005	
	3/23/2016	<0.005	
	5/17/2016	0.00424 (J)	
	7/6/2016	<0.005	
	9/7/2016	<0.005	
	10/18/2016	<0.005	
	12/6/2016	0.0013 (J)	
	2/2/2017	0.001 (J)	
	3/27/2017	<0.005	
	10/5/2017	<0.005	
	3/15/2018	<0.005	
	10/4/2018	<0.005	
	4/9/2019		<0.005
	10/1/2019		<0.005
	3/27/2020		<0.005
	9/25/2020		<0.005
	3/9/2021		<0.005

2/7/2007	GWC-18	GWC-18
0/7/0007		
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00086 (J)
3/30/2020		0.00071 (J)
9/24/2020		<0.005
3/9/2021		<0.005

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0012 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		0.00042 (J)
9/28/2020		0.00063 (J)
3/10/2021		<0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	0.0016	
11/7/2007	0.0016	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	0.0064 (J)	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/23/2020		<0.005
3/10/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	0.0015	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		0.00093 (J)
9/24/2020		<0.005
3/9/2021		<0.005

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	0.002	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0013	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		0.0023 (J)
10/1/2019		<0.005
3/31/2020		0.0015 (J)
9/23/2020		<0.005
3/9/2021		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	0.0013	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		<0.005
10/1/2019		0.0051 (J)
3/26/2020		<0.005
9/23/2020		<0.005
3/9/2021		<0.005

3/7/2007 <0.005 5/8/2007 <0.005 7/6/2007 <0.005 8/28/2007 <0.005 11/6/2007 <0.005 5/8/2008 <0.005 12/3/2008 <0.005 4/7/2009 <0.005 10/1/2009 <0.005 4/14/2010 <0.005 4/5/2011 <0.005 10/12/2011 <0.005 4/4/2012 <0.005 9/24/2012 <0.005 3/12/2013 <0.005 9/10/2013 <0.005 3/5/2014 <0.005 9/9/2014 <0.005 9/9/2015 <0.005 3/23/2016 <0.005 9/29/2015 <0.005 3/23/2016 <0.005 9/7/2016 <0.005 9/7/2016 <0.005 10/18/2016 <0.005 2/1/2017 <0.005 3/16/2018 <0.005 10/4/2019 <0.005 10/4/2019 <0.005 10/1/2019 <0.005 3/9/2021 <0.005		GWC-5	GWC-5
7/6/2007 < 0.005	3/7/2007		
8/28/2007	5/8/2007	<0.005	
11/6/2007 <0.005	7/6/2007	<0.005	
5/8/2008 <0.005	8/28/2007	<0.005	
12/3/2008 <0.005	11/6/2007	<0.005	
4/7/2009 <0.005	5/8/2008	<0.005	
10/1/2009	12/3/2008	<0.005	
4/14/2010 <0.005	4/7/2009	<0.005	
10/14/2010 <0.005	10/1/2009	<0.005	
4/5/2011 <0.005	4/14/2010	<0.005	
10/12/2011 <0.005	10/14/2010	<0.005	
4/4/2012 <0.005	4/5/2011	<0.005	
9/24/2012	10/12/2011	<0.005	
3/12/2013	4/4/2012	<0.005	
9/10/2013	9/24/2012	<0.005	
9/10/2013	3/12/2013	<0.005	
9/9/2014 <0.005 4/21/2015 <0.005 9/29/2015 <0.005 3/23/2016 <0.005 5/17/2016 <0.005 7/6/2016 <0.005 9/7/2016 <0.005 10/18/2016 <0.005 10/18/2016 <0.005 2/1/2017 <0.005 2/1/2017 <0.005 3/23/2017 <0.005 10/4/2018 <0.005 10/4/2018 <0.005 10/4/2019 <0.005 4/9/2019 <0.005 10/1/2019 0.0012 (J) 3/31/2020 <0.005 9/25/2020 <0.005	9/10/2013	<0.005	
4/21/2015 <0.005	3/5/2014	<0.005	
4/21/2015 <0.005	9/9/2014	<0.005	
3/23/2016 <0.005 5/17/2016 <0.005 7/6/2016 <0.005 9/7/2016 <0.005 9/7/2016 <0.005 10/18/2016 <0.005 12/8/2016 <0.005 2/1/2017 <0.005 3/23/2017 <0.005 10/4/2018 <0.005 10/4/2018 <0.005 4/9/2019 <0.005 4/9/2019 <0.005 3/31/2020 <0.005 9/25/2020 <0.005			
5/17/2016 <0.005 7/6/2016 <0.005 9/7/2016 <0.005 10/18/2016 <0.005 12/8/2016 <0.005 12/8/2016 <0.005 2/1/2017 <0.005 3/23/2017 <0.005 10/4/2017 <0.005 3/16/2018 <0.005 10/4/2018 <0.005 10/4/2019 <0.005 4/9/2019 <0.005 3/31/2020 <0.005 9/25/2020 <0.005	9/29/2015	<0.005	
7/6/2016	3/23/2016	<0.005	
7/6/2016	5/17/2016	<0.005	
10/18/2016 <0.005 12/8/2016 <0.005 2/1/2017 <0.005 3/23/2017 <0.005 10/4/2017 <0.005 3/16/2018 <0.005 10/4/2018 <0.005 4/9/2019 <0.005 4/9/2019 0.0012 (J) 3/31/2020 <0.005 9/25/2020 <0.005	7/6/2016	<0.005	
12/8/2016 <0.005	9/7/2016	<0.005	
2/1/2017 <0.005 3/23/2017 <0.005 10/4/2017 <0.005 3/16/2018 <0.005 10/4/2018 <0.005 4/9/2019 <0.005 10/1/2019 0.0012 (J) 3/31/2020 <0.005 9/25/2020 <0.005	10/18/2016	<0.005	
3/23/2017 <0.005 10/4/2017 <0.005 3/16/2018 <0.005 10/4/2018 <0.005 4/9/2019 <0.005 10/1/2019 0.0012 (J) 3/31/2020 <0.005 9/25/2020 <0.005	12/8/2016	<0.005	
3/23/2017 <0.005 10/4/2017 <0.005 3/16/2018 <0.005 10/4/2018 <0.005 4/9/2019 <0.005 10/1/2019 0.0012 (J) 3/31/2020 <0.005 9/25/2020 <0.005	2/1/2017	<0.005	
3/16/2018 <0.005 10/4/2018 <0.005 4/9/2019 <0.005 10/1/2019 0.0012 (J) 3/31/2020 <0.005 9/25/2020 <0.005		<0.005	
10/4/2018 <0.005 4/9/2019 <0.005 10/1/2019 0.0012 (J) 3/31/2020 <0.005 9/25/2020 <0.005	10/4/2017	<0.005	
4/9/2019 <0.005	3/16/2018	<0.005	
4/9/2019 <0.005	10/4/2018	<0.005	
10/1/2019 0.0012 (J) 3/31/2020 <0.005 9/25/2020 <0.005			<0.005
3/31/2020 <0.005 9/25/2020 <0.005			
9/25/2020 <0.005			
3/9/2021 <0.005	9/25/2020		<0.005
	3/9/2021		<0.005

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
	<0.005	
10/4/2018	10.000	< 0.005
10/4/2018 4/8/2019	10.000	<0.005 <0.005
10/4/2018 4/8/2019 10/1/2019	10.000	<0.005
10/4/2018 4/8/2019 10/1/2019 3/31/2020	-0.000	<0.005 0.00085 (J)
10/4/2018 4/8/2019 10/1/2019	0.000	<0.005

	GWC-7	GWC-7
5/9/2007	0.11 (o)	
7/6/2007	0.0029	
8/28/2007	0.0038	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	0.0016	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	0.0018	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/24/2017	0.0011 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
10/1/2019		<0.005
3/30/2020		0.00041 (J)
9/24/2020		<0.005
3/9/2021		<0.005

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	0.0035	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	0.0017	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	0.0005 (J)	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
10/1/2019		0.0005 (J)
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005

3/7/2007 5/8/2007 7/6/2007 8/28/2007	GWC-9 <0.005 0.0013	
7/6/2007 8/28/2007		
8/28/2007	<0.00E	
	< 0.005	
11/6/2007	0.0014	
	0.0024	
5/8/2008	<0.005	
	<0.005	
	<0.005	
	<0.005	
	<0.005	
	<0.005	
	<0.005	
	<0.005	
	<0.005	
	<0.005	
	<0.005	
	<0.005	
	<0.005	
	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
	<0.005	
	<0.005	
	<0.005	
4/8/2019		<0.005
10/1/2019		<0.005
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005
0.0.2021		-0.000

	GWA-1	GWA-1
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/10/2011	<0.01	
4/3/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/11/2013	<0.01	
3/4/2014	0.00043 (J)	
9/3/2014	0.00076 (J)	
4/21/2015	0.00051 (J)	
9/30/2015	0.0006 (J)	
3/22/2016	<0.01	
5/17/2016	<0.01	
7/5/2016	0.0004 (J)	
9/7/2016	<0.01	
10/18/2016	<0.01	
12/6/2016	0.0006 (J)	
1/31/2017	0.0006 (J)	
3/23/2017	0.0007 (J)	
10/4/2017	0.0006 (J)	
3/14/2018	<0.01	
10/4/2018	0.00058 (J)	
4/8/2019		0.00026 (J)
9/30/2019		0.00042 (J)
3/26/2020		0.00049 (J)
9/23/2020		0.00051 (J)
3/8/2021		0.0005 (J)

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.00047 (J)	
9/3/2014	0.00065 (J)	
4/21/2015	0.00062 (J)	
9/29/2015	0.0009 (J)	
3/22/2016	<0.01	
5/17/2016	<0.01	
7/6/2016	0.0009 (J)	
9/7/2016	0.0011 (J)	
10/18/2016	0.0011 (J)	
12/6/2016	0.0011 (J)	
2/1/2017	0.0011 (J)	
3/24/2017	0.0008 (J)	
10/5/2017	0.0008 (J)	
3/15/2018	<0.01	
10/4/2018	0.00072 (J)	
4/8/2019		0.00076 (J)
9/30/2019		0.00054 (J)
3/26/2020		0.00063 (J)
9/22/2020		0.00049 (J)
3/8/2021		0.00049 (J)

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		6.1E-05 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/21/2020		<0.005
3/9/2021		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	0.0003 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0007 (J)	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019		0.00031 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/23/2020		<0.005
3/8/2021		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	0.0016	
3/12/2013	<0.005	
9/10/2013	0.002	
3/11/2014	<0.005	
9/8/2014	0.001 (J)	
4/21/2015	<0.005	
9/29/2015	0.0025 (J)	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	0.0004 (J)	
9/7/2016	0.0008 (J)	
10/18/2016	<0.005	
12/6/2016	0.0026 (J)	
2/1/2017	0.0013 (J)	
3/24/2017	0.0014 (J)	
10/4/2017	0.0012 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00044 (J)
9/30/2019		0.00079 (J)
3/26/2020		0.00082 (J)
9/23/2020		<0.005
3/8/2021		0.00061 (J)

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/27/2020		0.00082 (J)
9/25/2020		<0.005
3/9/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/27/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
10/5/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	0.0033	
3/13/2013	<0.01	
9/11/2013	0.0018	
3/11/2014	0.00029 (J)	
9/9/2014	0.0011 (J)	
9/30/2015	<0.01	
3/24/2016	<0.01	
5/18/2016	<0.01	
7/7/2016	0.0016 (J)	
9/8/2016	0.0006 (J)	
10/19/2016	0.0006 (J)	
12/7/2016	0.0006 (J)	
2/2/2017	<0.01	
3/27/2017	0.001 (J)	
10/5/2017	0.0051 (J)	
3/15/2018	<0.01	
10/4/2018	0.0065 (J)	
4/9/2019		0.0023 (J)
10/1/2019		0.00046 (J)
3/31/2020		0.0019 (J)
9/24/2020		0.00068 (J)
3/9/2021		0.00049 (J)

_			
		GWC-23	GWC-23
	3/6/2007	<0.005	
	5/9/2007	<0.005	
	7/17/2007	<0.005	
	8/29/2007	<0.005	
	11/7/2007	<0.005	
	5/7/2008	<0.005	
	12/5/2008	<0.005	
	4/14/2009	<0.005	
	10/1/2009	<0.005	
	4/14/2010	<0.005	
	10/13/2010	<0.005	
	4/6/2011	<0.005	
	10/12/2011	<0.005	
	4/9/2012	<0.005	
	9/19/2012	<0.005	
	3/13/2013	<0.005	
	9/10/2013	<0.005	
	3/11/2014	<0.005	
	9/3/2014	<0.005	
	4/23/2015	<0.005	
	9/30/2015	<0.005	
	3/23/2016	<0.005	
	5/19/2016	<0.005	
	7/7/2016	<0.005	
	9/8/2016	<0.005	
	10/19/2016	<0.005	
	12/7/2016	<0.005	
	2/3/2017	<0.005	
	3/27/2017	<0.005	
	10/5/2017	<0.005	
	3/15/2018	<0.005	
	10/5/2018	0.00058 (J)	
	4/8/2019		0.00046 (J)
	10/1/2019		0.00033 (J)
	3/26/2020		0.00035 (J)
	9/23/2020		<0.005
	3/9/2021		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	0.0007 (J)	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/25/2020		0.00057 (J)
3/9/2021		0.00043 (J)

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00022 (J)
4/8/2019 10/1/2019		0.00022 (J) <0.005
10/1/2019		<0.005
10/1/2019 3/31/2020		<0.005 <0.005
10/1/2019		<0.005

	GWC-7	GWC-7
5/9/2007	6.5 (o)	
7/6/2007	2.1 (o)	
8/28/2007	1.4 (o)	
11/6/2007	1.1 (o)	
5/8/2008	0.75	
12/2/2008	0.41	
4/8/2009	0.38	
10/1/2009	0.29	
4/13/2010	0.26	
10/7/2010	0.24	
4/5/2011	0.17	
10/4/2011	0.19	
4/3/2012	0.114	
9/18/2012	0.14	
3/12/2013	0.041	
9/10/2013	0.06	
3/5/2014	0.049	
9/8/2014	0.068	
4/21/2015	0.043	
9/29/2015	0.0525	
3/23/2016	0.0172	
5/18/2016	0.021	
7/6/2016	0.0278	
9/7/2016	0.0334	
10/18/2016	0.0368	
12/8/2016	0.0419	
2/2/2017	0.0113	
3/24/2017	0.0094 (J)	
10/4/2017	0.0237	
3/15/2018	0.014	
10/4/2018	0.024	
4/8/2019		0.0086 (J)
10/1/2019		0.017
3/30/2020		0.012
9/24/2020		0.01
3/9/2021		0.0093

·	GWC-8	GWC-8
5/9/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/9/2014	<0.01	
4/22/2015	<0.01	
9/29/2015	<0.01	
3/23/2016	<0.01	
5/18/2016	<0.01	
7/6/2016	<0.01	
9/8/2016	<0.01	
10/18/2016	<0.01	
12/8/2016	<0.01	
2/2/2017	<0.01	
3/24/2017	<0.01	
10/5/2017	0.0003 (J)	
3/14/2018	<0.01	
10/4/2018	<0.01	
4/8/2019		0.0017 (J)
10/1/2019		0.00081 (J)
3/27/2020		0.0016 (J)
9/24/2020		0.0011 (J)
3/9/2021		0.0013 (J)

_			
		GWC-9	GWC-9
	3/7/2007	<0.005	
	5/8/2007	<0.005	
	7/6/2007	<0.005	
	8/28/2007	<0.005	
	11/6/2007	<0.005	
	5/8/2008	<0.005	
	12/2/2008	<0.005	
	4/8/2009	<0.005	
	9/30/2009	<0.005	
	4/13/2010	<0.005	
	10/13/2010	<0.005	
	4/5/2011	<0.005	
	10/4/2011	<0.005	
	4/4/2012	<0.005	
	9/19/2012	<0.005	
	3/12/2013	<0.005	
	9/10/2013	<0.005	
	3/5/2014	<0.005	
	9/3/2014	<0.005	
	4/21/2015	<0.005	
	9/29/2015	<0.005	
	3/23/2016	<0.005	
	5/18/2016	<0.005	
	7/6/2016	0.0004 (J)	
	9/8/2016	<0.005	
	10/19/2016	<0.005	
	12/8/2016	<0.005	
	2/2/2017	<0.005	
	3/27/2017	<0.005	
	10/5/2017	0.0004 (J)	
	3/15/2018	<0.005	
	10/5/2018	<0.005	
	4/8/2019		0.00041 (J)
	10/1/2019		0.00041 (J)
	3/27/2020		0.00063 (J)
	9/24/2020		<0.005
	3/9/2021		0.00042 (J)

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	0.0032	
11/7/2007	0.0036	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.0013 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/22/2020		<0.005
3/8/2021		<0.005

_			
		GWA-2	GWA-2
	3/6/2007	<0.005	
	5/8/2007	<0.005	
	7/7/2007	<0.005	
	8/28/2007	0.0032	
	11/6/2007	<0.005	
	5/9/2008	<0.005	
	12/3/2008	<0.005	
	4/7/2009	<0.005	
	10/1/2009	<0.005	
	4/13/2010	<0.005	
	10/7/2010	<0.005	
	4/6/2011	<0.005	
	10/6/2011	<0.005	
	4/3/2012	<0.005	
	9/19/2012	<0.005	
	3/12/2013	<0.005	
	9/9/2013	<0.005	
	3/4/2014	<0.005	
	9/3/2014	0.0011 (J)	
	4/22/2015	<0.005	
	9/30/2015	<0.005	
	3/22/2016	<0.005	
	9/7/2016	<0.005	
	3/23/2017	<0.005	
	10/4/2017	<0.005	
	3/14/2018	<0.005	
	10/4/2018	<0.005	
	4/8/2019		0.00029 (J)
	9/30/2019		<0.005
	3/26/2020		<0.005
	9/21/2020		<0.005
	3/9/2021		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	0.0028	
8/28/2007	0.0039	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019		<0.005
9/30/2019		<0.005
3/26/2020		0.00022 (J)
9/23/2020		<0.005
3/8/2021		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	0.0061	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	0.0066	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
9/30/2019		<0.005
3/26/2020		<0.005
9/23/2020		<0.005
3/8/2021		<0.005

	GWC-10	GWC-10
3/7/2007	0.0025	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/27/2020		0.00022 (J)
9/25/2020		<0.005
3/9/2021		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	0.0029	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	0.00099 (J)	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00037 (J)
3/30/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	0.0035	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0004 (J)	
10/5/2017	0.0005 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		0.0014 (J)
10/1/2019		0.00019 (J)
3/31/2020		<0.005
9/28/2020		<0.005
3/10/2021		<0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0028	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00023 (J)
3/31/2020		<0.005
9/23/2020		<0.005
3/10/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0029	
5/7/2008	0.0026	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	0.0013 (J)	
9/30/2015	0.0008 (J)	
3/24/2016	<0.005	
9/8/2016	0.0006 (J)	
3/27/2017	0.0005 (J)	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00084 (J)
3/31/2020		0.00082 (J)
9/24/2020		<0.005
3/9/2021		<0.005

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0033	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00031 (J)
3/31/2020		0.0002 (J)
9/23/2020		<0.005
3/9/2021		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0084	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	0.0012 (J)	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0003 (J)	
3/15/2018	0.0016 (J)	
10/5/2018	<0.005	
4/8/2019		0.0005 (J)
10/1/2019		0.00083 (J)
3/26/2020		0.00067 (J)
9/23/2020		<0.005
3/9/2021		<0.005

	GWC-5	GWC-5
3/7/2007	0.0027	
5/8/2007	0.0026	
7/6/2007	<0.005	
8/28/2007	0.0036	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00031 (J)
3/31/2020		0.00019 (J)
9/25/2020		<0.005
3/9/2021		<0.005

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
10/1/2019		0.00023 (J)
3/31/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005

	GWC-7	GWC-7
5/9/2007	0.44 (o)	
7/6/2007	0.016	
8/28/2007	0.0091	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	0.003	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	0.00082 (J)	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	0.0007 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00025 (J)
10/1/2019		0.00034 (J)
3/30/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
10/1/2019		0.00036 (J)
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005

	GWC-9	GWC-9
3/7/2007	0.0043	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		<0.005
10/1/2019		<0.005
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005

·	GWA-11	GWA-11
3/7/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/9/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/4/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/1/2017	<0.001	
3/24/2017	7E-05 (J)	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019		<0.001
9/30/2019		<0.001
3/26/2020		<0.001
9/22/2020		<0.001
3/8/2021		<0.001

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019		<0.005
9/30/2019		<0.005
3/26/2020		4.7E-05 (J)
9/23/2020		<0.005
3/8/2021		4E-05 (J)

_			
		GWC-10	GWC-10
	3/7/2007	<0.001	
	5/8/2007	<0.001	
	7/17/2007	<0.001	
	8/28/2007	<0.001	
	11/7/2007	<0.001	
	5/9/2008	<0.001	
	12/2/2008	<0.001	
	4/8/2009	<0.001	
	10/1/2009	<0.001	
	4/14/2010	<0.001	
	10/13/2010	<0.001	
	4/6/2011	<0.001	
	10/4/2011	<0.001	
	4/10/2012	<0.001	
	9/26/2012	<0.001	
	3/12/2013	<0.001	
	9/10/2013	<0.001	
	3/4/2014	<0.001	
	9/3/2014	<0.001	
	4/21/2015	<0.001	
	9/30/2015	<0.001	
	3/23/2016	<0.001	
	5/17/2016	<0.001	
	7/6/2016	<0.001	
	9/7/2016	<0.001	
	10/18/2016	<0.001	
	12/6/2016	<0.001	
	2/2/2017	<0.001	
	3/27/2017	<0.001	
	10/5/2017	<0.001	
	3/15/2018	<0.001	
	10/4/2018	<0.001	
	4/9/2019		<0.001
	10/1/2019		<0.001
	3/27/2020		5.4E-05 (J)
	9/25/2020		<0.001
	3/9/2021		<0.001

	GWC-18	GWC-18	
3/7/2007	<0.001		
5/9/2007	<0.001		
7/17/2007	<0.001		
8/28/2007	<0.001		
11/7/2007	<0.001		
5/7/2008	<0.001		
12/3/2008	<0.001		
4/14/2009	<0.001		
10/1/2009	<0.001		
4/13/2010	<0.001		
10/12/2010	<0.001		
4/6/2011	<0.001		
10/12/2011	<0.001		
4/5/2012	<0.001		
9/19/2012	<0.001		
3/13/2013	<0.001		
9/10/2013	<0.001		
3/10/2014	<0.001		
9/3/2014	<0.001		
4/22/2015	<0.001		
9/30/2015	<0.001		
3/24/2016	<0.001		
5/18/2016	<0.001		
7/7/2016	<0.001		
9/8/2016	<0.001		
10/19/2016	<0.001		
12/8/2016	<0.001		
2/2/2017	<0.001		
3/27/2017	<0.001		
10/5/2017	<0.001		
3/16/2018	<0.001		
10/5/2018	<0.001		
4/9/2019		<0.001	
10/1/2019		<0.001	
3/30/2020		<0.001	
9/24/2020		4E-05 (J)	
3/9/2021		<0.001	

	GWC-19	GWC-19
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/4/2008	<0.001	
4/14/2009	<0.001	
10/2/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
4/6/2011	<0.001	
10/12/2011	<0.001	
4/5/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/10/2014	<0.001	
9/9/2014	<0.001	
4/22/2015	<0.001	
9/30/2015	<0.001	
3/24/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	<0.001	
9/8/2016	<0.001	
10/18/2016	<0.001	
12/7/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	0.0002 (J)	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019		<0.001
10/1/2019		<0.001
3/31/2020		6.1E-05 (J)
9/28/2020		0.00014 (J)
3/10/2021		<0.001

	GWC-20	GWC-20
3/7/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/14/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
10/12/2011	<0.001	
4/9/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/10/2014	<0.001	
9/9/2014	<0.001	
4/23/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	<0.001	
2/3/2017	<0.001	
3/27/2017	7E-05 (J)	
10/5/2017	<0.001	
3/16/2018	<0.001	
10/5/2018	<0.001	
4/9/2019		<0.001
10/1/2019		<0.001
3/31/2020		<0.001
9/23/2020		<0.001
3/10/2021		<0.001

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	0.0001 (J)	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		7.5E-05 (J)
3/31/2020		<0.005
9/24/2020		0.00012 (J)
3/9/2021		0.00013 (J)

3/6/2007 5/9/2007 7/17/2007 8/29/2007 11/7/2007 5/7/2008 12/5/2008 4/14/2009 9/30/2009 4/13/2010 10/12/2010 4/6/2011 10/5/2011 4/9/2012 9/25/2012	GWC-22 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	GWC-22
5/9/2007 7/17/2007 8/29/2007 11/7/2007 5/7/2008 12/5/2008 4/14/2009 9/30/2009 4/13/2010 10/12/2010 4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	
7/17/2007 8/29/2007 11/7/2007 5/7/2008 12/5/2008 4/14/2009 9/30/2009 4/13/2010 10/12/2010 4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	
8/29/2007 11/7/2007 5/7/2008 12/5/2008 4/14/2009 9/30/2009 4/13/2010 10/12/2010 4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	
11/7/2007 5/7/2008 12/5/2008 4/14/2009 9/30/2009 4/13/2010 10/12/2010 4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	
5/7/2008 12/5/2008 4/14/2009 9/30/2009 4/13/2010 10/12/2010 4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	
12/5/2008 4/14/2009 9/30/2009 4/13/2010 10/12/2010 4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	
4/14/2009 9/30/2009 4/13/2010 10/12/2010 4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	
9/30/2009 4/13/2010 10/12/2010 4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005 <0.005 <0.005 <0.005	
4/13/2010 10/12/2010 4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005 <0.005 <0.005	
10/12/2010 4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005 <0.005	
4/6/2011 10/5/2011 4/9/2012	<0.005 <0.005	
10/5/2011 4/9/2012	<0.005	
4/9/2012		
	<0.005	
9/25/2012		
	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00012 (J)
3/31/2020		0.00013 (J)
9/23/2020		6.6E-05 (J)
3/9/2021		3.8E-05 (J)

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	0.00042 (J)	
4/8/2019		0.00018 (J)
10/1/2019		0.00022 (J)
3/26/2020		0.00016 (J)
9/23/2020		0.00036 (J)
3/9/2021		0.00011 (J)

	GWC-5	GWC-5
3/7/2007	<0.001	
5/8/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/14/2010	< 0.001	
4/5/2011	<0.001	
10/12/2011	<0.001	
4/4/2012	<0.001	
9/24/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	<0.001	
9/9/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	< 0.001	
12/8/2016	<0.001	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/16/2018	<0.001	
10/4/2018	<0.001	
4/9/2019		0.00039 (J)
10/1/2019		6.5E-05 (J)
3/31/2020		<0.001
9/25/2020		<0.001
3/9/2021		<0.001

	GWC-6	GWC-6
3/7/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/6/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/18/2012	<0.001	
3/12/2013	<0.001	
9/9/2013	<0.001	
3/5/2014	<0.001	
9/8/2014	<0.001	
4/22/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	0.0001 (J)	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/16/2018	<0.001	
10/4/2018	<0.001	
4/8/2019		<0.001
10/1/2019		<0.001
3/31/2020		<0.001
9/25/2020		<0.001
3/9/2021		<0.001

	GWC-7	GWC-7
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0016 (J)	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	0.0001 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	0.0003 (J)	
3/24/2017	0.0002 (J)	
10/4/2017	7E-05 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
10/1/2019		5E-05 (J)
3/30/2020		4.8E-05 (J)
9/24/2020		6E-05 (J)
3/9/2021		8.5E-05 (J)

	GWC-8	GWC-8
5/9/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/13/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/19/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	<0.001	
9/9/2014	<0.001	
4/22/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	<0.001	
9/8/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	0.0002 (J)	
2/2/2017	<0.001	
3/24/2017	<0.001	
10/5/2017	<0.001	
3/14/2018	<0.001	
10/4/2018	<0.001	
4/8/2019		<0.001
10/1/2019		<0.001
3/27/2020		<0.001
9/24/2020		4.9E-05 (J)
3/9/2021		<0.001

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	0.001 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	0.0008 (J)	
3/23/2017	0.0007 (J)	
10/4/2017	0.0006 (J)	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00034 (J)
9/30/2019		0.00037 (J)
3/26/2020		0.00065 (J)
9/23/2020		<0.005
3/8/2021		<0.005

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.002 (J)	
9/3/2014	0.002 (J)	
4/21/2015	0.002 (J)	
9/29/2015	0.0022 (J)	
3/22/2016	<0.01	
9/7/2016	0.0026 (J)	
3/24/2017	0.0024 (J)	
10/5/2017	0.0023 (J)	
3/15/2018	0.0026 (J)	
10/4/2018	0.0023 (J)	
4/8/2019		0.0023 (J)
9/30/2019		0.0017 (J)
3/26/2020		0.002 (J)
9/22/2020		0.0014 (J)
3/8/2021		0.001 (J)

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	0.0007 (J)	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
9/30/2019		<0.005
3/26/2020		<0.005
9/21/2020		<0.005
3/9/2021		<0.005

_			
		GWA-3	GWA-3
	3/6/2007	<0.005	
	5/8/2007	<0.005	
	7/17/2007	<0.005	
	8/28/2007	<0.005	
	11/6/2007	<0.005	
	5/8/2008	<0.005	
	12/3/2008	<0.005	
	4/7/2009	<0.005	
	10/2/2009	<0.005	
	4/14/2010	<0.005	
	10/14/2010	<0.005	
	4/5/2011	<0.005	
	10/12/2011	<0.005	
	4/4/2012	<0.005	
	9/26/2012	<0.005	
	3/12/2013	<0.005	
	9/10/2013	<0.005	
	3/11/2014	0.0013 (J)	
	9/8/2014	<0.005	
	4/21/2015	<0.005	
	9/29/2015	<0.005	
	3/22/2016	<0.005	
	9/7/2016	<0.005	
	3/23/2017	0.0022 (J)	
	10/4/2017	<0.005	
	3/15/2018	<0.005	
	10/4/2018	<0.005	
	4/5/2019		0.00075 (J)
	9/30/2019		<0.005
	3/26/2020		0.0011 (J)
	9/23/2020		<0.005
	3/8/2021		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	0.0032	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	0.0032	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0026	
9/8/2014	0.0017 (J)	
4/21/2015	0.0016 (J)	
9/29/2015	0.0055	
3/22/2016	<0.005	
9/7/2016	0.0014 (J)	
3/24/2017	0.0017 (J)	
10/4/2017	0.0023 (J)	
3/15/2018	0.0024 (J)	
10/4/2018	0.0013 (J)	
4/8/2019		0.00089 (J)
9/30/2019		0.0013 (J)
3/26/2020		0.00096 (J)
9/23/2020		0.00091 (J)
3/8/2021		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/27/2020		0.0023 (J)
9/25/2020		<0.005
3/9/2021		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	0.0013 (J)	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	0.0009 (J)	
3/27/2017	0.0006 (J)	
10/5/2017	0.0008 (J)	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.0015 (J)
3/30/2020		0.00048 (J)
9/24/2020		0.0011 (J)
3/9/2021		<0.005

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	0.00072 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0062 (J)	
10/5/2017	0.0005 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/28/2020		<0.005
3/10/2021		<0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	0.00074 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0006 (J)	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/23/2020		<0.005
3/10/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	0.0055	
11/7/2007	0.0044	
5/7/2008	0.0047	
12/5/2008	<0.005	
4/27/2009	0.0027	
9/30/2009	0.0051	
4/13/2010	0.0031	
10/12/2010	<0.005	
10/5/2011	0.0032	
4/10/2012	<0.005	
9/26/2012	0.0063	
3/13/2013	0.0029	
9/11/2013	0.0046	
3/11/2014	0.002 (J)	
9/9/2014	0.0029	
9/30/2015	0.0025 (J)	
3/24/2016	0.00317 (J)	
9/8/2016	0.0038 (J)	
3/27/2017	0.0024 (J)	
10/5/2017	0.0104	
3/15/2018	0.0026 (J)	
10/4/2018	0.012	
12/11/2018	0.0052 (J)	
4/9/2019		0.0048 (J)
10/1/2019		0.0031 (J)
3/31/2020		0.0039 (J)
9/24/2020		0.0068
3/9/2021		0.0013 (J)

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	0.00059 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/23/2020		<0.005
3/9/2021		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0016 (J)	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	0.0011 (J)	
3/27/2017	0.0007 (J)	
10/5/2017	<0.005	
3/15/2018	0.001 (J)	
10/5/2018	0.0014 (J)	
4/8/2019		0.0011 (J)
10/1/2019		0.0035 (J)
3/26/2020		0.001 (J)
9/23/2020		0.00079 (J)
3/9/2021		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.001 (J)	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	0.0008 (J)	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		0.00098 (J)
10/1/2019		0.00088 (J)
3/31/2020		0.0013 (J)
9/25/2020		0.00078 (J)
3/9/2021		<0.005

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	0.00092 (J)	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00032 (J)
10/1/2019		0.00042 (J)
3/31/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005

	GWC-7	GWC-7
5/9/2007	18 (o)	
7/6/2007	5.9 (o)	
8/28/2007	3.9	
11/6/2007	3.1	
5/8/2008	2.1	
12/2/2008	1.2	
4/8/2009	1.1	
10/1/2009	0.88	
4/13/2010	0.82	
10/7/2010	0.72	
4/5/2011	0.52	
10/4/2011	0.56	
4/3/2012	0.365	
9/18/2012	0.45	
3/12/2013	0.13	
9/10/2013	0.2	
3/5/2014	0.17	
9/8/2014	0.25	
4/21/2015	0.15	
9/29/2015	0.203	
3/23/2016	0.0607	
9/7/2016	0.141	
3/24/2017	0.0313	
10/4/2017	0.093	
3/15/2018	0.057	
10/4/2018	0.11	
4/8/2019		0.03
10/1/2019		0.07
3/30/2020		0.037
9/24/2020		0.042
3/9/2021		0.035

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.00079 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00064 (J)
10/1/2019		0.00063 (J)
3/27/2020		0.00053 (J)
9/24/2020		0.001 (J)
3/9/2021		<0.005

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	0.003	
3/5/2014	0.0022 (J)	
9/3/2014	<0.01	
4/21/2015	0.0019 (J)	
9/29/2015	0.0019 (J)	
3/23/2016	<0.01	
9/8/2016	0.0023 (J)	
3/27/2017	0.0023 (J)	
10/5/2017	0.0024 (J)	
3/15/2018	0.0023 (J)	
10/5/2018	0.0025 (J)	
4/8/2019		0.0021 (J)
10/1/2019		0.0022 (J)
3/27/2020		0.0022 (J)
9/24/2020		0.0024 (J)
3/9/2021		0.0014 (J)

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00014 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/23/2020		<0.005
3/8/2021		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	0.0016 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/27/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	0.0024 (J)	
9/9/2014	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	0.0017 (J)	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005

_			
		GWC-22	GWC-22
	3/6/2007	<0.005	
	5/9/2007	<0.005	
	7/17/2007	<0.005	
	8/29/2007	<0.005	
	11/7/2007	<0.005	
	5/7/2008	<0.005	
	12/5/2008	<0.005	
	4/14/2009	<0.005	
	9/30/2009	<0.005	
	4/13/2010	<0.005	
	10/12/2010	<0.005	
	4/6/2011	<0.005	
	10/5/2011	<0.005	
	4/9/2012	<0.005	
	9/25/2012	<0.005	
	3/13/2013	<0.005	
	9/11/2013	<0.005	
	3/11/2014	0.0017 (J)	
	9/9/2014	<0.005	
	4/23/2015	<0.005	
	9/30/2015	<0.005	
	3/23/2016	<0.005	
	5/18/2016	<0.005	
	7/7/2016	<0.005	
	9/8/2016	<0.005	
	10/19/2016	<0.005	
	12/7/2016	<0.005	
	2/2/2017	<0.005	
	3/27/2017	<0.005	
	10/5/2017	<0.005	
	3/15/2018	<0.005	
	10/4/2018	<0.005	
	4/9/2019		<0.005
	10/1/2019		0.0014 (J)
	3/31/2020		<0.005
	9/23/2020		<0.005
	3/9/2021		<0.005

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0018 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		<0.005
10/1/2019		<0.005
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	0.0036	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005

	GWC-7	GWC-7
5/9/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/7/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/18/2012	<0.001	
3/12/2013	<0.001	
3/5/2014	<0.001	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	0.0001 (J)	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	<0.001	
2/2/2017	<0.001	
3/24/2017	<0.001	
10/4/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019		<0.001
10/1/2019		<0.001
3/30/2020		<0.001
9/24/2020		<0.001
3/9/2021		<0.001

	GWC-21	GWC-21
3/6/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/27/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
10/5/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/11/2014	<0.01	
9/9/2014	0.0029 (J)	
9/30/2015	0.001 (J)	
3/24/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	<0.01	
4/9/2019		<0.01
10/1/2019		<0.01
3/31/2020		<0.01
9/24/2020		<0.01
3/9/2021		<0.01

			Plant Hammond	Client: Southern Cor
	GWC-23	GWC-23		
3/6/2007	<0.01			
5/9/2007	<0.01			
7/17/2007	<0.01			
8/29/2007	<0.01			
11/7/2007	<0.01			
5/7/2008	<0.01			
12/5/2008	<0.01			
4/14/2009	<0.01			
10/1/2009	<0.01			
4/14/2010	<0.01			
10/13/2010	<0.01			
4/6/2011	<0.01			
10/12/2011	<0.01			
4/9/2012	<0.01			
9/19/2012	<0.01			
3/13/2013	<0.01			
9/10/2013	<0.01			
3/11/2014	<0.01			
9/3/2014	<0.01			
4/23/2015	<0.01			
9/30/2015	<0.01			
3/23/2016	<0.01			
9/8/2016	<0.01			
3/27/2017	<0.01			
10/5/2017	<0.01			
3/15/2018	<0.01			
10/5/2018	<0.01			
4/8/2019		0.00017 (J)		
10/1/2019		<0.01		
3/26/2020		<0.01		
9/23/2020		<0.01		
3/9/2021		<0.01		

	GWC-5	GWC-5			
3/7/2007	<0.01				
5/8/2007	<0.01				
7/6/2007	<0.01				
8/28/2007	<0.01				
11/6/2007	<0.01				
5/8/2008	<0.01				
12/3/2008	<0.01				
4/7/2009	<0.01				
10/1/2009	<0.01				
4/14/2010	<0.01				
10/14/2010	<0.01				
4/5/2011	<0.01				
10/12/2011	<0.01				
4/4/2012	<0.01				
9/24/2012	<0.01				
3/12/2013	<0.01				
9/10/2013	<0.01				
3/5/2014	<0.01				
9/9/2014	0.00093 (J)				
4/21/2015	<0.01				
9/29/2015	<0.01				
3/23/2016	<0.01				
9/7/2016	<0.01				
3/23/2017	<0.01				
10/4/2017	<0.01				
3/16/2018	<0.01				
10/4/2018	<0.01				
4/9/2019		<0.01			
10/1/2019		<0.01			
3/31/2020		<0.01			
9/25/2020		<0.01			
3/9/2021		<0.01			

_			
		GWC-7	GWC-7
	5/9/2007	<0.01	
	7/6/2007	<0.01	
	8/28/2007	<0.01	
	11/6/2007	<0.01	
	5/8/2008	<0.01	
	12/2/2008	<0.01	
	4/8/2009	<0.01	
	10/1/2009	0.0039	
	4/13/2010	<0.01	
	10/7/2010	<0.01	
	4/5/2011	0.0025	
	10/4/2011	0.0027	
	4/3/2012	<0.01	
	9/18/2012	<0.01	
	3/12/2013	<0.01	
	9/10/2013	<0.01	
	3/5/2014	<0.01	
	9/8/2014	0.0012 (J)	
	4/21/2015	0.0015 (J)	
	9/29/2015	<0.01	
	3/23/2016	<0.01	
	9/7/2016	<0.01	
	3/24/2017	<0.01	
	10/4/2017	<0.01	
	3/15/2018	<0.01	
	10/4/2018	<0.01	
	4/8/2019		<0.01
	10/1/2019		<0.01
	3/30/2020		<0.01
	9/24/2020		<0.01
	3/9/2021		<0.01

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	0.0029	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/3/2014	<0.01	
4/21/2015	<0.01	
9/29/2015	<0.01	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/5/2018	<0.01	
4/8/2019		<0.01
10/1/2019		<0.01
3/27/2020		<0.01
9/24/2020		<0.01
3/9/2021		<0.01

_			
		GWA-1	GWA-1
	3/6/2007	<0.01	
	5/8/2007	<0.01	
	7/7/2007	<0.01	
	8/28/2007	<0.01	
	11/6/2007	<0.01	
	5/9/2008	<0.01	
	12/3/2008	<0.01	
	4/7/2009	0.0028	
	10/1/2009	<0.01	
	4/14/2010	<0.01	
	10/13/2010	<0.01	
	4/6/2011	<0.01	
	10/10/2011	<0.01	
	4/3/2012	<0.01	
	9/24/2012	<0.01	
	3/12/2013	<0.01	
	9/11/2013	<0.01	
	3/4/2014	0.0026	
	9/3/2014	0.001 (J)	
	4/21/2015	<0.01	
	9/30/2015	<0.01	
	3/22/2016	<0.01	
	9/7/2016	0.0047 (J)	
	3/23/2017	<0.01	
	10/4/2017	<0.01	
	3/14/2018	0.0032 (J)	
	10/4/2018	0.003 (J)	
	4/8/2019		<0.01
	9/30/2019		0.0032 (J)
	3/26/2020		<0.01
	9/23/2020		0.0025 (J)
	3/8/2021		<0.01

-			
		GWA-11	GWA-11
	3/7/2007	<0.01	
	5/8/2007	0.0025	
	7/17/2007	0.0047	
	8/28/2007	0.0033	
	11/7/2007	<0.01	
	5/9/2008	<0.01	
	12/2/2008	<0.01	
	4/8/2009	<0.01	
	10/1/2009	<0.01	
	4/14/2010	<0.01	
	10/13/2010	<0.01	
	4/6/2011	<0.01	
	10/4/2011	<0.01	
	4/10/2012	<0.01	
	9/26/2012	<0.01	
	3/12/2013	<0.01	
	9/10/2013	<0.01	
	3/4/2014	<0.01	
	9/3/2014	0.00074 (J)	
	4/21/2015	<0.01	
	9/29/2015	0.0024 (J)	
	3/22/2016	<0.01	
	9/7/2016	0.0023 (J)	
	3/24/2017	0.0068 (J)	
	10/5/2017	<0.01	
	3/15/2018	0.0042 (J)	
	10/4/2018	0.0046 (J)	
	4/8/2019		0.0024 (J)
	9/30/2019		0.004 (J)
	3/26/2020		<0.01
	9/22/2020		<0.01
	3/8/2021		<0.01

	GWA-2	GWA-2
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/13/2010	<0.01	
10/7/2010	<0.01	
4/6/2011	<0.01	
10/6/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/9/2013	<0.01	
3/4/2014	0.0035	
9/3/2014	0.0015 (J)	
4/22/2015	<0.01	
9/30/2015	0.0026 (J)	
3/22/2016	<0.01	
9/7/2016	0.0024 (J)	
3/23/2017	<0.01	
10/4/2017	0.0017 (J)	
3/14/2018	0.0023 (J)	
10/4/2018	0.0041 (J)	
4/8/2019		0.0014 (J)
9/30/2019		0.0043 (J)
3/26/2020		<0.01
9/21/2020		<0.01
3/9/2021		<0.01

	GWA-3	GWA-3
3/6/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	0.0033	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	0.0033	
12/3/2008	0.0054	
4/7/2009	<0.01	
10/2/2009	<0.01	
4/14/2010	0.003	
10/14/2010	<0.01	
4/5/2011	<0.01	
10/12/2011	<0.01	
4/4/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	0.0037	
9/8/2014	0.00087 (J)	
4/21/2015	0.002 (J)	
9/29/2015	0.0021 (J)	
3/22/2016	<0.01	
9/7/2016	0.0034 (J)	
3/23/2017	0.0031 (J)	
10/4/2017	<0.01	
3/15/2018	0.0028 (J)	
10/4/2018	0.0043 (J)	
4/5/2019		0.0013 (J)
9/30/2019		0.0045 (J)
3/26/2020		<0.01
9/23/2020		<0.01
3/8/2021		<0.01

	GWA-4	GWA-4
3/6/2007	<0.02	
5/8/2007	<0.02	
7/17/2007	<0.02	
8/28/2007	0.0026	
11/6/2007	<0.02	
5/8/2008	0.0037	
12/3/2008	0.003	
4/7/2009	0.0045	
10/2/2009	0.0027	
4/14/2010	<0.02	
10/14/2010	0.0041	
4/5/2011	<0.02	
10/12/2011	0.0033	
4/4/2012	<0.02	
9/24/2012	0.0039	
3/12/2013	<0.02	
9/10/2013	0.0035	
3/11/2014	0.0045	
9/8/2014	0.0026	
4/21/2015	0.0028	
9/29/2015	0.008 (J)	
3/22/2016	<0.02	
9/7/2016	0.0035 (J)	
3/24/2017	0.0095 (J)	
10/4/2017	0.0031 (J)	
3/15/2018	0.0041 (J)	
10/4/2018	0.0058 (J)	
4/8/2019		0.0023 (J)
9/30/2019		0.0059 (J)
3/26/2020		<0.02
9/23/2020		0.0025 (J)
3/8/2021		0.0034 (J)

	GWC-10	GWC-10
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	0.0069	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.0026	
9/3/2014	0.00079 (J)	
4/21/2015	<0.01	
9/30/2015	0.0018 (J)	
3/23/2016	<0.01	
9/7/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	0.0033 (J)	
4/9/2019		<0.01
10/1/2019		0.0049 (J)
3/27/2020		<0.01
9/25/2020		<0.01
3/9/2021		<0.01

_			
		GWC-18	GWC-18
	3/7/2007	<0.01	
	5/9/2007	0.0026	
	7/17/2007	0.0043	
	8/28/2007	<0.01	
	11/7/2007	<0.01	
	5/7/2008	<0.01	
	12/3/2008	<0.01	
	4/14/2009	<0.01	
	10/1/2009	<0.01	
	4/13/2010	<0.01	
	10/12/2010	<0.01	
	4/6/2011	<0.01	
	10/12/2011	<0.01	
	4/5/2012	<0.01	
	9/19/2012	<0.01	
	3/13/2013	<0.01	
	9/10/2013	<0.01	
	3/10/2014	0.0022 (J)	
	9/3/2014	0.0013 (J)	
	4/22/2015	0.0019 (J)	
	9/30/2015	0.0037 (J)	
	3/24/2016	<0.01	
	9/8/2016	0.0024 (J)	
	3/27/2017	<0.01	
	10/5/2017	<0.01	
	3/16/2018	<0.01	
	10/5/2018	0.0029 (J)	
	4/9/2019		0.0037 (J)
	10/1/2019		0.006 (J)
	3/30/2020		<0.01
	9/24/2020		<0.01
	3/9/2021		<0.01

	GWC-19	GWC-19
3/6/2007	<0.01	
5/9/2007	0.0025	
7/17/2007	0.0035	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/4/2008	<0.01	
4/14/2009	<0.01	
10/2/2009	<0.01	
4/13/2010	0.0043	
10/12/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/5/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/10/2014	0.0031	
9/9/2014	0.00098 (J)	
4/22/2015	0.0015 (J)	
9/30/2015	0.002 (J)	
3/24/2016	<0.01	
9/8/2016	0.0029 (J)	
3/27/2017	0.0019 (J)	
10/5/2017	0.0024 (J)	
3/15/2018	<0.01	
10/4/2018	0.013	
4/9/2019		<0.01
10/1/2019		0.0049 (J)
3/31/2020		<0.01
9/28/2020		0.0033 (J)
3/10/2021		<0.01

	GWC-20	GWC-20
3/7/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
10/12/2011	<0.01	
4/9/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/10/2014	0.0024 (J)	
9/9/2014	0.00078 (J)	
4/23/2015	<0.01	
9/30/2015	0.0016 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0017 (J)	
10/5/2017	0.0016 (J)	
3/16/2018	<0.01	
10/5/2018	<0.01	
4/9/2019		<0.01
10/1/2019		0.0063 (J)
3/31/2020		<0.01
9/23/2020		<0.01
3/10/2021		<0.01

	GWC-21	GWC-21
3/6/2007	<0.02	
5/9/2007	<0.02	
7/17/2007	0.0031	
8/29/2007	0.0056	
11/7/2007	0.0059	
5/7/2008	0.0059	
12/5/2008	<0.02	
4/27/2009	0.0051	
9/30/2009	0.0066	
4/13/2010	0.0041	
10/12/2010	0.004	
10/5/2011	0.0043	
4/10/2012	0.0108	
9/26/2012	0.0066	
3/13/2013	0.0035	
9/11/2013	0.005	
3/11/2014	0.005	
9/9/2014	0.0041	
9/30/2015	0.0031 (J)	
3/24/2016	0.00393 (J)	
9/8/2016	0.0047 (J)	
3/27/2017	0.0036 (J)	
10/5/2017	0.0065 (J)	
3/15/2018	0.0053 (J)	
10/4/2018	0.0077 (J)	
4/9/2019		0.0041 (J)
10/1/2019		0.0078 (J)
3/31/2020		<0.02
9/24/2020		0.0046 (J)
3/9/2021		0.0033 (J)

	GWC-22	GWC-22
3/6/2007	<0.01	
5/9/2007	0.0035	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
4/6/2011	<0.01	
10/5/2011	<0.01	
4/9/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/11/2014	0.0037	
9/9/2014	0.0006 (J)	
4/23/2015	<0.01	
9/30/2015	0.0021 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	0.003 (J)	
4/9/2019		<0.01
10/1/2019		0.0054 (J)
3/31/2020		<0.01
9/23/2020		<0.01
3/9/2021		<0.01

	GWC-23	GWC-23
3/6/2007	0.0054	
5/9/2007	0.0041	
7/17/2007	0.005	
8/29/2007	0.0044	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/9/2012	<0.01	
9/19/2012	<0.01	
3/13/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	0.0033	
9/3/2014	0.0014 (J)	
4/23/2015	0.0024 (J)	
9/30/2015	0.0041 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	0.0014 (J)	
3/15/2018	0.0039 (J)	
10/5/2018	0.0048 (J)	
4/8/2019		0.0016 (J)
10/1/2019		0.0057 (J)
3/26/2020		<0.01
9/23/2020		0.0022 (J)
3/9/2021		<0.01

	GWC-5	GWC-5
3/7/2007	0.0064	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	0.0025	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	0.0025	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/14/2010	<0.01	
4/5/2011	0.0025	
10/12/2011	0.0037	
4/4/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0028	
9/9/2014	0.00058 (J)	
4/21/2015	0.0043	
9/29/2015	0.0031 (J)	
3/23/2016	0.00272 (J)	
9/7/2016	<0.01	
3/23/2017	0.0026 (J)	
10/4/2017	<0.01	
3/16/2018	<0.01	
10/4/2018	0.0028 (J)	
4/9/2019		<0.01
10/1/2019		0.0053 (J)
3/31/2020		<0.01
9/25/2020		<0.01
3/9/2021		<0.01

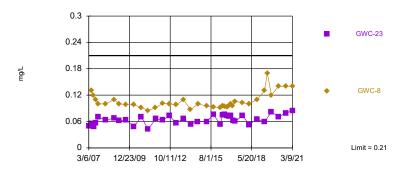
_			
		GWC-6	GWC-6
	3/7/2007	<0.01	
	5/9/2007	<0.01	
	7/17/2007	<0.01	
	8/28/2007	<0.01	
	11/6/2007	<0.01	
	5/8/2008	<0.01	
	12/3/2008	<0.01	
	4/7/2009	<0.01	
	10/1/2009	<0.01	
	4/13/2010	<0.01	
	10/6/2010	<0.01	
	4/5/2011	<0.01	
	10/4/2011	<0.01	
	4/3/2012	<0.01	
	9/18/2012	<0.01	
	3/12/2013	<0.01	
	9/9/2013	<0.01	
	3/5/2014	0.0026	
	9/8/2014	0.00055 (J)	
	4/22/2015	<0.01	
	9/29/2015	0.0026 (J)	
	3/23/2016	<0.01	
	9/7/2016	0.0024 (J)	
	3/23/2017	0.0035 (J)	
	10/4/2017	<0.01	
	3/16/2018	0.0029 (J)	
	10/4/2018	0.0039 (J)	
	4/8/2019		0.0013 (J)
	10/1/2019		0.0056 (J)
	3/31/2020		<0.01
	9/25/2020		<0.01
	3/9/2021		<0.01

	GWC-7	GWC-7
5/9/2007	45 (o)	
7/6/2007	16 (o)	
8/28/2007	11 (o)	
11/6/2007	8.3	
5/8/2008	5	
12/2/2008	3.2	
4/8/2009	2.4	
10/1/2009	1.9	
4/13/2010	1.9	
10/7/2010	1.6	
4/5/2011	1.1	
10/4/2011	1.1	
4/3/2012	0.75	
9/18/2012	0.88	
3/12/2013	0.23	
9/10/2013	0.36	
3/5/2014	0.33	
9/8/2014	0.47	
4/21/2015	0.27	
9/29/2015	0.359	
3/23/2016	0.102	
9/7/2016	0.24	
3/24/2017	0.0512	
10/4/2017	0.159	
3/15/2018	0.12	
10/4/2018	0.22	
4/8/2019		0.051
10/1/2019		0.12
3/30/2020		0.051
9/24/2020		0.07
3/9/2021		0.057

	GWC-8	GWC-8
5/9/2007	0.0038	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0028	
9/9/2014	0.0014 (J)	
4/22/2015	<0.01	
9/29/2015	0.0016 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/24/2017	0.0031 (J)	
10/5/2017	<0.01	
3/14/2018	0.0053 (J)	
10/4/2018	0.0031 (J)	
4/8/2019		0.0012 (J)
10/1/2019		0.0055 (J)
3/27/2020		<0.01
9/24/2020		<0.01
3/9/2021		<0.01

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	0.0027	
7/6/2007	0.0032	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0029	
9/3/2014	0.0011 (J)	
4/21/2015	<0.01	
9/29/2015	0.0034 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	0.0013 (J)	
3/15/2018	<0.01	
10/5/2018	0.0044 (J)	
4/8/2019		0.0016 (J)
10/1/2019		0.0052 (J)
3/27/2020		<0.01
9/24/2020		<0.01
3/9/2021		<0.01

FIGURE E.


State Interwell Prediction Limits - All Results (No Significant)

	Plant I	Hammond	Client: Southern Company Data: Huffaker Road Landfill		uffaker Road Landfill	Printed 4/1/	2021, 1	:27 PM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u> <u>Method</u>
Barium (mg/L)	GWC-23	0.21	n/a	3/9/2021	0.085	No 185 n/a	n/a	0	n/a	n/a	0.00005765NP Inter (normality) 1 of 2
Barium (mg/L)	GWC-8	0.21	n/a	3/9/2021	0.14	No 185 n/a	n/a	0	n/a	n/a	0.00005765NP Inter (normality) 1 of 2

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

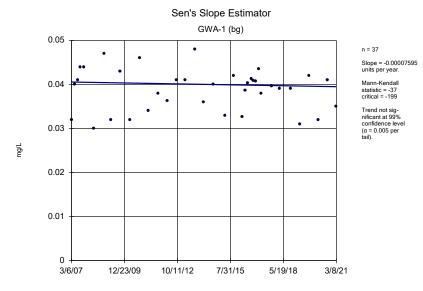
Within Limit

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 185 background values. Annual per-constituent alpha = 0.001383. Individual comparison alpha = 0.00005765 (1 of 2). Comparing 2 points to limit. Assumes 10 future values.

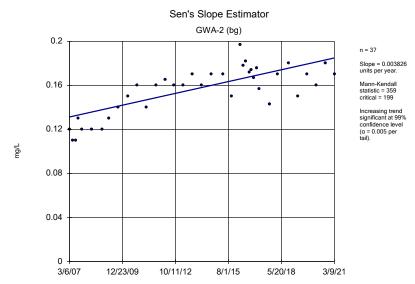
	GWA-1 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWC-23	GWA-4 (bg)	GWA-11 (bg)	GWC-8
3/6/2007	0.032	0.17	0.12	0.05	0.13		
3/7/2007						0.03	
5/8/2007	0.04	0.21	0.11		0.12	0.032	
5/9/2007				0.055			0.13
7/6/2007							0.12
7/7/2007	0.041		0.11				
7/17/2007		0.21		0.048	0.12	0.028	
8/28/2007	0.044	0.2	0.13		0.13	0.03	0.11
8/29/2007				0.056			
11/6/2007	0.044	0.19	0.12		0.12		0.1
11/7/2007				0.07		0.032	
5/7/2008				0.063			
5/8/2008		0.2			0.13		0.1
5/9/2008	0.03	0.2	0.12		0.10	0.032	U
12/2/2008	0.03		0.12			0.036	0.11
	0.047	0.10	0.10		0.14	0.030	0.11
12/3/2008	0.047	0.18	0.12	0.069	0.14		
12/5/2008	0.000	0.2	0.12	0.068	0.007		
4/7/2009	0.032	0.2	0.13		0.097		
4/8/2009						0.04	0.1
4/14/2009				0.062			
9/30/2009							0.099
10/1/2009	0.043		0.14	0.064		0.039	
10/2/2009		0.2			0.11		
4/13/2010			0.15				0.098
4/14/2010	0.032	0.2		0.048	0.059	0.041	
10/7/2010			0.16				
10/13/2010	0.046			0.071		0.039	0.092
10/14/2010		0.18			0.053		
4/5/2011		0.16			0.042		0.085
4/6/2011	0.034		0.14	0.042		0.034	
10/4/2011						0.032	0.091
10/6/2011			0.16				
10/10/2011	0.038						
10/12/2011		0.15		0.066	0.048		
4/3/2012	0.0363		0.165				0.101
4/4/2012		0.165			0.044		
4/9/2012				0.0628	•		
4/10/2012						0.0425	
9/19/2012			0.16	0.073			0.1
9/24/2012	0.041		00	0.07.0	0.048		 -
9/26/2012	0.041	0.17			0.070	0.035	
3/12/2013	0.041	0.17	0.16		0.043	0.035	0.098
	0.041	0.17	0.16	0.057	0.043	0.033	0.000
3/13/2013			0.17	0.057			
9/9/2013		0.10	0.17	0.000	0.040	0.025	0.44
9/10/2013	0.040	0.18		0.066	0.042	0.035	0.11
9/11/2013	0.048						
3/4/2014	0.036		0.16			0.031	
3/5/2014							0.087
		0.17		0.054	0.04		
3/11/2014							
3/11/2014 9/3/2014	0.04		0.17	0.06		0.033	
	0.04	0.16	0.17	0.06	0.042	0.033	

					. ,		
	GWA-1 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWC-23	GWA-4 (bg)	GWA-11 (bg)	GWC-8
4/21/2015	0.033	0.16			0.05	0.03	
4/22/2015			0.17				0.095
4/23/2015				0.06			
9/29/2015		0.14			0.044	0.031	0.093
9/30/2015	0.042		0.15	0.076			
3/22/2016	0.0326	0.188	0.197		0.0397	0.0327	
3/23/2016				0.0533			0.0918
5/17/2016	0.0387	0.193	0.178		0.0351	0.0323	
5/18/2016							0.0957
5/19/2016				0.074			
7/5/2016	0.0403	0.172	0.182				
7/6/2016					0.0475	0.0344	0.0935
7/7/2016				0.0766			
9/7/2016	0.0413	0.164	0.172		0.0415	0.0324	
9/8/2016				0.0726			0.0925
10/18/2016	0.0409	0.138	0.174		0.0424	0.0311	0.0939
10/19/2016				0.072			
12/6/2016	0.0408	0.149			0.0528	0.0311	
12/7/2016			0.167	0.0732			
12/8/2016							0.0996
1/31/2017	0.0435		0.176				
2/1/2017		0.121			0.0482	0.0332	
2/2/2017							0.096
2/3/2017				0.0619			
3/23/2017	0.038	0.143	0.157				
3/24/2017					0.0595	0.032	0.106
3/27/2017				0.0602			
10/4/2017	0.0396	0.139	0.143		0.0486		
10/5/2017				0.0734		0.0325	0.103
3/14/2018	0.039		0.17				0.1
3/15/2018		0.17		0.053	0.04	0.031	
10/4/2018	0.039	0.16	0.18		0.05	0.033	0.11
10/5/2018				0.065			
4/5/2019		0.13					
4/8/2019	0.031		0.15	0.059	0.047	0.031	0.13
6/18/2019							0.17
9/30/2019	0.042	0.14	0.17		0.051	0.03	
10/1/2019				0.082			0.12
3/26/2020	0.032	0.14	0.16	0.071	0.049	0.031	
3/27/2020							0.14
9/21/2020			0.18				
9/22/2020						0.031	
9/23/2020	0.041	0.14		0.079	0.043		
9/24/2020							0.14
3/8/2021	0.035	0.12			0.052	0.031	
3/9/2021			0.17	0.085			0.14
-				-			

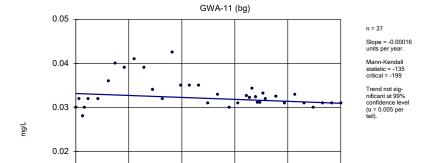

FIGURE F.

State Trend Tests - Prediction Limit Exceedances - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/1/2021, 1:32 PM

	Plant Hammond	Client: Southern Compan	y Data: Huffa	aker Road	Landfill	Printed	4/1/202	21, 1:32	РМ			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	GWA-2 (bg)		0.003826	359	199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)		-0.004861	-394	-199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)		-0.002733	-224	-199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-23		0.001249	222	199	Yes	37	0	n/a	n/a	0.01	NP


State Trend Tests - Prediction Limit Exceedances - All Results

	Plant Hammond	Client: Southern Compan	y Data: Huffa	ker Road	Landfill	Printed 4/1/2021, 1:32 PM						
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	GWA-1 (bg)		-0.00007595	-37	-199	No	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-11 (bg)		-0.00016	-135	-199	No	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-2 (bg)		0.003826	359	199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)		-0.004861	-394	-199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)		-0.002733	-224	-199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-23		0.001249	222	199	Yes	37	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-8		0.0007645	111	199	No	37	0	n/a	n/a	0.01	NP


Constituent: Barium Analysis Run 4/1/2021 1:32 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Constituent: Barium Analysis Run 4/1/2021 1:32 PM View: State Parameters Trend Tests

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

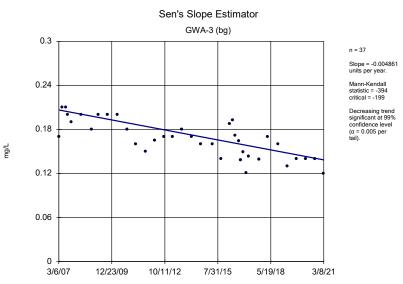
Sen's Slope Estimator

Constituent: Barium Analysis Run 4/1/2021 1:32 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

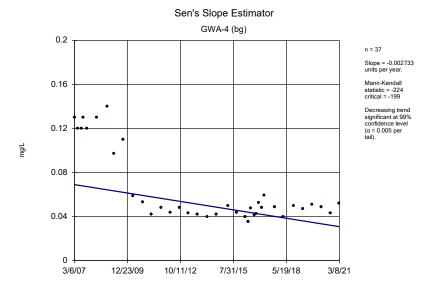
8/1/15

10/12/12

3/8/21

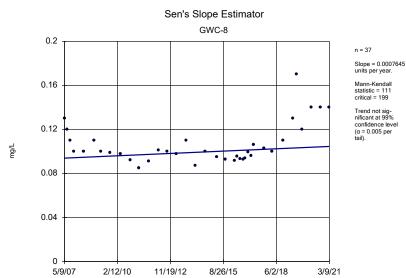

5/20/18

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

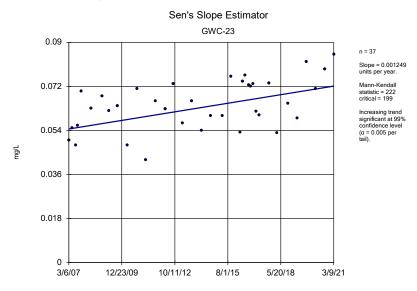

0.01

3/7/07

12/24/09



Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Constituent: Barium Analysis Run 4/1/2021 1:32 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Constituent: Barium Analysis Run 4/1/2021 1:32 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Constituent: Barium Analysis Run 4/1/2021 1:32 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

FIGURE G.

Federal Intrawell Prediction Limits - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/1/2021, 2:00 PM

	Plant	Hammond	Client: Southern Company Data: Huffaker Road Landfill F		Printed 4/1	/2021, 2	2:00 PM						
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	GWA-11	0.04165	n/a	3/8/2021	0.042	Yes 13	0.0356	0.002301	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-20	63.52	n/a	3/10/2021	64.9	Yes 13	52.64	4.139	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-23	45.95	n/a	3/9/2021	54.3	Yes 13	36.75	3.5	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-20	58.56	n/a	3/10/2021	64.7	Yes 18	35.78	9.504	0	None	No	0.0006269	Param Intra 1 of 2

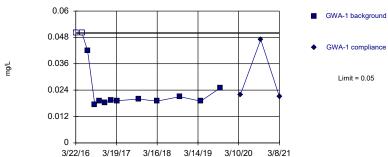
Federal Intrawell Prediction Limits - All Results

	Plant	Hammond	Client: South	hern Compar	y Data:	Huffake	er Ro	ad Landfill	Printed 4/1	/2021, 2	2:00 PM			
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	GWA-1	0.05	n/a	3/8/2021	0.021J	No	13	n/a	n/a	15.38	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Boron (mg/L)	GWA-11	0.04165	n/a	3/8/2021	0.042	Yes	13	0.0356	0.002301	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-2	0.1059	n/a	3/9/2021	0.081	No	13	0.08618	0.007513	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-3	0.195	n/a	3/8/2021	0.13	No	13	0.1502	0.01706	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-4	0.1507	n/a	3/8/2021	0.089	No	13	0.09276	0.02204	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-10	0.04348	n/a	3/9/2021	0.037J	No	13	0.03321	0.003909	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-18	0.1547	n/a	3/9/2021	0.13	No	13	0.1292	0.009697	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-19	0.2048	n/a	3/10/2021	0.16	No	13	0.1773	0.01047	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-20	0.05	n/a	3/10/2021	0.018J	No	13	n/a	n/a	7.692	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Boron (mg/L)	GWC-21	0.1406	n/a	3/9/2021	0.03J	No	13	0.199	0.06698	0	None	sqrt(x)	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-22	0.08272	n/a	3/9/2021	0.065	No	13	0.06841	0.005445	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-23	0.1347	n/a	3/9/2021	0.044	No	13	0.191	0.067	7.692	None	sqrt(x)	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-5	0.08013	n/a	3/9/2021	0.046	No	13	0.05944	0.007872	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-6	0.04531	n/a	3/9/2021	0.038J	No	14	0.03949	0.002264	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-7	0.07265	n/a	3/9/2021	0.041	No	13	0.05612	0.006289	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-8	0.055	n/a	3/9/2021	0.05	No	13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Boron (mg/L)	GWC-9	0.05	n/a	3/9/2021	0.014J	No	13	n/a	n/a	7.692	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Calcium (mg/L)	GWA-1	20.51	n/a	3/8/2021	16.2	No	13	15.95	1.735	7.692	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-11	27.27	n/a	3/8/2021	22	No	13	19.82	2.834	7.692	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-2	51.4	n/a	3/9/2021	48.7	No	13	41.93	3.601	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-3	94.16	n/a	3/8/2021	73.5	No	13	75.85	6.964	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-4	130.7	n/a	3/8/2021	87.2	No	13	88.18	16.18	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-10	60.36	n/a	3/9/2021	48.7	No	15	41.41	7.541	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-18	46.36	n/a	3/9/2021	44.9	No	14	40.09	2.439	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-19	49.63	n/a	3/10/2021	47.4	No	13	43.91	2.178	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-20	63.52	n/a	3/10/2021	64.9	Yes	13	52.64	4.139	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-21	95.47	n/a	3/9/2021	67.8	No	15	48.65	18.63	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-22	52.66	n/a	3/9/2021	48.7	No	13	47.68	1.891	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-23	45.95	n/a	3/9/2021	54.3	Yes	13	36.75	3.5	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-5	90.26	n/a	3/9/2021	85.4	No	13	73.43	6.404	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-6	71.95	n/a	3/9/2021	70.8	No	13	62.28	3.678	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-7	74.21	n/a	3/9/2021	64.3	No	13	36.61	14.31	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-8	90.82	n/a	3/9/2021	83.2	No	15	63.08	11.04	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-9	39.77	n/a	3/9/2021	36.8	No	13	35.16	1.751	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-1	1.55	n/a	3/8/2021	1.1	No	13	1.179	0.1409	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-11	2.158	n/a	3/8/2021	1.3	No	13	1.493	0.253	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-2	3.162	n/a	3/9/2021	2.1	No	13	2.431	0.2783	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-3	4.883	n/a	3/8/2021	2.8	No	13	3.95	0.3552	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-4	11.19	n/a	3/8/2021	5.6	No	13	6.268	1.874	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-10	2.285	n/a	3/9/2021	1.1	No	15	1.609	0.269	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-18	1.907	n/a	3/9/2021	0.97J	No	13	1.385	0.1987	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-19	2.57	n/a	3/10/2021	1.3	No	13	1.915	0.2492	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-20	2.396	n/a	3/10/2021	1.2	No	14	1.7	0.2708	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-21	3.962	n/a	3/9/2021	1.8	No	14	2.712	0.4862	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-22	2.011	n/a	3/9/2021	1	No	13	1.555	0.1736	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-23	2.104	n/a	3/9/2021	0.85J	No	13	1.552	0.2101	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-5	4.279	n/a	3/9/2021	2	No	13	3.029	0.4757	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-6	2.458	n/a	3/9/2021	1.5	No	13	1.955	0.1913	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-7	2.458	n/a	3/9/2021	1.5	No	13	1.654	0.3056	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-8	3.306	n/a	3/9/2021	2.2	No	15	1.936	0.545	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-9	1.823	n/a	3/9/2021	0.74J	No	13	1.195	0.239	0	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-1	0.2142	n/a	3/8/2021	0.094J	No	13	0.1055	0.04138	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-11	0.1844	n/a	3/8/2021	0.11	No	13	0.07757	0.04064	23.08	Kaplan-Meier	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-2	0.267	n/a	3/9/2021	0.099J	No	13	0.1289	0.05253	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-3	0.5357	n/a	3/8/2021	0.13	No	13	0.2393	0.1127	7.692	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-4	0.5087	n/a	3/8/2021	0.1	No	13	0.2241	0.1082	0	None	No	0.0006269	Param Intra 1 of 2

Federal Intrawell Prediction Limits - All Results

	ı cu	Ciai ii			Calc			_1111113			Juito		
	Plant	Hammond	Client: South	nern Compan	y Data: I	Huffa	ker Ro	oad Landfill	Printed 4/1	/2021, 2	:00 PM		
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig	<u>ı. Bg l</u>	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n Alpha Method
Fluoride (mg/L)	GWC-10	0.2027	n/a	3/9/2021	0.078J	No	13	0.1064	0.03664	7.692	None	No	0.0006269 Param Intra 1 of 2
Fluoride (mg/L)	GWC-18	0.2327	n/a	3/9/2021	0.11	No	13	0.1467	0.03273	7.692	None	No	0.0006269 Param Intra 1 of 2
Fluoride (mg/L)	GWC-19	0.2758	n/a	3/10/2021	0.11	No	13	0.1547	0.04606	7.692	None	No	0.0006269 Param Intra 1 of 2
Fluoride (mg/L)	GWC-20	0.2054	n/a	3/10/2021	0.068J	No	13	0.09322	0.0427	7.692	None	No	0.0006269 Param Intra 1 of 2
Fluoride (mg/L)	GWC-21	0.252	n/a	3/9/2021	0.058J	No		0.09554	0.05953	15.38	Kaplan-Meier	No	0.0006269 Param Intra 1 of 2
Fluoride (mg/L)	GWC-22	0.1652	n/a	3/9/2021	0.067J	No		0.09188	0.0279	7.692	•	No	0.0006269 Param Intra 1 of 2
Fluoride (mg/L)	GWC-23	0.1978	n/a	3/9/2021	0.069J		13	0.1127	0.03238	7.692		No	0.0006269 Param Intra 1 of 2
Fluoride (mg/L)	GWC-5	0.4044	n/a	3/9/2021	0.05J		13	0.4643	0.1047		Kaplan-Meier	x^(1/3)	0.0006269 Param Intra 1 of 2
	GWC-6	0.3208	n/a	3/9/2021	0.06J		13	0.1139	0.07868	15.38	Kaplan-Meier	No	0.0006269 Param Intra 1 of 2
Fluoride (mg/L)	GWC-7	0.548	n/a	3/9/2021	0.003	No		0.1139	0.1097	0	None	No	0.0006269 Param Intra 1 of 2
Fluoride (mg/L)													
Fluoride (mg/L)	GWC-8	0.4854	n/a	3/9/2021	0.12	No		0.4306	0.1035	0	None	sqrt(x)	0.0006269 Param Intra 1 of 2
Fluoride (mg/L)	GWC-9	0.1929	n/a	3/9/2021	0.08J	No		0.09607	0.03684	7.692	None	No 	0.0006269 Param Intra 1 of 2
pH (SU)	GWA-1	7.414	6.463	3/8/2021	6.86	No		6.938	0.1807	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWA-11	7.075	6.309	3/8/2021	6.78	No		6.692	0.1457	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWA-2	7.273	6.46	3/9/2021	6.93	No	13	6.867	0.1547	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWA-3	7.238	6.227	3/8/2021	6.95	No	13	6.732	0.1922	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWA-4	7.246	6.263	3/8/2021	6.84	No	13	6.755	0.1869	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-10	7.697	6.845	3/9/2021	7.43	No	13	7.271	0.162	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-18	7.781	7.39	3/9/2021	7.66	No	13	7.585	0.07423	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-19	7.732	7.179	3/10/2021	7.49	No	13	7.455	0.1052	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-20	7.588	6.958	3/10/2021	7.41	No	15	7.273	0.1253	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-21	7.759	5.557	3/9/2021	7.04	No	13	6.658	0.4189	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-22	7.968	7.278	3/9/2021	7.52	No	14	7.623	0.1341	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-23	7.564	6.735	3/9/2021	6.81	No	13	7.149	0.1578	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-5	7.288	6.348	3/9/2021	6.93	No	13	6.818	0.1788	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-6	7.369	6.632	3/9/2021	7.09	No	13	7.001	0.1401	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-7	6.623	5.502	3/9/2021	6.59	No	13	6.062	0.2132	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-8	7.808	6.743	3/9/2021	7.06	No	15	7.275	0.2119	0	None	No	0.0003135 Param Intra 1 of 2
pH (SU)	GWC-9	7.362	6.212	3/9/2021	6.92	No	13	6.787	0.2186	0	None	No	0.0003135 Param Intra 1 of 2
Sulfate (mg/L)	GWA-1	5.454	n/a	3/8/2021	4.6	No	13	4.79	0.2524	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWA-11	15.5	n/a	3/8/2021	11.5	No	13	12.58	1.108	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWA-2	20.34	n/a	3/9/2021	16.8	No	13	14.94	2.053	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWA-3	231.1	n/a	3/8/2021	99.5	No	13	131.7	37.85	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWA-4	348.3	n/a	3/8/2021	152	No	13	192.8	59.18	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWC-10	46.25	n/a	3/9/2021	14.2	No	14	4.162	1.026	0	None	sqrt(x)	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWC-18	14.99	n/a	3/9/2021	7.9	No		10.94	1.541	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWC-19	20.78	n/a	3/10/2021	18.7		13	16.18	1.748	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWC-20	58.56	n/a	3/10/2021	64.7		s 18	35.78	9.504	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWC-21	57.26	n/a	3/9/2021	41.6		13	30.96	10.01	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWC-22	14	n/a	3/9/2021	6.4	No		7.792	2.363	0	None	No	0.0006269 Param Intra 1 of 2
, ,													
Sulfate (mg/L) Sulfate (mg/L)	GWC-23 GWC-5	43 159.3	n/a n/a	3/9/2021 3/9/2021	10.2 86.9	No No		n/a 9.222	n/a 1.293	0	n/a None	n/a sqrt(x)	0.009692 NP Intra (normality) 1 of 2 0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWC-6	150.6	n/a	3/9/2021	105		17	109.2	17.06	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWC-7	189.7	n/a	3/9/2021	87.4		13	114.7	28.53	0	None	No 	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWC-8	62.67	n/a	3/9/2021	33.1		13	42.48	7.682	0	None	No	0.0006269 Param Intra 1 of 2
Sulfate (mg/L)	GWC-9	85.53	n/a	3/9/2021	65.1		14	69.87	6.092	0	None	No	0.0006269 Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWA-1	175.9	n/a	3/8/2021	96		13	105.2	26.93	0	None	No	0.0006269 Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWA-11	186	n/a	3/8/2021	107		13	128.5	21.88	0	None	No	0.0006269 Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWA-2	274.9	n/a	3/9/2021	227		13	220.5	20.67	0	None	No	0.0006269 Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWA-3	682.3	n/a	3/8/2021	415	No	13	7.827	0.3714	0	None	x^(1/3)	0.0006269 Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWA-4	772.9	n/a	3/8/2021	460	No	13	531.9	91.69	0	None	No	0.0006269 Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-10	281.6	n/a	3/9/2021	201	No	13	184.1	37.09	0	None	No	0.0006269 Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-18	427	n/a	3/9/2021	192	No	13	n/a	n/a	0	n/a	n/a	0.009692 NP Intra (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-19	393	n/a	3/10/2021	223	No	13	n/a	n/a	0	n/a	n/a	0.009692 NP Intra (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-20	306.2	n/a	3/10/2021	241	No	13	229.2	29.3	0	None	No	0.0006269 Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-21	417.6	n/a	3/9/2021	243	No	15	203.2	85.29	0	None	No	0.0006269 Param Intra 1 of 2

Page 3


Federal Intrawell Prediction Limits - All Results

	Plant	Hammond	Client: South	ern Company	/ Data: H	luffakeı	r Roa	ad Landfill	Printed 4/1/	2021, 2	:00 PM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. E	3g N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Total Dissolved Solids (mg/L)	GWC-22	324	n/a	3/9/2021	178	No 1	13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-23	313.1	n/a	3/9/2021	216	No 1	13	197.3	44.03	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-5	520.9	n/a	3/9/2021	364	No 1	13	395	47.9	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-6	439.1	n/a	3/9/2021	298	No 1	15	333.5	42.03	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-7	369	n/a	3/9/2021	299	No 1	13	271.2	37.22	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-8	428.8	n/a	3/9/2021	308	No 1	15	269.7	63.28	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-9	326	n/a	3/9/2021	209	No 1	13	235.2	34.54	0	None	No	0.0006269	Param Intra 1 of 2

Within Limit Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. 15.38% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Boron Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

O.11

O.088

O.066

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.022

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

O.044

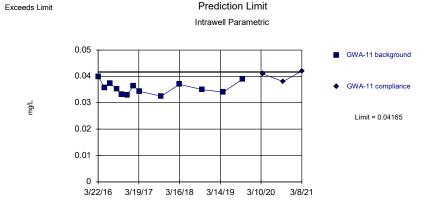
O.044

O.044

O.044

O.044

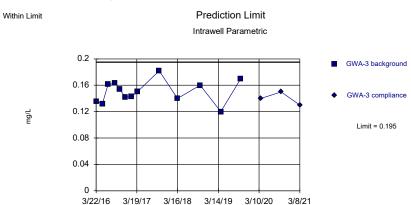
O.044

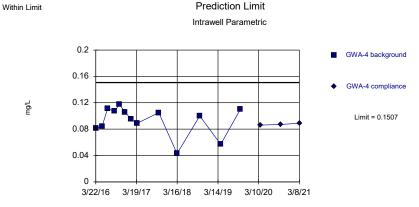

O.044

O.044

Background Data Summary: Mean=0.08618, Std. Dev.=0.007513, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.951, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

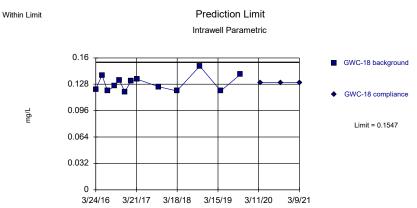
Constituent: Boron Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Background Data Summary: Mean=0.0356, Std. Dev.=0.002301, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9579, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269

Constituent: Boron Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Background Data Summary: Mean=0.1502, Std. Dev.=0.01706, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9892, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

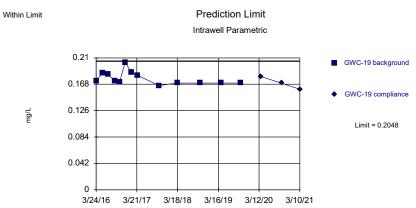
Background Data Summary: Mean=0.09276, Std. Dev.=0.02204, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8751, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Boron Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.1292, Std. Dev.=0.009697, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8975, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit Intrawell Parametric


0.05
0.04
0.04
GWC-10 compliance
Limit = 0.04348

Background Data Summary: Mean=0.03321, Std. Dev.=0.003909, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.917, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


3/23/16 3/20/17 3/17/18 3/15/19 3/11/20

Constituent: Boron Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.1773, Std. Dev.=0.01047, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8362, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

0

Within Limit Prediction Limit Intrawell Non-parametric

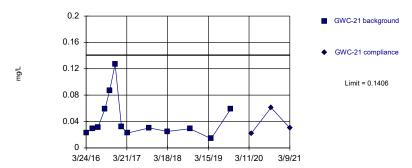
0.06
0.048
GWC-20 background
GWC-20 compliance
Limit = 0.05

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. 7.692% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

3/23/16 3/20/17 3/18/18 3/15/19 3/12/20 3/10/21

Constituent: Boron Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

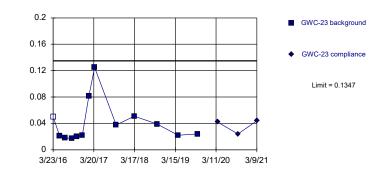
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Within Limit Prediction Limit Intrawell Parametric

0.09
0.072
0.054
0.054
0.054
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.0

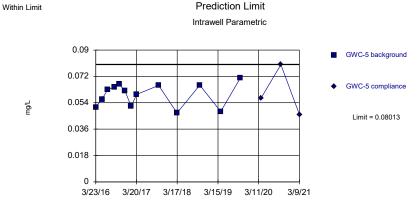
Background Data Summary: Mean=0,06841, Std. Dev.=0.005445, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9602, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

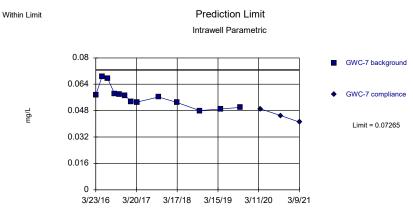

Background Data Summary (based on square root transformation): Mean=0.199, Std. Dev.=0.06698, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8469, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269.

Constituent: Boron Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Within Limit

Background Data Summary (based on square root transformation): Mean=0.191, Std. Dev.=0.067, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8251, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit

Background Data Summary: Mean=0.05944, Std. Dev.=0.007872, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9224, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Boron Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0,05612, Std. Dev.=0,006289, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8973, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

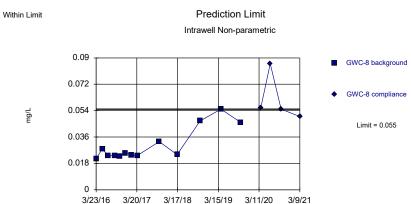
Intrawell Parametric

0.1

0.08

GWC-6 background

• GWC-6 compliance


Limit = 0.04531

Prediction Limit

Background Data Summary: Mean=0.03949, Std. Dev.=0.002264, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9607, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Boron Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Within Limit

Intrawell Non-parametric

0.06

0.048

GWC-9 background

GWC-9 compliance

Limit = 0.05

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. 7.692% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Boron Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

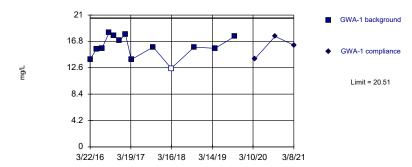
Prediction Limit Intrawell Parametric

30

GWA-11 background

GWA-11 compliance

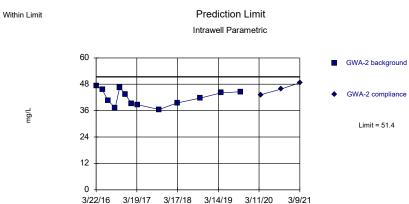
Limit = 27.27


Background Data Summary: Mean=19.82, Std. Dev.=2.834, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.886, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Parametric

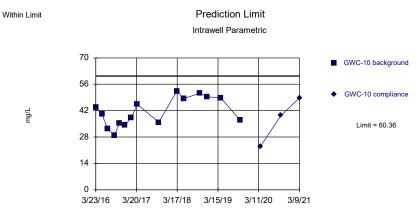
Background Data Summary: Mean=15.95, Std. Dev.=1.735, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9268, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=41.93, Std. Dev.=3.601, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9508, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit



Intrawell Parametric

Background Data Summary: Mean=75.85, Std. Dev.=6.964, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9097, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006132

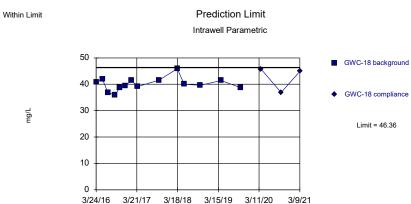
Constituent: Calcium Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=41.41, Std. Dev.=7.541, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9378, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Background Data Summary: Mean=88.18, Std. Dev.=16.18, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9408, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=40.09, Std. Dev.=2.439, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9453, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Intrawell Parametric

60

48

GWC-19 background

GWC-19 compliance

Limit = 49.63

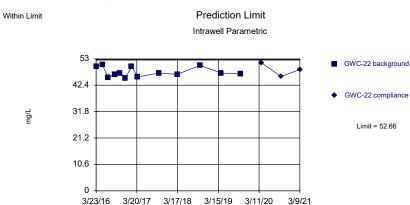
Prediction Limit

Background Data Summary: Mean=43.91, Std. Dev.=2.178, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9602, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132.

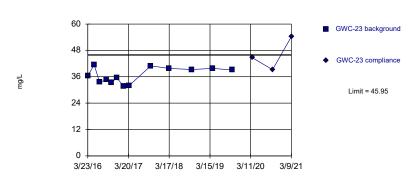
Constituent: Calcium Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=48.65, Std. Dev.=18.63, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9559, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Exceeds Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=52.64, Std. Dev.=4.139, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9448, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Calcium Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=47.68, Std. Dev.=1.891, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8721, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Exceeds Limit Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=36.75, Std. Dev.=3.5, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9096, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006362

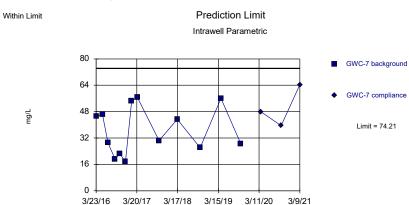
Constituent: Calcium Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=62.28, Std. Dev.=3.678, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9288, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Background Data Summary: Mean=73.43, Std. Dev.=6.404, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9816, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

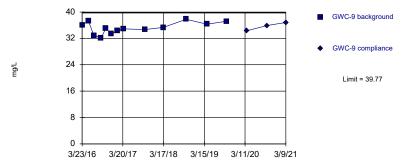
Constituent: Calcium Analysis Run 4/1/2021 1:47 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=36.61, Std. Dev.=14.31, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9027, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit
Intrawell Parametric

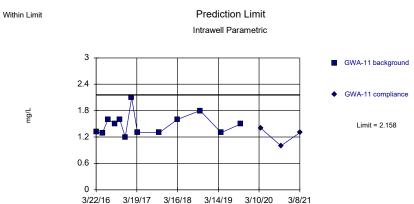
Background Data Summary: Mean=63.08, Std. Dev.=11.04, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9599, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006132


Constituent: Calcium Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

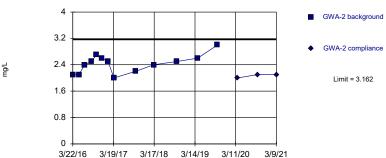
Within Limit | Prediction Limit | Intrawell Parametric | GWA-1 background | GWA-1 compliance | Limit = 1.55 | Limit = 1.55 | GWA-1 compliance | Limit = 1.55 | Limit = 1.55 | Limit = 1.55 | Calculate | Limit = 1.55 |

Background Data Summary: Mean=1.179, Std. Dev.=0.1409, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8609, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit Intrawell Parametric

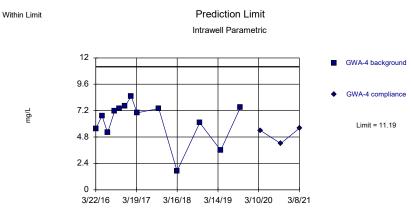
Background Data Summary: Mean=35.16, Std. Dev.=1.751, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9693, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

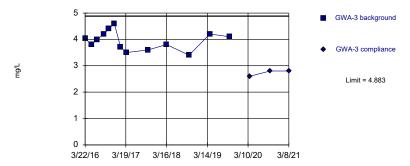

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=1.493, Std. Dev.=0.253, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8721, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit

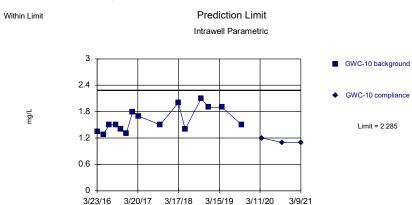

Intrawell Parametric

Background Data Summary: Mean=2.431, Std. Dev.=0.2783, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9538, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.001320.

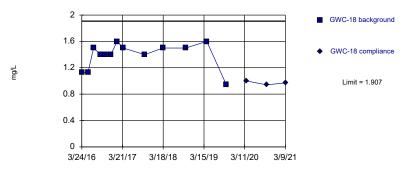

Constituent: Chloride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=6,268, Std. Dev.=1.874, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.858, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=3.95, Std. Dev.=0.3552, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9788, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Chloride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=1.609, Std. Dev.=0.269, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9026, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Background Data Summary: Mean=1.385, Std. Dev.=0.1987, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8442, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

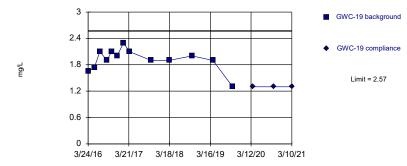
Constituent: Chloride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limit Intrawell Parametric

GWC-20 background

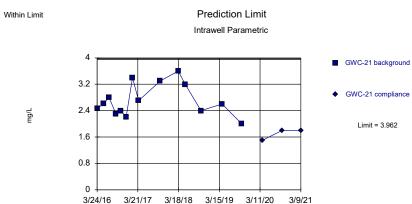
GWC-20 compliance


Limit = 2.396

Background Data Summary: Mean=1.7, Std. Dev.=0.2708, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9657, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=1.915, Std. Dev.=0.2492, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9085, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=2.712, Std. Dev.=0.4862, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9357, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Intrawell Parametric

GWC-22 background

GWC-22 compliance

Limit = 2.011

Prediction Limit

Background Data Summary: Mean=1.555, Std. Dev.=0.1736, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9146, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

Constituent: Chloride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

GWC-5 background

GWC-5 compliance

Limit = 4.279

Background Data Summary: Mean=3.029, Std. Dev.=0.4757, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9758, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit

Prediction Limit

Intrawell Parametric

GWC-23 background

GWC-23 compliance

Limit = 2.104

Background Data Summary: Mean=1.552, Std. Dev.=0.2101, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9193, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

3/9/21

3/23/16 3/20/17 3/17/18 3/15/19 3/11/20

Constituent: Chloride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limit
Intrawell Parametric

2.5

GWC-6 background

GWC-6 compliance

Limit = 2.458

Background Data Summary: Mean=1.955, Std. Dev.=0.1913, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8991, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Intrawell Parametric

GWC-7 background

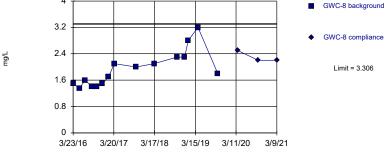
GWC-7 compliance

Limit = 2.458

Prediction Limit

Background Data Summary: Mean=1.654, Std. Dev.=0.3056, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8832, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

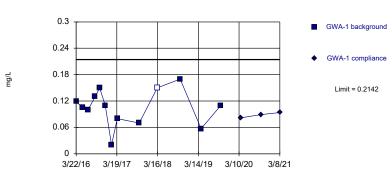

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limit | Prediction Limit | Intrawell Parametric | GWC-9 background | GWC-9 compliance | Limit = 1.823 | Jinit = 1.823 |

Background Data Summary: Mean=1.195, Std. Dev.=0.239, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8925, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

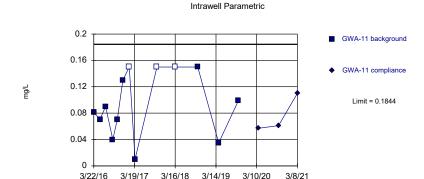
Within Limit Prediction Limit
Intrawell Parametric

4
3.2


Background Data Summary: Mean=1.936, Std. Dev.=0.545, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8956, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

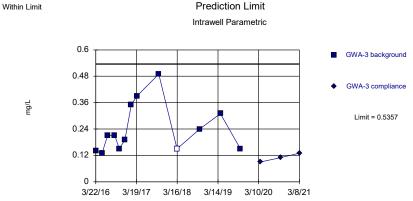
Constituent: Chloride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Within Limit

Background Data Summary: Mean=0.1055, Std. Dev.=0.04138, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9745, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit

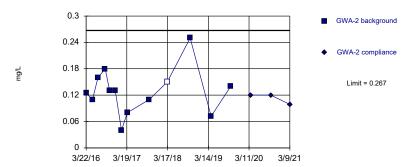


Prediction Limit

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.07757, Std. Dev.=0.04064, n=13, 23.08% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.905, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

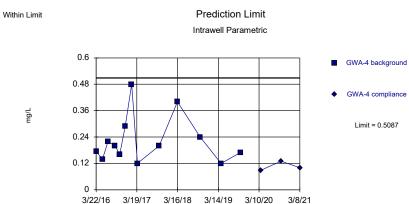
 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$


Background Data Summary: Mean=0.2393, Std. Dev.=0.1127, n=13, 7.692% NDs. Normality test: Shapiro Wilk Qipha = 0.01, calculated = 0.8611, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.1289, Std. Dev.=0.05253, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.96, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.2241, Std. Dev.=0.1082, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8369, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit

0.3

0.24

0.18

0.12

0.12

0.12

0.12

0.12

0.13

0.14

0.15

0.15

0.17

0.18

0.19

0.19

0.19

0.19

0.19

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

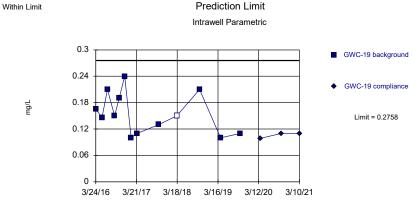
0.10

0.10

0.10

0.10

0.10


0.10

Prediction Limit

Background Data Summary: Mean=0.1064, Std. Dev.=0.03664, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9437, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 ${\it Sanitas^{\rm IM}}~v.9.6.28~Groundwater~Stats~Consulting.~UG~Hollow~symbols~indicate~censored~values.$

Background Data Summary: Mean=0.1547, Std. Dev.=0.04606, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.925, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.006269.

Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=0.1467, Std. Dev.=0.03273, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Background Data Summary: Mean=0.09322, Std. Dev.=0.0427, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9005, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.0006269.

Within Limit

0.3

0.24

0.18

0.12

0.10

0.10

0.10

0.11

0.11

0.12

0.12

0.12

0.12

0.13

0.14

0.15

0.15

0.15

0.17

0.18

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

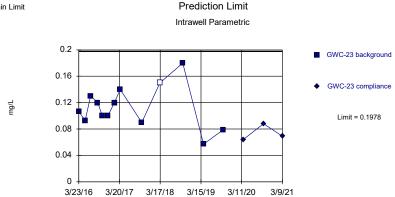
0.19

0.19

0.19

0.19

0.19

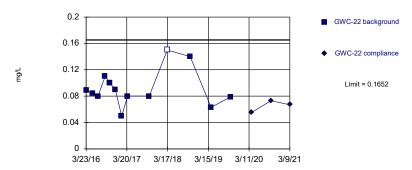

0

Prediction Limit

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.09554, Std. Dev.=0.05953, n=13, 15.38% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9628, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.006269.

Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

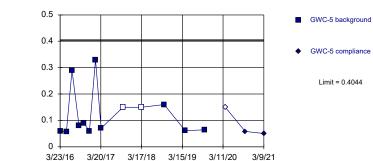


Background Data Summary: Mean=0.1127, Std. Dev.=0.03238, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9828, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

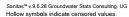
Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=0.09188, Std. Dev.=0.0279, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.899, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269.


Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Parametric

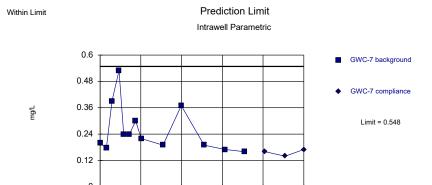
Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=0.4643, Std. Dev.=0.1047, n=13, 15.38% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8202, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit Intrawell Parametric

0.4
0.32
0.24
0.16
0.08

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.1139, Std. Dev.=0.07868, n=13, 15.38% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8986, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0056269.

3/23/16 3/20/17 3/17/18 3/15/19 3/11/20

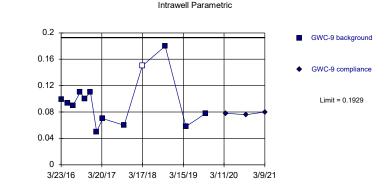

Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary (based on square root transformation): Mean=0.4306, Std. Dev.=0.1035, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.833, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269.

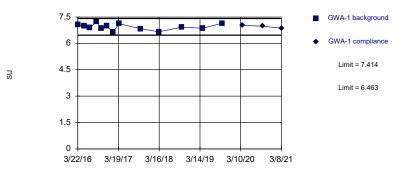
Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Background Data Summary: Mean=0.2598, Std. Dev.=0.1097, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8224, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

3/23/16 3/20/17 3/17/18 3/15/19 3/11/20

Constituent: Fluoride Analysis Run 4/1/2021 1:48 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

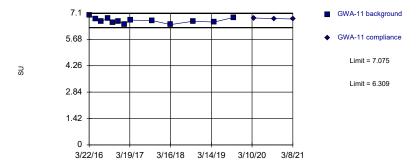
Within Limit

Prediction Limit

Background Data Summary: Mean=0.09607, Std. Dev.=0.03684, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9147, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Background Data Summary: Mean=6.938, Std. Dev.=0.1807, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9693, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

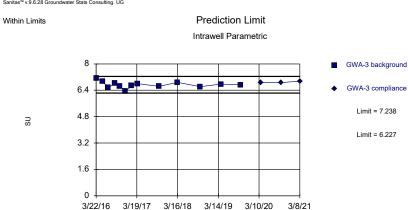
> Constituent: pH Analysis Run 4/1/2021 1:48 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

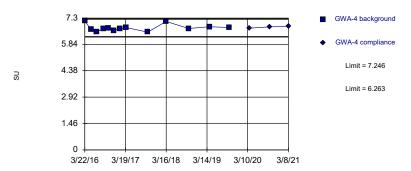

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Prediction Limit Within Limits Intrawell Parametric GWA-2 background **GWA-2** compliance 5.84 Limit = 7.273 4.38 Limit = 6.46 2.92 1.46 3/22/16 3/19/17 3/17/18 3/14/19 3/11/20 3/9/21

Background Data Summary: Mean=6.867, Std. Dev.=0.1547, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9756, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG




Background Data Summary: Mean=6.692, Std. Dev.=0.1457, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9669, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

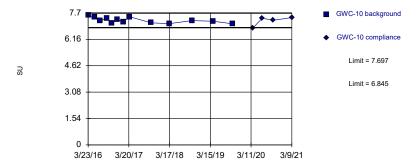
> Constituent: pH Analysis Run 4/1/2021 1:48 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=6.732, Std. Dev.=0.1922, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9818, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Background Data Summary: Mean=6.755, Std. Dev.=0.1869, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.862, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

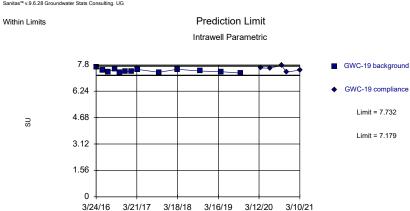
> Constituent: pH Analysis Run 4/1/2021 1:48 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

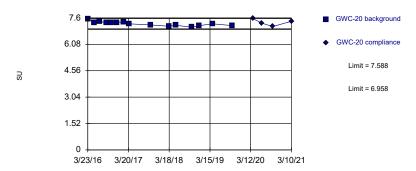

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Prediction Limit Within Limits Intrawell Parametric ■ GWC-18 background GWC-18 compliance 6.24 Limit = 7.781 4.68 Limit = 7.39 3.12 1.56 3/24/16 3/21/17 3/18/18 3/15/19 3/11/20 3/9/21

Background Data Summary: Mean=7.585, Std. Dev.=0.07423, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9602, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG




Background Data Summary: Mean=7.271, Std. Dev.=0.162, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9348, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

> Constituent: pH Analysis Run 4/1/2021 1:48 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

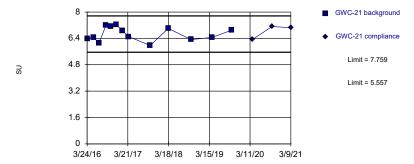
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=7.455, Std. Dev.=0.1052, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9485, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Background Data Summary: Mean=7.273, Std. Dev.=0.1253, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9587, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH Analysis Run 4/1/2021 1:48 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

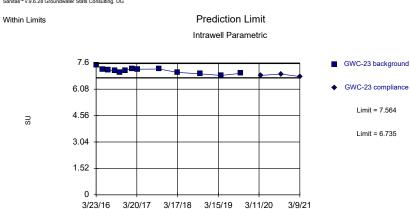
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

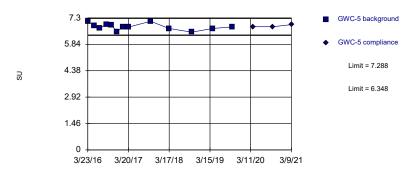

Prediction Limit Within Limits Intrawell Parametric ■ GWC-22 background GWC-22 compliance 6.4 Limit = 7.968 4.8 Limit = 7.278 3.2 1.6 3/23/16 3/20/17 3/17/18 3/15/19 3/11/20

Background Data Summary: Mean=7.623, Std. Dev.=0.1341, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9786, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

3/9/21

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG




Background Data Summary: Mean=6.658, Std. Dev.=0.4189, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9363, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

> Constituent: pH Analysis Run 4/1/2021 1:48 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

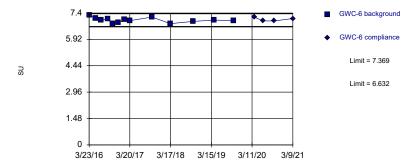
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=7.149, Std. Dev.=0.1578, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9618, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Background Data Summary: Mean=6.818, Std. Dev.=0.1788, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9555, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH Analysis Run 4/1/2021 1:48 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

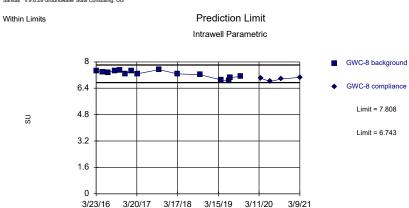
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Prediction Limit Within Limits Intrawell Parametric ■ GWC-7 background GWC-7 compliance Limit = 6.623 4.2 Limit = 5.502 2.8 1.4 3/23/16 3/20/17 3/17/18 3/15/19 3/11/20

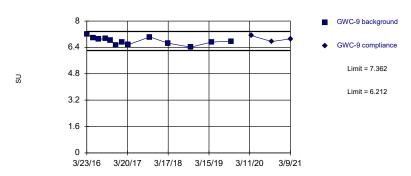
Background Data Summary: Mean=6.062, Std. Dev.=0.2132, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9398, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

3/9/21

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Background Data Summary: Mean=7.001, Std. Dev.=0.1401, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.965, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


> Constituent: pH Analysis Run 4/1/2021 1:48 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

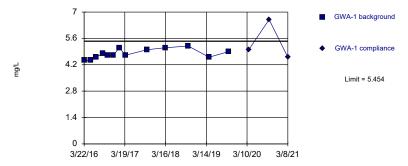
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=7.275, Std. Dev.=0.2119, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9103, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=6.787, Std. Dev.=0.2186, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9914, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

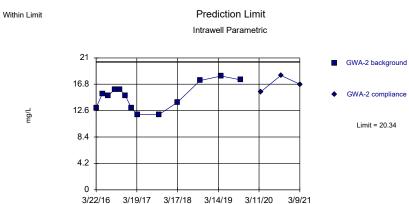
Constituent: pH Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

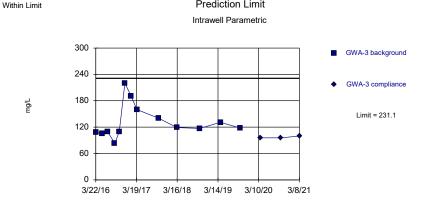
Background Data Summary: Mean=12.58, Std. Dev.=1.108, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8167, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

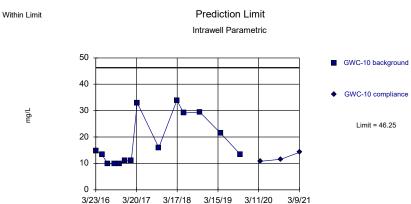


Background Data Summary: Mean=4.79, Std. Dev.=0.2524, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9406, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Sulfate Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

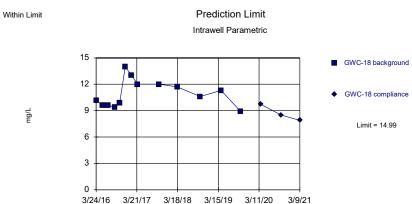
Background Data Summary: Mean=14.94, Std. Dev.=2.053, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9427, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG **Prediction Limit** Within Limit

Background Data Summary: Mean=131.7, Std. Dev.=37.85, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8594, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

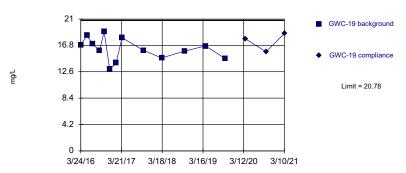
> Constituent: Sulfate Analysis Run 4/1/2021 1:49 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Background Data Summary (based on square root transformation): Mean=4.162, Std. Dev.=1.026, n=14. Normality test: Šhapiro Wilk @alpha = 0.01, calculated = 0.8337, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

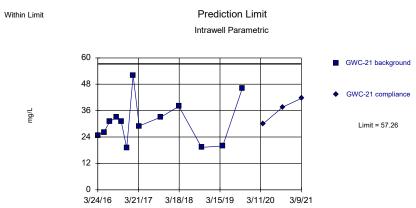
Prediction Limit Intrawell Parametric 400 ■ GWA-4 background 320 GWA-4 compliance 240 Limit = 348.3 160 80 3/22/16 3/19/17 3/16/18 3/14/19 3/10/20

Background Data Summary: Mean=192.8, Std. Dev.=59.18, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9402, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

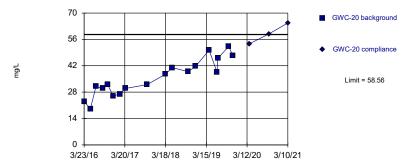

> Constituent: Sulfate Analysis Run 4/1/2021 1:49 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=10.94, Std. Dev.=1.541, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9417, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

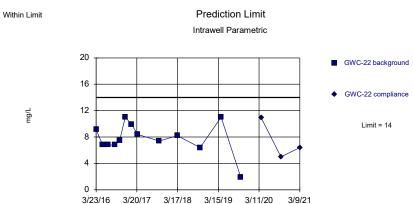

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=16.18, Std. Dev.=1.748, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9787, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132.


Constituent: Sulfate Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

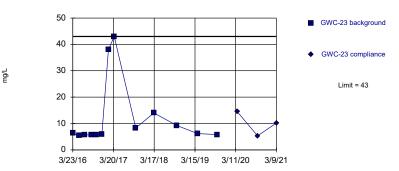
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=30.96, Std. Dev.=10.01, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9219, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Exceeds Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=35.78, Std. Dev.=9.504, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9715, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=7.792, Std. Dev.=2.363, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8985, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit

Prediction Limit Intrawell Non-parametric

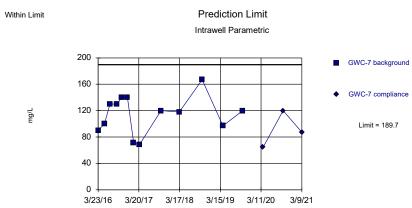
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Sulfate Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

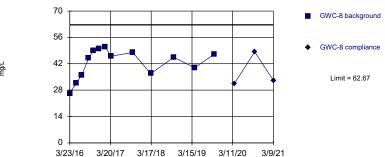
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limit | Prediction Limit | Intrawell Parametric | GWC-6 background | GWC-6 compliance | Limit = 150.6 | Limit = 150.6 | GWC-6 compliance | Limit = 15

Background Data Summary: Mean=109.2, Std. Dev.=17.06, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9548, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

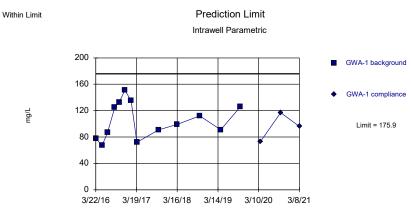

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary (based on square root transformation): Mean=9.222, Std. Dev.=1.293, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8196, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

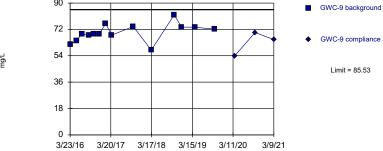

Constituent: Sulfate Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=114.7, Std. Dev.=28.53, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9639, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

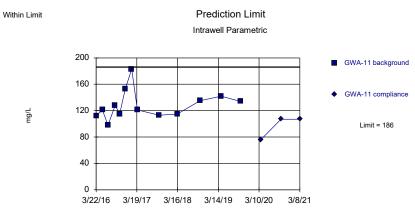

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=42.48, Std. Dev.=7.682, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.896, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006329.

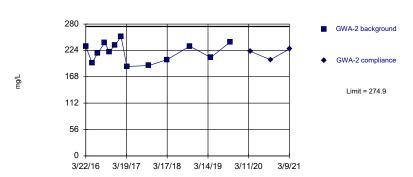

Constituent: Sulfate Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=105.2, Std. Dev.=26.93, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9463, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

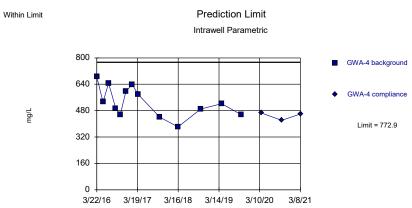

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=69.87, Std. Dev.=6.092, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.973, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

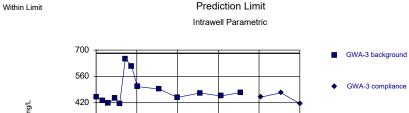

Constituent: Sulfate Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

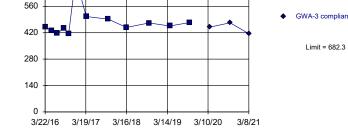
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=128.5, Std. Dev.=21.88, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9038, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

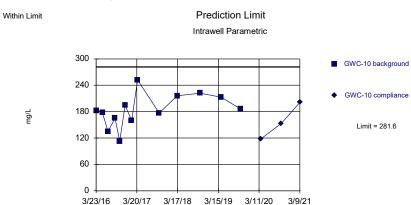
Background Data Summary: Mean=220.5, Std. Dev.=20.67, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.942, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006329.


Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=531.9, Std. Dev.=91.69, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9665, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



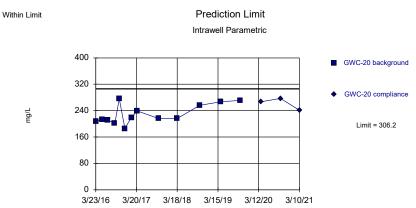
Background Data Summary (based on cube root transformation): Mean=7.827, Std. Dev.=0.3714, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8186, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=184.1, Std. Dev.=37.09, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9837, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:49 PM View: Appendix III

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

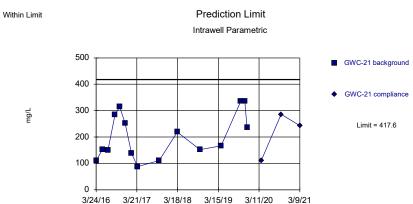
Background Data Summary: Mean=229.2, Std. Dev.=29.3, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8995, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit Intrawell Non-parametric

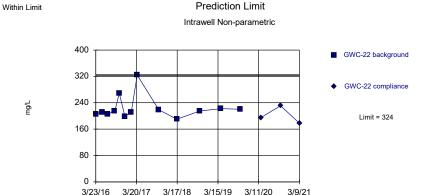
400

400

GWC-19 background

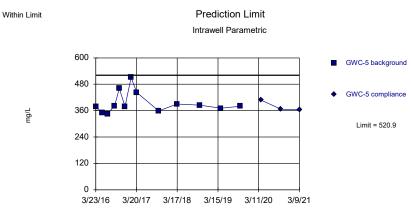

GWC-19 compliance

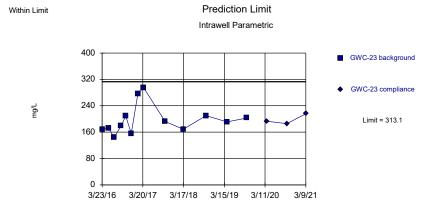
Limit = 393


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

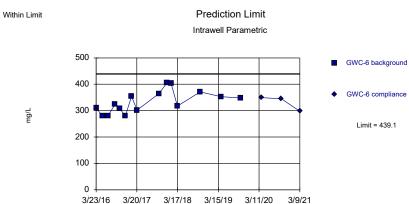
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Background Data Summary: Mean=203.2, Std. Dev.=85.29, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9112, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Background Data Summary: Mean=395, Std. Dev.=47.9, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.817, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269

Background Data Summary: Mean=197.3, Std. Dev.=44.03, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8638, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=333.5, Std. Dev =42.03, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9302, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit

Intrawell Parametric

400
320
GWC-7 background

GWC-7 compliance

Limit = 369

3/23/16 3/20/17 3/17/18 3/15/19 3/11/20 3/9/21

Prediction Limit

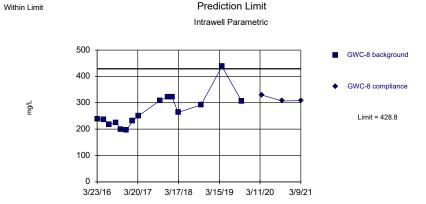
Background Data Summary: Mean=271.2, Std. Dev.=37.22, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8351, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

GWC-9 background


GWC-9 compliance

Limit = 326

Background Data Summary: Mean=235.2, Std. Dev.=34.54, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8738, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Total Dissolved Solids Analysis Run 4/1/2021 1:49 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=269.7, Std. Dev.=63.28, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8845, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

	GWA-1	GWA-1
3/22/2016	<0.1	
5/17/2016	<0.1	
7/5/2016	0.0419 (J)	
9/7/2016	0.0174 (J)	
10/18/2016	0.0192 (J)	
12/6/2016	0.0182 (J)	
1/31/2017	0.0193 (J)	
3/23/2017	0.0192 (J)	
10/4/2017	0.0199 (J)	
3/14/2018	0.019 (J)	
10/4/2018	0.021 (J)	
4/8/2019	0.019 (J)	
9/30/2019	0.025 (J)	
3/26/2020		0.022 (J)
9/23/2020		0.047 (J)
3/8/2021		0.021 (J)

	GWA-11	GWA-11
3/22/2016	0.04 (J)	
5/17/2016	0.0358 (J)	
7/6/2016	0.0373 (J)	
9/7/2016	0.0352 (J)	
10/18/2016	0.0332 (J)	
12/6/2016	0.033 (J)	
2/1/2017	0.0365 (J)	
3/24/2017	0.0343 (J)	
10/5/2017	0.0325 (J)	
3/15/2018	0.037 (J)	
10/4/2018	0.035 (J)	
4/8/2019	0.034 (J)	
9/30/2019	0.039 (J)	
3/26/2020		0.041 (J)
9/22/2020		0.038 (J)
3/8/2021		0.042

	GWA-2	GWA-2
3/22/2016	0.0828 (J)	
5/17/2016	0.0844 (J)	
7/5/2016	0.0962 (J)	
9/7/2016	0.0884 (J)	
10/18/2016	0.0889 (J)	
12/7/2016	0.0954	
1/31/2017	0.0939	
3/23/2017	0.0869	
10/4/2017	0.0914	
3/14/2018	0.075	
10/4/2018	0.082	
4/8/2019	0.071 (J)	
9/30/2019	0.084	
3/26/2020		0.092 (J)
9/21/2020		0.086 (J)
3/9/2021		0.081

	GWA-3	GWA-3
3/22/2016	0.135	
5/17/2016	0.132	
7/5/2016	0.161	
9/7/2016	0.163	
10/18/2016	0.154	
12/6/2016	0.142	
2/1/2017	0.143	
3/23/2017	0.15	
10/4/2017	0.182	
3/15/2018	0.14	
10/4/2018	0.16	
4/5/2019	0.12	
9/30/2019	0.17	
3/26/2020		0.14
9/23/2020		0.15
3/8/2021		0.13

	GWA-4	GWA-4
3/22/2016	0.0815 (J)	
5/17/2016	0.0838 (J)	
7/6/2016	0.111	
9/7/2016	0.107	
10/18/2016	0.118	
12/6/2016	0.106	
2/1/2017	0.0949	
3/24/2017	0.0887	
10/4/2017	0.105	
3/15/2018	0.043	
10/4/2018	0.1	
4/8/2019	0.057 (J)	
9/30/2019	0.11	
3/26/2020		0.086 (J)
9/23/2020		0.087 (J)
3/8/2021		0.089

	GWC-10	GWC-10
3/23/2016	0.0354 (J)	
5/17/2016	0.0349 (J)	
7/6/2016	0.0308 (J)	
9/7/2016	0.0283 (J)	
10/18/2016	0.0292 (J)	
12/6/2016	0.0287 (J)	
2/2/2017	0.0334 (J)	
3/27/2017	0.0396 (J)	
10/5/2017	0.0294 (J)	
3/15/2018	0.038 (J)	
10/4/2018	0.038 (J)	
4/9/2019	0.035 (J)	
10/1/2019	0.031 (J)	
3/27/2020		0.04 (J)
9/25/2020		0.036 (J)
3/9/2021		0.037 (J)

	GWC-18	GWC-18
3/24/2016	0.122	
5/18/2016	0.139	
7/7/2016	0.12	
9/8/2016	0.126	
10/19/2016	0.133	
12/8/2016	0.119	
2/2/2017	0.132	
3/27/2017	0.134	
10/5/2017	0.125	
3/16/2018	0.12	
10/5/2018	0.15	
4/9/2019	0.12	
10/1/2019	0.14	
3/30/2020		0.13
9/24/2020		0.13
3/9/2021		0.13

	GWC-19	GWC-19
3/24/2016	0.173	
5/18/2016	0.186	
7/6/2016	0.184	
9/8/2016	0.173	
10/18/2016	0.171	
12/7/2016	0.203	
2/2/2017	0.187	
3/27/2017	0.182	
10/5/2017	0.166	
3/15/2018	0.17	
10/4/2018	0.17	
4/9/2019	0.17	
10/1/2019	0.17	
3/31/2020		0.18
9/28/2020		0.17
3/10/2021		0.16

	GWC-20	GWC-20
3/23/2016	<0.1	
5/18/2016	0.0229 (J)	
7/7/2016	0.0169 (J)	
9/8/2016	0.0178 (J)	
10/19/2016	0.018 (J)	
12/7/2016	0.0248 (J)	
2/3/2017	0.0171 (J)	
3/27/2017	0.0181 (J)	
10/5/2017	0.0178 (J)	
3/16/2018	0.016 (J)	
10/5/2018	0.017 (J)	
4/9/2019	0.011 (J)	
10/1/2019	0.019 (J)	
3/31/2020		0.024 (J)
9/23/2020		0.018 (J)
3/10/2021		0.018 (J)

	GWC-21	GWC-21
3/24/2016	0.0232 (J)	
5/18/2016	0.0289 (J)	
7/7/2016	0.0313 (J)	
9/8/2016	0.0593 (J)	
10/19/2016	0.087 (J)	
12/7/2016	0.127	
2/2/2017	0.0318 (J)	
3/27/2017	0.0225 (J)	
10/5/2017	0.0304 (J)	
3/15/2018	0.025 (J)	
10/4/2018	0.029 (J)	
4/9/2019	0.014 (J)	
10/1/2019	0.059	
3/31/2020		0.022 (J)
9/24/2020		0.061 (J)
3/9/2021		0.03 (J)

	GWC-22	GWC-22
3/23/2016	0.0649 (J)	
5/18/2016	0.0781 (J)	
7/7/2016	0.0621 (J)	
9/8/2016	0.0607 (J)	
10/19/2016	0.0733 (J)	
12/7/2016	0.0758	
2/2/2017	0.0729	
3/27/2017	0.0698	
10/5/2017	0.0677	
3/15/2018	0.07	
10/4/2018	0.065	
4/9/2019	0.063	
10/1/2019	0.066	
3/31/2020		0.067 (J)
9/23/2020		0.061 (J)
3/9/2021		0.065

	GWC-23	GWC-23
3/23/2016	<0.1	
5/19/2016	0.0212 (J)	
7/7/2016	0.0183 (J)	
9/8/2016	0.017 (J)	
10/19/2016	0.0203 (J)	
12/7/2016	0.0215 (J)	
2/3/2017	0.0812	
3/27/2017	0.125	
10/5/2017	0.0375 (J)	
3/15/2018	0.051	
10/5/2018	0.039 (J)	
4/8/2019	0.022 (J)	
10/1/2019	0.024 (J)	
3/26/2020		0.042 (J)
9/23/2020		0.024 (J)
3/9/2021		0.044

	GWC-5	GWC-5
3/23/2016	0.0509 (J)	
5/17/2016	0.0565 (J)	
7/6/2016	0.0628 (J)	
9/7/2016	0.0648 (J)	
10/18/2016	0.0666 (J)	
12/8/2016	0.062	
2/1/2017	0.0516	
3/23/2017	0.0597	
10/4/2017	0.0658	
3/16/2018	0.047	
10/4/2018	0.066	
4/9/2019	0.048	
10/1/2019	0.071	
3/31/2020		0.057 (J)
9/25/2020		0.08 (J)
3/9/2021		0.046

	GWC-6	GWC-6
3/23/2016	0.0379 (J)	
5/17/2016	0.0395 (J)	
7/6/2016	0.0393 (J)	
9/7/2016	0.04 (J)	
10/18/2016	0.0366 (J)	
12/8/2016	0.0397 (J)	
2/1/2017	0.0381 (J)	
3/23/2017	0.0416	
10/4/2017	0.0382 (J)	
3/16/2018	0.044	
5/16/2018	0.042	
10/4/2018	0.038 (J)	
4/8/2019	0.036 (J)	
10/1/2019	0.042	
3/31/2020		0.091 (J)
6/18/2020		0.045 (JR)
9/25/2020		0.047 (J)
3/9/2021		0.038 (J)

	GWC-7	GWC-7
3/23/2016	0.0574 (J)	
5/18/2016	0.0686 (J)	
7/6/2016	0.0675 (J)	
9/7/2016	0.0582 (J)	
10/18/2016	0.0577 (J)	
12/8/2016	0.0572	
2/2/2017	0.0534	
3/24/2017	0.0532	
10/4/2017	0.0563	
3/15/2018	0.053	
10/4/2018	0.048	
4/8/2019	0.049 (J)	
10/1/2019	0.05	
3/30/2020		0.049 (J)
9/24/2020		0.045 (J)
3/9/2021		0.041

	GWC-8	GWC-8
3/23/2016	0.0213 (J)	
5/18/2016	0.028 (J)	
7/6/2016	0.0231 (J)	
9/8/2016	0.0234 (J)	
10/18/2016	0.0228 (J)	
12/8/2016	0.0251 (J)	
2/2/2017	0.0238 (J)	
3/24/2017	0.0234 (J)	
10/5/2017	0.0329 (J)	
3/14/2018	0.024 (J)	
10/4/2018	0.047 (J)	
4/8/2019	0.055 (J)	
10/1/2019	0.046	
3/27/2020		0.056 (J)
6/19/2020		0.086 (JR)
9/24/2020		0.055 (J)
3/9/2021		0.05

	GWC-9	GWC-9
3/23/2016	<0.1	
5/18/2016	0.0202 (J)	
7/6/2016	0.0171 (J)	
9/8/2016	0.0157 (J)	
10/19/2016	0.0152 (J)	
12/8/2016	0.0178 (J)	
2/2/2017	0.0151 (J)	
3/27/2017	0.0203 (J)	
10/5/2017	0.0157 (J)	
3/15/2018	0.013 (J)	
10/5/2018	0.017 (J)	
4/8/2019	0.015 (J)	
10/1/2019	0.018 (J)	
3/27/2020		0.018 (J)
9/24/2020		0.016 (J)
3/9/2021		0.014 (J)

	GWA-1	GWA-1
3/22/2016	13.9	
5/17/2016	15.6	
7/5/2016	15.7	
9/7/2016	18.2	
10/18/2016	17.7	
12/6/2016	16.9	
1/31/2017	17.9	
3/23/2017	13.9	
10/4/2017	15.9	
3/14/2018	<25	
10/4/2018	15.9 (J)	
4/8/2019	15.7	
9/30/2019	17.6	
3/26/2020		14
9/23/2020		17.6
3/8/2021		16.2 (M1)

	GWA-11	GWA-11
3/22/2016	23.8	
5/17/2016	21.5	
7/6/2016	20.6	
9/7/2016	16.7	
10/18/2016	20.3	
12/6/2016	19.7	
2/1/2017	18.1	
3/24/2017	21.1	
10/5/2017	20.1	
3/15/2018	<25	
10/4/2018	21.3 (J)	
4/8/2019	22.4	
9/30/2019	19.6	
3/26/2020		22.4
9/22/2020		19.5
3/8/2021		22

	GWA-2	GWA-2
3/22/2016	47.4	
5/17/2016	45.5	
7/5/2016	40.5	
9/7/2016	37.3	
10/18/2016	46.6	
12/7/2016	43.5	
1/31/2017	39.2	
3/23/2017	38.7	
10/4/2017	36.5	
3/14/2018	39.5	
10/4/2018	41.7	
4/8/2019	44.1	
9/30/2019	44.6	
3/26/2020		43.2
9/21/2020		45.8
3/9/2021		48.7

	GWA-3	GWA-3
3/22/2016	79.3	
5/17/2016	75.8	
7/5/2016	65.3	
9/7/2016	59.8	
10/18/2016	72.4	
12/6/2016	78.6	
2/1/2017	85	
3/23/2017	81.2	
10/4/2017	78.8	
3/15/2018	83.5	
10/4/2018	75.2	
4/5/2019	76.5	
9/30/2019	74.7	
3/26/2020		78.7
9/23/2020		76.2
3/8/2021		73.5

	01444	0)4/4 4
	GWA-4	GWA-4
3/22/2016	123	
5/17/2016	99.2	
7/6/2016	109	
9/7/2016	67.2	
10/18/2016	77.9	
12/6/2016	93.3	
2/1/2017	92.8	
3/24/2017	96.3	
10/4/2017	75.1	
3/15/2018	69.9	
10/4/2018	77.8	
4/8/2019	86.6	
9/30/2019	78.3	
3/26/2020		87.4
9/23/2020		74.9
3/8/2021		87.2

	GWC-10	GWC-10
3/23/2016	43.9	
5/17/2016	40.1	
7/6/2016	32.3	
9/7/2016	28.9	
10/18/2016	35.4	
12/6/2016	34.3	
2/2/2017	38.1	
3/27/2017	45.4	
10/5/2017	35.8	
3/15/2018	52.4	
5/15/2018	48.4	
10/4/2018	51.2	
12/11/2018	49.3	
4/9/2019	48.8	
10/1/2019	36.8	
3/27/2020		22.9
9/25/2020		39.4
3/9/2021		48.7

	GWC-18	GWC-18
3/24/2016	40.7	
5/18/2016	41.9	
7/7/2016	36.8	
9/8/2016	35.9	
10/19/2016	38.7	
12/8/2016	39.4	
2/2/2017	41.5	
3/27/2017	39.1	
10/5/2017	41.6	
3/16/2018	45.9	
5/16/2018	40	
10/5/2018	39.6	
4/9/2019	41.4	
10/1/2019	38.7	
3/30/2020		45.7
9/24/2020		36.9
3/9/2021		44.9

	GWC-19	GWC-19
3/24/2016	43.9	
5/18/2016	48.2	
7/6/2016	45.8	
9/8/2016	40.9	
10/18/2016	45.5	
12/7/2016	40.6	
2/2/2017	42.4	
3/27/2017	45.5	
10/5/2017	42.9	
3/15/2018	43.3	
10/4/2018	43.7	
4/9/2019	45.8	
10/1/2019	42.3	
3/31/2020		52.3
6/19/2020		41.3 (R)
9/28/2020		44.7
3/10/2021		47.4

	GWC-20	GWC-20
3/23/2016	56.3	
5/18/2016	59	
7/7/2016	50.9	
9/8/2016	48	
10/19/2016	49.7	
12/7/2016	46.4	
2/3/2017	49	
3/27/2017	50.7	
10/5/2017	52	
3/16/2018	53.4	
10/5/2018	52.7	
4/9/2019	57.1	
10/1/2019	59.1	
3/31/2020		63.6
6/19/2020		61.4 (R)
9/23/2020		55.8
3/10/2021		64.9

	GWC-21	GWC-21
3/24/2016	31.4	
5/18/2016	39.2	
7/7/2016	36	
9/8/2016	70	
10/19/2016	63	
12/7/2016	54.7	
2/2/2017	37.4	
3/27/2017	20.9	
10/5/2017	26.8	
3/15/2018	62.8	
10/4/2018	48.6	
4/9/2019	35.4	
10/1/2019	82.8	
11/6/2019	74.9	
11/26/2019	45.8	
3/31/2020		25.6
9/24/2020		73.4
3/9/2021		67.8

	GWC-22	GWC-22
3/23/2016	49.9	
5/18/2016	50.7	
7/7/2016	45.5	
9/8/2016	46.8	
10/19/2016	47.3	
12/7/2016	45.3	
2/2/2017	49.9	
3/27/2017	45.8	
10/5/2017	47.3	
3/15/2018	46.8	
10/4/2018	50.4	
4/9/2019	47.3	
10/1/2019	46.9	
3/31/2020		51.5
9/23/2020		45.9
3/9/2021		48.7

	GWC-23	GWC-23
3/23/2016	36.4	
5/19/2016	41.5	
7/7/2016	33.5	
9/8/2016	34.7	
10/19/2016	33.4	
12/7/2016	35.5	
2/3/2017	31.7	
3/27/2017	32	
10/5/2017	41	
3/15/2018	39.8	
10/5/2018	39.3	
4/8/2019	39.8	
10/1/2019	39.1	
3/26/2020		44.7
9/23/2020		39.2
3/9/2021		54.3

	GWC-5	GWC-5
3/23/2016	79	
5/17/2016	74.6	
7/6/2016	66.9	
9/7/2016	61.6	
10/18/2016	71.6	
12/8/2016	67.6	
2/1/2017	82.5	
3/23/2017	84.4	
10/4/2017	70.8	
3/16/2018	78.1	
10/4/2018	73	
4/9/2019	73.9	
10/1/2019	70.6	
3/31/2020		84.2
9/25/2020		77.1
3/9/2021		85.4

	GWC-6	GWC-6
3/23/2016	64.1	
5/17/2016	62.8	
7/6/2016	59.5	
9/7/2016	53.7	
10/18/2016	62.3	
12/8/2016	58.8	
2/1/2017	59.6	
3/23/2017	62.9	
10/4/2017	62.4	
3/16/2018	66.9	
10/4/2018	65.5	
4/8/2019	67	
10/1/2019	64.2	
3/31/2020		70.6
9/25/2020		71.3
3/9/2021		70.8

	GWC-7	GWC-7
3/23/2016	45.2	
5/18/2016	46.5	
7/6/2016	29.1	
9/7/2016	19.2	
10/18/2016	22.6	
12/8/2016	17.5	
2/2/2017	54.4	
3/24/2017	56.8	
10/4/2017	30.5	
3/15/2018	43.4	
10/4/2018	26.1	
4/8/2019	56.1	
10/1/2019	28.5	
3/30/2020		47.8
9/24/2020		39.5
3/9/2021		64.3

	GWC-8	GWC-8
3/23/2016	69.1	
5/18/2016	63.7	
7/6/2016	56.8	
9/8/2016	51.3	
10/18/2016	52.6	
12/8/2016	43.7	
2/2/2017	56.5	
3/24/2017	64.4	
10/5/2017	59.9	
3/14/2018	58.8	
10/4/2018	264 (o)	
12/11/2018	64.3	
4/8/2019	81.5	
6/18/2019	83.7	
6/27/2019	75.9	
10/1/2019	64	
3/27/2020		87.3
9/24/2020		81.4
3/9/2021		83.2

	GWC-9	GWC-9
3/23/2016	36	
5/18/2016	37.3	
7/6/2016	32.8	
9/8/2016	32.1	
10/19/2016	35	
12/8/2016	33.4	
2/2/2017	34.3	
3/27/2017	34.9	
10/5/2017	34.7	
3/15/2018	35.3	
10/5/2018	37.8	
4/8/2019	36.3	
10/1/2019	37.2	
3/27/2020		34.3
9/24/2020		35.9
3/9/2021		36.8

	GWA-1	GWA-1
3/22/2016	1.1933	
5/17/2016	1.14	
7/5/2016	1.4	
9/7/2016	1	
10/18/2016	1.1	
12/6/2016	1	
1/31/2017	1.2	
3/23/2017	1.1	
10/4/2017	1.1	
3/14/2018	1.2	
10/4/2018	1.4	
4/8/2019	1.1	
9/30/2019	1.4	
3/26/2020		1.1
9/23/2020		1.6
3/8/2021		1.1

	GWA-11	GWA-11
3/22/2016	1.3137	
5/17/2016	1.29	
7/6/2016	1.6	
9/7/2016	1.5	
10/18/2016	1.6	
12/6/2016	1.2	
2/1/2017	2.1	
3/24/2017	1.3	
10/5/2017	1.3	
3/15/2018	1.6	
10/4/2018	1.8	
4/8/2019	1.3	
9/30/2019	1.5	
3/26/2020		1.4
9/22/2020		1
3/8/2021		1.3

	GWA-2	GWA-2
3/22/2016	2.0975	
5/17/2016	2.1	
7/5/2016	2.4	
9/7/2016	2.5	
10/18/2016	2.7	
12/7/2016	2.6	
1/31/2017	2.5	
3/23/2017	2	
10/4/2017	2.2	
3/14/2018	2.4	
10/4/2018	2.5	
4/8/2019	2.6	
9/30/2019	3	
3/26/2020		2
9/21/2020		2.1
3/9/2021		2.1

	GWA-3	GWA-3
3/22/2016	4.0352	
5/17/2016	3.81	
7/5/2016	4	
9/7/2016	4.2	
10/18/2016	4.4	
12/6/2016	4.6	
2/1/2017	3.7	
3/23/2017	3.5	
10/4/2017	3.6	
3/15/2018	3.8	
10/4/2018	3.4	
4/5/2019	4.2	
9/30/2019	4.1	
3/26/2020		2.6
9/23/2020		2.8
3/8/2021		2.8

	GWA-4	GWA-4
3/22/2016	5.549	
5/17/2016	6.74	
7/6/2016	5.2	
9/7/2016	7.2	
10/18/2016	7.4	
12/6/2016	7.6	
2/1/2017	8.5	
3/24/2017	7	
10/4/2017	7.4	
3/15/2018	1.7	
10/4/2018	6.1	
4/8/2019	3.6	
9/30/2019	7.5	
3/26/2020		5.4
9/23/2020		4.2
3/8/2021		5.6

	GWC-10	GWC-10
3/23/2016	1.3507	
5/17/2016	1.28	
7/6/2016	1.5	
9/7/2016	1.5	
10/18/2016	1.4	
12/6/2016	1.3	
2/2/2017	1.8	
3/27/2017	1.7	
10/5/2017	1.5	
3/15/2018	2	
5/15/2018	1.4	
10/4/2018	2.1	
12/11/2018	1.9	
4/9/2019	1.9	
10/1/2019	1.5	
3/27/2020		1.2
9/25/2020		1.1
3/9/2021		1.1

	GWC-18	GWC-18
3/24/2016	1.1313	
5/19/2016	1.13	
7/7/2016	1.5	
9/8/2016	1.4	
10/19/2016	1.4	
12/8/2016	1.4	
2/2/2017	1.6	
3/27/2017	1.5	
10/5/2017	1.4	
3/16/2018	1.5	
10/5/2018	1.5	
4/9/2019	1.6	
10/1/2019	0.94 (J)	
3/30/2020		1
9/24/2020		0.94 (J)
3/9/2021		0.97 (J)

	GWC-19	GWC-19
3/24/2016	1.6497	
5/18/2016	1.74	
7/6/2016	2.1	
9/8/2016	1.9	
10/18/2016	2.1	
12/7/2016	2	
2/2/2017	2.3	
3/27/2017	2.1	
10/5/2017	1.9	
3/15/2018	1.9	
10/4/2018	2	
4/9/2019	1.9	
10/1/2019	1.3	
3/31/2020		1.3
9/28/2020		1.3
3/10/2021		1.3

	GWC-20	GWC-20
3/23/2016	1.4238	
5/18/2016	1.57	
7/7/2016	1.7	
9/8/2016	1.5	
10/19/2016	1.7	
12/7/2016	1.8	
2/3/2017	2	
3/27/2017	1.8	
10/5/2017	5.5 (o)	
12/14/2017	1.5	
3/16/2018	1.9	
10/5/2018	2.2	
12/11/2018	1.8	
4/9/2019	1.8	
10/1/2019	1.1	
3/31/2020		1.1
9/23/2020		1.1
3/10/2021		1.2

	GWC-21	GWC-21
3/24/2016	2.461	
5/18/2016	2.61	
7/7/2016	2.8	
9/8/2016	2.3	
10/19/2016	2.4	
12/7/2016	2.2	
2/2/2017	3.4	
3/27/2017	2.7	
10/5/2017	3.3	
3/15/2018	3.6	
5/15/2018	3.2	
10/4/2018	2.4	
4/9/2019	2.6	
10/1/2019	2	
3/31/2020		1.5
9/24/2020		1.8
3/9/2021		1.8

	GWC-22	GWC-22
3/23/2016	1.2595	
5/18/2016	1.25	
7/7/2016	1.7	
9/8/2016	1.5	
10/19/2016	1.6	
12/7/2016	1.5	
2/2/2017	1.8	
3/27/2017	1.5	
10/5/2017	1.6	
3/15/2018	1.7	
10/4/2018	1.7	
4/9/2019	1.7	
10/1/2019	1.4	
3/31/2020		1
9/23/2020		1.1
3/9/2021		1

	GWC-23	GWC-23
3/23/2016	1.5409	
5/19/2016	1.23	
7/7/2016	1.7	
9/8/2016	1.6	
10/19/2016	1.6	
12/7/2016	1.7	
2/3/2017	1.9	
3/27/2017	1.7	
10/5/2017	1.4	
3/15/2018	1.6	
10/5/2018	1.6	
4/8/2019	1.5	
10/1/2019	1.1	
3/26/2020		0.63 (J)
9/23/2020		1.1
3/9/2021		0.85 (J)

	GWC-5	GWC-5
3/23/2016	2.5045	
5/17/2016	2.47	
7/6/2016	2.9	
9/7/2016	2.8	
10/18/2016	2.8	
12/8/2016	3.1	
2/1/2017	3.8	
3/23/2017	3.4	
10/4/2017	3.7	
3/16/2018	3.2	
10/4/2018	3.2	
4/9/2019	3.3	
10/1/2019	2.2	
3/31/2020		2
9/25/2020		2.3
3/9/2021		2

	GWC-6	GWC-6
3/23/2016	1.7709	
5/17/2016	1.75	
7/6/2016	2	
9/7/2016	2	
10/18/2016	2	
12/8/2016	2	
2/1/2017	2.2	
3/23/2017	2	
10/4/2017	1.7	
3/16/2018	2.1	
10/4/2018	2.2	
4/8/2019	2.1	
10/1/2019	1.6	
3/31/2020		1.5
9/25/2020		1.6
3/9/2021		1.5

GWC-7	GWC-7
1.1569	
1.35	
1.9	
1.7	
1.8	
1.6	
2	
1.3	
1.7	
1.9	
2	
1.9	
1.2	
	9.2
	1.4 (R)
	1.4
	1.5
	1.1569 1.35 1.9 1.7 1.8 1.6 2 1.3 1.7 1.9

	GWC-8	GWC-8
3/23/2016	1.4936	
5/19/2016	1.35	
7/6/2016	1.6	
9/8/2016	1.4	
10/18/2016	1.4	
12/8/2016	1.5	
2/2/2017	1.7	
3/24/2017	2.1	
10/5/2017	2	
3/14/2018	2.1	
10/4/2018	2.3	
12/11/2018	2.3	
1/11/2019	2.8	
4/8/2019	3.2	
10/1/2019	1.8	
3/27/2020		2.5
9/24/2020		2.2
3/9/2021		2.2
	5/19/2016 7/6/2016 9/8/2016 10/18/2016 12/8/2016 12/8/2017 3/24/2017 10/5/2017 3/14/2018 10/4/2018 12/11/2018 1/11/2019 4/8/2019 10/1/2019 3/27/2020 9/24/2020	3/23/2016 1.4936 5/19/2016 1.35 7/6/2016 1.6 9/8/2016 1.4 10/18/2016 1.4 12/8/2016 1.5 2/2/2017 1.7 3/24/2017 2.1 10/5/2017 2 3/14/2018 2.1 10/4/2018 2.3 12/11/2018 2.3 1/11/2019 2.8 4/8/2019 3.2 10/1/2019 1.8 3/27/2020 9/24/2020

	GWC-9	GWC-9
3/23/2016	0.9561	
5/19/2016	0.972	
7/6/2016	1.3	
9/8/2016	1	
10/19/2016	1.1	
12/8/2016	1.3	
2/2/2017	1.6	
3/27/2017	1.4	
10/5/2017	1.1	
3/15/2018	1.3	
10/5/2018	1.6	
4/8/2019	1	
10/1/2019	0.91 (J)	
3/27/2020		0.74 (J)
9/24/2020		0.82 (J)
3/9/2021		0.74 (J)

	GWA-1	GWA-1
3/22/2016	0.119 (J)	
5/17/2016	0.1049 (J)	
7/5/2016	0.1 (J)	
9/7/2016	0.13 (J)	
10/18/2016	0.15 (J)	
12/6/2016	0.11 (J)	
1/31/2017	0.02 (J)	
3/23/2017	0.08 (J)	
10/4/2017	0.07 (J)	
3/14/2018	<0.3	
10/4/2018	0.17 (J)	
4/8/2019	0.057 (J)	
9/30/2019	0.11 (J)	
3/26/2020		0.082 (J)
9/23/2020		0.089 (J)
3/8/2021		0.094 (J)

	GWA-11	GWA-11
3/22/2016	0.0811 (J)	
5/17/2016	0.0706 (J)	
7/6/2016	0.09 (J)	
9/7/2016	0.04 (J)	
10/18/2016	0.07 (J)	
12/6/2016	0.13 (J)	
2/1/2017	<0.3	
3/24/2017	0.01 (J)	
10/5/2017	<0.3	
3/15/2018	<0.3	
10/4/2018	0.15 (J)	
4/8/2019	0.035 (J)	
9/30/2019	0.099 (J)	
3/26/2020		0.057 (J)
9/22/2020		0.061 (J)
3/8/2021		0.11

	GWA-2	GWA-2
3/22/2016	0.1252 (J)	
5/17/2016	0.1091 (J)	
7/5/2016	0.16 (J)	
9/7/2016	0.18 (J)	
10/18/2016	0.13 (J)	
12/7/2016	0.13 (J)	
1/31/2017	0.04 (J)	
3/23/2017	0.08 (J)	
10/4/2017	0.11 (J)	
3/14/2018	<0.3	
10/4/2018	0.25 (J)	
4/8/2019	0.072 (J)	
9/30/2019	0.14 (J)	
3/26/2020		0.12 (J)
9/21/2020		0.12
3/9/2021		0.099 (J)

	GWA-3	GWA-3
3/22/2016	0.1415 (J)	
5/17/2016	0.1293 (J)	
7/5/2016	0.21 (J)	
9/7/2016	0.21 (J)	
10/18/2016	0.15 (J)	
12/6/2016	0.19 (J)	
2/1/2017	0.35	
3/23/2017	0.39	
10/4/2017	0.49	
3/15/2018	<0.3	
10/4/2018	0.24 (J)	
4/5/2019	0.31	
9/30/2019	0.15 (J)	
3/26/2020		0.09 (J)
9/23/2020		0.11
3/8/2021		0.13

	GWA-4	GWA-4
3/22/2016	0.1754 (J)	
5/17/2016	0.1385 (J)	
7/6/2016	0.22 (J)	
9/7/2016	0.2 (J)	
10/18/2016	0.16 (J)	
12/6/2016	0.29 (J)	
2/1/2017	0.48	
3/24/2017	0.12 (J)	
10/4/2017	0.2 (J)	
3/15/2018	0.4	
10/4/2018	0.24 (J)	
4/8/2019	0.12 (J)	
9/30/2019	0.17 (J)	
3/26/2020		0.089 (J)
9/23/2020		0.13
3/8/2021		0.1

	GWC-10	GWC-10
3/23/2016	0.1069 (J)	
5/17/2016	0.0991 (J)	
7/6/2016	0.09 (J)	
9/7/2016	0.13 (J)	
10/18/2016	0.16 (J)	
12/6/2016	0.12 (J)	
2/2/2017	0.07 (J)	
3/27/2017	0.05 (J)	
10/5/2017	0.11 (J)	
3/15/2018	<0.3	
10/4/2018	0.16 (J)	
4/9/2019	0.067 (J)	
10/1/2019	0.07 (J)	
3/27/2020		<0.3
9/25/2020		0.085 (J)
3/9/2021		0.078 (J)

	GWC-18	GWC-18
3/24/2016	0.1459 (J)	
5/19/2016	0.1408 (J)	
7/7/2016	0.2 (J)	
9/8/2016	0.14 (J)	
10/19/2016	0.14 (J)	
12/8/2016	0.16 (J)	
2/2/2017	0.17 (J)	
3/27/2017	0.11 (J)	
10/5/2017	0.13 (J)	
3/16/2018	<0.3	
10/5/2018	0.21 (J)	
4/9/2019	0.1 (J)	
10/1/2019	0.11 (J)	
3/30/2020		0.1 (J)
9/24/2020		0.11
3/9/2021		0.11

	GWC-19	GWC-19
3/24/2016	0.1652 (J)	
5/18/2016	0.1459 (J)	
7/6/2016	0.21 (J)	
9/8/2016	0.15 (J)	
10/18/2016	0.19 (J)	
12/7/2016	0.24 (J)	
2/2/2017	0.1 (J)	
3/27/2017	0.11 (J)	
10/5/2017	0.13 (J)	
3/15/2018	<0.3	
10/4/2018	0.21 (J)	
4/9/2019	0.1 (J)	
10/1/2019	0.11 (J)	
3/31/2020		0.099 (J)
9/28/2020		0.11
3/10/2021		0.11

	GWC-20	GWC-20
3/23/2016	0.0905 (J)	
5/18/2016	0.0864 (J)	
7/7/2016	0.16 (J)	
9/8/2016	0.08 (J)	
10/19/2016	0.09 (J)	
12/7/2016	0.11 (J)	
2/3/2017	0.06 (J)	
3/27/2017	0.04 (J)	
10/5/2017	0.05 (J)	
3/16/2018	<0.3	
10/5/2018	0.17 (J)	
4/9/2019	0.056 (J)	
10/1/2019	0.069 (J)	
3/31/2020		0.054 (J)
9/23/2020		0.065 (J)
3/10/2021		0.068 (J)

	GWC-21	GWC-21
3/24/2016	0.0445 (J)	
5/18/2016	0.0476 (J)	
7/7/2016	0.12 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.13 (J)	
12/7/2016	0.23 (J)	
2/2/2017	0.11 (J)	
3/27/2017	0.01 (J)	
10/5/2017	<0.3	
3/15/2018	<0.3	
10/4/2018	0.15 (J)	
4/9/2019	0.063 (J)	
10/1/2019	0.094 (J)	
3/31/2020		<0.3
9/24/2020		0.1
3/9/2021		0.058 (J)

	GWC-22	GWC-22
3/23/2016	0.0886 (J)	
5/18/2016	0.0839 (J)	
7/7/2016	0.08 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.1 (J)	
12/7/2016	0.09 (J)	
2/2/2017	0.05 (J)	
3/27/2017	0.08 (J)	
10/5/2017	0.08 (J)	
3/15/2018	<0.3	
10/4/2018	0.14 (J)	
4/9/2019	0.063 (J)	
10/1/2019	0.079 (J)	
3/31/2020		0.055 (J)
9/23/2020		0.073 (J)
3/9/2021		0.067 (J)

	GWC-23	GWC-23
3/23/2016	0.1064 (J)	
5/19/2016	0.0928 (J)	
7/7/2016	0.13 (J)	
9/8/2016	0.12 (J)	
10/19/2016	0.1 (J)	
12/7/2016	0.1 (J)	
2/3/2017	0.12 (J)	
3/27/2017	0.14 (J)	
10/5/2017	0.09 (J)	
3/15/2018	<0.3	
10/5/2018	0.18 (J)	
4/8/2019	0.057 (J)	
10/1/2019	0.079 (J)	
3/26/2020		0.064 (J)
9/23/2020		0.088 (J)
3/9/2021		0.069 (J)

	GWC-5	GWC-5
3/23/2016	0.0582 (J)	
5/17/2016	0.0571 (J)	
7/6/2016	0.29 (J)	
9/7/2016	0.08 (J)	
10/18/2016	0.09 (J)	
12/8/2016	0.06 (J)	
2/1/2017	0.33	
3/23/2017	0.07 (J)	
10/4/2017	<0.3	
3/16/2018	<0.3	
10/4/2018	0.16 (J)	
4/9/2019	0.061 (J)	
10/1/2019	0.064 (J)	
3/31/2020		<0.3
9/25/2020		0.058 (J)
3/9/2021		0.05 (J)

	GWC-6	GWC-6
3/23/2016	0.0791 (J)	
5/17/2016	0.0712 (J)	
7/6/2016	0.28 (J)	
9/7/2016	0.08 (J)	
10/18/2016	0.07 (J)	
12/8/2016	0.13 (J)	
2/1/2017	0.24 (J)	
3/23/2017	0.04 (J)	
10/4/2017	0.03 (J)	
3/16/2018	<0.3	
10/4/2018	0.17 (J)	
4/8/2019	<0.3	
10/1/2019	0.063 (J)	
3/31/2020		0.053 (J)
9/25/2020		0.063 (J)
3/9/2021		0.06 (J)

	GWC-7	GWC-7
3/23/2016	0.2004 (J)	
5/18/2016	0.1766 (J)	
7/6/2016	0.39	
9/7/2016	0.53	
10/18/2016	0.24 (J)	
12/8/2016	0.24 (J)	
2/2/2017	0.3 (J)	
3/24/2017	0.22 (J)	
10/4/2017	0.19 (J)	
3/15/2018	0.37	
10/4/2018	0.19 (J)	
4/8/2019	0.17 (J)	
10/1/2019	0.16 (J)	
3/30/2020		0.16 (J)
9/24/2020		0.14
3/9/2021		0.17

	GWC-8	GWC-8
3/23/2016	0.1537 (J)	
5/19/2016	0.1414 (J)	
7/6/2016	0.15 (J)	
9/8/2016	0.35	
10/18/2016	0.17 (J)	
12/8/2016	0.15 (J)	
2/2/2017	0.1 (J)	
3/24/2017	0.14 (J)	
10/5/2017	0.15 (J)	
3/14/2018	0.4	
5/16/2018	0.32	
10/4/2018	0.28 (J)	
4/8/2019	0.1 (J)	
10/1/2019	0.13 (J)	
3/27/2020		0.12 (J)
9/24/2020		0.15
3/9/2021		0.12

	GWC-9	GWC-9
3/23/2016	0.0993 (J)	
5/19/2016	0.0936 (J)	
7/6/2016	0.09 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.1 (J)	
12/8/2016	0.11 (J)	
2/2/2017	0.05 (J)	
3/27/2017	0.07 (J)	
10/5/2017	0.06 (J)	
3/15/2018	<0.3	
10/5/2018	0.18 (J)	
4/8/2019	0.058 (J)	
10/1/2019	0.078 (J)	
3/27/2020		0.078 (J)
9/24/2020		0.076 (J)
3/9/2021		0.08 (J)

	GWA-1	GWA-1
3/22/2016	7.07	
5/17/2016	7	
7/5/2016	6.88	
9/7/2016	7.24	
10/18/2016	6.86	
12/6/2016	6.98	
1/31/2017	6.63	
3/23/2017	7.12	
10/4/2017	6.83	
3/14/2018	6.66	
10/4/2018	6.92	
4/8/2019	6.86	
9/30/2019	7.15	
3/26/2020		7.02
9/23/2020		6.98
3/8/2021		6.86

	GWA-11	GWA-11
3/22/2016	7	
5/17/2016	6.77	
7/6/2016	6.64	
9/7/2016	6.83	
10/18/2016	6.58	
12/6/2016	6.66	
2/1/2017	6.5	
3/24/2017	6.72	
10/5/2017	6.69	
3/15/2018	6.48	
10/4/2018	6.66	
4/8/2019	6.61	
9/30/2019	6.86	
3/26/2020		6.83
9/22/2020		6.8
3/8/2021		6.78

	GWA-2	GWA-2
3/22/2016	7.19	
5/17/2016	6.94	
7/5/2016	6.98	
9/7/2016	6.86	
10/18/2016	6.71	
12/7/2016	6.71	
1/31/2017	6.95	
3/23/2017	7.04	
10/4/2017	6.86	
3/14/2018	6.76	
10/4/2018	6.62	
4/8/2019	6.79	
9/30/2019	6.86	
3/26/2020		7.07
9/21/2020		6.9
3/9/2021		6.93

	GWA-3	GWA-3
3/22/2016	7.11	
5/17/2016	6.95	
7/5/2016	6.55	
9/7/2016	6.81	
10/18/2016	6.64	
12/6/2016	6.34	
2/1/2017	6.68	
3/23/2017	6.8	
10/4/2017	6.64	
3/15/2018	6.88	
10/4/2018	6.62	
4/5/2019	6.77	
9/30/2019	6.73	
3/26/2020		6.87
9/23/2020		6.87
3/8/2021		6.95

	GWA-4	GWA-4
3/22/2016	7.14	
5/17/2016	6.67	
7/6/2016	6.53	
9/7/2016	6.72	
10/18/2016	6.73	
12/6/2016	6.61	
2/1/2017	6.7	
3/24/2017	6.77	
10/4/2017	6.52	
3/15/2018	7.11	
10/4/2018	6.72	
4/8/2019	6.82	
9/30/2019	6.77	
3/26/2020		6.74
9/23/2020		6.81
3/8/2021		6.84

	GWC-10	GWC-10
3/23/2016	7.56	
5/17/2016	7.46	
7/6/2016	7.24	
9/7/2016	7.4	
10/18/2016	7.11	
12/6/2016	7.32	
2/2/2017	7.19	
3/27/2017	7.48	
10/5/2017	7.13	
3/15/2018	7.08	
10/4/2018	7.26	
4/9/2019	7.22	
10/1/2019	7.07	
3/27/2020		6.82
6/19/2020		7.4 (R)
9/25/2020		7.28
3/9/2021		7.43

	GWC-18	GWC-18
3/24/2016	7.71	
5/18/2016	7.59	
7/7/2016	7.55	
9/8/2016	7.54	
10/19/2016	7.66	
12/8/2016	7.47	
2/2/2017	7.64	
3/27/2017	7.59	
10/5/2017	7.65	
3/16/2018	7.51	
10/5/2018	7.57	
4/9/2019	7.48	
10/1/2019	7.65	
3/30/2020		7.65
9/24/2020		7.62
3/9/2021		7.66

	GWC-19	GWC-19
3/24/2016	7.69	
5/18/2016	7.49	
7/6/2016	7.39	
9/8/2016	7.57	
10/18/2016	7.35	
12/7/2016	7.42	
2/2/2017	7.43	
3/27/2017	7.53	
10/5/2017	7.36	
3/15/2018	7.54	
10/4/2018	7.44	
4/9/2019	7.4	
10/1/2019	7.31	
3/31/2020		7.62
6/19/2020		7.61 (R)
9/28/2020		7.78
11/10/2020		7.37 (R)
3/10/2021		7.49

	GWC-20	GWC-20
3/23/2016	7.55	
5/18/2016	7.32	
7/7/2016	7.39	
9/8/2016	7.34	
10/19/2016	7.35	
12/7/2016	7.35	
2/3/2017	7.37	
3/27/2017	7.26	
10/5/2017	7.2	
3/16/2018	7.13	
5/15/2018	7.18	
10/5/2018	7.07	
12/11/2018	7.16	
4/9/2019	7.26	
10/1/2019	7.16	
3/31/2020		7.57
6/19/2020		7.31 (R)
9/23/2020		7.11
3/10/2021		7.41

	GWC-21	GWC-21
3/24/2016	6.4	
5/18/2016	6.44	
7/7/2016	6.12	
9/8/2016	7.2	
10/19/2016	7.11	
12/7/2016	7.24	
2/2/2017	6.86	
3/27/2017	6.51	
10/5/2017	5.97	
3/15/2018	7.01	
10/4/2018	6.33	
4/9/2019	6.46	
10/1/2019	6.9	
3/31/2020		6.33
9/24/2020		7.12
3/9/2021		7.04

	GWC-22	GWC-22
3/23/2016	7.72	
5/18/2016	7.77	
7/7/2016	7.65	
9/8/2016	7.89	
10/19/2016	7.64	
12/7/2016	7.72	
2/2/2017	7.56	
3/27/2017	7.69	
10/5/2017	7.53	
3/15/2018	7.5	
10/4/2018	7.52	
4/9/2019	7.49	
10/1/2019	7.38	
11/6/2019	7.66	
3/31/2020		7.8
9/23/2020		7.42
3/9/2021		7.52

	GWC-23	GWC-23
3/23/2016	7.48	
5/19/2016	7.24	
7/7/2016	7.18	
9/8/2016	7.17	
10/19/2016	7.05	
12/7/2016	7.16	
2/3/2017	7.27	
3/27/2017	7.24	
10/5/2017	7.25	
3/15/2018	7.05	
10/5/2018	6.97	
4/8/2019	6.88	
10/1/2019	7	
3/26/2020		6.88
9/23/2020		6.96
3/9/2021		6.81

	GWC-5	GWC-5
3/23/2016	7.1	
5/17/2016	6.88	
7/6/2016	6.75	
9/7/2016	6.95	
10/18/2016	6.9	
12/8/2016	6.55	
2/1/2017	6.81	
3/23/2017	6.8	
10/4/2017	7.12	
3/16/2018	6.72	
10/4/2018	6.52	
4/9/2019	6.72	
10/1/2019	6.81	
3/31/2020		6.82
9/25/2020		6.82
3/9/2021		6.93

	GWC-6	GWC-6
3/23/2016	7.29	
5/17/2016	7.1	
7/6/2016	7	
9/7/2016	7.07	
10/18/2016	6.81	
12/8/2016	6.85	
2/1/2017	7.05	
3/23/2017	6.97	
10/4/2017	7.17	
3/16/2018	6.8	
10/4/2018	6.93	
4/8/2019	7	
10/1/2019	6.97	
3/31/2020		7.17
6/18/2020		6.96 (R)
9/25/2020		6.96
3/9/2021		7.09

	GWC-7	GWC-7
3/23/2016	6.36	
5/18/2016	6.21	
7/6/2016	5.88	
9/7/2016	5.77	
10/18/2016	5.9	
12/9/2016	5.73	
2/2/2017	6.29	
3/24/2017	6.32	
10/4/2017	6.03	
3/15/2018	6.05	
10/4/2018	5.92	
4/8/2019	6.26	
10/1/2019	6.09	
3/30/2020		6.48
6/19/2020		6.45 (R)
9/24/2020		6.32
3/9/2021		6.59

	GWC-8	GWC-8
3/23/2016	7.46	
5/18/2016	7.4	
7/6/2016	7.36	
9/8/2016	7.45	
10/18/2016	7.5	
12/8/2016	7.28	
2/2/2017	7.45	
3/24/2017	7.28	
10/5/2017	7.53	
3/14/2018	7.28	
10/4/2018	7.22	
4/8/2019	6.91	
6/18/2019	6.85	
6/27/2019	7.05	
10/1/2019	7.11	
3/27/2020		7.01
6/19/2020		6.81 (R)
9/24/2020		6.96
3/9/2021		7.06

	GWC-9	GWC-9
3/23/2016	7.2	
5/18/2016	6.96	
7/6/2016	6.89	
9/8/2016	6.93	
10/19/2016	6.84	
12/8/2016	6.54	
2/2/2017	6.72	
3/27/2017	6.56	
10/5/2017	7.03	
3/15/2018	6.66	
10/5/2018	6.41	
4/8/2019	6.72	
10/1/2019	6.77	
3/27/2020		7.11
9/24/2020		6.75
3/9/2021		6.92

	GWA-1	GWA-1
3/22/2016	4.4409	
5/17/2016	4.43	
7/5/2016	4.6	
9/7/2016	4.8	
10/18/2016	4.7	
12/6/2016	4.7	
1/31/2017	5.1	
3/23/2017	4.7	
10/4/2017	5	
3/14/2018	5.1	
10/4/2018	5.2	
4/8/2019	4.6	
9/30/2019	4.9	
3/26/2020		5
9/23/2020		6.6
3/8/2021		4.6

	GWA-11	GWA-11
3/22/2016	11.6823	
5/17/2016	11.4	
7/6/2016	12	
9/7/2016	13	
10/18/2016	13	
12/6/2016	12	
2/1/2017	13	
3/24/2017	12	
10/5/2017	13	
3/15/2018	12.2	
10/4/2018	15.6	
4/8/2019	13.2	
9/30/2019	11.5	
3/26/2020		10.8
9/22/2020		9.8
3/8/2021		11.5

	GWA-2	GWA-2
3/22/2016	13.0789	
5/17/2016	15.3	
7/5/2016	15	
9/7/2016	16	
10/18/2016	16	
12/7/2016	15	
1/31/2017	13	
3/23/2017	12	
10/4/2017	12	
3/14/2018	13.9	
10/4/2018	17.4	
4/8/2019	18.1	
9/30/2019	17.5	
3/26/2020		15.6
9/21/2020		18.2
3/9/2021		16.8

	GWA-3	GWA-3
3/22/2016	107.476	
5/17/2016	106	
7/5/2016	110	
9/7/2016	83	
10/18/2016	110	
12/6/2016	220	
2/1/2017	190	
3/23/2017	160	
10/4/2017	140	
3/15/2018	119	
10/4/2018	117	
4/5/2019	131	
9/30/2019	118	
3/26/2020		95.8
9/23/2020		95.6
3/8/2021		99.5

	GWA-4	GWA-4
3/22/2016	302.2975	
5/17/2016	213	
7/6/2016	280	
9/7/2016	160	
10/18/2016	120	
12/6/2016	210	
2/1/2017	200	
3/24/2017	140	
10/4/2017	140	
3/15/2018	167	
10/4/2018	209	
4/8/2019	248	
9/30/2019	117	
3/26/2020		128
9/23/2020		123
3/8/2021		152

	GWC-10	GWC-10
3/23/2016	14.6529	arro 10
3/23/2010	14.0529	
5/17/2016	13.3	
7/6/2016	10	
9/7/2016	10	
10/18/2016	10	
12/6/2016	11	
2/2/2017	11	
3/27/2017	33	
10/5/2017	16	
3/15/2018	33.9	
5/15/2018	29.1	
10/4/2018	29.5	
4/9/2019	21.4	
10/1/2019	13.4	
3/27/2020		10.8
9/25/2020		11.6
3/9/2021		14.2

	GWC-18	GWC-18
3/24/2016	10.1818	
5/19/2016	9.58	
7/7/2016	9.6	
9/8/2016	9.4	
10/19/2016	9.9	
12/8/2016	14	
2/2/2017	13	
3/27/2017	12	
10/5/2017	12	
3/16/2018	11.7	
10/5/2018	10.6	
4/9/2019	11.3	
10/1/2019	8.9	
3/30/2020		9.7
9/24/2020		8.5
3/9/2021		7.9

	GWC-19	GWC-19
3/24/2016	16.8473	
5/18/2016	18.4	
7/6/2016	17	
9/8/2016	16	
10/18/2016	19	
12/7/2016	13	
2/2/2017	14	
3/27/2017	18	
10/5/2017	16	
3/15/2018	14.8	
10/4/2018	15.9	
4/9/2019	16.7	
10/1/2019	14.7	
3/31/2020		17.8
9/28/2020		15.8
3/10/2021		18.7

	GWC-20	GWC-20
3/23/2016	22.9683	
5/18/2016	19.2	
7/7/2016	31	
9/8/2016	30	
10/19/2016	32	
12/7/2016	26	
2/3/2017	27	
3/27/2017	30	
10/5/2017	32	
3/16/2018	37.5	
5/15/2018	41	
10/5/2018	38.9	
12/11/2018	41.8	
4/9/2019	50.3	
6/18/2019	38.7	
6/27/2019	46	
10/1/2019	52.3	
11/6/2019	47.3	
3/31/2020		53.6
9/23/2020		58.9
3/10/2021		64.7

	GWC-21	GWC-21
3/24/2016	24.8075	
5/18/2016	26.2	
7/7/2016	31	
9/8/2016	33	
10/19/2016	31	
12/7/2016	19	
2/2/2017	52	
3/27/2017	29	
10/5/2017	33	
3/15/2018	38	
10/4/2018	19.3	
4/9/2019	19.9	
10/1/2019	46.3	
3/31/2020		29.9
9/24/2020		37.6
3/9/2021		41.6

	GWC-22	GWC-22
3/23/2016	9.1183	
5/18/2016	6.88	
7/7/2016	6.8	
9/8/2016	6.8	
10/19/2016	7.5	
12/7/2016	11	
2/2/2017	9.9	
3/27/2017	8.4	
10/5/2017	7.4	
3/15/2018	8.2	
10/4/2018	6.4	
4/9/2019	11	
10/1/2019	1.9	
3/31/2020		10.9
9/23/2020		5
3/9/2021		6.4

	GWC-23	GWC-23
3/23/2016	6.2867	
5/19/2016	5.42	
7/7/2016	5.7	
9/8/2016	5.7	
10/19/2016	5.8	
12/7/2016	5.9	
2/3/2017	38	
3/27/2017	43	
10/5/2017	8.3	
3/15/2018	14	
10/5/2018	9.3	
4/8/2019	6.2	
10/1/2019	5.8	
3/26/2020		14.5
9/23/2020		5.3
3/9/2021		10.2

	GWC-5	GWC-5
3/23/2016	76.011	
5/17/2016	76.2	
7/6/2016	74	
9/7/2016	64	
10/18/2016	65	
12/8/2016	100	
2/1/2017	150	
3/23/2017	130	
10/4/2017	71	
3/16/2018	77.4	
10/4/2018	90.3	
4/9/2019	83.6	
10/1/2019	68.1	
3/31/2020		92.6
9/25/2020		80.7
3/9/2021		86.9

	GWC-6	GWC-6
3/23/2016	87.512	
5/17/2016	101	
7/6/2016	110	
9/7/2016	97	
10/18/2016	120	
12/8/2016	100	
2/1/2017	110	
3/23/2017	110	
10/4/2017	130	
12/14/2017	130	
1/18/2018	110	
3/16/2018	93.6	
10/4/2018	137	
12/11/2018	110	
4/8/2019	131	
6/19/2019	108	
10/1/2019	71.7	
3/31/2020		106
9/25/2020		110
3/9/2021		105

	GWC-7	GWC-7
3/23/2016	90.229	
5/18/2016	100	
7/6/2016	130	
9/7/2016	130	
10/18/2016	140	
12/8/2016	140	
2/2/2017	71	
3/24/2017	68	
10/4/2017	120	
3/15/2018	118	
10/4/2018	167	
4/8/2019	97.1	
10/1/2019	120	
3/30/2020		64.6
9/24/2020		120
3/9/2021		87.4

	GWC-8	GWC-8
3/23/2016	26.3455	
5/19/2016	31.7	
7/6/2016	36	
9/8/2016	45	
10/18/2016	49	
12/8/2016	50	
2/2/2017	51	
3/24/2017	46	
10/5/2017	48	
3/14/2018	36.8	
10/4/2018	45.4	
4/8/2019	39.9	
10/1/2019	47.1	
3/27/2020		31.5
9/24/2020		48.3
3/9/2021		33.1

	GWC-9	GWC-9
3/23/2016	61.8335	
5/19/2016	64.3	
7/6/2016	69	
9/8/2016	68	
10/19/2016	69	
12/8/2016	69	
2/2/2017	76	
3/27/2017	68	
10/5/2017	74	
3/15/2018	57.8	
10/5/2018	81.9	
12/11/2018	73.6	
4/8/2019	73.5	
10/1/2019	72.2	
3/27/2020		54
9/24/2020		69.9
3/9/2021		65.1 (M1)

	GWA-1	GWA-1
3/22/2016	78	
5/17/2016	67	
7/5/2016	87	
9/7/2016	125	
10/18/2016	133	
12/6/2016	151	
1/31/2017	135	
3/23/2017	72	
10/4/2017	91	
3/14/2018	99	
10/4/2018	112	
4/8/2019	91	
9/30/2019	126	
3/26/2020		73
9/23/2020		117
3/8/2021		96

	GWA-11	GWA-11
3/22/2016	112	
5/17/2016	121	
7/6/2016	98	
9/7/2016	128	
10/18/2016	115	
12/6/2016	153	
2/1/2017	183	
3/24/2017	121	
10/5/2017	113	
3/15/2018	115	
10/4/2018	135	
4/8/2019	142	
9/30/2019	134	
3/26/2020		76
9/22/2020		107
3/8/2021		107

	GWA-2	GWA-2
3/22/2016	233	
5/17/2016	197	
7/5/2016	218	
9/7/2016	240	
10/18/2016	221	
12/7/2016	235	
1/31/2017	253	
3/23/2017	190	
10/4/2017	192	
3/14/2018	204	
10/4/2018	233	
4/8/2019	209	
9/30/2019	242	
3/26/2020		222
9/21/2020		204
3/9/2021		227 (D6)

	GWA-3	GWA-3
3/22/2016	451	
5/17/2016	430	
7/5/2016	418	
9/7/2016	443	
10/18/2016	415	
12/6/2016	653	
2/1/2017	615	
3/23/2017	506	
10/4/2017	492	
3/15/2018	448	
10/4/2018	472	
4/5/2019	456	
9/30/2019	475	
3/26/2020		450
9/23/2020		473
3/8/2021		415

	GWA-4	GWA-4
3/22/2016	686	
5/17/2016	533	
7/6/2016	646	
9/7/2016	493	
10/18/2016	455	
12/6/2016	597	
2/1/2017	638	
3/24/2017	579	
10/4/2017	440	
3/15/2018	381	
10/4/2018	490	
4/8/2019	522	
9/30/2019	455	
3/26/2020		466
9/23/2020		421
3/8/2021		460

	01110 10	01110 10
	GWC-10	GWC-10
3/23/2016	182	
5/17/2016	178	
7/6/2016	135	
9/7/2016	165	
10/18/2016	113	
12/6/2016	194	
2/2/2017	160	
3/27/2017	252	
10/5/2017	177	
3/15/2018	216	
10/4/2018	222	
4/9/2019	213	
10/1/2019	186	
3/27/2020		118
9/25/2020		153
3/9/2021		201

	GWC-18	GWC-18
3/24/2016	205	
5/19/2016	204	
7/7/2016	181	
9/8/2016	193	
10/19/2016	231	
12/8/2016	166	
2/2/2017	191	
3/27/2017	427	
10/5/2017	207	
3/16/2018	199	
10/5/2018	235	
4/9/2019	212	
10/1/2019	196	
3/30/2020		217
9/24/2020		181
3/9/2021		192
	5/19/2016 7/7/2016 9/8/2016 10/19/2016 12/8/2016 2/2/2017 3/27/2017 10/5/2017 3/16/2018 10/5/2018 4/9/2019 10/1/2019 3/30/2020 9/24/2020	3/24/2016 205 5/19/2016 204 7/7/2016 181 9/8/2016 193 10/19/2016 231 12/8/2016 166 2/2/2017 191 3/27/2017 427 10/5/2017 207 3/16/2018 199 10/5/2018 235 4/9/2019 212 10/1/2019 196 3/30/2020 9/24/2020

	GWC-19	GWC-19
3/24/2016	232	
5/18/2016	245	
7/6/2016	231	
9/8/2016	252	
10/18/2016	288	
12/7/2016	220	
2/2/2017	220	
3/27/2017	393	
10/5/2017	242	
3/15/2018	213	
10/4/2018	231	
4/9/2019	253	
10/1/2019	229	
3/31/2020		233
9/28/2020		214
3/10/2021		223 (D6)

	GWC-20	GWC-20
2/22/2016		GW0-20
3/23/2016	208	
5/18/2016	213	
7/7/2016	212	
9/8/2016	201	
10/19/2016	276	
12/7/2016	186	
2/3/2017	219	
3/27/2017	239	
10/5/2017	216	
3/16/2018	216	
10/5/2018	256	
4/9/2019	267	
10/1/2019	271	
3/31/2020		267
9/23/2020		277
3/10/2021		241

	GWC-21	GWC-21
3/24/2016	110	
5/18/2016	153	
7/7/2016	151	
9/8/2016	285	
10/19/2016	314	
12/7/2016	252	
2/2/2017	138	
3/27/2017	88	
10/5/2017	111	
3/15/2018	219	
10/4/2018	152	
4/9/2019	167	
10/1/2019	336	
11/6/2019	336	
11/26/2019	236	
3/31/2020		111
9/24/2020		286
3/9/2021		243
	5/18/2016 7/7/2016 9/8/2016 10/19/2016 12/7/2016 2/2/2017 3/27/2017 10/5/2017 3/15/2018 10/4/2018 4/9/2019 10/1/2019 11/6/2019 11/26/2019 3/31/2020 9/24/2020	3/24/2016 110 5/18/2016 153 7/7/2016 151 9/8/2016 285 10/19/2016 314 12/7/2016 252 2/2/2017 138 3/27/2017 88 10/5/2017 111 3/15/2018 219 10/4/2018 152 4/9/2019 167 10/1/2019 336 11/6/2019 336 11/26/2019 236 3/31/2020 9/24/2020

	GWC-22	GWC-22
3/23/2016	206	
5/18/2016	212	
7/7/2016	206	
9/8/2016	214	
10/19/2016	269	
12/7/2016	199	
2/2/2017	211	
3/27/2017	324	
10/5/2017	219	
3/15/2018	190	
10/4/2018	215	
4/9/2019	222	
10/1/2019	220	
3/31/2020		195
9/23/2020		231
3/9/2021		178

	GWC-23	GWC-23
3/23/2016	168	
5/19/2016	173	
7/7/2016	144	
9/8/2016	179	
10/19/2016	209	
12/7/2016	156	
2/3/2017	276	
3/27/2017	295	
10/5/2017	192	
3/15/2018	169	
10/5/2018	210	
4/8/2019	191	
10/1/2019	203	
3/26/2020		193
9/23/2020		186
3/9/2021		216

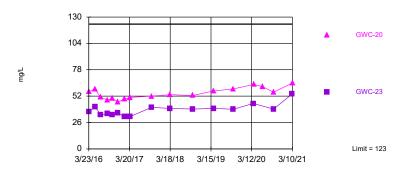
	GWC-5	GWC-5
3/23/2016	379	
5/17/2016	349	
7/6/2016	346	
9/7/2016	382	
10/18/2016	461	
12/8/2016	379	
2/1/2017	511	
3/23/2017	443	
10/4/2017	359	
3/16/2018	390	
10/4/2018	385	
4/9/2019	371	
10/1/2019	380	
3/31/2020		408
9/25/2020		367
3/9/2021		364

	GWC-6	GWC-6
3/23/2016	310	
5/17/2016	280	
7/6/2016	280	
9/7/2016	324	
10/18/2016	307	
12/8/2016	281	
2/1/2017	354	
3/23/2017	302	
10/4/2017	365	
12/14/2017	406	
1/18/2018	404	
3/16/2018	317	
10/4/2018	371	
4/8/2019	353	
10/1/2019	348	
3/31/2020		349
9/25/2020		345
3/9/2021		298
	5/17/2016 7/6/2016 9/7/2016 10/18/2016 12/8/2016 2/1/2017 3/23/2017 10/4/2017 12/14/2017 1/18/2018 3/16/2018 10/4/2018 4/8/2019 10/1/2019 3/31/2020 9/25/2020	3/23/2016 310 5/17/2016 280 7/6/2016 280 9/7/2016 324 10/18/2016 307 12/8/2016 281 2/1/2017 354 3/23/2017 302 10/4/2017 365 12/14/2017 406 1/18/2018 404 3/16/2018 317 10/4/2018 371 4/8/2019 353 10/1/2019 348 3/331/2020 9/25/2020

	GWC-7	GWC-7
3/23/2016	253	
5/18/2016	276	
7/6/2016	239	
9/7/2016	247	
10/18/2016	233	
12/8/2016	373	
2/2/2017	236	
3/24/2017	291	
10/4/2017	264	
3/15/2018	254	
10/4/2018	287	
4/8/2019	295	
10/1/2019	277	
3/30/2020		216
9/24/2020		254
3/9/2021		299

	GWC-8	GWC-8
3/23/2016	239	
5/19/2016	236	
7/6/2016	218	
9/8/2016	225	
10/18/2016	200	
12/8/2016	196	
2/2/2017	231	
3/24/2017	250	
10/5/2017	309	
12/14/2017	322	
1/18/2018	322	
3/14/2018	263	
10/4/2018	292	
4/8/2019	438	
10/1/2019	305	
3/27/2020		329
9/24/2020		307
3/9/2021		308

	GWC-9	GWC-9
3/23/2016	204	
5/19/2016	215	
7/6/2016	204	
9/8/2016	201	
10/19/2016	272	
12/8/2016	227	
2/2/2017	209	
3/27/2017	305	
10/5/2017	204	
3/15/2018	280	
10/5/2018	236	
4/8/2019	264	
10/1/2019	237	
3/27/2020		192
9/24/2020		179
3/9/2021		209

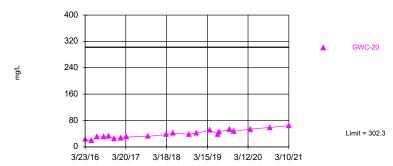

FIGURE H.

Federal Interwell Prediction Limits - All Results (No Significant) Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/5/2021, 10:15 AM

	Plant H	ammond	Client: Southe	ern Company	Data: Hi	uttaker Roa	ad Landfill	Printed 4/5/2	2021, 10):15 AM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Calcium (mg/L)	GWC-20	123	n/a	3/10/2021	64.9	No 80	n/a	n/a	2.5	n/a	n/a	0.0002963	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-23	123	n/a	3/9/2021	54.3	No 80	n/a	n/a	2.5	n/a	n/a	0.0002963	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-20	302.3	n/a	3/10/2021	64.7	No 80	n/a	n/a	0	n/a	n/a	0.0002963	NP Inter (normality) 1 of 2

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limit Prediction Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 80 background values. 2.5% NDs. Annual perconstituent alpha = 0.007087. Individual comparison alpha = 0.0002963 (1 of 2). Comparing 2 points to limit. Assumes 10 future values.

Constituent: Calcium Analysis Run 4/5/2021 10:14 AM View: Appendix III - Interwell Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 80 background values. Annual per-constituent alpha = 0.007087. Individual comparison alpha = 0.0002963 (1 of 2). Assumes 11 future values.

Constituent: Sulfate Analysis Run 4/5/2021 10:14 AM View: Appendix III - Interwell
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

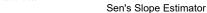
Constituent: Calcium (mg/L) Analysis Run 4/5/2021 10:15 AM View: Appendix III - Interwell Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

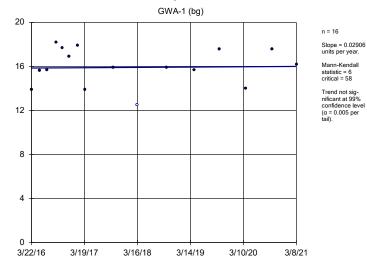
	GWA-1 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWA-11 (bg)	GWA-4 (bg)	GWC-23	GWC-20
3/22/2016	13.9	79.3	47.4	23.8	123		
3/23/2016						36.4	56.3
5/17/2016	15.6	75.8	45.5	21.5	99.2		
5/18/2016							59
5/19/2016						41.5	
7/5/2016	15.7	65.3	40.5				
7/6/2016				20.6	109		
7/7/2016						33.5	50.9
9/7/2016	18.2	59.8	37.3	16.7	67.2		
9/8/2016						34.7	48
10/18/2016	17.7	72.4	46.6	20.3	77.9		
10/19/2016						33.4	49.7
12/6/2016	16.9	78.6		19.7	93.3		
12/7/2016			43.5			35.5	46.4
1/31/2017	17.9		39.2				
2/1/2017		85		18.1	92.8		
2/3/2017						31.7	49
3/23/2017	13.9	81.2	38.7				
3/24/2017				21.1	96.3		
3/27/2017						32	50.7
10/4/2017	15.9	78.8	36.5		75.1		
10/5/2017				20.1		41	52
3/14/2018	<25		39.5				
3/15/2018		83.5		<25	69.9	39.8	
3/16/2018							53.4
10/4/2018	15.9 (J)	75.2	41.7	21.3 (J)	77.8		
10/5/2018						39.3	52.7
4/5/2019		76.5					
4/8/2019	15.7		44.1	22.4	86.6	39.8	
4/9/2019							57.1
9/30/2019	17.6	74.7	44.6	19.6	78.3		
10/1/2019						39.1	59.1
3/26/2020	14	78.7	43.2	22.4	87.4	44.7	
3/31/2020							63.6
6/19/2020							61.4 (R)
9/21/2020			45.8				
9/22/2020				19.5			
9/23/2020	17.6	76.2			74.9	39.2	55.8
3/8/2021	16.2 (M1)	73.5		22	87.2		
3/9/2021			48.7			54.3	
3/10/2021							64.9

Constituent: Sulfate (mg/L) Analysis Run 4/5/2021 10:15 AM View: Appendix III - Interwell Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-4 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWA-11 (bg)	GWC-20
3/22/2016	4.4409	302.2975	107.476	13.0789	11.6823	
3/23/2016						22.9683
5/17/2016	4.43	213	106	15.3	11.4	
5/18/2016						19.2
7/5/2016	4.6		110	15		
7/6/2016		280			12	
7/7/2016						31
9/7/2016	4.8	160	83	16	13	
9/8/2016						30
10/18/2016	4.7	120	110	16	13	
10/19/2016						32
12/6/2016	4.7	210	220		12	
12/7/2016				15		26
1/31/2017	5.1			13		
2/1/2017		200	190		13	
2/3/2017						27
3/23/2017	4.7		160	12		
3/24/2017		140			12	
3/27/2017						30
10/4/2017	5	140	140	12		
10/5/2017					13	32
3/14/2018	5.1			13.9		
3/15/2018		167	119		12.2	
3/16/2018						37.5
5/15/2018						41
10/4/2018	5.2	209	117	17.4	15.6	
10/5/2018						38.9
12/11/2018						41.8
4/5/2019			131			
4/8/2019	4.6	248		18.1	13.2	
4/9/2019						50.3
6/18/2019						38.7
6/27/2019						46
9/30/2019	4.9	117	118	17.5	11.5	
10/1/2019						52.3
11/6/2019						47.3
3/26/2020	5	128	95.8	15.6	10.8	
3/31/2020						53.6
9/21/2020				18.2		
9/22/2020					9.8	
9/23/2020	6.6	123	95.6			58.9
3/8/2021	4.6	152	99.5		11.5	
3/9/2021				16.8		
3/10/2021						64.7

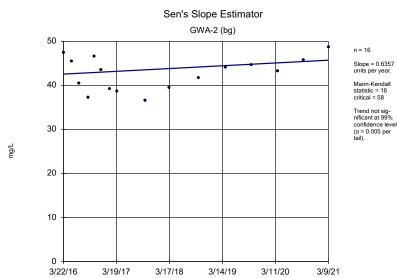
FIGURE I.


Federal Trend Tests - Prediction Limit Exceedances - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/5/2021, 10:20 AM

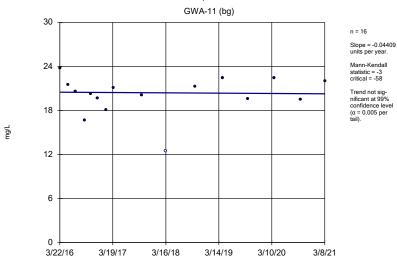

	Plant Hammond	Client: Southern Company	Data: Huffa	ker Road	Landfill	Printed	4/5/202	1, 10:20	AM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWC-20		2.583	66	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/l)	GWC-20		7.658	172	87	Yes	21	0	n/a	n/a	0.01	NP

Federal Trend Tests - Prediction Limit Exceedances - All Results

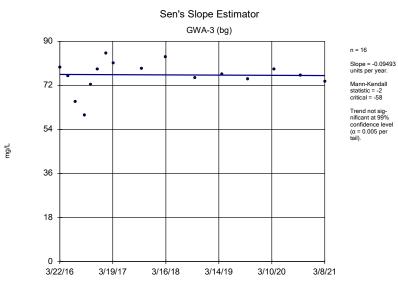
	Plant Hammond	Client: Southern Company	Data: Huffal	ker Road L	andfill F	Printed	4/5/202	1, 10:21	AM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWA-1 (bg)		0.02906	6	58	No	16	6.25	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-11 (bg)		-0.04409	-3	-58	No	16	6.25	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-2 (bg)		0.6357	16	58	No	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-3 (bg)		-0.09493	-2	-58	No	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-4 (bg)		-3.43	-36	-58	No	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-20		2.583	66	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-23		1.954	37	58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-1 (bg)		0.1633	48	58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-11 (bg)		-0.01836	-10	-58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-2 (bg)		0.6594	39	58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-3 (bg)		-2.39	-13	-58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-4 (bg)		-18.44	-47	-58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-20		7.658	172	87	Yes	21	0	n/a	n/a	0.01	NP


mg/L

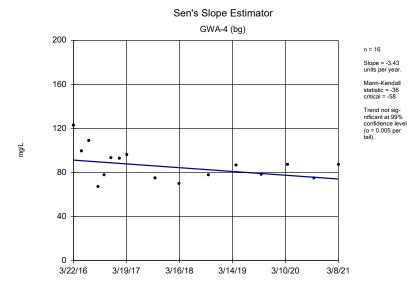
Constituent: Calcium Analysis Run 4/5/2021 10:15 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

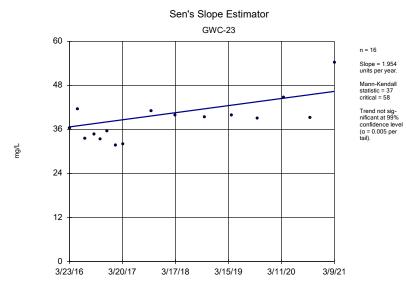
Constituent: Calcium Analysis Run 4/5/2021 10:15 AM View: Appendix III - Trend Tests


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

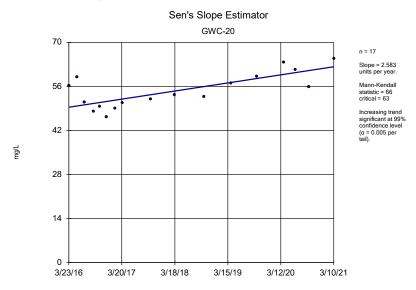
Sen's Slope Estimator


Constituent: Calcium Analysis Run 4/5/2021 10:15 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

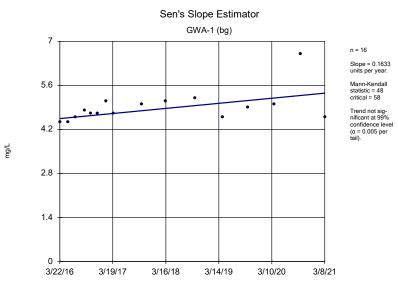

Constituent: Calcium Analysis Run 4/5/2021 10:15 AM View: Appendix III - Trend Tests

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

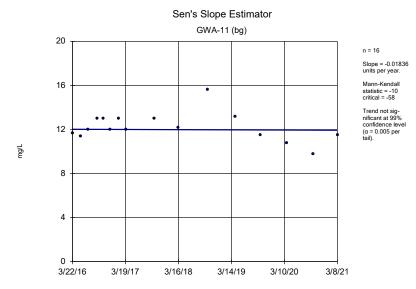


Constituent: Calcium Analysis Run 4/5/2021 10:15 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

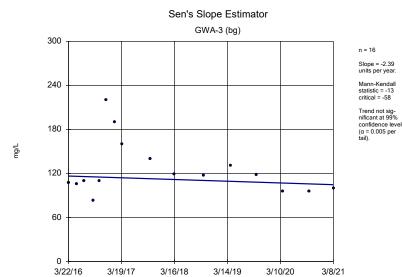


Constituent: Calcium Analysis Run 4/5/2021 10:15 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

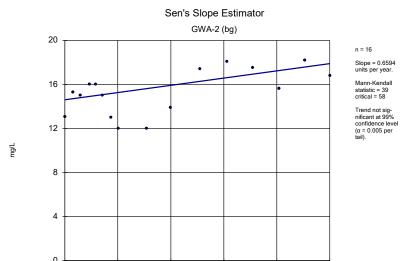


Constituent: Calcium Analysis Run 4/5/2021 10:15 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Sulfate Analysis Run 4/5/2021 10:15 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



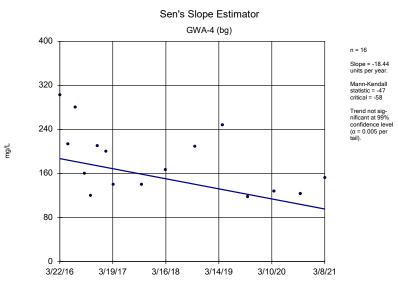
Constituent: Sulfate Analysis Run 4/5/2021 10:15 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Sulfate Analysis Run 4/5/2021 10:16 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

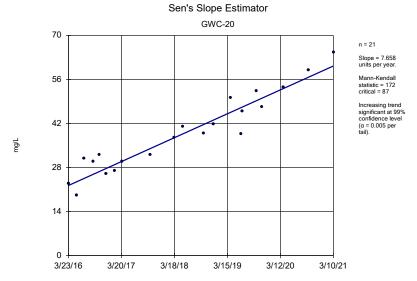
Constituent: Sulfate Analysis Run 4/5/2021 10:15 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

3/14/19

3/11/20


3/9/21

3/17/18

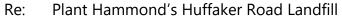

3/19/17

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

3/22/16

Constituent: Sulfate Analysis Run 4/5/2021 10:16 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

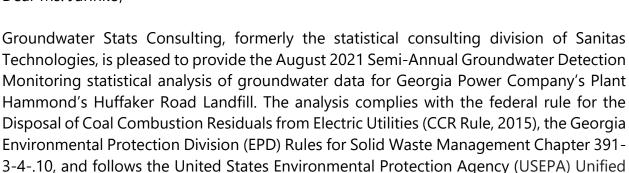
Constituent: Sulfate Analysis Run 4/5/2021 10:16 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


August 2021 Semiannual Event

GROUNDWATER STATS CONSULTING

SWFPR

January 31, 2022


Southern Company Services Attn: Ms. Kristen Jurinko 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Statistical Analysis - August 2021

Dear Ms. Jurinko,

Guidance (2009).

Sampling began for the Georgia EPD parameters in 2007 and for the CCR program in 2016. At least 8 background samples have been collected at each of the groundwater monitoring wells. Semi-annual sampling for select constituents has been performed for several years in accordance with the Georgia Department of Natural Resources, Environmental Protection Division groundwater monitoring regulations; and all available data are screened in this report.

The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient: GWA-1, GWA-11, GWA-2, GWA-3, and GWA-4
- Downgradient: GWC-10, GWC-18, GWC-19, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8, and GWC-9

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was prepared according to the recommended statistical methodology provided in the Fall 2017 by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance. The analysis was reviewed by Kristina Rayner, Groundwater Statistician and Founder of Groundwater Stats Consulting.

The following constituents were evaluated:

- o **Georgia EPD Appendix I** antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, vanadium and zinc
- CCR Appendix III boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of well/constituent pairs with 100% non-detects follows this letter. Note that no Appendix III well/constituent pairs contained 100% non-detects.

A substitution of the most recent reporting limit is used for non-detect data. Reporting limits often decrease over time due to improved laboratory practices, which sometimes results in more conservative statistical limits compared to the previous statistical analysis. Such changes in reporting limits have occurred for beryllium, cadmium, chromium, cobalt, copper, fluoride, lead, nickel, selenium, silver, and zinc, and prediction limits for these constituents have decreased over time at some of the wells.

The most recent reporting limit is substituted on a well-by-well basis for computing intrawell prediction limits. Therefore, individual wells can have different substitutions for a given parameter depending on what the laboratory has reported for each well. On the time series plots, however, a single reporting limit substitution is used across all wells for a given parameter since the wells are plotted as a group.

Time series plots for all well/constituent pairs are provided and are particularly useful for screening parameters detected in downgradient wells which require statistical analyses (Figure A). Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

In earlier analyses, data at all wells for constituents detected in downgradient wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided in the previous background update to demonstrate that the selected statistical methods for the parameters listed above comply with the USEPA Unified Guidance and the Georgia Environmental Protection Division Rules for Solid Waste Management Chapter 391-3-4-.10. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations. During the initial background screening of the Appendix III parameters, the 1-of-2 resample plan did not provide sufficient power; therefore, a 1-of-3 resample plan was initially recommended due to the limited background sample sizes in each of the wells at that time.

During the March 2020 background update for the Appendix III parameters, however, the background sample sizes increased in each of the wells, and power curves were provided to demonstrate that the 1-of-2 resample plan provides sufficient power to meet the EPA recommendation mentioned above. Power curves were based on the following:

Georgia EPD Appendix I Constituents:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan (all Appendix I parameters)
- # Constituents: 15
- # Downgradient wells: 12

CCR Appendix III Constituents:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan (all Appendix III parameters)
- # Constituents: 7
- # Downgradient wells: 12

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality.

After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. In the intrawell case, data for all wells and constituents may re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, an earlier portion of data is deselected prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Two-Step Statistical Analysis

Intrawell statistical methods, combined with a 1-of-2 resample plan, may be used as a conservative first step for identifying potential facility impacts in downgradient wells. Intrawell methods use background data for individual wells and may be overly sensitive to natural variation. In particular for nonparametric limits with small background sample sizes, the probability of a false positive is much higher than the desired annual sitewide rate of 10%. Therefore, a large number of exceedances may occur as a result of natural variation rather than facility impacts. A second step can be used to further evaluate those exceedances and reduce the overall number of SSIs that result from natural variation. In instances where intrawell statistical methods identify an apparent SSI, a second step of interwell statistical evaluation may be used to determine whether the measurement

exceeds the sitewide background limit based on pooled upgradient well data. This is similar in concept to the procedure used in compliance monitoring programs where an interwell statistical limit is used to determine "background" (USEPA Unified Guidance (2009), Chapter 7, Section 7.5). For the detection monitoring program, if the result does not exceed sitewide (interwell) background, an SSI is not declared.

When the result exceeds the sitewide (interwell) background, the 1-of-2 resample plan allows for collection of an independent resample to confirm or disconfirm the initial finding. A statistically significant increase is not declared unless the resample also exceeds the intrawell prediction limit (United States Environmental Protection Agency (USEPA) Unified Guidance, March 2009, Chapter 19). When the resample confirms the initial exceedance, further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). When any resample falls within the statistical limit, the initial exceedance is considered to be a false positive result, and no further action is necessary. In cases where intrawell and interwell exceedances are noted and no resamples are collected, the initial exceedance will be considered a confirmed statistically significant increase (SSI).

Trend tests, in addition to interwell prediction limits, are recommended for well/constituent pairs found to have an initial intrawell SSI. Trend analysis will provide for detection of long-term changes and potential facility impacts at a given well in cases where the concentrations at that well remain below the sitewide upgradient limits. Thus, the two-step approach has additional capability to detect long-term changes at downgradient wells compared to interwell methods alone. While a trend may be identified by visual inspection, a quantification of the trend and its significance is needed to identify whether concentrations are statistically significantly increasing, decreasing, or remaining stable over time. The absence of a statistically significant increasing trend indicates that an initial intrawell exceedance is short-term and may be the result of natural variation rather than facility impact to groundwater. If a facility impact has occurred, it will likely result in additional exceedances in future sampling events. When a statistically significant increasing trend is noted, additional data may be needed to demonstrate that there is reasonable evidence that the initial intrawell statistical exceedance is a result of natural variation rather than a result of impact to groundwater quality downgradient of the facility.

Georgia EPD Appendix I Background Screening Summary – Conducted in August 2019

Outlier and Trend Testing

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not representative of the current background data population. Suspected outliers for all wells and parameters are formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Using the Tukey box plot method, several outliers were identified. When the most recent values were identified as outliers, values were not flagged in the database (except in cases where they would cause background limits to be elevated) as they may represent a possible trend. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e. measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers. Due to changing reporting limits for many constituents, when the non-detects were replaced with the most recent reporting limit, previously flagged "J" values (or estimated values) required flagging as outliers because they were much higher than current reporting limits.

Of the outliers identified by Tukey's method, several values were flagged in the database, and the remaining values were similar to other measurements within a given well or neighboring wells or were reported non-detects. In some cases, values were flagged in addition to those identified by Tukey's because the values were higher than all remaining concentrations and would cause the statistical limits to be elevated. These values are plotted in a disconnected and lighter symbol on the time series graph. The accompanying data pages display the flagged values in a lighter font as well. A substitution of the most recent reporting limit was applied when varying detection limits existed in data. A summary of all flagged values is included in Figure C.

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test, which tests for statistically significant increasing or decreasing trends, was used to evaluate data at all upgradient and downgradient wells with detections.

In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, all available data are evaluated to determine whether earlier concentration levels are significantly different from current reported concentrations, and earlier data will be deselected as necessary. Several statistically significant decreasing trends were noted, as well as a few statistically significant increasing trends for barium. The magnitudes of most of these trends were low relative to the average concentrations and, therefore, required no adjustments to the record.

However, background adjustments were made for barium in wells GWA-2, GWC-19, GWC-22, GWC-6, GWC-7, and GWC-9; and cobalt, nickel, and zinc in well GWC-7. Earlier data for each of these well/constituent pairs were deselected to reduce variation and utilize samples that were more representative of current groundwater concentrations. For those cases with increasing trends in barium, the assumption is that the increase is a result of natural variation and not the result of the facility. Under that assumption, the more recent data would represent unimpacted conditions. Thorough evaluation of that assumption requires a separate geochemical investigation that is beyond the scope of services provided by Groundwater Stats Consulting. However, increasing barium concentrations were noted in both upgradient and downgradient wells, suggesting that the groundwater quality is changing due to natural spatial variation. The trends for cobalt, nickel and zinc are decreasing, and using only the more recent data results in more conservative prediction limits. Complete trend analysis results were presented with the August 2019 screening report. A date range summary table is provided with this report to show the adjusted date ranges used in construction of the statistical limits.

Determination of Spatial Variation

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells for constituents detected in downgradient wells. The ANOVA assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to

screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells are not representative of the current background data population; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified statistically significant variation among upgradient well data for: arsenic, barium, cobalt, and nickel. The ANOVA did not identify variation for antimony, beryllium, cadmium, chromium, copper, lead, selenium, and zinc. The ANOVA could not test the following constituents because the data had no variation among the upgradient wells: silver, thallium, and vanadium.

Where significant spatial variation is not identified, this suggests that interwell analysis would be the most appropriate statistical method for these constituents. However, because this is a lined landfill with pre-waste data showing that metals occur naturally in low level detections, intrawell methods are recommended as the primary statistical method for all detected well/constituent pairs. Intrawell methods are generally based on an assumption of no existing impacts of the facility in background data. While the assumption is supported by pre-waste data, thorough evaluation of that assumption requires a separate geochemical investigation, especially for the cases of increasing trends in concentration following waste placement. That study is beyond the scope of services provided by Groundwater Stats Consulting.

CCR Appendix III Background Update Summary – Conducted in March 2020

Prior to updating background data, Tukey's outlier test and visual screening were used to evaluate Appendix III data from both upgradient and downgradient wells through November 2019. Tukey's test noted potential outliers in downgradient wells for all parameters, but not all of these values were flagged as some appeared to be representative of natural variation. Any flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A summary of flagged outliers follows this letter (Figure C).

For constituents requiring intrawell prediction limits (all constituents in this instance), the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through March 2017 to the new compliance samples at each well through November 2019. If the medians of the two groups are not significantly different at the 99% confidence level, background data are typically updated to include the newer compliance data. Statistically significant differences were found between the two groups for the following well/constituent pairs: boron in downgradient wells GWC-19 and GWC-7; chloride in downgradient well GWC-8; pH in downgradient wells GWC-20 and GWC-22;

sulfate in downgradient well GWC-20; and TDS in downgradient wells GWC-6 and GWC-8.

Although not statistically significant at the 99% confidence level, the increase in median concentrations between background and compliance data for boron at GWC-8 was significant at the 98% confidence level. This case is discussed below.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data unless it can be reasonably justified that the change in concentrations reflects a naturally occurring shift unrelated to practices at the site. In studies in which at least one of the segments being compared is of short duration, the comparison is complicated by the fact that normal short-term variation may be mistaken for long-term change in medians. In this analysis, all but one of the cases with statistically significant Mann-Whitney results were updated. The individual cases are discussed below.

Boron in wells GWC-19 and GWC-7 trended over time toward more stable concentrations at slightly lower levels. Boron at GWC-8 had higher values recently, but the higher concentrations were similar to those in upgradient wells. The measured pH in downgradient wells GWC-20 and GWC-22 stabilized at slightly lower levels, closer to a neutral pH of 7.

Chloride in GWC-8 and TDS in both GWC-6 and GWC-8 showed moderate increases in median concentrations due to a short-term spike with the most recent concentrations similar to those in one or more background wells. The only case that was not updated at the time of the update was sulfate at well GWC-20, which has a marked and steadily increasing trend that was not present in the upgradient wells. However, it was later determined through an alternate source demonstration that this trend is either short-term or not the result of the facility, and this record was appropriately updated. Since the update, the upward trend in sulfate has continued and will continue to be evaluated. Concentrations remain below those in upgradient wells. A list of well/constituent pairs that use a truncated portion of their record also follows this report in the date range table mentioned above

Evaluation of Georgia EPD Appendix I Constituents – August 2021

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that are representative of the background data population, and that will rapidly identify a change in more recent compliance data from within a given well. The most recent sample from the same well is compared to its

respective background. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility.

In cases where downgradient average concentrations are higher than observed upgradient concentrations for a given constituent where intrawell analyses are recommended, the current assumption is that this is due to natural spatial variation rather than a result of practices at the landfill. Validation of this assumption requires a separate analysis or investigation that is beyond the scope of this data screening study. However, for this site, the pre-waste data support the assumption of natural variation rather than impacts of the landfill.

Intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed using all available data for each well through December 2018, except for the cases mentioned above and listed in the Date Range Table. The August 2021 compliance data were compared to these intrawell background limits. No statistical analyses were included for well/constituent pairs with 100% non-detects.

A summary of the Georgia EPD intrawell prediction limits follows this report (Figure D). Exceedances were noted for the following downgradient well/constituent pairs:

Barium: GWC-8, GWC-18, GWC-20, and GWC-23

• Nickel: GWC-8

While the Sanitas software identified statistical exceedances for barium in downgradient wells GWC-20 and GWC-23, it is due to a rounding of significant figures with reported August 2021 measurements of 0.14 mg/L at well GWC-20 and 0.08464 mg/L at well GWC-23 when compared to their respective prediction limits of 0.1358 mg/L and 0.085 mg/L. Interwell prediction limits were then constructed for barium and nickel using pooled upgradient well data to evaluate the apparent intrawell prediction limit exceedances (Figure E). The reported measurements of barium and nickel in well GWC-8 exceeded the respective the interwell prediction limits.

When prediction limit exceedances occur in any of the downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable. Upgradient wells are included in the trend analyses to identify whether increasing or decreasing patterns exist upgradient of the site which is an indication of natural variability in groundwater unrelated to practices at the site. While no trend was identified for barium in downgradient well GWC-23. Both

increasing and decreasing trends were noted for barium in upgradient wells which suggest natural variability is present in groundwater quality unrelated to practices at the site. A summary of the trend test results follows this letter (Figure F). Statistically significant trends were noted for the following well/constituent pairs:

Increasing trends:

• Barium: GWA-2 (upgradient), GWC-18, GWC-20, and GWC-23

Decreasing trends:

Barium: GWA-3 (upgradient) and GWA-4 (upgradient)
 Nickel: GWA-4 (upgradient) and GWA-11 (upgradient)

Evaluation of CCR Appendix III Parameters – August 2021

For all CCR Appendix III parameters, intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical data through November 2019. The most recent sample from each downgradient well is compared to the background limit to determine whether there are exceedances over background. A summary of the Appendix III prediction limits follows this report (Figure G). Exceedances were noted for the following downgradient well/constituent pairs:

• Boron: GWC-8

Calcium: GWC-8, GWC-18, and GWC-23

• pH: GWC-8

Sulfate: GWA-2 (upgradient) and GWC-20

When interwell prediction limits were constructed for the apparent intrawell prediction limit exceedances in downgradient wells, no exceedances were noted. Therefore, the initial statistical exceedances are considered false positive results and no further action is required. Data that exceeded intrawell background limits are further evaluated using trend tests as discussed below.

Data from downgradient well/constituent pairs found to exceed their respective intrawell prediction limit were further evaluated using the Sen's Slope/Mann Kendall trend test using a 99% confidence level, along with upgradient wells for the same constituents. A summary of the trend test results follows this letter (Figure I). Statistically significant increasing trends were identified for the following well/constituent pairs:

Boron: GWC-8
Calcium: GWC-8
pH: GWC-8
Sulfate: GWC-20

When similar patterns or concentrations occur both upgradient and downgradient of the facility for a given constituent, it suggests the changes in groundwater quality are naturally occurring and are unrelated to practices at the site. Although boron concentrations at downgradient well GWC-8 and sulfate concentrations at downgradient well GWC-20 are higher than those reported at upgradient well GWA-1, they remain lower than reported concentrations in upgradient wells GWA-3 and GWA-4.

Resample Reports - September 2021

Additional data were collected in September 2021 for initial intrawell exceedances of barium, nickel, and pH in downgradient well GWC-8. Intrawell prediction limits were constructed using background data through December 2018 for barium and nickel and through November 2019 for pH, to compare the September 2021 samples (Figures J and K, respectively). An exceedance was identified for barium in downgradient well GWC-8. No exceedances were noted for nickel and pH in downgradient well GWC-8.

In accordance with the two-step approach, interwell prediction limits were constructed to evaluate the apparent exceedance for barium in downgradient well GWC-8. The reported measurements of barium did not exceed the interwell prediction limit (Figure L).

The Sen's Slope/Mann Kendall trend test was used to further evaluate barium at well GWC-8 (Figure M). No statistically significant trend was identified when the entire record was evaluated. It was noted, however, that higher concentrations have been reported since November 2018 compared to those reported historically.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Hammond's Huffaker Road Landfill. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Andrew T. Collins

Project Manager

Kristina L. Rayner

Groundwater Statistician

Kristina Rayner

Sanitas™ v.9.6.31 Groundwater Stats Consulting. U

100% Non-Detects: Appendix I

Analysis Run 9/2/2021 12:59 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Antimony (mg/L) GWC-20, GWC-21, GWC-22, GWC-23

Arsenic (mg/L)

GWA-1, GWA-2, GWC-10, GWC-19, GWC-20, GWC-22, GWC-6

Beryllium (mg/L)

GWA-1, GWA-1, GWA-2, GWA-4, GWC-10, GWC-18, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-8, GWC-9

Cadmium (mg/L)

GWA-1, GWA-11, GWA-2, GWA-3, GWC-19, GWC-22, GWC-6

Cobalt (mg/L)

GWC-18, GWC-19, GWC-20, GWC-22

Copper (mg/L)

GWA-1

Lead (mg/L)

GWA-1, GWA-2, GWA-4, GWC-9

Selenium (mg/L)

GWA-1, GWA-11, GWA-2, GWA-3, GWC-18, GWC-19, GWC-20, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8

Silver (mg/L)

GWA-1, GWA-2, GWA-3, GWA-4, GWC-10, GWC-18, GWC-19, GWC-20, GWC-22, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8, GWC-9

Thallium (mg/L

GWA-1, GWA-2, GWA-3, GWA-4, GWC-10, GWC-18, GWC-19, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-8, GWC-9

Vanadium (mg/L)

GWA-11, GWA-2, GWA-3, GWA-4, GWC-10, GWC-18, GWC-19, GWC-20, GWC-22, GWC-6, GWC-8

Sanitas™ v.9.6.31 Groundwater Stats Consulting

Page 1

Date Ranges

Date: 9/7/2021 9:10 AM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Barium (mg/L)

GWA-2 background:4/13/2010-10/4/2018

GWC-19 background:4/13/2010-10/4/2018

GWC-22 background:4/13/2010-10/4/2018

GWC-6 background:3/23/2016-10/4/2018

GWC-7 background:4/3/2012-10/4/2018

GWC-9 background: 10/4/2011-10/5/2018

Cobalt (mg/L)

GWC-7 background:3/12/2013-10/4/2018

Nickel (mg/L)

GWC-7 background:3/12/2013-10/4/2018

Zinc (mg/L)

GWC-7 background:3/12/2013-10/4/2018

Appendix I Intrawell Prediction Limits - Significant Results

	-							_					
	Plant H	lammond	Client: Sou	thern Compa	any Data	: Huffaker F	Road Landfill	Printed 9/2	2/2021	, 3:49 PM			
Constituent	Well	Upper Lim	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Barium (mg/L)	GWC-18	0.08974	n/a	8/10/2021	0.093	Yes 32	0.07311	0.006987	0	None	No	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-20	0.1358	n/a	8/10/2021	0.14	Yes 31	0.001502	0.0004195	0	None	x^3	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-23	0.08464	n/a	8/10/2021	0.085	Yes 32	0.06272	0.009212	0	None	No	0.0002926	Param Intra 1 of 2
Barium (mg/L)	GWC-8	0.1227	n/a	8/10/2021	0.23	Yes 31	0.316	0.01439	0	None	sqrt(x)	0.0002926	Param Intra 1 of 2
Nickel (ma/L)	GWC-8	0.005	n/a	8/10/2021	0.0073	Yes 26	n/a	n/a	96.15	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2

Appendix I Intrawell Prediction Limits - All Results

Printed 9/2/2021, 3:49 PM

Data: Huffaker Road Landfill Client: Southern Company %NDs ND Adj. Constituent <u>Well</u> Sig. Bg N Bg Mean Std. Dev. Method Upper Lim. Lower Lim. Date Transform Alpha Antimony (mg/L) GWA-1 0.003 8/9/2021 0.003ND No 32 100 n/a NP Intra (NDs) 1 of 2 n/a n/a n/a 96.88 n/a 0.001803 Antimony (mg/L) GWA-11 0.003 n/a 8/10/2021 0.003ND No 32 n/a n/a n/a NP Intra (NDs) 1 of 2 Antimony (mg/L) GWA-2 0.003 n/a 8/9/2021 0.0023J No 31 n/a 96.77 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 GWA-3 0.003 8/9/2021 0.003ND Nο 32 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 Antimony (mg/L) n/a n/a n/a n/a GWA-4 0.003 8/9/2021 0.003ND No 32 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 Antimony (mg/L) n/a n/a n/a Antimony (mg/L) GWC-10 0.003 8/10/2021 0.003ND No 32 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Antimony (mg/L) GWC-18 0.003 n/a 8/10/2021 0.003ND No 32 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a 100 n/a n/a **GWC-19** 0.003 0.003ND 0.001803 NP Intra (NDs) 1 of 2 Antimony (mg/L) n/a 8/10/2021 No 32 n/a n/a 96.88 n/a n/a Antimony (mg/L) GWC-5 0.003 n/a 8/10/2021 0.003ND No 32 n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 n/a Antimony (mg/L) 0.003 n/a 8/10/2021 0.003ND No 32 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Antimony (mg/L) GWC-7 0.003 n/a 8/10/2021 0.003ND Nο 31 n/a n/a 96 77 n/a n/a 0.001905 Antimony (mg/L) GWC-8 0.003 n/a 8/10/2021 0.003ND No n/a n/a 96.67 n/a n/a 0.002008 NP Intra (NDs) 1 of 2 Antimony (mg/L) GWC-9 0.003 n/a 8/10/2021 0.003ND No 32 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWA-11 0.005 8/10/2021 0.005ND No 32 100 0.001803 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 GWA-3 0.005 8/9/2021 0.005ND No 32 71.88 n/a 0.001803 Arsenic (mg/L) n/a n/a n/a n/a GWA-4 0.0065 8/9/2021 0.005ND No 32 90.63 n/a 0.001803 NP Intra (NDs) 1 of 2 Arsenic (mg/L) n/a n/a n/a n/a GWC-18 0.005ND 32 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 Arsenic (mg/L) 0.005 n/a 8/10/2021 No n/a n/a n/a GWC-21 0.005 n/a 8/10/2021 0.005ND No 30 86 67 n/a 0.002008 NP Intra (NDs) 1 of 2 Arsenic (mg/L) n/a n/a n/a GWC-23 0.005 0.001803 NP Intra (NDs) 1 of 2 Arsenic (mg/L) n/a 8/10/2021 0.005ND Nο 32 n/a n/a 100 n/a n/a Arsenic (mg/L) GWC-5 0.005 n/a 8/10/2021 0.005ND Nο 32 n/a n/a 93 75 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWC-7 0.0088 n/a 8/10/2021 0.0072 No 30 n/a n/a 0.002008 NP Intra (normality) 1 of 2 NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWC-8 0.005 n/a 8/10/2021 0.005 Nο 31 n/a n/a 87.1 n/a n/a 0.001905 No NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWC-9 0.005 8/10/2021 0.005ND 32 100 0.001803 0 0.0002926 Barium (mg/L) GWA-1 0.05021 n/a 8/9/2021 0.046 No 32 0.03919 0.00463 None No Param Intra 1 of 2 Barium (mg/L) GWA-11 0.04217 n/a 8/10/2021 0.03 No 32 -3.4 0.09826 0 None In(x) 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWA-2 0.1987 0.19 23 0.1657 0.01314 0 No 0.0002926 Param Intra 1 of 2 n/a 8/9/2021 No None Barium (mg/L) GWA-3 0.2268 n/a 8/9/2021 0.12 No 32 0.1719 0.02304 0 No 0.0002926 Param Intra 1 of 2 None NP Intra (normality) 1 of 2 Barium (mg/L) GWA-4 0.14 n/a 8/9/2021 0.034 No 32 n/a n/a 0 n/a 0.001803 n/a Barium (mg/L) GWC-10 0.1952 n/a 8/10/2021 0 14 No 34 0.1271 0.02885 0 None No 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWC-18 0.08974 8/10/2021 0.093 Yes 32 0.07311 0.006987 0 0.0002926 Param Intra 1 of 2 n/a None No Barium (mg/L) GWC-19 0.1697 n/a 8/10/2021 0.14 No 23 0.0003879 0.000176 0 None x^4 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWC-20 0.1358 n/a 8/10/2021 0.14 Yes 31 0.001502 0.0004195 0 0.0002926 Param Intra 1 of 2 0.0002926 Barium (mg/L) GWC-21 0.2404 8/10/2021 0.057 Nο 30 -2.722 0.5402 0 Param Intra 1 of 2 n/a None In(x) Barium (mg/L) GWC-22 0.121 n/a 8/10/2021 0.091 No 23 0 0.003415 NP Intra (normality) 1 of 2 n/a n/a n/a n/a Barium (mg/L) GWC-23 0.085 Yes 32 0.06272 0.009212 0 0.0002926 Param Intra 1 of 2 0.08464 n/a 8/10/2021 None No Barium (mg/L) GWC-5 0.1274 n/a 8/10/2021 0.077 No 32 0.1019 0.01074 0 No 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWC-6 0.1978 n/a 8/10/2021 0.18 No 11 0.1654 0.01034 0 None No 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWC-7 0.4063 n/a 8/10/2021 0.14 No 19 0.3226 0.1206 0 None sqrt(x) 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWC-8 0.1227 n/a 8/10/2021 0.23 Yes 31 0.316 0.01439 0 None 0.0002926 Param Intra 1 of 2 sqrt(x) Barium (mg/L) GWC-9 0.07338 n/a 8/10/2021 0.067 No 20 0.06193 0.00445 0 None No 0.0002926 Param Intra 1 of 2 NP Intra (NDs) 1 of 2 Beryllium (mg/L) GWA-3 0.0005 n/a 8/9/2021 0.0005ND No 32 0.001803 n/a NP Intra (NDs) 1 of 2 GWC-19 0.0005 0.0005ND No 32 0.001803 Beryllium (mg/L) n/a 8/10/2021 n/a n/a 100 n/a n/a GWC-7 0.093 8/10/2021 0.000061J No 23.33 n/a 0.002008 NP Intra (normality) 1 of 2 Beryllium (mg/L) n/a 30 n/a n/a NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWA-4 0.0005 n/a 8/9/2021 0.0005ND No 32 n/a n/a 96.88 n/a n/a 0.001803 Cadmium (mg/L) GWC-10 0.0005 8/10/2021 0.0005ND No 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a 32 n/a n/a GWC-18 0.0005 8/10/2021 0.0005ND No 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 Cadmium (mg/L) n/a 32 n/a n/a n/a Cadmium (mg/L) GWC-20 0.0005 n/a 8/10/2021 0.0005ND No 31 n/a n/a 96.77 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-21 0.0005 n/a 8/10/2021 0.0005ND No 30 n/a 93.33 n/a n/a 0.002008 NP Intra (NDs) 1 of 2 0.0005ND No. 32 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-23 0.0005 n/a 8/10/2021 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-5 0.0015 n/a 8/10/2021 0.0005ND No 96.88 n/a n/a 0.001803 Cadmium (mg/L) GWC-7 0.0035 n/a 8/10/2021 0.0005ND No 29 n/a n/a 82.76 n/a n/a 0.002172 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-8 0.0005 n/a 8/10/2021 0.0005ND No 31 n/a 96.77 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-9 0.0005ND No 93.75 n/a 0.001803 NP Intra (NDs) 1 of 2 0.0005 n/a 8/10/2021 32 n/a n/a n/a Chromium (mg/L) GWA-1 0.016 n/a 8/9/2021 0.005ND No 32 n/a n/a 93.75 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Chromium (ma/L) GWA-11 0.005 n/a 8/10/2021 0.005ND No 32 90.63 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 n/a n/a Chromium (mg/L) GWA-2 0.005 n/a 8/9/2021 0.005ND No 32 n/a 100 n/a n/a 0.001803 NP Intra (NDs) 1 of 2

Appendix I Intrawell Prediction Limits - All Results

Printed 9/2/2021, 3:49 PM

Data: Huffaker Road Landfill Client: Southern Company %NDs ND Adj. Constituent <u>Well</u> Sig. Bg N Bg Mean Std. Dev. Method Upper Lim. Lower Lim. Date Transform Alpha Chromium (mg/L) GWA-3 0.005 8/9/2021 0.005ND No 32 n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 n/a 0.005ND 0.001803 Chromium (mg/L) GWA-4 0.005 n/a 8/9/2021 No 32 n/a n/a 96.88 n/a n/a NP Intra (NDs) 1 of 2 Chromium (ma/L) GWC-10 0.005 n/a 8/10/2021 0.005ND No n/a 90.63 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWC-18 Chromium (ma/L) 0.005 8/10/2021 0.005ND No 32 100 0.001803 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a n/a Chromium (mg/L) GWC-19 0.005 8/10/2021 0.005ND No 32 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Chromium (ma/L) GWC-20 0.0064 8/10/2021 0.005ND No 31 90.32 n/a 0.001905 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Chromium (mg/L) GWC-21 0.005 n/a 8/10/2021 0.005ND No 30 n/a 96.67 n/a n/a 0.002008 NP Intra (NDs) 1 of 2 n/a Chromium (mg/L) GWC-22 0.005 0.005ND 93.75 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a 8/10/2021 No 32 n/a n/a n/a n/a Chromium (mg/L) GWC-23 0.005 n/a 8/10/2021 0.005ND No 32 n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Chromium (mg/L) 0.005 n/a 8/10/2021 0.005ND No 32 n/a n/a 100 n/a 0.001803 NP Intra (NDs) 1 of 2 32 0.001803 NP Intra (NDs) 1 of 2 Chromium (ma/L) GWC-6 0.005 n/a 8/10/2021 0.005ND Nο n/a n/a 100 n/a n/a Chromium (mg/L) GWC-7 0.005 n/a 8/10/2021 0.005ND No n/a n/a 83.33 n/a n/a 0.002008 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWC-8 0.005 n/a 8/10/2021 0.005ND No 31 n/a n/a 90.32 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 0.005ND Chromium (mg/L) GWC-9 0.005 8/10/2021 No 32 90.63 n/a 0.001803 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWA-1 0.005 8/9/2021 0.005ND No 32 68.75 n/a 0.001803 n/a n/a n/a n/a Cobalt (mg/L) GWA-11 0.01 8/10/2021 0.00047J No 32 62.5 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a GWA-2 0.005 0.005ND No 32 100 0.001803 NP Intra (NDs) 1 of 2 Cobalt (mg/L) n/a 8/9/2021 n/a n/a n/a n/a Cobalt (mg/L) GWA-3 0.005 n/a 8/9/2021 0.00042J No 32 n/a 93 75 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a n/a GWA-4 0.005 0.005ND No 32 68.75 n/a 0.001803 NP Intra (NDs) 1 of 2 Cobalt (mg/L) n/a 8/9/2021 n/a n/a n/a Cobalt (mg/L) GWC-10 0.005 n/a 8/10/2021 0.005ND Nο 32 n/a n/a 100 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-21 0.01 n/a 8/10/2021 0.0041J No n/a 63.33 n/a n/a 0.002008 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-23 0.005 n/a 8/10/2021 0.005ND Nο 32 n/a n/a 96.88 n/a n/a 0.001803 0.005 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-5 8/10/2021 0.00098J No 32 96.88 n/a 0.001803 GWC-6 0.001803 NP Intra (NDs) 1 of 2 Cobalt (mg/L) 0.005 n/a 8/10/2021 0.005ND No 32 n/a n/a 100 n/a n/a Cobalt (mg/L) GWC-7 0.08032 n/a 8/10/2021 0.013 No 17 0.03376 0.01735 0 None No 0.0002926 Param Intra 1 of 2 Cobalt (mg/L) GWC-8 0.01 8/10/2021 0.004J No 31 n/a 96.77 n/a 0.001905 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Cobalt (mg/L) GWC-9 0.005 8/10/2021 0.005ND Nο 32 n/a n/a 93.75 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 92.59 n/a Copper (mg/L) GWA-11 0.005 n/a 8/10/2021 0.005ND No 27 n/a n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWA-2 0.005 n/a 8/9/2021 0.005ND No 27 n/a n/a 92 59 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWA-3 0.005 n/a 8/9/2021 0.005ND No n/a n/a 92.59 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWA-4 0.0066 n/a 8/9/2021 0.00051J No 27 n/a n/a 92.59 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-10 0.005 8/10/2021 0.005ND No 27 0.002502 0.002502 Copper (mg/L) GWC-18 0.005 8/10/2021 0.005ND Nο 27 NP Intra (NDs) 1 of 2 n/a n/a n/a 92.59 n/a n/a GWC-19 0.005 n/a 8/10/2021 0.005ND No 27 n/a n/a 88 89 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-20 0.005 0.005ND 26 96.15 n/a 0.002667 NP Intra (NDs) 1 of 2 Copper (ma/L) n/a 8/10/2021 No n/a n/a n/a Copper (mg/L) GWC-21 0.005 n/a 8/10/2021 0.005ND No 25 n/a n/a 76 n/a n/a 0.002832 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-22 0.005 n/a 8/10/2021 0.005ND No 27 n/a n/a 96.3 n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-23 0.0084 n/a 8/10/2021 0.00078J No 27 n/a n/a 85.19 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-5 0.005 n/a 8/10/2021 0.005ND No 27 n/a n/a 88.89 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (ma/L) GWC-6 0.005 n/a 8/10/2021 0.005ND No 27 n/a n/a 100 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-7 0.016 n/a 8/10/2021 0.005ND No 25 80 0.002832 NP Intra (NDs) 1 of 2 n/a NP Intra (NDs) 1 of 2 GWC-8 0.005ND Nο 26 0.002667 Copper (mg/L) 0.005 n/a 8/10/2021 n/a n/a 100 n/a n/a GWC-9 0.005 8/10/2021 0.0018J No 27 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) n/a n/a n/a 96.3 n/a n/a Lead (mg/L) GWA-11 0.001 n/a 8/10/2021 0.001ND No 32 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWA-3 0.001 8/9/2021 0.001ND No 32 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a n/a 100 n/a n/a GWC-10 0.001 8/10/2021 0.001ND No 32 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a n/a n/a 100 n/a n/a Lead (mg/L) **GWC-18** 0.001 n/a 8/10/2021 0.001ND No 32 n/a n/a 100 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-19 0.001 n/a 8/10/2021 0.001ND No n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWC-20 0.001ND NP Intra (NDs) 1 of 2 Lead (mg/L) 0.001 n/a 8/10/2021 Nο 31 n/a n/a 96 77 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-21 0.001 n/a 8/10/2021 0.001ND No 30 n/a 0.002008 Lead (mg/L) GWC-22 0.001 n/a 8/10/2021 0.001ND Nο 32 n/a n/a 100 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-23 0.001 n/a 8/10/2021 0.001ND No 32 n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWC-5 0.001 0.001ND 100 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a 8/10/2021 No 32 n/a n/a n/a n/a Lead (mg/L) GWC-6 0.001 n/a 8/10/2021 0.001ND No 32 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-7 0.0016 n/a 8/10/2021 0.001ND No 31 83.87 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 n/a n/a Lead (mg/L) GWC-8 0.001 n/a 8/10/2021 0.001ND No 31 n/a 96 77 n/a n/a 0.001905 NP Intra (NDs) 1 of 2

Appendix I Intrawell Prediction Limits - All Results

	Plant I	Hammond	Client: So	uthern Comp	anv Data	: Huff	aker R	toad Landfill	Printed 9/	/2/2021	. 3:49 PM			
Constituent				·					Std. Dev.			Transform	Alpha	Mathad
Constituent Niekel (mg/L)	Well GWA-1	0.005	n <u>. Lower Lim</u> n/a	8/9/2021	Observ. 0.005ND	Sig.		Bg Mean n/a	n/a	85.19	s ND Adj.	Transform n/a	0.002502	Method NP Intra (NDs) 1 of 2
Nickel (mg/L)														, ,
Nickel (mg/L)	GWA-11	0.01	n/a	8/10/2021	0.0017J 0.005ND	No		n/a	n/a	66.67		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-2	0.005	n/a	8/9/2021		No		n/a	n/a	96.3		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-3	0.005	n/a	8/9/2021	0.005ND	No		n/a	n/a	92.59		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-4	0.0055	n/a	8/9/2021	0.001J	No		n/a	n/a	59.26		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-10	0.005	n/a	8/10/2021	0.005ND	No		n/a	n/a	100	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-18	0.005	n/a	8/10/2021	0.005ND	No		n/a	n/a	85.19		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-19	0.0062	n/a	8/10/2021	0.005ND	No		n/a	n/a	88.89		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-20	0.005	n/a	8/10/2021	0.005ND		26	n/a	n/a	92.31		n/a	0.002667	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-21	0.01035	n/a	8/10/2021	0.0076	No		0.1566	0.02496		Kaplan-Meier		0.0002926	Param Intra 1 of 2
Nickel (mg/L)	GWC-22	0.005	n/a	8/10/2021	0.005ND	No		n/a	n/a	96.3		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-23	0.005	n/a	8/10/2021	0.0008J	No		n/a	n/a	81.48		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-5	0.005	n/a	8/10/2021	0.00085J			n/a	n/a	92.59		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-6	0.005	n/a	8/10/2021	0.005ND		27	n/a	n/a		n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-7	0.3321	n/a	8/10/2021	0.057	No	12	0.133	0.06625	0	None	No	0.0002926	Param Intra 1 of 2
Nickel (mg/L)	GWC-8	0.005	n/a	8/10/2021	0.0073	Yes		n/a	n/a	96.15		n/a	0.002667	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-9	0.01	n/a	8/10/2021	0.0019J	No		n/a	n/a	66.67		n/a	0.002502	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-4	0.005	n/a	8/9/2021	0.005ND		32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-10	0.005	n/a	8/10/2021	0.005ND		32	n/a	n/a	96.88		n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-21	0.005	n/a	8/10/2021	0.005ND		30	n/a	n/a	93.33		n/a	0.002008	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-22	0.005	n/a	8/10/2021				n/a	n/a	96.88		n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-9	0.005	n/a	8/10/2021	0.005ND			n/a	n/a	96.88		n/a	0.001803	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWC-21	0.005	n/a	8/10/2021	0.005ND			n/a	n/a	96	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWC-7	0.001	n/a	8/10/2021	0.001ND	No	30	n/a	n/a	96.67	n/a	n/a	0.002008	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-21	0.01	n/a	8/10/2021	0.01ND	No	25	n/a	n/a	92	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-23	0.01	n/a	8/10/2021	0.01ND	No		n/a	n/a	100	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-5	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-7	0.01	n/a	8/10/2021	0.01ND	No	26	n/a	n/a	80.77	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-9	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	96.3	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-1	0.01	n/a	8/9/2021	0.01ND	No	27	n/a	n/a	77.78		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-11	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	66.67		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-2	0.01	n/a	8/9/2021	0.01ND	No	27	n/a	n/a	70.37	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-3	0.01	n/a	8/9/2021	0.01ND	No	27	n/a	n/a	55.56		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-4	0.01	n/a	8/9/2021	0.01ND	No	27	n/a	n/a	33.33	n/a	n/a	0.002502	NP Intra (normality) 1 of 2
Zinc (mg/L)	GWC-10	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	77.78		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-18	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	70.37	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-19	0.013	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	59.26	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-20	0.01	n/a	8/10/2021	0.01ND	No	26	n/a	n/a	80.77	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-21	0.01212	n/a	8/10/2021	0.01ND	No	25	0.0747	0.01433	12	None	sqrt(x)	0.0002926	Param Intra 1 of 2
Zinc (mg/L)	GWC-22	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	81.48	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-23	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	55.56	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-5	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	55.56	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-6	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	74.07	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-7	0.6123	n/a	8/10/2021	0.093	No	12	0.2426	0.123	0	None	No	0.0002926	Param Intra 1 of 2
Zinc (mg/L)	GWC-8	0.01	n/a	8/10/2021	0.01ND	No	26	n/a	n/a	73.08	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-9	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	66.67	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2

Appendix I Interwell Prediction Limits - Significant Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:04 PM Constituent Well Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Alpha Method Barium (mg/L) GWC-8 0.21 n/a 8/10/2021 0.23 Yes 190 n/a n/a 0 n/a n/a 0.0000548 NP Inter (normality) 1 of 2 n/a 0.00007239 NP Inter (NDs) 1 of 2 Nickel (mg/L) GWC-8 0.0055 n/a 8/10/2021 0.0073 Yes 165 n/a n/a 73.94 n/a

Appendix I Interwell Prediction Limits - All Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:04 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Prin										2/2021	, 4:04 PM			
	Constituent	Well	Upper Lim	Lower Lim	<u>. Date</u>	Observ.	Sig. Bg I	N Bg Mean	Std. Dev.	%ND	s ND Adj.	Transform	<u>Alpha</u>	Method
	Barium (mg/L)	GWC-18	0.21	n/a	8/10/2021	0.093	No 190	n/a	n/a	0	n/a	n/a	0.0000548	NP Inter (normality) 1 of 2
	Barium (mg/L)	GWC-20	0.21	n/a	8/10/2021	0.14	No 190	n/a	n/a	0	n/a	n/a	0.0000548	NP Inter (normality) 1 of 2
	Barium (mg/L)	GWC-23	0.21	n/a	8/10/2021	0.085	No 190	n/a	n/a	0	n/a	n/a	0.0000548	NP Inter (normality) 1 of 2
	Barium (mg/L)	GWC-8	0.21	n/a	8/10/2021	0.23	Yes 190	n/a	n/a	0	n/a	n/a	0.0000548	NP Inter (normality) 1 of 2
	Nickel (mg/l)	GWC-8	0.0055	n/a	8/10/2021	0.0073	Yes 165	n/a	n/a	73.94	l n/a	n/a	0.00007239	NP Inter (NDs) 1 of 2

Appendix I Trend Tests - Significant Results

	Plant Hammond	Client: Southern Company	Data: Huffa	ker Road	Landfill	Printed	9/2/202	21, 4:06	PM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	GWA-2 (bg)		0.003862	394	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)		-0.004996	-430	-206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)		-0.002734	-261	-206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-18		0.001018	323	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-20		0.002248	397	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-23		0.001365	258	206	Yes	38	0	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-11 (bg)		-0.0006231	-292	-167	Yes	33	54.55	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-4 (bg)		-0.0002785	-265	-167	Yes	33	51.52	n/a	n/a	0.01	NP

Appendix I Trend Tests - All Results

	Plant Hammond	Client: Southern Company	/ Data: Huffa	ker Road	Landfill	Printed	9/2/202	21, 4:06	PM			
Constituent	<u>Well</u>		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	GWA-1 (bg)		0	-5	-206	No	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-11 (bg)		-0.0001807	-166	-206	No	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-2 (bg)		0.003862	394	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)		-0.004996	-430	-206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)		-0.002734	-261	-206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-18		0.001018	323	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-20		0.002248	397	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-23		0.001365	258	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-8		0.001151	148	206	No	38	0	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-1 (bg)		0	-129	-167	No	33	78.79	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-11 (bg)		-0.0006231	-292	-167	Yes	33	54.55	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-2 (bg)		0	-2	-167	No	33	96.97	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-3 (bg)		0	-66	-167	No	33	87.88	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-4 (bg)		-0.0002785	-265	-167	Yes	33	51.52	n/a	n/a	0.01	NP
Nickel (mg/L)	GWC-8		0	-73	-161	No	32	81.25	n/a	n/a	0.01	NP

Appendix III Intrawell Prediction Limits - Significant Results Plant Hammond Client: Southern Company Data: Huffdker Road Landfill Printed 9/2/2021, 4:15 PM

Plant Hammond Client: Southern Company Data: Hutfaker Road Landfill Printed 9/2/2021, 4:15 PM													
Constituent	Well	Upper Lim	n. Lower Lin	n. <u>Date</u>	Observ.	Sig. Bg N	N Bg Mean	Std. Dev.	<u>%N[</u>	Os ND Adj.	Transform	m Alpha	<u>Method</u>
Boron (mg/L)	GWC-8	0.055	n/a	8/10/2021	0.088	Yes 13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Calcium (mg/L)	GWC-18	46.36	n/a	8/10/2021	48.2	Yes 14	40.09	2.439	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-23	45.95	n/a	8/10/2021	48.2	Yes 13	36.75	3.5	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-8	90.82	n/a	8/10/2021	111	Yes 15	63.08	11.04	0	None	No	0.0006269	Param Intra 1 of 2
pH (SU)	GWC-8	7.808	6.743	8/10/2021	6.65	Yes 15	7.275	0.2119	0	None	No	0.0003135	Param Intra 1 of 2
Sulfate (mg/L)	GWA-2	20.34	n/a	8/9/2021	23.2	Yes 13	14.94	2.053	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-20	58.56	n/a	8/10/2021	66.4	Yes 18	35.78	9.504	0	None	No	0.0006269	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:15 PM Std. Dev. %NDs ND Adj. Method Constituent <u>Well</u> Sig. Bg N Bg Mean Lower Lim. Date Transform Alpha GWA-1 0.021J 13 15.38 n/a NP Intra (normality) 1 of 2 Boron (mg/L) 0.05 8/9/2021 No n/a n/a n/a 0.009692 Boron (mg/L) 0.04165 8/10/2021 0.034J No 13 0.0356 0.002301 0 None No n/a GWA-2 0.1059 n/a 8/9/2021 0.085 No 13 0.08618 0.007513 0 None No 0.0006269 Param Intra 1 of 2 Boron (mg/L) GWA-3 0.195 n/a 8/9/2021 0.14 No 13 0.1502 0.01706 0 No 0.0006269 Param Intra 1 of 2 Boron (mg/L) None 0.02204 0.0006269 Boron (mg/L) GWA-4 0.1507 n/a 8/9/2021 0.073 No 13 0.09276 0 None No Param Intra 1 of 2 Boron (mg/L) GWC-10 0.04348 n/a 8/10/2021 0.033J No 13 0.03321 0.003909 0 None No 0.0006269 Param Intra 1 of 2 GWC-18 0.1547 8/10/2021 0.14 No 0.1292 0.009697 0 No 0.0006269 Param Intra 1 of 2 Boron (mg/L) n/a 13 None GWC-19 0.2048 0.01047 0 0.0006269 Boron (mg/L) n/a 8/10/2021 0.14 No 13 0.1773 None No Param Intra 1 of 2 Boron (mg/L) GWC-20 0.05 n/a 8/10/2021 0.013J No n/a n/a 7.692 n/a n/a 0.009692 NP Intra (normality) 1 of 2 GWC-21 0.1406 8/10/2021 0.026J No 0.199 0.06698 0 0.0006269 Param Intra 1 of 2 Boron (mg/L) n/a None sqrt(x) GWC-22 0.08272 0.06841 0 Boron (mg/L) 8/10/2021 0.057 13 0.005445 0.0006269 Param Intra 1 of 2 n/a No None No Boron (mg/L) GWC-23 0.1347n/a 8/10/2021 0.027JNο 13 0.191 0.067 7.692 None sqrt(x) 0.0006269 Param Intra 1 of 2 GWC-5 0.08013 8/10/2021 0.056 No 0.05944 0.007872 0 0.0006269 Param Intra 1 of 2 Boron (mg/L) n/a 13 No 0.03949 0.002264 0 Boron (mg/L) GWC-6 0.04531 8/10/2021 0.037J No 14 No 0.0006269 Param Intra 1 of 2 Boron (mg/L) 0.07265 n/a 8/10/2021 0.037J No 13 0.05612 0.006289 0 No Param Intra 1 of 2 GWC-8 0.055 8/10/2021 0.088 Yes 0 0.009692 NP Intra (normality) 1 of 2 Boron (mg/L) n/a 13 n/a n/a n/a n/a Boron (mg/L) GWC-9 0.05 n/a 8/10/2021 0.012J No 13 n/a n/a 7.692 n/a n/a 0.009692 NP Intra (normality) 1 of 2 Calcium (mg/L) GWA-1 20.51 n/a 8/9/2021 20.2 Nο 13 15.95 1.735 7.692 None Nο 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWA-11 27 27 n/a 8/10/2021 20.8 No 13 19.82 2 834 7.692 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWA-2 51.4 n/a 8/9/2021 49.9 No 13 41.93 3.601 0 No 0.0006269 Param Intra 1 of 2 None GWA-3 8/9/2021 73.2 13 75.85 6.964 0.0006269 Param Intra 1 of 2 Calcium (mg/L) 94.16 n/a No 0 None No Calcium (mg/L) GWA-4 130.7 n/a 8/9/2021 69.7 No 13 88.18 16.18 0 No 0.0006269 Param Intra 1 of 2 None GWC-10 45.5 41.41 Calcium (mg/L) 60.36 8/10/2021 No 15 7.541 0 No 0.0006269 Param Intra 1 of 2 n/a None GWC-18 48.2 40.09 2.439 0.0006269 Calcium (mg/L) 46.36 8/10/2021 Yes 14 0 Param Intra 1 of 2 n/a None No Calcium (mg/L) GWC-19 49.63 n/a 8/10/2021 44.9 Nο 13 43.91 2.178 0 None No 0.0006269 Param Intra 1 of 2 GWC-20 63.52 8/10/2021 62 No 13 52.64 4.139 0 No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) n/a None Calcium (mg/L) GWC-21 95.47 n/a 8/10/2021 29.7 No 15 48.65 18.63 0 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) 52.66 n/a 8/10/2021 No 13 1.891 0 None No Param Intra 1 of 2 GWC-23 45.95 8/10/2021 48.2 36.75 0 0.0006269 Param Intra 1 of 2 Calcium (mg/L) n/a Yes 13 3.5 No None Calcium (mg/L) GWC-5 90.26 n/a 8/10/2021 78.3 No 13 73.43 6.404 0 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-6 71.95 n/a 8/10/2021 67.7 Nο 13 62.28 3.678 0 None Nο 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-7 74 21 n/a 8/10/2021 40.5 No 13 36 61 14.31 0 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-8 90.82 n/a 8/10/2021 111 Yes 63.08 11.04 0 No 0.0006269 Param Intra 1 of 2 15 None Calcium (mg/L) GWC-9 39.77 n/a 8/10/2021 38. No 35.16 1.751 0 None No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWA-1 1.55 n/a 8/9/2021 1.1 No 13 1.179 0.1409 0 None No 0.0006269 Param Intra 1 of 2 GWA-11 2.158 1.2 1.493 0.253 0 Param Intra 1 of 2 Chloride (mg/L) n/a 8/10/2021 No 13 No 0.0006269 None GWA-2 8/9/2021 2.4 2.431 0.2783 0 0.0006269 Chloride (ma/L) 3.162 No 13 No Param Intra 1 of 2 n/a None GWA-3 2.1 3.95 0 0.0006269 Chloride (mg/L) 4.883 n/a 8/9/2021 Nο 13 0.3552 None No Param Intra 1 of 2 Chloride (mg/L) 1.874 GWA-4 11.19 8/9/2021 3 No 13 6.268 0 No 0.0006269 Param Intra 1 of 2 n/a None GWC-10 2.285 8/10/2021 1.2 0 0.0006269 Param Intra 1 of 2 Chloride (mg/L) n/a No 15 1.609 0.269 No Chloride (mg/L) GWC-18 1.907 n/a 8/10/2021 0.93J No 13 1.385 0.1987 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-19 2.57 8/10/2021 1.2 No 13 1.915 0.2492 0 No 0.0006269 Param Intra 1 of 2 n/a None Chloride (ma/L) GWC-20 2.396 8/10/2021 1.2 No 14 1.7 0.2708 0 0.0006269 Param Intra 1 of 2 n/a None No Chloride (mg/L) GWC-21 3.962 n/a 8/10/2021 2 Nο 14 2.712 0.4862 0 None Nο 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-22 2 011 n/a 8/10/2021 1.1 Nο 13 1 555 0.1736 0 None Nο 0.0006269 Param Intra 1 of 2 GWC-23 2.104 8/10/2021 13 1.552 0.2101 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) n/a 1 No Chloride (mg/L) GWC-5 4.279 n/a 8/10/2021 2.3 No 13 3.029 0.4757 0 None No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-6 2.458 n/a 8/10/2021 1.6 No 13 1.955 0.1913 0 None No 0.0006269 Param Intra 1 of 2 GWC-7 2.458 8/10/2021 1.6 13 1.654 0.3056 0 0.0006269 Param Intra 1 of 2 Chloride (mg/L) n/a No No None GWC-8 Chloride (ma/L) 3.306 8/10/2021 2.7 15 1.936 0.545 0 0.0006269 Param Intra 1 of 2 No No n/a None GWC-9 Chloride (mg/L) 1 823 n/a 8/10/2021 0.85.1 Nο 13 1 195 0.239 n None Nο 0.0006269 Param Intra 1 of 2 GWA-1 0.2142 8/9/2021 0.083J No 13 0.1055 0.04138 7.692 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) n/a GWA-11 0.1844 0.068J No 0.07757 0.04064 23.08 Kaplan-Meier 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) n/a 8/10/2021 13 No GWA-2 0.267 8/9/2021 0.081J No 0.05253 No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) n/a GWA-3 0.5357 n/a 8/9/2021 0.1 No 13 0.2393 0.1127 7.692 None 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) No GWA-4 0.5087 n/a 8/9/2021 0.12 No 13 0.2241 0.1082 0 0.0006269 Param Intra 1 of 2 Fluoride (ma/L) None No Fluoride (mg/L) GWC-10 0.2027 n/a 8/10/2021 0.078J Nο 13 0.1064 0.03664 7.692 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-18 0 2327 n/a 8/10/2021 0.11 Nο 13 0 1467 0.03273 7 692 None Nο 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-19 0.2758 n/a 8/10/2021 0.11 No 0.1547 0.04606 7.692 None No 0.0006269 Param Intra 1 of 2 13 Fluoride (mg/L) GWC-20 0.2054 n/a 8/10/2021 0.066J No 0.09322 0.0427 7.692 None No 0.0006269 Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

Printed 9/2/2021, 4:15 PM

Data: Huffaker Road Landfill Client: Southern Company <u>Well</u> Std. Dev. Method Constituent Sig. Bg N Bg Mean %NDs ND Adj GWC-21 0.2412 No 0.05798 Fluoride (mg/L) 8/10/2021 0.05ND 13 0.08881 15.38 Kaplan-Meier No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) 0.1652 8/10/2021 0.071J No 13 0.09188 0.0279 7.692 None No 0.0006269 Param Intra 1 of 2 n/a GWC-23 0.1978 n/a 8/10/2021 0.087J No 13 0.1127 0.03238 7.692 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) Fluoride (mg/L) GWC-5 0.4044 n/a 8/10/2021 0.057J No 13 0.4643 0.1047 15.38 Kaplan-Meier x^(1/3) 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-6 0.3208 n/a 8/10/2021 0.057J No 13 0.1139 0.07868 15.38 Kaplan-Meier No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-7 0.548 n/a 8/10/2021 0.19 No 13 0.2598 0.1097 0 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-8 0.4854 8/10/2021 0.13 No 0.4306 0.1035 0 0.0006269 Param Intra 1 of 2 n/a 14 None sqrt(x) GWC-9 0.09607 0.03684 Param Intra 1 of 2 Fluoride (mg/L) 0.1929 n/a 8/10/2021 0.076J No 13 7.692 None No 0.0006269 pH (SU) GWA-1 7.414 6.463 8/9/2021 7.23 No 6.938 0.1807 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWA-11 7.075 6.309 8/10/2021 6.84 No 13 6.692 0.1457 0 No 0.0003135 Param Intra 1 of 2 None GWA-2 6.867 7.273 6.46 6.9 13 0.1547 0 0.0003135 Param Intra 1 of 2 pH (SU) 8/9/2021 No None No pH (SU) GWA-3 7.238 6.227 8/9/2021 6.89 Nο 13 6.732 0.1922 0 None Nο 0.0003135 Param Intra 1 of 2 7.246 6.263 GWA-4 8/9/2021 6.76 No 13 6.755 0.1869 0 0.0003135 Param Intra 1 of 2 pH (SU) No pH (SU) GWC-10 7.697 6.845 8/10/2021 7.45 No 13 7.271 0.162 0 No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-18 7.781 7.39 8/10/2021 7.4 No 13 7.585 0.07423 0 No 0.0003135 Param Intra 1 of 2 None pH (SU) GWC-19 7.732 7.179 8/10/2021 7.49 No 13 7.455 0.1052 0 No 0.0003135 Param Intra 1 of 2 None 0 pH (SU) GWC-20 7.588 6.958 8/10/2021 7.31 No 15 7.273 0.1253 No 0.0003135 Param Intra 1 of 2 None pH (SU) GWC-21 7.759 5.557 8/10/2021 6.05 Nο 13 6.658 0.4189 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-22 7 968 7.278 8/10/2021 7.75 No 14 7.623 0.1341 0 None No 0.0003135 Param Intra 1 of 2 7.564 6.735 GWC-23 8/10/2021 6.96 No 13 7.149 0.1578 0 No 0.0003135 Param Intra 1 of 2 pH (SU) None GWC-5 7.288 8/10/2021 13 0 Param Intra 1 of 2 pH (SU) 6.348 6.87 No 6.818 0.1788 No 0.0003135 GWC-6 7.369 6.632 8/10/2021 7.06 No 13 7.001 0.1401 0 No 0.0003135 Param Intra 1 of 2 pH (SU) None GWC-7 No 13 6.623 5.502 6.29 6.062 0.2132 0 0.0003135 Param Intra 1 of 2 pH (SU) 8/10/2021 No None GWC-8 7.808 7.275 pH (SU) 6.743 6.65 Yes 15 0.2119 0 0.0003135 Param Intra 1 of 2 8/10/2021 None No pH (SU) GWC-9 7.362 6.212 8/10/2021 6.91 Nο 13 6.787 0.2186 0 None Nο 0.0003135 Param Intra 1 of 2 GWA-1 5.454 No 13 4.79 0.2524 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 8/9/2021 4.7 No Sulfate (mg/L) GWA-11 15.5 n/a 8/10/2021 11.2 No 13 12.58 1.108 0 No 0.0006269 Param Intra 1 of 2 GWA-2 20.34 23.2 Yes 13 14.94 2.053 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 8/9/2021 No n/a None Sulfate (mg/L) GWA-3 231.1 n/a 8/9/2021 No 13 131.7 37.85 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWA-4 348.3 n/a 8/9/2021 106 No 13 192.8 0 No 0.0006269 Param Intra 1 of 2 59.18 None Sulfate (mg/L) GWC-10 46.25 n/a 8/10/2021 14.9 Nο 14 4.162 1.026 0 None sqrt(x) 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) **GWC-18** 14.99 n/a 8/10/2021 10.3 No 13 10.94 1.541 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) **GWC-19** 20.78 n/a 8/10/2021 17.8 No 13 16.18 1.748 0 No 0.0006269 Param Intra 1 of 2 None Sulfate (mg/L) GWC-20 58.56 n/a 8/10/2021 66.4 Yes 35.78 9.504 0 None No 0.0006269 Param Intra 1 of 2 GWC-21 57.26 8/10/2021 23.8 No 13 30.96 10.01 0 No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) n/a None GWC-22 8/10/2021 6.2 No 13 7.792 2.363 0 No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 14 n/a None GWC-23 43 Sulfate (mg/L) 8/10/2021 8 No 13 0 0.009692 NP Intra (normality) 1 of 2 n/a n/a n/a n/a n/a GWC-5 Sulfate (mg/L) 159.3 n/a 8/10/2021 76.1 Nο 13 9.222 1.293 0 None sqrt(x) 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 150.6 GWC-6 8/10/2021 95.9 No 17 109.2 0 0.0006269 Param Intra 1 of 2 n/a 17.06 No GWC-7 114.7 0 Sulfate (mg/L) 189.7 n/a 8/10/2021 101 No 13 28.53 No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-8 62.67 n/a 8/10/2021 31.6 No 13 42.48 7.682 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-9 8/10/2021 76.3 No 14 69.87 6.092 0 0.0006269 Param Intra 1 of 2 85.53 n/a No None Total Dissolved Solids (mg/L) GWA-1 8/9/2021 96 No 13 105.2 26.93 0 0.0006269 Param Intra 1 of 2 175.9 n/a None No Total Dissolved Solids (mg/L) GWA-11 186 n/a 8/10/2021 107 Nο 13 128.5 21.88 0 None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWA-2 274 9 n/a 8/9/2021 245 Nο 13 220.5 20.67 0 None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWA-3 682.3 8/9/2021 416 13 7.827 0.3714 0 0.0006269 Param Intra 1 of 2 n/a No None x^(1/3) Total Dissolved Solids (mg/L) GWA-4 772.9 n/a 8/9/2021 371 No 13 531.9 91.69 0 None No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-10 281.6 n/a 8/10/2021 185 No 13 184.1 37.09 0 None No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-18 427 224 13 0 NP Intra (normality) 1 of 2 n/a 8/10/2021 No n/a 0.009692 n/a n/a n/a Total Dissolved Solids (mg/L) GWC-19 209 13 NP Intra (normality) 1 of 2 393 8/10/2021 No n/a 0 0.009692 n/a n/a n/a n/a Total Dissolved Solids (mg/L) GWC-20 306.2 n/a 8/10/2021 270 Nο 13 229 2 29.3 0 Nο 0.0006269 Param Intra 1 of 2 None Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-21 417.6 8/10/2021 121 No 15 203.2 0 No 0.0006269 n/a 85.29 Total Dissolved Solids (mg/L) GWC-22 0.009692 NP Intra (normality) 1 of 2 324 8/10/2021 206 No 13 n/a 0 n/a Total Dissolved Solids (mg/L) GWC-23 313.1 8/10/2021 No 13 197.3 44.03 0 No 0.0006269 Param Intra 1 of 2 n/a None Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-5 520.9 8/10/2021 363 No 13 395 0 No 0.0006269 n/a 47.9 None Total Dissolved Solids (mg/L) GWC-6 439.1 8/10/2021 318 No 15 333.5 42.03 0 0.0006269 Param Intra 1 of 2 n/a None No Total Dissolved Solids (mg/L) GWC-7 369 n/a 8/10/2021 210 Nο 13 271.2 37.22 0 None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-8 428 8 n/a 8/10/2021 425 Nο 15 269 7 63 28 n None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-9 n/a 8/10/2021 208 No 235.2 34.54 0 No 0.0006269 Param Intra 1 of 2 326 13 None

Appendix III Interwell Prediction Limits - All Results (No Significant) Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:33 PM

Plant Hammond Client: Southern Company Data: Huttaker Road Landtill Printed 9/2/2021, 4:33 PM														
Constituent	Well	Upper Lir	m. Lower Lir	n. <u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	<u>%ND</u>	s ND Adj.	Transform	n Alpha	<u>Method</u>
Boron (mg/L)	GWC-8	0.182	n/a	8/10/2021	0.088	No	85	n/a	n/a	2.353	3 n/a	n/a	0.000266	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-18	123	n/a	8/10/2021	48.2	No	85	n/a	n/a	2.353	3 n/a	n/a	0.000266	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-23	123	n/a	8/10/2021	48.2	No	85	n/a	n/a	2.353	3 n/a	n/a	0.000266	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-8	123	n/a	8/10/2021	111	No	85	n/a	n/a	2.353	3 n/a	n/a	0.000266	NP Inter (normality) 1 of 2
pH (SU)	GWC-8	7.186	6.453	8/10/2021	6.65	No	85	6.82	0.1805	0	None	No	0.0003135	Param Inter 1 of 2
Sulfate (mg/L)	GWC-20	302.3	n/a	8/10/2021	66.4	No	85	n/a	n/a	0	n/a	n/a	0.000266	NP Inter (normality) 1 of 2

Appendix III Trend Tests - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:37 PM

	Plant Hammond Client: Southern Comp	oany Data: Hu	naker Roa	a Landilli	Printed	9/2/20	21, 4:3	/ PIVI			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%ND	s Normality	Xform	<u>Alpha</u>	Method
Boron (mg/L)	GWC-8	0.00798	107	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-8	6.798	91	74	Yes	19	0	n/a	n/a	0.01	NP
pH (SU)	GWC-8	-0.127	-120	-81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-20	7.831	193	92	Yes	22	0	n/a	n/a	0.01	NP

Appendix III Trend Tests - All Results

	Plant Hammond Client: Southern Compar	ny Data: I	Huffaker Road	Landfill	Printed	9/2/202	1, 4:37	PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	GWA-1 (bg)	0.000303	34 8	63	No	17	11.76	n/a	n/a	0.01	NP
Boron (mg/L)	GWA-11 (bg)	0.000392	28 13	63	No	17	0	n/a	n/a	0.01	NP
Boron (mg/L)	GWA-2 (bg)	-0.00113	-30	-63	No	17	0	n/a	n/a	0.01	NP
Boron (mg/L)	GWA-3 (bg)	-0.000808	183 -14	-63	No	17	0	n/a	n/a	0.01	NP
Boron (mg/L)	GWA-4 (bg)	-0.003997	7 -30	-63	No	17	0	n/a	n/a	0.01	NP
Boron (mg/L)	GWC-8	0.00798	107	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-1 (bg)	0.143	22	63	No	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-11 (bg)	-0.01775	i -1	-63	No	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-2 (bg)	1.105	32	63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-3 (bg)	-0.4021	-12	-63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-4 (bg)	-4.644	-50	-63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-18	0.927	40	68	No	18	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-23	2.093	51	63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-8	6.798	91	74	Yes	19	0	n/a	n/a	0.01	NP
pH (SU)	GWA-1 (bg)	0	0	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	GWA-11 (bg)	0.01097	14	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	GWA-2 (bg)	-0.006259	9 -9	-63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	GWA-3 (bg)	0.02336	23	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	GWA-4 (bg)	0.02066	38	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	GWC-8	-0.127	-120	-81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-1 (bg)	0.09614	45	63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-11 (bg)	-0.1219	-22	-63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-2 (bg)	0.81	55	63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-3 (bg)	-2.776	-27	-63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-4 (bg)	-18.9	-63	-63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-20	7.831	193	92	Yes	22	0	n/a	n/a	0.01	NP

Appendix I Intrawell Prediction Limits - Resample Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/21/2021, 1:17 PM

 Constituent
 Well
 Upper Lim.
 Lower Lim. Date
 Observ.
 Sig.
 Is J. Barden
 Std. Dev.
 %NDs.
 ND. Adj.
 Transform Alpha
 Method

 Barium (mg/L)
 GWC-8
 0.1227
 n/a
 9/28/2021
 0.2009 J
 No.
 26
 n/a
 0.01439
 0.0
 None
 sqrt(x)
 0.0002926
 Param Intra 1 of 2

 Nickel (mg/L)
 GWC-8
 0.005
 n/a
 9/28/2021
 0.0009J
 No
 26
 n/a
 n/a
 96.15
 n/a
 n/a
 0.002667
 NP Intra (NDs) 1 of 2

Appendix III Intrawell Prediction Limits - Resample Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/21/2021, 1:18 PM

 Constituent
 Well
 Upper Lim.
 Lower Lim. Date
 Observ.
 Sig.
 Bg N Bg Mean
 Std. Dev.
 %NDs
 ND Adj.
 Transform Alpha
 Method

 pH (SU)
 GWC-8
 7.808
 6.743
 9/28/2021
 6.77
 No
 15
 7.275
 0.2119
 0
 None
 No
 0.0003135
 Param Intra 1 of 2

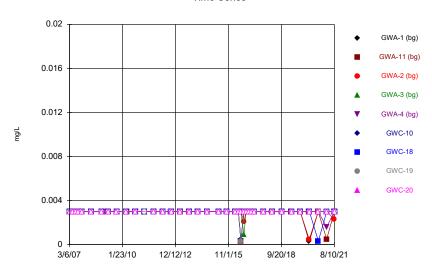
Appendix I Interwell Prediction Limits - Resample Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/21/2021, 2:25 PM

 Constituent
 Well
 Upper Lim.
 Lower Lim. Date
 Observ.
 Sig. Bg N Bg Mean
 Std. Dev.
 %NDs V MD Adj.
 Transform Alpha
 Method

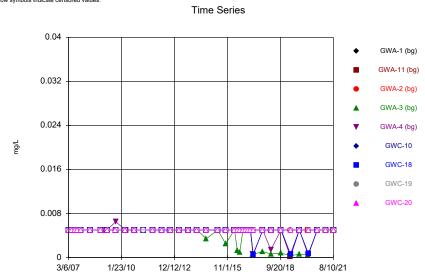
 Barium (mg/L)
 GWC-8
 0.21
 n/a
 9/28/2021
 0.2
 No 190 n/a
 n/a
 n/a
 n/a
 0.0000548
 NP Inter (normality) 1 of 2

Appendix I Trend Tests - Resample Results

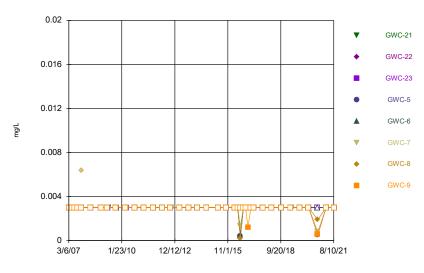

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/21/2021, 1:20 PM

 Constituent
 Well
 Slope
 Calc.
 Critical
 Sig.
 N
 %NDs
 Normality
 Xform
 Alpha
 Method

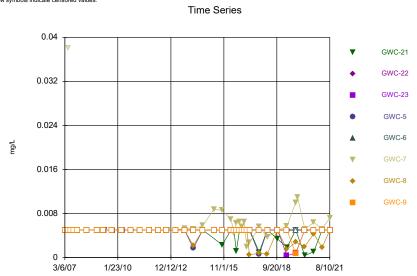
 Barium (mg/L)
 GWC-8
 0.001617
 184
 214
 No
 39
 0
 n/a
 n/a
 0.01
 NP


FIGURE A.

Constituent: Antimony Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Arsenic Analysis Run 10/21/2021 1:22 PM

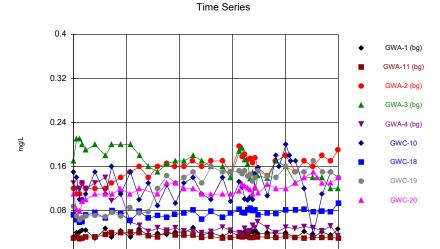

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

Constituent: Antimony Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

3/6/07


1/23/10

0.16

3/6/07

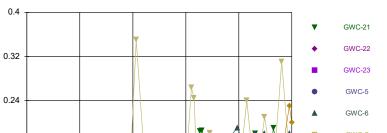
2/2/10

mg/L

Constituent: Barium Analysis Run 10/21/2021 1:22 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

12/12/12

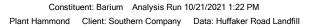

11/1/15

9/20/18

8/10/21

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values Time Series 0.3 GWA-1 (bg) GWA-11 (bg) 0.24 GWA-2 (bg) GWA-3 (bg) 0.18 GWA-4 (bg) mg/L GWC-10 GWC-18 0.12 GWC-19 GWC-20 0.06 3/6/07 1/23/10 12/12/12 11/1/15 9/20/18 8/10/21

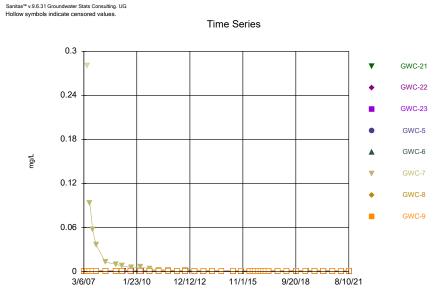
Constituent: Beryllium Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



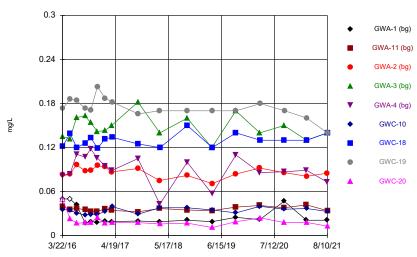
GWC-8

GWC-9

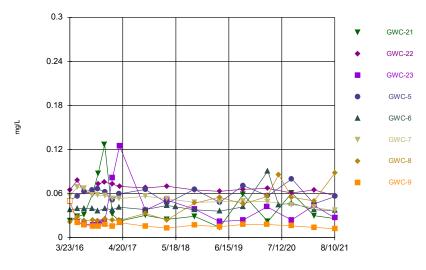
9/28/21


Time Series

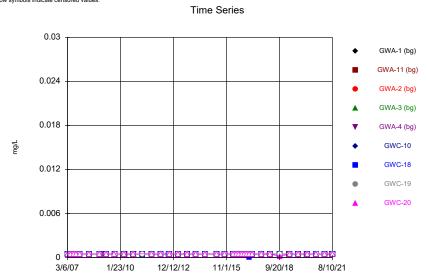
12/1/15


10/30/18

1/1/13

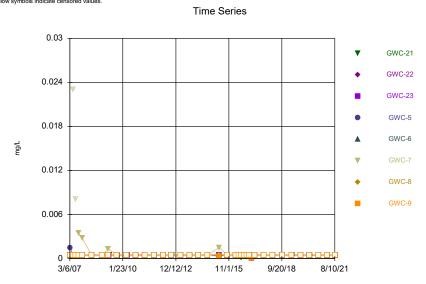

Constituent: Beryllium Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

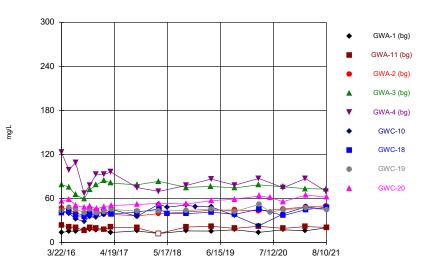
Constituent: Boron Analysis Run 10/21/2021 1:22 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Time Series

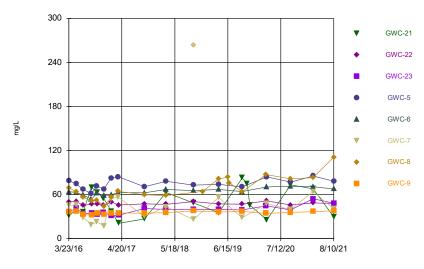
Constituent: Boron Analysis Run 10/21/2021 1:22 PM

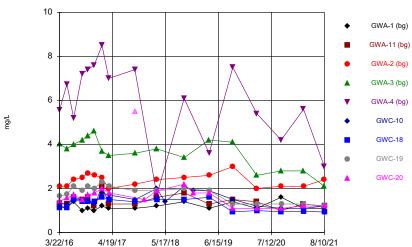
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

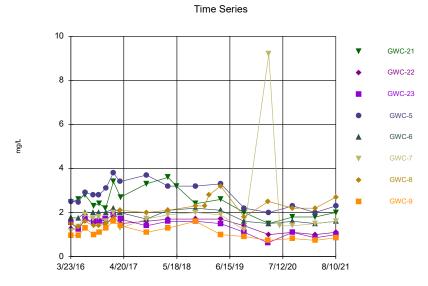

Constituent: Cadmium Analysis Run 10/21/2021 1:22 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

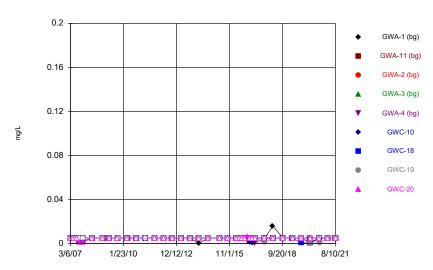

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Calcium Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Calcium Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

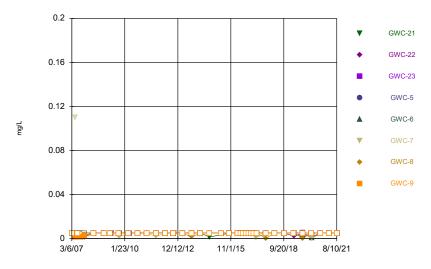

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Time Series

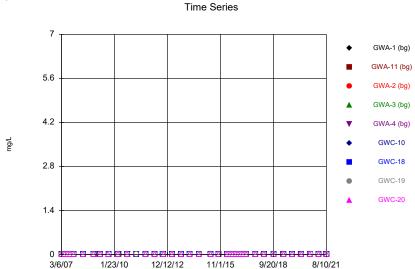

Constituent: Chloride Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Constituent: Chloride Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

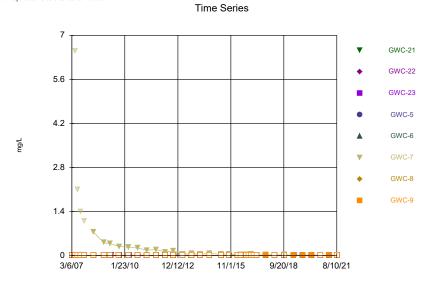


Constituent: Chromium Analysis Run 10/21/2021 1:22 PM

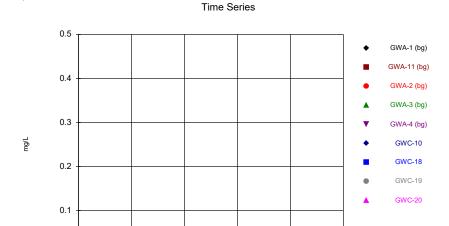

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

Constituent: Chromium Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Cobalt Analysis Run 10/21/2021 1:22 PM

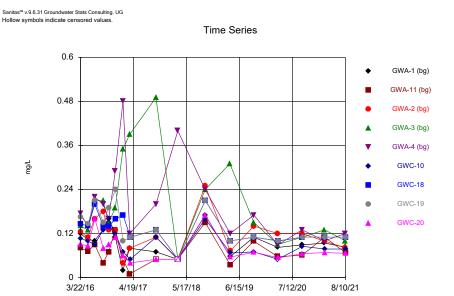

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

3/6/07

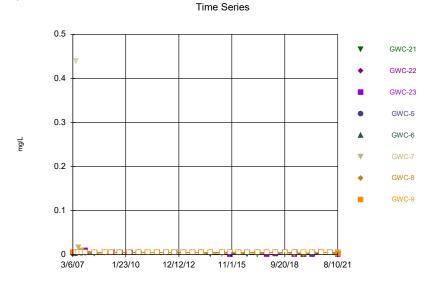
1/23/10

Constituent: Copper Analysis Run 10/21/2021 1:22 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

11/1/15

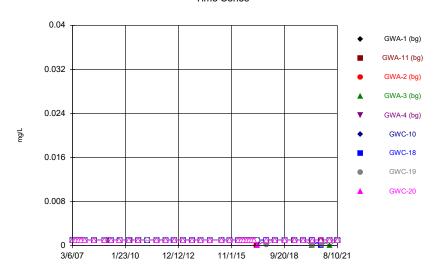
9/20/18

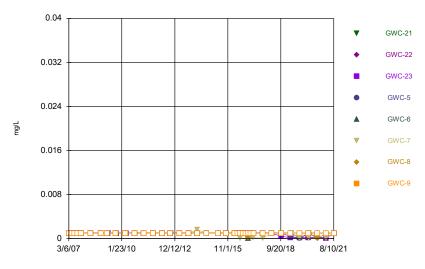

8/10/21

12/12/12

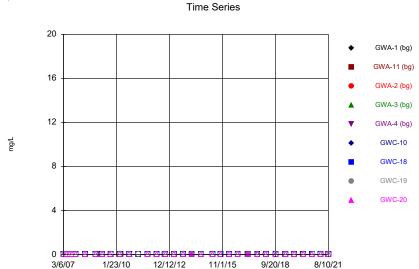
Constituent: Fluoride Analysis Run 10/21/2021 1:22 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Copper Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

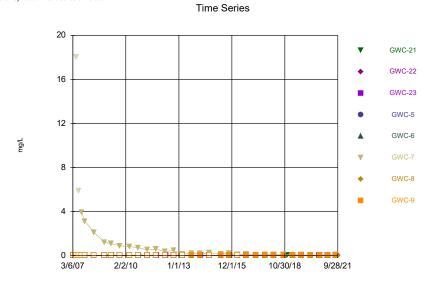

Constituent: Fluoride Analysis Run 10/21/2021 1:22 PM

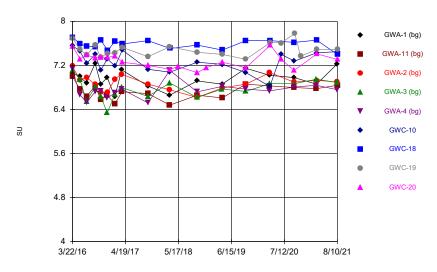
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



Constituent: Lead Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

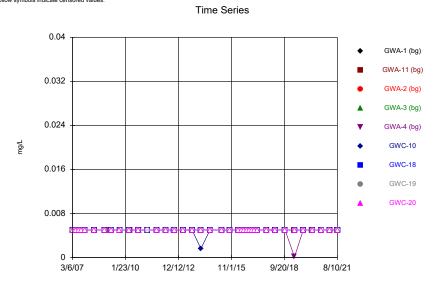
Constituent: Lead Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

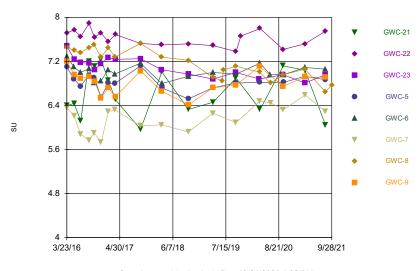


Constituent: Nickel Analysis Run 10/21/2021 1:22 PM

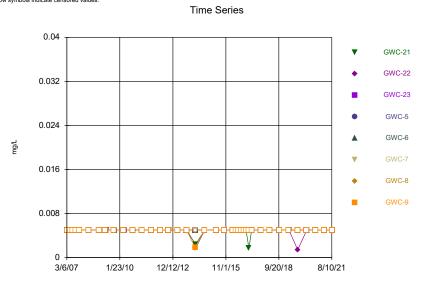
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

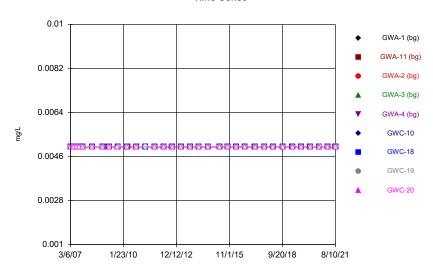
Constituent: pH Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

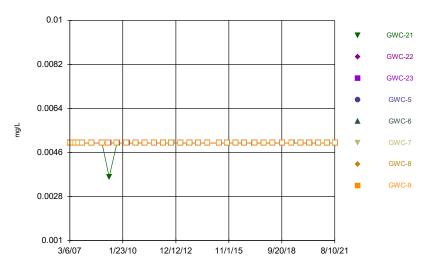
Constituent: Selenium Analysis Run 10/21/2021 1:22 PM

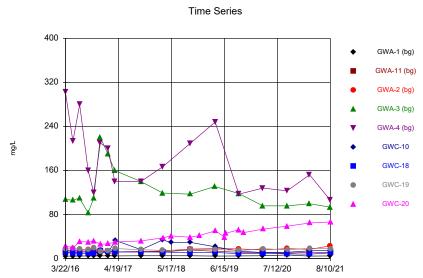

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series


Constituent: pH Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

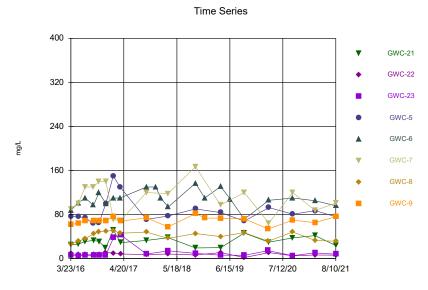
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Selenium Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

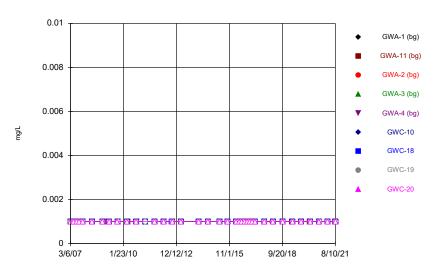

Constituent: Silver Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

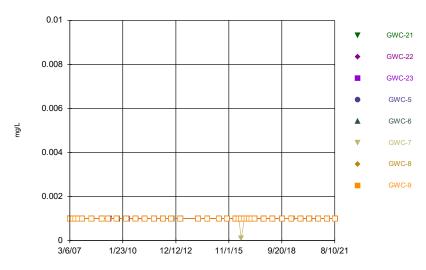
Constituent: Silver Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

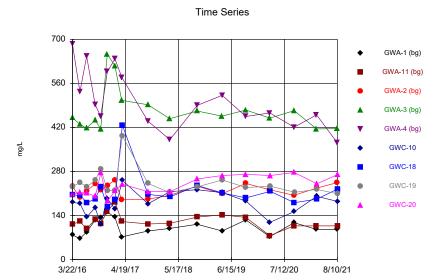

Sanitas[™] v.9.6.31 Groundwater Stats Consulting. UG



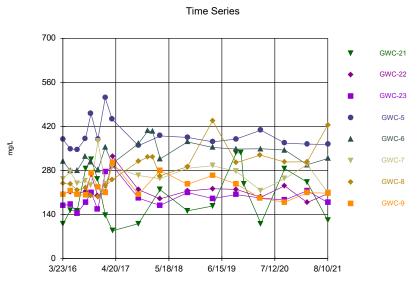

Constituent: Sulfate Analysis Run 10/21/2021 1:22 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

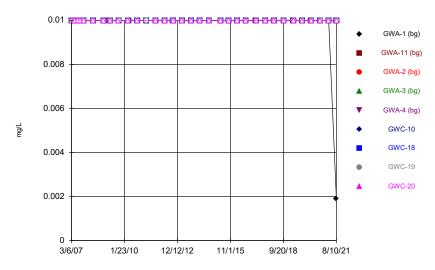

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



Constituent: Thallium Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

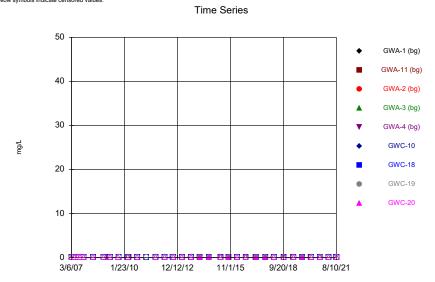

Constituent: Thallium Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



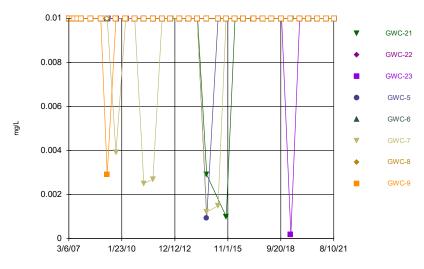
Constituent: Total Dissolved Solids Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Constituent: Total Dissolved Solids Analysis Run 10/21/2021 1:22 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

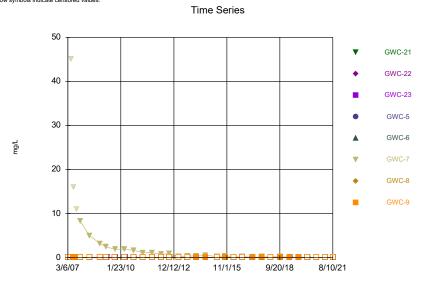
Constituent: Vanadium Analysis Run 10/21/2021 1:22 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Zinc Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Time Series

Constituent: Vanadium Analysis Run 10/21/2021 1:22 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.003		<0.003	<0.003	<0.003			<0.003	
3/7/2007		<0.003				<0.003	<0.003		<0.003
5/8/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
5/9/2007							<0.003	<0.003	<0.003
7/7/2007	<0.003		<0.003						
7/17/2007		<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/28/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
8/29/2007									<0.003
11/6/2007	<0.003		<0.003	<0.003	<0.003				
11/7/2007		<0.003				<0.003	<0.003	<0.003	<0.003
5/7/2008							<0.003	<0.003	<0.003
5/8/2008				<0.003	<0.003				
5/9/2008	<0.003	<0.003	<0.003			<0.003			
12/2/2008		<0.003				<0.003			
12/3/2008	<0.003		<0.003	<0.003	<0.003		<0.003		
12/4/2008								<0.003	
12/5/2008									<0.003
4/7/2009	<0.003		<0.003	<0.003	<0.003				
4/8/2009		<0.003				<0.003			
4/14/2009							<0.003	<0.003	<0.003
9/30/2009									<0.003
10/1/2009	<0.003	<0.003	<0.003			<0.003	<0.003		
10/2/2009				<0.003	<0.003			<0.003	
4/13/2010							<0.003	<0.003	<0.003
4/14/2010	<0.003	<0.003		<0.003	<0.003	<0.003			
10/7/2010			<0.003						
10/12/2010							<0.003	<0.003	<0.003
10/13/2010	<0.003	<0.003				<0.003			
10/14/2010				<0.003	<0.003				
4/5/2011				<0.003	<0.003				
4/6/2011	<0.003	<0.003	<0.003			<0.003	<0.003	<0.003	
10/4/2011		<0.003				<0.003			
10/6/2011			<0.003						
10/10/2011	<0.003								
10/12/2011				<0.003	<0.003		<0.003	<0.003	<0.003
4/3/2012	<0.003		<0.003						
4/4/2012				<0.003	<0.003				
4/5/2012							<0.003	<0.003	
4/9/2012									<0.003
4/10/2012		<0.003				<0.003			
9/19/2012			<0.003				<0.003		
9/24/2012	<0.003				<0.003				
9/25/2012								<0.003	<0.003
9/26/2012		<0.003		<0.003		<0.003			
3/12/2013	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
3/13/2013							<0.003	<0.003	<0.003
9/9/2013			<0.003						
9/10/2013		<0.003		<0.003	<0.003	<0.003	<0.003		
9/11/2013	<0.003							<0.003	<0.003
3/4/2014	<0.003	<0.003	<0.003			<0.003			
3/10/2014							<0.003	<0.003	<0.003
3/11/2014				<0.003	<0.003				

9/3/2014	GWA-1 (bg) <0.003	GWA-11 (bg) <0.003	GWA-2 (bg) <0.003	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.003	GWC-18 <0.003	GWC-19	GWC-20
9/8/2014	~ 0.003	<0.003	~ 0.003	<0.003	<0.003	~0.003	~0.003		
9/9/2014				-0.000	10.000			<0.003	<0.003
4/21/2015	<0.003	<0.003		<0.003	<0.003	<0.003		10.003	10.000
4/22/2015	10.000	10.000	<0.003	10.003	-0.003	-0.003	<0.003	<0.003	
4/23/2015			~0.003				~0.003	~0.003	<0.003
9/29/2015		<0.003		<0.003	<0.003				\0.003
	<0.003	<0.003	<0.002	<0.003	<0.003	<0.003	-0.002	-0.00 2	<0.002
9/30/2015	<0.003	<0.003	<0.003	<0.002	-0.002	<0.003	<0.003	<0.003	<0.003
3/22/2016	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			<0.003
3/23/2016 3/24/2016						<0.003	-0.002	-0.00 2	<0.003
	-0.002	<0.003	<0.002	<0.002	-0.002	-0.002	<0.003	<0.003	
5/17/2016	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.002	<0.002	-0.002
5/18/2016	-0.000		-0.000	-0.000			<0.003	<0.003	<0.003
7/5/2016	<0.003	0.0000 (1)	<0.003	<0.003	0.0000 (1)	0.0005 (1)		0.0000 (1)	
7/6/2016		0.0003 (J)			0.0003 (J)	0.0005 (J)	0.000	0.0003 (J)	
7/7/2016	.0.000		0.0004 (1)	0.0000 (1)	0.000	0.000	<0.003		<0.003
9/7/2016	<0.003	<0.003	0.0021 (J)	0.0009 (J)	<0.003	<0.003			
9/8/2016							<0.003	<0.003	<0.003
10/18/2016	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	
10/19/2016							<0.003		<0.003
12/6/2016	<0.003	<0.003		<0.003	<0.003	<0.003			
12/7/2016			<0.003					<0.003	<0.003
12/8/2016							<0.003		
1/31/2017	<0.003		<0.003						
2/1/2017		<0.003		<0.003	<0.003				
2/2/2017						<0.003	<0.003	<0.003	
2/3/2017									<0.003
3/23/2017	<0.003		<0.003	<0.003					
3/24/2017		<0.003			<0.003				
3/27/2017						<0.003	<0.003	<0.003	<0.003
10/4/2017	<0.003		<0.003	<0.003	<0.003				
10/5/2017		<0.003				<0.003	<0.003	<0.003	<0.003
3/14/2018	<0.003		<0.003						
3/15/2018		<0.003		<0.003	<0.003	<0.003		<0.003	
3/16/2018							<0.003		<0.003
10/4/2018	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	
10/5/2018							<0.003		<0.003
4/5/2019				<0.003					
4/8/2019	<0.003	<0.003	<0.003		<0.003				
4/9/2019						<0.003	<0.003	<0.003	<0.003
9/30/2019	<0.003	<0.003	<0.003	<0.003	<0.003				
10/1/2019						<0.003	<0.003	<0.003	<0.003
3/26/2020	0.00028 (J)	<0.003	0.00049 (J)	<0.003	<0.003				
3/27/2020						<0.003			
3/30/2020							<0.003		
3/31/2020								<0.003	<0.003
9/21/2020			<0.003						
9/22/2020		<0.003							
9/23/2020	<0.003			<0.003	<0.003				<0.003
9/24/2020							0.00033 (J)		
9/25/2020						<0.003			
9/28/2020								<0.003	

Page 3

Time Series

	C)/// 1 /h=)	C\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C)A(A 2 (ba)	C)A(A 2 (ba)	C)A(A 4 (b.e.)	CWC 10	CWC 19	CWC 10	CIMC 20
	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.003	0.0005 (J)		<0.003	0.0016 (J)				
3/9/2021			<0.003			<0.003	<0.003		
3/10/2021								<0.003	<0.003
8/9/2021	<0.003		0.0023 (J)	<0.003	<0.003				
8/10/2021		<0.003				<0.003	<0.003	<0.003	<0.003

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.003	<0.003	<0.003					
3/7/2007				<0.003	<0.003			<0.003
5/8/2007				<0.003				<0.003
5/9/2007	<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	
7/6/2007				<0.003		<0.003	<0.003	<0.003
7/17/2007	<0.003	<0.003	<0.003		<0.003			
8/28/2007				<0.003	<0.003	<0.003	<0.003	<0.003
8/29/2007	<0.003	<0.003	<0.003					
11/6/2007				<0.003	<0.003	<0.003	0.0064 (o)	<0.003
11/7/2007	<0.003	<0.003	<0.003					
5/7/2008	<0.003	<0.003	<0.003					
5/8/2008				<0.003	<0.003	<0.003	<0.003	<0.003
12/2/2008						<0.003	<0.003	<0.003
12/3/2008				<0.003	<0.003			
12/5/2008	<0.003	<0.003	<0.003					
4/7/2009				<0.003	<0.003			
4/8/2009						<0.003	<0.003	<0.003
4/14/2009		<0.003	<0.003					
4/27/2009	<0.003							
9/30/2009	<0.003	<0.003					<0.003	<0.003
10/1/2009			<0.003	<0.003	<0.003	<0.003		
4/13/2010	<0.003	<0.003			<0.003	<0.003	<0.003	<0.003
4/14/2010			<0.003	<0.003				
10/6/2010					<0.003			
10/7/2010						<0.003		
10/12/2010	<0.003	<0.003						
10/13/2010			<0.003				<0.003	<0.003
10/14/2010				<0.003				
4/5/2011				<0.003	<0.003	<0.003	<0.003	<0.003
4/6/2011		<0.003	<0.003					
10/4/2011					<0.003	<0.003	<0.003	<0.003
10/5/2011	<0.003	<0.003						
10/12/2011			<0.003	<0.003				
4/3/2012					<0.003	<0.003	<0.003	
4/4/2012				<0.003				<0.003
4/9/2012		<0.003	<0.003					
4/10/2012	<0.003							
9/18/2012					<0.003	<0.003		
9/19/2012			<0.003				<0.003	<0.003
9/24/2012				<0.003				
9/25/2012		<0.003						
9/26/2012	<0.003							
3/12/2013				<0.003	<0.003	<0.003	<0.003	<0.003
3/13/2013	<0.003	<0.003	<0.003					
9/9/2013					<0.003			
9/10/2013			<0.003	<0.003		<0.003	<0.003	<0.003
9/11/2013	<0.003	<0.003						
3/5/2014				<0.003	<0.003	<0.003	<0.003	<0.003
3/11/2014	<0.003	<0.003	<0.003					
9/3/2014			<0.003					<0.003
9/8/2014					<0.003	<0.003		
9/9/2014	<0.003	<0.003		<0.003			<0.003	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.003		<0.003		<0.003
4/22/2015					<0.003		<0.003	
4/23/2015		<0.003	<0.003					
9/29/2015				<0.003	<0.003	<0.003	<0.003	<0.003
9/30/2015	<0.003	<0.003	<0.003					
3/23/2016		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/24/2016	<0.003							
5/17/2016				<0.003	<0.003			
5/18/2016	<0.003	<0.003				<0.003	<0.003	<0.003
5/19/2016			<0.003					
7/6/2016				0.0004 (J)	0.0005 (J)	0.0013 (J)	0.0002 (J)	<0.003
7/7/2016	<0.003	<0.003	<0.003					
9/7/2016				<0.003	<0.003	<0.003		
9/8/2016	<0.003	<0.003	<0.003				<0.003	<0.003
10/18/2016				<0.003	<0.003	<0.003	<0.003	
10/19/2016	<0.003	<0.003	<0.003					<0.003
12/7/2016	<0.003	<0.003	<0.003					
12/8/2016				<0.003	<0.003	<0.003	<0.003	0.0012 (J)
2/1/2017				<0.003	<0.003			
2/2/2017	<0.003	<0.003				<0.003	<0.003	<0.003
2/3/2017			<0.003					
3/23/2017				<0.003	<0.003			
3/24/2017						<0.003	<0.003	
3/27/2017	<0.003	<0.003	<0.003					<0.003
10/4/2017				<0.003	<0.003	<0.003		
10/5/2017	<0.003	<0.003	<0.003				<0.003	<0.003
3/14/2018							<0.003	
3/15/2018	<0.003	<0.003	<0.003			<0.003		<0.003
3/16/2018				<0.003	<0.003			
10/4/2018	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	
10/5/2018			<0.003					<0.003
4/8/2019			<0.003		<0.003	<0.003	<0.003	<0.003
4/9/2019	<0.003	<0.003		<0.003				
10/1/2019	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/26/2020			<0.003					
3/27/2020							<0.003	<0.003
3/30/2020						<0.003		
3/31/2020	<0.003	<0.003		<0.003	<0.003			
9/23/2020		<0.003	<0.003					
9/24/2020	<0.003					0.0008 (J)	0.0019 (J)	0.00056 (J)
9/25/2020				0.00052 (J)	<0.003			
3/9/2021	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/10/2021	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

Constituent: Arsenic (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

2/0/007	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007 3/7/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
5/9/2007	<0.00E		<0.005				<0.005	<0.005	<0.005
7/7/2007 7/17/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	<0.00E		<0.00E						<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00E
8/29/2007	<0.00E		<0.00E	<0.00E	<0.00E				<0.005
11/6/2007 11/7/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
5/7/2008		~0.003				<0.003	<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005		~ 0.003	~ 0.003	~0.003
5/9/2008	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
	<0.005		<0.005			<0.005			
12/2/2008	<0.00E	<0.005	<0.00E	<0.00E	<0.00E	<0.005	<0.00E		
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005	<0.00E	
12/4/2008								<0.005	<0.00E
12/5/2008	<0.00E		<0.00E	<0.00E	<0.00E				<0.005
4/7/2009	<0.005	-0.005	<0.005	<0.005	<0.005	-0.005			
4/8/2009		<0.005				<0.005	-0.005	-0.005	-0.005
4/14/2009							<0.005	<0.005	<0.005
9/30/2009	-0.005	-0.005	-0.005			-0.005	-0.005		<0.005
10/1/2009	<0.005	<0.005	<0.005	-0.005	0.0005	<0.005	<0.005	-0.005	
10/2/2009			-0.005	<0.005	0.0065		-0.005	<0.005	-0.005
4/13/2010	-0.005	-0.005	<0.005	10.005	-0.005	10.005	<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005	-0.005	<0.005	<0.005	<0.005			
10/7/2010 10/12/2010			<0.005				<0.005	<0.005	<0.005
10/12/2010	<0.005	<0.005				<0.005	<0.005	<0.005	<0.005
	<0.005	<0.005		<0.005	<0.005	<0.005			
10/14/2010									
4/5/2011 4/6/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005	<0.005			<0.005			
10/6/2011	<0.00E		<0.005						
10/10/2011	<0.005			<0.005	<0.005		<0.005	<0.005	<0.005
10/12/2011	<0.00E		<0.005	<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005	<0.00E	<0.00E				
4/4/2012				<0.005	<0.005		<0.00E	<0.00E	
4/5/2012 4/9/2012							<0.005	<0.005	<0.005
4/10/2012		<0.00E				<0.00E			<0.005
9/19/2012		<0.005	<0.005			<0.005	<0.005		
9/24/2012	<0.005		<0.005		<0.005		<0.005		
9/25/2012	<0.003				~0.003			<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005		~ 0.003	~0.003
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013	<0.003	~0.003	~0.003	~ 0.003	~ 0.003	<0.003	<0.005	<0.005	<0.005
9/9/2013			<0.005				-0.000	-0.000	-0.000
9/9/2013		<0.005	-0.000	<0.005	<0.005	<0.005	<0.005		
9/10/2013	<0.005	-0.003		-0.000	-0.000	-0.000	-0.000	<0.005	<0.005
3/4/2014	<0.005	<0.005	<0.005			<0.005		-0.000	-0.000
3/10/2014	-0.000	-0.000	-0.000			-0.000	<0.005	<0.005	<0.005
3/11/2014				0.005	<0.005		5.000	5.000	0.000
				000	0.000				

Constituent: Arsenic (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

9/3/2014	GWA-1 (bg) <0.005	GWA-11 (bg) <0.005	GWA-2 (bg) <0.005	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.005	GWC-18 <0.005	GWC-19	GWC-20
9/8/2014				0.0034 (J)	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		0.0025 (J)	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	0.00129 (J)	<0.005	<0.005			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	<0.005		<0.005	0.001 (J)					
7/6/2016		<0.005			<0.005	<0.005		<0.005	
7/7/2016							<0.005		<0.005
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		<0.005
12/6/2016	<0.005	<0.005		<0.005	<0.005	<0.005			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	<0.005		<0.005						
2/1/2017		<0.005		<0.005	<0.005				
2/2/2017						<0.005	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	<0.005		<0.005	0.0006 (J)					
3/24/2017		<0.005			0.0006 (J)				
3/27/2017						<0.005	0.0005 (J)	<0.005	<0.005
10/4/2017	<0.005		<0.005	0.0011 (J)	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		0.00066 (J)	0.0014 (J)	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	0.0008 (J)	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				0.00035 (J)					
4/8/2019	<0.005	0.00012 (J)	<0.005		0.00023 (J)				
4/9/2019						<0.005	0.00063 (J)	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	0.00058 (J)	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	0.00048 (J)	0.00044 (J)				
3/27/2020						<0.005			
3/30/2020							0.00073 (J)		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005

Constituent: Arsenic (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005	GVV0-5	awc-o	avvo-7	GWC-0	avvo-5
3/7/2007	-0.000	-0.000	10.000	<0.005	<0.005			<0.005
5/8/2007				<0.005	-0.000			<0.005
5/9/2007	<0.005	<0.005	<0.005	10.000	<0.005	0.038 (o)	<0.005	-0.000
7/6/2007	-0.000	-0.000	-0.000	<0.005	-0.000	<0.005	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005	10.003	<0.005	40.000	40.005	10.003
8/28/2007	10.003	10.003	10.003	<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005	10.003	10.003	40.005	40.005	٧٥.005
11/6/2007	10.003	10.003	10.003	<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	<0.005	<0.005	<0.005	~0.003	~0.003	<0.003	~0.003	~0.003
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008	10.003	10.000	40.000	<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008				~0.003	~0.003	<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005	<0.003	~0.003	~0.003
12/5/2008	<0.005	<0.005	<0.005	~0.003	~0.003			
4/7/2009	~ 0.003	~0.003	~0.003	<0.005	<0.005			
4/8/2009				<0.005	<0.005	<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005			<0.003	~0.003	~0.003
4/27/2009	<0.005	<0.005	<0.005					
9/30/2009	<0.005	<0.005					<0.005	<0.005
	<0.005	<0.005	<0.00E	<0.00E	<0.00E	<0.00E	<0.005	<0.005
10/1/2009	<0.00E	<0.00E	<0.005	<0.005	<0.005	<0.005	<0.00E	<0.00E
4/13/2010	<0.005	<0.005	-0.005	-0.005	<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005	<0.00E			
10/6/2010					<0.005	-0.005		
10/7/2010	<0.005	<0.005				<0.005		
10/12/2010 10/13/2010	<0.005	<0.005	<0.005				<0.005	<0.005
10/14/2010			~0.003	<0.005			~0.003	~0.003
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
		<0.00E	<0.00E	<0.005	<0.005	<0.005	<0.003	<0.005
4/6/2011 10/4/2011		<0.005	<0.005		<0.005	<0.005	<0.005	<0.005
10/4/2011	<0.005	<0.005			<0.005	<0.005	<0.003	<0.005
	<0.005	<0.005	<0.00E	<0.00E				
10/12/2011			<0.005	<0.005	<0.00E	<0.005	<0.00E	
4/3/2012 4/4/2012				<0.005	<0.005	<0.005	<0.005	<0.005
		<0.00E	<0.00E	<0.005				<0.005
4/9/2012	<0.00E	<0.005	<0.005					
4/10/2012 9/18/2012	<0.005				<0.005	<0.005		
			<0.00E		<0.005	<0.005	<0.00E	<0.00E
9/19/2012			<0.005	<0.00E			<0.005	<0.005
9/24/2012		-0.005		<0.005				
9/25/2012	-0.005	<0.005						
9/26/2012	<0.005			<0.00E	<0.00E	<0.00E	<0.00E	<0.00E
3/12/2013	.0.005	.0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005		<0.00E			
9/9/2013			<0.00E	<0.00F	<0.005	0.0052	<0.005	~0.00F
9/10/2013	<0.005	<0.00E	<0.005	<0.005		0.0053	<0.005	<0.005
9/11/2013	<0.005	<0.005		0.004770	10.005	0.0050	0.0000 (1)	-0.005
3/5/2014	<0.005	<0.00E	40.00 5	0.0017 (J)	<0.005	0.0052	0.0022 (J)	<0.005
3/11/2014	<0.005	<0.005	<0.005					<0.00E
9/3/2014			<0.005		40.00 F	0.0050		<0.005
9/8/2014	<0.00E	<0.00E		<0.00E	<0.005	0.0058	<0.00E	
9/9/2014	<0.005	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.0088		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.0086	<0.005	<0.005
9/30/2015	0.0023 (J)	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.00693	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				0.00451 (J)	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	0.0063	<0.005	<0.005
7/7/2016	0.0012 (J)	<0.005	<0.005					
9/7/2016				<0.005	<0.005	0.0065		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	0.0056	<0.005	
10/19/2016	<0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	0.0065	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.005	<0.005				0.002 (J)	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						0.0027 (J)	0.0005 (J)	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				0.0006 (J)	<0.005	0.0056		
10/5/2017	0.001 (J)	<0.005	<0.005				0.0008 (J)	<0.005
3/14/2018							0.00064 (J)	
3/15/2018	<0.005	<0.005	<0.005			0.0037 (J)		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	0.0034 (J)	<0.005		<0.005	<0.005	0.0049 (J)	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			0.00034 (J)		<0.005	0.0057	0.0015 (J)	<0.005
4/9/2019	0.0018 (J)	<0.005		<0.005				
10/1/2019	<0.005	<0.005	0.00082 (J)	<0.005	<0.005	0.01	0.0028 (J)	0.00071 (J)
11/6/2019						0.011		
3/26/2020			<0.005					
3/27/2020							0.002 (J)	<0.005
3/30/2020						0.0052		
3/31/2020	0.00035 (J)	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	0.0011 (J)					0.0064	0.0043 (J)	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	0.0052	0.0018 (J)	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	0.0072	0.005	<0.005

Constituent: Barium (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/20	007	0.032		0.12	0.17	0.13			0.088	
3/7/20	007		0.03				0.15	0.072		0.11
5/8/20	007	0.04	0.032	0.11	0.21	0.12	0.14			
5/9/20	007							0.063	0.07	0.082
7/7/20	007	0.041		0.11						
7/17/2	2007		0.028		0.21	0.12	0.1	0.058	0.063	0.078
8/28/2	2007	0.044	0.03	0.13	0.2	0.13	0.1	0.06	0.066	
8/29/2	2007									0.096
11/6/2	2007	0.044		0.12	0.19	0.12				
11/7/2	2007		0.032				0.11	0.072	0.07	0.1
5/7/20	800							0.076	0.071	0.11
5/8/20	800				0.2	0.13				
5/9/20	800	0.03	0.032	0.12			0.15			
12/2/2	2008		0.036				0.11			
12/3/2	2008	0.047		0.12	0.18	0.14		0.066		
12/4/2	2008								0.068	
12/5/2	2008									0.11
4/7/20	009	0.032		0.13	0.2	0.097				
4/8/20	009		0.04				0.16			
4/14/2	2009							0.08	0.076	0.11
9/30/2	2009									0.12
10/1/2	2009	0.043	0.039	0.14			0.11	0.074		
10/2/2	2009				0.2	0.11			0.07	
4/13/2	2010			0.15				0.062	0.085	0.11
4/14/2	2010	0.032	0.041		0.2	0.059	0.15			
10/7/2	2010			0.16						
10/12	/2010							0.078	0.075	0.12
10/13	/2010	0.046	0.039				0.1			
10/14	/2010				0.18	0.053				
4/5/20)11				0.16	0.042				
4/6/20)11	0.034	0.034	0.14			0.13	0.066	0.077	
10/4/2	2011		0.032				0.089			
10/6/2	2011			0.16						
10/10/	/2011	0.038								
10/12	/2011				0.15	0.048		0.071	0.12	0.11
4/3/20)12	0.0363		0.165						
4/4/20)12				0.165	0.044				
4/5/20)12							0.0675	0.143	
4/9/20)12									0.13
4/10/2	2012		0.0425				0.126			
9/19/2	2012			0.16				0.073		
9/24/2	2012	0.041				0.048				
9/25/2	2012								0.13	0.13
9/26/2	2012		0.035		0.17		0.093			
3/12/2	2013	0.041	0.035	0.16	0.17	0.043	0.13			
3/13/2	2013							0.075	0.14	0.12
9/9/20	013			0.17						
9/10/2	2013		0.035		0.18	0.042	0.14	0.081		
9/11/2	2013	0.048							0.15	0.12
3/4/20)14	0.036	0.031	0.16			0.11			
3/10/2	2014							0.064	0.13	0.11
3/11/2	2014				0.17	0.04				

9/3/2014	GWA-1 (bg) 0.04	GWA-11 (bg) 0.033	GWA-2 (bg) 0.17	GWA-3 (bg)	GWA-4 (bg)	GWC-10 0.1	GWC-18 0.078	GWC-19	GWC-20
9/8/2014	0.04	0.000	0.17	0.16	0.042	0.1	0.070		
9/9/2014				0.10	0.042			0.16	0.11
4/21/2015	0.033	0.03		0.16	0.05	0.14		0.10	0.11
	0.033	0.03	0.17	0.16	0.05	0.14	0.007	0.45	
4/22/2015			0.17				0.067	0.15	0.44
4/23/2015									0.11
9/29/2015		0.031		0.14	0.044				
9/30/2015	0.042		0.15			0.096	0.075	0.15	0.11
3/22/2016	0.0326	0.0327	0.197	0.188	0.0397				
3/23/2016						0.132			0.115
3/24/2016							0.0818	0.152	
5/17/2016	0.0387	0.0323	0.178	0.193	0.0351	0.122			
5/18/2016							0.0763	0.146	0.128
7/5/2016	0.0403		0.182	0.172					
7/6/2016		0.0344			0.0475	0.101		0.152	
7/7/2016							0.0747		0.124
9/7/2016	0.0413	0.0324	0.172	0.164	0.0415	0.0985			
9/8/2016							0.081	0.142	0.121
10/18/2016	0.0409	0.0311	0.174	0.138	0.0424	0.104		0.145	
10/19/2016							0.084		0.117
12/6/2016	0.0408	0.0311		0.149	0.0528	0.1			
12/7/2016			0.167					0.133	0.11
12/8/2016							0.0799		
1/31/2017	0.0435		0.176						
2/1/2017		0.0332		0.121	0.0482				
2/2/2017						0.147	0.0813	0.14	
2/3/2017									0.123
3/23/2017	0.038		0.157	0.143					
3/24/2017	0.000	0.032	0.107	0.1.10	0.0595				
3/27/2017		0.002			0.0000	0.158	0.0714	0.152	0.112
10/4/2017	0.0396		0.143	0.139	0.0486	0.130	0.0714	0.132	0.112
10/5/2017	0.0330	0.0325	0.143	0.100	0.0400	0.106	0.0755	0.142	0.128
3/14/2018	0.039	0.0323	0.17			0.100	0.0733	0.142	0.120
	0.039	0.021	0.17	0.17	0.04	0.19		0.14	
3/15/2018		0.031		0.17	0.04	0.18	0.074	0.14	0.10
3/16/2018						0.10	0.074		0.12
5/15/2018	0.000	0.000	0.40	0.40	0.05	0.16		0.40	
10/4/2018	0.039	0.033	0.18	0.16	0.05	0.2	0.004	0.16	0.40
10/5/2018							0.081		0.12
12/11/2018						0.18			
1/11/2019						0.17			
4/5/2019				0.13					
4/8/2019	0.031	0.031	0.15		0.047				
4/9/2019						0.17	0.081	0.15	0.13
9/30/2019	0.042	0.03	0.17	0.14	0.051				
10/1/2019						0.12	0.082	0.15	0.14
3/26/2020	0.032	0.031	0.16	0.14	0.049				
3/27/2020						0.037			
3/30/2020							0.077		
3/31/2020								0.17	0.15
6/19/2020									0.14 (R)
9/21/2020			0.18						
9/22/2020		0.031							

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/23/2020	0.041			0.14	0.043				0.13
9/24/2020							0.079		
9/25/2020						0.11			
9/28/2020								0.15	
3/8/2021	0.035	0.031		0.12	0.052				
3/9/2021			0.17			0.15	0.077		
3/10/2021								0.15	0.13
8/9/2021	0.046		0.19	0.12	0.034				
8/10/2021		0.03				0.14	0.093	0.14	0.14

Constituent: Barium (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

0/0/007	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	0.038	0.023	0.05	0.4	0.057			0.050
3/7/2007				0.1	0.057			0.059
5/8/2007				0.11				0.055
5/9/2007	0.046	0.034	0.055		0.054	0.011	0.13	
7/6/2007				0.11		0.0065	0.12	0.052
7/17/2007	0.06	0.034	0.048		0.059			
8/28/2007				0.1	0.061	0.0095	0.11	0.047
8/29/2007	0.07	0.048	0.056					
11/6/2007				0.1	0.074	0.013	0.1	0.048
11/7/2007	0.055	0.042	0.07					
5/7/2008	0.032	0.078	0.063					
5/8/2008				0.11	0.079	0.011	0.1	0.052
12/2/2008						0.011	0.11	0.056
12/3/2008				0.091	0.1			
12/5/2008	0.06	0.067	0.068					
4/7/2009				0.094	0.091			
4/8/2009						0.0091	0.1	0.057
4/14/2009		0.083	0.062					
4/27/2009	0.032							
9/30/2009	0.046	0.086					0.099	0.055
10/1/2009			0.064	0.097	0.092	0.0098		
4/13/2010	0.035	0.087			0.095	0.0084	0.098	0.053
4/14/2010			0.048	0.096				
10/6/2010					0.11			
10/7/2010						0.01		
10/12/2010	0.15	0.082						
10/13/2010			0.071				0.092	0.054
10/14/2010				0.1				
4/5/2011				0.092	0.1	0.015	0.085	0.035 (o)
4/6/2011		0.082	0.042					
10/4/2011					0.11	0.01	0.091	0.058
10/5/2011	0.055	0.082						
10/12/2011			0.066	0.12				
4/3/2012					0.116	0.0426	0.101	
4/4/2012				0.105	211.12			0.0632
4/9/2012		0.0959	0.0628					
4/10/2012	0.0399							
9/18/2012					0.12	0.02		
9/19/2012			0.073				0.1	0.061
9/24/2012			0.07.0	0.13			5. .	
9/25/2012		0.09		0.10				
9/26/2012	0.093	0.03						
3/12/2013	0.033			0.1	0.11	0.35	0.098	0.056
	0.066	0.002	0.057	0.1	0.11	0.33	0.030	0.000
3/13/2013	0.066	0.092	0.057		0.13			
9/9/2013			0.066	0.12	0.13	0.11	0.11	0.067
9/10/2013	0.052	0.006	0.066	0.13		0.11	0.11	0.067
9/11/2013	0.053	0.096		0.004	0.10	0.054	0.007	0.055
3/5/2014	0.000	0.005	0.054	0.084	0.12	0.054	0.087	0.055
3/11/2014	0.039	0.085	0.054					0.054
9/3/2014			0.06		0.10	0.04:		0.051
9/8/2014	0.14	0.000		0.44	0.13	0.044	0.1	
9/9/2014	0.14	0.096		0.11			0.1	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				0.11		0.065		0.059
4/22/2015					0.14		0.095	
4/23/2015		0.093	0.06					
9/29/2015				0.097	0.14	0.036	0.093	0.06
9/30/2015	0.15	0.096	0.076					
3/23/2016		0.0938	0.0533	0.0993	0.156	0.263	0.0918	0.0636
3/24/2016	0.046							
5/17/2016				0.104	0.168			
5/18/2016	0.0557	0.0983				0.245	0.0957	0.0629
5/19/2016			0.074					
7/6/2016				0.104	0.171	0.117	0.0935	0.0646
7/7/2016	0.0596	0.121	0.0766					
9/7/2016				0.0945	0.154	0.0703		
9/8/2016	0.184	0.0917	0.0726				0.0925	0.063
10/18/2016				0.0928	0.159	0.068	0.0939	
10/19/2016	0.186	0.091	0.072					0.0644
12/7/2016	0.174	0.0868	0.0732					
12/8/2016				0.1	0.156	0.0791	0.0996	0.0648
2/1/2017				0.0972	0.163			
2/2/2017	0.0783	0.0939				0.17	0.096	0.0656
2/3/2017			0.0619					
3/23/2017				0.105	0.161			
3/24/2017						0.181	0.106	
3/27/2017	0.0363	0.0905	0.0602					0.0619
10/4/2017				0.102	0.171	0.0937		
10/5/2017	0.0562	0.0945	0.0734				0.103	0.0655
3/14/2018							0.1	
3/15/2018	0.086	0.096	0.053			0.15		0.062
3/16/2018				0.091	0.17			
10/4/2018	0.079	0.1		0.084	0.19	0.08	0.11	
10/5/2018			0.065					0.07
4/8/2019			0.059		0.15	0.24	0.13	0.058
4/9/2019	0.05	0.094		0.067				
6/18/2019							0.17	
10/1/2019	0.18	0.1	0.082	0.09	0.18	0.085	0.12	0.071
3/26/2020			0.071					
3/27/2020							0.14	0.06
3/30/2020						0.21		
3/31/2020	0.044	0.1		0.064	0.18			
9/23/2020		0.1	0.079					
9/24/2020	0.19					0.11	0.14	0.06
9/25/2020				0.074	0.16			
3/9/2021	0.12	0.089	0.085	0.063	0.17	0.31	0.14	0.059
8/10/2021	0.057	0.091	0.085	0.077	0.18	0.14	0.23	0.067
9/28/2021							0.2 (R)	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007		, -,	<0.0005	<0.0005	<0.0005			<0.0005	
3/7/2007		<0.0005				<0.0005	<0.0005		<0.0005
5/8/2007	7 <0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/9/2007	7						<0.0005	<0.0005	<0.0005
7/7/2007			<0.0005						
7/17/200		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/28/200		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
8/29/200									<0.0005
11/6/200	07 <0.0005		<0.0005	<0.0005	<0.0005				
11/7/200		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
5/7/2008	3						<0.0005	<0.0005	<0.0005
5/8/2008				<0.0005	<0.0005				
5/9/2008		<0.0005	<0.0005			<0.0005			
12/2/200	08	<0.0005				<0.0005			
12/3/200			<0.0005	<0.0005	<0.0005		<0.0005		
12/4/200								<0.0005	
12/5/200									<0.0005
4/7/2009			<0.0005	<0.0005	<0.0005				
4/8/2009		<0.0005				<0.0005			
4/14/200		0.0000				0.000	<0.0005	<0.0005	<0.0005
9/30/200									<0.0005
10/1/200		<0.0005	<0.0005			<0.0005	<0.0005		0.0000
10/2/200		0.0000	0.0000	<0.0005	<0.0005	0.000	0.000	<0.0005	
4/13/201			<0.0005	0.0000	0.0000		<0.0005	<0.0005	<0.0005
4/14/201		<0.0005	0.0000	<0.0005	<0.0005	<0.0005	0.0000	0.0000	0.0000
10/7/201		-0.0000	<0.0005	10.0000	-0.0000	-0.0000			
10/1/20			-0.0000				<0.0005	<0.0005	<0.0005
10/13/20		<0.0005				<0.0005	-0.0000	10.0000	-0.0000
10/14/20				<0.0005	<0.0005				
4/5/2011				<0.0005	<0.0005				
4/6/2011		<0.0005	<0.0005	0.0000	0.0000	<0.0005	<0.0005	<0.0005	
10/4/201		<0.0005				<0.0005			
10/6/201			<0.0005						
10/10/20									
10/12/20				<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
4/3/2012			<0.0005						
4/4/2012				<0.0005	<0.0005				
4/5/2012							<0.0005	<0.0005	
4/9/2012									<0.0005
4/10/201		<0.0005				<0.0005			
9/19/201			<0.0005				<0.0005		
9/24/201			0.0000		<0.0005		0.0000		
9/25/201								<0.0005	<0.0005
9/26/201		<0.0005		<0.0005		<0.0005			
3/12/201		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
3/13/201		2.3000		2.2300			<0.0005	<0.0005	<0.0005
9/9/2013			<0.0005				0.0000	0.0000	0.000
9/10/201		<0.0005	5.0000	<0.0005	<0.0005	<0.0005	<0.0005		
9/11/20		-5.5005		-0.0000	-0.0000	-0.0000	-0.5005	<0.0005	<0.0005
3/4/2014		<0.0005	<0.0005			<0.0005		0.3000	0.000
3/10/201		-5.5005	-0.0000			-0.0000	<0.0005	<0.0005	<0.0005
3/11/20				<0.0005	<0.0005		-0.0000	-0.0000	-0.0000
5/11/20	1-7			×0.0003	-0.0003				

0/0/0044	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.0005	<0.0005	<0.0005	-0.0005	-0.0005	<0.0005	<0.0005		
9/8/2014				<0.0005	<0.0005				.0.0005
9/9/2014		.0.005		05.05 (1)	.0.005	.0.005		<0.0005	<0.0005
4/21/2015	<0.0005	<0.0005	.0.005	8E-05 (J)	<0.0005	<0.0005	.0.005		
4/22/2015			<0.0005				<0.0005	<0.0005	.0.0005
4/23/2015									<0.0005
9/29/2015		<0.0005		<0.0005	<0.0005				
9/30/2015	<0.0005		<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
3/22/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/23/2016						<0.0005			<0.0005
3/24/2016							<0.0005	<0.0005	
5/17/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	.0.005		.0.0005
5/18/2016							<0.0005	<0.0005	<0.0005
7/5/2016	<0.0005		<0.0005	<0.0005					
7/6/2016		<0.0005			<0.0005	<0.0005		<0.0005	
7/7/2016							<0.0005		<0.0005
9/7/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
9/8/2016							<0.0005	<0.0005	<0.0005
10/18/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10/19/2016							<0.0005		<0.0005
12/6/2016	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
12/7/2016			<0.0005					<0.0005	<0.0005
12/8/2016							<0.0005		
1/31/2017	<0.0005		<0.0005						
2/1/2017		<0.0005		<0.0005	<0.0005				
2/2/2017						<0.0005	<0.0005	<0.0005	
2/3/2017									<0.0005
3/23/2017	<0.0005		<0.0005	<0.0005					
3/24/2017		<0.0005			<0.0005				
3/27/2017			.0.005	0.0005	.0.005	<0.0005	<0.0005	<0.0005	<0.0005
10/4/2017	<0.0005	.0.005	<0.0005	<0.0005	<0.0005	.0.005	.0.005		.0.0005
10/5/2017		<0.0005	.0.005			<0.0005	<0.0005	<0.0005	<0.0005
3/14/2018	<0.0005	.0.005	<0.0005	0.0005	.0.005	.0.005			
3/15/2018		<0.0005		<0.0005	<0.0005	<0.0005	0.0005	<0.0005	.0.0005
3/16/2018		.0.005	0.0005	.0.0005	.0.0005	.0.005	<0.0005		<0.0005
10/4/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0005	<0.0005	.0.0005
10/5/2018				-0.0005			<0.0005		<0.0005
4/5/2019	-0.0005	-0.0005	-0.0005	<0.0005	-0.0005				
4/8/2019	<0.0005	<0.0005	<0.0005		<0.0005	-0.0005	-0.0005	-0.0005	-0.0005
4/9/2019	-0.0005	-0.0005	-0.0005	-0.0005	-0.0005	<0.0005	<0.0005	<0.0005	<0.0005
9/30/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.000E	<0.000E	<0.000E
10/1/2019	<0.000E	<0.000E	<0.000E	<0.000E	<0.000E	<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.000E			
3/27/2020 3/30/2020						<0.0005	<0.0005		
3/30/2020							<0.0005	<0.0005	<0.0005
			<0.000E					<0.0005	<0.0003
9/21/2020		<0.0005	<0.0005						
9/22/2020 9/23/2020	<0.0005	<0.0005		<0.0005	<0.0005				<0.0005
9/23/2020	~0.000 3			~U.UUU3	~0.000		<0.0005		~0.0000
9/25/2020						<0.0005	~0.000 3		
9/28/2020						-0.0003		0.0001 (J)	
5/20/2020								0.0001 (0)	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.0005	<0.0005		<0.0005	<0.0005				
3/9/2021			<0.0005			<0.0005	<0.0005		
3/10/2021								<0.0005	<0.0005
8/9/2021	<0.0005		<0.0005	<0.0005	<0.0005				
8/10/2021		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.0005	<0.0005	<0.0005					
3/7/2007				<0.0005	<0.0005			<0.0005
5/8/2007				<0.0005				<0.0005
5/9/2007	<0.0005	<0.0005	<0.0005		<0.0005	0.28 (o)	<0.0005	
7/6/2007				<0.0005		0.093	<0.0005	<0.0005
7/17/2007	<0.0005	<0.0005	<0.0005		<0.0005			
8/28/2007				<0.0005	<0.0005	0.057	<0.0005	<0.0005
8/29/2007	<0.0005	<0.0005	<0.0005					
11/6/2007				<0.0005	<0.0005	0.036	<0.0005	<0.0005
11/7/2007	<0.0005	<0.0005	<0.0005					
5/7/2008	<0.0005	<0.0005	<0.0005					
5/8/2008				<0.0005	<0.0005	0.013	<0.0005	<0.0005
12/2/2008						0.01	<0.0005	<0.0005
12/3/2008				<0.0005	<0.0005			
12/5/2008	<0.0005	<0.0005	<0.0005					
4/7/2009				<0.0005	<0.0005			
4/8/2009						0.0076	<0.0005	<0.0005
4/14/2009		<0.0005	<0.0005					
4/27/2009	<0.0005							
9/30/2009	<0.0005	<0.0005					<0.0005	<0.0005
10/1/2009			<0.0005	<0.0005	<0.0005	0.0057		
4/13/2010	<0.0005	<0.0005			<0.0005	0.0061	<0.0005	<0.0005
4/14/2010			<0.0005	<0.0005				
10/6/2010					<0.0005			
10/7/2010						0.0039		
10/12/2010	<0.0005	<0.0005						
10/13/2010			<0.0005				<0.0005	<0.0005
10/14/2010				<0.0005				
4/5/2011				<0.0005	<0.0005	0.0025	<0.0005	<0.0005
4/6/2011		<0.0005	<0.0005					
10/4/2011					<0.0005	0.0024	<0.0005	<0.0005
10/5/2011	<0.0005	<0.0005						
10/12/2011			<0.0005	<0.0005				
4/3/2012					<0.0005	0.0008	<0.0005	
4/4/2012				<0.0005				<0.0005
4/9/2012		<0.0005	<0.0005					
4/10/2012	<0.0005							
9/18/2012					<0.0005	0.002		
9/19/2012			<0.0005				<0.0005	<0.0005
9/24/2012				<0.0005				
9/25/2012		<0.0005						
9/26/2012	<0.0005							
3/12/2013				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/13/2013	<0.0005	<0.0005	<0.0005					
9/9/2013					<0.0005			
9/10/2013			<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
9/11/2013	<0.0005	<0.0005						
3/5/2014				<0.0005	<0.0005	0.00037 (J)	<0.0005	<0.0005
3/11/2014	<0.0005	<0.0005	<0.0005					
9/3/2014			<0.0005					<0.0005
9/8/2014					<0.0005	0.00055 (J)		
9/9/2014	<0.0005	<0.0005		<0.0005			<0.0005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.0005		0.00033 (J)		<0.0005
4/22/2015					<0.0005		<0.0005	
4/23/2015		<0.0005	<0.0005					
9/29/2015				<0.0005	<0.0005	0.00046 (J)	<0.0005	<0.0005
9/30/2015	<0.0005	<0.0005	<0.0005					
3/23/2016		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/24/2016	<0.0005							
5/17/2016				<0.0005	<0.0005			
5/18/2016	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
5/19/2016			<0.0005					
7/6/2016				<0.0005	<0.0005	0.0002 (J)	<0.0005	<0.0005
7/7/2016	<0.0005	<0.0005	<0.0005					
9/7/2016				<0.0005	<0.0005	0.0002 (J)		
9/8/2016	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
10/18/2016				<0.0005	<0.0005	0.0002 (J)	<0.0005	
10/19/2016	<0.0005	<0.0005	<0.0005					<0.0005
12/7/2016	<0.0005	<0.0005	<0.0005					
12/8/2016				<0.0005	<0.0005	0.0003 (J)	<0.0005	<0.0005
2/1/2017				<0.0005	<0.0005			
2/2/2017	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
2/3/2017			<0.0005					
3/23/2017				<0.0005	<0.0005			
3/24/2017						<0.0005	<0.0005	
3/27/2017	<0.0005	<0.0005	<0.0005					<0.0005
10/4/2017				<0.0005	<0.0005	0.0001 (J)		
10/5/2017	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
3/14/2018							<0.0005	
3/15/2018	<0.0005	<0.0005	<0.0005			<0.0005		<0.0005
3/16/2018				<0.0005	<0.0005			
10/4/2018	<0.0005	<0.0005		<0.0005	<0.0005	0.0002 (J)	<0.0005	
10/5/2018			<0.0005					<0.0005
4/8/2019			<0.0005		<0.0005	5.8E-05 (J)	<0.0005	<0.0005
4/9/2019	<0.0005	<0.0005		<0.0005				
10/1/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0001 (J)	<0.0005	<0.0005
3/26/2020			<0.0005					
3/27/2020							<0.0005	<0.0005
3/30/2020	.0.005	0.0005		.0.005	.0.005	<0.0005		
3/31/2020	<0.0005	<0.0005	<0.000E	<0.0005	<0.0005			
9/23/2020	<0.000E	<0.0005	<0.0005			EE OE (I)	<0.000E	<0.000
9/24/2020	<0.0005			-0.0005	-0.0005	5E-05 (J)	<0.0005	<0.0005
9/25/2020	<0.000E	<0.000E	<0.000E	<0.0005	<0.0005	<0.000E	<0.000E	<0.000
3/9/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/10/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	6.1E-05 (J)	<0.0005	<0.0005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	<0.1	0.04 (J)	0.0828 (J)	0.135	0.0815 (J)				
3/23/2016						0.0354 (J)			<0.1
3/24/2016							0.122	0.173	
5/17/2016	<0.1	0.0358 (J)	0.0844 (J)	0.132	0.0838 (J)	0.0349 (J)			
5/18/2016							0.139	0.186	0.0229 (J)
7/5/2016	0.0419 (J)		0.0962 (J)	0.161					
7/6/2016		0.0373 (J)			0.111	0.0308 (J)		0.184	
7/7/2016							0.12		0.0169 (J)
9/7/2016	0.0174 (J)	0.0352 (J)	0.0884 (J)	0.163	0.107	0.0283 (J)			
9/8/2016							0.126	0.173	0.0178 (J)
10/18/2016	0.0192 (J)	0.0332 (J)	0.0889 (J)	0.154	0.118	0.0292 (J)		0.171	
10/19/2016	0.0400 (1)	0.000 (1)		0.140	0.100	0.0007 (1)	0.133		0.018 (J)
12/6/2016	0.0182 (J)	0.033 (J)	0.0054	0.142	0.106	0.0287 (J)		0.000	0.0040 (1)
12/7/2016			0.0954				0.110	0.203	0.0248 (J)
12/8/2016	0.0103 (1)		0.0020				0.119		
1/31/2017	0.0193 (J)	0.0365 (1)	0.0939	0.142	0.0949				
2/1/2017 2/2/2017		0.0365 (J)		0.143	0.0949	0.0224 (1)	0.122	0.187	
2/3/2017						0.0334 (J)	0.132	0.167	0.0171 (J)
3/23/2017	0.0192 (J)		0.0869	0.15					0.0171 (3)
3/24/2017	0.0132 (0)	0.0343 (J)	0.0003	0.13	0.0887				
3/27/2017		0.0343 (0)			0.0007	0.0396 (J)	0.134	0.182	0.0181 (J)
10/4/2017	0.0199 (J)		0.0914	0.182	0.105	0.0000 (0)	0.134	0.102	0.0101 (0)
10/5/2017	0.0100 (0)	0.0325 (J)	0.0014	0.102	0.100	0.0294 (J)	0.125	0.166	0.0178 (J)
3/14/2018	0.019 (J)	(0)	0.075						(-)
3/15/2018	0.0.0	0.037 (J)	0.070	0.14	0.043	0.038 (J)		0.17	
3/16/2018							0.12		0.016 (J)
10/4/2018	0.021 (J)	0.035 (J)	0.082	0.16	0.1	0.038 (J)		0.17	(-)
10/5/2018	(-)	(-)				(-)	0.15		0.017 (J)
4/5/2019				0.12					. ,
4/8/2019	0.019 (J)	0.034 (J)	0.071 (J)		0.057 (J)				
4/9/2019						0.035 (J)	0.12	0.17	0.011 (J)
9/30/2019	0.025 (J)	0.039 (J)	0.084	0.17	0.11				
10/1/2019						0.031 (J)	0.14	0.17	0.019 (J)
3/26/2020	0.022 (J)	0.041 (J)	0.092 (J)	0.14	0.086 (J)				
3/27/2020						0.04 (J)			
3/30/2020							0.13		
3/31/2020								0.18	0.024 (J)
9/21/2020			0.086 (J)						
9/22/2020		0.038 (J)							
9/23/2020	0.047 (J)			0.15	0.087 (J)				0.018 (J)
9/24/2020							0.13		
9/25/2020						0.036 (J)			
9/28/2020								0.17	
3/8/2021	0.021 (J)	0.042		0.13	0.089				
3/9/2021			0.081			0.037 (J)	0.13		
3/10/2021								0.16	0.018 (J)
8/9/2021	0.021 (J)		0.085	0.14	0.073				
8/10/2021		0.034 (J)				0.033 (J)	0.14	0.14	0.013 (J)

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		0.0649 (J)	<0.1	0.0509 (J)	0.0379 (J)	0.0574 (J)	0.0213 (J)	<0.1
3/24/2016	0.0232 (J)							
5/17/2016				0.0565 (J)	0.0395 (J)			
5/18/2016	0.0289 (J)	0.0781 (J)				0.0686 (J)	0.028 (J)	0.0202 (J)
5/19/2016			0.0212 (J)					
7/6/2016				0.0628 (J)	0.0393 (J)	0.0675 (J)	0.0231 (J)	0.0171 (J)
7/7/2016	0.0313 (J)	0.0621 (J)	0.0183 (J)					
9/7/2016				0.0648 (J)	0.04 (J)	0.0582 (J)		
9/8/2016	0.0593 (J)	0.0607 (J)	0.017 (J)				0.0234 (J)	0.0157 (J)
10/18/2016				0.0666 (J)	0.0366 (J)	0.0577 (J)	0.0228 (J)	
10/19/2016	0.087 (J)	0.0733 (J)	0.0203 (J)					0.0152 (J)
12/7/2016	0.127	0.0758	0.0215 (J)					
12/8/2016				0.062	0.0397 (J)	0.0572	0.0251 (J)	0.0178 (J)
2/1/2017				0.0516	0.0381 (J)			
2/2/2017	0.0318 (J)	0.0729				0.0534	0.0238 (J)	0.0151 (J)
2/3/2017			0.0812					
3/23/2017				0.0597	0.0416			
3/24/2017						0.0532	0.0234 (J)	
3/27/2017	0.0225 (J)	0.0698	0.125					0.0203 (J)
10/4/2017				0.0658	0.0382 (J)	0.0563		
10/5/2017	0.0304 (J)	0.0677	0.0375 (J)				0.0329 (J)	0.0157 (J)
3/14/2018							0.024 (J)	
3/15/2018	0.025 (J)	0.07	0.051			0.053		0.013 (J)
3/16/2018				0.047	0.044			
5/16/2018					0.042			
10/4/2018	0.029 (J)	0.065		0.066	0.038 (J)	0.048	0.047 (J)	
10/5/2018			0.039 (J)					0.017 (J)
4/8/2019			0.022 (J)		0.036 (J)	0.049 (J)	0.055 (J)	0.015 (J)
4/9/2019	0.014 (J)	0.063		0.048				
10/1/2019	0.059	0.066	0.024 (J)	0.071	0.042	0.05	0.046	0.018 (J)
3/26/2020			0.042 (J)					
3/27/2020							0.056 (J)	0.018 (J)
3/30/2020						0.049 (J)		
3/31/2020	0.022 (J)	0.067 (J)		0.057 (J)	0.091 (J)			
6/18/2020					0.045 (JR)			
6/19/2020							0.086 (JR)	
9/23/2020		0.061 (J)	0.024 (J)					
9/24/2020	0.061 (J)					0.045 (J)	0.055 (J)	0.016 (J)
9/25/2020				0.08 (J)	0.047 (J)			
3/9/2021	0.03 (J)	0.065	0.044	0.046	0.038 (J)	0.041	0.05	0.014 (J)
8/10/2021	0.026 (J)	0.057	0.027 (J)	0.056	0.037 (J)	0.037 (J)	0.088	0.012 (J)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.0005		<0.0005	<0.0005	<0.0005			<0.0005	
3/7/2007		<0.0005				<0.0005	<0.0005		<0.0005
5/8/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/9/2007							<0.0005	<0.0005	<0.0005
7/7/2007	<0.0005		<0.0005						
7/17/2007		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/28/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
8/29/2007									<0.0005
11/6/2007	<0.0005		<0.0005	<0.0005	<0.0005				
11/7/2007		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
5/7/2008							<0.0005	<0.0005	<0.0005
5/8/2008				<0.0005	<0.0005				
5/9/2008	<0.0005	<0.0005	<0.0005			<0.0005			
12/2/2008		<0.0005				<0.0005			
12/3/2008	<0.0005		<0.0005	<0.0005	<0.0005		<0.0005		
12/4/2008								<0.0005	
12/5/2008									<0.0005
4/7/2009	<0.0005		<0.0005	<0.0005	<0.0005				
4/8/2009		<0.0005				<0.0005			
4/14/2009							<0.0005	<0.0005	<0.0005
9/30/2009									<0.0005
10/1/2009	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
10/2/2009				<0.0005	<0.0005			<0.0005	
4/13/2010			<0.0005				<0.0005	<0.0005	<0.0005
4/14/2010	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
10/7/2010			<0.0005						
10/12/2010							<0.0005	<0.0005	<0.0005
10/13/2010	<0.0005	<0.0005				<0.0005			
10/14/2010				<0.0005	<0.0005				
4/5/2011				<0.0005	<0.0005				
4/6/2011	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	
10/4/2011		<0.0005				<0.0005			
10/6/2011			<0.0005						
10/10/2011	<0.0005								
10/12/2011				<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
4/3/2012	<0.0005		<0.0005						
4/4/2012				<0.0005	<0.0005				
4/5/2012							<0.0005	<0.0005	
4/9/2012									<0.0005
4/10/2012		<0.0005				<0.0005			
9/19/2012			<0.0005				<0.0005		
9/24/2012	<0.0005				<0.0005				
9/25/2012								<0.0005	<0.0005
9/26/2012		<0.0005		<0.0005		<0.0005			
3/12/2013	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
3/13/2013							<0.0005	<0.0005	<0.0005
9/9/2013			<0.0005						
9/10/2013		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005		
9/11/2013	<0.0005							<0.0005	<0.0005
3/4/2014	<0.0005	<0.0005	<0.0005			<0.0005			
3/10/2014							<0.0005	<0.0005	<0.0005
3/11/2014				<0.0005	<0.0005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
9/8/2014				<0.0005	<0.0005				
9/9/2014								<0.0005	<0.0005
4/21/2015	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
4/22/2015			<0.0005				<0.0005	<0.0005	
4/23/2015									<0.0005
9/29/2015		<0.0005		<0.0005	<0.0005				
9/30/2015	<0.0005		<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
3/22/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/23/2016						<0.0005			<0.0005
3/24/2016							<0.0005	<0.0005	
5/17/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/18/2016							<0.0005	<0.0005	<0.0005
7/5/2016	<0.0005		<0.0005	<0.0005					
7/6/2016		<0.0005			<0.0005	<0.0005		<0.0005	
7/7/2016							<0.0005		<0.0005
9/7/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
9/8/2016							<0.0005	<0.0005	<0.0005
10/18/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0000	<0.0005	0.0000
10/19/2016	10.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	<0.0005	-0.0000	<0.0005
12/6/2016	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	-0.0000		-0.0000
12/7/2016	10.0000	-0.0000	<0.0005	-0.0000	-0.0000	-0.0000		<0.0005	<0.0005
12/8/2016			-0.0000				<0.0005	-0.0000	-0.0000
1/31/2017	<0.0005		<0.0005				10.0003		
2/1/2017	10.0000	<0.0005	-0.0003	<0.0005	0.0001 (J)				
2/2/2017		10.0000		10.0003	0.0001 (0)	9E-05 (J)	8E-05 (J)	<0.0005	
2/3/2017						9L-03 (3)	8L-03 (3)	~ 0.0003	<0.0005
3/23/2017	<0.0005		<0.0005	<0.0005					10.0003
3/24/2017	10.0000	<0.0005	-0.0003	10.0003	<0.0005				
3/27/2017		<0.0003			<0.0003	<0.0005	<0.0005	<0.0005	<0.0005
10/4/2017	<0.0005		<0.0005	<0.0005	<0.0005	<0.0003	<0.0003	~ 0.0003	~0.0003
10/4/2017	<0.0003	<0.0005	<0.0003	~0.0003	<0.0003	<0.0005	<0.0005	<0.0005	<0.0005
3/14/2018	<0.0005	<0.0003	<0.0005			<0.0003	~0.0003	~ 0.0003	~0.0003
	<0.0003	<0.0005	<0.0003	<0.000E	<0.0005	<0.0005		<0.0005	
3/15/2018 3/16/2018		<0.0003		<0.0005	<0.0005	<0.0003	<0.0005	<0.0005	<0.0005
10/4/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.000E	<0.0003	<0.000E	<0.0005
	<0.0005	<0.0003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00011 (1)
10/5/2018 4/5/2019				<0.0005			<0.0005		0.00011 (J)
4/8/2019	<0.0005	<0.0005	<0.0005	<0.0003	<0.0005				
4/9/2019	<0.0005	<0.0003	<0.0005		<0.0003	<0.0005	<0.0005	<0.0005	<0.0005
	<0.000E	<0.000E	<0.000E	<0.000E	<0.000E	<0.0005	<0.0005	<0.0005	<0.0005
9/30/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.000E	<0.000E	<0.000E	<0.000E
10/1/2019	-0.0005	-0.0005	-0.0005	-0.0005	-0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-0.0005			
3/27/2020						<0.0005	-0.0005		
3/30/2020							<0.0005	10.0005	-0.0005
3/31/2020			-0.0005					<0.0005	<0.0005
9/21/2020		-0.0005	<0.0005						
9/22/2020	<0.0005	<0.0005		<0.000F	<0.000F				<0.0005
9/23/2020	<0.0005			<0.0005	<0.0005		<0.000F		<0.0005
9/24/2020						<0.000F	<0.0005		
9/25/2020						<0.0005		<0.000F	
9/28/2020								<0.0005	

Page 3

Time Series

3/8/2021	GWA-1 (bg) <0.0005	GWA-11 (bg) <0.0005	GWA-2 (bg)	GWA-3 (bg) <0.0005	GWA-4 (bg) <0.0005	GWC-10	GWC-18	GWC-19	GWC-20	
3/9/2021			<0.0005			<0.0005	<0.0005			
3/10/2021								<0.0005	<0.0005	
8/9/2021	<0.0005		<0.0005	<0.0005	<0.0005					
8/10/2021		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.0005	<0.0005	<0.0005					
3/7/2007				0.0015	<0.0005			<0.0005
5/8/2007				<0.0005				<0.0005
5/9/2007	<0.0005	<0.0005	<0.0005		<0.0005	0.023 (o)	<0.0005	
7/6/2007				<0.0005		0.0081 (o)	<0.0005	<0.0005
7/17/2007	<0.0005	<0.0005	<0.0005		<0.0005	. ,		
8/28/2007				<0.0005	<0.0005	0.0035	<0.0005	<0.0005
8/29/2007	<0.0005	<0.0005	<0.0005					
11/6/2007				<0.0005	<0.0005	0.0028	<0.0005	<0.0005
11/7/2007	<0.0005	<0.0005	<0.0005					
5/7/2008	<0.0005	<0.0005	<0.0005					
5/8/2008				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
12/2/2008						<0.0005	<0.0005	<0.0005
12/3/2008				<0.0005	<0.0005			
12/5/2008	<0.0005	<0.0005	<0.0005					
4/7/2009				<0.0005	<0.0005			
4/8/2009						0.0013	<0.0005	<0.0005
4/14/2009		<0.0005	<0.0005					
4/27/2009	<0.0005							
9/30/2009	<0.0005	<0.0005					<0.0005	<0.0005
10/1/2009			<0.0005	<0.0005	<0.0005	<0.0005		
4/13/2010	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
4/14/2010			<0.0005	<0.0005				
10/6/2010					<0.0005			
10/7/2010						<0.0005		
10/12/2010	<0.0005	<0.0005						
10/13/2010			<0.0005				<0.0005	<0.0005
10/14/2010				<0.0005				
4/5/2011				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
4/6/2011		<0.0005	<0.0005					
10/4/2011					<0.0005	<0.0005	<0.0005	<0.0005
10/5/2011	<0.0005	<0.0005						
10/12/2011			<0.0005	<0.0005				
4/3/2012					<0.0005	<0.0005	<0.0005	
4/4/2012				<0.0005				<0.0005
4/9/2012		<0.0005	<0.0005					
4/10/2012	<0.0005							
9/18/2012	0.0000				<0.0005	<0.0005		
9/19/2012			<0.0005				<0.0005	<0.0005
9/24/2012				<0.0005				
9/25/2012		<0.0005		0.0000				
9/26/2012	<0.0005	0.0000						
3/12/2013				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/13/2013	<0.0005	<0.0005	<0.0005	0.0000	0.0000	0.000	0.0000	0.0000
9/9/2013	0.0000	0.000	0.000		<0.0005			
9/10/2013			<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
9/11/2013	<0.0005	<0.0005						
3/5/2014		y		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/11/2014	<0.0005	<0.0005	<0.0005	3.0000	2.0000	3.0000	3.000	0.0000
9/3/2014			<0.0005					<0.0005
9/8/2014					<0.0005	<0.0005		
9/9/2014	<0.0005	<0.0005		<0.0005			<0.0005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.0005		0.0015		0.00029 (J)
4/22/2015					<0.0005		<0.0005	
4/23/2015		<0.0005	<0.0005					
9/29/2015				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
9/30/2015	<0.0005	<0.0005	<0.0005					
3/23/2016		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/24/2016	<0.0005							
5/17/2016				<0.0005	<0.0005			
5/18/2016	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
5/19/2016			<0.0005					
7/6/2016				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
7/7/2016	0.0001 (J)	<0.0005	<0.0005					
9/7/2016				<0.0005	<0.0005	<0.0005		
9/8/2016	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
10/18/2016				<0.0005	<0.0005	<0.0005	<0.0005	
10/19/2016	<0.0005	<0.0005	<0.0005					<0.0005
12/7/2016	<0.0005	<0.0005	<0.0005					
12/8/2016				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/1/2017				<0.0005	<0.0005			
2/2/2017	0.0001 (J)	<0.0005				0.0001 (J)	8E-05 (J)	8E-05 (J)
2/3/2017			8E-05 (J)					
3/23/2017				<0.0005	<0.0005			
3/24/2017						<0.0005	<0.0005	
3/27/2017	<0.0005	<0.0005	<0.0005					<0.0005
10/4/2017				<0.0005	<0.0005	<0.0005		
10/5/2017	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
3/14/2018							<0.0005	
3/15/2018	<0.0005	<0.0005	<0.0005			<0.0005		<0.0005
3/16/2018				<0.0005	<0.0005			
10/4/2018	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	
10/5/2018			<0.0005					<0.0005
4/8/2019			<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
4/9/2019	<0.0005	<0.0005		<0.0005				
10/1/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020			<0.0005					
3/27/2020							<0.0005	<0.0005
3/30/2020						<0.0005		
3/31/2020	<0.0005	<0.0005		<0.0005	<0.0005			
9/23/2020		<0.0005	<0.0005					
9/24/2020	<0.0005					<0.0005	<0.0005	<0.0005
9/25/2020				<0.0005	<0.0005			
3/9/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/10/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	13.9	23.8	47.4	79.3	123				
3/23/2016						43.9			56.3
3/24/2016							40.7	43.9	
5/17/2016	15.6	21.5	45.5	75.8	99.2	40.1			
5/18/2016							41.9	48.2	59
7/5/2016	15.7		40.5	65.3					
7/6/2016		20.6			109	32.3		45.8	
7/7/2016							36.8		50.9
9/7/2016	18.2	16.7	37.3	59.8	67.2	28.9			
9/8/2016							35.9	40.9	48
10/18/2016	17.7	20.3	46.6	72.4	77.9	35.4		45.5	
10/19/2016							38.7		49.7
12/6/2016	16.9	19.7		78.6	93.3	34.3			
12/7/2016			43.5					40.6	46.4
12/8/2016							39.4		
1/31/2017	17.9		39.2						
2/1/2017		18.1		85	92.8				
2/2/2017						38.1	41.5	42.4	
2/3/2017									49
3/23/2017	13.9		38.7	81.2					
3/24/2017		21.1			96.3				
3/27/2017						45.4	39.1	45.5	50.7
10/4/2017	15.9		36.5	78.8	75.1				
10/5/2017		20.1				35.8	41.6	42.9	52
3/14/2018	<25		39.5						
3/15/2018		<25		83.5	69.9	52.4		43.3	
3/16/2018							45.9		53.4
5/15/2018						48.4			
5/16/2018							40		
10/4/2018	15.9 (J)	21.3 (J)	41.7	75.2	77.8	51.2		43.7	
10/5/2018							39.6		52.7
12/11/2018						49.3			
4/5/2019				76.5					
4/8/2019	15.7	22.4	44.1		86.6				
4/9/2019						48.8	41.4	45.8	57.1
9/30/2019	17.6	19.6	44.6	74.7	78.3				
10/1/2019						36.8	38.7	42.3	59.1
3/26/2020	14	22.4	43.2	78.7	87.4				
3/27/2020						22.9			
3/30/2020							45.7		
3/31/2020								52.3	63.6
6/19/2020								41.3 (R)	61.4 (R)
9/21/2020			45.8						
9/22/2020		19.5							
9/23/2020	17.6			76.2	74.9				55.8
9/24/2020							36.9		
9/25/2020						39.4			
9/28/2020								44.7	
3/8/2021	16.2 (M1)	22		73.5	87.2				
3/9/2021			48.7			48.7	44.9		
3/10/2021								47.4	64.9
8/9/2021	20.2		49.9	73.2	69.7				

Page 2

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20	
8/10/2021		20.8				45.5	48.2	44.9	62	

Constituent: Calcium (mg/L) Analysis Run 10/21/2021 1:23 PM

			-				
			Plant Ha	mmond Client: So	outhern Company	Data: Huffaker Roa	d Landfill
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GV
2/22/2016		40.0	26.4	70	64.1	45.0	60

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		49.9	36.4	79	64.1	45.2	69.1	36
3/24/2016	31.4							
5/17/2016				74.6	62.8			
5/18/2016	39.2	50.7				46.5	63.7	37.3
5/19/2016			41.5					
7/6/2016				66.9	59.5	29.1	56.8	32.8
7/7/2016	36	45.5	33.5					
9/7/2016				61.6	53.7	19.2		
9/8/2016	70	46.8	34.7				51.3	32.1
10/18/2016				71.6	62.3	22.6	52.6	
10/19/2016	63	47.3	33.4					35
12/7/2016	54.7	45.3	35.5					
12/8/2016				67.6	58.8	17.5	43.7	33.4
2/1/2017				82.5	59.6			
2/2/2017	37.4	49.9				54.4	56.5	34.3
2/3/2017			31.7					
3/23/2017				84.4	62.9			
3/24/2017						56.8	64.4	
3/27/2017	20.9	45.8	32					34.9
10/4/2017				70.8	62.4	30.5		
10/5/2017	26.8	47.3	41				59.9	34.7
3/14/2018							58.8	
3/15/2018	62.8	46.8	39.8			43.4		35.3
3/16/2018				78.1	66.9			
10/4/2018	48.6	50.4		73	65.5	26.1	264 (o)	
10/5/2018			39.3					37.8
12/11/2018							64.3	
4/8/2019			39.8		67	56.1	81.5	36.3
4/9/2019	35.4	47.3		73.9				
6/18/2019							83.7	
6/27/2019							75.9	
10/1/2019	82.8	46.9	39.1	70.6	64.2	28.5	64	37.2
11/6/2019	74.9							
11/26/2019	45.8							
3/26/2020			44.7					
3/27/2020							87.3	34.3
3/30/2020						47.8		
3/31/2020	25.6	51.5		84.2	70.6			
9/23/2020		45.9	39.2					
9/24/2020	73.4					39.5	81.4	35.9
9/25/2020				77.1	71.3			
3/9/2021	67.8	48.7	54.3	85.4	70.8	64.3	83.2	36.8
8/10/2021	29.7	48.1	48.2	78.3	67.7	40.5	111	38.1

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	1.1933	1.3137	2.0975	4.0352	5.549	1 2507			1 4000
3/23/2016						1.3507	1 1010	1.0407	1.4238
3/24/2016	1.14	1.00	0.1	2.01	6.74	1.00	1.1313	1.6497	
5/17/2016	1.14	1.29	2.1	3.81	6.74	1.28		1.74	1.57
5/18/2016							1 12	1.74	1.57
5/19/2016	4.4		2.4	4			1.13		
7/5/2016	1.4		2.4	4	5.0	4.5		0.1	
7/6/2016		1.6			5.2	1.5	4.5	2.1	4.7
7/7/2016	4	1.5	0.5	4.0	7.0	1.5	1.5		1.7
9/7/2016	1	1.5	2.5	4.2	7.2	1.5	4.4	1.0	4.5
9/8/2016			0.7		7.4		1.4	1.9	1.5
10/18/2016	1.1	1.6	2.7	4.4	7.4	1.4	4.4	2.1	4.7
10/19/2016	_			4.0	7.0	4.0	1.4		1.7
12/6/2016	1	1.2	0.0	4.6	7.6	1.3		•	4.0
12/7/2016			2.6					2	1.8
12/8/2016	1.0		0.5				1.4		
1/31/2017	1.2		2.5						
2/1/2017		2.1		3.7	8.5	1.0	1.0	0.0	
2/2/2017						1.8	1.6	2.3	•
2/3/2017			•	0.5					2
3/23/2017	1.1	1.0	2	3.5	-				
3/24/2017		1.3			7	4.7	4.5	0.1	4.0
3/27/2017			0.0		7.4	1.7	1.5	2.1	1.8
10/4/2017	1.1		2.2	3.6	7.4	4.5		4.0	E E ()
10/5/2017		1.3				1.5	1.4	1.9	5.5 (o)
12/14/2017 3/14/2018	1.2		2.4						1.5
3/15/2018	1.2	1.6	2.4	3.8	1.7	2		1.9	
3/16/2018		1.0		3.0	1.7	2	1.5		1.9
5/15/2018						1.4	1.5		1.5
10/4/2018	1.4	1.8	2.5	3.4	6.1	2.1		2	
10/5/2018	1	1.0	2.0	0.4	0.1	2.1	1.5	-	2.2
12/11/2018						1.9	1.5		1.8
4/5/2019				4.2		1.5			1.0
4/8/2019	1.1	1.3	2.6	7.2	3.6				
4/9/2019			2.0		0.0	1.9	1.6	1.9	1.8
9/30/2019	1.4	1.5	3	4.1	7.5				
10/1/2019						1.5	0.94 (J)	1.3	1.1
3/26/2020	1.1	1.4	2	2.6	5.4	-	- \-/	-	
3/27/2020				-		1.2			
3/30/2020							1		
3/31/2020								1.3	1.1
9/21/2020			2.1						
9/22/2020		1							
9/23/2020	1.6			2.8	4.2				1.1
9/24/2020							0.94 (J)		
9/25/2020						1.1	. /		
9/28/2020								1.3	
3/8/2021	1.1	1.3		2.8	5.6				
3/9/2021			2.1			1.1	0.97 (J)		
3/10/2021								1.3	1.2
8/9/2021	1.1		2.4	2.1	3				

Page 2

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/10/2021		1.2				1.2	0.93 (J)	1.2	1.2

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9	
3/23/2016		1.2595	1.5409	2.5045	1.7709	1.1569	1.4936	0.9561	
3/24/2016	2.461								
5/17/2016				2.47	1.75				
5/18/2016	2.61	1.25				1.35			
5/19/2016			1.23				1.35	0.972	
7/6/2016				2.9	2	1.9	1.6	1.3	
7/7/2016	2.8	1.7	1.7						
9/7/2016				2.8	2	1.7			
9/8/2016	2.3	1.5	1.6				1.4	1	
10/18/2016	6			2.8	2	1.8	1.4		
10/19/2016	3 2.4	1.6	1.6					1.1	
12/7/2016	2.2	1.5	1.7						
12/8/2016				3.1	2	1.6	1.5	1.3	
2/1/2017				3.8	2.2				
2/2/2017	3.4	1.8				2	1.7	1.6	
2/3/2017			1.9						
3/23/2017				3.4	2				
3/24/2017						1.3	2.1		
3/27/2017	2.7	1.5	1.7					1.4	
10/4/2017				3.7	1.7	1.7			
10/5/2017	3.3	1.6	1.4				2	1.1	
3/14/2018							2.1		
3/15/2018	3.6	1.7	1.6			1.9		1.3	
3/16/2018				3.2	2.1				
5/15/2018	3.2								
10/4/2018	2.4	1.7		3.2	2.2	2	2.3		
10/5/2018			1.6					1.6	
12/11/2018	3						2.3		
1/11/2019							2.8		
4/8/2019			1.5		2.1	1.9	3.2	1	
4/9/2019	2.6	1.7		3.3					
10/1/2019	2	1.4	1.1	2.2	1.6	1.2	1.8	0.91 (J)	
3/26/2020			0.63 (J)						
3/27/2020							2.5	0.74 (J)	
3/30/2020	4.5				4.5	9.2			
3/31/2020	1.5	1		2	1.5	4.4(D)			
6/19/2020		1.1	1.1			1.4 (R)			
9/23/2020	1 0	1.1	1.1			1.4	2.2	0.9271)	
9/24/2020	1.8			2.2	1.6	1.4	2.2	0.82 (J)	
9/25/2020	1 0	1	0.85 / 1)	2.3	1.6	1.5	2.2	0.74 (1)	
3/9/2021 8/10/2021	1.8 2	1 1.1	0.85 (J) 1	2 2.3	1.5 1.6	1.5 1.6	2.2 2.7	0.74 (J) 0.85 (J)	
0/10/2021	2	1.1	1	2.3	1.0	1.0	2.1	0.00 (J)	

		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
;	3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
;	3/7/2007		<0.005				<0.005	<0.005		<0.005
!	5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
	5/9/2007							<0.005	<0.005	<0.005
	7/7/2007	<0.005		<0.005						
	7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
:	8/28/2007	<0.005	0.0013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
:	8/29/2007									0.0016
	11/6/2007	<0.005		<0.005	0.0014	<0.005				
	11/7/2007		0.0024				<0.005	<0.005	<0.005	0.0016
!	5/7/2008							<0.005	<0.005	<0.005
!	5/8/2008				<0.005	<0.005				
!	5/9/2008	<0.005	<0.005	<0.005			<0.005			
	12/2/2008		<0.005				<0.005			
	12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
	12/4/2008								<0.005	
	12/5/2008									<0.005
	4/7/2009	<0.005		<0.005	<0.005	<0.005				
	4/8/2009		<0.005				<0.005			
	4/14/2009							<0.005	<0.005	<0.005
	9/30/2009									<0.005
	10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
	10/2/2009				<0.005	<0.005			<0.005	
	4/13/2010			<0.005	0.000	0.000		<0.005	<0.005	<0.005
	4/14/2010	<0.005	<0.005	0.000	<0.005	<0.005	<0.005	0.000	0.000	0.000
	10/7/2010	-0.000	-0.000	<0.005	-0.000	-0.000	-0.000			
	10/12/2010			-0.000				<0.005	<0.005	<0.005
	10/13/2010	<0.005	<0.005				<0.005	-0.000	-0.000	-0.000
	10/14/2010	0.000	0.000		<0.005	<0.005	0.000			
	4/5/2011				<0.005	<0.005				
	4/6/2011	<0.005	<0.005	<0.005	10.003	10.003	<0.005	<0.005	<0.005	
	10/4/2011	10.000	<0.005	-0.000			<0.005	-0.000	-0.000	
	10/6/2011		10.000	<0.005			10.003			
	10/10/2011	<0.005		-0.000						
	10/12/2011	10.003			<0.005	<0.005		<0.005	<0.005	<0.005
	4/3/2012	<0.005		<0.005	10.003	10.003		10.003	10.003	10.000
	4/4/2012	10.003		10.000	<0.005	<0.005				
	4/5/2012				10.003	~0.003		<0.005	<0.005	
	4/9/2012							10.003	-0.003	<0.005
	4/10/2012		<0.005				<0.005			10.005
	9/19/2012		10.003	<0.005			~0.003	<0.005		
	9/24/2012	<0.005		~0.003		<0.005		~0.003		
	9/25/2012	10.003				10.003			<0.005	<0.005
	9/26/2012		<0.005		<0.005		<0.005		~ 0.003	<0.003
	3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
	3/13/2013	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	<0.005	<0.005	<0.005
	9/9/2013			<0.005				-0.003	-0.003	·U.UUJ
	9/9/2013 9/10/2013		<0.005	~0.000	<0.005	<0.005	<0.005	<0.005		
	9/10/2013 9/11/2013	<0.005	-0.000		50.000	50.000	~U.UUJ	~U.UUJ	<0.005	<0.005
	3/4/2014	0.00032 (J)	<0.005	<0.005			<0.005		50.00J	-0.003
	3/10/2014	0.00032 (3)	-0.000	~0.000			~U.UUJ	<0.005	<0.005	<0.005
	3/10/2014				<0.005	<0.005		~U.UUJ	~U.UUJ	-0.003
	U1 112U 14				-0.003	-0.003				

		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
	/3/2014	<0.005	<0.005	<0.005	-0.005	-0.005	<0.005	<0.005		
	/8/2014				<0.005	<0.005				
	/9/2014								<0.005	<0.005
	/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
	/22/2015			<0.005				<0.005	<0.005	
	/23/2015									<0.005
	/29/2015		<0.005		<0.005	<0.005				
9	/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3	/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3	/23/2016						<0.005			<0.005
3	/24/2016							<0.005	<0.005	
5	/17/2016	<0.005	<0.005	<0.005	<0.005	<0.005	0.00424 (J)			
5	/18/2016							<0.005	<0.005	<0.005
7	/5/2016	<0.005		<0.005	<0.005					
7	//6/2016		<0.005			<0.005	<0.005		<0.005	
7	//7/2016							<0.005		<0.005
9	/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9	/8/2016							<0.005	<0.005	<0.005
1	0/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
1	0/19/2016							<0.005		0.0064 (J)
1	2/6/2016	<0.005	0.0018 (J)		<0.005	<0.005	0.0013 (J)			
1	2/7/2016			<0.005					<0.005	<0.005
1	2/8/2016							<0.005		
1	/31/2017	<0.005		<0.005						
2	/1/2017		<0.005		<0.005	<0.005				
2	/2/2017						0.001 (J)	<0.005	<0.005	
2	/3/2017									<0.005
3	/23/2017	<0.005		<0.005	<0.005					
3	/24/2017		<0.005			0.0004 (J)				
3	/27/2017						<0.005	<0.005	<0.005	<0.005
	0/4/2017	<0.005		<0.005	<0.005	<0.005				
	0/5/2017		<0.005				<0.005	<0.005	0.0012 (J)	<0.005
	/14/2018	0.016		<0.005					. ,	
	/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
	/16/2018							<0.005		<0.005
	0/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
	0/5/2018							<0.005		<0.005
	/5/2019				<0.005			0.000		0.000
	/8/2019	<0.005	<0.005	<0.005		<0.005				
	/9/2019	0.000	0.000	0.000		0.000	<0.005	<0.005	<0.005	<0.005
	/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005	10.000	-0.000	-0.000	-0.000
	0/1/2019	10.003	10.000	10.003	10.003	10.003	<0.005	0.00086 (J)	<0.005	<0.005
	/26/2020	<0.005	<0.005	0.00043 (J)	0.00062 (J)	0.0013 (J)	10.003	0.00000 (3)	10.005	10.000
	/27/2020	~0.003	~0.003	0.00043 (3)	0.00002 (3)	0.0013 (3)	<0.005			
	30/2020						<0.005	0.00071 (J)		
								0.00071 (3)	0.00042 (1)	<0.00E
	/31/2020			<0.00E					0.00042 (J)	<0.005
	/21/2020		<0.00E	<0.005						
	/22/2020	<0.00E	<0.005		<0.00E	<0.00E				<0.00F
	/23/2020	<0.005			<0.005	<0.005		<0.00E		<0.005
	/24/2020						-0.005	<0.005		
	/25/2020						<0.005		0.00063 / 1)	
9	/28/2020								0.00063 (J)	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				0.0013
5/9/2007	<0.005	0.002	0.0013		<0.005	0.11 (o)	<0.005	
7/6/2007				<0.005		0.0029	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	0.0038	<0.005	0.0014
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	0.0035	0.0024
11/7/2007	<0.005	0.0013	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	0.0016		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	0.0018	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013	.0.005	.0.005	<0.005	<0.005		<0.005	0.0017	<0.005
9/11/2013	<0.005	<0.005		-0.005	-0.005	10.005	-0.005	-0.005
3/5/2014	<0.00E	<0.00E	-0.00E	<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2014	<0.005	<0.005	<0.005					<0.00E
9/3/2014			<0.005		<0.00E	<0.00E		<0.005
9/8/2014	0.0015	<0.00E		<0.00E	<0.005	<0.005	<0.00E	
9/9/2014	0.0015	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				<0.005	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	<0.005	<0.005	<0.005
7/7/2016	<0.005	<0.005	<0.005					
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	<0.005	<0.005	
10/19/2016	<0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	<0.005	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.005	<0.005				<0.005	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						0.0011 (J)	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				0.0005 (J)	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	0.0023 (J)		<0.005				
10/1/2019	<0.005	<0.005	0.0051 (J)	0.0012 (J)	<0.005	<0.005	0.0005 (J)	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020	0.00000 (1)	0.0045 (1)		.0.005	0.00005 (1)	0.00041 (J)		
3/31/2020	0.00093 (J)	0.0015 (J)	.0.005	<0.005	0.00085 (J)			
9/23/2020	<0.00E	<0.005	<0.005			<0.00E	<0.00E	<0.00F
9/24/2020	<0.005			10.005	-0.005	<0.005	<0.005	<0.005
9/25/2020	<0.00E	<0.00E	<0.00E	<0.005	<0.005	<0.00E	<0.00E	<0.00E
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Cobalt (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

2/6/2007	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007 3/7/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	\0.005		<0.005
5/8/2007	\0.005	<0.005	<0.005	~ 0.005	<0.005	<0.005	<0.005	<0.005	<0.005
5/9/2007	<0.00E		<0.005				\0.005	<0.005	<0.005
7/7/2007 7/17/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00E
8/29/2007	-0.005		-0.005	-0.005	-0.005				<0.005
11/6/2007	<0.005	<0.00E	<0.005	<0.005	<0.005	<0.00E	<0.00E	<0.00E	<0.00E
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008				<0.00E	<0.00E		<0.005	<0.005	<0.005
5/8/2008	<0.00E	<0.00E	<0.00E	<0.005	<0.005	<0.00E			
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008	.0.005	<0.005		.0.005	.0.005	<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008	0.005		0.005	0.005	.0.005				<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005		0.005		
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				0.0016				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013			0.005				<0.005	<0.005	<0.005
9/9/2013		.0.005	<0.005	0.005	0.000	.0.005	0.005		
9/10/2013	-0.005	<0.005		<0.005	0.002	<0.005	<0.005	-0.005	-0.005
9/11/2013	<0.005	0.00047.41	-0.005			-0.005		<0.005	<0.005
3/4/2014	0.00043 (J)	0.00047 (J)	<0.005			<0.005	-0.005	-0.005	-0.005
3/10/2014				<0.00E	<0.00E		<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	0.00076 (J)	0.00065 (J)	<0.005	-0.005	0.001 (1)	<0.005	<0.005		
9/8/2014				<0.005	0.001 (J)			.0.005	0.005
9/9/2014	0.00054 (1)	0.00000 (1)		.0.005	.0.005	.0.005		<0.005	<0.005
4/21/2015	0.00051 (J)	0.00062 (J)	0.005	<0.005	<0.005	<0.005	0.005	0.005	
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		0.0009 (J)		<0.005	0.0025 (J)				
9/30/2015	0.0006 (J)		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	0.0004 (J)		<0.005	0.0003 (J)					
7/6/2016		0.0009 (J)			0.0004 (J)	<0.005		<0.005	
7/7/2016							<0.005		<0.005
9/7/2016	<0.005	0.0011 (J)	<0.005	<0.005	0.0008 (J)	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	0.0011 (J)	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		<0.005
12/6/2016	0.0006 (J)	0.0011 (J)		0.0007 (J)	0.0026 (J)	<0.005			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	0.0006 (J)		<0.005						
2/1/2017		0.0011 (J)		<0.005	0.0013 (J)				
2/2/2017						<0.005	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	0.0007 (J)		<0.005	<0.005					
3/24/2017		0.0008 (J)			0.0014 (J)				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	0.0006 (J)		<0.005	<0.005	0.0012 (J)				
10/5/2017		0.0008 (J)				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	0.00058 (J)	0.00072 (J)	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				0.00031 (J)					
4/8/2019	0.00026 (J)	0.00076 (J)	6.1E-05 (J)		0.00044 (J)				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	0.00042 (J)	0.00054 (J)	<0.005	<0.005	0.00079 (J)				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	0.00049 (J)	0.00063 (J)	<0.005	<0.005	0.00082 (J)				
3/27/2020						0.00082 (J)			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		0.00049 (J)							
9/23/2020	0.00051 (J)			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	

Page 3

Time Series

		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3	3/8/2021	0.0005 (J)	0.00049 (J)		<0.005	0.00061 (J)				
3	3/9/2021			<0.005			<0.005	<0.005		
3	3/10/2021								<0.005	<0.005
8	3/9/2021	<0.005		<0.005	0.00042 (J)	<0.005				
8	3/10/2021		0.00047 (J)				<0.005	<0.005	<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	6.5 (o)	<0.005	
7/6/2007				<0.005		2.1 (o)	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	1.4 (o)	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	1.1 (o)	<0.005	<0.005
11/7/2007	<0.005	<0.005	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	0.75	<0.005	<0.005
12/2/2008						0.41	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						0.38	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	0.29		
4/13/2010	<0.005	<0.005			<0.005	0.26	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						0.24		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	0.17	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	0.19	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	0.114	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	0.14		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	0.0033							
3/12/2013				<0.005	<0.005	0.041	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		0.06	<0.005	<0.005
9/11/2013	0.0018	<0.005						
3/5/2014				<0.005	<0.005	0.049	<0.005	<0.005
3/11/2014	0.00029 (J)	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	0.068		
9/9/2014	0.0011 (J)	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.043		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.0525	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.0172	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				0.021	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	0.0278	<0.005	0.0004 (J)
7/7/2016	0.0016 (J)	<0.005	<0.005					
9/7/2016				<0.005	<0.005	0.0334		
9/8/2016	0.0006 (J)	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	0.0368	<0.005	
10/19/2016	0.0006 (J)	<0.005	<0.005					<0.005
12/7/2016	0.0006 (J)	<0.005	<0.005					
12/8/2016				<0.005	<0.005	0.0419	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.005	<0.005				0.0113	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				0.0007 (J)	<0.005			
3/24/2017						0.0094 (J)	<0.005	
3/27/2017	0.001 (J)	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	0.0237		
10/5/2017	0.0051 (J)	<0.005	<0.005				0.0003 (J)	0.0004 (J)
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			0.014		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	0.0065 (J)	<0.005		<0.005	<0.005	0.024	<0.005	
10/5/2018			0.00058 (J)					<0.005
4/8/2019			0.00046 (J)		0.00022 (J)	0.0086 (J)	0.0017 (J)	0.00041 (J)
4/9/2019	0.0023 (J)	<0.005		<0.005				
10/1/2019	0.00046 (J)	<0.005	0.00033 (J)	<0.005	<0.005	0.017	0.00081 (J)	0.00041 (J)
3/26/2020			0.00035 (J)					
3/27/2020							0.0016 (J)	0.00063 (J)
3/30/2020						0.012		
3/31/2020	0.0019 (J)	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	0.00068 (J)					0.01	0.0011 (J)	<0.005
9/25/2020				0.00057 (J)	<0.005			
3/9/2021	0.00049 (J)	<0.005	<0.005	0.00043 (J)	<0.005	0.0093	0.0013 (J)	0.00042 (J)
8/10/2021	0.0041 (J)	<0.005	<0.005	0.00098 (J)	<0.005	0.013	0.004 (J)	<0.005

Constituent: Copper (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill GWA-1 (bg) GWA-11 (bg) GWA-2 (bg) GWA-3 (bg) GWA-4 (bg) GWC-10 GWC-18 GWC-19 GWC-20 3/6/2007 <0.005 <0.005 <0.005 <0.005 <0.005 3/7/2007 < 0.005 0.0025 < 0.005 < 0.005 5/8/2007 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 5/9/2007 <0.005 <0.005 <0.005 7/7/2007 <0.005 <0.005 7/17/2007 <0.005 0.0028 <0.005 <0.005 <0.005 <0.005 <0.005 8/28/2007 <0.005 0.0032 0.0032 0.0039 0.0061 <0.005 <0.005 <0.005 8/29/2007 <0.005 11/6/2007 <0.005 <0.005 <0.005 <0.005 0.0028 0.0036 0.0029 0.0035 11/7/2007 <0.005 5/7/2008 <0.005 <0.005 <0.005 5/8/2008 < 0.005 <0.005 5/9/2008 <0.005 < 0.005 < 0.005 <0.005 12/2/2008 <0.005 <0.005 12/3/2008 <0.005 <0.005 <0.005 <0.005 <0.005 12/4/2008 <0.005 12/5/2008 <0.005 4/7/2009 <0.005 <0.005 <0.005 <0.005 4/8/2009 <0.005 <0.005 4/14/2009 <0.005 <0.005 <0.005 <0.005 9/30/2009 10/1/2009 <0.005 <0.005 <0.005 <0.005 <0.005 10/2/2009 < 0.005 <0.005 <0.005 4/13/2010 < 0.005 < 0.005 < 0.005 < 0.005 4/14/2010 <0.005 <0.005 <0.005 <0.005 <0.005 10/7/2010 <0.005 <0.005 <0.005 <0.005 10/12/2010 10/13/2010 <0.005 <0.005 <0.005 <0.005 0.0066 10/14/2010 4/5/2011 <0.005 <0.005 <0.005 4/6/2011 <0.005 <0.005 <0.005 <0.005 <0.005 10/4/2011 < 0.005 10/6/2011 <0.005 10/10/2011 <0.005 10/12/2011 <0.005 <0.005 <0.005 < 0.005 < 0.005 < 0.005 4/3/2012 <0.005 <0.005 4/4/2012 <0.005 <0.005 4/5/2012 <0.005 <0.005 4/9/2012 <0.005 4/10/2012 <0.005 <0.005 9/19/2012 <0.005 <0.005 <0.005 9/24/2012 <0.005 <0.005 9/25/2012 < 0.005 9/26/2012 <0.005 <0.005 <0.005 3/12/2013 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 3/13/2013 < 0.005 < 0.005 < 0.005 9/9/2013 <0.005 9/10/2013 <0.005 <0.005 <0.005 <0.005 <0.005 9/11/2013 <0.005 <0.005 <0.005 3/4/2014 <0.005 <0.005 <0.005 <0.005 3/10/2014 <0.005 <0.005 <0.005 3/11/2014 < 0.005 <0.005

Constituent: Copper (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	<0.005	0.0011 (J)			<0.005	0.00099 (J)		
9/8/2014				<0.005	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		<0.005	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			<0.005				
3/27/2017						<0.005	<0.005	0.0004 (J)	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	0.0005 (J)	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	0.0013 (J)	0.00029 (J)		<0.005				
4/9/2019						<0.005	<0.005	0.0014 (J)	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	0.00037 (J)	0.00019 (J)	0.00023 (J)
3/26/2020	<0.005	<0.005	<0.005	0.00022 (J)	<0.005				
3/27/2020						0.00022 (J)			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	0.00051 (J)				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005

Constituent: Copper (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				0.0027	<0.005			0.0043
5/8/2007				0.0026				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	0.44 (o)	<0.005	
7/6/2007				<0.005		0.016	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				0.0036	<0.005	0.0091	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	0.0029	0.0033	0.0084					
5/7/2008	0.0026	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						0.003	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		<0.005	<0.005	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2014	<0.005	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	<0.005		
9/9/2014	0.0013 (J)	<0.005		<0.005			<0.005	

Constituent: Copper (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond	Client: Southern Company	Data: Huffaker Road Landfill
	. ,	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.00082 (J)		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	0.0008 (J)	<0.005	0.0012 (J)					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	0.0006 (J)	<0.005	<0.005				<0.005	<0.005
3/23/2017				<0.005	<0.005			
3/24/2017						0.0007 (J)	<0.005	
3/27/2017	0.0005 (J)	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	0.0003 (J)				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	0.0016 (J)			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			0.0005 (J)		<0.005	0.00025 (J)	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	0.00084 (J)	0.00031 (J)	0.00083 (J)	0.00031 (J)	0.00023 (J)	0.00034 (J)	0.00036 (J)	<0.005
3/26/2020			0.00067 (J)					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	0.00082 (J)	0.0002 (J)		0.00019 (J)	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	0.00078 (J)	<0.005	<0.005	<0.005	<0.005	0.0018 (J)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	0.119 (J)	0.0811 (J)	0.1252 (J)	0.1415 (J)	0.1754 (J)				
3/23/2016						0.1069 (J)			0.0905 (J)
3/24/2016							0.1459 (J)	0.1652 (J)	
5/17/2016	0.1049 (J)	0.0706 (J)	0.1091 (J)	0.1293 (J)	0.1385 (J)	0.0991 (J)			
5/18/2016								0.1459 (J)	0.0864 (J)
5/19/2016							0.1408 (J)		
7/5/2016	0.1 (J)		0.16 (J)	0.21 (J)					
7/6/2016		0.09 (J)			0.22 (J)	0.09 (J)		0.21 (J)	
7/7/2016							0.2 (J)		0.16 (J)
9/7/2016	0.13 (J)	0.04 (J)	0.18 (J)	0.21 (J)	0.2 (J)	0.13 (J)			
9/8/2016							0.14 (J)	0.15 (J)	0.08 (J)
10/18/2016	0.15 (J)	0.07 (J)	0.13 (J)	0.15 (J)	0.16 (J)	0.16 (J)		0.19 (J)	
10/19/2016							0.14 (J)		0.09 (J)
12/6/2016	0.11 (J)	0.13 (J)		0.19 (J)	0.29 (J)	0.12 (J)			
12/7/2016			0.13 (J)					0.24 (J)	0.11 (J)
12/8/2016							0.16 (J)		
1/31/2017	0.02 (J)		0.04 (J)						
2/1/2017		<0.1		0.35	0.48				
2/2/2017						0.07 (J)	0.17 (J)	0.1 (J)	
2/3/2017									0.06 (J)
3/23/2017	0.08 (J)		0.08 (J)	0.39					
3/24/2017		0.01 (J)			0.12 (J)				
3/27/2017						0.05 (J)	0.11 (J)	0.11 (J)	0.04 (J)
10/4/2017	0.07 (J)		0.11 (J)	0.49	0.2 (J)				
10/5/2017		<0.1				0.11 (J)	0.13 (J)	0.13 (J)	0.05 (J)
3/14/2018	<0.1		<0.1						
3/15/2018		<0.1		<0.1	0.4	<0.1		<0.1	
3/16/2018							<0.1		<0.1
10/4/2018	0.17 (J)	0.15 (J)	0.25 (J)	0.24 (J)	0.24 (J)	0.16 (J)		0.21 (J)	
10/5/2018							0.21 (J)		0.17 (J)
4/5/2019				0.31					
4/8/2019	0.057 (J)	0.035 (J)	0.072 (J)		0.12 (J)				
4/9/2019						0.067 (J)	0.1 (J)	0.1 (J)	0.056 (J)
9/30/2019	0.11 (J)	0.099 (J)	0.14 (J)	0.15 (J)	0.17 (J)				
10/1/2019						0.07 (J)	0.11 (J)	0.11 (J)	0.069 (J)
3/26/2020	0.082 (J)	0.057 (J)	0.12 (J)	0.09 (J)	0.089 (J)				
3/27/2020						<0.1			
3/30/2020							0.1 (J)		
3/31/2020								0.099 (J)	0.054 (J)
9/21/2020			0.12						
9/22/2020		0.061 (J)							
9/23/2020	0.089 (J)			0.11	0.13				0.065 (J)
9/24/2020							0.11		
9/25/2020						0.085 (J)			
9/28/2020								0.11	
3/8/2021	0.094 (J)	0.11		0.13	0.1				
3/9/2021			0.099 (J)			0.078 (J)	0.11		
3/10/2021								0.11	0.068 (J)
8/9/2021	0.083 (J)		0.081 (J)	0.1	0.12				
8/10/2021		0.068 (J)				0.078 (J)	0.11	0.11	0.066 (J)

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		0.0886 (J)	0.1064 (J)	0.0582 (J)	0.0791 (J)	0.2004 (J)	0.1537 (J)	0.0993 (J)
3/24/2016	0.0445 (J)							
5/17/2016				0.0571 (J)	0.0712 (J)			
5/18/2016	0.0476 (J)	0.0839 (J)				0.1766 (J)		
5/19/2016			0.0928 (J)				0.1414 (J)	0.0936 (J)
7/6/2016				0.29 (J)	0.28 (J)	0.39	0.15 (J)	0.09 (J)
7/7/2016	0.12 (J)	0.08 (J)	0.13 (J)					
9/7/2016				0.08 (J)	0.08 (J)	0.53		
9/8/2016	0.11 (J)	0.11 (J)	0.12 (J)				0.35	0.11 (J)
10/18/2016				0.09 (J)	0.07 (J)	0.24 (J)	0.17 (J)	
10/19/2016	0.13 (J)	0.1 (J)	0.1 (J)					0.1 (J)
12/7/2016	0.23 (J)	0.09 (J)	0.1 (J)					
12/8/2016				0.06 (J)	0.13 (J)	0.24 (J)	0.15 (J)	0.11 (J)
2/1/2017				0.33	0.24 (J)			
2/2/2017	0.11 (J)	0.05 (J)				0.3 (J)	0.1 (J)	0.05 (J)
2/3/2017			0.12 (J)					
3/23/2017				0.07 (J)	0.04 (J)			
3/24/2017						0.22 (J)	0.14 (J)	
3/27/2017	0.01 (J)	0.08 (J)	0.14 (J)					0.07 (J)
10/4/2017				<0.1	0.03 (J)	0.19 (J)		
10/5/2017	<0.1	0.08 (J)	0.09 (J)				0.15 (J)	0.06 (J)
3/14/2018							0.4	
3/15/2018	<0.1	<0.1	<0.1			0.37		<0.1
3/16/2018				<0.1	<0.1			
5/16/2018							0.32	
10/4/2018	0.15 (J)	0.14 (J)		0.16 (J)	0.17 (J)	0.19 (J)	0.28 (J)	
10/5/2018			0.18 (J)					0.18 (J)
4/8/2019			0.057 (J)		<0.1	0.17 (J)	0.1 (J)	0.058 (J)
4/9/2019	0.063 (J)	0.063 (J)		0.061 (J)				
10/1/2019	0.094 (J)	0.079 (J)	0.079 (J)	0.064 (J)	0.063 (J)	0.16 (J)	0.13 (J)	0.078 (J)
3/26/2020			0.064 (J)					
3/27/2020							0.12 (J)	0.078 (J)
3/30/2020						0.16 (J)		
3/31/2020	<0.1	0.055 (J)		<0.1	0.053 (J)			
9/23/2020		0.073 (J)	0.088 (J)					
9/24/2020	0.1					0.14	0.15	0.076 (J)
9/25/2020				0.058 (J)	0.063 (J)			
3/9/2021	0.058 (J)	0.067 (J)	0.069 (J)	0.05 (J)	0.06 (J)	0.17	0.12	0.08 (J)
8/10/2021	<0.1	0.071 (J)	0.087 (J)	0.057 (J)	0.057 (J)	0.19	0.13	0.076 (J)

Constituent: Lead (mg/L) Analysis Run 10/21/2021 1:23 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.001		<0.001	<0.001	<0.001			<0.001	
3/7/2007		<0.001				<0.001	<0.001		<0.001
5/8/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/9/2007							<0.001	<0.001	<0.001
7/7/2007	<0.001		<0.001						
7/17/2007		<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/28/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/29/2007									<0.001
11/6/2007	<0.001		<0.001	<0.001	<0.001				
11/7/2007		<0.001				<0.001	<0.001	<0.001	<0.001
5/7/2008							<0.001	<0.001	<0.001
5/8/2008				<0.001	<0.001				
5/9/2008	<0.001	<0.001	<0.001			<0.001			
12/2/2008		<0.001				<0.001			
12/3/2008	<0.001		<0.001	<0.001	<0.001		<0.001		
12/4/2008								<0.001	
12/5/2008									<0.001
4/7/2009	<0.001		<0.001	<0.001	<0.001				
4/8/2009		<0.001				<0.001			
4/14/2009							<0.001	<0.001	<0.001
9/30/2009									<0.001
10/1/2009	<0.001	<0.001	<0.001			<0.001	<0.001		
10/2/2009				<0.001	<0.001			<0.001	
4/13/2010			<0.001				<0.001	<0.001	<0.001
4/14/2010	<0.001	<0.001		<0.001	<0.001	<0.001			
10/7/2010			<0.001						
10/12/2010							<0.001	<0.001	<0.001
10/13/2010	<0.001	<0.001				<0.001			
10/14/2010				<0.001	<0.001				
4/5/2011				<0.001	<0.001				
4/6/2011	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	
10/4/2011		<0.001				<0.001			
10/6/2011			<0.001						
10/10/2011	<0.001								
10/12/2011				<0.001	<0.001		<0.001	<0.001	<0.001
4/3/2012	<0.001		<0.001						
4/4/2012				<0.001	<0.001				
4/5/2012							<0.001	<0.001	
4/9/2012									<0.001
4/10/2012		<0.001				<0.001			
9/19/2012			<0.001				<0.001		
9/24/2012	<0.001				<0.001				
9/25/2012								<0.001	<0.001
9/26/2012		<0.001		<0.001		<0.001			
3/12/2013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
3/13/2013							<0.001	<0.001	<0.001
9/9/2013			<0.001						
9/10/2013		<0.001		<0.001	<0.001	<0.001	<0.001		
9/11/2013	<0.001							<0.001	<0.001
3/4/2014	<0.001	<0.001	<0.001			<0.001			
3/10/2014							<0.001	<0.001	<0.001
3/11/2014				<0.001	<0.001				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.001	<0.001	<0.001			<0.001	<0.001		
9/8/2014				<0.001	<0.001				
9/9/2014								<0.001	<0.001
4/21/2015	<0.001	<0.001		<0.001	<0.001	<0.001			
4/22/2015			<0.001				<0.001	<0.001	
4/23/2015									<0.001
9/29/2015		<0.001		<0.001	<0.001				
9/30/2015	<0.001		<0.001			<0.001	<0.001	<0.001	<0.001
3/22/2016	<0.001	<0.001	<0.001	<0.001	<0.001				
3/23/2016						<0.001			<0.001
3/24/2016							<0.001	<0.001	
5/17/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/18/2016							<0.001	<0.001	<0.001
7/5/2016	<0.001		<0.001	<0.001					
7/6/2016		<0.001			<0.001	<0.001		<0.001	
7/7/2016							<0.001		<0.001
9/7/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
9/8/2016							<0.001	<0.001	<0.001
10/18/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/19/2016							<0.001		<0.001
12/6/2016	<0.001	<0.001		<0.001	<0.001	<0.001			
12/7/2016			<0.001					<0.001	<0.001
12/8/2016							<0.001		
1/31/2017	<0.001		<0.001						
2/1/2017		<0.001		<0.001	<0.001				
2/2/2017						<0.001	<0.001	<0.001	
2/3/2017									<0.001
3/23/2017	<0.001		<0.001	<0.001					
3/24/2017		7E-05 (J)			<0.001				
3/27/2017						<0.001	<0.001	<0.001	7E-05 (J)
10/4/2017	<0.001		<0.001	<0.001	<0.001				
10/5/2017		<0.001				<0.001	<0.001	0.0002 (J)	<0.001
3/14/2018	<0.001		<0.001						
3/15/2018		<0.001		<0.001	<0.001	<0.001		<0.001	
3/16/2018							<0.001		<0.001
10/4/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/5/2018							<0.001		<0.001
4/5/2019				<0.001					
4/8/2019	<0.001	<0.001	<0.001		<0.001				
4/9/2019						<0.001	<0.001	<0.001	<0.001
9/30/2019	<0.001	<0.001	<0.001	<0.001	<0.001				
10/1/2019						<0.001	<0.001	<0.001	<0.001
3/26/2020	<0.001	<0.001	<0.001	4.7E-05 (J)	<0.001				
3/27/2020						5.4E-05 (J)			
3/30/2020							<0.001		
3/31/2020								6.1E-05 (J)	<0.001
9/21/2020			<0.001					• •	
9/22/2020		<0.001							
9/23/2020	<0.001			<0.001	<0.001				<0.001
9/24/2020							4E-05 (J)		
9/25/2020						<0.001	• •		
9/28/2020								0.00014 (J)	
								` '	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.001	<0.001		4E-05 (J)	<0.001				
3/9/2021			<0.001			<0.001	<0.001		
3/10/2021								<0.001	<0.001
8/9/2021	<0.001		<0.001	<0.001	<0.001				
8/10/2021		<0.001				<0.001	<0.001	<0.001	<0.001

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.001	<0.001	<0.001					
3/7/2007				<0.001	<0.001			<0.001
5/8/2007				<0.001				<0.001
5/9/2007	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	
7/6/2007				<0.001		<0.001	<0.001	<0.001
7/17/2007	<0.001	<0.001	<0.001		<0.001			
8/28/2007				<0.001	<0.001	<0.001	<0.001	<0.001
8/29/2007	<0.001	<0.001	<0.001					
11/6/2007				<0.001	<0.001	<0.001	<0.001	<0.001
11/7/2007	<0.001	<0.001	<0.001					
5/7/2008	<0.001	<0.001	<0.001					
5/8/2008				<0.001	<0.001	<0.001	<0.001	<0.001
12/2/2008						<0.001	<0.001	<0.001
12/3/2008				<0.001	<0.001			
12/5/2008	<0.001	<0.001	<0.001					
4/7/2009				<0.001	<0.001			
4/8/2009						<0.001	<0.001	<0.001
4/14/2009		<0.001	<0.001					
4/27/2009	<0.001							
9/30/2009	<0.001	<0.001					<0.001	<0.001
10/1/2009			<0.001	<0.001	<0.001	<0.001		
4/13/2010	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001
4/14/2010			<0.001	<0.001				
10/6/2010					<0.001			
10/7/2010						<0.001		
10/12/2010	<0.001	<0.001						
10/13/2010			<0.001				<0.001	<0.001
10/14/2010				<0.001				
4/5/2011				<0.001	<0.001	<0.001	<0.001	<0.001
4/6/2011		<0.001	<0.001					
10/4/2011					<0.001	<0.001	<0.001	<0.001
10/5/2011	<0.001	<0.001						
10/12/2011			<0.001	<0.001				
4/3/2012					<0.001	<0.001	<0.001	
4/4/2012				<0.001				<0.001
4/9/2012		<0.001	<0.001					
4/10/2012	<0.001							
9/18/2012					<0.001	<0.001		
9/19/2012			<0.001				<0.001	<0.001
9/24/2012				<0.001				
9/25/2012		<0.001						
9/26/2012	<0.001							
3/12/2013				<0.001	<0.001	<0.001	<0.001	<0.001
3/13/2013	<0.001	<0.001	<0.001					
9/9/2013					<0.001			
9/10/2013			<0.001	<0.001		<0.001	<0.001	<0.001
9/11/2013	<0.001	<0.001						
3/5/2014				<0.001	<0.001	0.0016 (J)	<0.001	<0.001
3/11/2014	<0.001	<0.001	<0.001					
9/3/2014			<0.001					<0.001
9/8/2014					<0.001	<0.001		
9/9/2014	<0.001	<0.001		<0.001			<0.001	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.001		<0.001		<0.001
4/22/2015					<0.001		<0.001	
4/23/2015		<0.001	<0.001					
9/29/2015				<0.001	<0.001	<0.001	<0.001	<0.001
9/30/2015	<0.001	<0.001	<0.001					
3/23/2016		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/24/2016	<0.001							
5/17/2016				<0.001	<0.001			
5/18/2016	<0.001	<0.001				<0.001	<0.001	<0.001
5/19/2016			<0.001					
7/6/2016				<0.001	<0.001	0.0001 (J)	<0.001	<0.001
7/7/2016	<0.001	<0.001	<0.001					
9/7/2016				<0.001	<0.001	<0.001		
9/8/2016	<0.001	<0.001	<0.001				<0.001	<0.001
10/18/2016				<0.001	<0.001	<0.001	<0.001	
10/19/2016	<0.001	<0.001	<0.001					<0.001
12/7/2016	0.0001 (J)	<0.001	<0.001					
12/8/2016				<0.001	0.0001 (J)	<0.001	0.0002 (J)	<0.001
2/1/2017				<0.001	<0.001			
2/2/2017	<0.001	<0.001				0.0003 (J)	<0.001	<0.001
2/3/2017			<0.001					
3/23/2017				<0.001	<0.001			
3/24/2017						0.0002 (J)	<0.001	
3/27/2017	<0.001	<0.001	<0.001					<0.001
10/4/2017				<0.001	<0.001	7E-05 (J)		
10/5/2017	<0.001	<0.001	<0.001				<0.001	<0.001
3/14/2018							<0.001	
3/15/2018	<0.001	<0.001	<0.001			<0.001		<0.001
3/16/2018				<0.001	<0.001			
10/4/2018	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	
10/5/2018			0.00042 (J)					<0.001
4/8/2019			0.00018 (J)		<0.001	<0.001	<0.001	<0.001
4/9/2019	<0.001	<0.001		0.00039 (J)				
10/1/2019	7.5E-05 (J)	0.00012 (J)	0.00022 (J)	6.5E-05 (J)	<0.001	5E-05 (J)	<0.001	<0.001
3/26/2020			0.00016 (J)					
3/27/2020							<0.001	<0.001
3/30/2020						4.8E-05 (J)		
3/31/2020	<0.001	0.00013 (J)		<0.001	<0.001			
9/23/2020		6.6E-05 (J)	0.00036 (J)					
9/24/2020	0.00012 (J)					6E-05 (J)	4.9E-05 (J)	<0.001
9/25/2020				<0.001	<0.001			
3/9/2021	0.00013 (J)	3.8E-05 (J)	0.00011 (J)	<0.001	<0.001	8.5E-05 (J)	<0.001	<0.001
8/10/2021	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

Constituent: Nickel (mg/L) Analysis Run 10/21/2021 1:24 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008								0.000	<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				0.000
4/8/2009	-0.000	<0.005	-0.000	10.000	10.000	<0.005			
4/14/2009		10.003				10.003	<0.005	<0.005	<0.005
9/30/2009							10.003	10.005	<0.005
	<0.005	<0.005	<0.005			<0.005	<0.005		~ 0.003
10/1/2009	<0.005	<0.005	<0.005	-0.005	-0.005	<0.005	<0.005	-0.005	
10/2/2009			<0.00E	<0.005	<0.005		<0.00E	<0.005	<0.00E
4/13/2010	.0.005	.0.005	<0.005	.0.005	.0.005	.0.005	<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005	.0.005	<0.005	<0.005	<0.005			
10/7/2010			<0.005					.0.005	.0.005
10/12/2010							<0.005	<0.005	<0.005
10/13/2010		<0.005				<0.005			
10/14/2010)			<0.005	<0.005				
4/5/2011				<0.005	0.0032				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011									
10/12/2011	I			<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				0.0032				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	0.001 (J)	0.002 (J)	0.0007 (J)			<0.005			
3/10/2014							0.0013 (J)	0.00072 (J)	0.00074 (J)
3/11/2014				0.0013 (J)	0.0026				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	0.002 (J)	<0.005			<0.005	<0.005		
9/8/2014				<0.005	0.0017 (J)				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	0.002 (J)		<0.005	0.0016 (J)	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		0.0022 (J)		<0.005	0.0055				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
9/7/2016	0.0008 (J)	0.0026 (J)	<0.005	<0.005	0.0014 (J)	<0.005			
9/8/2016							0.0009 (J)	<0.005	<0.005
3/23/2017	0.0007 (J)		<0.005	0.0022 (J)					
3/24/2017		0.0024 (J)			0.0017 (J)				
3/27/2017						<0.005	0.0006 (J)	0.0062 (J)	0.0006 (J)
10/4/2017	0.0006 (J)		<0.005	<0.005	0.0023 (J)				
10/5/2017		0.0023 (J)				<0.005	0.0008 (J)	0.0005 (J)	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		0.0026 (J)		<0.005	0.0024 (J)	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	0.0023 (J)	<0.005	<0.005	0.0013 (J)	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				0.00075 (J)					
4/8/2019	0.00034 (J)	0.0023 (J)	<0.005		0.00089 (J)				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	0.00037 (J)	0.0017 (J)	<0.005	<0.005	0.0013 (J)				
10/1/2019						<0.005	0.0015 (J)	<0.005	<0.005
3/26/2020	0.00065 (J)	0.002 (J)	<0.005	0.0011 (J)	0.00096 (J)				
3/27/2020						0.0023 (J)			
3/30/2020							0.00048 (J)		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		0.0014 (J)							
9/23/2020	<0.005			<0.005	0.00091 (J)				<0.005
9/24/2020							0.0011 (J)		
9/25/2020						<0.005			
9/28/2020								<0.005	
3/8/2021	<0.005	0.001 (J)		<0.005	<0.005				
3/9/2021		.,	<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	0.001 (J)				•
8/10/2021		0.0017 (J)			. (-)	<0.005	<0.005	<0.005	<0.005
· · · · · · · · ·		(3/				*:===	*:===	-:===	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	18 (o)	<0.005	
7/6/2007				<0.005		5.9 (o)	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	3.9	<0.005	<0.005
8/29/2007	0.0055	<0.005	<0.005					
11/6/2007				<0.005	<0.005	3.1	<0.005	<0.005
11/7/2007	0.0044	<0.005	<0.005					
5/7/2008	0.0047	<0.005	<0.005					
5/8/2008				<0.005	<0.005	2.1	<0.005	<0.005
12/2/2008						1.2	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						1.1	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	0.0027							
9/30/2009	0.0051	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	0.88		
4/13/2010	0.0031	<0.005			<0.005	0.82	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						0.72		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	0.52	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	0.56	<0.005	<0.005
10/5/2011	0.0032	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	0.365	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	0.45		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	0.0063							
3/12/2013				<0.005	<0.005	0.13	<0.005	<0.005
3/13/2013	0.0029	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		0.2	<0.005	0.003
9/11/2013	0.0046	<0.005						
3/5/2014				0.001 (J)	0.00092 (J)	0.17	0.00079 (J)	0.0022 (J)
3/11/2014	0.002 (J)	0.00059 (J)	0.0016 (J)	(-/	(0)		(0)	ζ-,
9/3/2014	(-)		<0.005					<0.005
9/8/2014			2.000		<0.005	0.25		
9/9/2014	0.0029	<0.005		<0.005	2.000		<0.005	
		5.000		5.000			3.000	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.15		0.0019 (J)
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.203	<0.005	0.0019 (J)
9/30/2015	0.0025 (J)	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.0607	<0.005	<0.005
3/24/2016	0.00317 (J)							
9/7/2016				<0.005	<0.005	0.141		
9/8/2016	0.0038 (J)	<0.005	0.0011 (J)				<0.005	0.0023 (J)
3/23/2017				0.0008 (J)	<0.005			
3/24/2017						0.0313	<0.005	
3/27/2017	0.0024 (J)	<0.005	0.0007 (J)					0.0023 (J)
10/4/2017				<0.005	<0.005	0.093		
10/5/2017	0.0104	<0.005	<0.005				<0.005	0.0024 (J)
3/14/2018							<0.005	
3/15/2018	0.0026 (J)	<0.005	0.001 (J)			0.057		0.0023 (J)
3/16/2018				<0.005	<0.005			
10/4/2018	0.012	<0.005		<0.005	<0.005	0.11	<0.005	
10/5/2018			0.0014 (J)					0.0025 (J)
12/11/2018	0.0052 (J)							
4/8/2019			0.0011 (J)		0.00032 (J)	0.03	0.00064 (J)	0.0021 (J)
4/9/2019	0.0048 (J)	<0.005		0.00098 (J)				
10/1/2019	0.0031 (J)	<0.005	0.0035 (J)	0.00088 (J)	0.00042 (J)	0.07	0.00063 (J)	0.0022 (J)
3/26/2020			0.001 (J)					
3/27/2020							0.00053 (J)	0.0022 (J)
3/30/2020						0.037		
3/31/2020	0.0039 (J)	<0.005		0.0013 (J)	<0.005			
9/23/2020		<0.005	0.00079 (J)					
9/24/2020	0.0068					0.042	0.001 (J)	0.0024 (J)
9/25/2020				0.00078 (J)	<0.005			
3/9/2021	0.0013 (J)	<0.005	<0.005	<0.005	<0.005	0.035	<0.005	0.0014 (J)
8/10/2021	0.0076	<0.005	0.0008 (J)	0.00085 (J)	<0.005	0.057	0.0073	0.0019 (J)
9/28/2021							0.0009 (J,R)	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	7.07	7	7.19	7.11	7.14				
3/23/2016						7.56			7.55
3/24/2016							7.71	7.69	
5/17/2016	7	6.77	6.94	6.95	6.67	7.46			
5/18/2016							7.59	7.49	7.32
7/5/2016	6.88		6.98	6.55					
7/6/2016		6.64			6.53	7.24		7.39	
7/7/2016							7.55		7.39
9/7/2016	7.24	6.83	6.86	6.81	6.72	7.4			
9/8/2016							7.54	7.57	7.34
10/18/2016	6.86	6.58	6.71	6.64	6.73	7.11		7.35	
10/19/2016							7.66		7.35
12/6/2016	6.98	6.66		6.34	6.61	7.32			
12/7/2016			6.71					7.42	7.35
12/8/2016							7.47		
1/31/2017	6.63		6.95						
2/1/2017		6.5		6.68	6.7				
2/2/2017						7.19	7.64	7.43	
2/3/2017									7.37
3/23/2017	7.12		7.04	6.8					
3/24/2017		6.72			6.77				
3/27/2017						7.48	7.59	7.53	7.26
10/4/2017	6.83		6.86	6.64	6.52				
10/5/2017		6.69				7.13	7.65	7.36	7.2
3/14/2018	6.66		6.76						
3/15/2018		6.48		6.88	7.11	7.08		7.54	
3/16/2018							7.51		7.13
5/15/2018									7.18
10/4/2018	6.92	6.66	6.62	6.62	6.72	7.26		7.44	
10/5/2018							7.57		7.07
12/11/2018									7.16
4/5/2019				6.77					
4/8/2019	6.86	6.61	6.79		6.82				
4/9/2019						7.22	7.48	7.4	7.26
9/30/2019	7.15	6.86	6.86	6.73	6.77				
10/1/2019						7.07	7.65	7.31	7.16
3/26/2020	7.02	6.83	7.07	6.87	6.74				
3/27/2020						6.82			
3/30/2020							7.65		
3/31/2020								7.62	7.57
6/19/2020						7.4 (R)		7.61 (R)	7.31 (R)
9/21/2020			6.9						
9/22/2020		6.8							
9/23/2020	6.98			6.87	6.81				7.11
9/24/2020							7.62		
9/25/2020						7.28			
9/28/2020								7.78	
11/10/2020								7.37 (R)	
3/8/2021	6.86	6.78		6.95	6.84				
3/9/2021			6.93			7.43	7.66		
3/10/2021								7.49	7.41
8/9/2021	7.23		6.9	6.89	6.76				

Page 2

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/10/2021		6.84				7.45	7.4	7.49	7.31

		GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3	3/23/2016		7.72	7.48	7.1	7.29	6.36	7.46	7.2
3	3/24/2016	6.4							
5	5/17/2016				6.88	7.1			
5	5/18/2016	6.44	7.77				6.21	7.4	6.96
5	5/19/2016			7.24					
	7/6/2016				6.75	7	5.88	7.36	6.89
7	7/7/2016	6.12	7.65	7.18					
g	9/7/2016				6.95	7.07	5.77		
g	9/8/2016	7.2	7.89	7.17				7.45	6.93
1	10/18/2016				6.9	6.81		7.5	
1	10/19/2016	7.11	7.64	7.05					6.84
1	12/7/2016	7.24	7.72	7.16					
1	12/8/2016				6.55	6.85		7.28	6.54
1	12/9/2016						5.73		
2	2/1/2017				6.81	7.05			
2	2/2/2017	6.86	7.56				6.29	7.45	6.72
2	2/3/2017			7.27					
3	3/23/2017				6.8	6.97			
3	3/24/2017						6.32	7.28	
3	3/27/2017	6.51	7.69	7.24					6.56
1	10/4/2017				7.12	7.17	6.03		
1	10/5/2017	5.97	7.53	7.25				7.53	7.03
3	3/14/2018							7.28	
3	3/15/2018	7.01	7.5	7.05			6.05		6.66
3	3/16/2018				6.72	6.8			
1	10/4/2018	6.33	7.52		6.52	6.93	5.92	7.22	
1	10/5/2018			6.97					6.41
4	1/8/2019			6.88		7	6.26	6.91	6.72
4	1/9/2019	6.46	7.49		6.72				
6	6/18/2019							6.85	
6	6/27/2019							7.05	
1	10/1/2019	6.9	7.38	7	6.81	6.97	6.09	7.11	6.77
1	11/6/2019		7.66						
3	3/26/2020			6.88					
3	3/27/2020							7.01	7.11
3	3/30/2020						6.48		
3	3/31/2020	6.33	7.8		6.82	7.17			
6	6/18/2020					6.96 (R)			
6	6/19/2020						6.45 (R)	6.81 (R)	
9	9/23/2020		7.42	6.96					
9	9/24/2020	7.12					6.32	6.96	6.75
9	9/25/2020				6.82	6.96			
3	3/9/2021	7.04	7.52	6.81	6.93	7.09	6.59	7.06	6.92
	3/10/2021	6.05	7.75	6.96	6.87	7.06	6.29	6.65	6.91
g	9/28/2021							6.77 (R)	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				<0.005				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	<0.005	<0.005	<0.005			0.0016 (J)			
3/10/2014							<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	<0.005	<0.005			<0.005	<0.005		
9/8/2014				<0.005	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		<0.005	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	<0.005		<0.005	<0.005					
7/6/2016		<0.005			<0.005	<0.005		<0.005	
7/7/2016							<0.005		<0.005
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		<0.005
12/6/2016	<0.005	<0.005		<0.005	<0.005	<0.005			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	<0.005		<0.005						
2/1/2017		<0.005		<0.005	<0.005				
2/2/2017						<0.005	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			<0.005				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	<0.005	<0.005		0.00014 (J)				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	<0.005	<0.005				
3/27/2020						<0.005			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	

Page 3

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20	
3/8/2021	<0.005	<0.005		<0.005	<0.005					
3/9/2021			<0.005			<0.005	<0.005			
3/10/2021								<0.005	<0.005	
8/9/2021	<0.005		<0.005	<0.005	<0.005					
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005	

		GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3	/6/2007	<0.005	<0.005	<0.005					
3	/7/2007				<0.005	<0.005			<0.005
5	/8/2007				<0.005				<0.005
5	/9/2007	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	
7	/6/2007				<0.005		<0.005	<0.005	<0.005
7	/17/2007	<0.005	<0.005	<0.005		<0.005			
8	/28/2007				<0.005	<0.005	<0.005	<0.005	<0.005
8	/29/2007	<0.005	<0.005	<0.005					
1	1/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
1	1/7/2007	<0.005	<0.005	<0.005					
5	/7/2008	<0.005	<0.005	<0.005					
5	/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
1	2/2/2008						<0.005	<0.005	<0.005
1	2/3/2008				<0.005	<0.005			
1	2/5/2008	<0.005	<0.005	<0.005					
4	/7/2009				<0.005	<0.005			
4	/8/2009						<0.005	<0.005	<0.005
4	/14/2009		<0.005	<0.005					
4	/27/2009	<0.005							
	/30/2009	<0.005	<0.005					<0.005	<0.005
1	0/1/2009			<0.005	<0.005	<0.005	<0.005		
4	/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4	/14/2010			<0.005	<0.005				
	0/6/2010					<0.005			
	0/7/2010						<0.005		
	0/12/2010	<0.005	<0.005						
	0/13/2010			<0.005				<0.005	<0.005
	0/14/2010				<0.005				
	/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
	/6/2011		<0.005	<0.005					
	0/4/2011					<0.005	<0.005	<0.005	<0.005
	0/5/2011	<0.005	<0.005						
	0/12/2011			<0.005	<0.005				
	/3/2012			0.000	0.000	<0.005	<0.005	<0.005	
	/4/2012				<0.005	0.000	0.000	0.000	<0.005
	/9/2012		<0.005	<0.005	0.000				5,500
	/10/2012	<0.005	0.000	0.000					
	/18/2012	0.000				<0.005	<0.005		
	/19/2012			<0.005		0.000	0.000	<0.005	<0.005
	/24/2012			-0.000	<0.005			-0.000	-0.000
	/25/2012		<0.005		10.000				
	/26/2012	<0.005	10.003						
	/12/2013	10.000			<0.005	<0.005	<0.005	<0.005	<0.005
	/13/2013	<0.005	<0.005	<0.005	10.000	10.000	10.000	10.003	10.003
	/9/2013	~0.003	10.003	~0.003		<0.005			
	/10/2013			<0.005	<0.005	10.000	<0.005	<0.005	<0.005
	/11/2013	<0.005	<0.005	~0.003	~0.003		~0.003	10.003	~0.003
	/5/2014	-0.000	-0.000		<0.005	<0.005	<0.005	<0.005	0.0018 (J)
	/11/2014	0.0024 (J)	0.0017 (J)	<0.005	-0.000	-0.000	-0.000	-0.000	0.0010 (0)
	/3/2014	5.502 7 (5)	0.0017 (0)	<0.005					<0.005
	/8/2014			-0.000		<0.005	<0.005		-0.000
	/9/2014	<0.005	<0.005		<0.005	~0.000	-0.000	<0.005	
9	1312014	-0.000	~U.UUJ		-0.000			~0.000	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				<0.005	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	<0.005	<0.005	<0.005
7/7/2016	<0.005	<0.005	<0.005					
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	<0.005	<0.005	
10/19/2016	<0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	<0.005	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	0.0017 (J)	<0.005				<0.005	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						<0.005	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	<0.005	0.0014 (J)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	<0.005	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Silver (mg/L) Analysis Run 10/21/2021 1:24 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005	0.005	<0.005	<0.005	<0.005		0.005	<0.005	.0.005
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				<0.005				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	<0.005	<0.005	<0.005			<0.005			
3/10/2014							<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	<0.005	<0.005			<0.005	<0.005		
9/8/2014				<0.005	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		<0.005	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			<0.005				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	<0.005	<0.005		<0.005				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	<0.005	<0.005				
3/27/2020						<0.005			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				-
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005
									· · · · ·

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	
7/6/2007				<0.005		<0.005	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	<0.005	<0.005	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	0.0036							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		<0.005	<0.005	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2014	<0.005	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	<0.005		
9/9/2014	<0.005	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
3/23/2017				<0.005	<0.005			
3/24/2017						<0.005	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	<0.005	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Sulfate (mg/L) Analysis Run 10/21/2021 1:24 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

2/22/2016	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016 3/23/2016	4.4409	11.6823	13.0789	107.476	302.2975	14.6529			22.9683
3/24/2016						14.0329	10.1818	16.8473	22.9003
5/17/2016	4.43	11.4	15.3	106	213	13.3	10.1010	10.0473	
5/18/2016	4.45	11.4	15.5	100	213	13.3		18.4	19.2
5/19/2016							9.58	10.4	13.2
7/5/2016	4.6		15	110			3.30		
7/6/2016	4.0	12	10	110	280	10		17	
7/7/2016		12			200	10	9.6	17	31
9/7/2016	4.8	13	16	83	160	10	9.0		31
9/8/2016	4.0	10	10	00	100	10	9.4	16	30
10/18/2016	4.7	13	16	110	120	10	5.4	19	30
10/19/2016	4.7	13	10	110	120	10	9.9	15	32
12/6/2016	4.7	12		220	210	11	5.5		52
12/7/2016	4.7	12	15	220	210	••		13	26
12/7/2016			10				14	15	20
1/31/2017	5.1		13				14		
2/1/2017	5.1	13	15	190	200				
2/2/2017		15		190	200	11	13	14	
2/3/2017						"	15	14	27
3/23/2017	4.7		12	160					21
3/24/2017	4.7	12	12	100	140				
3/27/2017		12			140	33	12	18	30
10/4/2017	5		12	140	140	33	12	10	30
10/5/2017	3	13	12	140	140	16	12	16	32
3/14/2018	5.1	10	13.9			10	12	10	52
3/15/2018	5.1	12.2	10.0	119	167	33.9		14.8	
3/16/2018						00.0	11.7		37.5
5/15/2018						29.1			41
10/4/2018	5.2	15.6	17.4	117	209	29.5		15.9	
10/5/2018	0.2			,	200	20.0	10.6		38.9
12/11/2018									41.8
4/5/2019				131					
4/8/2019	4.6	13.2	18.1		248				
4/9/2019					2.0	21.4	11.3	16.7	50.3
6/18/2019									38.7
6/27/2019									46
9/30/2019	4.9	11.5	17.5	118	117				
10/1/2019						13.4	8.9	14.7	52.3
11/6/2019									47.3
3/26/2020	5	10.8	15.6	95.8	128				
3/27/2020						10.8			
3/30/2020							9.7		
3/31/2020								17.8	53.6
9/21/2020			18.2						
9/22/2020		9.8							
9/23/2020	6.6			95.6	123				58.9
9/24/2020							8.5		
9/25/2020						11.6			
9/28/2020								15.8	
3/8/2021	4.6	11.5		99.5	152				
3/9/2021			16.8			14.2	7.9		

Page 2

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/10/2021								18.7	64.7
8/9/2021	4.7		23.2	93.3	106				
8/10/2021		11.2				14.9	10.3	17.8	66.4

Constituent: Sulfate (mg/L) Analysis Run 10/21/2021 1:24 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		9.1183	6.2867	76.011	87.512	90.229	26.3455	61.8335
3/24/2016	24.8075							
5/17/2016				76.2	101			
5/18/2016	26.2	6.88				100		
5/19/2016			5.42				31.7	64.3
7/6/2016				74	110	130	36	69
7/7/2016	31	6.8	5.7					
9/7/2016				64	97	130		
9/8/2016	33	6.8	5.7				45	68
10/18/2016				65	120	140	49	
10/19/2016	31	7.5	5.8					69
12/7/2016	19	11	5.9					
12/8/2016				100	100	140	50	69
2/1/2017				150	110			
2/2/2017	52	9.9				71	51	76
2/3/2017			38					
3/23/2017				130	110			
3/24/2017						68	46	
3/27/2017	29	8.4	43					68
10/4/2017				71	130	120		
10/5/2017	33	7.4	8.3				48	74
12/14/2017					130			
1/18/2018					110			
3/14/2018							36.8	
3/15/2018	38	8.2	14			118		57.8
3/16/2018				77.4	93.6			
10/4/2018	19.3	6.4		90.3	137	167	45.4	
10/5/2018			9.3					81.9
12/11/2018					110			73.6
4/8/2019			6.2		131	97.1	39.9	73.5
4/9/2019	19.9	11		83.6				
6/19/2019					108			
10/1/2019	46.3	1.9	5.8	68.1	71.7	120	47.1	72.2
3/26/2020			14.5					
3/27/2020							31.5	54
3/30/2020						64.6		
3/31/2020	29.9	10.9		92.6	106			
9/23/2020		5	5.3					
9/24/2020	37.6					120	48.3	69.9
9/25/2020				80.7	110			
3/9/2021	41.6	6.4	10.2	86.9	105	87.4	33.1	65.1 (M1)
8/10/2021	23.8	6.2	8	76.1	95.9	101	31.6	76.3

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.001		<0.001	<0.001	<0.001			<0.001	
3/7/2007		<0.001				<0.001	<0.001		<0.001
5/8/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/9/2007							<0.001	<0.001	<0.001
7/7/2007	<0.001		<0.001						
7/17/2007		<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/28/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/29/2007									<0.001
11/6/2007	<0.001		<0.001	<0.001	<0.001				
11/7/2007		<0.001				<0.001	<0.001	<0.001	<0.001
5/7/2008							<0.001	<0.001	<0.001
5/8/2008				<0.001	<0.001				
5/9/2008	<0.001	<0.001	<0.001			<0.001			
12/2/2008		<0.001				<0.001			
12/3/2008	<0.001		<0.001	<0.001	<0.001		<0.001		
12/4/2008								<0.001	
12/5/2008									<0.001
4/7/2009	<0.001		<0.001	<0.001	<0.001				
4/8/2009		<0.001				<0.001			
4/14/2009							<0.001	<0.001	<0.001
9/30/2009									<0.001
10/1/2009	<0.001	<0.001	<0.001			<0.001	<0.001		
10/2/2009				<0.001	<0.001			<0.001	
4/13/2010			<0.001				<0.001	<0.001	<0.001
4/14/2010	<0.001	<0.001		<0.001	<0.001	<0.001			
10/7/2010			<0.001						
10/12/2010							<0.001	<0.001	<0.001
10/13/2010	<0.001	<0.001				<0.001			
10/14/2010				<0.001	<0.001				
4/5/2011				<0.001	<0.001				
4/6/2011	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	
10/4/2011		<0.001				<0.001			
10/6/2011			<0.001						
10/10/2011	<0.001								
10/12/2011				<0.001	<0.001		<0.001	<0.001	<0.001
4/3/2012	<0.001		<0.001						
4/4/2012				<0.001	<0.001				
4/5/2012							<0.001	<0.001	
4/9/2012									<0.001
4/10/2012		<0.001				<0.001			
9/19/2012			<0.001				<0.001		
9/24/2012	<0.001				<0.001				
9/25/2012								<0.001	<0.001
9/26/2012		<0.001		<0.001		<0.001			
3/12/2013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
3/13/2013							<0.001	<0.001	<0.001
3/4/2014	<0.001	<0.001	<0.001			<0.001			
3/10/2014	-						<0.001	<0.001	<0.001
3/11/2014				<0.001	<0.001		-	-	-
9/3/2014	<0.001	<0.001	<0.001			<0.001	<0.001		
9/8/2014			·	<0.001	<0.001				
9/9/2014					-			<0.001	<0.001

	O)A(A 1 (b -)	O)A(A 44 (b)	OMA 2 (5)	O)A(A 2 (b -)	O)A/A 4 (b =)	01110 10	014/0 10	01410 10	01410 00
4/04/0015	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
4/21/2015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
9/29/2015	0.004	<0.001		<0.001	<0.001		0.004	.0.001	.0.004
9/30/2015	<0.001	.0.004	<0.001	.0.004	0.004	<0.001	<0.001	<0.001	<0.001
3/22/2016	<0.001	<0.001	<0.001	<0.001	<0.001				
3/23/2016						<0.001			<0.001
3/24/2016							<0.001	<0.001	
5/17/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/18/2016							<0.001	<0.001	<0.001
7/5/2016	<0.001		<0.001	<0.001					
7/6/2016		<0.001			<0.001	<0.001		<0.001	
7/7/2016							<0.001		<0.001
9/7/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
9/8/2016							<0.001	<0.001	<0.001
10/18/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/19/2016							<0.001		<0.001
12/6/2016	<0.001	<0.001		<0.001	<0.001	<0.001			
12/7/2016			<0.001					<0.001	<0.001
12/8/2016							<0.001		
1/31/2017	<0.001		<0.001						
2/1/2017		<0.001		<0.001	<0.001				
2/2/2017						<0.001	<0.001	<0.001	
2/3/2017									<0.001
3/23/2017	<0.001		<0.001	<0.001					
3/24/2017		<0.001			<0.001				
3/27/2017						<0.001	<0.001	<0.001	<0.001
10/4/2017	<0.001		<0.001	<0.001	<0.001				
10/5/2017		<0.001				<0.001	<0.001	<0.001	<0.001
3/14/2018	<0.001		<0.001						
3/15/2018		<0.001		<0.001	<0.001	<0.001		<0.001	
3/16/2018							<0.001		<0.001
10/4/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/5/2018							<0.001		<0.001
4/5/2019				<0.001					
4/8/2019	<0.001	<0.001	<0.001		<0.001				
4/9/2019						<0.001	<0.001	<0.001	<0.001
9/30/2019	<0.001	<0.001	<0.001	<0.001	<0.001				
10/1/2019						<0.001	<0.001	<0.001	<0.001
3/26/2020	<0.001	<0.001	<0.001	<0.001	<0.001				
3/27/2020						<0.001			
3/30/2020							<0.001		
3/31/2020								<0.001	<0.001
9/21/2020			<0.001						
9/22/2020		<0.001							
9/23/2020	<0.001			<0.001	<0.001				<0.001
9/24/2020							<0.001		
9/25/2020						<0.001			
9/28/2020								<0.001	
3/8/2021	<0.001	<0.001		<0.001	<0.001				
3/9/2021			<0.001			<0.001	<0.001		
3/10/2021								<0.001	<0.001
8/9/2021	<0.001		<0.001	<0.001	<0.001				
8/10/2021		<0.001				<0.001	<0.001	<0.001	<0.001

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.001	<0.001	<0.001					
3/7/2007				<0.001	<0.001			<0.001
5/8/2007				<0.001				<0.001
5/9/2007	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	
7/6/2007				<0.001		<0.001	<0.001	<0.001
7/17/2007	<0.001	<0.001	<0.001		<0.001			
8/28/2007				<0.001	<0.001	<0.001	<0.001	<0.001
8/29/2007	<0.001	<0.001	<0.001					
11/6/2007				<0.001	<0.001	<0.001	<0.001	<0.001
11/7/2007	<0.001	<0.001	<0.001					
5/7/2008	<0.001	<0.001	<0.001					
5/8/2008				<0.001	<0.001	<0.001	<0.001	<0.001
12/2/2008						<0.001	<0.001	<0.001
12/3/2008				<0.001	<0.001			
12/5/2008	<0.001	<0.001	<0.001					
4/7/2009				<0.001	<0.001			
4/8/2009						<0.001	<0.001	<0.001
4/14/2009		<0.001	<0.001					
4/27/2009	<0.001							
9/30/2009	<0.001	<0.001					<0.001	<0.001
10/1/2009			<0.001	<0.001	<0.001	<0.001		
4/13/2010	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001
4/14/2010	0.001	0.001	<0.001	<0.001	0.001	0.001	0.001	0.00
10/6/2010			0.00	0.001	<0.001			
10/7/2010						<0.001		
10/12/2010	<0.001	<0.001						
10/13/2010			<0.001				<0.001	<0.001
10/14/2010				<0.001				
4/5/2011				<0.001	<0.001	<0.001	<0.001	<0.001
4/6/2011		<0.001	<0.001					
10/4/2011					<0.001	<0.001	<0.001	<0.001
10/5/2011	<0.001	<0.001						
10/12/2011			<0.001	<0.001				
4/3/2012					<0.001	<0.001	<0.001	
4/4/2012				<0.001				<0.001
4/9/2012		<0.001	<0.001					
4/10/2012	<0.001							
9/18/2012					<0.001	<0.001		
9/19/2012			<0.001				<0.001	<0.001
9/24/2012				<0.001	<0.001		<0.001	
9/25/2012		<0.001						
9/26/2012	<0.001							
3/12/2013				<0.001	<0.001	<0.001	<0.001	<0.001
3/13/2013	<0.001	<0.001	<0.001					
3/5/2014				<0.001	<0.001	<0.001	<0.001	<0.001
3/11/2014	<0.001	<0.001	<0.001					
9/3/2014			<0.001					<0.001
9/8/2014					<0.001	<0.001		
9/9/2014	<0.001	<0.001		<0.001			<0.001	
4/21/2015		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
9/29/2015				<0.001	<0.001	<0.001	<0.001	<0.001
9/30/2015	<0.001	<0.001	<0.001					

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/24/2016	<0.001							
5/17/2016				<0.001	<0.001			
5/18/2016	<0.001	<0.001				<0.001	<0.001	<0.001
5/19/2016			<0.001					
7/6/2016				<0.001	<0.001	0.0001 (J)	<0.001	<0.001
7/7/2016	<0.001	<0.001	<0.001					
9/7/2016				<0.001	<0.001	<0.001		
9/8/2016	<0.001	<0.001	<0.001				<0.001	<0.001
10/18/2016				<0.001	<0.001	<0.001	<0.001	
10/19/2016	<0.001	<0.001	<0.001					<0.001
12/7/2016	<0.001	<0.001	<0.001					
12/8/2016				<0.001	<0.001	<0.001	<0.001	<0.001
2/1/2017				<0.001	<0.001			
2/2/2017	<0.001	<0.001				<0.001	<0.001	<0.001
2/3/2017			<0.001					
3/23/2017				<0.001	<0.001			
3/24/2017						<0.001	<0.001	
3/27/2017	<0.001	<0.001	<0.001					<0.001
10/4/2017				<0.001	<0.001	<0.001		
10/5/2017	<0.001	<0.001	<0.001				<0.001	<0.001
3/14/2018							<0.001	
3/15/2018	<0.001	<0.001	<0.001			<0.001		<0.001
3/16/2018				<0.001	<0.001			
10/4/2018	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	
10/5/2018			<0.001					<0.001
4/8/2019			<0.001		<0.001	<0.001	<0.001	<0.001
4/9/2019	<0.001	<0.001		<0.001				
10/1/2019	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/26/2020			<0.001					
3/27/2020							<0.001	<0.001
3/30/2020						<0.001		
3/31/2020	<0.001	<0.001		<0.001	<0.001			
9/23/2020	-0.001	<0.001	<0.001			-0.004	-0.001	-0.001
9/24/2020	<0.001			-0.001	-0.001	<0.001	<0.001	<0.001
9/25/2020 3/9/2021	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	<0.001 <0.001	<0.001		<0.001	<0.001 <0.001	<0.001	<0.001 <0.001	<0.001 <0.001
8/10/2021	~U.UU I	~U.UU I	<0.001	<0.001	~U.UU I	<0.001	~U.UU I	~U.UU I

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	78	112	233	451	686				
3/23/2016						182			208
3/24/2016							205	232	
5/17/2016	67	121	197	430	533	178			
5/18/2016								245	213
5/19/2016							204		
7/5/2016	87		218	418					
7/6/2016		98			646	135		231	
7/7/2016							181		212
9/7/2016	125	128	240	443	493	165			
9/8/2016							193	252	201
10/18/2016	133	115	221	415	455	113		288	
10/19/2016							231		276
12/6/2016	151	153		653	597	194			
12/7/2016			235					220	186
12/8/2016			200				166	220	
1/31/2017	135		253				100		
2/1/2017		183	200	615	638				
2/2/2017		100		010	000	160	191	220	
2/3/2017						100	101	220	219
3/23/2017	72		190	506					210
3/24/2017		121	130	300	579				
3/27/2017		121			373	252	427	393	239
10/4/2017	91		192	492	440	232	427	393	233
10/5/2017	31	113	132	432	440	177	207	242	216
3/14/2018	99	113	204			177	207	242	210
3/15/2018	33	115	204	448	381	216		213	
3/16/2018		110		770	301	210	199	213	216
10/4/2018	112	135	233	472	490	222	199	231	210
10/5/2018	112	155	200	7/2	430	222	235	231	256
4/5/2019				456			233		230
4/8/2019	91	142	209	430	522				
4/9/2019	91	142	209		322	213	212	253	267
9/30/2019	126	134	242	475	455	213	212	203	207
10/1/2019	120	134	242	4/3	400	186	196	229	271
3/26/2020	73	76	222	450	466	100	190	229	2/1
3/27/2020	75	70	222	430		118			
3/30/2020						110	217		
3/31/2020							21/	233	267
9/21/2020			204					200	207
9/22/2020		107	204						
9/23/2020	117	107		473	421				277
9/24/2020	117			473	421		181		211
9/25/2020						153	101		
9/28/2020						100		214	
3/8/2021	96	107		415	460			Z 14	
	30	107	227 (D6)	410		201	192		
3/9/2021			227 (D6)			201	192	222 (DE)	241
3/10/2021 8/9/2021	96		245	416	371			223 (D6)	241
8/10/2021		107	240	410	3/1	185	224	209	270
0/10/2021		107				100	224	203	210

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		206	168	379	310	253	239	204
3/24/2016	110							
5/17/2016				349	280			
5/18/2016	153	212				276		
5/19/2016			173				236	215
7/6/2016				346	280	239	218	204
7/7/2016	151	206	144					
9/7/2016				382	324	247		
9/8/2016	285	214	179				225	201
10/18/2016				461	307	233	200	
10/19/2016	314	269	209					272
12/7/2016	252	199	156					
12/8/2016				379	281	373	196	227
2/1/2017				511	354			
2/2/2017	138	211				236	231	209
2/3/2017			276					
3/23/2017				443	302			
3/24/2017						291	250	
3/27/2017	88	324	295					305
10/4/2017				359	365	264		
10/5/2017	111	219	192				309	204
12/14/2017					406		322	
1/18/2018					404		322	
3/14/2018							263	
3/15/2018	219	190	169			254		280
3/16/2018				390	317			
10/4/2018	152	215		385	371	287	292	
10/5/2018			210					236
4/8/2019			191		353	295	438	264
4/9/2019	167	222		371				
10/1/2019	336	220	203	380	348	277	305	237
11/6/2019	336							
11/26/2019	236							
3/26/2020			193					
3/27/2020							329	192
3/30/2020						216		
3/31/2020	111	195		408	349			
9/23/2020		231	186					
9/24/2020	286					254	307	179
9/25/2020				367	345			
3/9/2021	243	178	216	364	298	299	308	209
8/10/2021	121	206	178	363	318	210	425	208

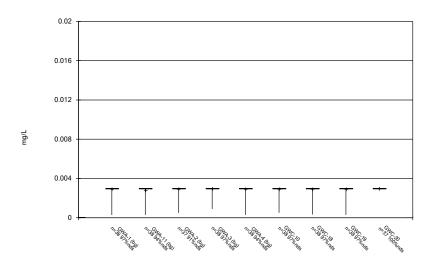
	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.01	(0,	<0.01	<0.01	<0.01			<0.01	
3/7/2007		<0.01				<0.01	<0.01		<0.01
5/8/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
5/9/2007	0.01	0.01	0.01	0.01	0.01	0.01	<0.01	<0.01	<0.01
7/7/2007	<0.01		<0.01				-0.01	-0.01	-0.01
7/17/2007	10.01	<0.01	·0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8/28/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40.01
	\0.01	~0.01	~0.01	~0.01	~0.01	\0.01	\0.01	~0.01	<0.01
8/29/2007	<0.01		-0.01	-0.01	-0.01				\(\text{0.01}\)
11/6/2007	<0.01	<0.01	<0.01	<0.01	<0.01	-0.01	-0.01	-0.01	<0.01
11/7/2007		<0.01				<0.01	<0.01	<0.01	
5/7/2008				-0.01	10.01		<0.01	<0.01	<0.01
5/8/2008	-0.01	10.01	-0.01	<0.01	<0.01	-0.01			
5/9/2008	<0.01	<0.01	<0.01			<0.01			
12/2/2008	.0.04	<0.01			.0.04	<0.01	.0.04		
12/3/2008	<0.01		<0.01	<0.01	<0.01		<0.01		
12/4/2008								<0.01	
12/5/2008									<0.01
4/7/2009	<0.01		<0.01	<0.01	<0.01				
4/8/2009		<0.01				<0.01			
4/14/2009							<0.01	<0.01	<0.01
9/30/2009									<0.01
10/1/2009	<0.01	<0.01	<0.01			<0.01	<0.01		
10/2/2009				<0.01	<0.01			<0.01	
4/13/2010			<0.01				<0.01	<0.01	<0.01
4/14/2010	<0.01	<0.01		<0.01	<0.01	<0.01			
10/7/2010			<0.01						
10/12/2010							<0.01	<0.01	<0.01
10/13/2010	<0.01	<0.01				<0.01			
10/14/2010				<0.01	<0.01				
4/5/2011				<0.01	<0.01				
4/6/2011	<0.01	<0.01	<0.01			<0.01	<0.01	<0.01	
10/4/2011		<0.01				<0.01			
10/6/2011			<0.01						
10/10/2011	<0.01								
10/12/2011				<0.01	<0.01		<0.01	<0.01	<0.01
4/3/2012	<0.01		<0.01						
4/4/2012				<0.01	<0.01				
4/5/2012							<0.01	<0.01	
4/9/2012									<0.01
4/10/2012		<0.01				<0.01			
9/19/2012			<0.01				<0.01		
9/24/2012	<0.01				<0.01				
9/25/2012								<0.01	<0.01
9/26/2012		<0.01		<0.01		<0.01			
3/12/2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
3/13/2013							<0.01	<0.01	<0.01
9/9/2013			<0.01						
9/10/2013		<0.01		<0.01	<0.01	<0.01	<0.01		
9/11/2013	<0.01							<0.01	<0.01
3/4/2014	<0.01	<0.01	<0.01			<0.01			
3/10/2014							<0.01	<0.01	<0.01
3/11/2014				<0.01	<0.01				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.01	<0.01	<0.01			<0.01	<0.01		
9/8/2014				<0.01	<0.01				
9/9/2014								<0.01	<0.01
4/21/2015	<0.01	<0.01		<0.01	<0.01	<0.01			
4/22/2015			<0.01				<0.01	<0.01	
4/23/2015									<0.01
9/29/2015		<0.01		<0.01	<0.01				
9/30/2015	<0.01		<0.01			<0.01	<0.01	<0.01	<0.01
3/22/2016	<0.01	<0.01	<0.01	<0.01	<0.01				
3/23/2016						<0.01			<0.01
3/24/2016							<0.01	<0.01	
9/7/2016	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
9/8/2016							<0.01	<0.01	<0.01
3/23/2017	<0.01		<0.01	<0.01					
3/24/2017		<0.01			<0.01				
3/27/2017						<0.01	<0.01	<0.01	<0.01
10/4/2017	<0.01		<0.01	<0.01	<0.01				
10/5/2017		<0.01				<0.01	<0.01	<0.01	<0.01
3/14/2018	<0.01		<0.01						
3/15/2018		<0.01		<0.01	<0.01	<0.01		<0.01	
3/16/2018							<0.01		<0.01
10/4/2018	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	
10/5/2018							<0.01		<0.01
4/5/2019				<0.01					
4/8/2019	<0.01	<0.01	<0.01		<0.01				
4/9/2019						<0.01	<0.01	<0.01	<0.01
9/30/2019	<0.01	<0.01	<0.01	<0.01	<0.01				
10/1/2019						<0.01	<0.01	<0.01	<0.01
3/26/2020	<0.01	<0.01	<0.01	<0.01	<0.01				
3/27/2020						<0.01			
3/30/2020							<0.01		
3/31/2020								<0.01	<0.01
9/21/2020			<0.01						
9/22/2020		<0.01							
9/23/2020	<0.01			<0.01	<0.01				<0.01
9/24/2020							<0.01		
9/25/2020						<0.01			
9/28/2020								<0.01	
3/8/2021	<0.01	<0.01		<0.01	<0.01				
3/9/2021			<0.01			<0.01	<0.01		
3/10/2021								<0.01	<0.01
8/9/2021	0.0019 (J)		<0.01	<0.01	<0.01				
8/10/2021	• /	<0.01				<0.01	<0.01	<0.01	<0.01

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.01	<0.01	<0.01					
3/7/2007				<0.01	<0.01			<0.01
5/8/2007				<0.01				<0.01
5/9/2007	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
7/6/2007				<0.01		<0.01	<0.01	<0.01
7/17/2007	<0.01	<0.01	<0.01		<0.01			
8/28/2007				<0.01	<0.01	<0.01	<0.01	<0.01
8/29/2007	<0.01	<0.01	<0.01					
11/6/2007				<0.01	<0.01	<0.01	<0.01	<0.01
11/7/2007	<0.01	<0.01	<0.01					
5/7/2008	<0.01	<0.01	<0.01					
5/8/2008				<0.01	<0.01	<0.01	<0.01	<0.01
12/2/2008						<0.01	<0.01	<0.01
12/3/2008				<0.01	<0.01			
12/5/2008	<0.01	<0.01	<0.01					
4/7/2009				<0.01	<0.01			
4/8/2009						<0.01	<0.01	0.0029
4/14/2009		<0.01	<0.01					
4/27/2009	<0.01							
9/30/2009	<0.01	<0.01					<0.01	<0.01
10/1/2009			<0.01	<0.01	<0.01	0.0039		
4/13/2010	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01
4/14/2010			<0.01	<0.01				
10/6/2010					<0.01			
10/7/2010						<0.01		
10/12/2010	<0.01	<0.01						
10/13/2010			<0.01				<0.01	<0.01
10/14/2010				<0.01				
4/5/2011				<0.01	<0.01	0.0025	<0.01	<0.01
4/6/2011		<0.01	<0.01					
10/4/2011					<0.01	0.0027	<0.01	<0.01
10/5/2011	<0.01	<0.01						
10/12/2011			<0.01	<0.01				
4/3/2012					<0.01	<0.01	<0.01	
4/4/2012				<0.01				<0.01
4/9/2012		<0.01	<0.01					
4/10/2012	<0.01							
9/18/2012					<0.01	<0.01		
9/19/2012			<0.01				<0.01	<0.01
9/24/2012				<0.01				
9/25/2012		<0.01						
9/26/2012	<0.01							
3/12/2013				<0.01	<0.01	<0.01	<0.01	<0.01
3/13/2013	<0.01	<0.01	<0.01					
9/9/2013					<0.01			
9/10/2013	.0.01	.0.01	<0.01	<0.01		<0.01	<0.01	<0.01
9/11/2013	<0.01	<0.01						
3/5/2014	10.01	10.01	-0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/11/2014	<0.01	<0.01	<0.01					10.01
9/3/2014			<0.01		0.04	0.0010 ("		<0.01
9/8/2014	0.0020 / 15	-0.01		0.00003 (!)	<0.01	0.0012 (J)	-0.01	
9/9/2014	0.0029 (J)	<0.01		0.00093 (J)			<0.01	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.01		0.0015 (J)		<0.01
4/22/2015					<0.01		<0.01	
4/23/2015		<0.01	<0.01					
9/29/2015				<0.01	<0.01	<0.01	<0.01	<0.01
9/30/2015	0.001 (J)	<0.01	<0.01					
3/23/2016		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/24/2016	<0.01							
9/7/2016				<0.01	<0.01	<0.01		
9/8/2016	<0.01	<0.01	<0.01				<0.01	<0.01
3/23/2017				<0.01	<0.01			
3/24/2017						<0.01	<0.01	
3/27/2017	<0.01	<0.01	<0.01					<0.01
10/4/2017				<0.01	<0.01	<0.01		
10/5/2017	<0.01	<0.01	<0.01				<0.01	<0.01
3/14/2018							<0.01	
3/15/2018	<0.01	<0.01	<0.01			<0.01		<0.01
3/16/2018				<0.01	<0.01			
10/4/2018	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	
10/5/2018			<0.01					<0.01
4/8/2019			0.00017 (J)		<0.01	<0.01	<0.01	<0.01
4/9/2019	<0.01	<0.01		<0.01				
10/1/2019	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/26/2020			<0.01					
3/27/2020							<0.01	<0.01
3/30/2020						<0.01		
3/31/2020	<0.01	<0.01		<0.01	<0.01			
9/23/2020		<0.01	<0.01					
9/24/2020	<0.01					<0.01	<0.01	<0.01
9/25/2020				<0.01	<0.01			
3/9/2021	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8/10/2021	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.01		<0.01	<0.01	<0.01			<0.01	
3/7/2007		<0.01				<0.01	<0.01		<0.01
5/8/2007	<0.01	0.0025	<0.01	<0.01	<0.01	<0.01			
5/9/2007							0.0026	0.0025	<0.01
7/7/2007	<0.01		<0.01						
7/17/2007		0.0047		0.0033	<0.01	0.0069	0.0043	0.0035	<0.01
8/28/2007	<0.01	0.0033	0.0026	<0.01	0.0026	<0.01	<0.01	<0.01	
8/29/2007									<0.01
11/6/2007	<0.01		<0.01	<0.01	<0.01				
11/7/2007		<0.01				<0.01	<0.01	<0.01	<0.01
5/7/2008							<0.01	<0.01	<0.01
5/8/2008				0.0033	0.0037				
5/9/2008	<0.01	<0.01	<0.01			<0.01			
12/2/2008		<0.01				<0.01			
12/3/2008	<0.01		<0.01	0.0054	0.003		<0.01		
12/4/2008	0.01		0.0.	0.0001	0.000		0.01	<0.01	
12/5/2008								0.01	<0.01
4/7/2009	0.0028		<0.01	<0.01	0.0045				0.01
4/8/2009	0.0020	<0.01	-0.01	-0.01	0.0040	<0.01			
4/14/2009		10.01				10.01	<0.01	<0.01	<0.01
9/30/2009							40.01	10.01	<0.01
10/1/2009	<0.01	<0.01	<0.01			<0.01	<0.01		~0.01
	<0.01	\0.01	<0.01	z0.01	0.0027	<0.01	<0.01	-0.01	
10/2/2009			-0.01	<0.01	0.0027		-0.01	<0.01	-0.01
4/13/2010	-0.01	-0.01	<0.01	0.000	-0.01	-0.01	<0.01	0.0043	<0.01
4/14/2010	<0.01	<0.01	-0.01	0.003	<0.01	<0.01			
10/7/2010			<0.01				-0.01	-0.01	10.04
10/12/2010	-0.01	-0.01				-0.01	<0.01	<0.01	<0.01
10/13/2010	<0.01	<0.01		.0.04	0.0044	<0.01			
10/14/2010				<0.01	0.0041				
4/5/2011	-0.01	-0.01	-0.01	<0.01	<0.01	-0.01	-0.01	-0.01	
4/6/2011	<0.01	<0.01	<0.01			<0.01	<0.01	<0.01	
10/4/2011		<0.01	.0.04			<0.01			
10/6/2011			<0.01						
10/10/2011	<0.01			.0.04	0.0000		0.04	0.04	.0.04
10/12/2011	0.04		0.04	<0.01	0.0033		<0.01	<0.01	<0.01
4/3/2012	<0.01		<0.01						
4/4/2012				<0.01	<0.01		0.04	0.04	
4/5/2012							<0.01	<0.01	.0.04
4/9/2012									<0.01
4/10/2012		<0.01				<0.01			
9/19/2012			<0.01				<0.01		
9/24/2012	<0.01				0.0039				
9/25/2012								<0.01	<0.01
9/26/2012		<0.01		<0.01		<0.01			
3/12/2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
3/13/2013							<0.01	<0.01	<0.01
9/9/2013			<0.01						
9/10/2013		<0.01		<0.01	0.0035	<0.01	<0.01		
9/11/2013	<0.01							<0.01	<0.01
3/4/2014	0.0026	<0.01	0.0035			0.0026			
3/10/2014							0.0022 (J)	0.0031	0.0024 (J)
3/11/2014				0.0037	0.0045				

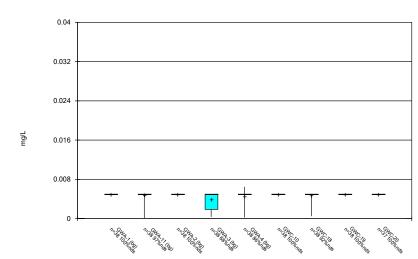

9/3/2014	GWA-1 (bg) 0.001 (J)	GWA-11 (bg) 0.00074 (J)	GWA-2 (bg) 0.0015 (J)	GWA-3 (bg)	GWA-4 (bg)	GWC-10 0.00079 (J)	GWC-18 0.0013 (J)	GWC-19	GWC-20
9/8/2014	(-)	(0)	(0)	0.00087 (J)	0.0026	(0)	(0)		
9/9/2014				(-,				0.00098 (J)	0.00078 (J)
4/21/2015	<0.01	<0.01		0.002 (J)	0.0028	<0.01		(0)	(0)
4/22/2015	0.01	0.01	<0.01	0.002 (0)	0.0020	0.0.	0.0019 (J)	0.0015 (J)	
4/23/2015			0.01				0.00.00	0.00.10 (0)	<0.01
9/29/2015		0.0024 (J)		0.0021 (J)	0.008 (J)				
9/30/2015	<0.01	0.002 (0)	0.0026 (J)	0.002 (0)	0.000 (0)	0.0018 (J)	0.0037 (J)	0.002 (J)	0.0016 (J)
3/22/2016	<0.01	<0.01	<0.01	<0.01	<0.01	0.00.0 (0)	0.0007 (0)	0.002 (0)	0.0010 (0)
3/23/2016	0.01	0.01	0.01	0.01	0.01	<0.01			<0.01
3/24/2016						0.0.	<0.01	<0.01	0.01
9/7/2016	0.0047 (J)	0.0023 (J)	0.0024 (J)	0.0034 (J)	0.0035 (J)	<0.01	0.01	0.0.	
9/8/2016	0.0017 (0)	0.0020 (0)	0.002 (0)	0.000 (0)	0.0000 (0)	0.01	0.0024 (J)	0.0029 (J)	<0.01
3/23/2017	<0.01		<0.01	0.0031 (J)				(0)	
3/24/2017	0.01	0.0068 (J)	0.01	0.000 (0)	0.0095 (J)				
3/27/2017		0.0000 (0)			0.0000 (0)	0.0014 (J)	<0.01	0.0019 (J)	0.0017 (J)
10/4/2017	<0.01		0.0017 (J)	<0.01	0.0031 (J)	0.0011(0)	0.01	0.0010 (0)	0.0017 (0)
10/5/2017		<0.01	(-)			<0.01	<0.01	0.0024 (J)	0.0016 (J)
3/14/2018	0.0032 (J)		0.0023 (J)						(5)
3/15/2018	(,)	0.0042 (J)	(-)	0.0028 (J)	0.0041 (J)	<0.01		<0.01	
3/16/2018		(-,		(-,	(-,		<0.01		<0.01
10/4/2018	0.003 (J)	0.0046 (J)	0.0041 (J)	0.0043 (J)	0.0058 (J)	0.0033 (J)		0.013	
10/5/2018	()	. ,	. ,	. ,	()	. ,	0.0029 (J)		<0.01
4/5/2019				0.0013 (J)			(-,		
4/8/2019	<0.01	0.0024 (J)	0.0014 (J)	. ,	0.0023 (J)				
4/9/2019		. ,	. ,		()	<0.01	0.0037 (J)	<0.01	<0.01
9/30/2019	0.0032 (J)	0.004 (J)	0.0043 (J)	0.0045 (J)	0.0059 (J)		· /		
10/1/2019	, ,	.,	.,	.,	. ,	0.0049 (J)	0.006 (J)	0.0049 (J)	0.0063 (J)
3/26/2020	<0.01	<0.01	<0.01	<0.01	<0.01	.,	. ,	, ,	, ,
3/27/2020						<0.01			
3/30/2020							<0.01		
3/31/2020								<0.01	<0.01
9/21/2020			<0.01						
9/22/2020		<0.01							
9/23/2020	0.0025 (J)			<0.01	0.0025 (J)				<0.01
9/24/2020	, ,				. ,		<0.01		
9/25/2020						<0.01			
9/28/2020								0.0033 (J)	
3/8/2021	<0.01	<0.01		<0.01	0.0034 (J)				
3/9/2021			<0.01		. ,	<0.01	<0.01		
3/10/2021								<0.01	<0.01
8/9/2021	<0.01		<0.01	<0.01	<0.01				
8/10/2021		<0.01				<0.01	<0.01	<0.01	<0.01

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.01	<0.01	0.0054					
3/7/2007				0.0064	<0.01			<0.01
5/8/2007				<0.01				0.0027
5/9/2007	<0.01	0.0035	0.0041		<0.01	45 (o)	0.0038	
7/6/2007				<0.01		16 (o)	<0.01	0.0032
7/17/2007	0.0031	<0.01	0.005		<0.01			
8/28/2007				0.0025	<0.01	11 (o)	<0.01	0.0026
8/29/2007	0.0056	<0.01	0.0044					
11/6/2007				<0.01	<0.01	8.3	<0.01	<0.01
11/7/2007	0.0059	<0.01	<0.01					
5/7/2008	0.0059	<0.01	<0.01					
5/8/2008				<0.01	<0.01	5	<0.01	<0.01
12/2/2008						3.2	<0.01	<0.01
12/3/2008				<0.01	<0.01			
12/5/2008	<0.01	<0.01	<0.01					
4/7/2009				0.0025	<0.01			
4/8/2009						2.4	<0.01	<0.01
4/14/2009		<0.01	<0.01					
4/27/2009	0.0051							
9/30/2009	0.0066	<0.01					<0.01	<0.01
10/1/2009			<0.01	<0.01	<0.01	1.9		
4/13/2010	0.0041	<0.01			<0.01	1.9	<0.01	<0.01
4/14/2010			<0.01	<0.01				
10/6/2010					<0.01			
10/7/2010						1.6		
10/12/2010	0.004	<0.01						
10/13/2010			<0.01				<0.01	<0.01
10/14/2010				<0.01				
4/5/2011				0.0025	<0.01	1.1	<0.01	<0.01
4/6/2011		<0.01	<0.01					
10/4/2011					<0.01	1.1	<0.01	<0.01
10/5/2011	0.0043	<0.01						
10/12/2011			<0.01	0.0037				
4/3/2012					<0.01	0.75	<0.01	
4/4/2012				<0.01				<0.01
4/9/2012		<0.01	<0.01					
4/10/2012	0.0108							
9/18/2012					<0.01	0.88		
9/19/2012			<0.01				<0.01	<0.01
9/24/2012				<0.01				
9/25/2012		<0.01						
9/26/2012	0.0066							
3/12/2013				<0.01	<0.01	0.23	<0.01	<0.01
3/13/2013	0.0035	<0.01	<0.01					
9/9/2013					<0.01			
9/10/2013			<0.01	<0.01		0.36	<0.01	<0.01
9/11/2013	0.005	<0.01						
3/5/2014				0.0028	0.0026	0.33	0.0028	0.0029
3/11/2014	0.005	0.0037	0.0033					
9/3/2014			0.0014 (J)					0.0011 (J)
9/8/2014					0.00055 (J)	0.47		
9/9/2014	0.0041	0.0006 (J)		0.00058 (J)			0.0014 (J)	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				0.0043		0.27		<0.01
4/22/2015					<0.01		<0.01	
4/23/2015		<0.01	0.0024 (J)					
9/29/2015				0.0031 (J)	0.0026 (J)	0.359	0.0016 (J)	0.0034 (J)
9/30/2015	0.0031 (J)	0.0021 (J)	0.0041 (J)					
3/23/2016		<0.01	<0.01	0.00272 (J)	<0.01	0.102	<0.01	<0.01
3/24/2016	0.00393 (J)							
9/7/2016				<0.01	0.0024 (J)	0.24		
9/8/2016	0.0047 (J)	<0.01	<0.01				<0.01	<0.01
3/23/2017				0.0026 (J)	0.0035 (J)			
3/24/2017						0.0512	0.0031 (J)	
3/27/2017	0.0036 (J)	<0.01	0.0014 (J)					0.0014 (J)
10/4/2017				<0.01	<0.01	0.159		
10/5/2017	0.0065 (J)	<0.01	0.0014 (J)				<0.01	0.0013 (J)
3/14/2018							0.0053 (J)	
3/15/2018	0.0053 (J)	<0.01	0.0039 (J)			0.12		<0.01
3/16/2018				<0.01	0.0029 (J)			
10/4/2018	0.0077 (J)	0.003 (J)		0.0028 (J)	0.0039 (J)	0.22	0.0031 (J)	
10/5/2018			0.0048 (J)					0.0044 (J)
4/8/2019			0.0016 (J)		0.0013 (J)	0.051	0.0012 (J)	0.0016 (J)
4/9/2019	0.0041 (J)	<0.01		<0.01				
10/1/2019	0.0078 (J)	0.0054 (J)	0.0057 (J)	0.0053 (J)	0.0056 (J)	0.12	0.0055 (J)	0.0052 (J)
3/26/2020			<0.01					
3/27/2020							<0.01	<0.01
3/30/2020						0.051		
3/31/2020	<0.01	<0.01		<0.01	<0.01			
9/23/2020		<0.01	0.0022 (J)					
9/24/2020	0.0046 (J)					0.07	<0.01	<0.01
9/25/2020				<0.01	<0.01			
3/9/2021	0.0033 (J)	<0.01	<0.01	<0.01	<0.01	0.057	<0.01	<0.01
8/10/2021	<0.01	<0.01	<0.01	<0.01	<0.01	0.093	<0.01	<0.01

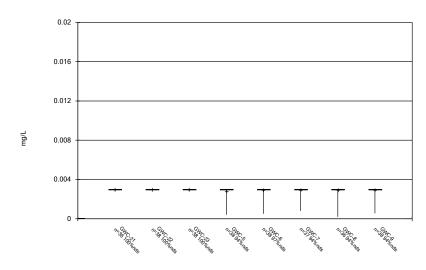
FIGURE B.

Box & Whiskers Plot



Constituent: Antimony Analysis Run 10/21/2021 1:24 PM

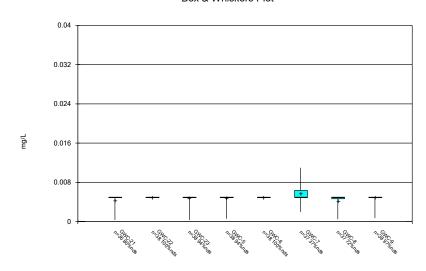
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Arsenic Analysis Run 10/21/2021 1:24 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

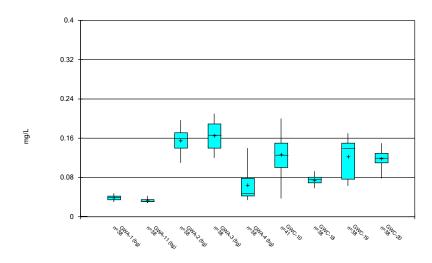
Box & Whiskers Plot



Constituent: Antimony Analysis Run 10/21/2021 1:24 PM

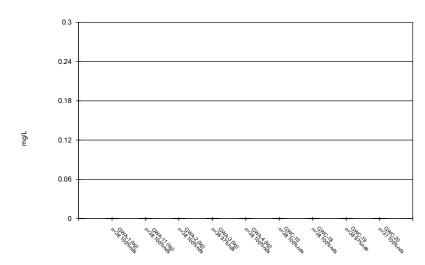
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

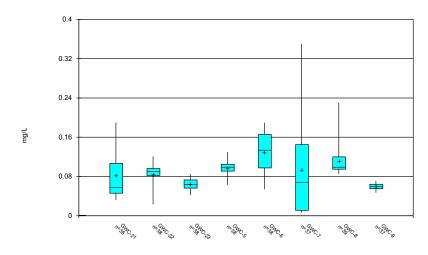
Constituent: Arsenic Analysis Run 10/21/2021 1:24 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

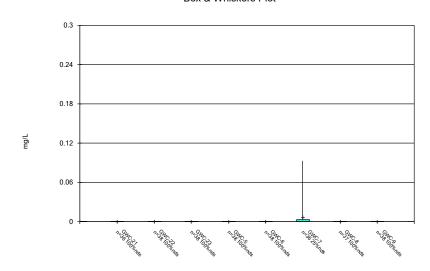
Constituent: Barium Analysis Run 10/21/2021 1:24 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

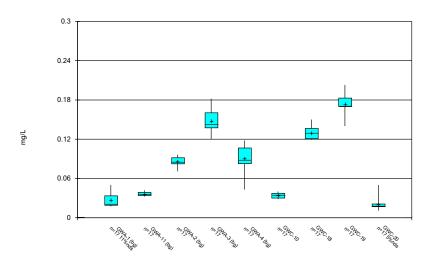
Constituent: Beryllium Analysis Run 10/21/2021 1:24 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

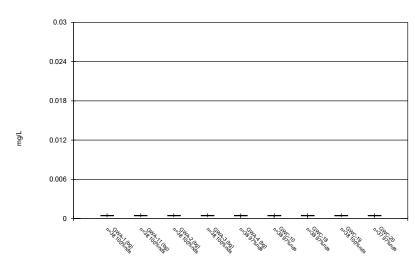
Constituent: Barium Analysis Run 10/21/2021 1:24 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

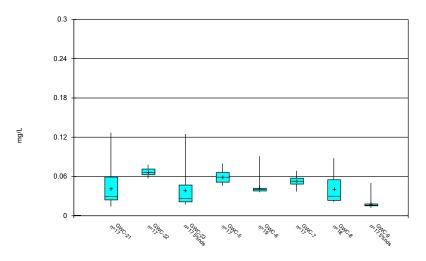
Constituent: Beryllium Analysis Run 10/21/2021 1:24 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

Constituent: Boron Analysis Run 10/21/2021 1:24 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

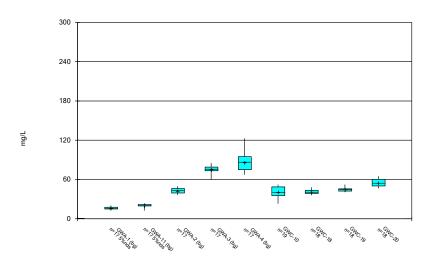
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Cadmium Analysis Run 10/21/2021 1:24 PM

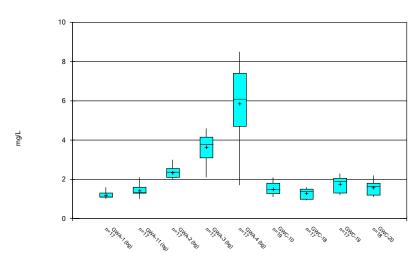
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot


Constituent: Boron Analysis Run 10/21/2021 1:24 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

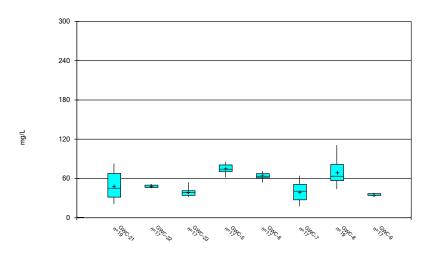
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Box & Whiskers Plot


Box & Whiskers Plot

Constituent: Calcium Analysis Run 10/21/2021 1:24 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

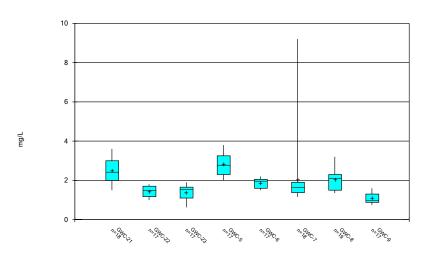
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

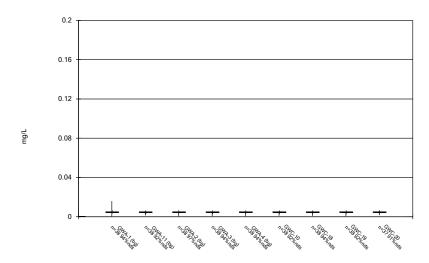
Constituent: Chloride Analysis Run 10/21/2021 1:24 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot



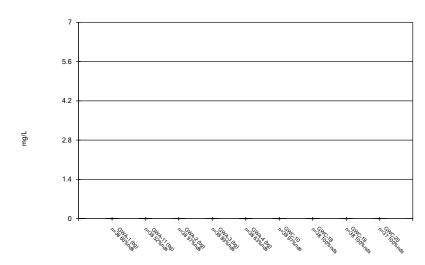
Constituent: Calcium Analysis Run 10/21/2021 1:24 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Box & Whiskers Plot

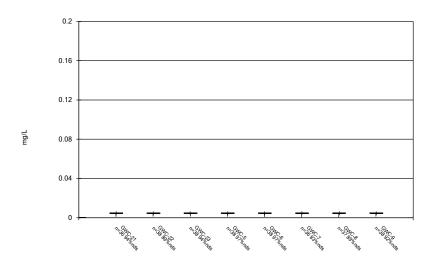
Box & Whiskers Plot



Constituent: Chromium Analysis Run 10/21/2021 1:24 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

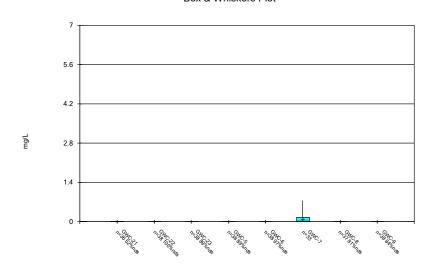
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Cobalt Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

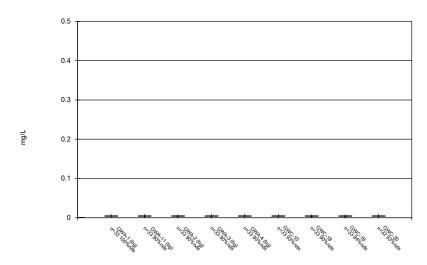
Box & Whiskers Plot



Constituent: Chromium Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

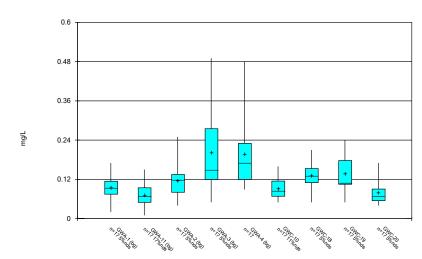
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Cobalt Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

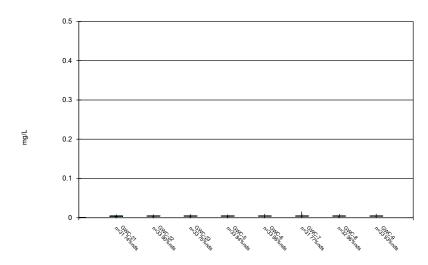
Box & Whiskers Plot



Constituent: Copper Analysis Run 10/21/2021 1:25 PM

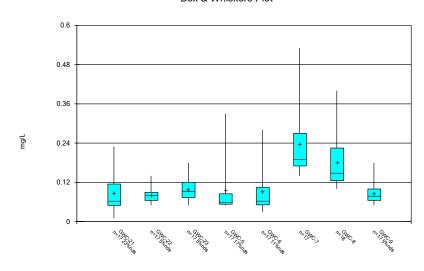
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

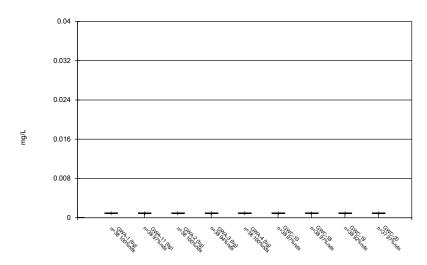
Constituent: Fluoride Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

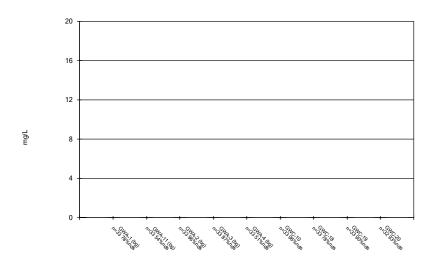
Constituent: Copper Analysis Run 10/21/2021 1:25 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

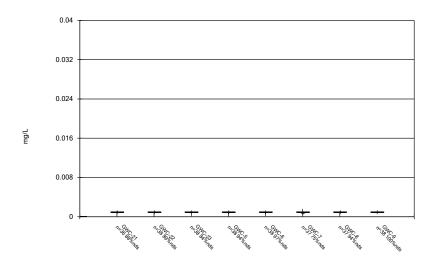
Constituent: Fluoride Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

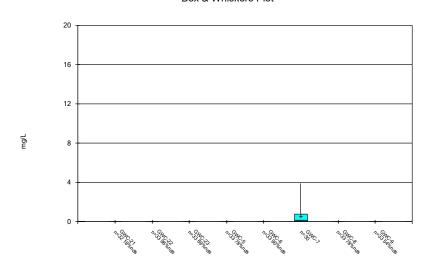
Constituent: Lead Analysis Run 10/21/2021 1:25 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

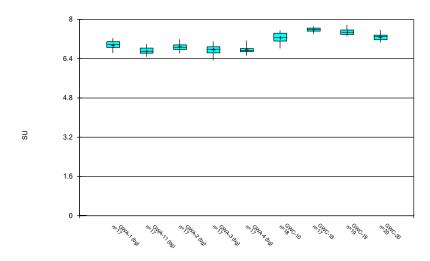
Constituent: Nickel Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

Constituent: Lead Analysis Run 10/21/2021 1:25 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

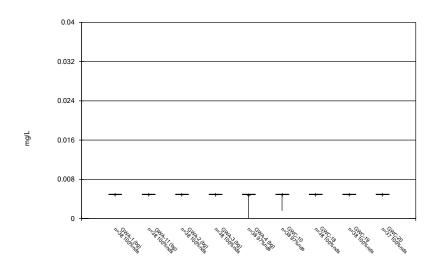
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Nickel Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

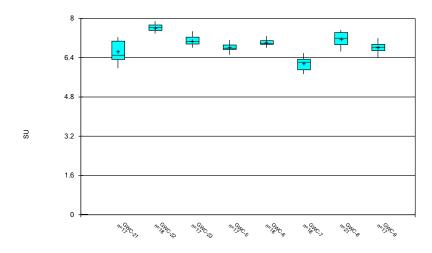
Box & Whiskers Plot



Constituent: pH Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

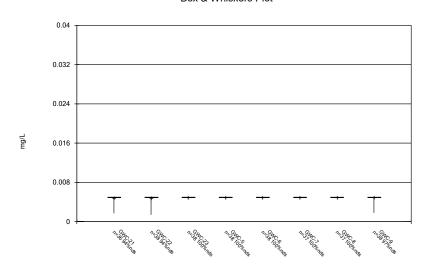
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Box & Whiskers Plot

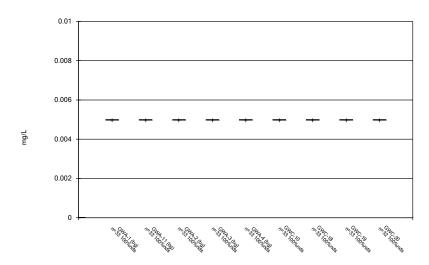
Constituent: Selenium Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot

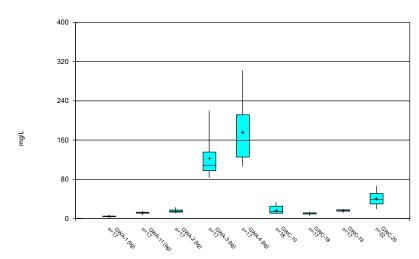


Constituent: pH Analysis Run 10/21/2021 1:25 PM

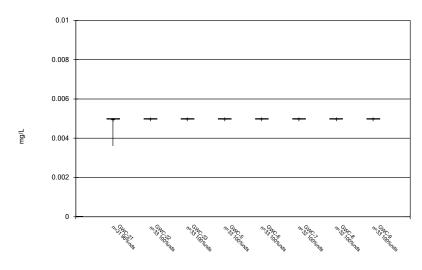

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Box & Whiskers Plot

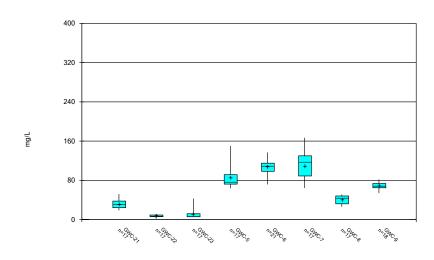


Constituent: Silver Analysis Run 10/21/2021 1:25 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

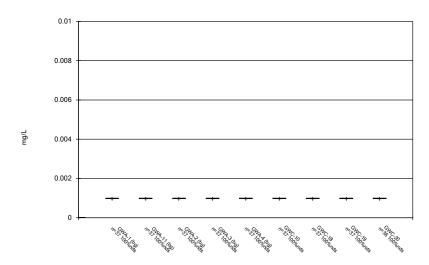

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

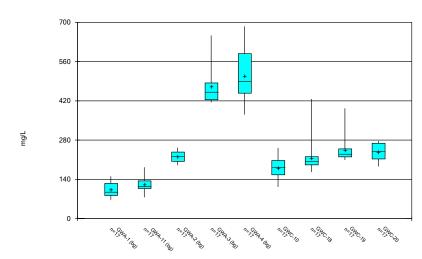

Box & Whiskers Plot

Constituent: Silver Analysis Run 10/21/2021 1:25 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

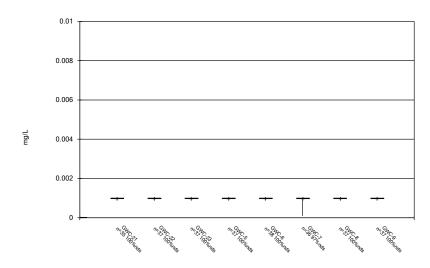
Box & Whiskers Plot

Constituent: Sulfate Analysis Run 10/21/2021 1:25 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

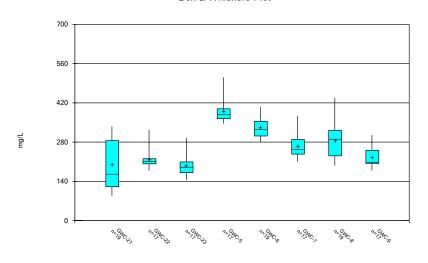
Constituent: Thallium Analysis Run 10/21/2021 1:25 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

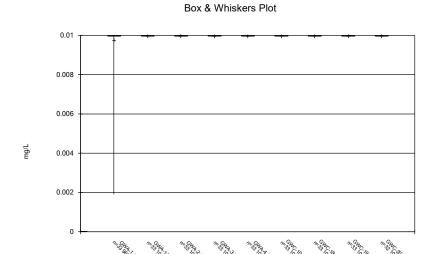

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 10/21/2021 1:25 PM

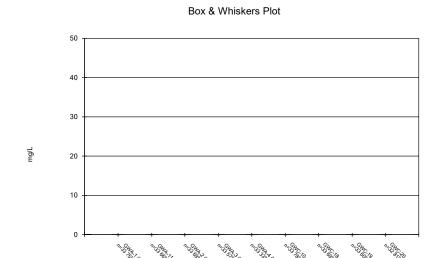
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

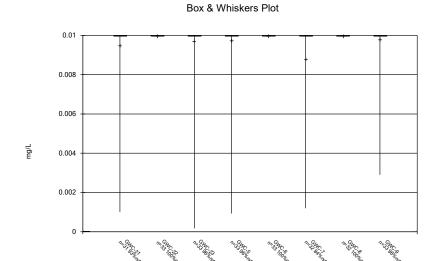
Constituent: Thallium Analysis Run 10/21/2021 1:25 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Box & Whiskers Plot


Constituent: Total Dissolved Solids Analysis Run 10/21/2021 1:25 PM

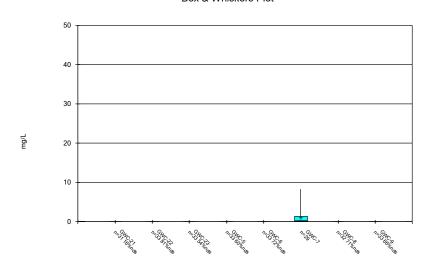
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



Constituent: Vanadium Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Zinc Analysis Run 10/21/2021 1:25 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



Constituent: Vanadium Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot

Constituent: Zinc Analysis Run 10/21/2021 1:25 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

FIGURE C.

Outlier Summary

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 3:40 PM

	GWC-8 Antin	nony (mg/L) GWC-7 Arse	_{nic} (mg/L) GWC-9 Bariu	_{um} (mg/L) GWC-7 Bery	_{llium} (mg/L) GWC-7 Cadr	_{nium} (mg/L) GWC-8 Calci	_{um (mg/L)} GWC-20 Chl	oride (mg/L) GWC-7 Chro	omium (mg/L) GWC-7 Coba	alt (mg/L) GWC-7 Copper (mg/L)
5/9/2007		0.038 (o)		0.28 (o)	0.023 (o)			0.11 (o)	6.5 (o)	0.44 (o)
7/6/2007					0.0081 (o)				2.1 (o)	
8/28/2007									1.4 (o)	
11/6/2007	0.0064 (o)								1.1 (o)	
4/5/2011			0.035 (o)							
10/5/2017							5.5 (o)			
10/4/2018						264 (o)				
10/4/2018						264 (o)	,			

GWC-7 Nickel (mg/L) GWC-7 Zinc (mg/L)

5/9/2007 18 (o) 45 (o) 7/6/2007 5.9 (o) 16 (o) 8/28/2007 11 (o) 11/6/2007

4/5/2011 10/5/2017 10/4/2018

FIGURE D.

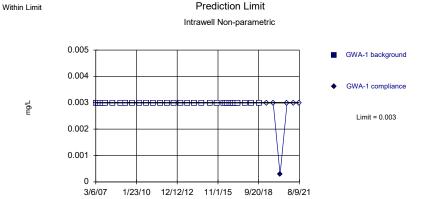
Appendix I Intrawell Prediction Limits - Significant Results

	-														
	Plant H	lammond	Client: Sou	thern Compa	any Data	: Huffaker F	toad Landfill	Printed 9/2	2/2021	, 3:49 PM					
Constituent	Well	Upper Lim	Lower Lim	<u>Date</u>	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method		
Barium (mg/L)	GWC-18	0.08974	n/a	8/10/2021	0.093	Yes 32	0.07311	0.006987	0	None	No	0.0002926	Param Intra 1 of 2		
Barium (mg/L)	GWC-20	0.1358	n/a	8/10/2021	0.14	Yes 31	0.001502	0.0004195	0	None	x^3	0.0002926	Param Intra 1 of 2		
Barium (mg/L)	GWC-23	0.08464	n/a	8/10/2021	0.085	Yes 32	0.06272	0.009212	0	None	No	0.0002926	Param Intra 1 of 2		
Barium (mg/L)	GWC-8	0.1227	n/a	8/10/2021	0.23	Yes 31	0.316	0.01439	0	None	sqrt(x)	0.0002926	Param Intra 1 of 2		
Nickel (ma/L)	GWC-8	0.005	n/a	8/10/2021	0.0073	Yes 26	n/a	n/a	96.15	n/a	n/a	0.002667	NP Intra (NDs) 1 of 2		

Appendix I Intrawell Prediction Limits - All Results

Printed 9/2/2021, 3:49 PM

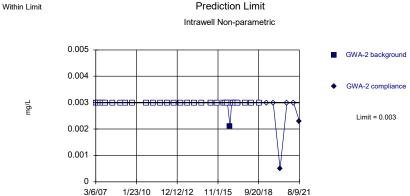
Data: Huffaker Road Landfill Client: Southern Company %NDs ND Adj. Constituent <u>Well</u> Sig. Bg N Bg Mean Std. Dev. Method Upper Lim. Lower Lim. Date Transform Alpha Antimony (mg/L) GWA-1 0.003 8/9/2021 0.003ND No 32 100 n/a NP Intra (NDs) 1 of 2 n/a n/a n/a 96.88 n/a 0.001803 Antimony (mg/L) GWA-11 0.003 n/a 8/10/2021 0.003ND No 32 n/a n/a n/a NP Intra (NDs) 1 of 2 Antimony (mg/L) GWA-2 0.003 n/a 8/9/2021 0.0023J No 31 n/a 96.77 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 GWA-3 0.003 8/9/2021 0.003ND Nο 32 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 Antimony (mg/L) n/a n/a n/a n/a GWA-4 0.003 8/9/2021 0.003ND No 32 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 Antimony (mg/L) n/a n/a n/a Antimony (mg/L) GWC-10 0.003 8/10/2021 0.003ND No 32 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Antimony (mg/L) GWC-18 0.003 n/a 8/10/2021 0.003ND No 32 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a 100 n/a n/a **GWC-19** 0.003 0.003ND 0.001803 NP Intra (NDs) 1 of 2 Antimony (mg/L) n/a 8/10/2021 No 32 n/a n/a 96.88 n/a n/a Antimony (mg/L) GWC-5 0.003 n/a 8/10/2021 0.003ND No 32 n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 n/a Antimony (mg/L) 0.003 n/a 8/10/2021 0.003ND No 32 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Antimony (mg/L) GWC-7 0.003 n/a 8/10/2021 0.003ND Nο 31 n/a n/a 96 77 n/a n/a 0.001905 Antimony (mg/L) GWC-8 0.003 n/a 8/10/2021 0.003ND No n/a n/a 96.67 n/a n/a 0.002008 NP Intra (NDs) 1 of 2 Antimony (mg/L) GWC-9 0.003 n/a 8/10/2021 0.003ND No 32 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWA-11 0.005 8/10/2021 0.005ND No 32 100 0.001803 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 GWA-3 0.005 8/9/2021 0.005ND No 32 71.88 n/a 0.001803 Arsenic (mg/L) n/a n/a n/a n/a GWA-4 0.0065 8/9/2021 0.005ND No 32 90.63 n/a 0.001803 NP Intra (NDs) 1 of 2 Arsenic (mg/L) n/a n/a n/a n/a GWC-18 0.005ND 32 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 Arsenic (mg/L) 0.005 n/a 8/10/2021 No n/a n/a n/a GWC-21 0.005 n/a 8/10/2021 0.005ND No 30 86 67 n/a 0.002008 NP Intra (NDs) 1 of 2 Arsenic (mg/L) n/a n/a n/a GWC-23 0.005 0.001803 NP Intra (NDs) 1 of 2 Arsenic (mg/L) n/a 8/10/2021 0.005ND Nο 32 n/a n/a 100 n/a n/a Arsenic (mg/L) GWC-5 0.005 n/a 8/10/2021 0.005ND Nο 32 n/a n/a 93 75 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWC-7 0.0088 n/a 8/10/2021 0.0072 No 30 n/a n/a 0.002008 NP Intra (normality) 1 of 2 NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWC-8 0.005 n/a 8/10/2021 0.005 Nο 31 n/a n/a 87.1 n/a n/a 0.001905 No NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWC-9 0.005 8/10/2021 0.005ND 32 100 0.001803 0 0.0002926 Barium (mg/L) GWA-1 0.05021 n/a 8/9/2021 0.046 No 32 0.03919 0.00463 None No Param Intra 1 of 2 Barium (mg/L) GWA-11 0.04217 n/a 8/10/2021 0.03 No 32 -3.4 0.09826 0 None In(x) 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWA-2 0.1987 0.19 23 0.1657 0.01314 0 No 0.0002926 Param Intra 1 of 2 n/a 8/9/2021 No None Barium (mg/L) GWA-3 0.2268 n/a 8/9/2021 0.12 No 32 0.1719 0.02304 0 No 0.0002926 Param Intra 1 of 2 None NP Intra (normality) 1 of 2 Barium (mg/L) GWA-4 0.14 n/a 8/9/2021 0.034 No 32 n/a n/a 0 n/a 0.001803 n/a Barium (mg/L) GWC-10 0.1952 n/a 8/10/2021 0 14 No 34 0.1271 0.02885 0 None No 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWC-18 0.08974 8/10/2021 0.093 Yes 32 0.07311 0.006987 0 No 0.0002926 Param Intra 1 of 2 n/a None Barium (mg/L) GWC-19 0.1697 n/a 8/10/2021 0.14 No 23 0.0003879 0.000176 0 None x^4 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWC-20 0.1358 n/a 8/10/2021 0.14 Yes 31 0.001502 0.0004195 0 0.0002926 Param Intra 1 of 2 0.0002926 Barium (mg/L) GWC-21 0.2404 8/10/2021 0.057 Nο 30 -2.722 0.5402 0 Param Intra 1 of 2 n/a None In(x) Barium (mg/L) GWC-22 0.121 n/a 8/10/2021 0.091 No 23 0 0.003415 NP Intra (normality) 1 of 2 n/a n/a n/a n/a Barium (mg/L) GWC-23 0.085 Yes 32 0.06272 0.009212 0 0.0002926 Param Intra 1 of 2 0.08464 n/a 8/10/2021 None No Barium (mg/L) GWC-5 0.1274 n/a 8/10/2021 0.077 No 32 0.1019 0.01074 0 No 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWC-6 0.1978 n/a 8/10/2021 0.18 No 11 0.1654 0.01034 0 None No 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWC-7 0.4063 n/a 8/10/2021 0.14 No 19 0.3226 0.1206 0 None sqrt(x) 0.0002926 Param Intra 1 of 2 Barium (mg/L) GWC-8 0.1227 n/a 8/10/2021 0.23 Yes 31 0.316 0.01439 0 None 0.0002926 Param Intra 1 of 2 sqrt(x) Barium (mg/L) GWC-9 0.07338 n/a 8/10/2021 0.067 No 20 0.06193 0.00445 0 None No 0.0002926 Param Intra 1 of 2 NP Intra (NDs) 1 of 2 Beryllium (mg/L) GWA-3 0.0005 n/a 8/9/2021 0.0005ND No 32 0.001803 n/a NP Intra (NDs) 1 of 2 GWC-19 0.0005 0.0005ND No 32 0.001803 Beryllium (mg/L) n/a 8/10/2021 n/a n/a 100 n/a n/a GWC-7 0.093 8/10/2021 0.000061J No 23.33 n/a 0.002008 NP Intra (normality) 1 of 2 Beryllium (mg/L) n/a 30 n/a n/a NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWA-4 0.0005 n/a 8/9/2021 0.0005ND No 32 n/a n/a 96.88 n/a n/a 0.001803 Cadmium (mg/L) GWC-10 0.0005 8/10/2021 0.0005ND No 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a 32 n/a n/a GWC-18 0.0005 8/10/2021 0.0005ND No 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 Cadmium (mg/L) n/a 32 n/a n/a n/a Cadmium (mg/L) GWC-20 0.0005 n/a 8/10/2021 0.0005ND No 31 n/a n/a 96.77 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-21 0.0005 n/a 8/10/2021 0.0005ND No 30 n/a 93.33 n/a n/a 0.002008 NP Intra (NDs) 1 of 2 0.0005ND No. 32 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-23 0.0005 n/a 8/10/2021 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-5 0.0015 n/a 8/10/2021 0.0005ND No 96.88 n/a n/a 0.001803 Cadmium (mg/L) GWC-7 0.0035 n/a 8/10/2021 0.0005ND No 29 n/a n/a 82.76 n/a n/a 0.002172 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-8 0.0005 n/a 8/10/2021 0.0005ND No 31 n/a 96.77 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-9 0.0005ND No 93.75 n/a 0.001803 NP Intra (NDs) 1 of 2 0.0005 n/a 8/10/2021 32 n/a n/a n/a Chromium (mg/L) GWA-1 0.016 n/a 8/9/2021 0.005ND No 32 n/a n/a 93.75 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Chromium (ma/L) GWA-11 0.005 n/a 8/10/2021 0.005ND No 32 90.63 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 n/a n/a Chromium (mg/L) GWA-2 0.005 n/a 8/9/2021 0.005ND No 32 n/a 100 n/a n/a 0.001803 NP Intra (NDs) 1 of 2


Appendix I Intrawell Prediction Limits - All Results

Printed 9/2/2021, 3:49 PM

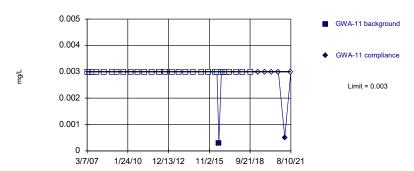
Data: Huffaker Road Landfill Client: Southern Company %NDs ND Adj. Constituent <u>Well</u> Sig. Bg N Bg Mean Std. Dev. Method Upper Lim. Lower Lim. Date Transform Alpha Chromium (mg/L) GWA-3 0.005 8/9/2021 0.005ND No 32 n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 n/a 0.005ND 0.001803 Chromium (mg/L) GWA-4 0.005 n/a 8/9/2021 No 32 n/a n/a 96.88 n/a n/a NP Intra (NDs) 1 of 2 Chromium (ma/L) GWC-10 0.005 n/a 8/10/2021 0.005ND No n/a 90.63 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWC-18 Chromium (ma/L) 0.005 8/10/2021 0.005ND No 32 100 0.001803 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a n/a Chromium (mg/L) GWC-19 0.005 8/10/2021 0.005ND No 32 96.88 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Chromium (ma/L) GWC-20 0.0064 8/10/2021 0.005ND No 31 90.32 n/a 0.001905 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Chromium (mg/L) GWC-21 0.005 n/a 8/10/2021 0.005ND No 30 n/a 96.67 n/a n/a 0.002008 NP Intra (NDs) 1 of 2 n/a Chromium (mg/L) GWC-22 0.005 0.005ND 93.75 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a 8/10/2021 No 32 n/a n/a n/a Chromium (mg/L) GWC-23 0.005 n/a 8/10/2021 0.005ND No 32 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Chromium (mg/L) 0.005 n/a 8/10/2021 0.005ND No 32 n/a n/a 100 n/a 0.001803 NP Intra (NDs) 1 of 2 32 0.001803 NP Intra (NDs) 1 of 2 Chromium (ma/L) GWC-6 0.005 n/a 8/10/2021 0.005ND Nο n/a n/a 100 n/a n/a Chromium (mg/L) GWC-7 0.005 n/a 8/10/2021 0.005ND No n/a n/a 83.33 n/a n/a 0.002008 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWC-8 0.005 n/a 8/10/2021 0.005ND No 31 n/a n/a 90.32 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 0.005ND Chromium (mg/L) GWC-9 0.005 8/10/2021 No 32 90.63 n/a 0.001803 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWA-1 0.005 8/9/2021 0.005ND No 32 68.75 n/a 0.001803 n/a n/a n/a n/a Cobalt (mg/L) GWA-11 0.01 8/10/2021 0.00047J No 32 62.5 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a GWA-2 0.005 0.005ND No 32 100 0.001803 NP Intra (NDs) 1 of 2 Cobalt (mg/L) n/a 8/9/2021 n/a n/a n/a n/a Cobalt (mg/L) GWA-3 0.005 n/a 8/9/2021 0.00042J No 32 n/a 93 75 n/a 0.001803 NP Intra (NDs) 1 of 2 n/a n/a GWA-4 0.005 0.005ND No 32 68.75 n/a 0.001803 NP Intra (NDs) 1 of 2 Cobalt (mg/L) n/a 8/9/2021 n/a n/a n/a Cobalt (mg/L) GWC-10 0.005 n/a 8/10/2021 0.005ND Nο 32 n/a n/a 100 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-21 0.01 n/a 8/10/2021 0.0041J No n/a 63.33 n/a n/a 0.002008 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-23 0.005 n/a 8/10/2021 0.005ND Nο 32 n/a n/a 96.88 n/a n/a 0.001803 0.005 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-5 8/10/2021 0.00098J No 32 96.88 n/a 0.001803 GWC-6 0.001803 NP Intra (NDs) 1 of 2 Cobalt (mg/L) 0.005 n/a 8/10/2021 0.005ND No 32 n/a n/a 100 n/a n/a Cobalt (mg/L) GWC-7 0.08032 n/a 8/10/2021 0.013 No 17 0.03376 0.01735 0 None No 0.0002926 Param Intra 1 of 2 Cobalt (mg/L) GWC-8 0.01 8/10/2021 0.004J No 31 n/a 96.77 n/a 0.001905 NP Intra (NDs) 1 of 2 n/a n/a n/a Cobalt (mg/L) GWC-9 0.005 n/a 8/10/2021 0.005ND Nο 32 n/a n/a 93.75 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 92.59 n/a Copper (mg/L) GWA-11 0.005 n/a 8/10/2021 0.005ND No 27 n/a n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWA-2 0.005 n/a 8/9/2021 0.005ND No 27 n/a n/a 92 59 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWA-3 0.005 n/a 8/9/2021 0.005ND No n/a n/a 92.59 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWA-4 0.0066 n/a 8/9/2021 0.00051J No 27 n/a n/a 92.59 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-10 0.005 8/10/2021 0.005ND No 27 0.002502 0.002502 Copper (mg/L) GWC-18 0.005 8/10/2021 0.005ND Nο 27 NP Intra (NDs) 1 of 2 n/a n/a n/a 92.59 n/a n/a GWC-19 0.005 n/a 8/10/2021 0.005ND No 27 n/a n/a 88 89 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-20 0.005 0.005ND 26 96.15 n/a 0.002667 NP Intra (NDs) 1 of 2 Copper (ma/L) n/a 8/10/2021 No n/a n/a n/a Copper (mg/L) GWC-21 0.005 n/a 8/10/2021 0.005ND No 25 n/a n/a 76 n/a n/a 0.002832 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-22 0.005 n/a 8/10/2021 0.005ND No 27 n/a n/a 96.3 n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-23 0.0084 n/a 8/10/2021 0.00078J No 27 n/a n/a 85.19 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-5 0.005 n/a 8/10/2021 0.005ND No 27 n/a n/a 88.89 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (ma/L) GWC-6 0.005 n/a 8/10/2021 0.005ND No 27 n/a n/a 100 n/a n/a 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-7 0.016 n/a 8/10/2021 0.005ND No 25 80 0.002832 NP Intra (NDs) 1 of 2 n/a NP Intra (NDs) 1 of 2 GWC-8 0.005ND Nο 26 0.002667 Copper (mg/L) 0.005 n/a 8/10/2021 n/a n/a 100 n/a n/a GWC-9 0.005 8/10/2021 0.0018J No 27 0.002502 NP Intra (NDs) 1 of 2 Copper (mg/L) n/a n/a n/a 96.3 n/a n/a Lead (mg/L) GWA-11 0.001 n/a 8/10/2021 0.001ND No 32 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWA-3 0.001 8/9/2021 0.001ND No 32 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a n/a 100 n/a n/a GWC-10 0.001 8/10/2021 0.001ND No 32 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a n/a n/a 100 n/a n/a Lead (mg/L) **GWC-18** 0.001 n/a 8/10/2021 0.001ND No 32 n/a n/a 100 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-19 0.001 n/a 8/10/2021 0.001ND No n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWC-20 0.001ND NP Intra (NDs) 1 of 2 Lead (mg/L) 0.001 n/a 8/10/2021 Nο 31 n/a n/a 96 77 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-21 0.001 n/a 8/10/2021 0.001ND No 30 n/a 0.002008 Lead (mg/L) GWC-22 0.001 n/a 8/10/2021 0.001ND Nο 32 n/a n/a 100 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-23 0.001 n/a 8/10/2021 0.001ND No 32 n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWC-5 0.001 0.001ND 100 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a 8/10/2021 No 32 n/a n/a n/a n/a Lead (mg/L) GWC-6 0.001 n/a 8/10/2021 0.001ND No 32 n/a n/a 96.88 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-7 0.0016 n/a 8/10/2021 0.001ND No 31 83.87 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 n/a n/a Lead (mg/L) GWC-8 0.001 n/a 8/10/2021 0.001ND No 31 n/a 96 77 n/a n/a 0.001905 NP Intra (NDs) 1 of 2

Appendix I Intrawell Prediction Limits - All Results


	Plant I	Hammond	Client: So	uthern Comp	anv Data	: Huffa	aker R	Road Landfill	Printed 9	/2/2021	. 3:49 PM			
Constituent			n. Lower Lin	•					Std. Dev.			Transform	Alpho	Mathad
Constituent Niekel (mg/l)	<u>Well</u> GWA-1	0.005	n/a	8/9/2021	Observ. 0.005ND			Bg Mean n/a	n/a	%ND 85.19	s ND Adj.	Transform n/a	0.002502	Method NP Intra (NDs) 1 of 2
Nickel (mg/L)														, ,
Nickel (mg/L)	GWA-11	0.01	n/a	8/10/2021	0.0017J 0.005ND	No		n/a	n/a	66.67		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-2	0.005	n/a	8/9/2021				n/a	n/a	96.3		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-3	0.005	n/a	8/9/2021	0.005ND	No		n/a	n/a	92.59		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-4	0.0055	n/a	8/9/2021	0.001J	No		n/a	n/a	59.26		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-10	0.005	n/a	8/10/2021	0.005ND	No		n/a	n/a	100	n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-18	0.005	n/a	8/10/2021	0.005ND	No		n/a	n/a	85.19		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-19	0.0062	n/a	8/10/2021	0.005ND	No		n/a	n/a	88.89		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-20	0.005	n/a	8/10/2021	0.005ND	No No	26	n/a	n/a 0.02496	92.31		n/a	0.002667	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-21	0.01035	n/a	8/10/2021	0.0076			0.1566			Kaplan-Meier		0.0002926	Param Intra 1 of 2
Nickel (mg/L)	GWC-22	0.005	n/a	8/10/2021	0.005ND			n/a	n/a	96.3		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-23	0.005	n/a	8/10/2021	0.0008J	No		n/a	n/a	81.48		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-5	0.005	n/a	8/10/2021	0.00085J			n/a	n/a	92.59		n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-6	0.005	n/a	8/10/2021	0.005ND		27	n/a	n/a		n/a	n/a	0.002502	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-7	0.3321	n/a	8/10/2021	0.057	No	12	0.133	0.06625	0	None	No	0.0002926	Param Intra 1 of 2
Nickel (mg/L)	GWC-8	0.005	n/a	8/10/2021	0.0073	Yes		n/a	n/a	96.15		n/a	0.002667	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-9	0.01	n/a	8/10/2021	0.0019J	No		n/a	n/a	66.67		n/a	0.002502	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-4	0.005	n/a	8/9/2021	0.005ND		32	n/a	n/a	100	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-10 GWC-21	0.005 0.005	n/a	8/10/2021	0.005ND		32	n/a	n/a	96.88 93.33		n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)			n/a	8/10/2021	0.005ND		30	n/a	n/a			n/a	0.002008	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-22	0.005	n/a	8/10/2021	0.005ND			n/a	n/a	96.88		n/a	0.001803	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-9	0.005	n/a	8/10/2021	0.005ND			n/a	n/a	96.88		n/a	0.001803	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWC-21 GWC-7	0.005 0.001	n/a	8/10/2021	0.005ND 0.001ND			n/a	n/a	96	n/a	n/a	0.002832	NP Intra (NDs) 1 of 2
Thallium (mg/L)			n/a	8/10/2021				n/a	n/a	96.67		n/a	0.002008	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-21 GWC-23	0.01 0.01	n/a n/a	8/10/2021 8/10/2021	0.01ND 0.01ND	No		n/a n/a	n/a n/a	92	n/a n/a	n/a	0.002832 0.002502	NP Intra (NDs) 1 of 2
Vanadium (mg/L) Vanadium (mg/L)	GWC-23	0.01		8/10/2021	0.01ND	No No				100 96.3		n/a	0.002502	NP Intra (NDs) 1 of 2
, - ,	GWC-7	0.01	n/a	8/10/2021	0.01ND			n/a	n/a			n/a	0.002302	NP Intra (NDs) 1 of 2
Vanadium (mg/L) Vanadium (mg/L)	GWC-9	0.01	n/a n/a	8/10/2021	0.01ND		26 27	n/a n/a	n/a n/a	80.77 96.3		n/a n/a	0.002507	NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-1	0.01	n/a	8/9/2021	0.01ND	No		n/a	n/a	77.78		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-11	0.01	n/a	8/10/2021	0.01ND		27	n/a	n/a	66.67		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-11	0.01	n/a	8/9/2021	0.01ND		27	n/a	n/a	70.37		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-3	0.01	n/a	8/9/2021	0.01ND		27	n/a	n/a	55.56		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-4	0.01	n/a	8/9/2021	0.01ND		27	n/a	n/a	33.33		n/a	0.002502	NP Intra (normality) 1 of 2
Zinc (mg/L)	GWC-10	0.01	n/a	8/10/2021	0.01ND	No		n/a	n/a	77.78		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-18	0.01	n/a	8/10/2021	0.01ND	No	27	n/a	n/a	70.37		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-19	0.013	n/a	8/10/2021		No	27	n/a	n/a	59.26		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-20	0.01	n/a	8/10/2021	0.01ND	No		n/a	n/a	80.77		n/a	0.002667	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-21	0.01212	n/a	8/10/2021	0.01ND	No		0.0747	0.01433	12	None	sqrt(x)	0.0002926	Param Intra 1 of 2
Zinc (mg/L)	GWC-22	0.01	n/a	8/10/2021	0.01ND	No		n/a	n/a	81.48		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-23	0.01	n/a	8/10/2021	0.01ND	No		n/a	n/a	55.56		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-5	0.01	n/a	8/10/2021	0.01ND	No		n/a	n/a	55.56		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-6	0.01	n/a	8/10/2021	0.01ND	No		n/a	n/a	74.07		n/a	0.002502	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-7	0.6123	n/a	8/10/2021	0.093	No		0.2426	0.123	0	None	No	0.0002926	Param Intra 1 of 2
Zinc (mg/L)	GWC-8	0.01	n/a	8/10/2021	0.01ND	No		n/a	n/a	73.08		n/a	0.002667	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-9	0.01	n/a	8/10/2021	0.01ND	No		n/a	n/a	66.67		n/a	0.002502	NP Intra (NDs) 1 of 2
(···g· =/										- 3.01				(

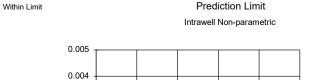
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Antimony Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

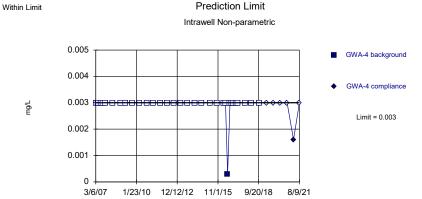

 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

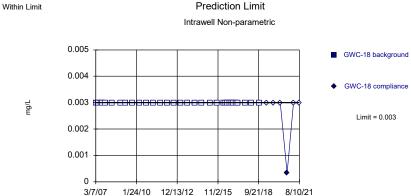
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

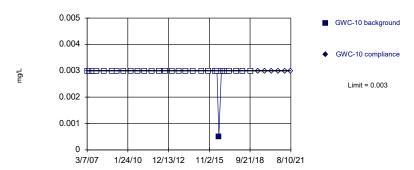

Constituent: Antimony Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 ${\it Sanitas^{\text{TM}}}\ v.9.6.31\ {\it Groundwater}\ {\it Stats}\ {\it Consulting}.\ {\it UG}$ Hollow symbols indicate censored values.


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

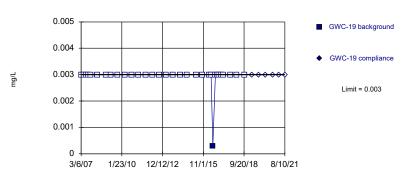
Constituent: Antimony Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

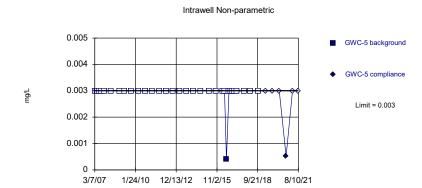
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

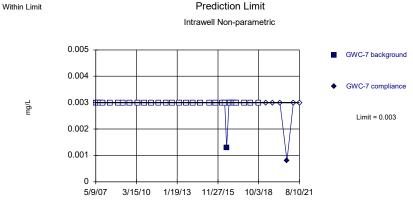
Constituent: Antimony Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

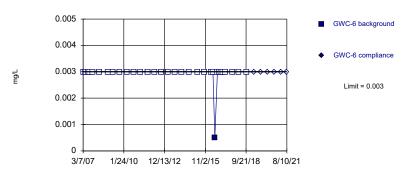
Within Limit



Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

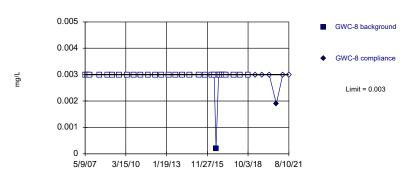
Constituent: Antimony Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Antimony Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 96.67% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

3/7/07

Within Limit

0.005
0.004
0.004
0.003
0.002
0.001
0.001
0.001

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

1/24/10 12/13/12 11/2/15 9/21/18 8/10/21

Constituent: Antimony Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

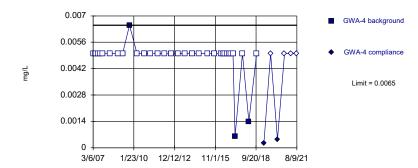
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 71.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Arsenic Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

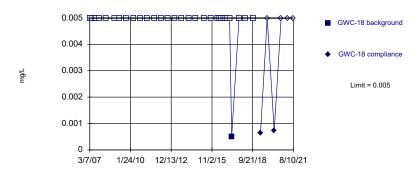
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Arsenic Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

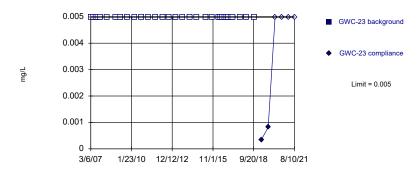
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 90.63% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Arsenic Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Within Limit Prediction Limit
Intrawell Non-parametric

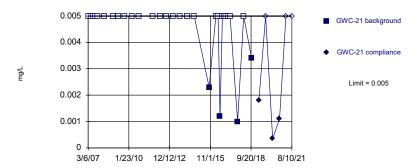


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Arsenic Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny TM}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

Within Limit Prediction Limit
Intrawell Non-parametric

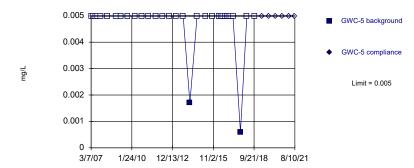

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Arsenic Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Intrawell Non-parametric

Prediction Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 86.67% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Constituent: Arsenic Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Arsenic Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Within Limit

0.02
0.016
0.012
0.008
0.004
0.004
0.004
0.004
0.008
0.004
0.004
0.008
0.004
0.008
0.004
0.008
0.004
0.008
0.004
0.008
0.008

Prediction Limit

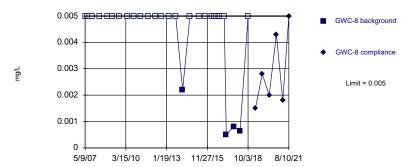
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 30 background values. 46.67% NDs. Well-constituent pair annual alpha = 0.0040011. Individual comparison alpha = 0.002008 (1 of 2).

Constituent: Arsenic Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny TM}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

3/7/07

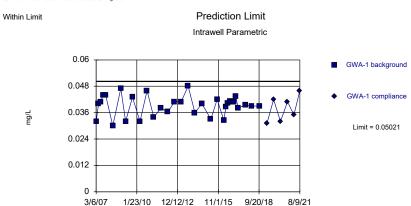
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).


1/24/10 12/13/12 11/2/15 9/21/18 8/10/21

Constituent: Arsenic Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

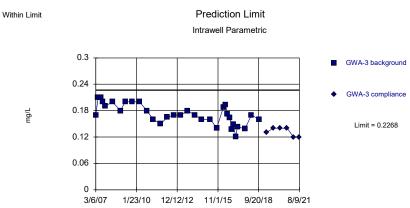

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 87.1% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

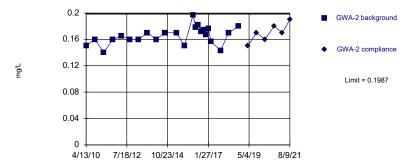
Constituent: Arsenic Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.03919, Std. Dev.=0.00463, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9563, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

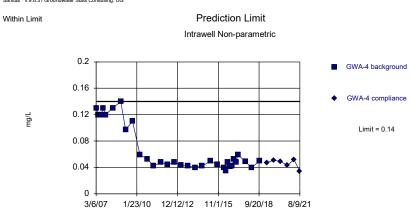

Constituent: Barium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

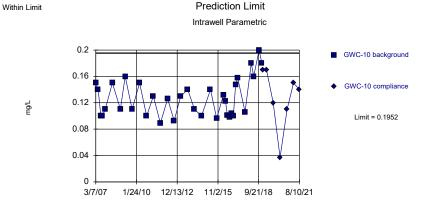
Background Data Summary (based on natural log transformation): Mean=-3.4, Std. Dev=0.09826, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9108, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.


Constituent: Barium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

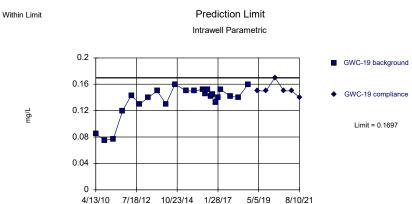
Background Data Summary: Mean=0.1719, Std. Dev.=0.02304, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9617, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.


Within Limit Prediction Limit
Intrawell Parametric

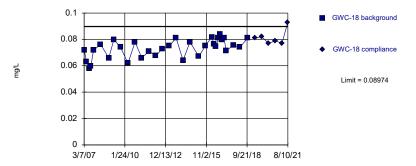

Background Data Summary: Mean=0.1657, Std. Dev.=0.01314, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9756, critical = 0.881. Kappa = 2.512 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Constituent: Barium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

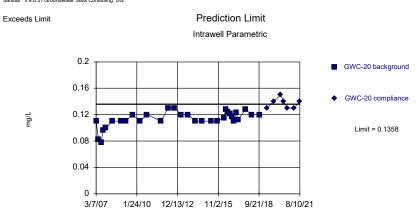

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 32 background values. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

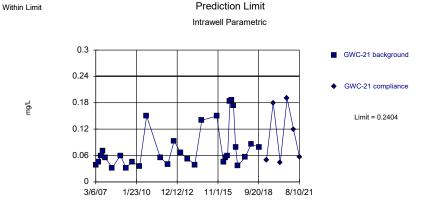
Background Data Summary: Mean=0.1271, Std. Dev.=0.02885, n=34. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9143, critical = 0.908. Kappa = 2.36 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.000296


Constituent: Barium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

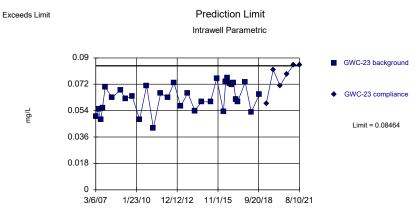
Background Data Summary (based on x^4 transformation): Mean=0.0003879, Std. Dev.=0.000176, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9161, critical = 0.881. Kappa = 2.512 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.


Exceeds Limit Prediction Limit
Intrawell Parametric


Background Data Summary: Mean=0.07311, Std. Dev.=0.006987, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.946, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Constituent: Barium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

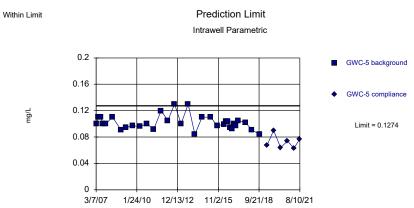
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Background Data Summary (based on cube transformation): Mean=0.001502, Std. Dev.=0.0004195, n=31. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9239, critical = 0.902. Kappa = 2.39 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

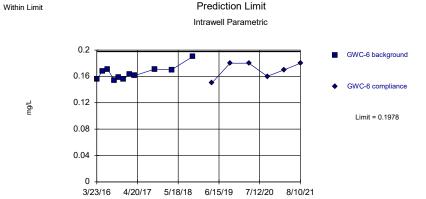
Background Data Summary (based on natural log transformation): Mean=-2.722, Std. Dev.=0.5402, n=30. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9034, critical = 0.9. Kappa = 2.4 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

> Constituent: Barium Analysis Run 9/2/2021 3:41 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

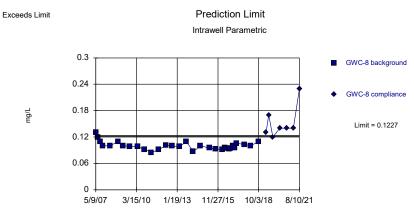

Background Data Summary: Mean=0.06272, Std. Dev.=0.009212, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9573, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Prediction Limit Within Limit Intrawell Non-parametric 0.2 ■ GWC-22 background 0.16 ♦ GWC-22 compliance 0.12 mg/L Limit = 0.121 0.08 0.04 4/13/10 7/18/12 10/23/14 1/28/17 5/5/19

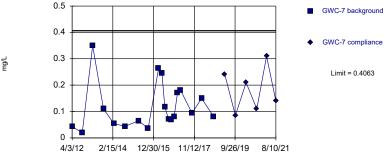

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 23 background values. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).

> Constituent: Barium Analysis Run 9/2/2021 3:41 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

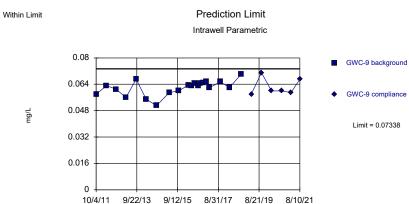

Background Data Summary: Mean=0.1019, Std. Dev.=0.01074, n=32. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9137, critical = 0.904. Kappa = 2.38 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

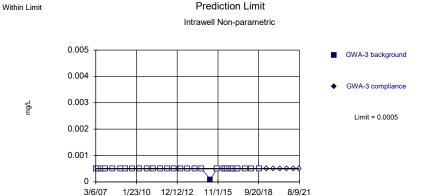
Background Data Summary: Mean=0.1654, Std. Dev.=0.01034, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8754, critical = 0.792. Kappa = 3.135 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.002026


Constituent: Barium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

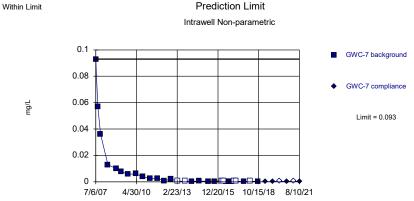
Background Data Summary (based on square root transformation): Mean=0.316, Std. Dev.=0.01439, n=31. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9173, critical = 0.902. Kappa = 2.39 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.


Within Limit Prediction Limit Intrawell Parametric


Background Data Summary (based on square root transformation): Mean=0.3226, Std. Dev.=0.1206, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9476, critical = 0.863. Kappa = 2.611 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

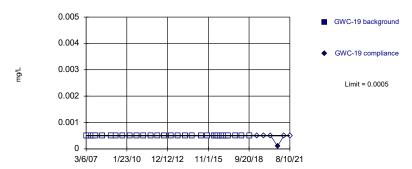
Constituent: Barium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Background Data Summary: Mean=0.06193, Std. Dev.=0.00445, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9577, critical = 0.868. Kappa = 2.575 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

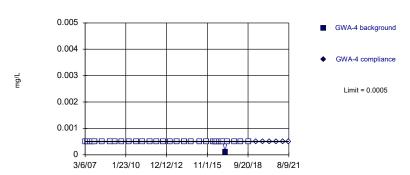
Constituent: Beryllium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 30 background values. 23.33% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

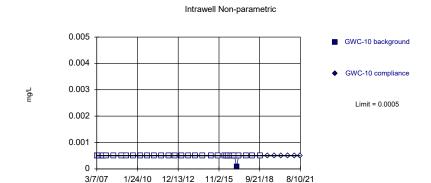
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

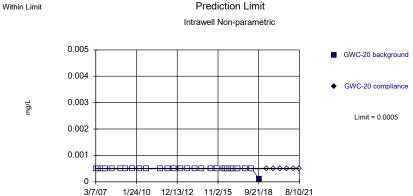
Constituent: Beryllium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

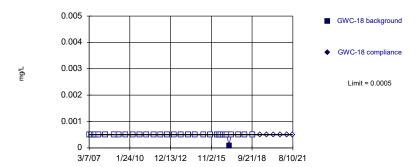
Within Limit



Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

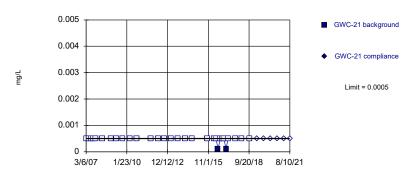
Constituent: Cadmium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\ensuremath{\,^{\text{\tiny{M}}}}}\ \mbox{v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

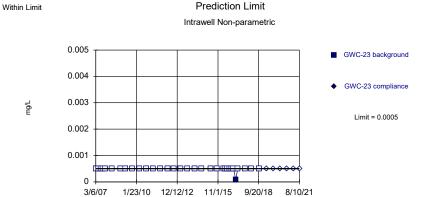
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric

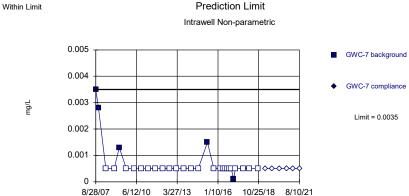


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).


Constituent: Cadmium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

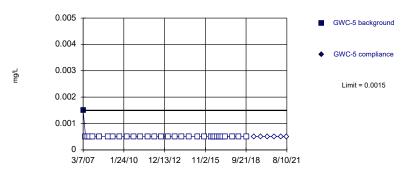
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 93.33% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

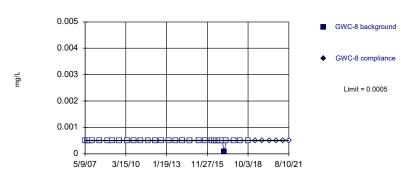
Constituent: Cadmium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 29 background values. 82.76% NDs. Well-constituent pair annual alpha = 0.00434. Individual comparison alpha = 0.002172 (1 of 2).

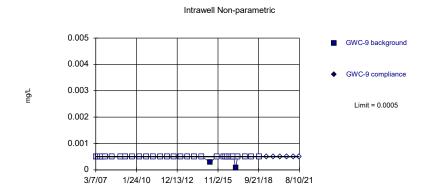
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

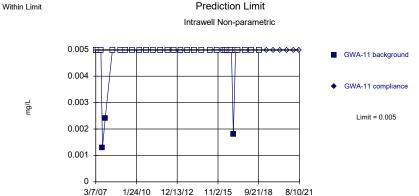
Constituent: Cadmium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

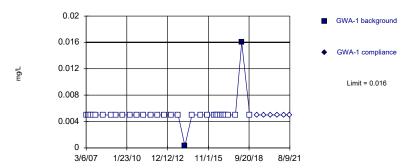
Within Limit



Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

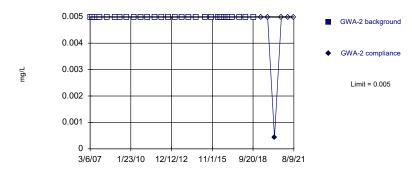
Constituent: Cadmium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny TM}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 90.63% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

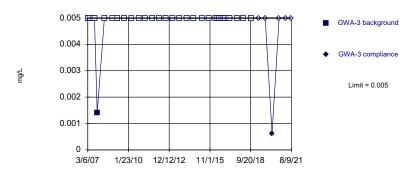
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

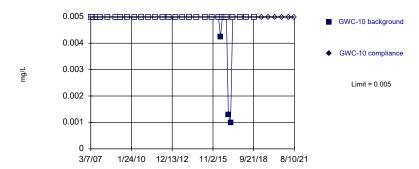
Constituent: Chromium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

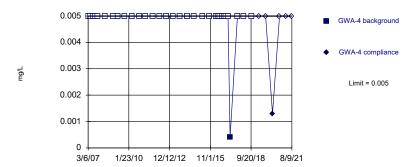
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Chromium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

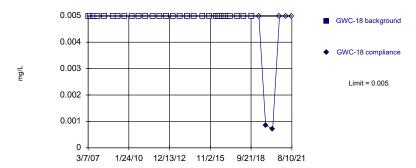
 $\mbox{Sanitas}^{\mbox{\tiny TM}} \ \mbox{v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 90.63% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

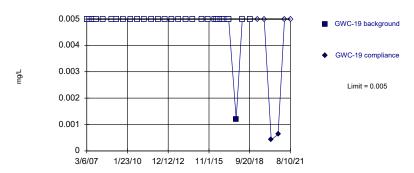
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

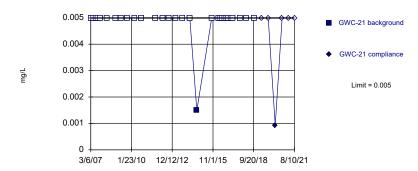
Constituent: Chromium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

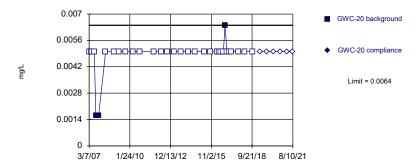
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Chromium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

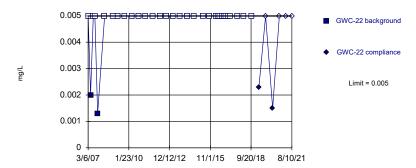
 $\mbox{Sanitas}^{\mbox{\tiny TN}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 96.67% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

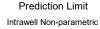
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

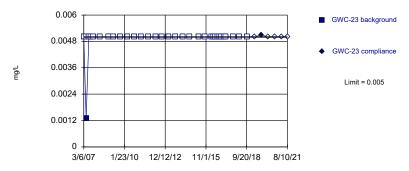
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 90.32% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

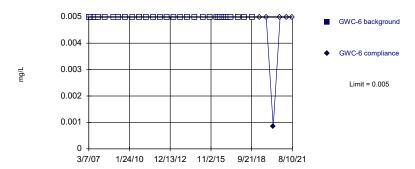
Constituent: Chromium Analysis Run 9/2/2021 3:41 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit

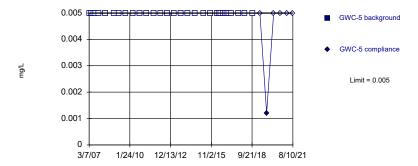


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha

> Constituent: Chromium Analysis Run 9/2/2021 3:41 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

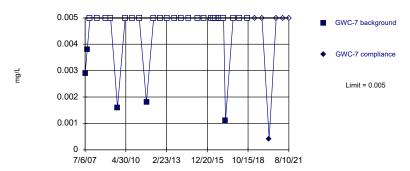
Prediction Limit Within Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

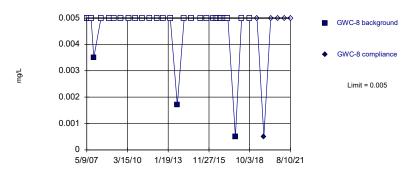
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

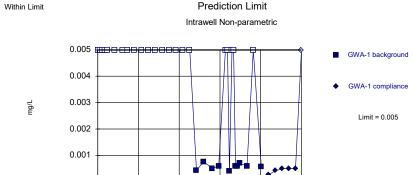
> Constituent: Chromium Analysis Run 9/2/2021 3:41 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 83.33% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Prediction Limit Within Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 90.32% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha

> Constituent: Chromium Analysis Run 9/2/2021 3:41 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

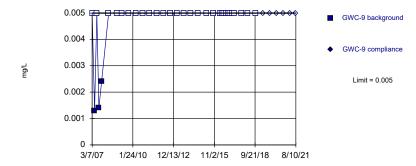
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

3/6/07

1/23/10 12/12/12 11/1/15 9/20/18

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cobalt Analysis Run 9/2/2021 3:41 PM View: State Parameters

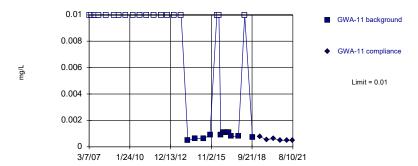

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

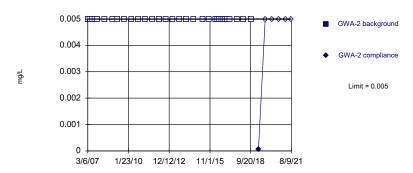
Prediction Limit

Intrawell Non-parametric



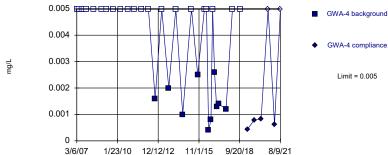
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 90.63% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha

> Constituent: Chromium Analysis Run 9/2/2021 3:41 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

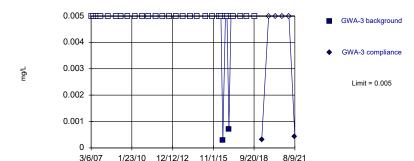
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cobalt Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 ${\it Sanitas^{\rm IM}}~v.9.6.31~Groundwater~Stats~Consulting.~UG~Hollow~symbols~indicate~censored~values.$

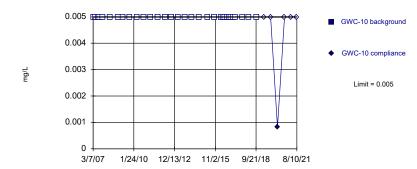

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cobalt Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

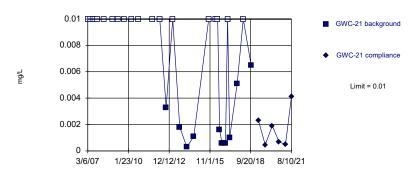
Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

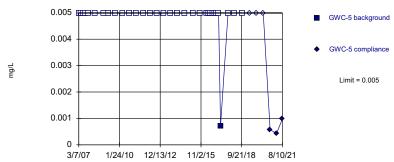
Constituent: Cobalt Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

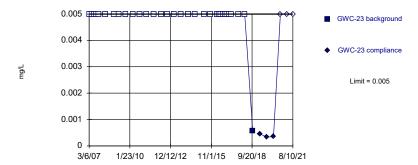


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 63.33% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Constituent: Cobalt Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny TM}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

Within Limit Prediction Limit
Intrawell Non-parametric

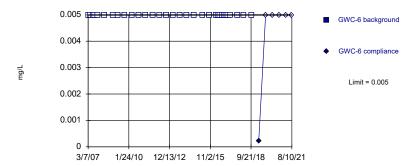

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cobalt Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

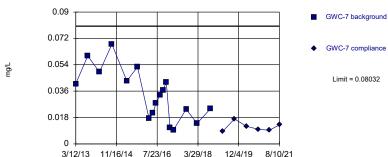
Within Limit

Prediction Limit
Intrawell Non-parametric



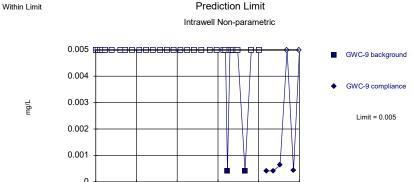
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Cobalt Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

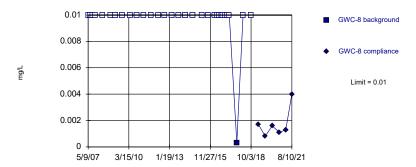

Within Limit Prediction Limit
Intrawell Parametric

Constituent: Cobalt Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \ \mbox{v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

3/7/07

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

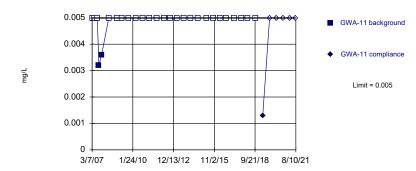

8/10/21

1/24/10 12/13/12 11/2/15 9/21/18

Constituent: Cobalt Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

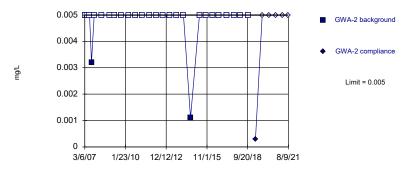
Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Constituent: Cobalt Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Copper Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

3/6/07

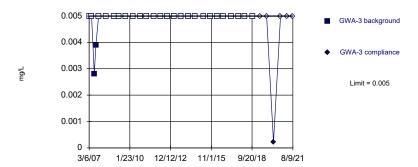
0.007 0.0056 0.0042 0.0028 0.0014 0.0014 GWA-4 background

Compliance

Limit = 0.0066

1/23/10 12/12/12 11/1/15 9/20/18

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

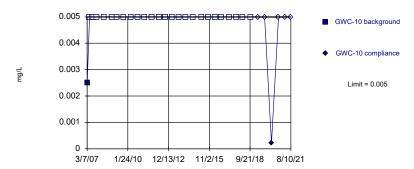

8/9/21

Constituent: Copper Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

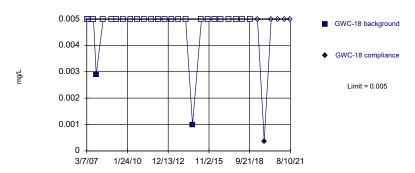
Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Copper Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

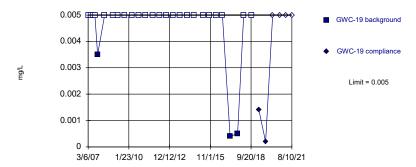
Prediction Limit Within Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha

> Constituent: Copper Analysis Run 9/2/2021 3:42 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

3/7/07

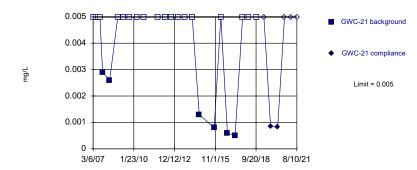

Prediction Limit Within Limit Intrawell Non-parametric 0.005 ■ GWC-20 background 0.004 ♦ GWC-20 compliance 0.003 Limit = 0.005 0.002 0.001

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 96.15% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

1/24/10 12/13/12 11/2/15 9/21/18 8/10/21

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric



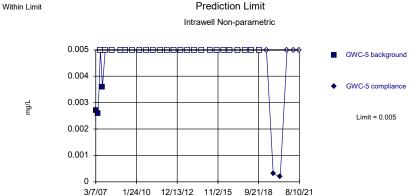
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

> Constituent: Copper Analysis Run 9/2/2021 3:42 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

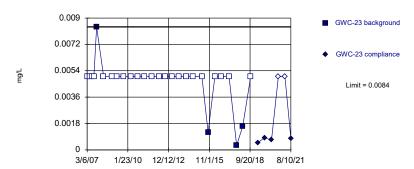
Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 76% NDs. Well-constituent pair annual alpha = 0.005656. Individual comparison alpha = 0.002832 (1 of 2).


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

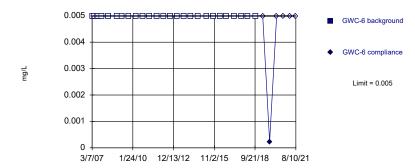
Constituent: Copper Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\mbox{Sanitas}^{\mbox{\tiny TM}} \ \mbox{v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

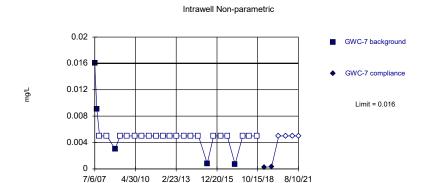
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 85.19% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

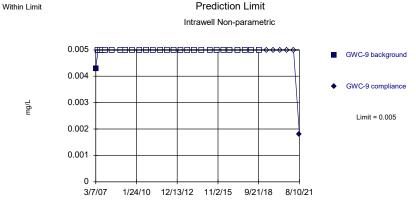
Constituent: Copper Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 27) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Within Limit

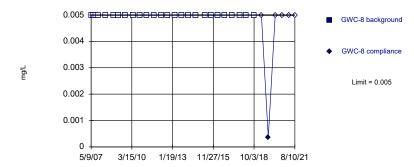


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 80% NDs. Well-constituent pair annual alpha = 0.005656. Individual comparison alpha = 0.002832 (1 of 2).

Constituent: Copper Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

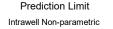
 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

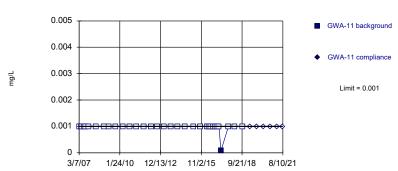

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Copper Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

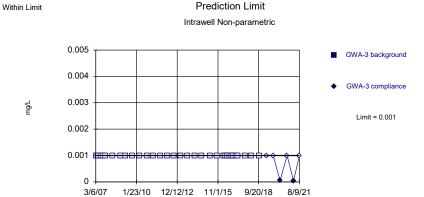
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

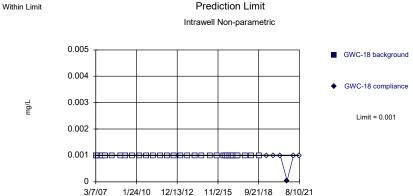

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 26) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).


Constituent: Copper Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

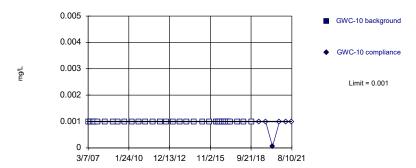
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Lead Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

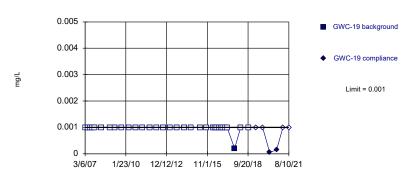


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Lead Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

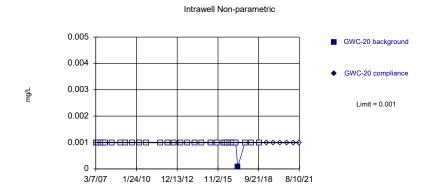
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

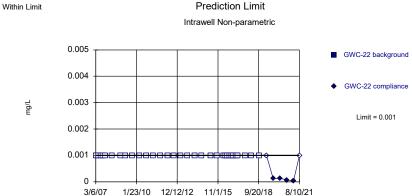
Constituent: Lead Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 ${\it Sanitas^{\rm TM}}~v.9.6.31~{\it Groundwater}~{\it Stats}~{\it Consulting}.~{\it UG}~{\it Hollow}~{\it symbols}~{\it indicate}~{\it censored}~{\it values}.$

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit

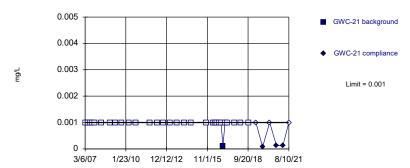


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Constituent: Lead Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

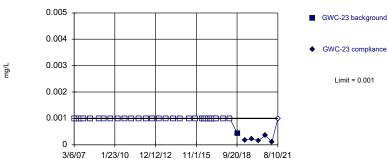


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Lead Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

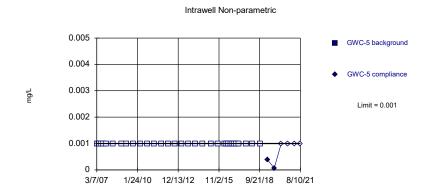
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



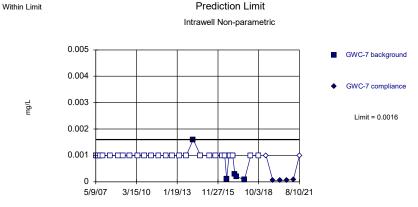
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 96.67% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Constituent: Lead Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


 $\label{eq:seminor} \mbox{Sanitas}^{\mbox{\tiny{MV}}} \ v. 9.6.31 \ \mbox{Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values}.$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit

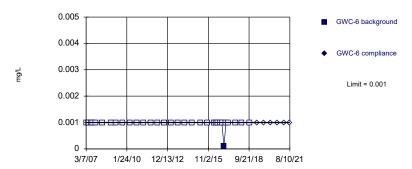


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Lead Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

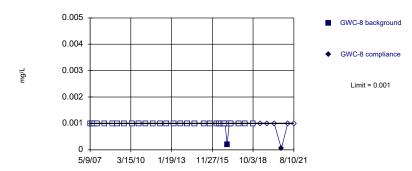


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 83.87% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Constituent: Lead Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

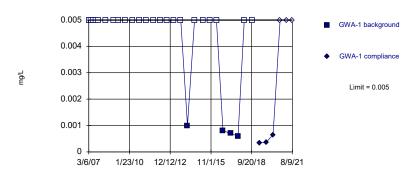
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Lead Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

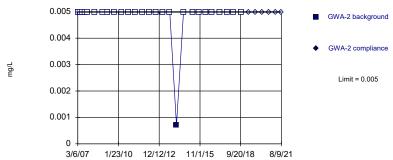
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

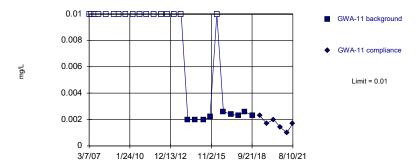


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 85.19% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Within Limit Prediction Limit
Intrawell Non-parametric

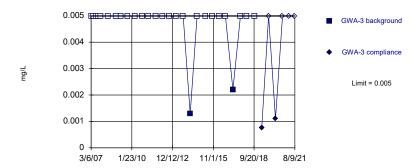


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

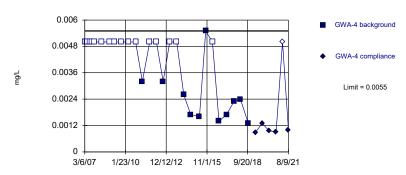
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

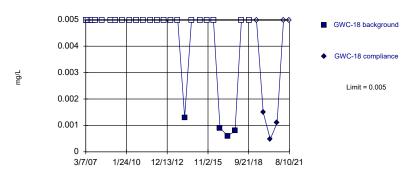
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

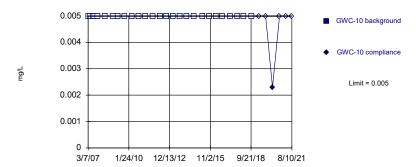


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 59.26% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 ${\it Sanitas^{\rm IM}}~v.9.6.31~Groundwater~Stats~Consulting.~UG~Hollow~symbols~indicate~censored~values.$

Within Limit Prediction Limit
Intrawell Non-parametric

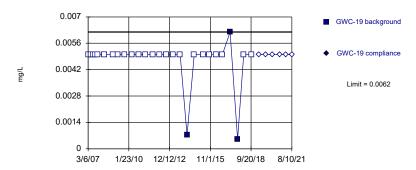

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 85.19% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

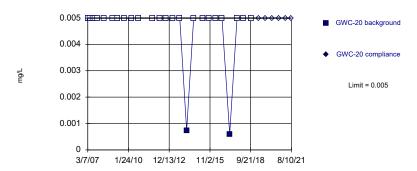
Within Limit

Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 27) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

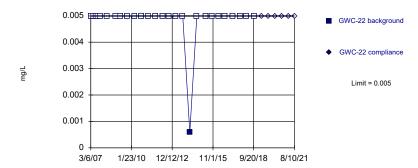
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

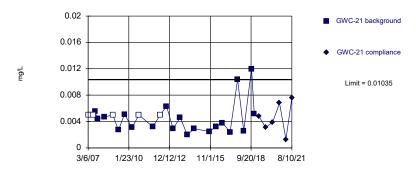


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 92.31% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny TM}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

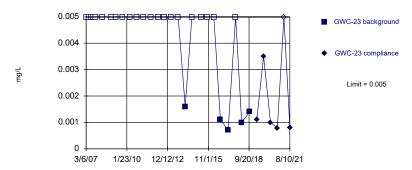
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

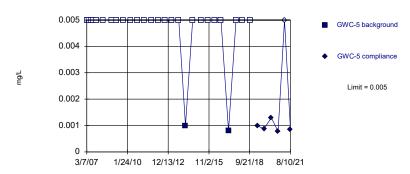
Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



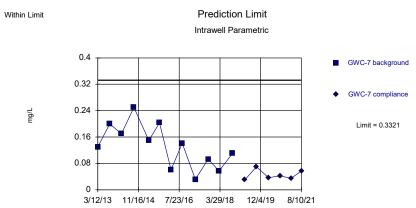
Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=0.1566, Std. Dev.=0.02496, n=26, 23.08% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8923, critical = 0.891. Kappa = 2.456 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

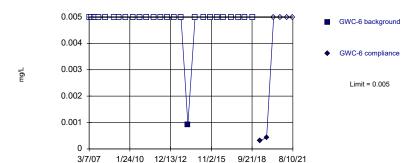
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 81.48% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 92.59% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

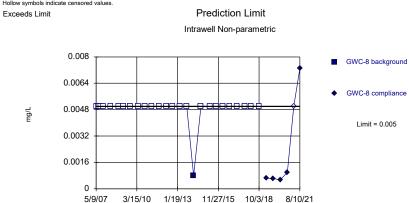
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



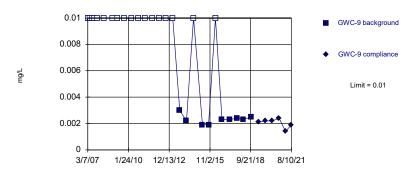
Background Data Summary: Mean=0.133, Std. Dev.=0.06625, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9771, critical = 0.805. Kappa = 3.005 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

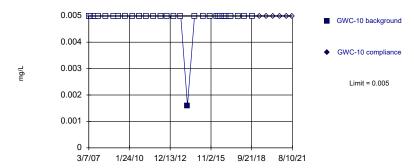
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).


Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 ${\it Sanitas^{\rm TM}}~v.9.6.31~{\it Groundwater}~{\it Stats}~{\it Consulting}.~{\it UG}~{\it Hollow}~{\it symbols}~{\it indicate}~{\it censored}~{\it values}.$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 96.15% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Prediction Limit Within Limit Intrawell Non-parametric

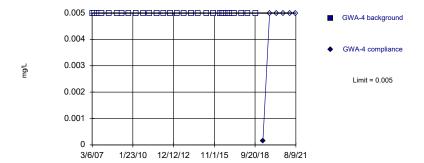


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha

> Constituent: Nickel Analysis Run 9/2/2021 3:42 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

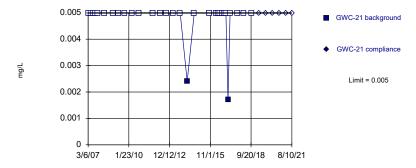


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

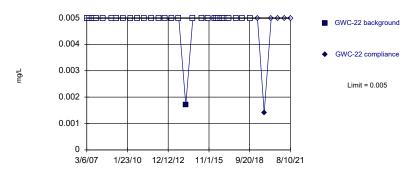
Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 32) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

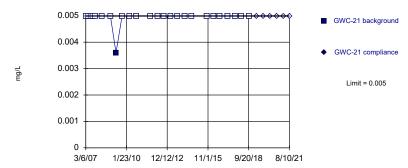
> Constituent: Selenium Analysis Run 9/2/2021 3:42 PM View: State Parameters Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 93.33% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

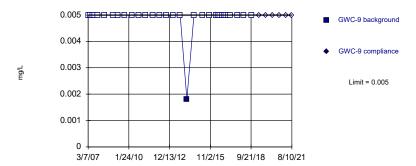


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2)

Constituent: Selenium Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\ensuremath{\,\text{\tiny{M}}}}\mbox{v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

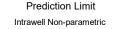
Within Limit Prediction Limit Intrawell Non-parametric

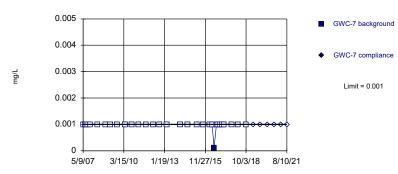


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 96% NDs. Well-constituent pair annual alpha = 0.005656. Individual comparison alpha = 0.002832 (1 of 2).

Constituent: Silver Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

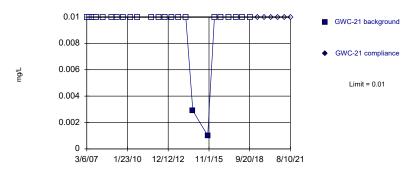
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Prediction Limit
Intrawell Non-parametric



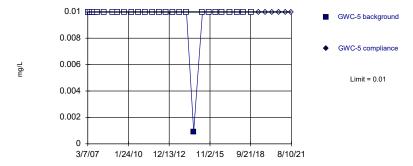
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Selenium Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 96.67% NDs. Well-constituent pair annual alpha = 0.004011. Individual comparison alpha = 0.002008 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

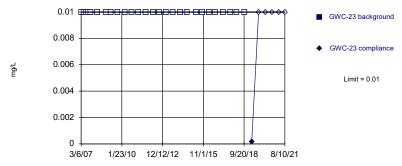


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 25 background values. 92% NDs. Well-constituent pair annual alpha = 0.005656. Individual comparison alpha = 0.002832 (1 of 2).

Constituent: Vanadium Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

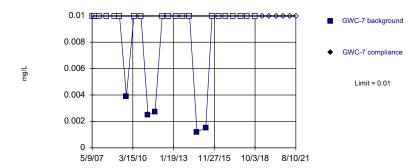
Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

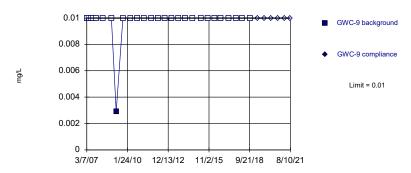
Within Limit

Prediction Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 27) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Vanadium Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 80.77% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 96.3% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Vanadium Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

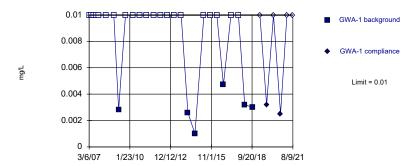
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

3/7/07

0.01 GWA-11 background
0.008
0.006
0.004
0.002

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

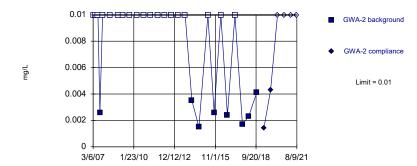

1/24/10 12/13/12 11/2/15 9/21/18 8/10/21

Constituent: Zinc Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

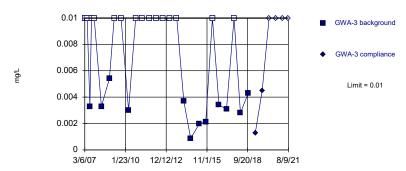
Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 77.78% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Zinc Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 70.37% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

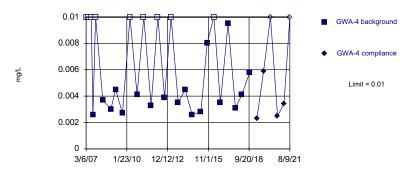
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Zinc Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

3/7/07

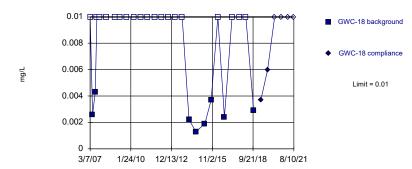

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 77.78% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

1/24/10 12/13/12 11/2/15 9/21/18 8/10/21

Constituent: Zinc Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 27 background values. 33.33% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Zinc Analysis Run 9/2/2021 3:42 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

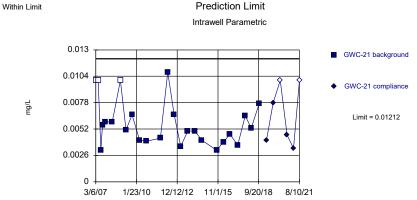
Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 70.37% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

3/6/07

Within Limit

0.02
0.016
0.012
0.008
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.005
0.007
0.008
0.008

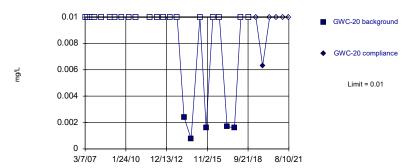

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 59.26% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

1/23/10 12/12/12 11/1/15 9/20/18 8/10/21

Constituent: Zinc Analysis Run 9/2/2021 3:43 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

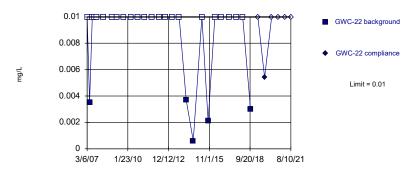


Background Data Summary (based on square root transformation): Mean=0.0747, Std. Dev.=0.01433, n=25, 12% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9104, critical = 0.888. Kappa = 2.47 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Constituent: Zinc Analysis Run 9/2/2021 3:43 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of background values. 80.77% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Constituent: Zinc Analysis Run 9/2/2021 3:43 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 81.48% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

3/6/07

Within Limit

0.01
0.008
0.006
0.004
0.002

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

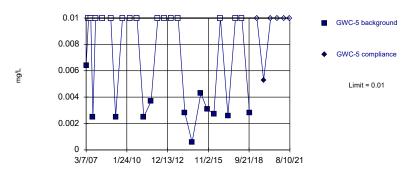
1/23/10 12/12/12 11/1/15 9/20/18 8/10/21

Constituent: Zinc Analysis Run 9/2/2021 3:43 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

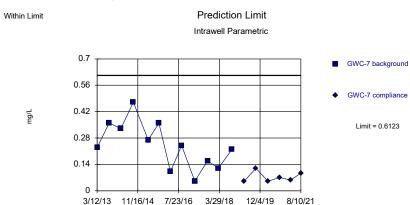
0.01 GWC-6 background
0.008
0.004
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.004
0.002
0.004
0.002


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 74.07% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

Constituent: Zinc Analysis Run 9/2/2021 3:43 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

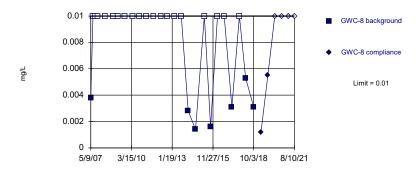
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 55.56% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

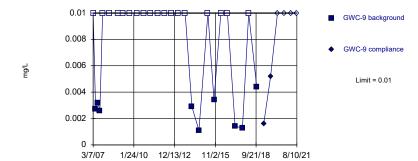
Constituent: Zinc Analysis Run 9/2/2021 3:43 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.2426, Std. Dev.=0.123, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9762, critical = 0.805. Kappa = 3.005 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Within Limit

Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 73.08% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Constituent: Zinc Analysis Run 9/2/2021 3:43 PM View: State Parameters
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 27 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.004998. Individual comparison alpha = 0.002502 (1 of 2).

	GWA-1	GWA-1
3/6/2007	<0.003	
5/8/2007	<0.003	
7/7/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/9/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/10/2011	<0.003	
4/3/2012	<0.003	
9/24/2012	<0.003	
3/12/2013	<0.003	
9/11/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/30/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
1/31/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
9/30/2019		<0.003
3/26/2020		0.00028 (J)
9/23/2020		<0.003
3/8/2021		<0.003
8/9/2021		<0.003

	GWA-11	GWA-11
3/7/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/9/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/4/2011	<0.003	
4/10/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0003 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/1/2017	<0.003	
3/24/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
9/30/2019		<0.003
3/26/2020		<0.003
9/22/2020		<0.003
3/8/2021		0.0005 (J)
8/10/2021		<0.003

	GWA-2	GWA-2
3/6/2007	<0.003	
5/8/2007	<0.003	
7/7/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/9/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
10/7/2010	<0.003	
4/6/2011	<0.003	
10/6/2011	<0.003	
4/3/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/9/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	0.0021 (J)	
10/18/2016	<0.003	
12/7/2016	<0.003	
1/31/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
9/30/2019		<0.003
3/26/2020		0.00049 (J)
9/21/2020		<0.003
3/9/2021		<0.003
8/9/2021		0.0023 (J)

	GWA-3	GWA-3
3/6/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/2/2009	<0.003	
4/14/2010	<0.003	
10/14/2010	<0.003	
4/5/2011	<0.003	
10/12/2011	<0.003	
4/4/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/11/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	0.0009 (J)	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/1/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/5/2019		<0.003
9/30/2019		<0.003
3/26/2020		<0.003
9/23/2020		<0.003
3/8/2021		<0.003
8/9/2021		<0.003

	GWA-4	GWA-4
3/6/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/2/2009	<0.003	
4/14/2010	<0.003	
10/14/2010	<0.003	
4/5/2011	<0.003	
10/12/2011	<0.003	
4/4/2012	<0.003	
9/24/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/11/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0003 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/1/2017	<0.003	
3/24/2017	<0.003	
10/4/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
9/30/2019		<0.003
3/26/2020		<0.003
9/23/2020		<0.003
3/8/2021		0.0016 (J)
8/9/2021		<0.003

	GWC-10	GWC-10
3/7/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/9/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/4/2011	<0.003	
4/10/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/30/2015	<0.003	
3/23/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0005 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/9/2019		<0.003
10/1/2019		<0.003
3/27/2020		<0.003
9/25/2020		<0.003
3/9/2021		<0.003
8/10/2021		< 0.003

	GWC-18	GWC-18
3/7/2007	<0.003	
5/9/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/7/2008	<0.003	
12/3/2008	<0.003	
4/14/2009	<0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/12/2010	<0.003	
4/6/2011	<0.003	
10/12/2011	<0.003	
4/5/2012	<0.003	
9/19/2012	<0.003	
3/13/2013	<0.003	
9/10/2013	<0.003	
3/10/2014	<0.003	
9/3/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/24/2016	<0.003	
5/18/2016	<0.003	
7/7/2016	<0.003	
9/8/2016	<0.003	
10/19/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/16/2018	<0.003	
10/5/2018	<0.003	
4/9/2019		<0.003
10/1/2019		<0.003
3/30/2020		<0.003
9/24/2020		0.00033 (J)
3/9/2021		<0.003
8/10/2021		<0.003

_			
		GWC-19	GWC-19
	3/6/2007	<0.003	
	5/9/2007	<0.003	
	7/17/2007	<0.003	
	8/28/2007	<0.003	
	11/7/2007	<0.003	
	5/7/2008	<0.003	
	12/4/2008	<0.003	
	4/14/2009	<0.003	
	10/2/2009	<0.003	
	4/13/2010	<0.003	
	10/12/2010	<0.003	
	4/6/2011	<0.003	
	10/12/2011	<0.003	
	4/5/2012	<0.003	
	9/25/2012	<0.003	
	3/13/2013	<0.003	
	9/11/2013	<0.003	
	3/10/2014	<0.003	
	9/9/2014	<0.003	
	4/22/2015	<0.003	
	9/30/2015	<0.003	
	3/24/2016	<0.003	
	5/18/2016	<0.003	
	7/6/2016	0.0003 (J)	
	9/8/2016	<0.003	
	10/18/2016	<0.003	
	12/7/2016	<0.003	
	2/2/2017	<0.003	
	3/27/2017	<0.003	
	10/5/2017	<0.003	
	3/15/2018	<0.003	
	10/4/2018	<0.003	
	4/9/2019		<0.003
	10/1/2019		<0.003
	3/31/2020		<0.003
	9/28/2020		<0.003
	3/10/2021		<0.003
	8/10/2021		<0.003

	GWC-5	GWC-5
3/7/2007	<0.003	
5/8/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/14/2010	<0.003	
4/5/2011	<0.003	
10/12/2011	<0.003	
4/4/2012	<0.003	
9/24/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/9/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0004 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/1/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/16/2018	<0.003	
10/4/2018	<0.003	
4/9/2019		<0.003
10/1/2019		<0.003
3/31/2020		<0.003
9/25/2020		0.00052 (J)
3/9/2021		<0.003
8/10/2021		<0.003

	GWC-6	GWC-6
3/7/2007	<0.003	
5/9/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/6/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/3/2012	<0.003	
9/18/2012	<0.003	
3/12/2013	<0.003	
9/9/2013	<0.003	
3/5/2014	<0.003	
9/8/2014	<0.003	
4/22/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0005 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/1/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/16/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
10/1/2019		<0.003
3/31/2020		<0.003
9/25/2020		<0.003
3/9/2021		<0.003
8/10/2021		<0.003

	GWC-7	GWC-7
5/9/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/7/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/3/2012	<0.003	
9/18/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	0.0013 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/24/2017	<0.003	
10/4/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
10/1/2019		<0.003
3/30/2020		<0.003
9/24/2020		0.0008 (J)
3/9/2021		<0.003
8/10/2021		<0.003

	GWC-8	GWC-8
5/9/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	0.0064 (o)	
5/8/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
9/30/2009	<0.003	
4/13/2010	<0.003	
10/13/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/3/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/9/2014	<0.003	
4/22/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	0.0002 (J)	
9/8/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/24/2017	<0.003	
10/5/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019		<0.003
10/1/2019		<0.003
3/27/2020		<0.003
9/24/2020		0.0019 (J)
3/9/2021		<0.003
8/10/2021		<0.003

	GWC-9	GWC-9
3/7/2007	<0.003	
5/8/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
9/30/2009	<0.003	
4/13/2010	<0.003	
10/13/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/4/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	<0.003	
9/8/2016	<0.003	
10/19/2016	<0.003	
12/8/2016	0.0012 (J)	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/5/2018	<0.003	
4/8/2019		<0.003
10/1/2019		<0.003
3/27/2020		<0.003
9/24/2020		0.00056 (J)
3/9/2021		<0.003
8/10/2021		<0.003

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00012 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/22/2020		<0.005
3/8/2021		<0.005
8/10/2021		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.005	
9/8/2014	0.0034 (J)	
4/21/2015	<0.005	
9/29/2015	0.0025 (J)	
3/22/2016	<0.005	
5/17/2016	0.00129 (J)	
7/5/2016	0.001 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	0.0006 (J)	
10/4/2017	0.0011 (J)	
3/15/2018	0.00066 (J)	
10/4/2018	0.0008 (J)	
4/5/2019		0.00035 (J)
9/30/2019		0.00058 (J)
3/26/2020		0.00048 (J)
9/23/2020		<0.005
3/8/2021		<0.005
8/9/2021		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	0.0065	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	0.0006 (J)	
10/4/2017	<0.005	
3/15/2018	0.0014 (J)	
10/4/2018	<0.005	
4/8/2019		0.00023 (J)
9/30/2019		<0.005
3/26/2020		0.00044 (J)
9/23/2020		<0.005
3/8/2021		<0.005
8/9/2021		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	0.0005 (J)	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		0.00063 (J)
10/1/2019		<0.005
3/30/2020		0.00073 (J)
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
9/30/2015	0.0023 (J)	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	0.0012 (J)	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.001 (J)	
3/15/2018	<0.005	
10/4/2018	0.0034 (J)	
4/9/2019		0.0018 (J)
10/1/2019		<0.005
3/31/2020		0.00035 (J)
9/24/2020		0.0011 (J)
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		0.00034 (J)
10/1/2019		0.00082 (J)
3/26/2020		<0.005
9/23/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0017 (J)	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	0.0006 (J)	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-7	GWC-7
5/9/2007	0.038 (o)	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	0.0053	
3/5/2014	0.0052	
9/8/2014	0.0058	
4/21/2015	0.0088	
9/29/2015	0.0086	
3/23/2016	0.00693	
5/18/2016	0.00451 (J)	
7/6/2016	0.0063	
9/7/2016	0.0065	
10/18/2016	0.0056	
12/8/2016	0.0065	
2/2/2017	0.002 (J)	
3/24/2017	0.0027 (J)	
10/4/2017	0.0056	
3/15/2018	0.0037 (J)	
10/4/2018	0.0049 (J)	
4/8/2019		0.0057
10/1/2019		0.01
11/6/2019		0.011
3/30/2020		0.0052
9/24/2020		0.0064
3/9/2021		0.0052
8/10/2021		0.0072

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0022 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/24/2017	0.0005 (J)	
10/5/2017	0.0008 (J)	
3/14/2018	0.00064 (J)	
10/4/2018	<0.005	
4/8/2019		0.0015 (J)
10/1/2019		0.0028 (J)
3/27/2020		0.002 (J)
9/24/2020		0.0043 (J)
3/9/2021		0.0018 (J)
8/10/2021		0.005

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		<0.005
10/1/2019		0.00071 (J)
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWA-1	GWA-1
3/6/2007	0.032	
5/8/2007	0.04	
7/7/2007	0.041	
8/28/2007	0.044	
11/6/2007	0.044	
5/9/2008	0.03	
12/3/2008	0.047	
4/7/2009	0.032	
10/1/2009	0.043	
4/14/2010	0.032	
10/13/2010	0.046	
4/6/2011	0.034	
10/10/2011	0.038	
4/3/2012	0.0363	
9/24/2012	0.041	
3/12/2013	0.041	
9/11/2013	0.048	
3/4/2014	0.036	
9/3/2014	0.04	
4/21/2015	0.033	
9/30/2015	0.042	
3/22/2016	0.0326	
5/17/2016	0.0387	
7/5/2016	0.0403	
9/7/2016	0.0413	
10/18/2016	0.0409	
12/6/2016	0.0408	
1/31/2017	0.0435	
3/23/2017	0.038	
10/4/2017	0.0396	
3/14/2018	0.039	
10/4/2018	0.039	
4/8/2019		0.031
9/30/2019		0.042
3/26/2020		0.032
9/23/2020		0.041
3/8/2021		0.035
8/9/2021		0.046

	GWA-11	GWA-11
3/7/2007	0.03	
5/8/2007	0.032	
7/17/2007	0.028	
8/28/2007	0.03	
11/7/2007	0.032	
5/9/2008	0.032	
12/2/2008	0.036	
4/8/2009	0.04	
10/1/2009	0.039	
4/14/2010	0.041	
10/13/2010	0.039	
4/6/2011	0.034	
10/4/2011	0.032	
4/10/2012	0.0425	
9/26/2012	0.035	
3/12/2013	0.035	
9/10/2013	0.035	
3/4/2014	0.031	
9/3/2014	0.033	
4/21/2015	0.03	
9/29/2015	0.031	
3/22/2016	0.0327	
5/17/2016	0.0323	
7/6/2016	0.0344	
9/7/2016	0.0324	
10/18/2016	0.0311	
12/6/2016	0.0311	
2/1/2017	0.0332	
3/24/2017	0.032	
10/5/2017	0.0325	
3/15/2018	0.031	
10/4/2018	0.033	
4/8/2019		0.031
9/30/2019		0.03
3/26/2020		0.031
9/22/2020		0.031
3/8/2021		0.031
8/10/2021		0.03

	GWA-2	GWA-2
3/6/2007	0.12	
5/8/2007	0.11	
7/7/2007	0.11	
8/28/2007	0.13	
11/6/2007	0.12	
5/9/2008	0.12	
12/3/2008	0.12	
4/7/2009	0.13	
10/1/2009	0.14	
4/13/2010	0.15	
10/7/2010	0.16	
4/6/2011	0.14	
10/6/2011	0.16	
4/3/2012	0.165	
9/19/2012	0.16	
3/12/2013	0.16	
9/9/2013	0.17	
3/4/2014	0.16	
9/3/2014	0.17	
4/22/2015	0.17	
9/30/2015	0.15	
3/22/2016	0.197	
5/17/2016	0.178	
7/5/2016	0.182	
9/7/2016	0.172	
10/18/2016	0.174	
12/7/2016	0.167	
1/31/2017	0.176	
3/23/2017	0.157	
10/4/2017	0.143	
3/14/2018	0.17	
10/4/2018	0.18	
4/8/2019		0.15
9/30/2019		0.17
3/26/2020		0.16
9/21/2020		0.18
3/9/2021		0.17
8/9/2021		0.19

	GWA-3	GWA-3
3/6/2007	0.17	
5/8/2007	0.21	
7/17/2007	0.21	
8/28/2007	0.2	
11/6/2007	0.19	
5/8/2008	0.2	
12/3/2008	0.18	
4/7/2009	0.2	
10/2/2009	0.2	
4/14/2010	0.2	
10/14/2010	0.18	
4/5/2011	0.16	
10/12/2011	0.15	
4/4/2012	0.165	
9/26/2012	0.17	
3/12/2013	0.17	
9/10/2013	0.18	
3/11/2014	0.17	
9/8/2014	0.16	
4/21/2015	0.16	
9/29/2015	0.14	
3/22/2016	0.188	
5/17/2016	0.193	
7/5/2016	0.172	
9/7/2016	0.164	
10/18/2016	0.138	
12/6/2016	0.149	
2/1/2017	0.121	
3/23/2017	0.143	
10/4/2017	0.139	
3/15/2018	0.17	
10/4/2018	0.16	
4/5/2019		0.13
9/30/2019		0.14
3/26/2020		0.14
9/23/2020		0.14
3/8/2021		0.12
8/9/2021		0.12

	GWA-4	GWA-4
3/6/2007	0.13	
5/8/2007	0.12	
7/17/2007	0.12	
8/28/2007	0.13	
11/6/2007	0.12	
5/8/2008	0.13	
12/3/2008	0.14	
4/7/2009	0.097	
10/2/2009	0.11	
4/14/2010	0.059	
10/14/2010	0.053	
4/5/2011	0.042	
10/12/2011	0.048	
4/4/2012	0.044	
9/24/2012	0.048	
3/12/2013	0.043	
9/10/2013	0.042	
3/11/2014	0.04	
9/8/2014	0.042	
4/21/2015	0.05	
9/29/2015	0.044	
3/22/2016	0.0397	
5/17/2016	0.0351	
7/6/2016	0.0475	
9/7/2016	0.0415	
10/18/2016	0.0424	
12/6/2016	0.0528	
2/1/2017	0.0482	
3/24/2017	0.0595	
10/4/2017	0.0486	
3/15/2018	0.04	
10/4/2018	0.05	
4/8/2019		0.047
9/30/2019		0.051
3/26/2020		0.049
9/23/2020		0.043
3/8/2021		0.052
8/9/2021		0.034

10

	GWC-18	GWC-18
3/7/2007	0.072	
5/9/2007	0.063	
7/17/2007	0.058	
8/28/2007	0.06	
11/7/2007	0.072	
5/7/2008	0.076	
12/3/2008	0.066	
4/14/2009	0.08	
10/1/2009	0.074	
4/13/2010	0.062	
10/12/2010	0.078	
4/6/2011	0.066	
10/12/2011	0.071	
4/5/2012	0.0675	
9/19/2012	0.073	
3/13/2013	0.075	
9/10/2013	0.081	
3/10/2014	0.064	
9/3/2014	0.078	
4/22/2015	0.067	
9/30/2015	0.075	
3/24/2016	0.0818	
5/18/2016	0.0763	
7/7/2016	0.0747	
9/8/2016	0.081	
10/19/2016	0.084	
12/8/2016	0.0799	
2/2/2017	0.0813	
3/27/2017	0.0714	
10/5/2017	0.0755	
3/16/2018	0.074	
10/5/2018	0.081	
4/9/2019		0.081
10/1/2019		0.082
3/30/2020		0.077
9/24/2020		0.079
3/9/2021		0.077
8/10/2021		0.093

	GWC-19	GWC-19
3/6/2007	0.088	
5/9/2007	0.07	
7/17/2007	0.063	
8/28/2007	0.066	
11/7/2007	0.07	
5/7/2008	0.071	
12/4/2008	0.068	
4/14/2009	0.076	
10/2/2009	0.07	
4/13/2010	0.085	
10/12/2010	0.075	
4/6/2011	0.077	
10/12/2011	0.12	
4/5/2012	0.143	
9/25/2012	0.13	
3/13/2013	0.14	
9/11/2013	0.15	
3/10/2014	0.13	
9/9/2014	0.16	
4/22/2015	0.15	
9/30/2015	0.15	
3/24/2016	0.152	
5/18/2016	0.146	
7/6/2016	0.152	
9/8/2016	0.142	
10/18/2016	0.145	
12/7/2016	0.133	
2/2/2017	0.14	
3/27/2017	0.152	
10/5/2017	0.142	
3/15/2018	0.14	
10/4/2018	0.16	
4/9/2019		0.15
10/1/2019		0.15
3/31/2020		0.17
9/28/2020		0.15
3/10/2021		0.15
8/10/2021		0.14

_			
		GWC-20	GWC-20
	3/7/2007	0.11	
	5/9/2007	0.082	
	7/17/2007	0.078	
	8/29/2007	0.096	
	11/7/2007	0.1	
	5/7/2008	0.11	
	12/5/2008	0.11	
	4/14/2009	0.11	
	9/30/2009	0.12	
	4/13/2010	0.11	
	10/12/2010	0.12	
	10/12/2011	0.11	
	4/9/2012	0.13	
	9/25/2012	0.13	
	3/13/2013	0.12	
	9/11/2013	0.12	
	3/10/2014	0.11	
	9/9/2014	0.11	
	4/23/2015	0.11	
	9/30/2015	0.11	
	3/23/2016	0.115	
	5/18/2016	0.128	
	7/7/2016	0.124	
	9/8/2016	0.121	
	10/19/2016	0.117	
	12/7/2016	0.11	
	2/3/2017	0.123	
	3/27/2017	0.112	
	10/5/2017	0.128	
	3/16/2018	0.12	
	10/5/2018	0.12	
	4/9/2019		0.13
	10/1/2019		0.14
	3/31/2020		0.15
	6/19/2020		0.14 (R)
	9/23/2020		0.13
	3/10/2021		0.13
	8/10/2021		0.14

	GWC-21	GWC-21
3/6/2007	0.038	
5/9/2007	0.046	
7/17/2007	0.06	
8/29/2007	0.07	
11/7/2007	0.055	
5/7/2008	0.032	
12/5/2008	0.06	
4/27/2009	0.032	
9/30/2009	0.046	
4/13/2010	0.035	
10/12/2010	0.15	
10/5/2011	0.055	
4/10/2012	0.0399	
9/26/2012	0.093	
3/13/2013	0.066	
9/11/2013	0.053	
3/11/2014	0.039	
9/9/2014	0.14	
9/30/2015	0.15	
3/24/2016	0.046	
5/18/2016	0.0557	
7/7/2016	0.0596	
9/8/2016	0.184	
10/19/2016	0.186	
12/7/2016	0.174	
2/2/2017	0.0783	
3/27/2017	0.0363	
10/5/2017	0.0562	
3/15/2018	0.086	
10/4/2018	0.079	
4/9/2019		0.05
10/1/2019		0.18
3/31/2020		0.044
9/24/2020		0.19
3/9/2021		0.12
8/10/2021		0.057

	GWC-22	GWC-22
3/6/2007	0.023	
5/9/2007	0.034	
7/17/2007	0.034	
8/29/2007	0.048	
11/7/2007	0.042	
5/7/2008	0.078	
12/5/2008	0.067	
4/14/2009	0.083	
9/30/2009	0.086	
4/13/2010	0.087	
10/12/2010	0.082	
4/6/2011	0.082	
10/5/2011	0.082	
4/9/2012	0.0959	
9/25/2012	0.09	
3/13/2013	0.092	
9/11/2013	0.096	
3/11/2014	0.085	
9/9/2014	0.096	
4/23/2015	0.093	
9/30/2015	0.096	
3/23/2016	0.0938	
5/18/2016	0.0983	
7/7/2016	0.121	
9/8/2016	0.0917	
10/19/2016	0.091	
12/7/2016	0.0868	
2/2/2017	0.0939	
3/27/2017	0.0905	
10/5/2017	0.0945	
3/15/2018	0.096	
10/4/2018	0.1	
4/9/2019		0.094
10/1/2019		0.1
3/31/2020		0.1
9/23/2020		0.1
3/9/2021		0.089
8/10/2021		0.091

	GWC-23	GWC-23
3/6/2007	0.05	
5/9/2007	0.055	
7/17/2007	0.048	
8/29/2007	0.056	
11/7/2007	0.07	
5/7/2008	0.063	
12/5/2008	0.068	
4/14/2009	0.062	
10/1/2009	0.064	
4/14/2010	0.048	
10/13/2010	0.071	
4/6/2011	0.042	
10/12/2011	0.066	
4/9/2012	0.0628	
9/19/2012	0.073	
3/13/2013	0.057	
9/10/2013	0.066	
3/11/2014	0.054	
9/3/2014	0.06	
4/23/2015	0.06	
9/30/2015	0.076	
3/23/2016	0.0533	
5/19/2016	0.074	
7/7/2016	0.0766	
9/8/2016	0.0726	
10/19/2016	0.072	
12/7/2016	0.0732	
2/3/2017	0.0619	
3/27/2017	0.0602	
10/5/2017	0.0734	
3/15/2018	0.053	
10/5/2018	0.065	
4/8/2019		0.059
10/1/2019		0.082
3/26/2020		0.071
9/23/2020		0.079
3/9/2021		0.085
8/10/2021		0.085

	GWC-5	GWC-5
3/7/2007	0.1	
5/8/2007	0.11	
7/6/2007	0.11	
8/28/2007	0.1	
11/6/2007	0.1	
5/8/2008	0.11	
12/3/2008	0.091	
4/7/2009	0.094	
10/1/2009	0.097	
4/14/2010	0.096	
10/14/2010	0.1	
4/5/2011	0.092	
10/12/2011	0.12	
4/4/2012	0.105	
9/24/2012	0.13	
3/12/2013	0.1	
9/10/2013	0.13	
3/5/2014	0.084	
9/9/2014	0.11	
4/21/2015	0.11	
9/29/2015	0.097	
3/23/2016	0.0993	
5/17/2016	0.104	
7/6/2016	0.104	
9/7/2016	0.0945	
10/18/2016	0.0928	
12/8/2016	0.1	
2/1/2017	0.0972	
3/23/2017	0.105	
10/4/2017	0.102	
3/16/2018	0.091	
10/4/2018	0.084	
4/9/2019		0.067
10/1/2019		0.09
3/31/2020		0.064
9/25/2020		0.074
3/9/2021		0.063
8/10/2021		0.077

	GWC-6	GWC-6
3/7/2007	0.057	
5/9/2007	0.054	
7/17/2007	0.059	
8/28/2007	0.061	
11/6/2007	0.074	
5/8/2008	0.079	
12/3/2008	0.1	
4/7/2009	0.091	
10/1/2009	0.092	
4/13/2010	0.095	
10/6/2010	0.11	
4/5/2011	0.1	
10/4/2011	0.11	
4/3/2012	0.116	
9/18/2012	0.12	
3/12/2013	0.11	
9/9/2013	0.13	
3/5/2014	0.12	
9/8/2014	0.13	
4/22/2015	0.14	
9/29/2015	0.14	
3/23/2016	0.156	
5/17/2016	0.168	
7/6/2016	0.171	
9/7/2016	0.154	
10/18/2016	0.159	
12/8/2016	0.156	
2/1/2017	0.163	
3/23/2017	0.161	
10/4/2017	0.171	
3/16/2018	0.17	
10/4/2018	0.19	
4/8/2019		0.15
10/1/2019		0.18
3/31/2020		0.18
9/25/2020		0.16
3/9/2021		0.17
8/10/2021		0.18

	GWC-7	GWC-7
5/9/2007	0.011	
7/6/2007	0.0065	
8/28/2007	0.0095	
11/6/2007	0.013	
5/8/2008	0.011	
12/2/2008	0.011	
4/8/2009	0.0091	
10/1/2009	0.0098	
4/13/2010	0.0084	
10/7/2010	0.01	
4/5/2011	0.015	
10/4/2011	0.01	
4/3/2012	0.0426	
9/18/2012	0.02	
3/12/2013	0.35	
9/10/2013	0.11	
3/5/2014	0.054	
9/8/2014	0.044	
4/21/2015	0.065	
9/29/2015	0.036	
3/23/2016	0.263	
5/18/2016	0.245	
7/6/2016	0.117	
9/7/2016	0.0703	
10/18/2016	0.068	
12/8/2016	0.0791	
2/2/2017	0.17	
3/24/2017	0.181	
10/4/2017	0.0937	
3/15/2018	0.15	
10/4/2018	0.08	
4/8/2019		0.24
10/1/2019		0.085
3/30/2020		0.21
9/24/2020		0.11
3/9/2021		0.31
8/10/2021		0.14

	GWC-8	GWC-8
5/9/2007	0.13	
7/6/2007	0.12	
8/28/2007	0.11	
11/6/2007	0.1	
5/8/2008	0.1	
12/2/2008	0.11	
4/8/2009	0.1	
9/30/2009	0.099	
4/13/2010	0.098	
10/13/2010	0.092	
4/5/2011	0.085	
10/4/2011	0.091	
4/3/2012	0.101	
9/19/2012	0.1	
3/12/2013	0.098	
9/10/2013	0.11	
3/5/2014	0.087	
9/9/2014	0.1	
4/22/2015	0.095	
9/29/2015	0.093	
3/23/2016	0.0918	
5/18/2016	0.0957	
7/6/2016	0.0935	
9/8/2016	0.0925	
10/18/2016	0.0939	
12/8/2016	0.0996	
2/2/2017	0.096	
3/24/2017	0.106	
10/5/2017	0.103	
3/14/2018	0.1	
10/4/2018	0.11	
4/8/2019		0.13
6/18/2019		0.17
10/1/2019		0.12
3/27/2020		0.14
9/24/2020		0.14
3/9/2021		0.14
8/10/2021		0.23

	GWC-9	GWC-9
3/7/2007	0.059	
5/8/2007	0.055	
7/6/2007	0.052	
8/28/2007	0.047	
11/6/2007	0.048	
5/8/2008	0.052	
12/2/2008	0.056	
4/8/2009	0.057	
9/30/2009	0.055	
4/13/2010	0.053	
10/13/2010	0.054	
4/5/2011	0.035 (o)	
10/4/2011	0.058	
4/4/2012	0.0632	
9/19/2012	0.061	
3/12/2013	0.056	
9/10/2013	0.067	
3/5/2014	0.055	
9/3/2014	0.051	
4/21/2015	0.059	
9/29/2015	0.06	
3/23/2016	0.0636	
5/18/2016	0.0629	
7/6/2016	0.0646	
9/8/2016	0.063	
10/19/2016	0.0644	
12/8/2016	0.0648	
2/2/2017	0.0656	
3/27/2017	0.0619	
10/5/2017	0.0655	
3/15/2018	0.062	
10/5/2018	0.07	
4/8/2019		0.058
10/1/2019		0.071
3/27/2020		0.06
9/24/2020		0.06
3/9/2021		0.059
8/10/2021		0.067

	GWA-3	GWA-3
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/2/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/26/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	8E-05 (J)	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/5/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/5/2019		<0.0005
9/30/2019		<0.0005
3/26/2020		<0.0005
9/23/2020		<0.0005
3/8/2021		<0.0005
8/9/2021		<0.0005

	GWC-19	GWC-19
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/4/2008	<0.0005	
4/14/2009	<0.0005	
10/2/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/5/2012	<0.0005	
9/25/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/10/2014	<0.0005	
9/9/2014	<0.0005	
4/22/2015	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/18/2016	<0.0005	
12/7/2016	<0.0005	
2/2/2017	<0.0005	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/31/2020		<0.0005
9/28/2020		0.0001 (J)
3/10/2021		<0.0005
8/10/2021		<0.0005

	GWC-7	GWC-7
5/9/2007	0.28 (o)	
7/6/2007	0.093	
8/28/2007	0.057	
11/6/2007	0.036	
5/8/2008	0.013	
12/2/2008	0.01	
4/8/2009	0.0076	
10/1/2009	0.0057	
4/13/2010	0.0061	
10/7/2010	0.0039	
4/5/2011	0.0025	
10/4/2011	0.0024	
4/3/2012	0.0008	
9/18/2012	0.002	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	0.00037 (J)	
9/8/2014	0.00055 (J)	
4/21/2015	0.00033 (J)	
9/29/2015	0.00046 (J)	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	0.0002 (J)	
9/7/2016	0.0002 (J)	
10/18/2016	0.0002 (J)	
12/8/2016	0.0003 (J)	
2/2/2017	<0.0005	
3/24/2017	<0.0005	
10/4/2017	0.0001 (J)	
3/15/2018	<0.0005	
10/4/2018	0.0002 (J)	
4/8/2019		5.8E-05 (J)
10/1/2019		0.0001 (J)
3/30/2020		<0.0005
9/24/2020		5E-05 (J)
3/9/2021		<0.0005
8/10/2021		6.1E-05 (J)

	GWA-4	GWA-4	
3/6/2007	<0.0005		
5/8/2007	<0.0005		
7/17/2007	<0.0005		
8/28/2007	<0.0005		
11/6/2007	<0.0005		
5/8/2008	<0.0005		
12/3/2008	<0.0005		
4/7/2009	<0.0005		
10/2/2009	<0.0005		
4/14/2010	<0.0005		
10/14/201	0 <0.0005		
4/5/2011	<0.0005		
10/12/201	1 <0.0005		
4/4/2012	<0.0005		
9/24/2012	<0.0005		
3/12/2013	<0.0005		
9/10/2013	<0.0005		
3/11/2014	<0.0005		
9/8/2014	<0.0005		
4/21/2015	<0.0005		
9/29/2015	<0.0005		
3/22/2016	<0.0005		
5/17/2016	<0.0005		
7/6/2016	<0.0005		
9/7/2016	<0.0005		
10/18/201	6 <0.0005		
12/6/2016	<0.0005		
2/1/2017	0.0001 (J)	
3/24/2017	<0.0005		
10/4/2017	<0.0005		
3/15/2018	<0.0005		
10/4/2018	<0.0005		
4/8/2019		<0.0005	
9/30/2019		<0.0005	
3/26/2020		<0.0005	
9/23/2020		<0.0005	
3/8/2021		<0.0005	
8/9/2021		<0.0005	

	GWC-10	GWC-10
3/7/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/9/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/13/2010	<0.0005	
4/6/2011	<0.0005	
10/4/2011	<0.0005	
4/10/2012	<0.0005	
9/26/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/4/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	<0.0005	
9/30/2015	<0.0005	
3/23/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/2/2017	9E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/27/2020		<0.0005
9/25/2020		<0.0005
3/9/2021		<0.0005
8/10/2021		<0.0005

	GWC-18	GWC-18
3/7/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/3/2008	<0.0005	
4/14/2009	<0.0005	
10/1/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/5/2012	<0.0005	
9/19/2012	<0.0005	
3/13/2013	<0.0005	
9/10/2013	<0.0005	
3/10/2014	<0.0005	
9/3/2014	<0.0005	
4/22/2015	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/16/2018	<0.0005	
10/5/2018	<0.0005	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/30/2020		<0.0005
9/24/2020		<0.0005
3/9/2021		<0.0005
8/10/2021		<0.0005

	GWC-20	GWC-20
3/7/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/14/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
10/12/2011	<0.0005	
4/9/2012	<0.0005	
9/25/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/10/2014	<0.0005	
9/9/2014	<0.0005	
4/23/2015	<0.0005	
9/30/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/3/2017	<0.0005	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/16/2018	<0.0005	
10/5/2018	0.00011 (J)	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/31/2020		<0.0005
9/23/2020		<0.0005
3/10/2021		<0.0005
8/10/2021		<0.0005

	GWC-21	GWC-21
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/27/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
10/5/2011	<0.0005	
4/10/2012	<0.0005	
9/26/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/11/2014	<0.0005	
9/9/2014	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	0.0001 (J)	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/2/2017	0.0001 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/31/2020		<0.0005
9/24/2020		<0.0005
3/9/2021		<0.0005
8/10/2021		<0.0005

	GWC-23	GWC-23
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/14/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/13/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/9/2012	<0.0005	
9/19/2012	<0.0005	
3/13/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/3/2014	<0.0005	
4/23/2015	<0.0005	
9/30/2015	<0.0005	
3/23/2016	<0.0005	
5/19/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/3/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/5/2018	<0.0005	
4/8/2019		<0.0005
10/1/2019		<0.0005
3/26/2020		<0.0005
9/23/2020		<0.0005
3/9/2021		<0.0005
8/10/2021		<0.0005

	GWC-5	GWC-5
3/7/2007	0.0015	
5/8/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/24/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/9/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/8/2016	<0.0005	
2/1/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/16/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019		<0.0005
10/1/2019		<0.0005
3/31/2020		<0.0005
9/25/2020		<0.0005
3/9/2021		<0.0005
8/10/2021		<0.0005

	GWC-7	GWC-7
5/9/2007	0.023 (o)	
7/6/2007	0.0081 (o)	
8/28/2007	0.0035	
11/6/2007	0.0028	
5/8/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	0.0013	
10/1/2009	<0.0005	
4/13/2010	<0.0005	
10/7/2010	<0.0005	
4/5/2011	<0.0005	
10/4/2011	<0.0005	
4/3/2012	<0.0005	
9/18/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	0.0015	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	0.0001 (J)	
3/24/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019		<0.0005
10/1/2019		<0.0005
3/30/2020		<0.0005
9/24/2020		<0.0005
3/9/2021		<0.0005
8/10/2021		<0.0005

	GWC-8	GWC-8
5/9/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/13/2010	<0.0005	
4/5/2011	<0.0005	
10/4/2011	<0.0005	
4/3/2012	<0.0005	
9/19/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/9/2014	<0.0005	
4/22/2015	<0.0005	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/18/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/24/2017	<0.0005	
10/5/2017	<0.0005	
3/14/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019		<0.0005
10/1/2019		<0.0005
3/27/2020		<0.0005
9/24/2020		<0.0005
3/9/2021		<0.0005
8/10/2021		<0.0005

	GWC-9	GWC-9
3/7/2007	<0.0005	
5/8/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/13/2010	<0.0005	
4/5/2011	<0.0005	
10/4/2011	<0.0005	
4/4/2012	<0.0005	
9/19/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	0.00029 (J)	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/5/2018	<0.0005	
4/8/2019		<0.0005
10/1/2019		<0.0005
3/27/2020		<0.0005
9/24/2020		<0.0005
3/9/2021		<0.0005
8/10/2021		<0.0005

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	0.00032 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	0.016	
10/4/2018	<0.005	
4/8/2019		<0.005
9/30/2019		<0.005
3/26/2020		<0.005
9/23/2020		<0.005
3/8/2021		<0.005
8/9/2021		<0.005

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	0.0013	
11/7/2007	0.0024	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0018 (J)	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
9/30/2019		<0.005
3/26/2020		<0.005
9/22/2020		<0.005
3/8/2021		<0.005
8/10/2021		<0.005

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
9/30/2019		<0.005
3/26/2020		0.00043 (J)
9/21/2020		<0.005
3/9/2021		<0.005
8/9/2021		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	0.0014	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019		<0.005
9/30/2019		<0.005
3/26/2020		0.00062 (J)
9/23/2020		<0.005
3/8/2021		<0.005
8/9/2021		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	0.0004 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
9/30/2019		<0.005
3/26/2020		0.0013 (J)
9/23/2020		<0.005
3/8/2021		<0.005
8/9/2021		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	0.00424 (J)	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0013 (J)	
2/2/2017	0.001 (J)	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/27/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00086 (J)
3/30/2020		0.00071 (J)
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0012 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		0.00042 (J)
9/28/2020		0.00063 (J)
3/10/2021		<0.005
8/10/2021		<0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	0.0016	
11/7/2007	0.0016	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	0.0064 (J)	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/23/2020		<0.005
3/10/2021		<0.005
8/10/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	0.0015	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		0.00093 (J)
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	0.002	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0013	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		0.0023 (J)
10/1/2019		<0.005
3/31/2020		0.0015 (J)
9/23/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	0.0013	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		<0.005
10/1/2019		0.0051 (J)
3/26/2020		<0.005
9/23/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.0012 (J)
3/31/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

				,	
	GWC-6	GWC-6			
3/7/2007	<0.005				
5/9/2007	<0.005				
7/17/2007	<0.005				
8/28/2007	<0.005				
11/6/2007	<0.005				
5/8/2008	<0.005				
12/3/2008	<0.005				
4/7/2009	<0.005				
10/1/2009	<0.005				
4/13/2010	<0.005				
10/6/2010	<0.005				
4/5/2011	<0.005				
10/4/2011	<0.005				
4/3/2012	<0.005				
9/18/2012	<0.005				
3/12/2013	<0.005				
9/9/2013	<0.005				
3/5/2014	<0.005				
9/8/2014	<0.005				
4/22/2015	<0.005				
9/29/2015	<0.005				
3/23/2016	<0.005				
5/17/2016	<0.005				
7/6/2016	<0.005				
9/7/2016	<0.005				
10/18/2016	<0.005				
12/8/2016	<0.005				
2/1/2017	<0.005				
3/23/2017	<0.005				
10/4/2017	<0.005				
3/16/2018	<0.005				
10/4/2018	<0.005				
4/8/2019		<0.005			
10/1/2019		<0.005			
3/31/2020		0.00085 (J)			
9/25/2020		<0.005			
3/9/2021		<0.005			
8/10/2021		<0.005			

	GWC-7	GWC-7
5/9/2007	0.11 (o)	
7/6/2007	0.0029	
8/28/2007	0.0038	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	0.0016	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	0.0018	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/24/2017	0.0011 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
10/1/2019		<0.005
3/30/2020		0.00041 (J)
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	0.0035	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	0.0017	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	0.0005 (J)	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
10/1/2019		0.0005 (J)
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	0.0013	
7/6/2007	<0.005	
8/28/2007	0.0014	
11/6/2007	0.0024	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		<0.005
10/1/2019		<0.005
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	0.00043 (J)	
9/3/2014	0.00076 (J)	
4/21/2015	0.00051 (J)	
9/30/2015	0.0006 (J)	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	0.0004 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0006 (J)	
1/31/2017	0.0006 (J)	
3/23/2017	0.0007 (J)	
10/4/2017	0.0006 (J)	
3/14/2018	<0.005	
10/4/2018	0.00058 (J)	
4/8/2019		0.00026 (J)
9/30/2019		0.00042 (J)
3/26/2020		0.00049 (J)
9/23/2020		0.00051 (J)
3/8/2021		0.0005 (J)
8/9/2021		<0.005

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.00047 (J)	
9/3/2014	0.00065 (J)	
4/21/2015	0.00062 (J)	
9/29/2015	0.0009 (J)	
3/22/2016	<0.01	
5/17/2016	<0.01	
7/6/2016	0.0009 (J)	
9/7/2016	0.0011 (J)	
10/18/2016	0.0011 (J)	
12/6/2016	0.0011 (J)	
2/1/2017	0.0011 (J)	
3/24/2017	0.0008 (J)	
10/5/2017	0.0008 (J)	
3/15/2018	<0.01	
10/4/2018	0.00072 (J)	
4/8/2019		0.00076 (J)
9/30/2019		0.00054 (J)
3/26/2020		0.00063 (J)
9/22/2020		0.00049 (J)
3/8/2021		0.00049 (J)
8/10/2021		0.00047 (J)

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		6.1E-05 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/21/2020		<0.005
3/9/2021		<0.005
8/9/2021		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	0.0003 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0007 (J)	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019		0.00031 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/23/2020		<0.005
3/8/2021		<0.005
8/9/2021		0.00042 (J)

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	0.0016	
3/12/2013	<0.005	
9/10/2013	0.002	
3/11/2014	<0.005	
9/8/2014	0.001 (J)	
4/21/2015	<0.005	
9/29/2015	0.0025 (J)	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	0.0004 (J)	
9/7/2016	0.0008 (J)	
10/18/2016	<0.005	
12/6/2016	0.0026 (J)	
2/1/2017	0.0013 (J)	
3/24/2017	0.0014 (J)	
10/4/2017	0.0012 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00044 (J)
9/30/2019		0.00079 (J)
3/26/2020		0.00082 (J)
9/23/2020		<0.005
3/8/2021		0.00061 (J)
8/9/2021		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/27/2020		0.00082 (J)
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/27/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
10/5/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	0.0033	
3/13/2013	<0.01	
9/11/2013	0.0018	
3/11/2014	0.00029 (J)	
9/9/2014	0.0011 (J)	
9/30/2015	<0.01	
3/24/2016	<0.01	
5/18/2016	<0.01	
7/7/2016	0.0016 (J)	
9/8/2016	0.0006 (J)	
10/19/2016	0.0006 (J)	
12/7/2016	0.0006 (J)	
2/2/2017	<0.01	
3/27/2017	0.001 (J)	
10/5/2017	0.0051 (J)	
3/15/2018	<0.01	
10/4/2018	0.0065 (J)	
4/9/2019		0.0023 (J)
10/1/2019		0.00046 (J)
3/31/2020		0.0019 (J)
9/24/2020		0.00068 (J)
3/9/2021		0.00049 (J)
8/10/2021		0.0041 (J)

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	0.00058 (J)	
4/8/2019		0.00046 (J)
10/1/2019		0.00033 (J)
3/26/2020		0.00035 (J)
9/23/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	0.0007 (J)	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/25/2020		0.00057 (J)
3/9/2021		0.00043 (J)
8/10/2021		0.00098 (J)

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00022 (J)
10/1/2019		<0.005
3/31/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-7	GWC-7
5/9/2007	6.5 (o)	
7/6/2007	2.1 (o)	
8/28/2007	1.4 (o)	
11/6/2007	1.1 (o)	
5/8/2008	0.75	
12/2/2008	0.41	
4/8/2009	0.38	
10/1/2009	0.29	
4/13/2010	0.26	
10/7/2010	0.24	
4/5/2011	0.17	
10/4/2011	0.19	
4/3/2012	0.114	
9/18/2012	0.14	
3/12/2013	0.041	
9/10/2013	0.06	
3/5/2014	0.049	
9/8/2014	0.068	
4/21/2015	0.043	
9/29/2015	0.0525	
3/23/2016	0.0172	
5/18/2016	0.021	
7/6/2016	0.0278	
9/7/2016	0.0334	
10/18/2016	0.0368	
12/8/2016	0.0419	
2/2/2017	0.0113	
3/24/2017	0.0094 (J)	
10/4/2017	0.0237	
3/15/2018	0.014	
10/4/2018	0.024	
4/8/2019		0.0086 (J)
10/1/2019		0.017
3/30/2020		0.012
9/24/2020		0.01
3/9/2021		0.0093
8/10/2021		0.013

	GWC-8	GWC-8
5/9/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/9/2014	<0.01	
4/22/2015	<0.01	
9/29/2015	<0.01	
3/23/2016	<0.01	
5/18/2016	<0.01	
7/6/2016	<0.01	
9/8/2016	<0.01	
10/18/2016	<0.01	
12/8/2016	<0.01	
2/2/2017	<0.01	
3/24/2017	<0.01	
10/5/2017	0.0003 (J)	
3/14/2018	<0.01	
10/4/2018	<0.01	
4/8/2019		0.0017 (J)
10/1/2019		0.00081 (J)
3/27/2020		0.0016 (J)
9/24/2020		0.0011 (J)
3/9/2021		0.0013 (J)
8/10/2021		0.004 (J)

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	0.0004 (J)	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0004 (J)	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		0.00041 (J)
10/1/2019		0.00041 (J)
3/27/2020		0.00063 (J)
9/24/2020		<0.005
3/9/2021		0.00042 (J)
8/10/2021		<0.005

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	0.0032	
11/7/2007	0.0036	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.0013 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/22/2020		<0.005
3/8/2021		<0.005
8/10/2021		<0.005

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	0.0032	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	0.0011 (J)	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00029 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/21/2020		<0.005
3/9/2021		<0.005
8/9/2021		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	0.0028	
8/28/2007	0.0039	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019		<0.005
9/30/2019		<0.005
3/26/2020		0.00022 (J)
9/23/2020		<0.005
3/8/2021		<0.005
8/9/2021		<0.005

-			
		GWA-4	GWA-4
	3/6/2007	<0.005	
	5/8/2007	<0.005	
	7/17/2007	<0.005	
	8/28/2007	0.0061	
	11/6/2007	<0.005	
	5/8/2008	<0.005	
	12/3/2008	<0.005	
	4/7/2009	<0.005	
	10/2/2009	<0.005	
	4/14/2010	<0.005	
	10/14/2010	0.0066	
	4/5/2011	<0.005	
	10/12/2011	<0.005	
	4/4/2012	<0.005	
	9/24/2012	<0.005	
	3/12/2013	<0.005	
	9/10/2013	<0.005	
	3/11/2014	<0.005	
	9/8/2014	<0.005	
	4/21/2015	<0.005	
	9/29/2015	<0.005	
	3/22/2016	<0.005	
	9/7/2016	<0.005	
	3/24/2017	<0.005	
	10/4/2017	<0.005	
	3/15/2018	<0.005	
	10/4/2018	<0.005	
	4/8/2019		<0.005
	9/30/2019		<0.005
	3/26/2020		<0.005
	9/23/2020		<0.005
	3/8/2021		<0.005
	8/9/2021		0.00051 (J)

	GWC-10	GWC-10
3/7/2007	0.0025	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/27/2020		0.00022 (J)
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	0.0029	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	0.00099 (J)	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00037 (J)
3/30/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	0.0035	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0004 (J)	
10/5/2017	0.0005 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		0.0014 (J)
10/1/2019		0.00019 (J)
3/31/2020		<0.005
9/28/2020		<0.005
3/10/2021		<0.005
8/10/2021		<0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0028	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00023 (J)
3/31/2020		<0.005
9/23/2020		<0.005
3/10/2021		<0.005
8/10/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0029	
5/7/2008	0.0026	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	0.0013 (J)	
9/30/2015	0.0008 (J)	
3/24/2016	<0.005	
9/8/2016	0.0006 (J)	
3/27/2017	0.0005 (J)	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00084 (J)
3/31/2020		0.00082 (J)
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0033	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00031 (J)
3/31/2020		0.0002 (J)
9/23/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0084	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	0.0012 (J)	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0003 (J)	
3/15/2018	0.0016 (J)	
10/5/2018	<0.005	
4/8/2019		0.0005 (J)
10/1/2019		0.00083 (J)
3/26/2020		0.00067 (J)
9/23/2020		<0.005
3/9/2021		<0.005
8/10/2021		0.00078 (J)

	GWC-5	GWC-5
3/7/2007	0.0027	
5/8/2007	0.0026	
7/6/2007	<0.005	
8/28/2007	0.0036	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.00031 (J)
3/31/2020		0.00019 (J)
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
10/1/2019		0.00023 (J)
3/31/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-7	GWC-7
5/9/2007	0.44 (o)	
7/6/2007	0.016	
8/28/2007	0.0091	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	0.003	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	0.00082 (J)	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	0.0007 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00025 (J)
10/1/2019		0.00034 (J)
3/30/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
10/1/2019		0.00036 (J)
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-9	GWC-9
3/7/2007	0.0043	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		<0.005
10/1/2019		<0.005
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		0.0018 (J)

	GWA-11	GWA-11
3/7/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/9/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/4/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/1/2017	<0.001	
3/24/2017	7E-05 (J)	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019		<0.001
9/30/2019		<0.001
3/26/2020		<0.001
9/22/2020		<0.001
3/8/2021		<0.001
8/10/2021		<0.001

	GWA-3	GWA-3
3/6/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/2/2009	<0.001	
4/14/2010	<0.001	
10/14/2010	<0.001	
4/5/2011	<0.001	
10/12/2011	<0.001	
4/4/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/11/2014	<0.001	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/5/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/5/2019		<0.001
9/30/2019		<0.001
3/26/2020		4.7E-05 (J)
9/23/2020		<0.001
3/8/2021		4E-05 (J)
8/9/2021		<0.001

	GWC-10	GWC-10
3/7/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/9/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/4/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019		<0.001
10/1/2019		<0.001
3/27/2020		5.4E-05 (J)
9/25/2020		<0.001
3/9/2021		<0.001
8/10/2021		<0.001

	GWC-18	GWC-18
3/7/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/3/2008	<0.001	
4/14/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
4/6/2011	<0.001	
10/12/2011	<0.001	
4/5/2012	<0.001	
9/19/2012	<0.001	
3/13/2013	<0.001	
9/10/2013	<0.001	
3/10/2014	<0.001	
9/3/2014	<0.001	
4/22/2015	<0.001	
9/30/2015	<0.001	
3/24/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/8/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/16/2018	<0.001	
10/5/2018	<0.001	
4/9/2019		<0.001
10/1/2019		<0.001
3/30/2020		<0.001
9/24/2020		4E-05 (J)
3/9/2021		<0.001
8/10/2021		<0.001

	GWC-19	GWC-19
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/4/2008	<0.001	
4/14/2009	<0.001	
10/2/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
4/6/2011	<0.001	
10/12/2011	<0.001	
4/5/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/10/2014	<0.001	
9/9/2014	<0.001	
4/22/2015	<0.001	
9/30/2015	<0.001	
3/24/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	<0.001	
9/8/2016	<0.001	
10/18/2016	<0.001	
12/7/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	0.0002 (J)	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019		<0.001
10/1/2019		<0.001
3/31/2020		6.1E-05 (J)
9/28/2020		0.00014 (J)
3/10/2021		<0.001
8/10/2021		<0.001

	GWC-20	GWC-20
3/7/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/14/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
10/12/2011	<0.001	
4/9/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/10/2014	<0.001	
9/9/2014	<0.001	
4/23/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	<0.001	
2/3/2017	<0.001	
3/27/2017	7E-05 (J)	
10/5/2017	<0.001	
3/16/2018	<0.001	
10/5/2018	<0.001	
4/9/2019		<0.001
10/1/2019		<0.001
3/31/2020		<0.001
9/23/2020		<0.001
3/10/2021		<0.001
8/10/2021		<0.001

	GWC-21	GWC-21
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/27/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
10/5/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/11/2014	<0.001	
9/9/2014	<0.001	
9/30/2015	<0.001	
3/24/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	0.0001 (J)	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019		<0.001
10/1/2019		7.5E-05 (J)
3/31/2020		<0.001
9/24/2020		0.00012 (J)
3/9/2021		0.00013 (J)
8/10/2021		<0.001

	GWC-22	GWC-22
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/14/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
4/6/2011	<0.001	
10/5/2011	<0.001	
4/9/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/11/2014	<0.001	
9/9/2014	<0.001	
4/23/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019		<0.001
10/1/2019		0.00012 (J)
3/31/2020		0.00013 (J)
9/23/2020		6.6E-05 (J)
3/9/2021		3.8E-05 (J)
8/10/2021		<0.001

	GWC-23	GWC-23
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/14/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/12/2011	<0.001	
4/9/2012	<0.001	
9/19/2012	<0.001	
3/13/2013	<0.001	
9/10/2013	<0.001	
3/11/2014	<0.001	
9/3/2014	<0.001	
4/23/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/19/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	<0.001	
2/3/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/5/2018	0.00042 (J)	
4/8/2019		0.00018 (J)
10/1/2019		0.00022 (J)
3/26/2020		0.00016 (J)
9/23/2020		0.00036 (J)
3/9/2021		0.00011 (J)
8/10/2021		<0.001

	GWC-5	GWC-5
3/7/2007	<0.001	
5/8/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/14/2010	<0.001	
4/5/2011	<0.001	
10/12/2011	<0.001	
4/4/2012	<0.001	
9/24/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	<0.001	
9/9/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	<0.001	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/16/2018	<0.001	
10/4/2018	<0.001	
4/9/2019		0.00039 (J)
10/1/2019		6.5E-05 (J)
3/31/2020		<0.001
9/25/2020		<0.001
3/9/2021		<0.001
8/10/2021		<0.001

	GWC-6	GWC-6
3/7/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/6/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/18/2012	<0.001	
3/12/2013	<0.001	
9/9/2013	<0.001	
3/5/2014	<0.001	
9/8/2014	<0.001	
4/22/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	0.0001 (J)	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/16/2018	<0.001	
10/4/2018	<0.001	
4/8/2019		<0.001
10/1/2019		<0.001
3/31/2020		<0.001
9/25/2020		<0.001
3/9/2021		<0.001
8/10/2021		<0.001

	GWC-7	GWC-7
5/9/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/7/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/18/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	0.0016 (J)	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	0.0001 (J)	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	<0.001	
2/2/2017	0.0003 (J)	
3/24/2017	0.0002 (J)	
10/4/2017	7E-05 (J)	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019		<0.001
10/1/2019		5E-05 (J)
3/30/2020		4.8E-05 (J)
9/24/2020		6E-05 (J)
3/9/2021		8.5E-05 (J)
8/10/2021		<0.001

	GWC-8	GWC-8
5/9/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/13/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/19/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	<0.001	
9/9/2014	<0.001	
4/22/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	<0.001	
9/8/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	0.0002 (J)	
2/2/2017	<0.001	
3/24/2017	<0.001	
10/5/2017	<0.001	
3/14/2018	<0.001	
10/4/2018	<0.001	
4/8/2019		<0.001
10/1/2019		<0.001
3/27/2020		<0.001
9/24/2020		4.9E-05 (J)
3/9/2021		<0.001
8/10/2021		<0.001

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	0.001 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	0.0008 (J)	
3/23/2017	0.0007 (J)	
10/4/2017	0.0006 (J)	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00034 (J)
9/30/2019		0.00037 (J)
3/26/2020		0.00065 (J)
9/23/2020		<0.005
3/8/2021		<0.005
8/9/2021		<0.005

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.002 (J)	
9/3/2014	0.002 (J)	
4/21/2015	0.002 (J)	
9/29/2015	0.0022 (J)	
3/22/2016	<0.01	
9/7/2016	0.0026 (J)	
3/24/2017	0.0024 (J)	
10/5/2017	0.0023 (J)	
3/15/2018	0.0026 (J)	
10/4/2018	0.0023 (J)	
4/8/2019		0.0023 (J)
9/30/2019		0.0017 (J)
3/26/2020		0.002 (J)
9/22/2020		0.0014 (J)
3/8/2021		0.001 (J)
8/10/2021		0.0017 (J)

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	0.0007 (J)	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		<0.005
9/30/2019		<0.005
3/26/2020		<0.005
9/21/2020		<0.005
3/9/2021		<0.005
8/9/2021		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0013 (J)	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	0.0022 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019		0.00075 (J)
9/30/2019		<0.005
3/26/2020		0.0011 (J)
9/23/2020		<0.005
3/8/2021		<0.005
8/9/2021		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	0.0032	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	0.0032	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0026	
9/8/2014	0.0017 (J)	
4/21/2015	0.0016 (J)	
9/29/2015	0.0055	
3/22/2016	<0.005	
9/7/2016	0.0014 (J)	
3/24/2017	0.0017 (J)	
10/4/2017	0.0023 (J)	
3/15/2018	0.0024 (J)	
10/4/2018	0.0013 (J)	
4/8/2019		0.00089 (J)
9/30/2019		0.0013 (J)
3/26/2020		0.00096 (J)
9/23/2020		0.00091 (J)
3/8/2021		<0.005
8/9/2021		0.001 (J)

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/27/2020		0.0023 (J)
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	0.0013 (J)	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	0.0009 (J)	
3/27/2017	0.0006 (J)	
10/5/2017	0.0008 (J)	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.0015 (J)
3/30/2020		0.00048 (J)
9/24/2020		0.0011 (J)
3/9/2021		<0.005
8/10/2021		<0.005

GWC-19	GWC-19
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
0.00072 (J)	
<0.005	
<0.005	
<0.005	
<0.005	
<0.005	
0.0062 (J)	
0.0005 (J)	
<0.005	
<0.005	
	<0.005
	<0.005
	<0.005
	<0.005
	<0.005
	<0.005
	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	0.00074 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0006 (J)	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/23/2020		<0.005
3/10/2021		<0.005
8/10/2021		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	0.0055	
11/7/2007	0.0044	
5/7/2008	0.0047	
12/5/2008	<0.005	
4/27/2009	0.0027	
9/30/2009	0.0051	
4/13/2010	0.0031	
10/12/2010	<0.005	
10/5/2011	0.0032	
4/10/2012	<0.005	
9/26/2012	0.0063	
3/13/2013	0.0029	
9/11/2013	0.0046	
3/11/2014	0.002 (J)	
9/9/2014	0.0029	
9/30/2015	0.0025 (J)	
3/24/2016	0.00317 (J)	
9/8/2016	0.0038 (J)	
3/27/2017	0.0024 (J)	
10/5/2017	0.0104	
3/15/2018	0.0026 (J)	
10/4/2018	0.012	
12/11/2018	0.0052 (J)	
4/9/2019		0.0048 (J)
10/1/2019		0.0031 (J)
3/31/2020		0.0039 (J)
9/24/2020		0.0068
3/9/2021		0.0013 (J)
8/10/2021		0.0076
3/27/2017 10/5/2017 3/15/2018 10/4/2018 12/11/2018 4/9/2019 10/1/2019 3/31/2020 9/24/2020 3/9/2021	0.0024 (J) 0.0104 0.0026 (J) 0.012	0.0031 (J 0.0039 (J 0.0068 0.0013 (J

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	0.00059 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/31/2020		<0.005
9/23/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0016 (J)	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	0.0011 (J)	
3/27/2017	0.0007 (J)	
10/5/2017	<0.005	
3/15/2018	0.001 (J)	
10/5/2018	0.0014 (J)	
4/8/2019		0.0011 (J)
10/1/2019		0.0035 (J)
3/26/2020		0.001 (J)
9/23/2020		0.00079 (J)
3/9/2021		<0.005
8/10/2021		0.0008 (J)

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.001 (J)	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	0.0008 (J)	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		0.00098 (J)
10/1/2019		0.00088 (J)
3/31/2020		0.0013 (J)
9/25/2020		0.00078 (J)
3/9/2021		<0.005
8/10/2021		0.00085 (J)

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	0.00092 (J)	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00032 (J)
10/1/2019		0.00042 (J)
3/31/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-7	GWC-7
5/9/2007	18 (o)	
7/6/2007	5.9 (o)	
8/28/2007	3.9	
11/6/2007	3.1	
5/8/2008	2.1	
12/2/2008	1.2	
4/8/2009	1.1	
10/1/2009	0.88	
4/13/2010	0.82	
10/7/2010	0.72	
4/5/2011	0.52	
10/4/2011	0.56	
4/3/2012	0.365	
9/18/2012	0.45	
3/12/2013	0.13	
9/10/2013	0.2	
3/5/2014	0.17	
9/8/2014	0.25	
4/21/2015	0.15	
9/29/2015	0.203	
3/23/2016	0.0607	
9/7/2016	0.141	
3/24/2017	0.0313	
10/4/2017	0.093	
3/15/2018	0.057	
10/4/2018	0.11	
4/8/2019		0.03
10/1/2019		0.07
3/30/2020		0.037
9/24/2020		0.042
3/9/2021		0.035
8/10/2021		0.057

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.00079 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00064 (J)
10/1/2019		0.00063 (J)
3/27/2020		0.00053 (J)
9/24/2020		0.001 (J)
3/9/2021		<0.005
8/10/2021		0.0073

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	0.003	
3/5/2014	0.0022 (J)	
9/3/2014	<0.01	
4/21/2015	0.0019 (J)	
9/29/2015	0.0019 (J)	
3/23/2016	<0.01	
9/8/2016	0.0023 (J)	
3/27/2017	0.0023 (J)	
10/5/2017	0.0024 (J)	
3/15/2018	0.0023 (J)	
10/5/2018	0.0025 (J)	
4/8/2019		0.0021 (J)
10/1/2019		0.0022 (J)
3/27/2020		0.0022 (J)
9/24/2020		0.0024 (J)
3/9/2021		0.0014 (J)
8/10/2021		0.0019 (J)

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019		0.00014 (J)
9/30/2019		<0.005
3/26/2020		<0.005
9/23/2020		<0.005
3/8/2021		<0.005
8/9/2021		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	0.0016 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		<0.005
3/27/2020		<0.005
9/25/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

_			
		GWC-21	GWC-21
	3/6/2007	<0.005	
	5/9/2007	<0.005	
	7/17/2007	<0.005	
	8/29/2007	<0.005	
	11/7/2007	<0.005	
	5/7/2008	<0.005	
	12/5/2008	<0.005	
	4/27/2009	<0.005	
	9/30/2009	<0.005	
	4/13/2010	<0.005	
	10/12/2010	<0.005	
	10/5/2011	<0.005	
	4/10/2012	<0.005	
	9/26/2012	<0.005	
	3/13/2013	<0.005	
	9/11/2013	<0.005	
	3/11/2014	0.0024 (J)	
	9/9/2014	<0.005	
	9/30/2015	<0.005	
	3/24/2016	<0.005	
	5/18/2016	<0.005	
	7/7/2016	<0.005	
	9/8/2016	<0.005	
	10/19/2016	<0.005	
	12/7/2016	<0.005	
	2/2/2017	0.0017 (J)	
	3/27/2017	<0.005	
	10/5/2017	<0.005	
	3/15/2018	<0.005	
	10/4/2018	<0.005	
	4/9/2019		<0.005
	10/1/2019		<0.005
	3/31/2020		<0.005
	9/24/2020		<0.005
	3/9/2021		<0.005
	8/10/2021		<0.005

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	0.0017 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019		<0.005
10/1/2019		0.0014 (J)
3/31/2020		<0.005
9/23/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0018 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019		<0.005
10/1/2019		<0.005
3/27/2020		<0.005
9/24/2020		<0.005
3/9/2021		<0.005
8/10/2021		<0.005

			· idik ridiiiiidiid
	GWC-21	GWC-21	
3/6/2007	<0.005		
5/9/2007	<0.005		
7/17/2007	<0.005		
8/29/2007	<0.005		
11/7/2007	<0.005		
5/7/2008	<0.005		
12/5/2008	<0.005		
4/27/2009	0.0036		
9/30/2009	<0.005		
4/13/2010	<0.005		
10/12/2010	<0.005		
10/5/2011	<0.005		
4/10/2012	<0.005		
9/26/2012	<0.005		
3/13/2013	<0.005		
9/11/2013	<0.005		
3/11/2014	<0.005		
9/9/2014	<0.005		
9/30/2015	<0.005		
3/24/2016	<0.005		
9/8/2016	<0.005		
3/27/2017	<0.005		
10/5/2017	<0.005		
3/15/2018	<0.005		
10/4/2018	<0.005		
4/9/2019		<0.005	
10/1/2019		<0.005	
3/31/2020		<0.005	
9/24/2020		<0.005	
3/9/2021		<0.005	
8/10/2021		<0.005	

 $\label{lem:constituent:Thallium (mg/L)} Constituent: Thallium (mg/L) \quad Analysis Run 9/2/2021 \ 4:00 \ PM \quad View: State Parameters \\ Plant Hammond \quad Client: Southern Company \quad Data: Huffaker Road Landfill \\$

	GWC-7	GWC-7
5/9/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/7/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/18/2012	<0.001	
3/12/2013	<0.001	
3/5/2014	<0.001	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	0.0001 (J)	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	<0.001	
2/2/2017	<0.001	
3/24/2017	<0.001	
10/4/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019		<0.001
10/1/2019		<0.001
3/30/2020		<0.001
9/24/2020		<0.001
3/9/2021		<0.001
8/10/2021		<0.001

_			
		GWC-21	GWC-21
	3/6/2007	<0.01	
	5/9/2007	<0.01	
	7/17/2007	<0.01	
	8/29/2007	<0.01	
	11/7/2007	<0.01	
	5/7/2008	<0.01	
	12/5/2008	<0.01	
	4/27/2009	<0.01	
	9/30/2009	<0.01	
	4/13/2010	<0.01	
	10/12/2010	<0.01	
	10/5/2011	<0.01	
	4/10/2012	<0.01	
	9/26/2012	<0.01	
	3/13/2013	<0.01	
	9/11/2013	<0.01	
	3/11/2014	<0.01	
	9/9/2014	0.0029 (J)	
	9/30/2015	0.001 (J)	
	3/24/2016	<0.01	
	9/8/2016	<0.01	
	3/27/2017	<0.01	
	10/5/2017	<0.01	
	3/15/2018	<0.01	
	10/4/2018	<0.01	
	4/9/2019		<0.01
	10/1/2019		<0.01
	3/31/2020		<0.01
	9/24/2020		<0.01
	3/9/2021		<0.01
	8/10/2021		<0.01

	GWC-23	GWC-23
3/6/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/9/2012	<0.01	
9/19/2012	<0.01	
3/13/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	<0.01	
9/3/2014	<0.01	
4/23/2015	<0.01	
9/30/2015	<0.01	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/5/2018	<0.01	
4/8/2019		0.00017 (J)
10/1/2019		<0.01
3/26/2020		<0.01
9/23/2020		<0.01
3/9/2021		<0.01
8/10/2021		<0.01

_			
		GWC-5	GWC-5
	3/7/2007	<0.01	
	5/8/2007	<0.01	
	7/6/2007	<0.01	
	8/28/2007	<0.01	
	11/6/2007	<0.01	
	5/8/2008	<0.01	
	12/3/2008	<0.01	
	4/7/2009	<0.01	
	10/1/2009	<0.01	
	4/14/2010	<0.01	
	10/14/2010	<0.01	
	4/5/2011	<0.01	
	10/12/2011	<0.01	
	4/4/2012	<0.01	
	9/24/2012	<0.01	
	3/12/2013	<0.01	
	9/10/2013	<0.01	
	3/5/2014	<0.01	
	9/9/2014	0.00093 (J)	
	4/21/2015	<0.01	
	9/29/2015	<0.01	
	3/23/2016	<0.01	
	9/7/2016	<0.01	
	3/23/2017	<0.01	
	10/4/2017	<0.01	
	3/16/2018	<0.01	
	10/4/2018	<0.01	
	4/9/2019		<0.01
	10/1/2019		<0.01
	3/31/2020		<0.01
	9/25/2020		<0.01
	3/9/2021		<0.01
	8/10/2021		<0.01

	GWC-7	GWC-7
5/9/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	0.0039	
4/13/2010	<0.01	
10/7/2010	<0.01	
4/5/2011	0.0025	
10/4/2011	0.0027	
4/3/2012	<0.01	
9/18/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/8/2014	0.0012 (J)	
4/21/2015	0.0015 (J)	
9/29/2015	<0.01	
3/23/2016	<0.01	
9/7/2016	<0.01	
3/24/2017	<0.01	
10/4/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	<0.01	
4/8/2019		<0.01
10/1/2019		<0.01
3/30/2020		<0.01
9/24/2020		<0.01
3/9/2021		<0.01
8/10/2021		<0.01

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	0.0029	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/3/2014	<0.01	
4/21/2015	<0.01	
9/29/2015	<0.01	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/5/2018	<0.01	
4/8/2019		<0.01
10/1/2019		<0.01
3/27/2020		<0.01
9/24/2020		<0.01
3/9/2021		<0.01
8/10/2021		<0.01

	GWA-1	GWA-1
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	0.0028	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/10/2011	<0.01	
4/3/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/11/2013	<0.01	
3/4/2014	0.0026	
9/3/2014	0.001 (J)	
4/21/2015	<0.01	
9/30/2015	<0.01	
3/22/2016	<0.01	
9/7/2016	0.0047 (J)	
3/23/2017	<0.01	
10/4/2017	<0.01	
3/14/2018	0.0032 (J)	
10/4/2018	0.003 (J)	
4/8/2019		<0.01
9/30/2019		0.0032 (J)
3/26/2020		<0.01
9/23/2020		0.0025 (J)
3/8/2021		<0.01
8/9/2021		<0.01

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	0.0025	
7/17/2007	0.0047	
8/28/2007	0.0033	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	<0.01	
9/3/2014	0.00074 (J)	
4/21/2015	<0.01	
9/29/2015	0.0024 (J)	
3/22/2016	<0.01	
9/7/2016	0.0023 (J)	
3/24/2017	0.0068 (J)	
10/5/2017	<0.01	
3/15/2018	0.0042 (J)	
10/4/2018	0.0046 (J)	
4/8/2019		0.0024 (J)
9/30/2019		0.004 (J)
3/26/2020		<0.01
9/22/2020		<0.01
3/8/2021		<0.01
8/10/2021		<0.01

	GWA-2	GWA-2
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/13/2010	<0.01	
10/7/2010	<0.01	
4/6/2011	<0.01	
10/6/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/9/2013	<0.01	
3/4/2014	0.0035	
9/3/2014	0.0015 (J)	
4/22/2015	<0.01	
9/30/2015	0.0026 (J)	
3/22/2016	<0.01	
9/7/2016	0.0024 (J)	
3/23/2017	<0.01	
10/4/2017	0.0017 (J)	
3/14/2018	0.0023 (J)	
10/4/2018	0.0041 (J)	
4/8/2019		0.0014 (J)
9/30/2019		0.0043 (J)
3/26/2020		<0.01
9/21/2020		<0.01
3/9/2021		<0.01
8/9/2021		<0.01

	GWA-3	GWA-3
3/6/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	0.0033	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	0.0033	
12/3/2008	0.0054	
4/7/2009	<0.01	
10/2/2009	<0.01	
4/14/2010	0.003	
10/14/2010	<0.01	
4/5/2011	<0.01	
10/12/2011	<0.01	
4/4/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	0.0037	
9/8/2014	0.00087 (J)	
4/21/2015	0.002 (J)	
9/29/2015	0.0021 (J)	
3/22/2016	<0.01	
9/7/2016	0.0034 (J)	
3/23/2017	0.0031 (J)	
10/4/2017	<0.01	
3/15/2018	0.0028 (J)	
10/4/2018	0.0043 (J)	
4/5/2019		0.0013 (J)
9/30/2019		0.0045 (J)
3/26/2020		<0.01
9/23/2020		<0.01
3/8/2021		<0.01
8/9/2021		<0.01

	GWA-4	GWA-4
3/6/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/8/2008	0.0037	
12/3/2008	0.003	
4/7/2009	0.0045	
10/2/2009	0.0027	
4/14/2010	<0.01	
10/14/2010	0.0041	
4/5/2011	<0.01	
10/12/2011	0.0033	
4/4/2012	<0.01	
9/24/2012	0.0039	
3/12/2013	<0.01	
9/10/2013	0.0035	
3/11/2014	0.0045	
9/8/2014	0.0026	
4/21/2015	0.0028	
9/29/2015	0.008 (J)	
3/22/2016	<0.01	
9/7/2016	0.0035 (J)	
3/24/2017	0.0095 (J)	
10/4/2017	0.0031 (J)	
3/15/2018	0.0041 (J)	
10/4/2018	0.0058 (J)	
4/8/2019		0.0023 (J)
9/30/2019		0.0059 (J)
3/26/2020		<0.01
9/23/2020		0.0025 (J)
3/8/2021		0.0034 (J)
8/9/2021		<0.01

	GWC-10	GWC-10
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	0.0069	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.0026	
9/3/2014	0.00079 (J)	
4/21/2015	<0.01	
9/30/2015	0.0018 (J)	
3/23/2016	<0.01	
9/7/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	0.0033 (J)	
4/9/2019		<0.01
10/1/2019		0.0049 (J)
3/27/2020		<0.01
9/25/2020		<0.01
3/9/2021		<0.01
8/10/2021		<0.01

		GWC-18	GWC-18
3/7	//2007	<0.01	
5/9	/2007	0.0026	
7/1	7/2007	0.0043	
8/2	8/2007	<0.01	
11/	7/2007	<0.01	
5/7	//2008	<0.01	
12	/3/2008	<0.01	
4/1	4/2009	<0.01	
10	/1/2009	<0.01	
4/1	3/2010	<0.01	
10	/12/2010	<0.01	
4/6	/2011	<0.01	
10	/12/2011	<0.01	
4/5	/2012	<0.01	
9/1	9/2012	<0.01	
3/1	3/2013	<0.01	
9/1	0/2013	<0.01	
3/1	0/2014	0.0022 (J)	
9/3	3/2014	0.0013 (J)	
4/2	2/2015	0.0019 (J)	
9/3	0/2015	0.0037 (J)	
3/2	4/2016	<0.01	
9/8	3/2016	0.0024 (J)	
3/2	7/2017	<0.01	
10	/5/2017	<0.01	
3/1	6/2018	<0.01	
10	/5/2018	0.0029 (J)	
4/9	/2019		0.0037 (J)
10	/1/2019		0.006 (J)
3/3	0/2020		<0.01
9/2	4/2020		<0.01
3/9	/2021		<0.01
8/1	0/2021		<0.01

	GWC-19	GWC-19
3/6/2007	<0.01	
5/9/2007	0.0025	
7/17/2007	0.0035	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/4/2008	<0.01	
4/14/2009	<0.01	
10/2/2009	<0.01	
4/13/2010	0.0043	
10/12/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/5/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/10/2014	0.0031	
9/9/2014	0.00098 (J)	
4/22/2015	0.0015 (J)	
9/30/2015	0.002 (J)	
3/24/2016	<0.01	
9/8/2016	0.0029 (J)	
3/27/2017	0.0019 (J)	
10/5/2017	0.0024 (J)	
3/15/2018	<0.01	
10/4/2018	0.013	
4/9/2019		<0.01
10/1/2019		0.0049 (J)
3/31/2020		<0.01
9/28/2020		0.0033 (J)
3/10/2021		<0.01
8/10/2021		<0.01

	GWC-20	GWC-20
3/7/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
10/12/2011	<0.01	
4/9/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/10/2014	0.0024 (J)	
9/9/2014	0.00078 (J)	
4/23/2015	<0.01	
9/30/2015	0.0016 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0017 (J)	
10/5/2017	0.0016 (J)	
3/16/2018	<0.01	
10/5/2018	<0.01	
4/9/2019		<0.01
10/1/2019		0.0063 (J)
3/31/2020		<0.01
9/23/2020		<0.01
3/10/2021		<0.01
8/10/2021		<0.01

	GWC-21	GWC-21
3/6/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	0.0031	
8/29/2007	0.0056	
11/7/2007	0.0059	
5/7/2008	0.0059	
12/5/2008	<0.01	
4/27/2009	0.0051	
9/30/2009	0.0066	
4/13/2010	0.0041	
10/12/2010	0.004	
10/5/2011	0.0043	
4/10/2012	0.0108	
9/26/2012	0.0066	
3/13/2013	0.0035	
9/11/2013	0.005	
3/11/2014	0.005	
9/9/2014	0.0041	
9/30/2015	0.0031 (J)	
3/24/2016	0.00393 (J)	
9/8/2016	0.0047 (J)	
3/27/2017	0.0036 (J)	
10/5/2017	0.0065 (J)	
3/15/2018	0.0053 (J)	
10/4/2018	0.0077 (J)	
4/9/2019		0.0041 (J)
10/1/2019		0.0078 (J)
3/31/2020		<0.01
9/24/2020		0.0046 (J)
3/9/2021		0.0033 (J)
8/10/2021		<0.01

	GWC-22	GWC-22
3/6/2007	<0.01	
5/9/2007	0.0035	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
4/6/2011	<0.01	
10/5/2011	<0.01	
4/9/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/11/2014	0.0037	
9/9/2014	0.0006 (J)	
4/23/2015	<0.01	
9/30/2015	0.0021 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	0.003 (J)	
4/9/2019		<0.01
10/1/2019		0.0054 (J)
3/31/2020		<0.01
9/23/2020		<0.01
3/9/2021		<0.01
8/10/2021		<0.01

	GWC-23	GWC-23
3/6/2007	0.0054	
5/9/2007	0.0041	
7/17/2007	0.005	
8/29/2007	0.0044	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/9/2012	<0.01	
9/19/2012	<0.01	
3/13/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	0.0033	
9/3/2014	0.0014 (J)	
4/23/2015	0.0024 (J)	
9/30/2015	0.0041 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	0.0014 (J)	
3/15/2018	0.0039 (J)	
10/5/2018	0.0048 (J)	
4/8/2019		0.0016 (J)
10/1/2019		0.0057 (J)
3/26/2020		<0.01
9/23/2020		0.0022 (J)
3/9/2021		<0.01
8/10/2021		<0.01

	GWC-5	GWC-5
3/7/2007	0.0064	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	0.0025	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	0.0025	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/14/2010	<0.01	
4/5/2011	0.0025	
10/12/2011	0.0037	
4/4/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0028	
9/9/2014	0.00058 (J)	
4/21/2015	0.0043	
9/29/2015	0.0031 (J)	
3/23/2016	0.00272 (J)	
9/7/2016	<0.01	
3/23/2017	0.0026 (J)	
10/4/2017	<0.01	
3/16/2018	<0.01	
10/4/2018	0.0028 (J)	
4/9/2019		<0.01
10/1/2019		0.0053 (J)
3/31/2020		<0.01
9/25/2020		<0.01
3/9/2021		<0.01
8/10/2021		<0.01

	GWC-6	GWC-6
3/7/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/13/2010	<0.01	
10/6/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/3/2012	<0.01	
9/18/2012	<0.01	
3/12/2013	<0.01	
9/9/2013	<0.01	
3/5/2014	0.0026	
9/8/2014	0.00055 (J)	
4/22/2015	<0.01	
9/29/2015	0.0026 (J)	
3/23/2016	<0.01	
9/7/2016	0.0024 (J)	
3/23/2017	0.0035 (J)	
10/4/2017	<0.01	
3/16/2018	0.0029 (J)	
10/4/2018	0.0039 (J)	
4/8/2019		0.0013 (J)
10/1/2019		0.0056 (J)
3/31/2020		<0.01
9/25/2020		<0.01
3/9/2021		<0.01
8/10/2021		<0.01

	GWC-7	GWC-7
5/9/2007	45 (o)	
7/6/2007	16 (o)	
8/28/2007	11 (o)	
11/6/2007	8.3	
5/8/2008	5	
12/2/2008	3.2	
4/8/2009	2.4	
10/1/2009	1.9	
4/13/2010	1.9	
10/7/2010	1.6	
4/5/2011	1.1	
10/4/2011	1.1	
4/3/2012	0.75	
9/18/2012	0.88	
3/12/2013	0.23	
9/10/2013	0.36	
3/5/2014	0.33	
9/8/2014	0.47	
4/21/2015	0.27	
9/29/2015	0.359	
3/23/2016	0.102	
9/7/2016	0.24	
3/24/2017	0.0512	
10/4/2017	0.159	
3/15/2018	0.12	
10/4/2018	0.22	
4/8/2019		0.051
10/1/2019		0.12
3/30/2020		0.051
9/24/2020		0.07
3/9/2021		0.057
8/10/2021		0.093

	GWC-8	GWC-8
5/9/2007	0.0038	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0028	
9/9/2014	0.0014 (J)	
4/22/2015	<0.01	
9/29/2015	0.0016 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/24/2017	0.0031 (J)	
10/5/2017	<0.01	
3/14/2018	0.0053 (J)	
10/4/2018	0.0031 (J)	
4/8/2019		0.0012 (J)
10/1/2019		0.0055 (J)
3/27/2020		<0.01
9/24/2020		<0.01
3/9/2021		<0.01
8/10/2021		<0.01

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	0.0027	
7/6/2007	0.0032	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0029	
9/3/2014	0.0011 (J)	
4/21/2015	<0.01	
9/29/2015	0.0034 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	0.0013 (J)	
3/15/2018	<0.01	
10/5/2018	0.0044 (J)	
4/8/2019		0.0016 (J)
10/1/2019		0.0052 (J)
3/27/2020		<0.01
9/24/2020		<0.01
3/9/2021		<0.01
8/10/2021		<0.01

FIGURE E.

Appendix I Interwell Prediction Limits - Significant Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:04 PM Constituent Well Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Alpha Method Barium (mg/L) GWC-8 0.21 n/a 8/10/2021 0.23 Yes 190 n/a n/a 0 n/a n/a 0.0000548 NP Inter (normality) 1 of 2 n/a 0.00007239 NP Inter (NDs) 1 of 2 Nickel (mg/L) GWC-8 0.0055 n/a 8/10/2021 0.0073 Yes 165 n/a n/a 73.94 n/a

Appendix I Interwell Prediction Limits - All Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:04 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:04 PM													
Constituent	Well	Upper Lim	Lower Lim	<u>. Date</u>	Observ.	Sig. Bg I	N Bg Mean	Std. Dev.	%ND	s ND Adj.	Transform	<u>Alpha</u>	Method
Barium (mg/L)	GWC-18	0.21	n/a	8/10/2021	0.093	No 190	n/a	n/a	0	n/a	n/a	0.0000548	NP Inter (normality) 1 of 2
Barium (mg/L)	GWC-20	0.21	n/a	8/10/2021	0.14	No 190	n/a	n/a	0	n/a	n/a	0.0000548	NP Inter (normality) 1 of 2
Barium (mg/L)	GWC-23	0.21	n/a	8/10/2021	0.085	No 190	n/a	n/a	0	n/a	n/a	0.0000548	NP Inter (normality) 1 of 2
Barium (mg/L)	GWC-8	0.21	n/a	8/10/2021	0.23	Yes 190	n/a	n/a	0	n/a	n/a	0.0000548	NP Inter (normality) 1 of 2
Nickel (mg/l)	GWC-8	0.0055	n/a	8/10/2021	0.0073	Yes 165	n/a	n/a	73.94	l n/a	n/a	0.00007239	NP Inter (NDs) 1 of 2

Exceeds Limit: GWC-8

Interwell Non-parametric

0.3

0.24

0.18

0.12

0.06

0.12

0.06

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

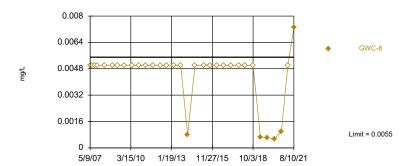
0.12

0.12

0.12

0.12

Prediction Limit


Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 190 background values. Annual per-constituent alpha = 0.001314. Individual comparison alpha = 0.0000548 (1 of 2). Comparing 4 points to limit. Assumes 8 future values.

Constituent: Barium Analysis Run 9/2/2021 4:04 PM View: State Parameters - Interwell
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Exceeds Limit: GWC-8

Prediction Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 165 background values. 73.94% NDs. Annual per-constituent alpha = 0.001736. Individual comparison alpha = 0.00007239 (1 of 2). Assumes 11 future values.

Constituent: Barium (mg/L) Analysis Run 9/2/2021 4:04 PM View: State Parameters - Interwell

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

		GWA-1 (bg)	GWC-23	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWA-11 (bg)	GWC-20	GWC-18	GWC-8
3	3/6/2007	0.032	0.05	0.12	0.17	0.13				
3	3/7/2007						0.03	0.11	0.072	
5	5/8/2007	0.04		0.11	0.21	0.12	0.032			
5	5/9/2007		0.055					0.082	0.063	0.13
7	7/6/2007									0.12
7	//7/2007	0.041		0.11						
	//17/2007		0.048		0.21	0.12	0.028	0.078	0.058	
8	3/28/2007	0.044		0.13	0.2	0.13	0.03		0.06	0.11
	3/29/2007		0.056					0.096		
	1/6/2007	0.044		0.12	0.19	0.12				0.1
	1/7/2007		0.07				0.032	0.1	0.072	
	5/7/2008		0.063					0.11	0.076	
	5/8/2008				0.2	0.13				0.1
	5/9/2008	0.03		0.12			0.032			
	2/2/2008						0.036			0.11
	2/3/2008	0.047		0.12	0.18	0.14			0.066	
	2/5/2008		0.068					0.11		
	/7/2009	0.032		0.13	0.2	0.097				
	/8/2009						0.04			0.1
	/14/2009		0.062				0.01	0.11	0.08	
	/30/2009		0.002					0.12	0.00	0.099
	0/1/2009	0.043	0.064	0.14			0.039	02	0.074	0.000
	0/2/2009	0.040	0.004	0.14	0.2	0.11	0.000		0.074	
	1/13/2010			0.15	0.2	0.11		0.11	0.062	0.098
	1/14/2010	0.032	0.048	0.10	0.2	0.059	0.041	0.11	0.002	0.000
	0/7/2010	0.002	0.040	0.16	0.2	0.000	0.041			
	0/12/2010			0.10				0.12	0.078	
	0/13/2010	0.046	0.071				0.039	0.12	0.070	0.092
	0/14/2010	0.040	0.071		0.18	0.053	0.000			0.002
	/5/2011				0.16	0.042				0.085
	/6/2011	0.034	0.042	0.14	0.10	0.042	0.034		0.066	0.000
	0/4/2011	0.00	0.0.2	0			0.032		0.000	0.091
	0/6/2011			0.16			0.002			0.001
	0/10/2011	0.038		0.10						
	0/12/2011	0.000	0.066		0.15	0.048		0.11	0.071	
	/3/2012	0.0363	0.000	0.165	0.10	0.0.0		0	0.07.	0.101
	/4/2012	0.000		0.100	0.165	0.044				
	/5/2012				0.100	0.011			0.0675	
	/9/2012		0.0628					0.13	0.0070	
	1/10/2012		0.0020				0.0425	00		
)/19/2012		0.073	0.16			0.0.120		0.073	0.1
)/24/2012	0.041	0.070	0.10		0.048			0.070	0.1
)/25/2012	0.011				0.0.0		0.13		
	0/26/2012				0.17		0.035	0.10		
	3/12/2013	0.041		0.16	0.17	0.043	0.035			0.098
	3/13/2013	0.011	0.057	0.10	0	0.0.0	0.000	0.12	0.075	0.000
	0/9/2013		50,	0.17					2.3,0	
	0/10/2013		0.066		0.18	0.042	0.035		0.081	0.11
)/11/2013	0.048	500				200	0.12		
	8/4/2014	0.036		0.16			0.031			
	3/5/2014	555					20.			0.087
	3/10/2014							0.11	0.064	
									50.	

0.18

9/21/2020

9/22/2020

Constituent: Barium (mg/L) Analysis Run 9/2/2021 4:04 PM View: State Parameters - Interwell

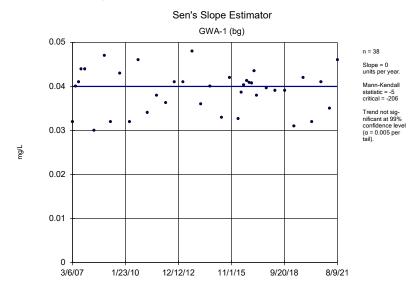
0.031

			Plant Ham			Pata: Huffaker Road L			
	GWA-1 (bg)	GWC-23	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWA-11 (bg)	GWC-20	GWC-18	GWC-8
3/11/2014		0.054		0.17	0.04				
9/3/2014	0.04	0.06	0.17			0.033		0.078	
9/8/2014				0.16	0.042				
9/9/2014							0.11		0.1
4/21/2015	0.033			0.16	0.05	0.03			
4/22/2015			0.17					0.067	0.095
4/23/2015		0.06					0.11		
9/29/2015				0.14	0.044	0.031			0.093
9/30/2015	0.042	0.076	0.15				0.11	0.075	
3/22/2016	0.0326		0.197	0.188	0.0397	0.0327			
3/23/2016		0.0533					0.115		0.0918
3/24/2016	0.0007		0.470	0.400	0.0054	0.0000		0.0818	
5/17/2016	0.0387		0.178	0.193	0.0351	0.0323	0.400	0.0700	0.0057
5/18/2016		0.074					0.128	0.0763	0.0957
5/19/2016		0.074							
7/5/2016	0.0403		0.182	0.172	0.0475	0.0044			0.0005
7/6/2016					0.0475	0.0344			0.0935
7/7/2016		0.0766					0.124	0.0747	
9/7/2016	0.0413		0.172	0.164	0.0415	0.0324			
9/8/2016		0.0726					0.121	0.081	0.0925
10/18/2016	0.0409		0.174	0.138	0.0424	0.0311			0.0939
10/19/2016		0.072					0.117	0.084	
12/6/2016	0.0408			0.149	0.0528	0.0311			
12/7/2016		0.0732	0.167				0.11		
12/8/2016								0.0799	0.0996
1/31/2017	0.0435		0.176						
2/1/2017				0.121	0.0482	0.0332			
2/2/2017								0.0813	0.096
2/3/2017		0.0619					0.123		
3/23/2017	0.038		0.157	0.143					
3/24/2017					0.0595	0.032			0.106
3/27/2017		0.0602					0.112	0.0714	
10/4/2017	0.0396		0.143	0.139	0.0486				
10/5/2017		0.0734				0.0325	0.128	0.0755	0.103
3/14/2018	0.039		0.17						0.1
3/15/2018		0.053		0.17	0.04	0.031			
3/16/2018							0.12	0.074	
10/4/2018	0.039		0.18	0.16	0.05	0.033			0.11
10/5/2018		0.065					0.12	0.081	
4/5/2019				0.13					
4/8/2019	0.031	0.059	0.15		0.047	0.031			0.13
4/9/2019							0.13	0.081	
6/18/2019									0.17
9/30/2019	0.042		0.17	0.14	0.051	0.03			
10/1/2019		0.082					0.14	0.082	0.12
3/26/2020	0.032	0.071	0.16	0.14	0.049	0.031			
3/27/2020									0.14
3/30/2020								0.077	
3/31/2020							0.15		
6/19/2020							0.14 (R)		

	GWA-1 (bg)	GWC-23	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWA-11 (bg)	GWC-20	GWC-18	GWC-8
9/23/2020	0.041	0.079		0.14	0.043		0.13		
9/24/2020								0.079	0.14
3/8/2021	0.035			0.12	0.052	0.031			
3/9/2021		0.085	0.17					0.077	0.14
3/10/2021							0.13		
8/9/2021	0.046		0.19	0.12	0.034				
8/10/2021		0.085				0.03	0.14	0.093	0.23

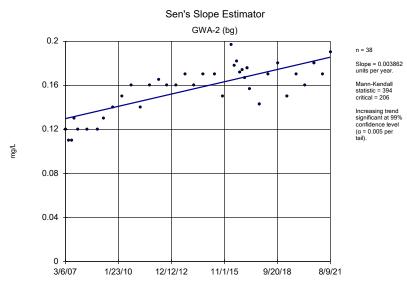
	GWA-1 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWA-4 (bg)	GWA-11 (bg)	GWC-8
3/6/2007	<0.005	<0.005	<0.005	<0.005	, ,,	
3/7/2007					<0.005	
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	
5/9/2007						<0.005
7/6/2007						<0.005
7/7/2007	<0.005		<0.005			
7/17/2007		<0.005		<0.005	<0.005	
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
11/6/2007	<0.005	<0.005	<0.005	<0.005		<0.005
11/7/2007					<0.005	
5/8/2008		<0.005		<0.005		<0.005
5/9/2008	<0.005		<0.005		<0.005	
12/2/2008					<0.005	<0.005
12/3/2008	<0.005	<0.005	<0.005	<0.005		
4/7/2009	<0.005	<0.005	<0.005	<0.005		
4/8/2009					<0.005	<0.005
9/30/2009						<0.005
10/1/2009	<0.005		<0.005		<0.005	
10/2/2009		<0.005		<0.005		
4/13/2010			<0.005			<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	
10/7/2010			<0.005			
10/13/2010	<0.005				<0.005	<0.005
10/14/2010		<0.005		<0.005		
4/5/2011		<0.005		0.0032		<0.005
4/6/2011	<0.005		<0.005		<0.005	
10/4/2011					<0.005	<0.005
10/6/2011			<0.005			
10/10/2011	<0.005					
10/12/2011		<0.005		<0.005		
4/3/2012	<0.005		<0.005			<0.005
4/4/2012		<0.005		<0.005		
4/10/2012					<0.005	
9/19/2012			<0.005			<0.005
9/24/2012	<0.005			0.0032		
9/26/2012		<0.005			<0.005	
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/9/2013			<0.005			
9/10/2013		<0.005		<0.005	<0.005	<0.005
9/11/2013	<0.005					
3/4/2014	0.001 (J)		0.0007 (J)		0.002 (J)	
3/5/2014						0.00079 (J)
3/11/2014		0.0013 (J)		0.0026		
9/3/2014	<0.005		<0.005		0.002 (J)	
9/8/2014		<0.005		0.0017 (J)		
9/9/2014						<0.005
4/21/2015	<0.005	<0.005		0.0016 (J)	0.002 (J)	
4/22/2015			<0.005			<0.005
9/29/2015		<0.005		0.0055	0.0022 (J)	<0.005
9/30/2015	<0.005		<0.005			
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005	
3/23/2016						<0.005

	GWA-1 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWA-4 (bg)	GWA-11 (bg)	GWC-8
9/7/2016	0.0008 (J)	<0.005	<0.005	0.0014 (J)	0.0026 (J)	
9/8/2016						<0.005
3/23/2017	0.0007 (J)	0.0022 (J)	<0.005			
3/24/2017				0.0017 (J)	0.0024 (J)	<0.005
10/4/2017	0.0006 (J)	<0.005	<0.005	0.0023 (J)		
10/5/2017					0.0023 (J)	<0.005
3/14/2018	<0.005		<0.005			<0.005
3/15/2018		<0.005		0.0024 (J)	0.0026 (J)	
10/4/2018	<0.005	<0.005	<0.005	0.0013 (J)	0.0023 (J)	<0.005
4/5/2019		0.00075 (J)				
4/8/2019	0.00034 (J)		<0.005	0.00089 (J)	0.0023 (J)	0.00064 (J)
9/30/2019	0.00037 (J)	<0.005	<0.005	0.0013 (J)	0.0017 (J)	
10/1/2019						0.00063 (J)
3/26/2020	0.00065 (J)	0.0011 (J)	<0.005	0.00096 (J)	0.002 (J)	
3/27/2020						0.00053 (J)
9/21/2020			<0.005			
9/22/2020					0.0014 (J)	
9/23/2020	<0.005	<0.005		0.00091 (J)		
9/24/2020						0.001 (J)
3/8/2021	<0.005	<0.005		<0.005	0.001 (J)	
3/9/2021			<0.005			<0.005
8/9/2021	<0.005	<0.005	<0.005	0.001 (J)		
8/10/2021					0.0017 (J)	0.0073

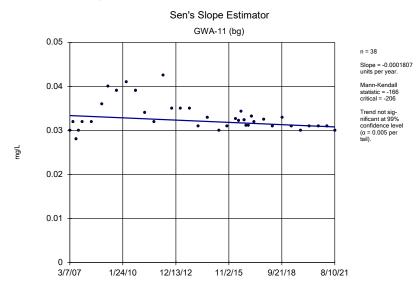

FIGURE F.

Appendix I Trend Tests - Significant Results

	Plant Hammond	Client: Southern Company	Data: Huffa	ker Road	Landfill	Printed	9/2/202	21, 4:06	PM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	GWA-2 (bg)		0.003862	394	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)		-0.004996	-430	-206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)		-0.002734	-261	-206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-18		0.001018	323	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-20		0.002248	397	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-23		0.001365	258	206	Yes	38	0	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-11 (bg)		-0.0006231	-292	-167	Yes	33	54.55	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-4 (bg)		-0.0002785	-265	-167	Yes	33	51.52	n/a	n/a	0.01	NP

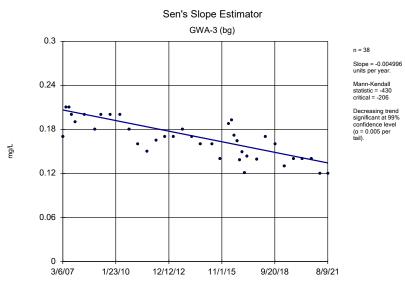

Appendix I Trend Tests - All Results

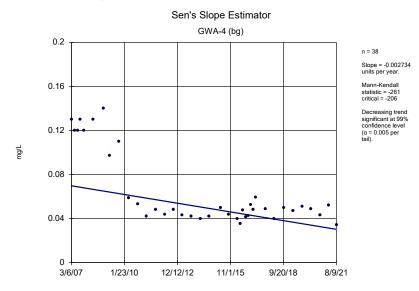
	Plant Hammond	Client: Southern Company	/ Data: Huffa	iker Road	Landfill	Printed 9/2/2021, 4:06 PM						
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	GWA-1 (bg)		0	-5	-206	No	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-11 (bg)		-0.0001807	-166	-206	No	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-2 (bg)		0.003862	394	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)		-0.004996	-430	-206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)		-0.002734	-261	-206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-18		0.001018	323	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-20		0.002248	397	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-23		0.001365	258	206	Yes	38	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-8		0.001151	148	206	No	38	0	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-1 (bg)		0	-129	-167	No	33	78.79	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-11 (bg)		-0.0006231	-292	-167	Yes	33	54.55	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-2 (bg)		0	-2	-167	No	33	96.97	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-3 (bg)		0	-66	-167	No	33	87.88	n/a	n/a	0.01	NP
Nickel (mg/L)	GWA-4 (bg)		-0.0002785	-265	-167	Yes	33	51.52	n/a	n/a	0.01	NP
Nickel (mg/L)	GWC-8		0	-73	-161	No	32	81.25	n/a	n/a	0.01	NP

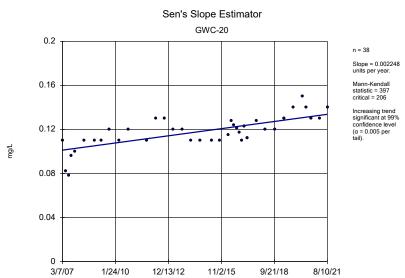


Constituent: Barium Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

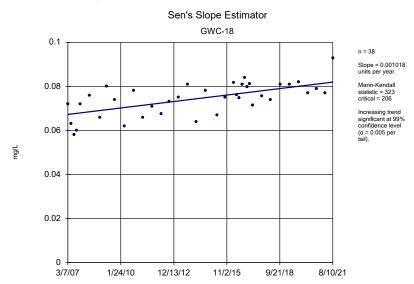
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



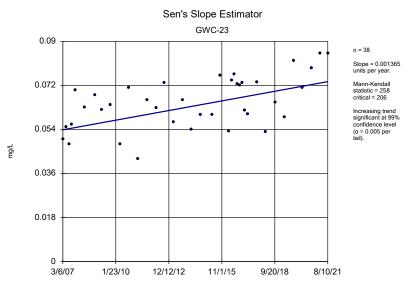

Constituent: Barium Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Barium Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

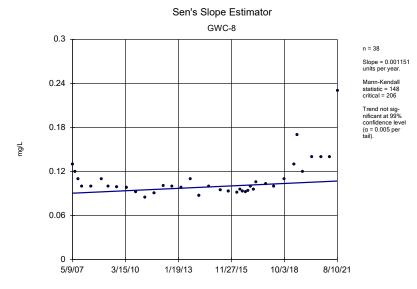
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



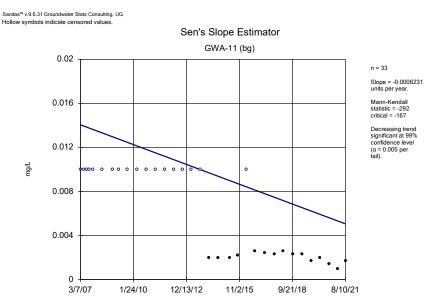
Constituent: Barium Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



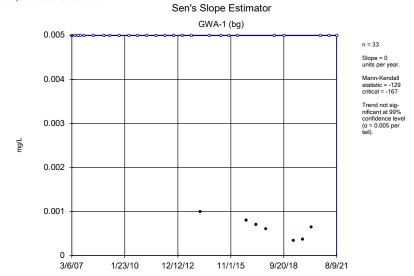
Constituent: Barium Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

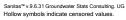

Constituent: Barium Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

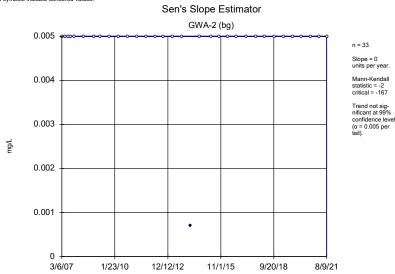
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



Constituent: Barium Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests

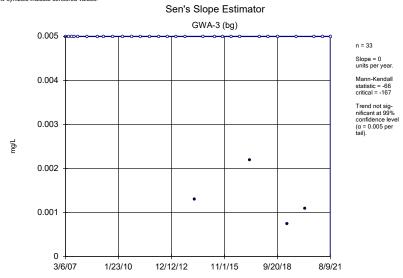

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Barium Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

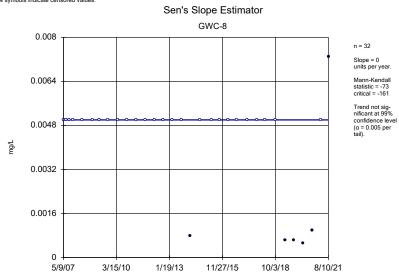


Constituent: Nickel Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Nickel Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

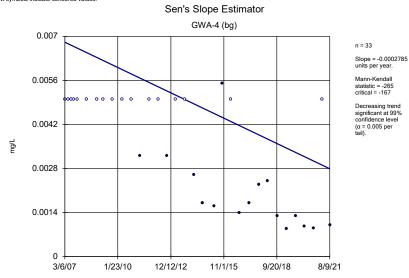


Constituent: Nickel Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Nickel Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Nickel Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Nickel Analysis Run 9/2/2021 4:05 PM View: State Parameters Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

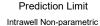
FIGURE G.

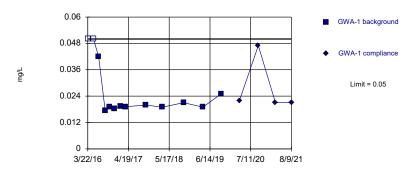
Appendix III Intrawell Prediction Limits - Significant Results Plant Hammond Client: Southern Company Data: Huffdker Road Landfill Printed 9/2/2021, 4:15 PM

	Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:15 PM												
Constituent	Well	Upper Lim.	. Lower Lim	n. Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	<u>%N[</u>	Os ND Adj.	Transforr	n Alpha	<u>Method</u>
Boron (mg/L)	GWC-8	0.055	n/a	8/10/2021	0.088	Yes 13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Calcium (mg/L)	GWC-18	46.36	n/a	8/10/2021	48.2	Yes 14	40.09	2.439	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-23	45.95	n/a	8/10/2021	48.2	Yes 13	36.75	3.5	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-8	90.82	n/a	8/10/2021	111	Yes 15	63.08	11.04	0	None	No	0.0006269	Param Intra 1 of 2
pH (SU)	GWC-8	7.808	6.743	8/10/2021	6.65	Yes 15	7.275	0.2119	0	None	No	0.0003135	Param Intra 1 of 2
Sulfate (mg/L)	GWA-2	20.34	n/a	8/9/2021	23.2	Yes 13	14.94	2.053	0	None	No	0.0006269	Param Intra 1 of 2
Sulfate (mg/L)	GWC-20	58.56	n/a	8/10/2021	66.4	Yes 18	35.78	9.504	0	None	No	0.0006269	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:15 PM Std. Dev. %NDs ND Adj. Method Constituent <u>Well</u> Sig. Bg N Bg Mean Lower Lim. Date Transform Alpha GWA-1 0.021J 13 15.38 n/a NP Intra (normality) 1 of 2 Boron (mg/L) 0.05 8/9/2021 No n/a n/a n/a 0.009692 Boron (mg/L) 0.04165 8/10/2021 0.034J No 13 0.0356 0.002301 0 None No n/a GWA-2 0.1059 n/a 8/9/2021 0.085 No 13 0.08618 0.007513 0 None No 0.0006269 Param Intra 1 of 2 Boron (mg/L) GWA-3 0.195 n/a 8/9/2021 0.14 No 13 0.1502 0.01706 0 No 0.0006269 Param Intra 1 of 2 Boron (mg/L) None 0.02204 0.0006269 Boron (mg/L) GWA-4 0.1507 n/a 8/9/2021 0.073 No 13 0.09276 0 None No Param Intra 1 of 2 Boron (mg/L) GWC-10 0.04348 n/a 8/10/2021 0.033J No 13 0.03321 0.003909 0 None No 0.0006269 Param Intra 1 of 2 GWC-18 0.1547 8/10/2021 0.14 No 0.1292 0.009697 0 No 0.0006269 Param Intra 1 of 2 Boron (mg/L) n/a 13 None GWC-19 0.2048 0.01047 0 0.0006269 Boron (mg/L) n/a 8/10/2021 0.14 No 13 0.1773 None No Param Intra 1 of 2 Boron (mg/L) GWC-20 0.05 n/a 8/10/2021 0.013J No n/a n/a 7.692 n/a n/a 0.009692 NP Intra (normality) 1 of 2 GWC-21 0.1406 8/10/2021 0.026J No 0.199 0.06698 0 0.0006269 Param Intra 1 of 2 Boron (mg/L) n/a None sqrt(x) GWC-22 0.08272 0.06841 0 Boron (mg/L) 8/10/2021 0.057 13 0.005445 0.0006269 Param Intra 1 of 2 n/a No None No Boron (mg/L) GWC-23 0.1347 n/a 8/10/2021 0.027JNο 13 0.191 0.067 7.692 None sqrt(x) 0.0006269 Param Intra 1 of 2 GWC-5 0.08013 8/10/2021 0.056 No 0.05944 0.007872 0 0.0006269 Param Intra 1 of 2 Boron (mg/L) n/a 13 No 0.03949 0.002264 0 Boron (mg/L) GWC-6 0.04531 8/10/2021 0.037J No 14 No 0.0006269 Param Intra 1 of 2 Boron (mg/L) 0.07265 n/a 8/10/2021 0.037J No 13 0.05612 0.006289 0 No Param Intra 1 of 2 GWC-8 0.055 8/10/2021 0.088 Yes 0 0.009692 NP Intra (normality) 1 of 2 Boron (mg/L) n/a 13 n/a n/a n/a n/a Boron (mg/L) GWC-9 0.05 n/a 8/10/2021 0.012J No 13 n/a n/a 7.692 n/a n/a 0.009692 NP Intra (normality) 1 of 2 Calcium (mg/L) GWA-1 20.51 n/a 8/9/2021 20.2 Nο 13 15.95 1.735 7.692 None Nο 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWA-11 27 27 n/a 8/10/2021 20.8 No 13 19.82 2 834 7.692 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWA-2 51.4 n/a 8/9/2021 49.9 No 13 41.93 3.601 0 No 0.0006269 Param Intra 1 of 2 None GWA-3 8/9/2021 73.2 13 75.85 6.964 0.0006269 Param Intra 1 of 2 Calcium (mg/L) 94.16 n/a No 0 None No Calcium (mg/L) GWA-4 130.7 n/a 8/9/2021 69.7 No 13 88.18 16.18 0 No 0.0006269 Param Intra 1 of 2 None GWC-10 45.5 41.41 Calcium (mg/L) 60.36 8/10/2021 No 15 7.541 0 No 0.0006269 Param Intra 1 of 2 n/a None GWC-18 48.2 40.09 2.439 0.0006269 Calcium (mg/L) 46.36 8/10/2021 Yes 14 0 Param Intra 1 of 2 n/a None No Calcium (mg/L) GWC-19 49.63 n/a 8/10/2021 44.9 Nο 13 43.91 2.178 0 None No 0.0006269 Param Intra 1 of 2 GWC-20 63.52 8/10/2021 62 No 13 52.64 4.139 0 No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) n/a None Calcium (mg/L) GWC-21 95.47 n/a 8/10/2021 29.7 No 15 48.65 18.63 0 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) 52.66 n/a 8/10/2021 No 13 1.891 0 None No Param Intra 1 of 2 GWC-23 45.95 8/10/2021 48.2 36.75 0 0.0006269 Param Intra 1 of 2 Calcium (mg/L) n/a Yes 13 3.5 No None Calcium (mg/L) GWC-5 90.26 n/a 8/10/2021 78.3 No 13 73.43 6.404 0 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-6 71.95 n/a 8/10/2021 67.7 Nο 13 62.28 3.678 0 None Nο 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-7 74 21 n/a 8/10/2021 40.5 No 13 36 61 14.31 0 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-8 90.82 n/a 8/10/2021 111 Yes 63.08 11.04 0 No 0.0006269 Param Intra 1 of 2 15 None Calcium (mg/L) GWC-9 39.77 n/a 8/10/2021 38. No 35.16 1.751 0 None No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWA-1 1.55 n/a 8/9/2021 1.1 No 13 1.179 0.1409 0 None No 0.0006269 Param Intra 1 of 2 GWA-11 2.158 1.2 1.493 0.253 0 Param Intra 1 of 2 Chloride (mg/L) n/a 8/10/2021 No 13 No 0.0006269 None GWA-2 8/9/2021 2.4 2.431 0.2783 0 0.0006269 Chloride (ma/L) 3.162 No 13 No Param Intra 1 of 2 n/a None GWA-3 2.1 3.95 0 0.0006269 Chloride (mg/L) 4.883 n/a 8/9/2021 Nο 13 0.3552 None No Param Intra 1 of 2 Chloride (mg/L) 1.874 GWA-4 11.19 8/9/2021 3 No 13 6.268 0 No 0.0006269 Param Intra 1 of 2 n/a None GWC-10 2.285 8/10/2021 1.2 0 0.0006269 Param Intra 1 of 2 Chloride (mg/L) n/a No 15 1.609 0.269 No Chloride (mg/L) GWC-18 1.907 n/a 8/10/2021 0.93J No 13 1.385 0.1987 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-19 2.57 8/10/2021 1.2 No 13 1.915 0.2492 0 No 0.0006269 Param Intra 1 of 2 n/a None Chloride (ma/L) GWC-20 2.396 8/10/2021 1.2 No 14 1.7 0.2708 0 0.0006269 Param Intra 1 of 2 n/a None No Chloride (mg/L) GWC-21 3.962 n/a 8/10/2021 2 Nο 14 2.712 0.4862 0 None Nο 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-22 2 011 n/a 8/10/2021 1.1 Nο 13 1 555 0.1736 0 None Nο 0.0006269 Param Intra 1 of 2 GWC-23 2.104 8/10/2021 13 1.552 0.2101 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) n/a 1 No Chloride (mg/L) GWC-5 4.279 n/a 8/10/2021 2.3 No 13 3.029 0.4757 0 None No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-6 2.458 n/a 8/10/2021 1.6 No 13 1.955 0.1913 0 None No 0.0006269 Param Intra 1 of 2 GWC-7 2.458 8/10/2021 1.6 13 1.654 0.3056 0 0.0006269 Param Intra 1 of 2 Chloride (mg/L) n/a No No None GWC-8 Chloride (ma/L) 3.306 8/10/2021 2.7 15 1.936 0.545 0 0.0006269 Param Intra 1 of 2 No No n/a None GWC-9 Chloride (mg/L) 1 823 n/a 8/10/2021 0.85.1 Nο 13 1 195 0.239 n None Nο 0.0006269 Param Intra 1 of 2 GWA-1 0.2142 8/9/2021 0.083J No 13 0.1055 0.04138 7.692 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) n/a GWA-11 0.1844 0.068J No 0.07757 0.04064 23.08 Kaplan-Meier 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) n/a 8/10/2021 13 No GWA-2 0.267 8/9/2021 0.081J No 0.05253 No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) n/a GWA-3 0.5357 n/a 8/9/2021 0.1 No 13 0.2393 0.1127 7.692 None 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) No GWA-4 0.5087 n/a 8/9/2021 0.12 No 13 0.2241 0.1082 0 0.0006269 Param Intra 1 of 2 Fluoride (ma/L) None No Fluoride (mg/L) GWC-10 0.2027 n/a 8/10/2021 0.078J Nο 13 0.1064 0.03664 7.692 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-18 0 2327 n/a 8/10/2021 0.11 Nο 13 0 1467 0.03273 7 692 None Nο 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-19 0.2758 n/a 8/10/2021 0.11 No 0.1547 0.04606 7.692 None No 0.0006269 Param Intra 1 of 2 13 Fluoride (mg/L) GWC-20 0.2054 n/a 8/10/2021 0.066J No 0.09322 0.0427 7.692 None No 0.0006269 Param Intra 1 of 2

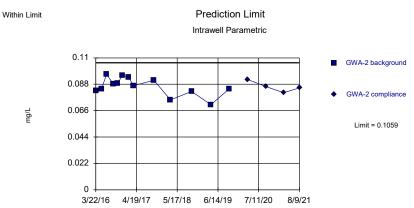

Appendix III Intrawell Prediction Limits - All Results


Printed 9/2/2021, 4:15 PM

Data: Huffaker Road Landfill Client: Southern Company <u>Well</u> Std. Dev. Method Constituent Sig. Bg N Bg Mean %NDs ND Adj GWC-21 0.2412 No 0.05798 Fluoride (mg/L) 8/10/2021 0.05ND 13 0.08881 15.38 Kaplan-Meier No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) 0.1652 8/10/2021 0.071J No 13 0.09188 0.0279 7.692 None No 0.0006269 Param Intra 1 of 2 n/a GWC-23 0.1978 n/a 8/10/2021 0.087J No 13 0.1127 0.03238 7.692 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) Fluoride (mg/L) GWC-5 0.4044 n/a 8/10/2021 0.057J No 13 0.4643 0.1047 15.38 Kaplan-Meier x^(1/3) 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-6 0.3208 n/a 8/10/2021 0.057J No 13 0.1139 0.07868 15.38 Kaplan-Meier No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-7 0.548 n/a 8/10/2021 0.19 No 13 0.2598 0.1097 0 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-8 0.4854 8/10/2021 0.13 No 0.4306 0.1035 0 0.0006269 Param Intra 1 of 2 n/a 14 None sqrt(x) GWC-9 0.09607 0.03684 Param Intra 1 of 2 Fluoride (mg/L) 0.1929 n/a 8/10/2021 0.076J No 13 7.692 None No 0.0006269 pH (SU) GWA-1 7.414 6.463 8/9/2021 7.23 No 6.938 0.1807 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWA-11 7.075 6.309 8/10/2021 6.84 No 13 6.692 0.1457 0 No 0.0003135 Param Intra 1 of 2 None GWA-2 6.867 7.273 6.46 6.9 13 0.1547 0 0.0003135 Param Intra 1 of 2 pH (SU) 8/9/2021 No None No pH (SU) GWA-3 7.238 6.227 8/9/2021 6.89 Nο 13 6.732 0.1922 0 None Nο 0.0003135 Param Intra 1 of 2 7.246 6.263 GWA-4 8/9/2021 6.76 No 13 6.755 0.1869 0 0.0003135 Param Intra 1 of 2 pH (SU) No pH (SU) GWC-10 7.697 6.845 8/10/2021 7.45 No 13 7.271 0.162 0 No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-18 7.781 7.39 8/10/2021 7.4 No 13 7.585 0.07423 0 No 0.0003135 Param Intra 1 of 2 None pH (SU) GWC-19 7.732 7.179 8/10/2021 7.49 No 13 7.455 0.1052 0 No 0.0003135 Param Intra 1 of 2 None 0 pH (SU) GWC-20 7.588 6.958 8/10/2021 7.31 No 15 7.273 0.1253 No 0.0003135 Param Intra 1 of 2 None pH (SU) GWC-21 7.759 5.557 8/10/2021 6.05 Nο 13 6.658 0.4189 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-22 7 968 7.278 8/10/2021 7.75 No 14 7.623 0.1341 0 None No 0.0003135 Param Intra 1 of 2 7.564 6.735 GWC-23 8/10/2021 6.96 No 13 7.149 0.1578 0 No 0.0003135 Param Intra 1 of 2 pH (SU) None GWC-5 7.288 8/10/2021 13 0 Param Intra 1 of 2 pH (SU) 6.348 6.87 No 6.818 0.1788 No 0.0003135 GWC-6 7.369 6.632 8/10/2021 7.06 No 13 7.001 0.1401 0 No 0.0003135 Param Intra 1 of 2 pH (SU) None GWC-7 No 13 6.623 5.502 6.29 6.062 0.2132 0 0.0003135 Param Intra 1 of 2 pH (SU) 8/10/2021 No None GWC-8 7.808 7.275 pH (SU) 6.743 6.65 Yes 15 0.2119 0 0.0003135 Param Intra 1 of 2 8/10/2021 None No pH (SU) GWC-9 7.362 6.212 8/10/2021 6.91 Nο 13 6.787 0.2186 0 None Nο 0.0003135 Param Intra 1 of 2 GWA-1 5.454 No 13 4.79 0.2524 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 8/9/2021 4.7 No Sulfate (mg/L) GWA-11 15.5 n/a 8/10/2021 11.2 No 13 12.58 1.108 0 No 0.0006269 Param Intra 1 of 2 GWA-2 20.34 23.2 Yes 13 14.94 2.053 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 8/9/2021 No n/a None Sulfate (mg/L) GWA-3 231.1 n/a 8/9/2021 No 13 131.7 37.85 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWA-4 348.3 n/a 8/9/2021 106 No 13 192.8 0 No 0.0006269 Param Intra 1 of 2 59.18 None Sulfate (mg/L) GWC-10 46.25 n/a 8/10/2021 14.9 Nο 14 4.162 1.026 0 None sqrt(x) 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) **GWC-18** 14.99 n/a 8/10/2021 10.3 No 13 10.94 1.541 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) **GWC-19** 20.78 n/a 8/10/2021 17.8 No 13 16.18 1.748 0 No 0.0006269 Param Intra 1 of 2 None Sulfate (mg/L) GWC-20 58.56 n/a 8/10/2021 66.4 Yes 35.78 9.504 0 None No 0.0006269 Param Intra 1 of 2 GWC-21 57.26 8/10/2021 23.8 No 13 30.96 10.01 0 No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) n/a None GWC-22 8/10/2021 6.2 No 13 7.792 2.363 0 No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 14 n/a None GWC-23 43 Sulfate (mg/L) 8/10/2021 8 No 13 0 0.009692 NP Intra (normality) 1 of 2 n/a n/a n/a n/a n/a GWC-5 Sulfate (mg/L) 159.3 n/a 8/10/2021 76.1 Nο 13 9.222 1.293 0 None sqrt(x) 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 150.6 GWC-6 8/10/2021 95.9 No 17 109.2 0 0.0006269 Param Intra 1 of 2 n/a 17.06 No GWC-7 114.7 0 Sulfate (mg/L) 189.7 n/a 8/10/2021 101 No 13 28.53 No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-8 62.67 n/a 8/10/2021 31.6 No 13 42.48 7.682 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-9 8/10/2021 76.3 No 14 69.87 6.092 0 0.0006269 Param Intra 1 of 2 85.53 n/a No None Total Dissolved Solids (mg/L) GWA-1 8/9/2021 96 No 13 105.2 26.93 0 0.0006269 Param Intra 1 of 2 175.9 n/a None No Total Dissolved Solids (mg/L) GWA-11 186 n/a 8/10/2021 107 Nο 13 128.5 21.88 0 None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWA-2 274 9 n/a 8/9/2021 245 Nο 13 220.5 20.67 0 None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWA-3 682.3 8/9/2021 416 13 7.827 0.3714 0 0.0006269 Param Intra 1 of 2 n/a No None x^(1/3) Total Dissolved Solids (mg/L) GWA-4 772.9 n/a 8/9/2021 371 No 13 531.9 91.69 0 None No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-10 281.6 n/a 8/10/2021 185 No 13 184.1 37.09 0 None No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-18 427 224 13 0 NP Intra (normality) 1 of 2 n/a 8/10/2021 No n/a 0.009692 n/a n/a n/a Total Dissolved Solids (mg/L) GWC-19 209 13 NP Intra (normality) 1 of 2 393 8/10/2021 No n/a 0 0.009692 n/a n/a n/a n/a Total Dissolved Solids (mg/L) GWC-20 306.2 n/a 8/10/2021 270 Nο 13 229 2 29.3 0 Nο 0.0006269 Param Intra 1 of 2 None Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-21 417.6 8/10/2021 121 No 15 203.2 0 No 0.0006269 n/a 85.29 Total Dissolved Solids (mg/L) GWC-22 0.009692 NP Intra (normality) 1 of 2 324 8/10/2021 206 No 13 n/a 0 n/a Total Dissolved Solids (mg/L) GWC-23 313.1 8/10/2021 No 13 197.3 44.03 0 No 0.0006269 Param Intra 1 of 2 n/a None Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-5 520.9 8/10/2021 363 No 13 395 0 No 0.0006269 n/a 47.9 None Total Dissolved Solids (mg/L) GWC-6 439.1 8/10/2021 318 No 15 333.5 42.03 0 0.0006269 Param Intra 1 of 2 n/a None No Total Dissolved Solids (mg/L) GWC-7 369 n/a 8/10/2021 210 Nο 13 271.2 37.22 0 None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-8 428 8 n/a 8/10/2021 425 Nο 15 269 7 63 28 n None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-9 n/a 8/10/2021 208 No 235.2 34.54 0 No 0.0006269 Param Intra 1 of 2 326 13 None

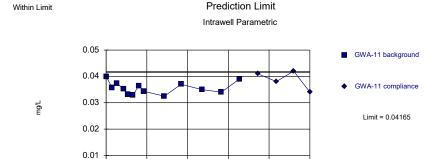
Within Limit

Hollow symbols indicate censored values



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. 15.38% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

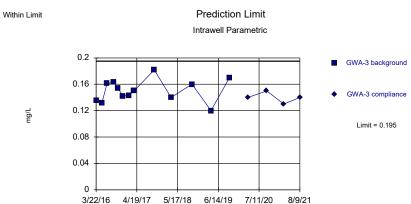
> Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.08618, Std. Dev.=0.007513, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.951, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

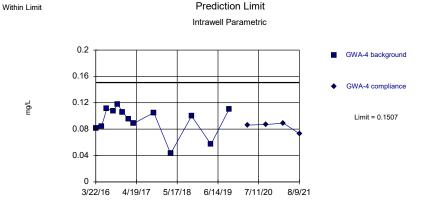
> Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



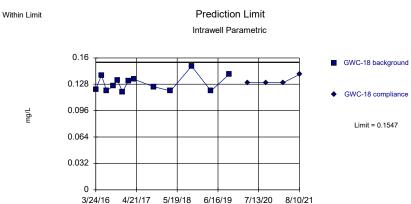
Background Data Summary: Mean=0.0356, Std. Dev.=0.002301, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9579, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

3/22/16 4/19/17 5/17/18 6/15/19 7/12/20 8/10/21


Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.1502, Std. Dev.=0.01706, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9892, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

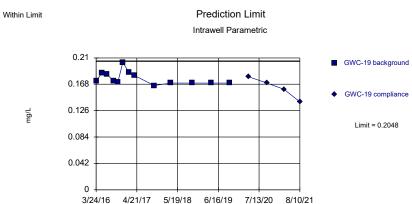

> Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Background Data Summary: Mean=0.09276, Std. Dev.=0.02204, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8751, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0066289

Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.1292, Std. Dev.=0.009697, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8975, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.03321, Std. Dev.=0.003909, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.917, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

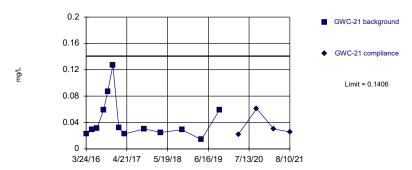
Background Data Summary: Mean=0.1773, Std. Dev.=0.01047, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8362, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. 7.692% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

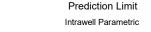
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

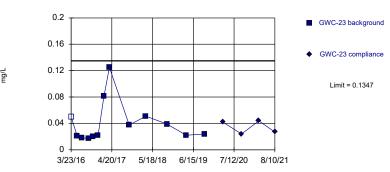

Within Limit | Prediction Limit | Intrawell Parametric |

0.09
0.072
0.072
0.054
0.054
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.0

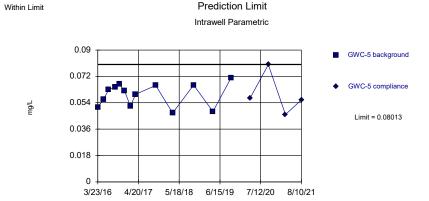
Background Data Summary: Mean=0,06841, Std. Dev.=0.005445, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9602, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

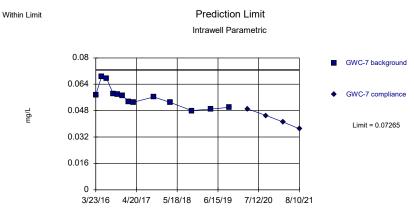




Background Data Summary (based on square root transformation): Mean=0.199, Std. Dev.=0.06698, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8469, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Background Data Summary (based on square root transformation): Mean=0.191, Std. Dev.=0.067, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8251, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Background Data Summary: Mean=0.05944, Std. Dev.=0.007872, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9224, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.05612, Std. Dev.=0.006289, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8973, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit Intrawell Parametric

O.1

O.08

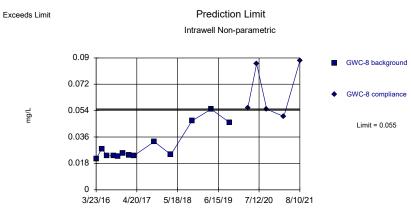
O.06

O.04

O.02

Dimit Intrawell Parametric

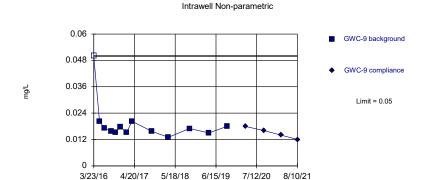
GWC-6 background


Limit = 0.04531

3/23/16 4/20/17 5/18/18 6/15/19 7/12/20 8/10/21

Background Data Summary: Mean=0.03949, Std. Dev.=0.002264, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9607, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

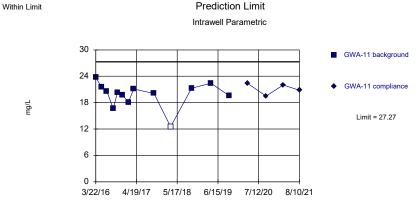
Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

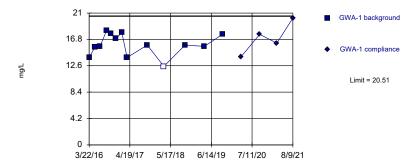


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. 7.692% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Boron Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

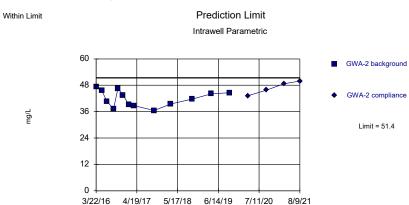
 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$


Background Data Summary: Mean=19.82, Std. Dev.=2.834, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.886, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

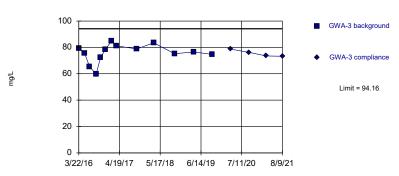
Within Limit


Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=15.95, Std. Dev.=1.735, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9268, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



Background Data Summary: Mean=41.93, Std. Dev.=3.601, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9508, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Within Limit Prediction Limit

Background Data Summary: Mean=75.85, Std. Dev.=6.964, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9097, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006132

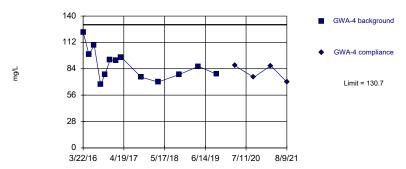
Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

GWC-10 background

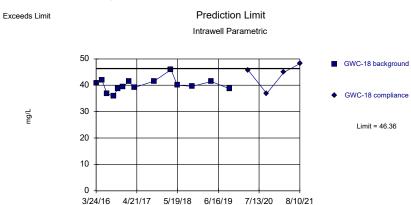
GWC-10 compliance


Limit = 60.36

Background Data Summary: Mean=41.41, Std. Dev.=7.541, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9378, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

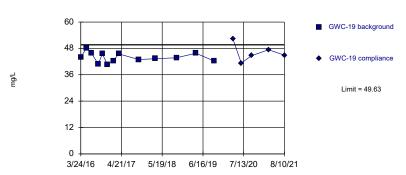
Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Within Limit Prediction Limit
Intrawell Parametric

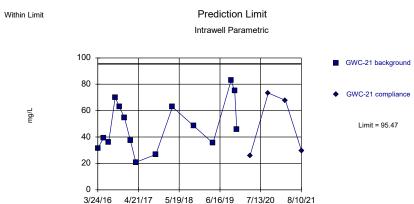
Background Data Summary: Mean=88.18, Std. Dev.=16.18, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9408, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

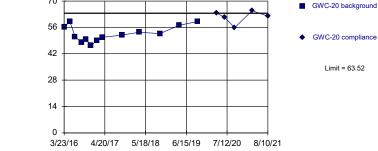

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=40.09, Std. Dev.=2.439, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.453, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

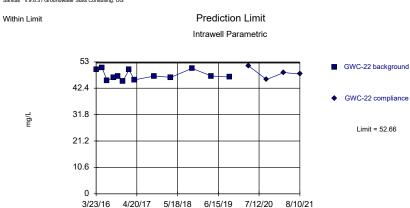

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=43.91, Std. Dev.=2.178, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9602, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132.

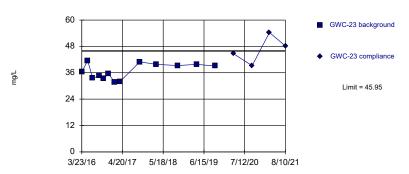

Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=48.65, Std. Dev.=18.63, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9559, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

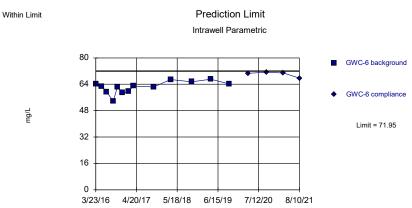

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=52.64, Std. Dev.=4.139, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9448, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

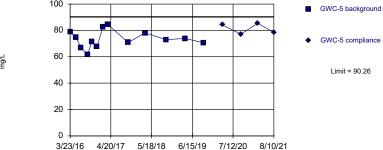

Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=47.68, Std. Dev.=1.891, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8721, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

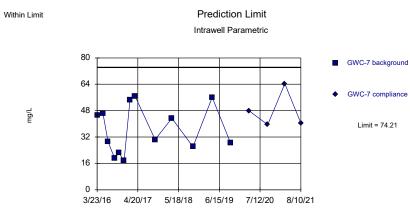

Exceeds Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=36.75, Std. Dev.=3.5, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9096, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).


Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

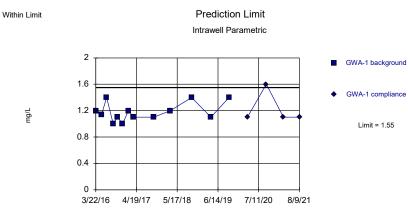
Background Data Summary: Mean=62.28, Std. Dev.=3.678, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9288, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

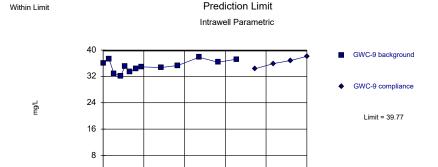
Background Data Summary: Mean=73.43, Std. Dev.=6.404, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9816, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.000509

Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Background Data Summary: Mean=36.61, Std. Dev.=14.31, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9027, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

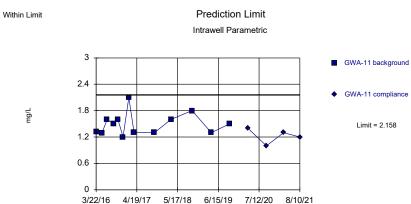
Background Data Summary: Mean=63.08, Std. Dev.=11.04, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9599, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0061629.


Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=1.179, Std. Dev.=0.1409, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8609, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



Background Data Summary: Mean=35.16, Std. Dev=1.751, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9693, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

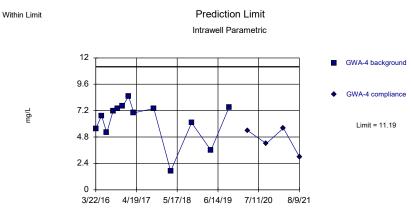
3/23/16 4/20/17 5/18/18 6/15/19 7/12/20 8/10/21

Constituent: Calcium Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=1.493, Std. Dev.=0.253, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8721, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

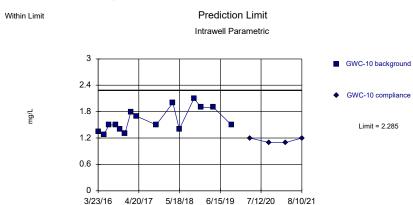

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=2.431, Std. Dev.=0.2783, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9538, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=6.268, Std. Dev.=1.874, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.858, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=3.95, Std. Dev.=0.3552, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9788, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=1.609, Std. Dev.=0.269, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9026, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=1.385, Std. Dev.=0.1987, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8442, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0063626

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=1.7, Std. Dev.=0.2708, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9657, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=1.915, Std. Dev.=0.2492, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9085, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=2.712, Std. Dev.=0.4862, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9357, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=1.555, Std. Dev.=0.1736, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9146, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006132.

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit | Prediction Limit | Intrawell Parametric | GWC-5 background | GWC-5 compliance | Limit = 4.279 | Limit = 4.279 | GWC-5 compliance | Limit = 4.

Background Data Summary: Mean=3.029, Std. Dev.=0.4757, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9758, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=1.552, Std. Dev.=0.2101, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9193, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

2.5

GWC-6 background

GWC-6 compliance

Limit = 2.458

Background Data Summary: Mean=1.955, Std. Dev.=0.1913, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8991, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

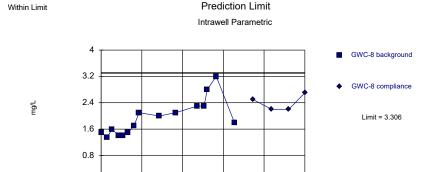
GWC-7 background

GWC-7 compliance

Limit = 2.458

Background Data Summary: Mean=1.654, Std. Dev.=0.3056, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8832, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

3/23/16 4/20/17 5/18/18 6/15/19 7/12/20 8/10/21

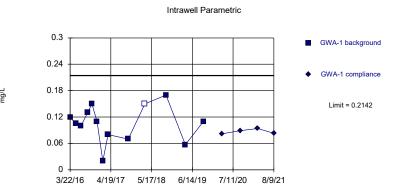

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit | Prediction Limit | Intrawell Parametric | GWC-9 background | GWC-9 compliance | Limit = 1.823 | Limit = 1.823 | GWC-9 compliance | Limit = 1.

Background Data Summary: Mean=1.195, Std. Dev.=0.239, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8925, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Background Data Summary: Mean=1.936, Std. Dev.=0.545, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8956, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

3/23/16 4/20/17 5/18/18 6/15/19 7/12/20 8/10/21

Constituent: Chloride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

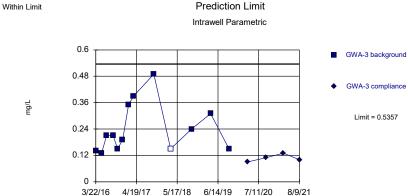
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Background Data Summary: Mean=0.1055, Std. Dev.=0.04138, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9745, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

0

Within Limit

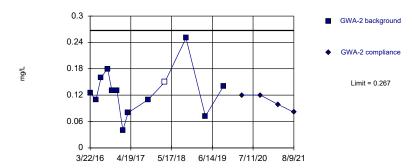

Prediction Limit

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.07757, Std. Dev.=0.04064, n=13, 23.08% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.905, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.006269.

3/22/16 4/19/17 5/17/18 6/15/19 7/12/20 8/10/21

Constituent: Fluoride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

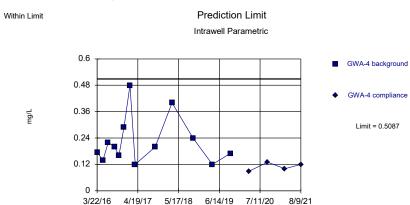
 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$



Background Data Summary: Mean=0.2393, Std. Dev.=0.1127, n=13, 7.692% NDs. Normality test: Shapiro Wilk Qipha = 0.01, calculated = 0.8611, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 9/2/2021 4:07 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.1289, Std. Dev.=0.05253, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.96, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

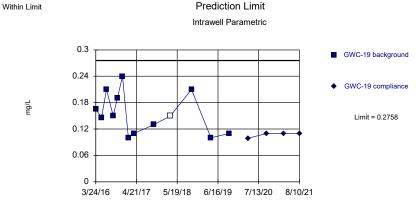
Constituent: Fluoride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.2241, Std. Dev.=0.1082, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8369, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

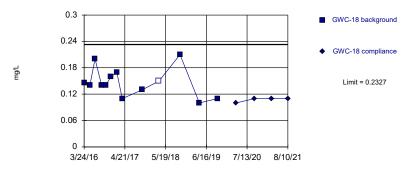

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.1064, Std. Dev.=0.03664, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9437, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

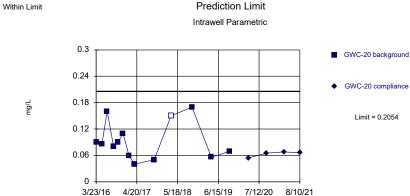
 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$



Background Data Summary: Mean=0.1547, Std. Dev.=0.04606, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.925, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.006269. Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 9/2/2021 4:08 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit



Background Data Summary: Mean=0.1467, Std. Dev.=0.03273, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

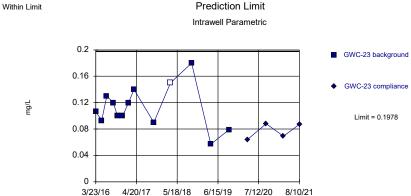
Constituent: Fluoride Analysis Run 9/2/2021 4:07 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

 $\mbox{Sanitas}^{\mbox{\tiny{MV}}}\ \ v.9.6.31\ \ \mbox{Groundwater Stats Consulting. UG} \ \ \mbox{Hollow symbols indicate censored values}.$

Background Data Summary: Mean=0.09322, Std. Dev.=0.0427, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9005, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.08881, Std. Dev.=0.05798, n=13, 15.38% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9264, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.006269.

3/24/16 4/21/17 5/19/18 6/16/19 7/13/20 8/10/21

Constituent: Fluoride Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

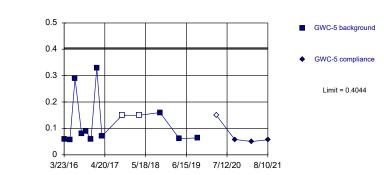
 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \mbox{ v.9.6.31 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Background Data Summary: Mean=0.1127, Std. Dev.=0.03238, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9828, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit
Intrawell Parametric


Background Data Summary: Mean=0.09188, Std. Dev.=0.0279, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.899, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.006269.

Constituent: Fluoride Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Parametric

Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=0.4643, Std. Dev.=0.1047, n=13, 15.38% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8202, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit Intrawell Parametric

0.4
0.32
0.24
0.16
0.08

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.1139, Std. Dev.=0.07868, n=13, 15.38% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8986, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0056269.

3/23/16 4/20/17 5/18/18 6/15/19 7/12/20 8/10/21

Constituent: Fluoride Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

0.5

0.4

0.4

0.3

0.2

0.1

0.4

0.2

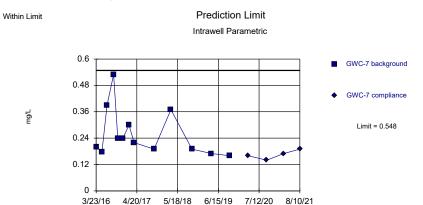
0.1

0.4

0.5

0.7

0.7

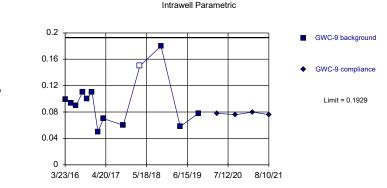

0.7

0.8/10/21

Background Data Summary (based on square root transformation): Mean=0.4306, Std. Dev.=0.1035, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.833, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

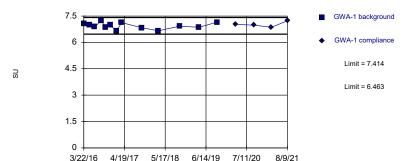
Constituent: Fluoride Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



Background Data Summary: Mean=0.2598, Std. Dev.=0.1097, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8224, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Prediction Limit

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Background Data Summary: Mean=0.09607, Std. Dev.=0.03684, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9147, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limits Prediction Limit

Intrawell Parametric

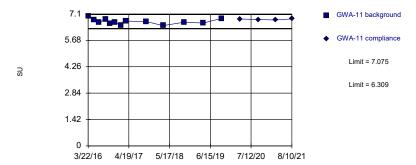
Constituent: pH Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limits

Prediction Limit
Intrawell Parametric

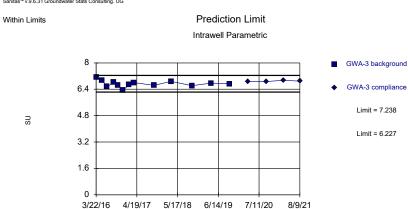
GWA-2 background


← GWA-2 compliance
Limit = 7.273

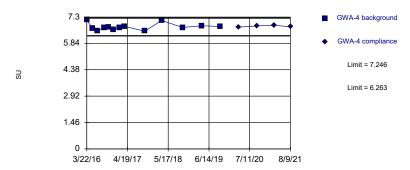
Limit = 6.46

Background Data Summary: Mean=6.867, Std. Dev.=0.1547, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9756, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



Background Data Summary: Mean=6.692, Std. Dev.=0.1457, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9669, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269


Constituent: pH Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=6.732, Std. Dev.=0.1922, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9818, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=6.755, Std. Dev.=0.1869, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.862, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006362

Constituent: pH Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limits

Prediction Limit
Intrawell Parametric

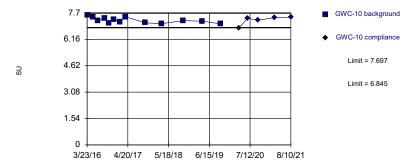
7.8

6.24

4.68

3.12

1.56


0

3/24/16 4/21/17 5/19/18 6/16/19 7/13/20 8/10/21

Background Data Summary: Mean=7.585, Std. Dev.=0.07423, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9602, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=7.271, Std. Dev.=0.162, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9348, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269

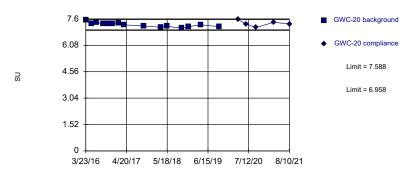
Constituent: pH Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limits

Prediction Limit
Intrawell Parametric

GWC-19 background


GWC-19 compliance
Limit = 7.732
Limit = 7.179

Background Data Summary: Mean=7.455, Std. Dev.=0.1052, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9485, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

3/24/16 4/21/17 5/19/18 6/16/19 7/13/20 8/10/21

Within Limits Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=7.273, Std. Dev.=0.1253, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9587, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

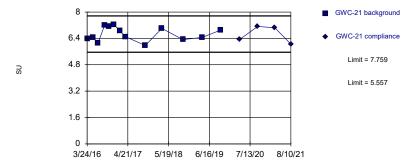
Constituent: pH Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limits

Prediction Limit
Intrawell Parametric

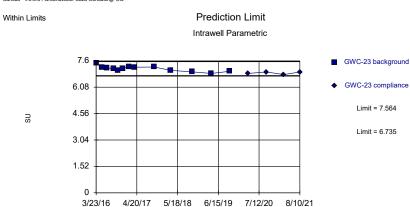
GWC-22 background


GWC-22 compliance
Limit = 7.968
Limit = 7.278

Background Data Summary: Mean=7.623, Std. Dev.=0.1341, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9786, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

3/23/16 4/20/17 5/18/18 6/15/19 7/12/20 8/10/21

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



Background Data Summary: Mean=6.658, Std. Dev.=0.4189, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9363, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269

Constituent: pH Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=7.149, Std. Dev.=0.1578, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9618, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limits Prediction Limit
Intrawell Parametric

7.3
GWC-5 background

5.84

4.38

Limit = 7.288

Limit = 6.348

Background Data Summary: Mean=6.818, Std. Dev.=0.1788, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9555, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0063626

3/23/16 4/20/17 5/18/18 6/15/19 7/12/20 8/10/21

Constituent: pH Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

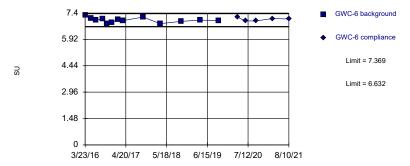
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limits

Prediction Limit
Intrawell Parametric

GWC-7 background

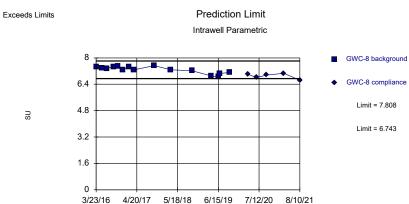
GWC-7 compliance


Limit = 6.623

Limit = 5.502

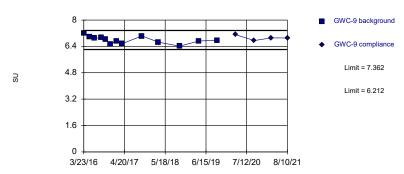
Background Data Summary: Mean=6.062, Std. Dev.=0.2132, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9398, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Within Limits Prediction Limit
Intrawell Parametric

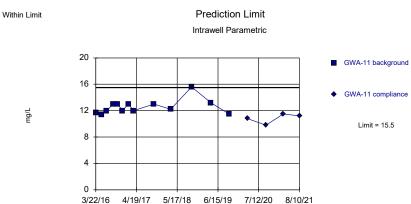
Background Data Summary: Mean=7.001, Std. Dev=0.1401, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.965, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269

Constituent: pH Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

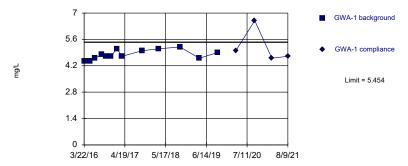

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=7.275, Std. Dev.=0.2119, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9103, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

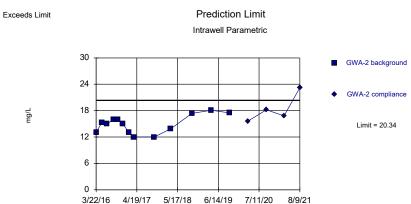

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=6.787, Std. Dev.=0.2186, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9914, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.001320.


Constituent: pH Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=12.58, Std. Dev.=1.108, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8167, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=4.79, Std. Dev.=0.2524, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9406, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=14.94, Std. Dev.=2.053, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9427, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Intrawell Parametric

300
240
40
GWA-3 background

Limit = 231.1

Prediction Limit

Background Data Summary: Mean=131.7, Std. Dev.=37.85, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8594, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary (based on square root transformation): Mean=4.162, Std. Dev.=1.026, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8337, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit

Intrawell Parametric

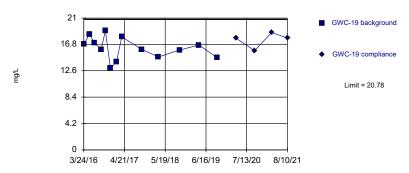
GWA-4 background

GWA-4 compliance

Limit = 348.3

Background Data Summary: Mean=192.8, Std. Dev.=59.18, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9402, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269

3/22/16 4/19/17 5/17/18 6/14/19 7/11/20


Constituent: Sulfate Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=10.94, Std. Dev.=1.541, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9417, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit

Background Data Summary: Mean=16.18, Std. Dev.=1.748, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9787, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132.

Constituent: Sulfate Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

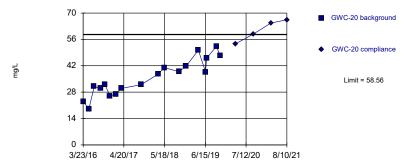
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

60

6WC-21 background

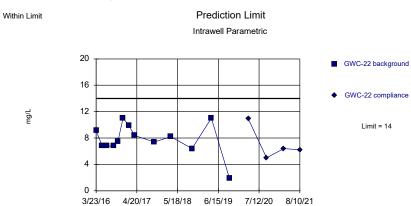
GWC-21 compliance


Limit = 57.26

Background Data Summary: Mean=30.96, Std. Dev.=10.01, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9219, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

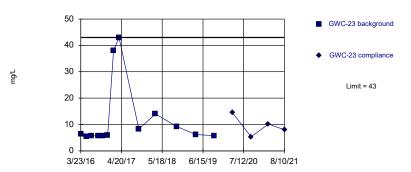
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Exceeds Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=35.78, Std. Dev.=9.504, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9715, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG



Background Data Summary: Mean=7.792, Std. Dev.=2.363, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8985, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit

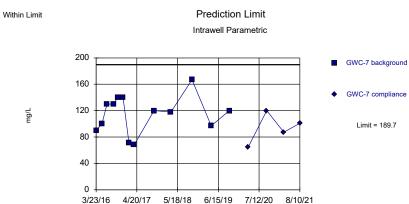
Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Sulfate Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

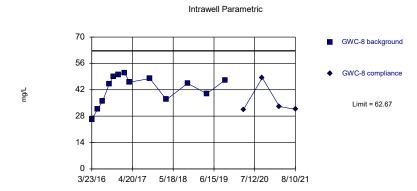
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=109.2, Std. Dev.=17.06, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9548, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

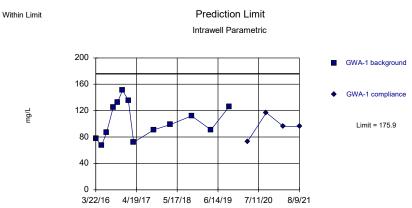
Background Data Summary (based on square root transformation): Mean=9.222, Std. Dev.=1.293, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8196, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=114.7, Std. Dev.=28.53, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9639, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG **Prediction Limit**

Background Data Summary: Mean=42.48, Std. Dev.=7.682, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.896, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 9/2/2021 4:08 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

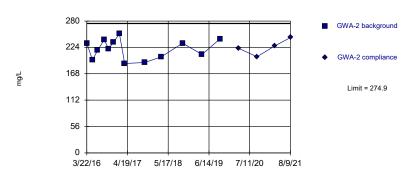
Background Data Summary: Mean=105.2, Std. Dev.=26.93, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9463, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =


Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=69.87, Std. Dev.=6.092, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.973, critical = 0.825. Kappa = 2.571 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 9/2/2021 4:08 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

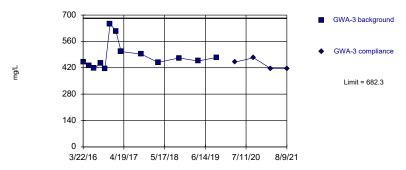


Background Data Summary: Mean=128.5, Std. Dev.=21.88, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9038, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit

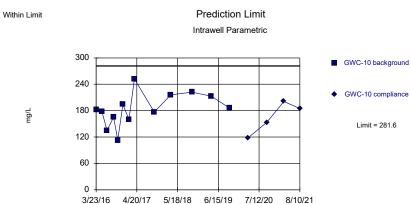
Background Data Summary: Mean=220.5, Std. Dev.=20.67, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.942, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006329.


Constituent: Total Dissolved Solids Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric 800 640 480 320 160 3/22/16 4/19/17 5/17/18 6/14/19 7/11/20 8/9/21

Background Data Summary: Mean=531.9, Std. Dev.=91.69, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9665, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit Intrawell Parametric

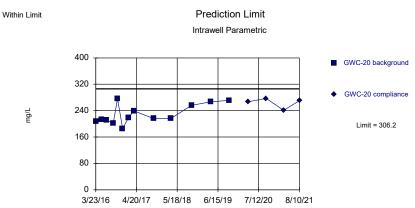
Background Data Summary (based on cube root transformation): Mean=7.827, Std. Dev.=0.3714, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8186, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Total Dissolved Solids Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=184.1, Std. Dev.=37.09, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9837, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Total Dissolved Solids Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

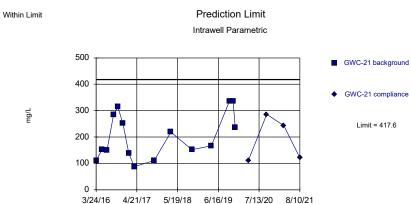
Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=229.2, Std. Dev.=29.3, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8995, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit Intrawell Non-parametric

GWC-19 background

GWC-19 compliance


Limit = 393

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

3/24/16 4/21/17 5/19/18 6/16/19 7/13/20 8/10/21

Constituent: Total Dissolved Solids Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=203.2, Std. Dev.=85.29, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9112, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

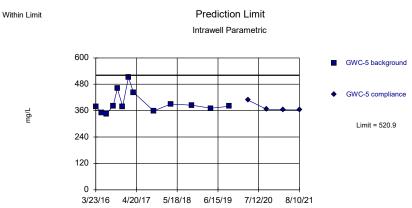
Within Limit

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Intrawell Non-parametric

400
320
GWC-22 background

GWC-22 compliance


Limit = 324

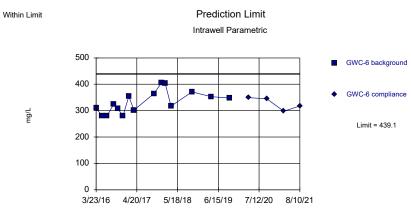
Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Total Dissolved Solids Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=395, Std. Dev.=47.9, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.817, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269


Within Limit Prediction Limit Intrawell Parametric

400
320
400
GWC-23 background
GWC-23 compliance
Limit = 313.1

Background Data Summary: Mean=197.3, Std. Dev.=44.03, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8638, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Total Dissolved Solids Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=333.5, Std. Dev =42.03, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9302, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit

Intrawell Parametric

GWC-7 background

GWC-7 compliance

Limit = 369

Prediction Limit

Background Data Summary: Mean=271.2, Std. Dev.=37.22, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8351, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132.

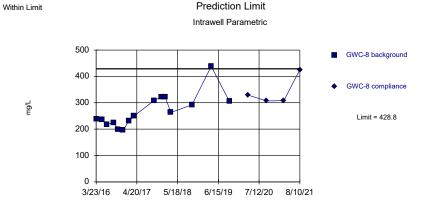
3/23/16 4/20/17 5/18/18 6/15/19 7/12/20 8/10/21

Constituent: Total Dissolved Solids Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

GWC-9 background


GWC-9 compliance

Limit = 326

Background Data Summary: Mean=235.2, Std. Dev.=34.54, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8738, critical = 0.814. Kappa = 2.629 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Total Dissolved Solids Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary: Mean=269.7, Std. Dev.=63.28, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8845, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Total Dissolved Solids Analysis Run 9/2/2021 4:08 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1	GWA-1
3/22/2016	<0.1	
5/17/2016	<0.1	
7/5/2016	0.0419 (J)	
9/7/2016	0.0174 (J)	
10/18/2016	0.0192 (J)	
12/6/2016	0.0182 (J)	
1/31/2017	0.0193 (J)	
3/23/2017	0.0192 (J)	
10/4/2017	0.0199 (J)	
3/14/2018	0.019 (J)	
10/4/2018	0.021 (J)	
4/8/2019	0.019 (J)	
9/30/2019	0.025 (J)	
3/26/2020		0.022 (J)
9/23/2020		0.047 (J)
3/8/2021		0.021 (J)
8/9/2021		0.021 (J)

	GWA-11	GWA-11
3/22/2016	0.04 (J)	
5/17/2016	0.0358 (J)	
7/6/2016	0.0373 (J)	
9/7/2016	0.0352 (J)	
10/18/2016	0.0332 (J)	
12/6/2016	0.033 (J)	
2/1/2017	0.0365 (J)	
3/24/2017	0.0343 (J)	
10/5/2017	0.0325 (J)	
3/15/2018	0.037 (J)	
10/4/2018	0.035 (J)	
4/8/2019	0.034 (J)	
9/30/2019	0.039 (J)	
3/26/2020		0.041 (J)
9/22/2020		0.038 (J)
3/8/2021		0.042
8/10/2021		0.034 (J)

	GWA-2	GWA-2
3/22/2016	0.0828 (J)	
5/17/2016	0.0844 (J)	
7/5/2016	0.0962 (J)	
9/7/2016	0.0884 (J)	
10/18/2016	0.0889 (J)	
12/7/2016	0.0954	
1/31/2017	0.0939	
3/23/2017	0.0869	
10/4/2017	0.0914	
3/14/2018	0.075	
10/4/2018	0.082	
4/8/2019	0.071 (J)	
9/30/2019	0.084	
3/26/2020		0.092 (J)
9/21/2020		0.086 (J)
3/9/2021		0.081
8/9/2021		0.085

	GWA-3	GWA-3
3/22/2016	0.135	
5/17/2016	0.132	
7/5/2016	0.161	
9/7/2016	0.163	
10/18/2016	0.154	
12/6/2016	0.142	
2/1/2017	0.143	
3/23/2017	0.15	
10/4/2017	0.182	
3/15/2018	0.14	
10/4/2018	0.16	
4/5/2019	0.12	
9/30/2019	0.17	
3/26/2020		0.14
9/23/2020		0.15
3/8/2021		0.13
8/9/2021		0.14

	GWA-4	GWA-4
3/22/2016	0.0815 (J)	
5/17/2016	0.0838 (J)	
7/6/2016	0.111	
9/7/2016	0.107	
10/18/2016	0.118	
12/6/2016	0.106	
2/1/2017	0.0949	
3/24/2017	0.0887	
10/4/2017	0.105	
3/15/2018	0.043	
10/4/2018	0.1	
4/8/2019	0.057 (J)	
9/30/2019	0.11	
3/26/2020		0.086 (J)
9/23/2020		0.087 (J)
3/8/2021		0.089
8/9/2021		0.073

	GWC-10	GWC-10
3/23/2016	0.0354 (J)	
5/17/2016	0.0349 (J)	
7/6/2016	0.0308 (J)	
9/7/2016	0.0283 (J)	
10/18/2016	0.0292 (J)	
12/6/2016	0.0287 (J)	
2/2/2017	0.0334 (J)	
3/27/2017	0.0396 (J)	
10/5/2017	0.0294 (J)	
3/15/2018	0.038 (J)	
10/4/2018	0.038 (J)	
4/9/2019	0.035 (J)	
10/1/2019	0.031 (J)	
3/27/2020		0.04 (J)
9/25/2020		0.036 (J)
3/9/2021		0.037 (J)
8/10/2021		0.033 (J)

	GWC-18	GWC-18
3/24/2016	0.122	
5/18/2016	0.139	
7/7/2016	0.12	
9/8/2016	0.126	
10/19/2016	0.133	
12/8/2016	0.119	
2/2/2017	0.132	
3/27/2017	0.134	
10/5/2017	0.125	
3/16/2018	0.12	
10/5/2018	0.15	
4/9/2019	0.12	
10/1/2019	0.14	
3/30/2020		0.13
9/24/2020		0.13
3/9/2021		0.13
8/10/2021		0.14

	GWC-19	GWC-19
3/24/2016	0.173	
5/18/2016	0.186	
7/6/2016	0.184	
9/8/2016	0.173	
10/18/2016	0.171	
12/7/2016	0.203	
2/2/2017	0.187	
3/27/2017	0.182	
10/5/2017	0.166	
3/15/2018	0.17	
10/4/2018	0.17	
4/9/2019	0.17	
10/1/2019	0.17	
3/31/2020		0.18
9/28/2020		0.17
3/10/2021		0.16
8/10/2021		0.14

	GWC-20	GWC-20
3/23/2016	<0.1	
5/18/2016	0.0229 (J)	
7/7/2016	0.0169 (J)	
9/8/2016	0.0178 (J)	
10/19/2016	0.018 (J)	
12/7/2016	0.0248 (J)	
2/3/2017	0.0171 (J)	
3/27/2017	0.0181 (J)	
10/5/2017	0.0178 (J)	
3/16/2018	0.016 (J)	
10/5/2018	0.017 (J)	
4/9/2019	0.011 (J)	
10/1/2019	0.019 (J)	
3/31/2020		0.024 (J)
9/23/2020		0.018 (J)
3/10/2021		0.018 (J)
8/10/2021		0.013 (J)

	GWC-21	GWC-21
3/24/2016	0.0232 (J)	
5/18/2016	0.0289 (J)	
7/7/2016	0.0313 (J)	
9/8/2016	0.0593 (J)	
10/19/2016	0.087 (J)	
12/7/2016	0.127	
2/2/2017	0.0318 (J)	
3/27/2017	0.0225 (J)	
10/5/2017	0.0304 (J)	
3/15/2018	0.025 (J)	
10/4/2018	0.029 (J)	
4/9/2019	0.014 (J)	
10/1/2019	0.059	
3/31/2020		0.022 (J)
9/24/2020		0.061 (J)
3/9/2021		0.03 (J)
8/10/2021		0.026 (J)

	GWC-22	GWC-22
3/23/2016	0.0649 (J)	
5/18/2016	0.0781 (J)	
7/7/2016	0.0621 (J)	
9/8/2016	0.0607 (J)	
10/19/2016	0.0733 (J)	
12/7/2016	0.0758	
2/2/2017	0.0729	
3/27/2017	0.0698	
10/5/2017	0.0677	
3/15/2018	0.07	
10/4/2018	0.065	
4/9/2019	0.063	
10/1/2019	0.066	
3/31/2020		0.067 (J)
9/23/2020		0.061 (J)
3/9/2021		0.065
8/10/2021		0.057

	GWC-23	GWC-23
3/23/2016	<0.1	
5/19/2016	0.0212 (J)	
7/7/2016	0.0183 (J)	
9/8/2016	0.017 (J)	
10/19/2016	0.0203 (J)	
12/7/2016	0.0215 (J)	
2/3/2017	0.0812	
3/27/2017	0.125	
10/5/2017	0.0375 (J)	
3/15/2018	0.051	
10/5/2018	0.039 (J)	
4/8/2019	0.022 (J)	
10/1/2019	0.024 (J)	
3/26/2020		0.042 (J)
9/23/2020		0.024 (J)
3/9/2021		0.044
8/10/2021		0.027 (J)

	GWC-5	GWC-5
3/23/2016	0.0509 (J)	
5/17/2016	0.0565 (J)	
7/6/2016	0.0628 (J)	
9/7/2016	0.0648 (J)	
10/18/2016	0.0666 (J)	
12/8/2016	0.062	
2/1/2017	0.0516	
3/23/2017	0.0597	
10/4/2017	0.0658	
3/16/2018	0.047	
10/4/2018	0.066	
4/9/2019	0.048	
10/1/2019	0.071	
3/31/2020		0.057 (J)
9/25/2020		0.08 (J)
3/9/2021		0.046
8/10/2021		0.056

GWC-6	GWC-6
0.0379 (J)	
0.0395 (J)	
0.0393 (J)	
0.04 (J)	
0.0366 (J)	
0.0397 (J)	
0.0381 (J)	
0.0416	
0.0382 (J)	
0.044	
0.042	
0.038 (J)	
0.036 (J)	
0.042	
	0.091 (J)
	0.045 (JR)
	0.047 (J)
	0.038 (J)
	0.037 (J)
	0.0379 (J) 0.0395 (J) 0.0393 (J) 0.04 (J) 0.0366 (J) 0.0397 (J) 0.0381 (J) 0.0416 0.0382 (J) 0.044 0.042 0.038 (J) 0.036 (J)

	GWC-7	GWC-7
3/23/2016	0.0574 (J)	
5/18/2016	0.0686 (J)	
7/6/2016	0.0675 (J)	
9/7/2016	0.0582 (J)	
10/18/2016	0.0577 (J)	
12/8/2016	0.0572	
2/2/2017	0.0534	
3/24/2017	0.0532	
10/4/2017	0.0563	
3/15/2018	0.053	
10/4/2018	0.048	
4/8/2019	0.049 (J)	
10/1/2019	0.05	
3/30/2020		0.049 (J)
9/24/2020		0.045 (J)
3/9/2021		0.041
8/10/2021		0.037 (J)

	GWC-8	GWC-8
3/23/2016	0.0213 (J)	
5/18/2016	0.028 (J)	
7/6/2016	0.0231 (J)	
9/8/2016	0.0234 (J)	
10/18/2016	0.0228 (J)	
12/8/2016	0.0251 (J)	
2/2/2017	0.0238 (J)	
3/24/2017	0.0234 (J)	
10/5/2017	0.0329 (J)	
3/14/2018	0.024 (J)	
10/4/2018	0.047 (J)	
4/8/2019	0.055 (J)	
10/1/2019	0.046	
3/27/2020		0.056 (J)
6/19/2020		0.086 (JR)
9/24/2020		0.055 (J)
3/9/2021		0.05
8/10/2021		0.088

	GWC-9	GWC-9
3/23/2016	<0.1	
5/18/2016	0.0202 (J)	
7/6/2016	0.0171 (J)	
9/8/2016	0.0157 (J)	
10/19/2016	0.0152 (J)	
12/8/2016	0.0178 (J)	
2/2/2017	0.0151 (J)	
3/27/2017	0.0203 (J)	
10/5/2017	0.0157 (J)	
3/15/2018	0.013 (J)	
10/5/2018	0.017 (J)	
4/8/2019	0.015 (J)	
10/1/2019	0.018 (J)	
3/27/2020		0.018 (J)
9/24/2020		0.016 (J)
3/9/2021		0.014 (J)
8/10/2021		0.012 (J)

	GWA-1	GWA-1
	GWA-1	GWA-1
3/22/2016	13.9	
5/17/2016	15.6	
7/5/2016	15.7	
9/7/2016	18.2	
10/18/2016	17.7	
12/6/2016	16.9	
1/31/2017	17.9	
3/23/2017	13.9	
10/4/2017	15.9	
3/14/2018	<25	
10/4/2018	15.9 (J)	
4/8/2019	15.7	
9/30/2019	17.6	
3/26/2020		14
9/23/2020		17.6
3/8/2021		16.2 (M1)
8/9/2021		20.2

	GWA-11	GWA-11
3/22/2016	23.8	
5/17/2016	21.5	
7/6/2016	20.6	
9/7/2016	16.7	
10/18/2016	20.3	
12/6/2016	19.7	
2/1/2017	18.1	
3/24/2017	21.1	
10/5/2017	20.1	
3/15/2018	<25	
10/4/2018	21.3 (J)	
4/8/2019	22.4	
9/30/2019	19.6	
3/26/2020		22.4
9/22/2020		19.5
3/8/2021		22
8/10/2021		20.8

	GWA-2	GWA-2
	GWA-2	GWA-2
3/22/2016	47.4	
5/17/2016	45.5	
7/5/2016	40.5	
9/7/2016	37.3	
10/18/2016	46.6	
12/7/2016	43.5	
1/31/2017	39.2	
3/23/2017	38.7	
10/4/2017	36.5	
3/14/2018	39.5	
10/4/2018	41.7	
4/8/2019	44.1	
9/30/2019	44.6	
3/26/2020		43.2
9/21/2020		45.8
3/9/2021		48.7
8/9/2021		49.9

GWA-3	GWA-3
79.3	
75.8	
65.3	
59.8	
72.4	
78.6	
85	
81.2	
78.8	
83.5	
75.2	
76.5	
74.7	
	78.7
	76.2
	73.5
	73.2
	79.3 75.8 65.3 59.8 72.4 78.6 85 81.2 78.8 83.5 75.2 76.5

	GWA-4	GWA-4
3/22/2016	123	
5/17/2016	99.2	
7/6/2016	109	
9/7/2016	67.2	
10/18/2016	77.9	
12/6/2016	93.3	
2/1/2017	92.8	
3/24/2017	96.3	
10/4/2017	75.1	
3/15/2018	69.9	
10/4/2018	77.8	
4/8/2019	86.6	
9/30/2019	78.3	
3/26/2020		87.4
9/23/2020		74.9
3/8/2021		87.2
8/9/2021		69.7

	GWC-10	GWC-10
3/23/2016	43.9	
5/17/2016	40.1	
7/6/2016	32.3	
9/7/2016	28.9	
10/18/2016	35.4	
12/6/2016	34.3	
2/2/2017	38.1	
3/27/2017	45.4	
10/5/2017	35.8	
3/15/2018	52.4	
5/15/2018	48.4	
10/4/2018	51.2	
12/11/2018	49.3	
4/9/2019	48.8	
10/1/2019	36.8	
3/27/2020		22.9
9/25/2020		39.4
3/9/2021		48.7
8/10/2021		45.5

	GWC-18	GWC-18
3/24/2016	40.7	
5/18/2016	41.9	
7/7/2016	36.8	
9/8/2016	35.9	
10/19/2016	38.7	
12/8/2016	39.4	
2/2/2017	41.5	
3/27/2017	39.1	
10/5/2017	41.6	
3/16/2018	45.9	
5/16/2018	40	
10/5/2018	39.6	
4/9/2019	41.4	
10/1/2019	38.7	
3/30/2020		45.7
9/24/2020		36.9
3/9/2021		44.9
8/10/2021		48.2

	GWC-19	GWC-19
3/24/2016	43.9	
5/18/2016	48.2	
7/6/2016	45.8	
9/8/2016	40.9	
10/18/2016	45.5	
12/7/2016	40.6	
2/2/2017	42.4	
3/27/2017	45.5	
10/5/2017	42.9	
3/15/2018	43.3	
10/4/2018	43.7	
4/9/2019	45.8	
10/1/2019	42.3	
3/31/2020		52.3
6/19/2020		41.3 (R)
9/28/2020		44.7
3/10/2021		47.4
8/10/2021		44.9

	014/0 00	014/0 00
	GWC-20	GWC-20
3/23/2016	56.3	
5/18/2016	59	
7/7/2016	50.9	
9/8/2016	48	
10/19/2016	49.7	
12/7/2016	46.4	
2/3/2017	49	
3/27/2017	50.7	
10/5/2017	52	
3/16/2018	53.4	
10/5/2018	52.7	
4/9/2019	57.1	
10/1/2019	59.1	
3/31/2020		63.6
6/19/2020		61.4 (R)
9/23/2020		55.8
3/10/2021		64.9
8/10/2021		62

GWC-21	GWC-21
31.4	
39.2	
36	
70	
63	
54.7	
37.4	
20.9	
26.8	
62.8	
48.6	
35.4	
82.8	
74.9	
45.8	
	25.6
	73.4
	67.8
	29.7
	31.4 39.2 36 70 63 54.7 37.4 20.9 26.8 62.8 48.6 35.4 82.8 74.9

	GWC-22	GWC-22
3/23/2016	49.9	
5/18/2016	50.7	
7/7/2016	45.5	
9/8/2016	46.8	
10/19/2016	47.3	
12/7/2016	45.3	
2/2/2017	49.9	
3/27/2017	45.8	
10/5/2017	47.3	
3/15/2018	46.8	
10/4/2018	50.4	
4/9/2019	47.3	
10/1/2019	46.9	
3/31/2020		51.5
9/23/2020		45.9
3/9/2021		48.7
8/10/2021		48.1

	GWC-23	GWC-23
3/23/2016	36.4	
5/19/2016	41.5	
7/7/2016	33.5	
9/8/2016	34.7	
10/19/2016	33.4	
12/7/2016	35.5	
2/3/2017	31.7	
3/27/2017	32	
10/5/2017	41	
3/15/2018	39.8	
10/5/2018	39.3	
4/8/2019	39.8	
10/1/2019	39.1	
3/26/2020		44.7
9/23/2020		39.2
3/9/2021		54.3
8/10/2021		48.2

	GWC-5	GWC-5
3/23/2016	79	
5/17/2016	74.6	
7/6/2016	66.9	
9/7/2016	61.6	
10/18/2016	71.6	
12/8/2016	67.6	
2/1/2017	82.5	
3/23/2017	84.4	
10/4/2017	70.8	
3/16/2018	78.1	
10/4/2018	73	
4/9/2019	73.9	
10/1/2019	70.6	
3/31/2020		84.2
9/25/2020		77.1
3/9/2021		85.4
8/10/2021		78.3

	GWC-6	GWC-6
/23/2016	64.1	
/17/2016	62.8	
/6/2016	59.5	
/7/2016	53.7	
0/18/2016	62.3	
2/8/2016	58.8	
/1/2017	59.6	
/23/2017	62.9	
0/4/2017	62.4	
/16/2018	66.9	
0/4/2018	65.5	
/8/2019	67	
0/1/2019	64.2	
/31/2020		70.6
/25/2020		71.3
/9/2021		70.8
/10/2021		67.7
	/17/2016 //6/2016 //7/2016 0/18/2016 2/8/2016 2/8/2016 //1/2017 //23/2017 0/4/2017 //16/2018 0/4/2018 //8/2019 0/1/2019 //31/2020 //25/2020	/23/2016 64.1 /17/2016 62.8 /6/2016 59.5 /7/2016 53.7 0/18/2016 62.3 2/8/2016 58.8 /1/2017 59.6 /23/2017 62.9 0/4/2017 62.4 /16/2018 66.9 0/4/2018 65.5 /8/2019 67 0/1/2019 64.2 /31/2020 //25/2020

	GWC-7	GWC-7
3/23/2016	45.2	
5/18/2016	46.5	
7/6/2016	29.1	
9/7/2016	19.2	
10/18/2016	22.6	
12/8/2016	17.5	
2/2/2017	54.4	
3/24/2017	56.8	
10/4/2017	30.5	
3/15/2018	43.4	
10/4/2018	26.1	
4/8/2019	56.1	
10/1/2019	28.5	
3/30/2020		47.8
9/24/2020		39.5
3/9/2021		64.3
8/10/2021		40.5

GWC-8	GWC-8
69.1	
63.7	
56.8	
51.3	
52.6	
43.7	
56.5	
64.4	
59.9	
58.8	
264 (o)	
64.3	
81.5	
83.7	
75.9	
64	
	87.3
	81.4
	83.2
	111
	69.1 63.7 56.8 51.3 52.6 43.7 56.5 64.4 59.9 58.8 264 (o) 64.3 81.5 83.7 75.9

GWC-9	GWC-9
36	
37.3	
32.8	
32.1	
35	
33.4	
34.3	
34.9	
34.7	
35.3	
37.8	
36.3	
37.2	
	34.3
	35.9
	36.8
	38.1
	36 37.3 32.8 32.1 35 33.4 34.3 34.9 34.7 35.3 37.8 36.3

GWA-1	GWA-1
1.1933	
1.14	
1.4	
1	
1.1	
1	
1.2	
1.1	
1.1	
1.2	
1.4	
1.1	
1.4	
	1.1
	1.6
	1.1
	1.1
	1.1933 1.14 1.4 1 1.1 1.1 1.2 1.1 1.1 1.2 1.4

3/22/2016 1.3137	
5/17/2016 1.29	
7/6/2016 1.6	
9/7/2016 1.5	
10/18/2016 1.6	
12/6/2016 1.2	
2/1/2017 2.1	
3/24/2017 1.3	
10/5/2017 1.3	
3/15/2018 1.6	
10/4/2018 1.8	
4/8/2019 1.3	
9/30/2019 1.5	
3/26/2020 1.	4
9/22/2020 1	
3/8/2021 1.	3
8/10/2021 1.:	2

	GWA-2	GWA-2
3/22/2016	2.0975	
5/17/2016	2.1	
7/5/2016	2.4	
9/7/2016	2.5	
10/18/2016	2.7	
12/7/2016	2.6	
1/31/2017	2.5	
3/23/2017	2	
10/4/2017	2.2	
3/14/2018	2.4	
10/4/2018	2.5	
4/8/2019	2.6	
9/30/2019	3	
3/26/2020		2
9/21/2020		2.1
3/9/2021		2.1
8/9/2021		2.4

	GWA-3	GWA-3
3/22/2016	4.0352	
5/17/2016	3.81	
7/5/2016	4	
9/7/2016	4.2	
10/18/2016	4.4	
12/6/2016	4.6	
2/1/2017	3.7	
3/23/2017	3.5	
10/4/2017	3.6	
3/15/2018	3.8	
10/4/2018	3.4	
4/5/2019	4.2	
9/30/2019	4.1	
3/26/2020		2.6
9/23/2020		2.8
3/8/2021		2.8
8/9/2021		2.1

	GWA-4	GWA-4
3/22/2016	5.549	
5/17/2016	6.74	
7/6/2016	5.2	
9/7/2016	7.2	
10/18/2016	7.4	
12/6/2016	7.6	
2/1/2017	8.5	
3/24/2017	7	
10/4/2017	7.4	
3/15/2018	1.7	
10/4/2018	6.1	
4/8/2019	3.6	
9/30/2019	7.5	
3/26/2020		5.4
9/23/2020		4.2
3/8/2021		5.6
8/9/2021		3

GWC-10	GWC-10
1.3507	
1.28	
1.5	
1.5	
1.4	
1.3	
1.8	
1.7	
1.5	
2	
1.4	
2.1	
1.9	
1.9	
1.5	
	1.2
	1.1
	1.1
	1.2
	1.3507 1.28 1.5 1.5 1.4 1.3 1.8 1.7 1.5 2 1.4 2.1 1.9

	GWC-18	GWC-18
3/24/2016	1.1313	
5/19/2016	1.13	
7/7/2016	1.5	
9/8/2016	1.4	
10/19/2016	1.4	
12/8/2016	1.4	
2/2/2017	1.6	
3/27/2017	1.5	
10/5/2017	1.4	
3/16/2018	1.5	
10/5/2018	1.5	
4/9/2019	1.6	
10/1/2019	0.94 (J)	
3/30/2020		1
9/24/2020		0.94 (J)
3/9/2021		0.97 (J)
8/10/2021		0.93 (J)

	GWC-19	GWC-19
3/24/2016	1.6497	
5/18/2016	1.74	
7/6/2016	2.1	
9/8/2016	1.9	
10/18/2016	2.1	
12/7/2016	2	
2/2/2017	2.3	
3/27/2017	2.1	
10/5/2017	1.9	
3/15/2018	1.9	
10/4/2018	2	
4/9/2019	1.9	
10/1/2019	1.3	
3/31/2020		1.3
9/28/2020		1.3
3/10/2021		1.3
8/10/2021		1.2

	GWC-20	GWC-20
3/23/2016	1.4238	
5/18/2016	1.57	
7/7/2016	1.7	
9/8/2016	1.5	
10/19/2016	1.7	
12/7/2016	1.8	
2/3/2017	2	
3/27/2017	1.8	
10/5/2017	5.5 (o)	
12/14/2017	1.5	
3/16/2018	1.9	
10/5/2018	2.2	
12/11/2018	1.8	
4/9/2019	1.8	
10/1/2019	1.1	
3/31/2020		1.1
9/23/2020		1.1
3/10/2021		1.2
8/10/2021		1.2

	GWC-21	GWC-21
3/24/2016	2.461	
5/18/2016	2.61	
7/7/2016	2.8	
9/8/2016	2.3	
10/19/2016	2.4	
12/7/2016	2.2	
2/2/2017	3.4	
3/27/2017	2.7	
10/5/2017	3.3	
3/15/2018	3.6	
5/15/2018	3.2	
10/4/2018	2.4	
4/9/2019	2.6	
10/1/2019	2	
3/31/2020		1.5
9/24/2020		1.8
3/9/2021		1.8
8/10/2021		2

	GWC-22	GWC-22
3/23/2016	1.2595	
5/18/2016	1.25	
7/7/2016	1.7	
9/8/2016	1.5	
10/19/2016	1.6	
12/7/2016	1.5	
2/2/2017	1.8	
3/27/2017	1.5	
10/5/2017	1.6	
3/15/2018	1.7	
10/4/2018	1.7	
4/9/2019	1.7	
10/1/2019	1.4	
3/31/2020		1
9/23/2020		1.1
3/9/2021		1
8/10/2021		1.1

	GWC-23	GWC-23
3/23/2016	1.5409	
5/19/2016	1.23	
7/7/2016	1.7	
9/8/2016	1.6	
10/19/2016	1.6	
12/7/2016	1.7	
2/3/2017	1.9	
3/27/2017	1.7	
10/5/2017	1.4	
3/15/2018	1.6	
10/5/2018	1.6	
4/8/2019	1.5	
10/1/2019	1.1	
3/26/2020		0.63 (J)
9/23/2020		1.1
3/9/2021		0.85 (J)
8/10/2021		1

	GWC-5	GWC-5
3/23/2016	2.5045	
5/17/2016	2.47	
7/6/2016	2.9	
9/7/2016	2.8	
10/18/2016	2.8	
12/8/2016	3.1	
2/1/2017	3.8	
3/23/2017	3.4	
10/4/2017	3.7	
3/16/2018	3.2	
10/4/2018	3.2	
4/9/2019	3.3	
10/1/2019	2.2	
3/31/2020		2
9/25/2020		2.3
3/9/2021		2
8/10/2021		2.3

	GWC-6	GWC-6
3/23/2016	1.7709	
5/17/2016	1.75	
7/6/2016	2	
9/7/2016	2	
10/18/2016	2	
12/8/2016	2	
2/1/2017	2.2	
3/23/2017	2	
10/4/2017	1.7	
3/16/2018	2.1	
10/4/2018	2.2	
4/8/2019	2.1	
10/1/2019	1.6	
3/31/2020		1.5
9/25/2020		1.6
3/9/2021		1.5
8/10/2021		1.6

	GWC-7	GWC-7
3/23/2016	1.1569	
5/18/2016	1.35	
7/6/2016	1.9	
9/7/2016	1.7	
10/18/2016	1.8	
12/8/2016	1.6	
2/2/2017	2	
3/24/2017	1.3	
10/4/2017	1.7	
3/15/2018	1.9	
10/4/2018	2	
4/8/2019	1.9	
10/1/2019	1.2	
3/30/2020		9.2
6/19/2020		1.4 (R)
9/24/2020		1.4
3/9/2021		1.5
8/10/2021		1.6

	GWC-8	GWC-8
3/23/2016	1.4936	
5/19/2016	1.35	
7/6/2016	1.6	
9/8/2016	1.4	
10/18/2016	1.4	
12/8/2016	1.5	
2/2/2017	1.7	
3/24/2017	2.1	
10/5/2017	2	
3/14/2018	2.1	
10/4/2018	2.3	
12/11/2018	2.3	
1/11/2019	2.8	
4/8/2019	3.2	
10/1/2019	1.8	
3/27/2020		2.5
9/24/2020		2.2
3/9/2021		2.2
8/10/2021		2.7

	GWC-9	GWC-9
3/23/2016	0.9561	
5/19/2016	0.972	
7/6/2016	1.3	
9/8/2016	1	
10/19/2016	1.1	
12/8/2016	1.3	
2/2/2017	1.6	
3/27/2017	1.4	
10/5/2017	1.1	
3/15/2018	1.3	
10/5/2018	1.6	
4/8/2019	1	
10/1/2019	0.91 (J)	
3/27/2020		0.74 (J)
9/24/2020		0.82 (J)
3/9/2021		0.74 (J)
8/10/2021		0.85 (J)

	GWA-1	GWA-1
3/22/2016	0.119 (J)	
5/17/2016	0.1049 (J)	
7/5/2016	0.1 (J)	
9/7/2016	0.13 (J)	
10/18/2016	0.15 (J)	
12/6/2016	0.11 (J)	
1/31/2017	0.02 (J)	
3/23/2017	0.08 (J)	
10/4/2017	0.07 (J)	
3/14/2018	<0.3	
10/4/2018	0.17 (J)	
4/8/2019	0.057 (J)	
9/30/2019	0.11 (J)	
3/26/2020		0.082 (J)
9/23/2020		0.089 (J)
3/8/2021		0.094 (J)
8/9/2021		0.083 (J)

	GWA-11	GWA-11
3/22/2016	0.0811 (J)	
5/17/2016	0.0706 (J)	
7/6/2016	0.09 (J)	
9/7/2016	0.04 (J)	
10/18/2016	0.07 (J)	
12/6/2016	0.13 (J)	
2/1/2017	<0.3	
3/24/2017	0.01 (J)	
10/5/2017	<0.3	
3/15/2018	<0.3	
10/4/2018	0.15 (J)	
4/8/2019	0.035 (J)	
9/30/2019	0.099 (J)	
3/26/2020		0.057 (J)
9/22/2020		0.061 (J)
3/8/2021		0.11
8/10/2021		0.068 (J)

	GWA-2	GWA-2
3/22/2016	0.1252 (J)	
5/17/2016	0.1091 (J)	
7/5/2016	0.16 (J)	
9/7/2016	0.18 (J)	
10/18/2016	0.13 (J)	
12/7/2016	0.13 (J)	
1/31/2017	0.04 (J)	
3/23/2017	0.08 (J)	
10/4/2017	0.11 (J)	
3/14/2018	<0.3	
10/4/2018	0.25 (J)	
4/8/2019	0.072 (J)	
9/30/2019	0.14 (J)	
3/26/2020		0.12 (J)
9/21/2020		0.12
3/9/2021		0.099 (J)
8/9/2021		0.081 (J)

	GWA-3	GWA-3
3/22/2016	0.1415 (J)	
5/17/2016	0.1293 (J)	
7/5/2016	0.21 (J)	
9/7/2016	0.21 (J)	
10/18/2016	0.15 (J)	
12/6/2016	0.19 (J)	
2/1/2017	0.35	
3/23/2017	0.39	
10/4/2017	0.49	
3/15/2018	<0.3	
10/4/2018	0.24 (J)	
4/5/2019	0.31	
9/30/2019	0.15 (J)	
3/26/2020		0.09 (J)
9/23/2020		0.11
3/8/2021		0.13
8/9/2021		0.1

	GWA-4	GWA-4
3/22/2016	0.1754 (J)	
5/17/2016	0.1385 (J)	
7/6/2016	0.22 (J)	
9/7/2016	0.2 (J)	
10/18/2016	0.16 (J)	
12/6/2016	0.29 (J)	
2/1/2017	0.48	
3/24/2017	0.12 (J)	
10/4/2017	0.2 (J)	
3/15/2018	0.4	
10/4/2018	0.24 (J)	
4/8/2019	0.12 (J)	
9/30/2019	0.17 (J)	
3/26/2020		0.089 (J)
9/23/2020		0.13
3/8/2021		0.1
8/9/2021		0.12

	GWC-10	GWC-10
3/23/2016	0.1069 (J)	
5/17/2016	0.0991 (J)	
7/6/2016	0.09 (J)	
9/7/2016	0.13 (J)	
10/18/2016	0.16 (J)	
12/6/2016	0.12 (J)	
2/2/2017	0.07 (J)	
3/27/2017	0.05 (J)	
10/5/2017	0.11 (J)	
3/15/2018	<0.3	
10/4/2018	0.16 (J)	
4/9/2019	0.067 (J)	
10/1/2019	0.07 (J)	
3/27/2020		<0.3
9/25/2020		0.085 (J)
3/9/2021		0.078 (J)
8/10/2021		0.078 (J)

	GWC-18	GWC-18
3/24/2016	0.1459 (J)	
5/19/2016	0.1408 (J)	
7/7/2016	0.2 (J)	
9/8/2016	0.14 (J)	
10/19/2016	0.14 (J)	
12/8/2016	0.16 (J)	
2/2/2017	0.17 (J)	
3/27/2017	0.11 (J)	
10/5/2017	0.13 (J)	
3/16/2018	<0.3	
10/5/2018	0.21 (J)	
4/9/2019	0.1 (J)	
10/1/2019	0.11 (J)	
3/30/2020		0.1 (J)
9/24/2020		0.11
3/9/2021		0.11
8/10/2021		0.11

	GWC-19	GWC-19
	GVVC-19	GWC-19
3/24/2016	0.1652 (J)	
5/18/2016	0.1459 (J)	
7/6/2016	0.21 (J)	
9/8/2016	0.15 (J)	
10/18/2016	0.19 (J)	
12/7/2016	0.24 (J)	
2/2/2017	0.1 (J)	
3/27/2017	0.11 (J)	
10/5/2017	0.13 (J)	
3/15/2018	<0.3	
10/4/2018	0.21 (J)	
4/9/2019	0.1 (J)	
10/1/2019	0.11 (J)	
3/31/2020		0.099 (J)
9/28/2020		0.11
3/10/2021		0.11
8/10/2021		0.11

	GWC-20	GWC-20
3/23/2016	0.0905 (J)	
5/18/2016	0.0864 (J)	
7/7/2016	0.16 (J)	
9/8/2016	0.08 (J)	
10/19/2016	0.09 (J)	
12/7/2016	0.11 (J)	
2/3/2017	0.06 (J)	
3/27/2017	0.04 (J)	
10/5/2017	0.05 (J)	
3/16/2018	<0.3	
10/5/2018	0.17 (J)	
4/9/2019	0.056 (J)	
10/1/2019	0.069 (J)	
3/31/2020		0.054 (J)
9/23/2020		0.065 (J)
3/10/2021		0.068 (J)
8/10/2021		0.066 (J)

	GWC-21	GWC-21
3/24/2016	0.0445 (J)	
5/18/2016	0.0476 (J)	
7/7/2016	0.12 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.13 (J)	
12/7/2016	0.23 (J)	
2/2/2017	0.11 (J)	
3/27/2017	0.01 (J)	
10/5/2017	<0.1	
3/15/2018	<0.1	
10/4/2018	0.15 (J)	
4/9/2019	0.063 (J)	
10/1/2019	0.094 (J)	
3/31/2020		<0.1
9/24/2020		0.1
3/9/2021		0.058 (J)
8/10/2021		<0.1

	GWC-22	GWC-22
3/23/2016	0.0886 (J)	
5/18/2016	0.0839 (J)	
7/7/2016	0.08 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.1 (J)	
12/7/2016	0.09 (J)	
2/2/2017	0.05 (J)	
3/27/2017	0.08 (J)	
10/5/2017	0.08 (J)	
3/15/2018	<0.3	
10/4/2018	0.14 (J)	
4/9/2019	0.063 (J)	
10/1/2019	0.079 (J)	
3/31/2020		0.055 (J)
9/23/2020		0.073 (J)
3/9/2021		0.067 (J)
8/10/2021		0.071 (J)

	GWC-23	GWC-23
3/23/2016	0.1064 (J)	
5/19/2016	0.0928 (J)	
7/7/2016	0.13 (J)	
9/8/2016	0.12 (J)	
10/19/2016	0.1 (J)	
12/7/2016	0.1 (J)	
2/3/2017	0.12 (J)	
3/27/2017	0.14 (J)	
10/5/2017	0.09 (J)	
3/15/2018	<0.3	
10/5/2018	0.18 (J)	
4/8/2019	0.057 (J)	
10/1/2019	0.079 (J)	
3/26/2020		0.064 (J)
9/23/2020		0.088 (J)
3/9/2021		0.069 (J)
8/10/2021		0.087 (J)

	GWC-5	GWC-5
3/23/2016	0.0582 (J)	
5/17/2016	0.0571 (J)	
7/6/2016	0.29 (J)	
9/7/2016	0.08 (J)	
10/18/2016	0.09 (J)	
12/8/2016	0.06 (J)	
2/1/2017	0.33	
3/23/2017	0.07 (J)	
10/4/2017	<0.3	
3/16/2018	<0.3	
10/4/2018	0.16 (J)	
4/9/2019	0.061 (J)	
10/1/2019	0.064 (J)	
3/31/2020		<0.3
9/25/2020		0.058 (J)
3/9/2021		0.05 (J)
8/10/2021		0.057 (J)

	GWC-6	GWC-6
3/23/2016	0.0791 (J)	
5/17/2016	0.0712 (J)	
7/6/2016	0.28 (J)	
9/7/2016	0.08 (J)	
10/18/2016	0.07 (J)	
12/8/2016	0.13 (J)	
2/1/2017	0.24 (J)	
3/23/2017	0.04 (J)	
10/4/2017	0.03 (J)	
3/16/2018	<0.3	
10/4/2018	0.17 (J)	
4/8/2019	<0.3	
10/1/2019	0.063 (J)	
3/31/2020		0.053 (J)
9/25/2020		0.063 (J)
3/9/2021		0.06 (J)
8/10/2021		0.057 (J)

	GWC-7	GWC-7
3/23/2016	0.2004 (J)	
5/18/2016	0.1766 (J)	
7/6/2016	0.39	
9/7/2016	0.53	
10/18/2016	0.24 (J)	
12/8/2016	0.24 (J)	
2/2/2017	0.3 (J)	
3/24/2017	0.22 (J)	
10/4/2017	0.19 (J)	
3/15/2018	0.37	
10/4/2018	0.19 (J)	
4/8/2019	0.17 (J)	
10/1/2019	0.16 (J)	
3/30/2020		0.16 (J)
9/24/2020		0.14
3/9/2021		0.17
8/10/2021		0.19

	GWC-8	GWC-8
3/23/2016	0.1537 (J)	
5/19/2016	0.1414 (J)	
7/6/2016	0.15 (J)	
9/8/2016	0.35	
10/18/2016	0.17 (J)	
12/8/2016	0.15 (J)	
2/2/2017	0.1 (J)	
3/24/2017	0.14 (J)	
10/5/2017	0.15 (J)	
3/14/2018	0.4	
5/16/2018	0.32	
10/4/2018	0.28 (J)	
4/8/2019	0.1 (J)	
10/1/2019	0.13 (J)	
3/27/2020		0.12 (J)
9/24/2020		0.15
3/9/2021		0.12
8/10/2021		0.13

	GWC-9	GWC-9
3/23/2016	0.0993 (J)	
5/19/2016	0.0936 (J)	
7/6/2016	0.09 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.1 (J)	
12/8/2016	0.11 (J)	
2/2/2017	0.05 (J)	
3/27/2017	0.07 (J)	
10/5/2017	0.06 (J)	
3/15/2018	<0.3	
10/5/2018	0.18 (J)	
4/8/2019	0.058 (J)	
10/1/2019	0.078 (J)	
3/27/2020		0.078 (J)
9/24/2020		0.076 (J)
3/9/2021		0.08 (J)
8/10/2021		0.076 (J)

	GWA-1	GWA-1
3/22/2016	7.07	
5/17/2016	7	
7/5/2016	6.88	
9/7/2016	7.24	
10/18/2016	6.86	
12/6/2016	6.98	
1/31/2017	6.63	
3/23/2017	7.12	
10/4/2017	6.83	
3/14/2018	6.66	
10/4/2018	6.92	
4/8/2019	6.86	
9/30/2019	7.15	
3/26/2020		7.02
9/23/2020		6.98
3/8/2021		6.86
8/9/2021		7.23

	GWA-11	GWA-11
3/22/2016	7	
5/17/2016	6.77	
7/6/2016	6.64	
9/7/2016	6.83	
10/18/2016	6.58	
12/6/2016	6.66	
2/1/2017	6.5	
3/24/2017	6.72	
10/5/2017	6.69	
3/15/2018	6.48	
10/4/2018	6.66	
4/8/2019	6.61	
9/30/2019	6.86	
3/26/2020		6.83
9/22/2020		6.8
3/8/2021		6.78
8/10/2021		6.84

	GWA-2	GWA-2
3/22/2016	7.19	
5/17/2016	6.94	
7/5/2016	6.98	
9/7/2016	6.86	
10/18/2016	6.71	
12/7/2016	6.71	
1/31/2017	6.95	
3/23/2017	7.04	
10/4/2017	6.86	
3/14/2018	6.76	
10/4/2018	6.62	
4/8/2019	6.79	
9/30/2019	6.86	
3/26/2020		7.07
9/21/2020		6.9
3/9/2021		6.93
8/9/2021		6.9

	GWA-3	GWA-3
3/22/2016	7.11	
5/17/2016	6.95	
7/5/2016	6.55	
9/7/2016	6.81	
10/18/2016	6.64	
12/6/2016	6.34	
2/1/2017	6.68	
3/23/2017	6.8	
10/4/2017	6.64	
3/15/2018	6.88	
10/4/2018	6.62	
4/5/2019	6.77	
9/30/2019	6.73	
3/26/2020		6.87
9/23/2020		6.87
3/8/2021		6.95
8/9/2021		6.89

GWA-4	GWA-4
7.14	
6.67	
6.53	
6.72	
6.73	
6.61	
6.7	
6.77	
6.52	
7.11	
6.72	
6.82	
6.77	
	6.74
	6.81
	6.84
	6.76
	7.14 6.67 6.53 6.72 6.73 6.61 6.7 6.77 6.52 7.11 6.72 6.82

	GWC-10	GWC-10
3/23/2016	7.56	
5/17/2016	7.46	
7/6/2016	7.24	
9/7/2016	7.4	
10/18/2016	7.11	
12/6/2016	7.32	
2/2/2017	7.19	
3/27/2017	7.48	
10/5/2017	7.13	
3/15/2018	7.08	
10/4/2018	7.26	
4/9/2019	7.22	
10/1/2019	7.07	
3/27/2020		6.82
6/19/2020		7.4 (R)
9/25/2020		7.28
3/9/2021		7.43
8/10/2021		7.45

	GWC-18	GWC-18
3/24/2016	7.71	
5/18/2016	7.59	
7/7/2016	7.55	
9/8/2016	7.54	
10/19/2016	7.66	
12/8/2016	7.47	
2/2/2017	7.64	
3/27/2017	7.59	
10/5/2017	7.65	
3/16/2018	7.51	
10/5/2018	7.57	
4/9/2019	7.48	
10/1/2019	7.65	
3/30/2020		7.65
9/24/2020		7.62
3/9/2021		7.66
8/10/2021		7.4

	GWC-19	GWC-19
3/24/2016	7.69	
5/18/2016	7.49	
7/6/2016	7.39	
9/8/2016	7.57	
10/18/2016	7.35	
12/7/2016	7.42	
2/2/2017	7.43	
3/27/2017	7.53	
10/5/2017	7.36	
3/15/2018	7.54	
10/4/2018	7.44	
4/9/2019	7.4	
10/1/2019	7.31	
3/31/2020		7.62
6/19/2020		7.61 (R)
9/28/2020		7.78
11/10/2020		7.37 (R)
3/10/2021		7.49
8/10/2021		7.49

GWC-20	GWC-20
7.55	
7.32	
7.39	
7.34	
7.35	
7.35	
7.37	
7.26	
7.2	
7.13	
7.18	
7.07	
7.16	
7.26	
7.16	
	7.57
	7.31 (R)
	7.11
	7.41
	7.31
	7.55 7.32 7.39 7.34 7.35 7.35 7.37 7.26 7.2 7.13 7.18 7.07 7.16 7.26

	GWC-21	GWC-21
3/24/2016	6.4	
5/18/2016	6.44	
7/7/2016	6.12	
9/8/2016	7.2	
10/19/2016	7.11	
12/7/2016	7.24	
2/2/2017	6.86	
3/27/2017	6.51	
10/5/2017	5.97	
3/15/2018	7.01	
10/4/2018	6.33	
4/9/2019	6.46	
10/1/2019	6.9	
3/31/2020		6.33
9/24/2020		7.12
3/9/2021		7.04
8/10/2021		6.05

	GWC-22	GWC-22
3/23/2016	7.72	
5/18/2016	7.77	
7/7/2016	7.65	
9/8/2016	7.89	
10/19/2016	7.64	
12/7/2016	7.72	
2/2/2017	7.56	
3/27/2017	7.69	
10/5/2017	7.53	
3/15/2018	7.5	
10/4/2018	7.52	
4/9/2019	7.49	
10/1/2019	7.38	
11/6/2019	7.66	
3/31/2020		7.8
9/23/2020		7.42
3/9/2021		7.52
8/10/2021		7.75

	GWC-23	GWC-23
3/23/2016	7.48	
5/19/2016	7.24	
7/7/2016	7.18	
9/8/2016	7.17	
10/19/2016	7.05	
12/7/2016	7.16	
2/3/2017	7.27	
3/27/2017	7.24	
10/5/2017	7.25	
3/15/2018	7.05	
10/5/2018	6.97	
4/8/2019	6.88	
10/1/2019	7	
3/26/2020		6.88
9/23/2020		6.96
3/9/2021		6.81
8/10/2021		6.96

	GWC-5	GWC-5
3/23/2016	7.1	
5/17/2016	6.88	
7/6/2016	6.75	
9/7/2016	6.95	
10/18/2016	6.9	
12/8/2016	6.55	
2/1/2017	6.81	
3/23/2017	6.8	
10/4/2017	7.12	
3/16/2018	6.72	
10/4/2018	6.52	
4/9/2019	6.72	
10/1/2019	6.81	
3/31/2020		6.82
9/25/2020		6.82
3/9/2021		6.93
8/10/2021		6.87

	GWC-6	GWC-6
3/23/2016	7.29	
5/17/2016	7.1	
7/6/2016	7	
9/7/2016	7.07	
10/18/2016	6.81	
12/8/2016	6.85	
2/1/2017	7.05	
3/23/2017	6.97	
10/4/2017	7.17	
3/16/2018	6.8	
10/4/2018	6.93	
4/8/2019	7	
10/1/2019	6.97	
3/31/2020		7.17
6/18/2020		6.96 (R)
9/25/2020		6.96
3/9/2021		7.09
8/10/2021		7.06

	GWC-7	GWC-7
3/23/2016	6.36	
5/18/2016	6.21	
7/6/2016	5.88	
9/7/2016	5.77	
10/18/2016	5.9	
12/9/2016	5.73	
2/2/2017	6.29	
3/24/2017	6.32	
10/4/2017	6.03	
3/15/2018	6.05	
10/4/2018	5.92	
4/8/2019	6.26	
10/1/2019	6.09	
3/30/2020		6.48
6/19/2020		6.45 (R)
9/24/2020		6.32
3/9/2021		6.59
8/10/2021		6.29

	GWC-8	GWC-8
3/23/2016	7.46	
5/18/2016	7.4	
7/6/2016	7.36	
9/8/2016	7.45	
10/18/2016	7.5	
12/8/2016	7.28	
2/2/2017	7.45	
3/24/2017	7.28	
10/5/2017	7.53	
3/14/2018	7.28	
10/4/2018	7.22	
4/8/2019	6.91	
6/18/2019	6.85	
6/27/2019	7.05	
10/1/2019	7.11	
3/27/2020		7.01
6/19/2020		6.81 (R)
9/24/2020		6.96
3/9/2021		7.06
8/10/2021		6.65

	GWC-9	GWC-9
3/23/2016	7.2	
5/18/2016	6.96	
7/6/2016	6.89	
9/8/2016	6.93	
10/19/2016	6.84	
12/8/2016	6.54	
2/2/2017	6.72	
3/27/2017	6.56	
10/5/2017	7.03	
3/15/2018	6.66	
10/5/2018	6.41	
4/8/2019	6.72	
10/1/2019	6.77	
3/27/2020		7.11
9/24/2020		6.75
3/9/2021		6.92
8/10/2021		6.91

	GWA-1	GWA-1
3/22/2016	4.4409	
5/17/2016	4.43	
7/5/2016	4.6	
9/7/2016	4.8	
10/18/2016	4.7	
12/6/2016	4.7	
1/31/2017	5.1	
3/23/2017	4.7	
10/4/2017	5	
3/14/2018	5.1	
10/4/2018	5.2	
4/8/2019	4.6	
9/30/2019	4.9	
3/26/2020		5
9/23/2020		6.6
3/8/2021		4.6
8/9/2021		4.7

	GWA-11	GWA-11
3/22/2016	11.6823	
5/17/2016	11.4	
7/6/2016	12	
9/7/2016	13	
10/18/2016	13	
12/6/2016	12	
2/1/2017	13	
3/24/2017	12	
10/5/2017	13	
3/15/2018	12.2	
10/4/2018	15.6	
4/8/2019	13.2	
9/30/2019	11.5	
3/26/2020		10.8
9/22/2020		9.8
3/8/2021		11.5
8/10/2021		11.2

	GWA-2	GWA-2
3/22/2016	13.0789	
5/17/2016	15.3	
7/5/2016	15	
9/7/2016	16	
10/18/2016	16	
12/7/2016	15	
1/31/2017	13	
3/23/2017	12	
10/4/2017	12	
3/14/2018	13.9	
10/4/2018	17.4	
4/8/2019	18.1	
9/30/2019	17.5	
3/26/2020		15.6
9/21/2020		18.2
3/9/2021		16.8
8/9/2021		23.2

	GWA-3	GWA-3
3/22/2016	107.476	
5/17/2016	106	
7/5/2016	110	
9/7/2016	83	
10/18/2016	110	
12/6/2016	220	
2/1/2017	190	
3/23/2017	160	
10/4/2017	140	
3/15/2018	119	
10/4/2018	117	
4/5/2019	131	
9/30/2019	118	
3/26/2020		95.8
9/23/2020		95.6
3/8/2021		99.5
8/9/2021		93.3

	GWA-4	GWA-4
3/22/2016	302.2975	
5/17/2016	213	
7/6/2016	280	
9/7/2016	160	
10/18/2016	120	
12/6/2016	210	
2/1/2017	200	
3/24/2017	140	
10/4/2017	140	
3/15/2018	167	
10/4/2018	209	
4/8/2019	248	
9/30/2019	117	
3/26/2020		128
9/23/2020		123
3/8/2021		152
8/9/2021		106

	GWC-10	GWC-10
3/23/2016	14.6529	
5/17/2016	13.3	
7/6/2016	10	
9/7/2016	10	
10/18/2016	10	
12/6/2016	11	
2/2/2017	11	
3/27/2017	33	
10/5/2017	16	
3/15/2018	33.9	
5/15/2018	29.1	
10/4/2018	29.5	
4/9/2019	21.4	
10/1/2019	13.4	
3/27/2020		10.8
9/25/2020		11.6
3/9/2021		14.2
8/10/2021		14.9

GWC-18	GWC-18
10.1818	
9.58	
9.6	
9.4	
9.9	
14	
13	
12	
12	
11.7	
10.6	
11.3	
8.9	
	9.7
	8.5
	7.9
	10.3
	10.1818 9.58 9.6 9.4 9.9 14 13 12 12 11.7 10.6 11.3

	GWC-19	GWC-19
3/24/2016	16.8473	
5/18/2016	18.4	
7/6/2016	17	
9/8/2016	16	
10/18/2016	19	
12/7/2016	13	
2/2/2017	14	
3/27/2017	18	
10/5/2017	16	
3/15/2018	14.8	
10/4/2018	15.9	
4/9/2019	16.7	
10/1/2019	14.7	
3/31/2020		17.8
9/28/2020		15.8
3/10/2021		18.7
8/10/2021		17.8

	GWC-20	GWC-20
3/23/2016	22.9683	
5/18/2016	19.2	
7/7/2016	31	
9/8/2016	30	
10/19/2016	32	
12/7/2016	26	
2/3/2017	27	
3/27/2017	30	
10/5/2017	32	
3/16/2018	37.5	
5/15/2018	41	
10/5/2018	38.9	
12/11/2018	41.8	
4/9/2019	50.3	
6/18/2019	38.7	
6/27/2019	46	
10/1/2019	52.3	
11/6/2019	47.3	
3/31/2020		53.6
9/23/2020		58.9
3/10/2021		64.7
8/10/2021		66.4

	GWC-21	GWC-21
3/24/2016	24.8075	
5/18/2016	26.2	
7/7/2016	31	
9/8/2016	33	
10/19/2016	31	
12/7/2016	19	
2/2/2017	52	
3/27/2017	29	
10/5/2017	33	
3/15/2018	38	
10/4/2018	19.3	
4/9/2019	19.9	
10/1/2019	46.3	
3/31/2020		29.9
9/24/2020		37.6
3/9/2021		41.6
8/10/2021		23.8

	GWC-22	GWC-22
3/23/2016	9.1183	
5/18/2016	6.88	
7/7/2016	6.8	
9/8/2016	6.8	
10/19/2016	7.5	
12/7/2016	11	
2/2/2017	9.9	
3/27/2017	8.4	
10/5/2017	7.4	
3/15/2018	8.2	
10/4/2018	6.4	
4/9/2019	11	
10/1/2019	1.9	
3/31/2020		10.9
9/23/2020		5
3/9/2021		6.4
8/10/2021		6.2

	GWC-23	GWC-23
3/23/2016	6.2867	
5/19/2016	5.42	
7/7/2016	5.7	
9/8/2016	5.7	
10/19/2016	5.8	
12/7/2016	5.9	
2/3/2017	38	
3/27/2017	43	
10/5/2017	8.3	
3/15/2018	14	
10/5/2018	9.3	
4/8/2019	6.2	
10/1/2019	5.8	
3/26/2020		14.5
9/23/2020		5.3
3/9/2021		10.2
8/10/2021		8

	GWC-5	GWC-5
3/23/2016	76.011	
5/17/2016	76.2	
7/6/2016	74	
9/7/2016	64	
10/18/2016	65	
12/8/2016	100	
2/1/2017	150	
3/23/2017	130	
10/4/2017	71	
3/16/2018	77.4	
10/4/2018	90.3	
4/9/2019	83.6	
10/1/2019	68.1	
3/31/2020		92.6
9/25/2020		80.7
3/9/2021		86.9
8/10/2021		76.1

	GWC-6	GWC-6
3/23/2016	87.512	
5/17/2016	101	
7/6/2016	110	
9/7/2016	97	
10/18/2016	120	
12/8/2016	100	
2/1/2017	110	
3/23/2017	110	
10/4/2017	130	
12/14/2017	130	
1/18/2018	110	
3/16/2018	93.6	
10/4/2018	137	
12/11/2018	110	
4/8/2019	131	
6/19/2019	108	
10/1/2019	71.7	
3/31/2020		106
9/25/2020		110
3/9/2021		105
8/10/2021		95.9

	GWC-7	GWC-7
3/23/2016	90.229	
5/18/2016	100	
7/6/2016	130	
9/7/2016	130	
10/18/2016	140	
12/8/2016	140	
2/2/2017	71	
3/24/2017	68	
10/4/2017	120	
3/15/2018	118	
10/4/2018	167	
4/8/2019	97.1	
10/1/2019	120	
3/30/2020		64.6
9/24/2020		120
3/9/2021		87.4
8/10/2021		101

	GWC-8	GWC-8
3/23/2016	26.3455	
5/19/2016	31.7	
7/6/2016	36	
9/8/2016	45	
10/18/2016	49	
12/8/2016	50	
2/2/2017	51	
3/24/2017	46	
10/5/2017	48	
3/14/2018	36.8	
10/4/2018	45.4	
4/8/2019	39.9	
10/1/2019	47.1	
3/27/2020		31.5
9/24/2020		48.3
3/9/2021		33.1
8/10/2021		31.6

	GWC-9	GWC-9
3/23/2016	61.8335	
5/19/2016	64.3	
7/6/2016	69	
9/8/2016	68	
10/19/2016	69	
12/8/2016	69	
2/2/2017	76	
3/27/2017	68	
10/5/2017	74	
3/15/2018	57.8	
10/5/2018	81.9	
12/11/2018	73.6	
4/8/2019	73.5	
10/1/2019	72.2	
3/27/2020		54
9/24/2020		69.9
3/9/2021		65.1 (M1)
8/10/2021		76.3

	GWA-1	GWA-1
3/22/2016	78	
5/17/2016	67	
7/5/2016	87	
9/7/2016	125	
10/18/2016	133	
12/6/2016	151	
1/31/2017	135	
3/23/2017	72	
10/4/2017	91	
3/14/2018	99	
10/4/2018	112	
4/8/2019	91	
9/30/2019	126	
3/26/2020		73
9/23/2020		117
3/8/2021		96
8/9/2021		96

	GWA-11	GWA-11
		GWA-11
3/22/2016	112	
5/17/2016	121	
7/6/2016	98	
9/7/2016	128	
10/18/2016	115	
12/6/2016	153	
2/1/2017	183	
3/24/2017	121	
10/5/2017	113	
3/15/2018	115	
10/4/2018	135	
4/8/2019	142	
9/30/2019	134	
3/26/2020		76
9/22/2020		107
3/8/2021		107
8/10/2021		107

	GWA-2	GWA-2
3/22/2016	233	
5/17/2016	197	
7/5/2016	218	
9/7/2016	240	
10/18/2016	221	
12/7/2016	235	
1/31/2017	253	
3/23/2017	190	
10/4/2017	192	
3/14/2018	204	
10/4/2018	233	
4/8/2019	209	
9/30/2019	242	
3/26/2020		222
9/21/2020		204
3/9/2021		227 (D6)
8/9/2021		245

	GWA-3	GWA-3
3/22/2016	451	
5/17/2016	430	
7/5/2016	418	
9/7/2016	443	
10/18/2016	415	
12/6/2016	653	
2/1/2017	615	
3/23/2017	506	
10/4/2017	492	
3/15/2018	448	
10/4/2018	472	
4/5/2019	456	
9/30/2019	475	
3/26/2020		450
9/23/2020		473
3/8/2021		415
8/9/2021		416

	GWA-4	GWA-4
3/22/2016	686	
5/17/2016	533	
7/6/2016	646	
9/7/2016	493	
10/18/2016	455	
12/6/2016	597	
2/1/2017	638	
3/24/2017	579	
10/4/2017	440	
3/15/2018	381	
10/4/2018	490	
4/8/2019	522	
9/30/2019	455	
3/26/2020		466
9/23/2020		421
3/8/2021		460
8/9/2021		371

	GWC-10	GWC-10
3/23/2016	182	
5/17/2016	178	
7/6/2016	135	
9/7/2016	165	
10/18/2016	113	
12/6/2016	194	
2/2/2017	160	
3/27/2017	252	
10/5/2017	177	
3/15/2018	216	
10/4/2018	222	
4/9/2019	213	
10/1/2019	186	
3/27/2020		118
9/25/2020		153
3/9/2021		201
8/10/2021		185

	GWC-18	GWC-18
3/24/2016	205	
5/19/2016	204	
7/7/2016	181	
9/8/2016	193	
10/19/2016	231	
12/8/2016	166	
2/2/2017	191	
3/27/2017	427	
10/5/2017	207	
3/16/2018	199	
10/5/2018	235	
4/9/2019	212	
10/1/2019	196	
3/30/2020		217
9/24/2020		181
3/9/2021		192
8/10/2021		224

	GWC-19	GWC-19
3/24/2016	232	
5/18/2016	245	
7/6/2016	231	
9/8/2016	252	
10/18/2016	288	
12/7/2016	220	
2/2/2017	220	
3/27/2017	393	
10/5/2017	242	
3/15/2018	213	
10/4/2018	231	
4/9/2019	253	
10/1/2019	229	
3/31/2020		233
9/28/2020		214
3/10/2021		223 (D6)
8/10/2021		209

	GWC-20	GWC-20
3/23/2016	208	
5/18/2016	213	
7/7/2016	212	
9/8/2016	201	
10/19/2016	276	
12/7/2016	186	
2/3/2017	219	
3/27/2017	239	
10/5/2017	216	
3/16/2018	216	
10/5/2018	256	
4/9/2019	267	
10/1/2019	271	
3/31/2020		267
9/23/2020		277
3/10/2021		241
8/10/2021		270

	GWC-21	GWC-21
3/24/2016	110	
5/18/2016	153	
7/7/2016	151	
9/8/2016	285	
10/19/2016	314	
12/7/2016	252	
2/2/2017	138	
3/27/2017	88	
10/5/2017	111	
3/15/2018	219	
10/4/2018	152	
4/9/2019	167	
10/1/2019	336	
11/6/2019	336	
11/26/2019	236	
3/31/2020		111
9/24/2020		286
3/9/2021		243
8/10/2021		121

	GWC-22	GWC-22
3/23/2016	206	
5/18/2016	212	
7/7/2016	206	
9/8/2016	214	
10/19/2016	269	
12/7/2016	199	
2/2/2017	211	
3/27/2017	324	
10/5/2017	219	
3/15/2018	190	
10/4/2018	215	
4/9/2019	222	
10/1/2019	220	
3/31/2020		195
9/23/2020		231
3/9/2021		178
8/10/2021		206

	GWC-23	GWC-23
3/23/2016	168	
5/19/2016	173	
7/7/2016	144	
9/8/2016	179	
10/19/2016	209	
12/7/2016	156	
2/3/2017	276	
3/27/2017	295	
10/5/2017	192	
3/15/2018	169	
10/5/2018	210	
4/8/2019	191	
10/1/2019	203	
3/26/2020		193
9/23/2020		186
3/9/2021		216
8/10/2021		178

	GWC-5	GWC-5
3/23/2016	379	
5/17/2016	349	
7/6/2016	346	
9/7/2016	382	
10/18/2016	461	
12/8/2016	379	
2/1/2017	511	
3/23/2017	443	
10/4/2017	359	
3/16/2018	390	
10/4/2018	385	
4/9/2019	371	
10/1/2019	380	
3/31/2020		408
9/25/2020		367
3/9/2021		364
8/10/2021		363

	GWC-6	GWC-6
3/23/2016	310	
5/17/2016	280	
7/6/2016	280	
9/7/2016	324	
10/18/2016	307	
12/8/2016	281	
2/1/2017	354	
3/23/2017	302	
10/4/2017	365	
12/14/2017	406	
1/18/2018	404	
3/16/2018	317	
10/4/2018	371	
4/8/2019	353	
10/1/2019	348	
3/31/2020		349
9/25/2020		345
3/9/2021		298
8/10/2021		318

	GWC-7	GWC-7
3/23/2016	253	
5/18/2016	276	
7/6/2016	239	
9/7/2016	247	
10/18/2016	233	
12/8/2016	373	
2/2/2017	236	
3/24/2017	291	
10/4/2017	264	
3/15/2018	254	
10/4/2018	287	
4/8/2019	295	
10/1/2019	277	
3/30/2020		216
9/24/2020		254
3/9/2021		299
8/10/2021		210

	GWC-8	GWC-8
3/23/2016	239	
5/19/2016	236	
7/6/2016	218	
9/8/2016	225	
10/18/2016	200	
12/8/2016	196	
2/2/2017	231	
3/24/2017	250	
10/5/2017	309	
12/14/2017	322	
1/18/2018	322	
3/14/2018	263	
10/4/2018	292	
4/8/2019	438	
10/1/2019	305	
3/27/2020		329
9/24/2020		307
3/9/2021		308
8/10/2021		425

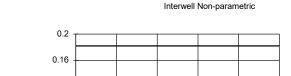

	GWC-9	GWC-9
3/23/2016	204	
5/19/2016	215	
7/6/2016	204	
9/8/2016	201	
10/19/2016	272	
12/8/2016	227	
2/2/2017	209	
3/27/2017	305	
10/5/2017	204	
3/15/2018	280	
10/5/2018	236	
4/8/2019	264	
10/1/2019	237	
3/27/2020		192
9/24/2020		179
3/9/2021		209
8/10/2021		208

FIGURE H.

Appendix III Interwell Prediction Limits - All Results (No Significant) Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:33 PM

Plant Hammond Client: Southern Company Data: Hutraker Road Landfill Printed 9/2/2021, 4:33 PM														
Constituent	Well	Upper Lir	m. Lower Lir	n. <u>Date</u>	Observ.	Sig.	Bg N	N Bg Mean	Std. Dev.	%NE	os ND Adj.	Transform	m Alpha	<u>Method</u>
Boron (mg/L)	GWC-8	0.182	n/a	8/10/2021	0.088	No	85	n/a	n/a	2.35	3 n/a	n/a	0.000266	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-18	123	n/a	8/10/2021	48.2	No	85	n/a	n/a	2.35	3 n/a	n/a	0.000266	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-23	123	n/a	8/10/2021	48.2	No	85	n/a	n/a	2.35	3 n/a	n/a	0.000266	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-8	123	n/a	8/10/2021	111	No	85	n/a	n/a	2.35	3 n/a	n/a	0.000266	NP Inter (normality) 1 of 2
pH (SU)	GWC-8	7.186	6.453	8/10/2021	6.65	No	85	6.82	0.1805	0	None	No	0.0003135	Param Inter 1 of 2
Sulfate (mg/L)	GWC-20	302.3	n/a	8/10/2021	66.4	No	85	n/a	n/a	0	n/a	n/a	0.000266	NP Inter (normality) 1 of 2

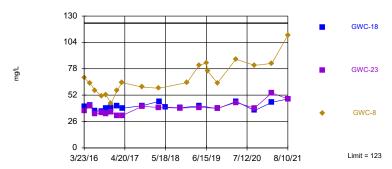
Prediction Limit Within Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 85 background values. 2.353% NDs. Annual perconstituent alpha = 0.006366. Individual comparison alpha = 0.000266 (1 of 2). Assumes 11 future values.

> Constituent: Boron Analysis Run 9/2/2021 4:33 PM View: Appendix III - Interwell Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

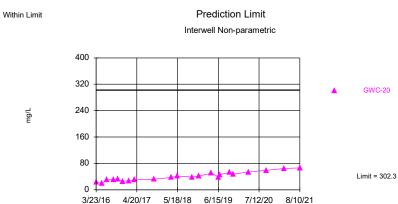
Prediction Limit Within Limits Interwell Parametric GWC-8 4.8 Limit = 7.186 3.2 1.6


3/23/16 4/20/17 5/18/18 6/15/19 7/12/20 8/10/21

Background Data Summary: Mean=6.82, Std. Dev.=0.1805, n=85. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.991, critical = 0.961. Kappa = 2.029 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0003135. Assumes 11 future values.

Limit = 6.453

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG


Prediction Limit Within Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 85 background values. 2.353% NDs. Annual perconstituent alpha = 0.006366. Individual comparison alpha = 0.000266 (1 of 2). Comparing 3 points to limit. Assumes 9 future values.

> Constituent: Calcium Analysis Run 9/2/2021 4:33 PM View: Appendix III - Interwell Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 85 background values. Annual per-constituent alpha = 0.006366. Individual comparison alpha = 0.000266 (1 of 2). Assumes 11 future values.

		GWA-1 (bg)	GWA-4 (bg)	GWA-2 (bg)	GWA-11 (bg)	GWA-3 (bg)	GWC-8
3/22/2	2016	<0.1	0.0815 (J)	0.0828 (J)	0.04 (J)	0.135	
3/23/2	2016						0.0213 (J)
5/17/2	2016	<0.1	0.0838 (J)	0.0844 (J)	0.0358 (J)	0.132	
5/18/2	2016						0.028 (J)
7/5/20	16	0.0419 (J)		0.0962 (J)		0.161	
7/6/20	16		0.111		0.0373 (J)		0.0231 (J)
9/7/20	16	0.0174 (J)	0.107	0.0884 (J)	0.0352 (J)	0.163	
9/8/20	16						0.0234 (J)
10/18/	/2016	0.0192 (J)	0.118	0.0889 (J)	0.0332 (J)	0.154	0.0228 (J)
12/6/2	2016	0.0182 (J)	0.106		0.033 (J)	0.142	
12/7/2	2016			0.0954			
12/8/2	2016						0.0251 (J)
1/31/2	2017	0.0193 (J)		0.0939			
2/1/20)17		0.0949		0.0365 (J)	0.143	
2/2/20)17						0.0238 (J)
3/23/2	2017	0.0192 (J)		0.0869		0.15	
3/24/2	2017		0.0887		0.0343 (J)		0.0234 (J)
10/4/2	2017	0.0199 (J)	0.105	0.0914		0.182	
10/5/2	2017				0.0325 (J)		0.0329 (J)
3/14/2	2018	0.019 (J)		0.075			0.024 (J)
3/15/2	2018		0.043		0.037 (J)	0.14	
10/4/2	2018	0.021 (J)	0.1	0.082	0.035 (J)	0.16	0.047 (J)
4/5/20	19					0.12	
4/8/20	19	0.019 (J)	0.057 (J)	0.071 (J)	0.034 (J)		0.055 (J)
9/30/2	2019	0.025 (J)	0.11	0.084	0.039 (J)	0.17	
10/1/2	2019						0.046
3/26/2	2020	0.022 (J)	0.086 (J)	0.092 (J)	0.041 (J)	0.14	
3/27/2	2020						0.056 (J)
6/19/2	2020						0.086 (JR)
9/21/2	2020			0.086 (J)			
9/22/2	2020				0.038 (J)		
9/23/2	2020	0.047 (J)	0.087 (J)			0.15	
9/24/2	2020						0.055 (J)
3/8/20)21	0.021 (J)	0.089		0.042	0.13	
3/9/20)21			0.081			0.05
8/9/20)21	0.021 (J)	0.073	0.085		0.14	
8/10/2	2021				0.034 (J)		0.088

 $\label{lem:constituent: Calcium (mg/L)} \begin{array}{ll} \text{Analysis Run 9/2/2021 4:33 PM} & \text{View: Appendix III - Interwell} \\ \text{Plant Hammond} & \text{Client: Southern Company} & \text{Data: Huffaker Road Landfill} \\ \end{array}$

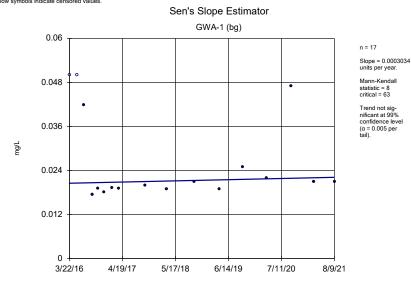
	GWA-1 (bg)	GWA-4 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWA-11 (bg)	GWC-8	GWC-23	GWC-18
3/22/2016	13.9	123	79.3	47.4	23.8			
3/23/2016						69.1	36.4	
3/24/2016								40.7
5/17/2016	15.6	99.2	75.8	45.5	21.5			
5/18/2016						63.7		41.9
5/19/2016							41.5	
7/5/2016	15.7		65.3	40.5				
7/6/2016		109			20.6	56.8		
7/7/2016							33.5	36.8
9/7/2016	18.2	67.2	59.8	37.3	16.7			
9/8/2016						51.3	34.7	35.9
10/18/2016	17.7	77.9	72.4	46.6	20.3	52.6		
10/19/2016							33.4	38.7
12/6/2016	16.9	93.3	78.6		19.7			
12/7/2016				43.5			35.5	
12/8/2016						43.7		39.4
1/31/2017	17.9			39.2				
2/1/2017		92.8	85		18.1			
2/2/2017						56.5		41.5
2/3/2017							31.7	
3/23/2017	13.9		81.2	38.7				
3/24/2017		96.3			21.1	64.4		
3/27/2017							32	39.1
10/4/2017	15.9	75.1	78.8	36.5				
10/5/2017					20.1	59.9	41	41.6
3/14/2018	<25			39.5		58.8		
3/15/2018		69.9	83.5		<25		39.8	
3/16/2018								45.9
5/16/2018								40
10/4/2018	15.9 (J)	77.8	75.2	41.7	21.3 (J)	264 (o)		
10/5/2018							39.3	39.6
12/11/2018						64.3		
4/5/2019			76.5					
4/8/2019	15.7	86.6		44.1	22.4	81.5	39.8	
4/9/2019								41.4
6/18/2019						83.7		
6/27/2019						75.9		
9/30/2019	17.6	78.3	74.7	44.6	19.6			
10/1/2019						64	39.1	38.7
3/26/2020	14	87.4	78.7	43.2	22.4		44.7	
3/27/2020						87.3		
3/30/2020								45.7
9/21/2020				45.8				
9/22/2020					19.5			
9/23/2020	17.6	74.9	76.2				39.2	
9/24/2020						81.4		36.9
3/8/2021	16.2 (M1)	87.2	73.5		22			
3/9/2021				48.7		83.2	54.3	44.9
8/9/2021	20.2	69.7	73.2	49.9				
8/10/2021					20.8	111	48.2	48.2

Constituent: pH (SU) Analysis Run 9/2/2021 4:33 PM View: Appendix III - Interwell Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

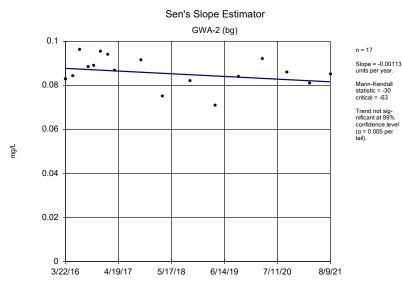
	GWA-1 (bg)	GWA-4 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWA-11 (bg)	GWC-8
3/22/2016	7.07	7.14	7.11	7.19	7	
3/23/2016						7.46
5/17/2016	7	6.67	6.95	6.94	6.77	
5/18/2016						7.4
7/5/2016	6.88		6.55	6.98		
7/6/2016		6.53			6.64	7.36
9/7/2016	7.24	6.72	6.81	6.86	6.83	
9/8/2016						7.45
10/18/2016	6.86	6.73	6.64	6.71	6.58	7.5
12/6/2016	6.98	6.61	6.34		6.66	
12/7/2016				6.71		
12/8/2016						7.28
1/31/2017	6.63			6.95		
2/1/2017		6.7	6.68		6.5	
2/2/2017						7.45
3/23/2017	7.12		6.8	7.04		
3/24/2017		6.77			6.72	7.28
10/4/2017	6.83	6.52	6.64	6.86		
10/5/2017					6.69	7.53
3/14/2018	6.66			6.76		7.28
3/15/2018		7.11	6.88		6.48	
10/4/2018	6.92	6.72	6.62	6.62	6.66	7.22
4/5/2019			6.77			
4/8/2019	6.86	6.82		6.79	6.61	6.91
6/18/2019						6.85
6/27/2019						7.05
9/30/2019	7.15	6.77	6.73	6.86	6.86	
10/1/2019						7.11
3/26/2020	7.02	6.74	6.87	7.07	6.83	
3/27/2020						7.01
6/19/2020						6.81 (R)
9/21/2020				6.9		
9/22/2020					6.8	
9/23/2020	6.98	6.81	6.87			
9/24/2020						6.96
3/8/2021	6.86	6.84	6.95		6.78	
3/9/2021				6.93		7.06
8/9/2021	7.23	6.76	6.89	6.9		
8/10/2021					6.84	6.65

Constituent: Sulfate (mg/L) Analysis Run 9/2/2021 4:33 PM View: Appendix III - Interwell Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

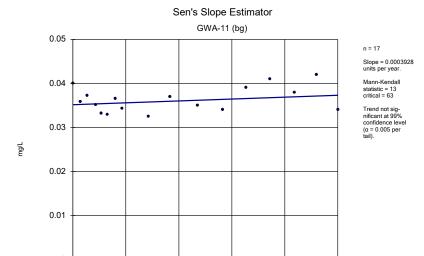
	GWA-1 (bg)	GWA-4 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWA-11 (bg)	GWC-20
3/22/2016	4.4409	302.2975	107.476	13.0789	11.6823	
3/23/2016						22.9683
5/17/2016	4.43	213	106	15.3	11.4	
5/18/2016						19.2
7/5/2016	4.6		110	15		
7/6/2016		280			12	
7/7/2016						31
9/7/2016	4.8	160	83	16	13	
9/8/2016						30
10/18/2016	4.7	120	110	16	13	
10/19/2016						32
12/6/2016	4.7	210	220		12	
12/7/2016				15		26
1/31/2017	5.1			13		
2/1/2017		200	190		13	
2/3/2017						27
3/23/2017	4.7		160	12		
3/24/2017		140			12	
3/27/2017						30
10/4/2017	5	140	140	12		
10/5/2017					13	32
3/14/2018	5.1			13.9		
3/15/2018		167	119		12.2	
3/16/2018						37.5
5/15/2018						41
10/4/2018	5.2	209	117	17.4	15.6	
10/5/2018						38.9
12/11/2018						41.8
4/5/2019			131			
4/8/2019	4.6	248		18.1	13.2	
4/9/2019						50.3
6/18/2019						38.7
6/27/2019						46
9/30/2019	4.9	117	118	17.5	11.5	
10/1/2019						52.3
11/6/2019						47.3
3/26/2020	5	128	95.8	15.6	10.8	
3/31/2020						53.6
9/21/2020				18.2		
9/22/2020					9.8	
9/23/2020	6.6	123	95.6			58.9
3/8/2021	4.6	152	99.5		11.5	
3/9/2021				16.8		
3/10/2021						64.7
8/9/2021	4.7	106	93.3	23.2		
8/10/2021		-	-		11.2	66.4


FIGURE I.

Appendix III Trend Tests - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 9/2/2021, 4:37 PM


	Plant Hammond Client: Southern Comp	oany Data: Hu	naker Roa	a Landilli	Printed	9/2/20	21, 4:3	/ PIVI			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%ND	s Normality	Xform	<u>Alpha</u>	Method
Boron (mg/L)	GWC-8	0.00798	107	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-8	6.798	91	74	Yes	19	0	n/a	n/a	0.01	NP
pH (SU)	GWC-8	-0.127	-120	-81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-20	7.831	193	92	Yes	22	0	n/a	n/a	0.01	NP

Appendix III Trend Tests - All Results


	Plant Hammond Client: Southern Compar	ny Data: I	Huffaker Road	Landfill	Printed	9/2/202	1, 4:37	PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	GWA-1 (bg)	0.000303	34 8	63	No	17	11.76	n/a	n/a	0.01	NP
Boron (mg/L)	GWA-11 (bg)	0.000392	28 13	63	No	17	0	n/a	n/a	0.01	NP
Boron (mg/L)	GWA-2 (bg)	-0.00113	-30	-63	No	17	0	n/a	n/a	0.01	NP
Boron (mg/L)	GWA-3 (bg)	-0.000808	183 -14	-63	No	17	0	n/a	n/a	0.01	NP
Boron (mg/L)	GWA-4 (bg)	-0.003997	7 -30	-63	No	17	0	n/a	n/a	0.01	NP
Boron (mg/L)	GWC-8	0.00798	107	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-1 (bg)	0.143	22	63	No	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-11 (bg)	-0.01775	i -1	-63	No	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-2 (bg)	1.105	32	63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-3 (bg)	-0.4021	-12	-63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-4 (bg)	-4.644	-50	-63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-18	0.927	40	68	No	18	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-23	2.093	51	63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-8	6.798	91	74	Yes	19	0	n/a	n/a	0.01	NP
pH (SU)	GWA-1 (bg)	0	0	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	GWA-11 (bg)	0.01097	14	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	GWA-2 (bg)	-0.006259	9 -9	-63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	GWA-3 (bg)	0.02336	23	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	GWA-4 (bg)	0.02066	38	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	GWC-8	-0.127	-120	-81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-1 (bg)	0.09614	45	63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-11 (bg)	-0.1219	-22	-63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-2 (bg)	0.81	55	63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-3 (bg)	-2.776	-27	-63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-4 (bg)	-18.9	-63	-63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-20	7.831	193	92	Yes	22	0	n/a	n/a	0.01	NP

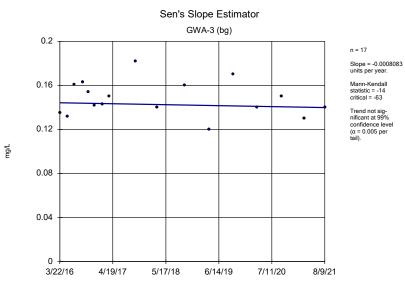
Constituent: Boron Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Boron Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

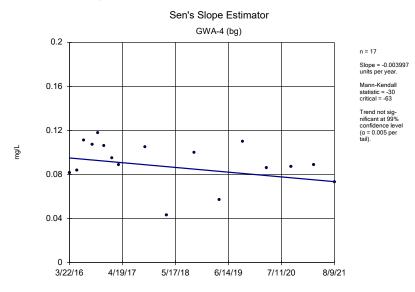
Constituent: Boron Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

6/15/19

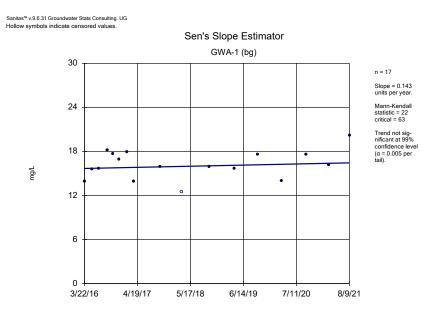
5/17/18

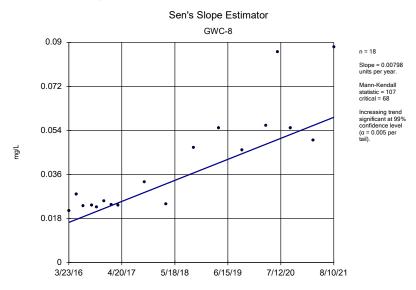

7/12/20

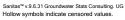
8/10/21


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

3/22/16

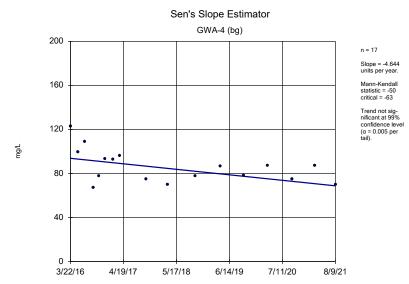

4/19/17


Constituent: Boron Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

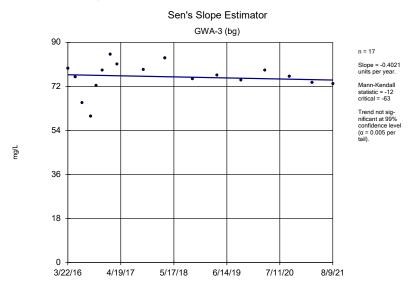

Constituent: Boron Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Calcium Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

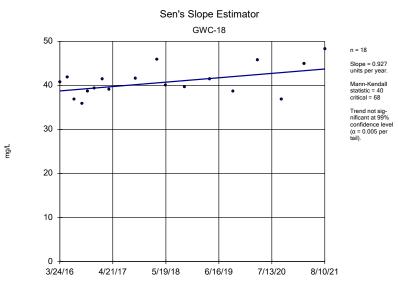
Constituent: Boron Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

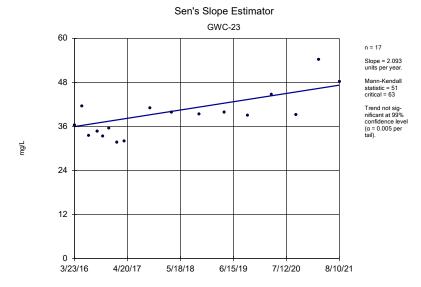


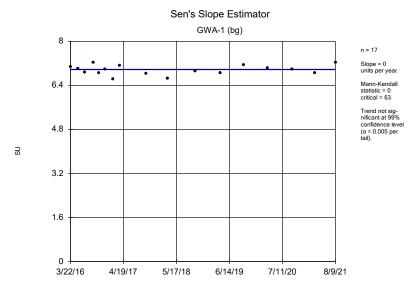
Constituent: Calcium Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



Constituent: Calcium Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill




Constituent: Calcium Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Calcium Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Calcium Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

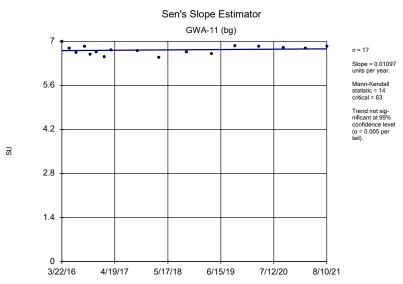
Constituent: Calcium Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: pH Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

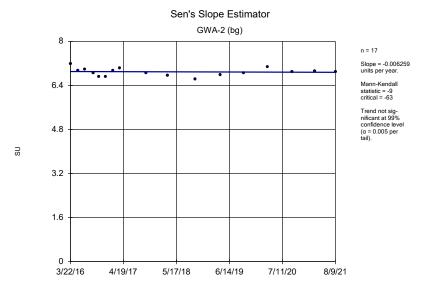
Constituent: Calcium Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

6/15/19

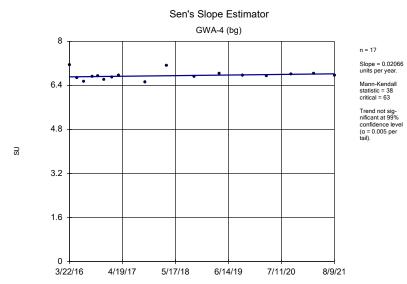
7/12/20


8/10/21

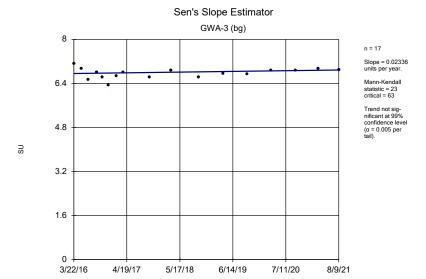
5/18/18


Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

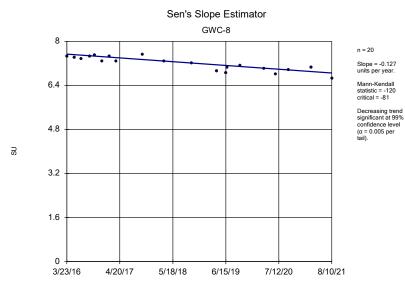
3/23/16


4/20/17

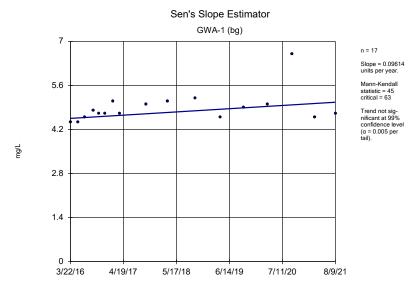
Constituent: pH Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

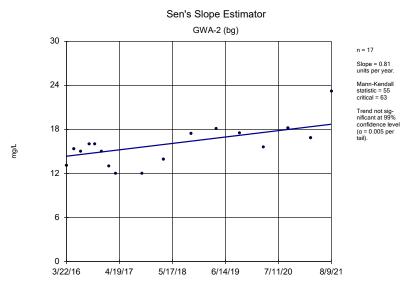


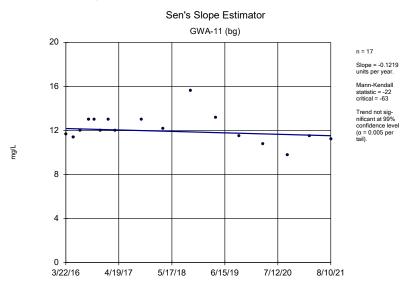
Constituent: pH Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

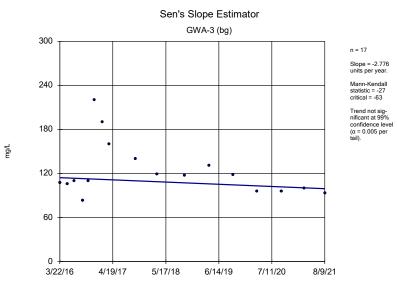


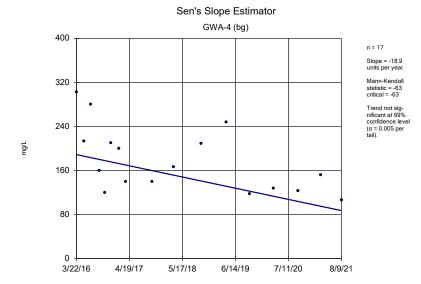
Constituent: pH Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests

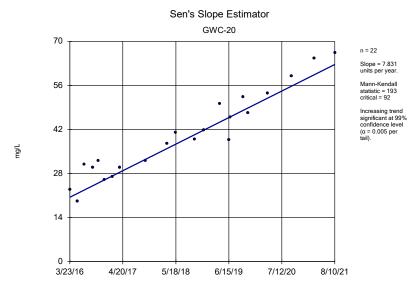

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: pH Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: pH Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Sulfate Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Sulfate Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Sulfate Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Sulfate Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

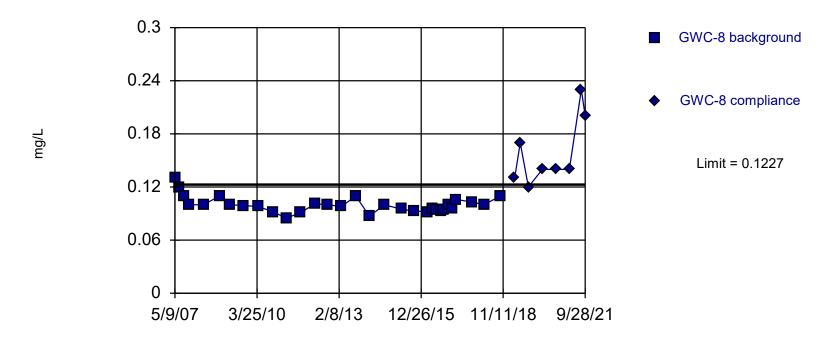
Constituent: Sulfate Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Sulfate Analysis Run 9/2/2021 4:36 PM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

FIGURE J.

Appendix I Intrawell Prediction Limits - Resample Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/21/2021, 1:17 PM

 Constituent
 Well
 Upper Lim.
 Lower Lim. Date
 Observ.
 Sig.
 Is J. Barden
 Std. Dev.
 %NDs.
 ND. Adj.
 Transform Alpha
 Method

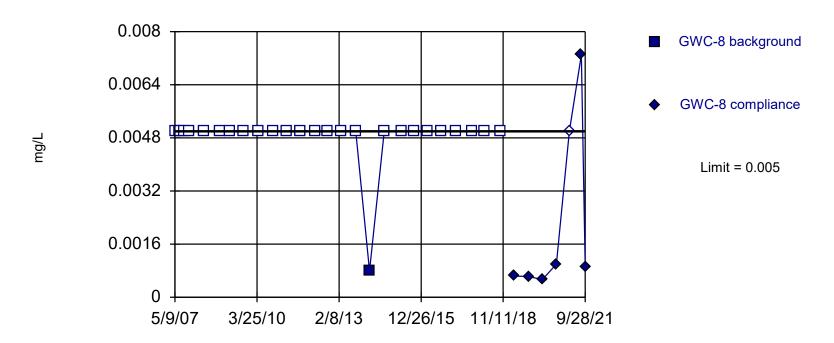

 Barium (mg/L)
 GWC-8
 0.1227
 n/a
 9/28/2021
 0.2009 J
 No.
 26
 n/a
 0.01439
 0.0
 None
 sqrt(x)
 0.0002926
 Param Intra 1 of 2

 Nickel (mg/L)
 GWC-8
 0.005
 n/a
 9/28/2021
 0.0009J
 No
 26
 n/a
 n/a
 96.15
 n/a
 n/a
 0.002667
 NP Intra (NDs) 1 of 2

Exceeds Limit

Prediction Limit

Intrawell Parametric


Background Data Summary (based on square root transformation): Mean=0.316, Std. Dev.=0.01439, n=31. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9173, critical = 0.902. Kappa = 2.39 (c=15, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002926.

Constituent: Barium Analysis Run 10/21/2021 1:16 PM View: State Parameters - Resample Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 26 background values. 96.15% NDs. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2).

Constituent: Nickel Analysis Run 10/21/2021 1:16 PM View: State Parameters - Resample

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Barium (mg/L) Analysis Run 10/21/2021 1:17 PM View: State Parameters - Resample Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-8	GWC-8
5/9/2007	0.13	
7/6/2007	0.12	
8/28/2007	0.11	
11/6/2007	0.1	
5/8/2008	0.1	
12/2/2008	0.11	
4/8/2009	0.1	
9/30/2009	0.099	
4/13/2010	0.098	
10/13/2010	0.092	
4/5/2011	0.085	
10/4/2011	0.091	
4/3/2012	0.101	
9/19/2012	0.1	
3/12/2013	0.098	
9/10/2013	0.11	
3/5/2014	0.087	
9/9/2014	0.1	
4/22/2015	0.095	
9/29/2015	0.093	
3/23/2016	0.0918	
5/18/2016	0.0957	
7/6/2016	0.0935	
9/8/2016	0.0925	
10/18/2016	0.0939	
12/8/2016	0.0996	
2/2/2017	0.096	
3/24/2017	0.106	
10/5/2017	0.103	
3/14/2018	0.1	
10/4/2018	0.11	
4/8/2019		0.13
6/18/2019		0.17
10/1/2019		0.12
3/27/2020		0.14
9/24/2020		0.14
3/9/2021		0.14
8/10/2021		0.23
9/28/2021		0.2 (R)

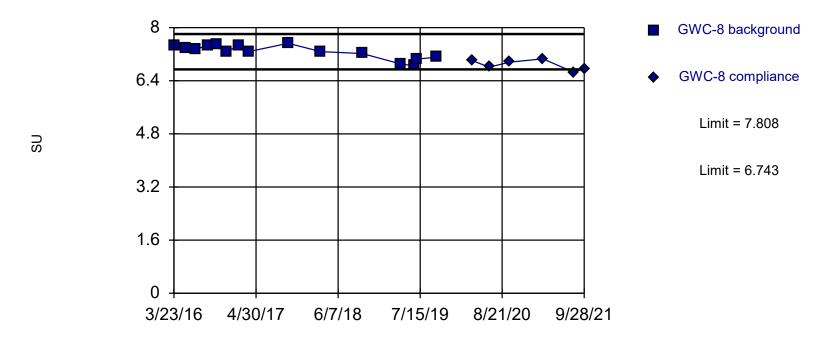
 $\label{lem:constituent: Nickel (mg/L)} Constituent: \ Nickel (mg/L) \qquad Analysis \ Run \ 10/21/2021 \ 1:17 \ PM \qquad View: \ State \ Parameters - Resample \\ Plant \ Hammond \qquad Client: \ Southern \ Company \qquad Data: \ Huffaker \ Road \ Landfill \\$

_			
		GWC-8	GWC-8
	5/9/2007	<0.005	
	7/6/2007	<0.005	
	8/28/2007	<0.005	
	11/6/2007	<0.005	
	5/8/2008	<0.005	
	12/2/2008	<0.005	
	4/8/2009	<0.005	
	9/30/2009	<0.005	
	4/13/2010	<0.005	
	10/13/2010	<0.005	
	4/5/2011	<0.005	
	10/4/2011	<0.005	
	4/3/2012	<0.005	
	9/19/2012	<0.005	
	3/12/2013	<0.005	
	9/10/2013	<0.005	
	3/5/2014	0.00079 (J)	
	9/9/2014	<0.005	
	4/22/2015	<0.005	
	9/29/2015	<0.005	
	3/23/2016	<0.005	
	9/8/2016	<0.005	
	3/24/2017	<0.005	
	10/5/2017	<0.005	
	3/14/2018	<0.005	
	10/4/2018	<0.005	
	4/8/2019		0.00064 (J)
	10/1/2019		0.00063 (J)
	3/27/2020		0.00053 (J)
	9/24/2020		0.001 (J)
	3/9/2021		<0.005
	8/10/2021		0.0073
	9/28/2021		0.0009 (J,R)

FIGURE K.

Appendix III Intrawell Prediction Limits - Resample Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/21/2021, 1:18 PM


 Constituent
 Well
 Upper Lim.
 Lower Lim. Date
 Observ.
 Sig.
 Bg N Bg Mean
 Std. Dev.
 %NDs
 ND Adj.
 Transform Alpha
 Method

 pH (SU)
 GWC-8
 7.808
 6.743
 9/28/2021
 6.77
 No
 15
 7.275
 0.2119
 0
 None
 No
 0.0003135
 Param Intra 1 of 2

Within Limits

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=7.275, Std. Dev.=0.2119, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9103, critical = 0.835. Kappa = 2.514 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

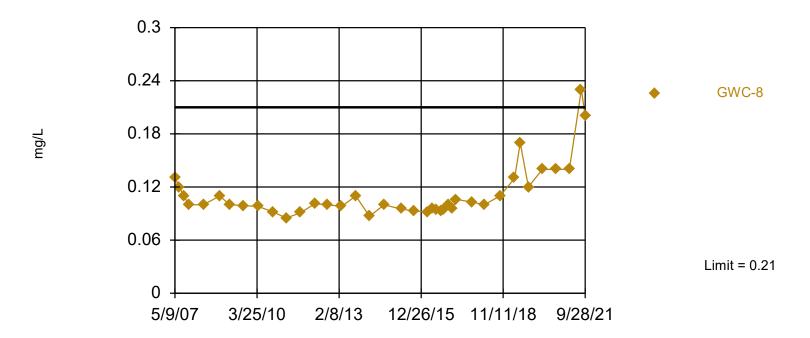
Constituent: pH Analysis Run 10/21/2021 1:17 PM View: Appendix III - Resample Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: pH (SU) Analysis Run 10/21/2021 1:18 PM View: Appendix III - Resample Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-8	GWC-8
3/23/2016	7.46	
5/18/2016	7.4	
7/6/2016	7.36	
9/8/2016	7.45	
10/18/2016	7.5	
12/8/2016	7.28	
2/2/2017	7.45	
3/24/2017	7.28	
10/5/2017	7.53	
3/14/2018	7.28	
10/4/2018	7.22	
4/8/2019	6.91	
6/18/2019	6.85	
6/27/2019	7.05	
10/1/2019	7.11	
3/27/2020		7.01
6/19/2020		6.81 (R)
9/24/2020		6.96
3/9/2021		7.06
8/10/2021		6.65
9/28/2021		6.77 (R)

FIGURE L.

Appendix I Interwell Prediction Limits - Resample Results


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/21/2021, 2:25 PM

 Constituent
 Well
 Upper Lim.
 Lower Lim. Date
 Observ.
 Sig. Bg N Bg Mean
 Std. Dev.
 %NDs V MD Adj.
 Transform Alpha
 Method

 Barium (mg/L)
 GWC-8
 0.21
 n/a
 9/28/2021
 0.2
 No 190 n/a
 n/a
 n/a
 n/a
 0.0000548
 NP Inter (normality) 1 of 2

Within Limit

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 190 background values. Annual per-constituent alpha = 0.001314. Individual comparison alpha = 0.0000548 (1 of 2). Assumes 11 future values.

Constituent: Barium Analysis Run 10/21/2021 2:25 PM View: State Parameters - Resample

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

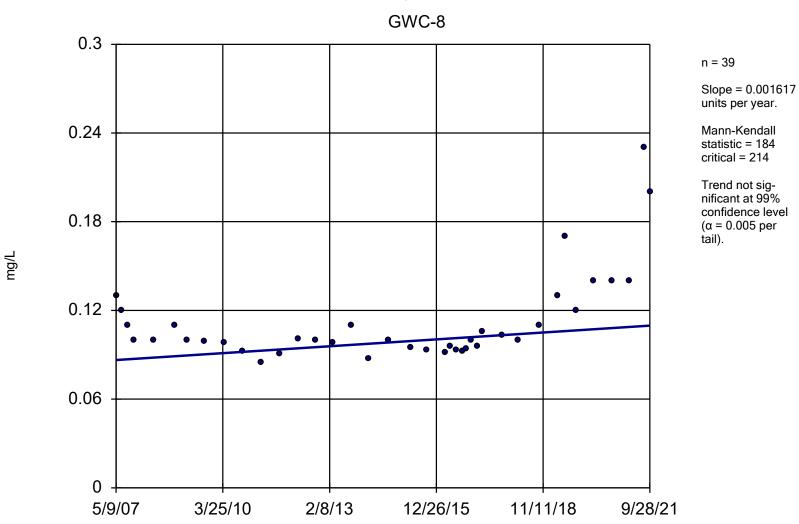
Constituent: Barium (mg/L) Analysis Run 10/21/2021 2:25 PM View: State Parameters - Resample Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-4 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-11 (bg)	GWC-8
3/6/2007	0.032	0.13	0.12	0.17	(0,	
3/7/2007					0.03	
5/8/2007	0.04	0.12	0.11	0.21	0.032	
5/9/2007						0.13
7/6/2007						0.12
7/7/2007	0.041		0.11			
7/17/2007		0.12		0.21	0.028	
8/28/2007	0.044	0.13	0.13	0.2	0.03	0.11
11/6/2007	0.044	0.12	0.12	0.19		0.1
11/7/2007					0.032	
5/8/2008		0.13		0.2		0.1
5/9/2008	0.03		0.12		0.032	
12/2/2008					0.036	0.11
12/3/2008	0.047	0.14	0.12	0.18		
4/7/2009	0.032	0.097	0.13	0.2		
4/8/2009					0.04	0.1
9/30/2009					0.0 .	0.099
10/1/2009	0.043		0.14		0.039	
10/2/2009	10	0.11	=-::	0.2		
4/13/2010		0.11	0.15	0.2		0.098
4/14/2010	0.032	0.059	0.10	0.2	0.041	0.000
10/7/2010	0.002	0.000	0.16	0.2	0.041	
10/13/2010	0.046		0.10		0.039	0.092
10/13/2010	0.040	0.053		0.18	0.039	0.092
4/5/2011		0.033		0.16		0.085
4/6/2011	0.034	0.042	0.14	0.10	0.034	0.000
10/4/2011	0.054		0.14		0.032	0.091
10/6/2011			0.16		0.002	0.001
10/10/2011	0.038		0.10			
10/12/2011	0.000	0.048		0.15		
4/3/2012	0.0363	0.040	0.165	0.10		0.101
4/4/2012	0.0000	0.044	0.100	0.165		5.101
4/10/2012					0.0425	
9/19/2012			0.16		0.0.120	0.1
9/24/2012	0.041	0.048	0.10			•
9/26/2012				0.17	0.035	
3/12/2013	0.041	0.043	0.16	0.17	0.035	0.098
9/9/2013			0.17			
9/10/2013		0.042		0.18	0.035	0.11
9/11/2013	0.048					
3/4/2014	0.036		0.16		0.031	
3/5/2014						0.087
3/11/2014		0.04		0.17		
9/3/2014	0.04		0.17		0.033	
9/8/2014		0.042		0.16		
9/9/2014						0.1
4/21/2015	0.033	0.05		0.16	0.03	
4/22/2015			0.17			0.095
9/29/2015		0.044		0.14	0.031	0.093
9/30/2015	0.042		0.15			
3/22/2016	0.0326	0.0397	0.197	0.188	0.0327	
3/23/2016						0.0918

Constituent: Barium (mg/L) Analysis Run 10/21/2021 2:25 PM View: State Parameters - Resample Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-4 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-11 (bg)	GWC-8
5/17/2016	0.0387	0.0351	0.178	0.193	0.0323	
5/18/2016						0.0957
7/5/2016	0.0403		0.182	0.172		
7/6/2016		0.0475			0.0344	0.0935
9/7/2016	0.0413	0.0415	0.172	0.164	0.0324	
9/8/2016						0.0925
10/18/2016	0.0409	0.0424	0.174	0.138	0.0311	0.0939
12/6/2016	0.0408	0.0528		0.149	0.0311	
12/7/2016			0.167			
12/8/2016						0.0996
1/31/2017	0.0435		0.176			
2/1/2017		0.0482		0.121	0.0332	
2/2/2017						0.096
3/23/2017	0.038		0.157	0.143		
3/24/2017		0.0595			0.032	0.106
10/4/2017	0.0396	0.0486	0.143	0.139		
10/5/2017					0.0325	0.103
3/14/2018	0.039		0.17			0.1
3/15/2018		0.04		0.17	0.031	
10/4/2018	0.039	0.05	0.18	0.16	0.033	0.11
4/5/2019				0.13		
4/8/2019	0.031	0.047	0.15		0.031	0.13
6/18/2019						0.17
9/30/2019	0.042	0.051	0.17	0.14	0.03	
10/1/2019						0.12
3/26/2020	0.032	0.049	0.16	0.14	0.031	
3/27/2020						0.14
9/21/2020			0.18			
9/22/2020					0.031	
9/23/2020	0.041	0.043		0.14		
9/24/2020						0.14
3/8/2021	0.035	0.052		0.12	0.031	
3/9/2021			0.17			0.14
8/9/2021	0.046	0.034	0.19	0.12		
8/10/2021					0.03	0.23
9/28/2021						0.2 (R)

FIGURE M.


Appendix I Trend Tests - Resample Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/21/2021, 1:20 PM

 Constituent
 Well
 Slope
 Calc.
 Critical
 Sig.
 N
 %NDs
 Normality
 Xform
 Alpha
 Method

 Barium (mg/L)
 GWC-8
 0.001617
 184
 214
 No
 39
 0
 n/a
 n/a
 0.01
 NP

Sen's Slope Estimator

Constituent: Barium Analysis Run 10/21/2021 1:19 PM View: Trend Tests - Resample Plant Hammond Client: Southern Company Data: Huffaker Road Landfill